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Abstract The Hengduan Mountains (HM) are located on the southeastern edge of the Tibetan Plateau and
feature high mountain ridges (>6,000 m MSL) separated by deep valleys. The HM region also features an
exceptionally high biodiversity, believed to have emerged from the topography interacting with the climate. To
investigate the role of the HM topography on regional climate, we conduct simulations with the regional climate
model COSMO at high horizontal resolutions (at ∼12 km and a convection‐permitting scale of ∼4.4 km) for the
period 2001–2005. We conduct one control simulation with modern topography and two idealized experiments
with modified topography, inspired by past geological processes that shaped the mountain range. In the first
experiment, we reduce the HM's elevation by applying a spatially non‐uniform scaling to the topography. The
results show that, following the uplift of the HM, the local rainy season precipitation increases by ∼25%.
Precipitation in Indochina and the Bay of Bengal (BoB) also intensifies. Additionally, the cyclonic circulation in
the BoB extends eastward, indicating an intensification of the East Asian summer monsoon. In the second
experiment, we remove deep valleys by applying an envelope topography to quantify the effects of terrain
undulation with high amplitude and frequency on climate. On the western flanks of the HM, precipitation
slightly increases, while the remaining fraction of the mountain range experiences ∼20% less precipitation.
Simulations suggest an overall positive feedback between precipitation, erosion, and valley deepening for this
region, which could have influenced the diversification of local organisms.

Plain Language Summary The Hengduan Mountains (HM), located on the southeastern edge of the
Tibetan Plateau, feature high mountains separated by deep valleys. They also exhibit a particularly high
biodiversity, which is believed to be caused by the interaction of mountain formation and climate. To understand
the impact of HM geometry on local climate, we perform high‐resolution atmospheric simulations with different
HM shapes. We conduct one experiment with modern topography and two idealized experiments with modified
topographies inspired by past geology: one where the mountains' elevation is lowered and another one where the
deep valleys are filled. The first experiment reveals that the uplift of the HM leads to a local precipitation
increase of ∼25%, with remote effects of enhanced precipitation in Indochina and the Bay of Bengal. The
uplifted HM also makes the East Asia summer monsoon stronger. In the second experiment, when we remove
the valleys, the western side of the mountains experiences a slight increase in precipitation, but the rest of the
HM receives ∼20% less. This suggests that deep valleys amplify precipitation and accelerate erosion, further
deepening these valleys over time. This positive feedback process could have supported the diversification of
local organisms by offering a broader range of different climates.

1. Introduction
The Hengduan Mountains (HM) are located on the southeastern edge of the Tibetan Plateau (TP). Covering an
area of over 600,000 km2 and featuring an average elevation of more than 4,000 m MSL, the HM represents the
longest and widest north‐south mountain range system in China (Z. Li et al., 2011; Ning et al., 2012; K. Zhang
et al., 2014). The contemporary topography is shaped by plate tectonics, which has led to the formation of folded
mountains and a series of faulted basins, as well as by spatially heterogeneous erosion, responsible for the creation
of deep river valleys. These valleys possess high topographic complexity and exhibit active geomorphic processes
at the kilometer scale (Clark et al., 2005; L. Ding et al., 2022; Royden et al., 2008; Tian et al., 2015; E. Wang
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et al., 2012; Yang et al., 2016). Despite being located at higher latitudes, the HM hosts exceptionally high
biodiversity, comparable to tropical regions (Mutke & Barthlott, 2005). This feature is believed to be linked to
past complex interactions between plate tectonics, land surface dynamics, and atmospheric circulation in this
region (Antonelli et al., 2018). Understanding the complex interaction between topography and climate is key to
comprehending the features that make this region climatically and biologically unique.

Situated at the convergence of the Indian, East Asian, and western North Pacific summer monsoon systems (ISM,
EASM, andWNPSM), the climate of HM exhibits a typical monsoon dynamic with distinct rainy and dry seasons
(B.Wang & LinHo, 2002). The rainy season, which spans fromMay to September, sees the South Asian monsoon
strike the mountain range, bringing substantial moisture and resulting in high rates of precipitation, particularly in
the southwestern part of the HM (Z. Zhang et al., 2004). The influence of the north‐south orientation of the HM is
evident in the heterogeneous spatial distribution of local precipitation—the southwestern part of the HM receives
relatively high precipitation, while the central and northeastern parts experience relatively low precipitation (Yu
et al., 2018). Moreover, the complex topography with a profoundly dissected landscape generates a heterogeneous
distribution of precipitation with a contrast between moist and dry valleys. Both the mean precipitation and
precipitation extremes decrease from southwest to northeast across the HM (Z. Li et al., 2011; Ning et al., 2012;
K. Zhang et al., 2014). Precipitation over the HM plays a significant role in shaping local ecological productivity
through its impacts on glacier growth, surface runoff, and river flow (Dong et al., 2016; Qi et al., 2022).

The topography of the TP and the HM are known to significantly influence the Asian monsoon through both
dynamic and thermal effects. The topography acts as a barrier, preventing the intrusion of cold, dry extratropical
air into the warm, moist regions affected by the Asian monsoon (Boos & Kuang, 2010). Additionally, the
landmass releases energy into the atmosphere in summer, inducing air pumping, deflecting mid‐latitude west-
erlies, and generating cyclonic circulation in the lower troposphere in the Bay of Bengal (BoB) (Wu et al., 2012).
However, the relative importance of these effects—i.e., the blocking versus air pumping—for monsoon formation
remains a matter of debate (Acosta & Huber, 2020; G.‐S. Chen et al., 2014; Molnar et al., 2010; Park et al., 2012;
Xu et al., 2019).

Both data diagnosis and numerical experiments have exhibited that the topography affects the downstream EASM
through mid‐latitude Rossby wave propagation and air‐sea interaction (KOSEKI et al., 2008; Duan et al., 2011; Y.
Liu et al., 2020; M. Lu et al., 2023; Y. Zhang et al., 2004; Zhao & Chen, 2001). B. Wang et al. (2008) argued that
the warming TP enhances summer frontal rainfall in the East Asia region by strengthening the anticyclonic
circulation at upper levels and the cyclonic circulation at lower levels. This facilitates the eastward propagation of
Rossby wave energy and fortifies the anticyclonic ridge over eastern China, strengthening moisture transport
toward the East Asia subtropical front. According to Wu et al. (2017), under global warming, the sensible heat of
the TP experienced a reduction from the mid‐1970s to the end of the 20th century due to decreased surface wind
speed. This reduction has resulted in a weakened near‐surface cyclonic circulation and, consequently, a weakened
EASM. Hence, the rain belt remains situated over South China, intensifying the precipitation in the region. The
discrepancy between the findings of these studies may be ascribed to the different sources and uncertainties in
data quality. A more reliable modeling study is required to tackle the physical processes by which the status of the
TP affects the regional climate.

Numerical simulations have been widely employed to investigate the impact of mountain uplift on local and large‐
scale climate in interaction with the Asian monsoon system. Early studies focusing on the surface uplift effects of
the TP treated the region as a single, vast feature, using low‐resolution climate models with just two scenarios:
with and without mountains (Manabe & Terpstra, 1974). Subsequent research used ’phased uplift’ scenarios,
assuming a linear increase in elevation based on the premise that past TP states can be approximated by spatially
homogeneous scaling of contemporary topography (Botsyun et al., 2016; D. Jiang et al., 2008; X. Liu &
Yin, 2002; Paeth et al., 2019). However, geological evidence suggests that the TP has experienced regional uplift,
rather than a uniform rising process (Tapponnier et al., 2001). More realistic regional uplift scenarios are now
being considered, and the role of the HM is being examined. H. Tang et al. (2013) found that the EASM
enhancement is primarily driven by the surface sensible heating of the central and northern TP and HM. R. Zhang
et al. (2015) underscored the role of the HM in modifying the low‐level cyclonic circulation in the BoB, leading to
substantial precipitation in this area. Yu et al. (2018) proposed that the uplift of the HM primarily causes local,
rather than large‐scale, changes. The topography in the HM is characterized by both the high average elevation
and its local variance and both should be evaluated to understand the complex climate of the region.
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The complex topography of the TP and HM regions poses a significant challenge to accurately modeling
monsoon‐influenced mountain climate. Yet, many previous terrain modification studies have relied on coarse‐
resolution global climate models, typically featuring a grid spacing of 100–200 km (Botsyun et al., 2016; D.
Jiang et al., 2008; X. Liu & Yin, 2002; H. Tang et al., 2013; R. Zhang et al., 2015) or intermediate‐resolution
regional climate models with a grid spacing of 20–50 km (Paeth et al., 2019; Yu et al., 2018), which are un-
able to capture small‐scale topography and its influence on the HM climate. Previous studies have demonstrated
that high‐resolution convection‐permitting model (CPM) can offer a more accurate representation of climate,
particularly in terms of capturing extreme events such as heavy precipitation and the water cycle in areas of
complex terrain, compared to global climate simulations (Ban et al., 2015; Giorgi & Mearns, 1999; Kotlarski
et al., 2014; Prein et al., 2016; Schiemann et al., 2014). Over the TP and the HM, Lin et al. (2018) found that CPM
more effectively resolves orographic drag in complex terrains, enhancing the representation of water vapor
transport and precipitation. Gao et al. (2020) emphasized the added value of CPM in accurately simulating the
spatial distribution of precipitation and downstream snow simulation. P. Li et al. (2021) demonstrated that CPM
more accurately depicts both the frequency and intensity of summer precipitation. Ma et al. (2022) observed that
CPM yields better simulations of precipitation and temperature over the TP, notably improving the representation
of the location and intensity of the heavy Meiyu precipitation. Z. Liu et al. (2022) showed that CPM more
effectively captures the diurnal cycle of precipitation over the northern and eastern TP. However, due to high
computational costs, previous studies utilizing CPMs over the TP and the HM have been constrained by short
simulation periods or limited to small simulation domains.

In this study, we evaluate the impact of the HM geometry on both regional and local climates, with a focus on
extreme precipitation events. We employ the regional climate model COSMO (Rockel et al., 2008) to conduct
numerical experiments for the period from 2001 to 2005 with both contemporary and two idealized topographies
that are linked to the formation of the HM. In the first experiment, we produce a topography with a lower average
elevation in a spatially non‐uniform way, which reflects a past potential state of the HM. In a second experiment,
we eliminate deep valleys, formed by uplift and river incision, by applying an envelope topography to quantify
their impact on climate. This experiment with smaller‐scale terrain modifications focuses more on local‐scale
terrain influences on the atmosphere. For each topographic scenario, two distinct simulations are performed.
The first simulation is performed with a grid spacing of 12 km. Subsequently, a higher‐resolution simulation with
a convection‐permitting grid spacing of 4.4 km is nested within the first simulation.

The structure of the manuscript is as follows: Section 2 introduces the climate model used in this study and its
configuration, the derivation of the idealized topographies, and the reference data employed in this study. Sect. 3
presents an evaluation of COSMO's capability to reproduce the control climate. Section 4 discusses the exper-
iments with modified topography. Section 5 provides a summary of the main findings of this study and concluding
remarks.

2. Methods and Data
2.1. Model Simulations

In this study, we apply the non‐hydrostatic COSMO model (Rockel et al., 2008) in climate mode within a two‐
step, one‐way nesting framework. The COSMO version used here takes advantage of a heterogeneous hardware
architecture with Graphics Processing Units (GPUs), enabling more efficient exploitation of available hardware,
and energy resources, and achieving higher computational performance (Fuhrer et al., 2014; Leutwyler
et al., 2016). The model uses the generalized terrain‐following height coordinate (Gal‐Chen & Somerville, 1975)
with rotated latitude‐longitude coordinates and applies a split‐explicit third‐order Runge‐Kutta scheme in time
(Wicker & Skamarock, 2002). For convective parameterization, COSMO employs the Tiedtke Mass flux scheme
with equilibrium closure based on moisture convergence (Tiedtke, 1989). The multi‐layer soil model TER-
RA_ML, coupled with the groundwater‐runoff scheme described by Schlemmer et al. (2018), is used for the
representation of land surface processes (Heise et al., 2006). The radiation parameterization scheme is based on a
δ‐two‐stream version of the general equation for radiative transfer (Ritter & Geleyn, 1992). A turbulent‐kinetic‐
energy‐based parameterization is used for vertical turbulent diffusion and surface fluxes (Raschendorfer, 2001).
Cloud microphysics is represented by a single‐moment scheme that considers five species: cloud water, cloud ice,
rain, snow, and graupel (Reinhardt & Seifert, 2006).
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We use COSMO in the following framework: We define a large‐scale model (LSM) domain (Figure 1a) with a
grid spacing of 0.11° (∼12 km) and 1,058 × 610 grid cells. This domain approximately corresponds to the
CORDEX East Asia domain (Giorgi & Gutowski, 2015) but extends eastward to allow an unconstrained imprint
of the modified topography on the large‐scale climate downstream of the typical westerly flow. We perform LSM
simulations with parameterized deep convection. Within the LSM domain, we nest a CPM with a grid spacing of
0.04° (∼4.4 km) and 650 × 650 grid cells. The CPM domain, centered over the HM, covers Southwest China and
parts of Indochina (Figure 1b). The CPM simulations explicitly resolve deep convection and are initialized from
the LSM experiments. In the vertical direction, all simulations are run with 57 model levels ranging from the
surface to the model top at approximately 30 km. We use a sponge layer with Rayleigh damping in the uppermost
levels of the model domain. All simulations (control and two experiments with modified topography; see Sec-
tion 2.2) span a 5‐year period from 2001 to 2005. LSM simulations are initialized and laterally driven by the
European Center for Medium‐Range Weather Forecast (ECMWF) operational reanalysis ERA5 (Hersbach
et al., 2020) at 6‐hourly increments. Previous regional climate model experiments have shown that model per-
formance can be improved with the application of spectral nudging (von Storch et al., 2000; Cha & Lee, 2009)—
also for the East Asian region (D.‐K. Lee & Cha, 2020; D. Lee et al., 2016; J. Tang et al., 2017). In this setup,
forcings are stipulated not only at the lateral boundaries but also in large‐scale flow conditions inside the model
integration domain. However, we opt not to apply spectral nudging because modified topography is expected to
impact climate on both local and larger scales. Spectral nudging would adjust large‐scale atmospheric flow at
upper levels toward the reanalysis state, which is derived from unmodified modern topography. To avoid this
inconsistency and to allow for more unconstrained imprints of modified topography on large‐scale flow, this
technique is not used.

Figure 1. Overview of the COSMO domains used in this study. We apply (a) a large‐scale domain at 12 km grid spacing (LSM) and (b) a nested domain at 4.4 km grid
spacing (CPM). Black circles in (b) denote 62 precipitation stations in China considered for model evaluation. Additionally, the dashed outlines highlight the region of
eastern Tibet (ET) and HengduanMountains (HM). In (b), the blue line represents a transect used in Section 4, which crosses the HM and is approximately parallel to the
prevailing wind direction. Panel (c) shows the precipitation (units: mm d− 1) and vertically integrated water vapor transport (units: kg m− 1 s− 1) during the rainy season
averaged over the year 2001–2005 from IMERG and ERA5, respectively. We further divide the HM into three subregions, including two upstream regions (HMUN,
HMUS) with relatively high and low precipitation amounts, respectively, and one downstream region (HMC).
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2.2. Modification of the Hengduan Mountains' Topography

The modern control topography (Figure 2a), as well as the two modified topographies, are derived from the high‐
resolution digital elevation model (DEM) MERIT (Yamazaki et al., 2017). This DEM demonstrates very good
performance in terms of data quality and general statistics compared to similar available DEM products for the
High‐Mountain Asia (HMA) region (K. Liu et al., 2019). For consistency, we apply the topographic changes to
both the coarse‐ (0.11°/∼12 km) and high‐resolution (0.04°/∼4.4 km) model topography. We refer to the coarse
and high‐resolution control simulations as CTRL11 and CTRL04, respectively. Before running COSMO simu-
lations, we use COSMO's pre‐processing tool EXTPAR (Asensio et al., 2021) to generate static external fields
such as surface elevation, land‐sea mask, and background albedo. Some of these fields, such as the orographic
sub‐grid parameters, depend on the raw input topography. To ensure consistency among all topography‐based
fields, we modify the MERIT data fed into EXTPAR, rather than altering the output topography from EXTPAR.

2.2.1. Reduced Topography

To study the impact of regional surface uplift, we generate a topography representing a possible past stage of the
HM with a lower average surface elevation. Detailed regional information on the past stages of the geological
evolution of the Southeastern TP is uncertain (Royden et al., 2008). This hypothetical stage is inspired by the
topographic configuration before the onset of the eastward extension in the central TP (Hoke et al., 2014). In this
scenario, topographic changes are confined to the Southeastern TP and part of the Indochina Peninsula
(Figure 2b). The east‐west extension of the TP is represented in the model by a geographically‐based modification
of the modern HM topography, with elevation reductions ranging from 0% to 90%. A more detailed description of
the topography modification scheme is presented in Supporting Information S1. We refer to the coarse‐resolution
simulation with reduced topography as TRED11 and the high‐resolution simulation as TRED04.

Figure 2. (a) Modern topography (CTRL), (b) reduced topography (TRED), and (c) envelope topography (TENV) in meters MSL at 4.4 km grid spacing.
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2.2.2. Envelope Topography

In this topography modification experiment, we investigate the role of deep valleys, which have formed through
river incision and erosion, on the local climate. To remove river incisions from the modern topography, we
compute an envelope topography. This concept has been applied in other studies (Li & Zhu, 1990; Damseaux
et al., 2020), though driven by different research questions. We derive an envelope topography by computing a
three‐dimensional convex hull from the MERIT DEM, whose curvature is enhanced by a certain factor. The
triangle mesh from the convex hull is subsequently rasterized back to the regular MERIT grid. This raw envelope
topography is then embedded into the unmodified MERIT data with a 100 km wide transition zone to ensure
smooth and continuous terrain between the raw envelope and the unmodified topography (see Figure S4c in
Supporting Information S1). However, this embedded raw envelope topography represents an unrealistic scenario
because the additional weight of the material used to fill the valleys would lead to an isostatic adjustment and,
thus, a general lowering of the terrain. We account for this effect by estimating plate deflection using a two‐
dimensional model (Jha et al., 2017; Wickert, 2016). The final envelope topography that we apply is dis-
played in Figure 2c. A more detailed description of the topography modification scheme is presented in Text S2 in
Supporting Information S1. We refer to the coarse‐resolution simulation with envelope topography as TENV11
and the high‐resolution simulation as TENV04.

2.2.3. Adjustment of Land Cover to Elevation Changes

Changes in the surface elevation of grid cells induce modifications in climate, such as temperature changes
according to the local lapse rate. In turn, the local land cover would adjust to the new climate. A land cover type
that is particularly sensitive to elevation is permanent ice (i.e., glacier coverage). Ice‐covered grid cells exhibit
distinctive surface properties (e.g., in terms of albedo) compared to unglaciated grid cells and should thus be
adjusted in response to elevation changes. We perform a brief analysis of the regional line, above which per-
manent snow and ice prevail, based on GlobCover 2009 data (Arino et al., 2012). Based on these results, we adjust
the glaciation of grid cells with changed elevation using a conservative approach (see Text S3 in Supporting
Information S1). Additionally, in the case of a grid cell changing from ice‐free to glaciated, there is a form of ’self‐
adjustment’ in COSMO as such grid cells will accumulate permanent snow and will thus behave similarly to cells
that are predefined as ice‐covered. For other land cover classes, while their dependencies on elevation are
recognized (Chang et al., 2023), they are complex and not yet fully understood in our study region. Adjusting

Table 1
Overview of the Applied Reference Data in This Study

Name Type Variables Resolution (km) Reference

ERA5
Reanalysis

T, P, W, QV ∼30 Hersbach et al. (2020)

APHRODITE
Ground in situ

P ∼25 Yatagai et al. (2012)

AphroTemp
Ground in situ

T ∼25 Yasutomi et al. (2011)

CRU
Ground in situ

T ∼50 P. D. Jones et al. (2012)

IMERG
Remote sensinga

P ∼10 Huffman et al. (2015)

GPCC
Ground in situ

P ∼50 Schneider et al. (2014)

PBCOR
Combinedb

P ∼5 Beck et al. (2020)

CMA station
Ground in situ

P – CMA (2022)

Note. For the applied variables: 2 m temperature (T), precipitation (P), wind (W) and specific humidity (QV) at 850 hPa.
aGround in situ data was used for calibration. bInferred from reanalysis and ground in situ precipitation data, gridded
evaporation data sets and observed runoff.
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these classes without solid scientific grounding could introduce further un-
certainties and biases into the model. Moreover, the differences between
vegetation classes (e.g., in terms of albedo) are generally less pronounced
than those between ice‐covered and non‐glaciated grid cells. Therefore, we
have opted to retain the original land cover classes, with the exception of the
ice class.

2.3. Reference Data

To evaluate the model's performance, we employ a combination of in situ
observations, satellite products, and reanalysis data (see Table 1 for an
overview and product references). ERA5 reanalysis data are used to evaluate
the large‐scale circulation simulated by COSMO, as well as 2 m air tem-
perature and precipitation. In evaluating precipitation, we additionally

consider the following observation‐based products: Integrated Multi‐satellite Retrievals for Global Precipitation
Measurement (IMERG), the Asian Precipitation—Highly‐Resolved Observational Data Integration Toward
Evaluation (APHRODITE), and the Global Precipitation Climatology Center (GPCC) data set. The first product
is derived from remote sensing information and calibrated with ground in situ data, while the latter two data sets
are inferred from precipitation gauge measurements only. Gauge‐derived or calibrated gridded precipitation data
sets tend to underestimate actual precipitation (Prein & Gobiet, 2017; Singh &Kumar, 1997), particularly in areas
with complex terrain and at higher latitudes (Beck et al., 2020). Such biases are also quantified for our study
region (Y. Jiang et al., 2022) and are primarily caused by two factors: first, rain gauges undercatch precipitation,
particularly in wind‐exposed and snow‐dominated environments (Kirschbaum et al., 2017; Schneider
et al., 2014). Second, precipitation gauge networks are disproportionately located in valley floors, which typically
receive less precipitation than valley flanks and ridges (Rasmussen et al., 2012; Sevruk et al., 2009). GPCC is
corrected for precipitation undercatch (Schneider et al., 2014) but not for the second issue mentioned above.
Therefore, we consider another precipitation reference product (called PBCOR) from Beck et al. (2020). This
product accounts for both undercatch and the spatial non‐representativeness of gauge stations by estimating
precipitation as a residual from modeled/observed evaporation and runoff. The output from this study has been
applied in Prein et al. (2022) to evaluate modeled precipitation in the HMA region. Moreover, we consider hourly
precipitation measurements from 62 ground‐based meteorological stations of the China Meteorological
Administration (CMA; see Figure 1b for station locations) to compare the impact of parameterized versus
explicitly represented deep convection on modeled precipitation. We use the method outlined by Kauf-
mann (2008) to compare modeled precipitation with station data. For CTRL11, the station data are compared with
values from the closest model grid cell. For CTRL04, we select the grid cell closest to the station's altitude within
a 6 km radius. This method has previously been utilized by Ban et al. (2015) and S. Li et al. (2023) in their
validation of simulated precipitation against station data. To further assess the 2 m air temperature, we consider
two station‐derived products: the APHRODITE daily mean temperature data set (AphroTemp), and the surface
observation time‐series data set from the University of East Anglia Climatic Research Unit (CRU).

2.4. Precipitation Indices and Spatiotemporal Evaluation

We use multiple statistical indices outlined in Table 2 to study the characteristics and variations of precipitation
and its extremes in both observational data and model simulations. Following Ban et al. (2021), a wet day is
defined as daily precipitation greater than or equal to 1 mm d− 1, and a wet hour is defined as hourly precipitation
greater than or equal to 0.1 mm hr− 1.

For the majority of our analyses, we consider the rainy (MJJAS) and dry (NDJFM) seasons, which are common
periods for studying Asian monsoon climate (B. Wang, 2006; B. Wang & LinHo, 2002). We mostly focus on the
summer monsoon (MJJAS), because the majority of the yearly accumulated precipitation occurs in this period in
the HM and the surrounding area. In the validation part (Section 3) however, we also carry out model evaluations
on a seasonal basis, that is, for winter (DJF), spring (MAM), summer (JJA), and autumn (SON) over 5 years, to
allow for a direct comparison with previous modeling studies (e.g., B. Huang et al. (2015); W. Zhou et al. (2016)).

For spatial analysis, we define multiple domains, which are displayed in Figures 1b and 1c. The largest domain,
ET, encompasses the majority of the land area of the CPM domain and all CMA precipitation gauge stations (see

Table 2
Precipitation Indices Applied in This Studya

Name Definition Units

Mean Mean precipitation mm d− 1

Frequency Wet day/hour frequency –

Intensity Wet day/hour intensity mm d− 1 or mm h− 1

pxD The xth percentile of daily precipitation mm d− 1

pxH The xth percentile of hourly
precipitation

mm h− 1

aNote that all percentile indices are expressed relative to all (wet and dry)
days/hours (Schär et al., 2016).
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Figure 1b). The HM domain contains the majority of the area that is affected by the topographic modification
scenarios (see Section 2.2). We further split this domain according to the national boundaries between China and
India/Myanmar into an upstream and a center region (HMU and HMC, respectively). HMU represents the HM
area that is located upstream of the prevailing atmospheric flow during the summer monsoon (see Figure 1c). For
model evaluation (see Section 3.2), this domain is divided again into a northern part (HMUN), which experiences
very large precipitation amounts, and a southern part (HMUS) which features a dryer climate.

3. Evaluation of Simulated Climate Over 2001–2005
In this section, we first validate the ability of the coarser‐scale, CTRL11 simulation to reproduce the charac-
teristics of the East Asian summer climate. We conduct an evaluation of this simulation for each season inde-
pendently. To keep this section concise, we present only the results for the summer season, with those for winter,
spring, and autumn available in Figures S6–S11 in Supporting Information S1 for a more comprehensive view.
Subsequently, we evaluate the convection‐permitting control simulation CTRL04. This evaluation places a focus
on extreme precipitation indices, for which we use an extended set of rain gauge precipitation stations in China
that operate at an hourly resolution.

3.1. East Asian Climate

The performance of CTRL11 in simulating the mean characteristics of the East Asian summer climate is pre-
sented in Figure 3. We remap the model outputs to the corresponding observation or reanalysis grids using bi‐
linear interpolation for continuous variables like temperature and wind speed. Precipitation is remapped using
the first‐order conservative method to maintain the water budgets (P. W. Jones, 1999). Figures 3a–3c display the
mean precipitation from June to August during 2001–2005 in CTRL11, IMERG, and their difference. The spatial
distribution of summer precipitation over East Asia shows significant variation, and CTRL11 simulation re-
produces these variations quite well with a pattern correlation of 0.77 and a mean bias of 0.17 mm d− 1. However,
it is important to note the presence of compensation effects. During the summer season, areas near the southern
coast of the continent, including the northeastern BoB, the northeastern Arabian Sea, the Philippine Sea, and the

Figure 3. Spatial distributions of JJA (a–c) precipitation (units: mm d− 1), (d–f) 2 m air temperature (units: °C) and (g–i) 850‐hPa wind (vector; units: m s− 1) and specific
humidity (shading; units: g kg− 1). All quantities are averaged over the period 2001–2005. The first column displays the CTRL11model, the second one observations and
the third one their differences. Correlation coefficients and spatially integrated biases are indicated in the upper‐right part of panels (c), (f) and (i) for precipitation, 2 m
air temperature and specific humidity, respectively. Missing values in IMERG and CRU are represented by gray areas.
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South China Sea (SCS), experience the highest precipitation amounts in both the simulation and the observation.
The southern flanks of the Himalayas also receive heavy rainfall due to the monsoon winds bringing moisture
from the Indian Ocean and the BoB—a process effectively captured by our model. However, the summer pre-
cipitation over India and the SCS is underestimated in CTRL11 by 3–5 mm d− 1 (Figure 3c). In contrast, in the
mid‐latitude regions of the West Pacific Ocean and the low‐latitude region of the BoB, the precipitation is
overestimated by approximately 5 mm d− 1. The precipitation bias pattern over the lower latitudes in CTRL11
resembles that found in previous modeling studies over this area (B. Huang et al., 2015; W. Zhou et al., 2016).
Unlike previous modeling efforts (Bucchignani et al., 2014; D. Wang et al., 2013), our simulations feature lower
precipitation biases over the TP, indicating potential benefits from employing a higher spatial resolution.

Figures 3d–3f illustrate the simulated and observed mean summer 2 m air temperature and the difference between
the simulation and the CRU data set. CTRL11 reproduces the observed spatial pattern of surface air temperature
very accurately, with a pattern correlation of 0.97. A weak cold bias is present over Siberia, while central Asia
exhibits an evident warm bias. W. Zhou et al. (2016) reported a similar warm bias during the summer season in
their COSMO simulations. In CTRL11, the simulated surface air temperature aligns better with observations over
India, the Indochina peninsula, TP, and southeastern China compared with previous simulations (Bucchignani
et al., 2014; Meng et al., 2018; W. Zhou et al., 2016).

To understand the biases in surface climatology, we compare the low‐level atmospheric flow and specific hu-
midity between CTRL11 and the ERA5 reanalysis data. Figures 3g–3i depict the spatial patterns of the wind and
specific humidity at 850 hPa. The specific humidity reveals excellent spatial agreement with the reanalysis,
demonstrating a pattern correlation of 0.98 and a bias of 0.01 g kg− 1. The most significant negative biases in
specific humidity occur over Central Asia and Pakistan. CTRL11 simulates a stronger northerly flow over
Afghanistan and Pakistan. This flow correlates with the transportation of drier continental air toward the coastal
regions, which then advects over India, potentially causing the precipitation bias there.

The region of Asia experiencing the monsoon weather pattern exhibits the most distinct annual variations in
precipitation, characterized by alternating dry and wet seasons synchronized with the seasonal reversal of the
monsoon circulation features (Webster et al., 1998). The monsoon circulation patterns in India and East Asia have
unique characteristics (Y. Ding & Chan, 2005). Figure 4 presents a Hovmöller diagram of the observed and
simulated annual cycle of meridional precipitation (from 5°N to 50°N, and zonally averaged over 70–80°E and
110–120°E). The ISM's and EASM's spatiotemporal characteristics are very well captured in this representation.
It shows a generally good alignment between CTRL11 and IMERG, particularly in terms of the temporal and
latitudinal progression of monsoon precipitation. CTRL11 effectively captures the gradual onset of the monsoon
over India, but it does underestimate rainfall during the summer season (Figure 4a). As shown in Figure 4b, before
mid‐May, the main rain belt in the SCS longitudes is located south of 10°N, while a second rain belt is found in
South China between 20 and 30°N. Around mid‐May, the tropical rain belt suddenly shifts northward, resulting in
the merging of the two rain belts. CTRL11 accurately captures this rapid onset process, which has also been
documented by previous monsoon studies (Y. Ding & Chan, 2005; Matsumoto, 1997; B. Wang & LinHo, 2002).

3.2. Eastern Tibet Climate

We evaluate the accuracy of the simulated ET and HM climate by comparing it with several observational data
sets. Figure 5a displays the ET‐averaged seasonal precipitation cycle based on observational data, reanalysis, and
model simulations. The seasonal cycle of precipitation over ET typically features a dry winter and a prolonged
rainy season fromMay to September, with a precipitation peak in July, according to the reference data. In terms of
precipitation magnitudes, both CTRL11 and CTRL04 closely match or fall within the upper bound of the
reference data sets. However, it's important to note that the APHRODITE data set does not correct for any
orographic effects discussed in Section 2.3. The GPCC data set, which is partially corrected, aligns better with the
simulated precipitation values. The closest agreement is with PBCOR, which takes into account undercatch ef-
fects, and ERA5, a model‐based data set that does not have the limitations stated in Section 2.3. A study by Y.
Jiang et al. (2022) conducted for a sub‐region of the ET domain, found that simulation‐based precipitation data
sets (e.g., ERA5) perform better than IMERG in terms of precipitation intensity. The seasonal precipitation cycle
is well captured by both CTRL11 and CTRL04, although both simulations show an earlier onset of monsoon
precipitation, with the annual maximum precipitation occurring in June. This bias likely stems from an early
development of the summer monsoon circulation, represented by a lower‐level westerly atmospheric flow, in our
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simulations. A study by D. Lee et al. (2016), in which COSMO was applied for East Asia, also identified an
unseasonably early precipitation peak, demonstrating that improved alignment could be achieved through spectral
nudging. Our analyses of the seasonal precipitation cycles for the sub‐regions of ET yielded similar results to
those shown in Figure 5a, so we present only the condensed results for the rainy/dry seasons and the annual
averages in Figure 5b. Our simulations effectively capture the spatially different precipitation magnitudes, such as
the very high summer monsoon precipitation in the HMUN region, aligning well with ERA5 and PBCOR. Both
CTRL11 and CTRL04 generally overestimate precipitation in the dry season, which is likely due to the premature
onset of the summer monsoon in our simulations.

Figure 5c presents our analysis of the mean seasonal cycle of 2 m temperature. Compared to the station‐derived
data sets and ERA5, CTRL11 exhibits a weak warm bias, while CTRL04 aligns better with the reference data sets.
The model's performance across both the rainy and dry seasons shows high consistency. The HM region, as well
as the ET domain, feature complex terrain that ranges from sea level to approximately 7,000 m. Figure 5d shows
how well 2 m temperatures, as a function of elevation, are represented in our control experiments. The agreement
with AphroTemp and CRU is excellent for both seasons but seems to deteriorate slightly at higher elevations. This
might be due to the typically larger uncertainty of the reference products at higher elevations, given the sparser
station coverage. Notably, CTRL04 and CTRL11 align much better with AphroTemp and CRU at higher ele-
vations in the dry season compared to ERA5, which tends to underestimate temperature. This underestimation in

Figure 4. Hovmöller diagrams of the seasonal precipitation cycle zonally averaged over (a) 70–80°E and (b) 110–120°E (units: mm d− 1). A 5‐day moving average has
been applied to the 5‐year climatology to remove high‐frequency variability.
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ERA5 relates to the overestimation of snow coverage in ERA5 in the HMA region (Orsolini et al., 2019). In
contrast, snow coverage in our simulations aligns well with observational data sets (not shown).

To further explore the impact of explicitly resolved convection on simulated precipitation, we perform a vali-
dation using data from 62 rain gauge stations across the ET that recorded hourly measurements during the
simulation period. Figure 6a illustrates the comparison of observed and modeled wet‐day frequency. We found
that CTRL11 tends to over‐represent drizzle events, with a bias of 6.86%. In contrast, CTRL04 aligns more
closely with the observed data, with a bias of − 0.23%. Regarding wet‐day intensity, CTRL04 tends to over-
estimate daily precipitation, presenting a bias of 3.35 mm d− 1 (Figure 6b). However, it's important to note that rain
gauges are subject to precipitation undercatch issues, likely leading to observed intensities that are too small.
Conversely, CTRL11 tends to underestimate daily precipitation intensity, a tendency also noted in other
geographical regions (e.g., Ban et al. (2021)). Figure 6c demonstrates that CTRL04 slightly underestimates the
wet‐hour frequency (bias = − 0.45%), while CTRL11 tends to overestimate it (bias = 4.74%). This issue of
excessive drizzle in CTRL11 is a common challenge in many climate models (D. Chen et al., 2021; Stephens
et al., 2010; Trenberth & Zhang, 2018). However, the enhanced convection representation in CTRL04 effectively
alleviates this drizzling problem, which is consistent with a previous study by P. Li et al. (2021). In terms of
simulating hourly precipitation, CTRL04 provides a more accurate representation of intensity than CTRL11, as

Figure 5. Seasonal cycles of (a) precipitation and (c) 2 m temperature of control simulations and the reference data sets averaged over the Eastern Tibet domain.
Temporally integrated quantities over the rainy (MJJAS) and dry (NDJFM) seasons (and the entire year) are displayed on the right. Panel (b) shows precipitation for the
rainy/day season and averaged over the year for the Hengduan mountains sub‐regions. Note the different y‐axis range. The brown boxes in panel (a) and panel
(b) specify the uncertainty range of PBCOR for the annual values. Panel (d) displays the 2 m temperature as a function of elevation for the rainy and dry seasons
integrated over the HM region.
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shown in Figure 6d. CTRL11 tends to significantly underestimate wet‐hour intensity, particularly at stations
where heavy hourly precipitation occurs, consistent with previous studies (S. Li et al., 2023; Schär et al., 2020;
Zeman et al., 2021). For locations with high hourly intensities, CTRL11 underestimates precipitation intensity by
up to a factor of 3 (R2 = 0.25)—a difference that can be essential for erosion and river runoff (Nearing
et al., 2005). Overall, the model evaluation with in situ rain gauge station data suggests that high‐resolution
convection‐permitting simulations deliver better performance in reproducing precipitation indices in this re-
gion. Consequently, the explicit representation of convection and the finer spatial grid at 4.4 km appear beneficial
for simulating precipitation characteristics in our domain, which features complex terrain and a monsoon‐
dominated climate.

Figure 6. Validation of JJA precipitation for ERA5‐driven simulation with 12 km (CTRL11, green) and 4.4 km (CTRL04, blue) grid spacing with in situ precipitation
data from 64 stations in China: (a) wet day frequency (units: %), (b) wet day intensity (units: mm d− 1), (c) wet hour frequency (units: %), and (d) wet hour intensity
(units: mm h− 1). R2 denotes the square of the correlation coefficient between the models and observations.
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4. Results
Here we discuss the climate effects of changing the HM geometry (see Figures 1 and 2). In the first two sub-
sections 4.1 and 4.2, we will address the impacts upon the large‐scale climate (near and beyond the vicinity of the
topographic modifications), and the effects upon the onset of the monsoon. As remote effects are much more
pronounced when reducing the height of the HM, we will restrict discussion to TRED11 in these sections. In
Section 4.3, we will discuss the effects on the regional climate in the vicinity of the HM and will address both
TRED and TENV experiments.

4.1. Imprints on Large‐Scale Climate

Figures 7a–7c display precipitation and low‐level wind averaged over the rainy season. In CTRL11, heavy
precipitation is located in the northeastern BoB, southeastern SCS and western North Pacific (WNP) (Figure 7a).
In TRED11, precipitation intensity over the HM, northern BoB and northern Myanmar decreases compared to
CTRL11, while precipitation increases in the northeastern TP and SCS (Figure 7c). The large‐scale imprint of the
topography change can be found along a southwest‐northeast‐oriented belt over WNP (Figure 7c). Changes in
East Asian precipitation patterns agree well with a study by Yu et al. (2018), in which a similar topographic
modification experiment was performed with a regional climate model nested in a global climate model.

Water vapor transport plays a pivotal role in the Asian summer monsoon system (T. Zhou & Yu, 2005). In
CTRL11, the Indian monsoon transports vast amounts of moisture from the Arabian Sea and the BoB toward the
HM and the Indochina Peninsula (Figure 7d). The onshore flow is compelled to rise upon reaching the coastal
region of Myanmar, which is characterized by a narrow plain bordered by a mountain range. As the monsoon

Figure 7. Maps of (a–c) Precipitation (contour; units: mm d− 1) and 850‐hPa wind (vector; units: m s− 1), (d–f) vertically integrated water vapor transport (units;
kg m− 1 s− 1), (g–i) 200‐hPa temperature (shading; units: K) and geopotential height (contour; units: meters) and (j–l) 500‐hPa temperature (shading; units: K),
geopotential height (contour; units: meters) averaged over the rainy season (MJJAS) from the year 2001–2005. From left to right are the results from CTRL11, TRED11
and their differences, respectively. The green line in the difference maps indicates regions with topographic changes greater than 500 m.
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moves inland, it brings significant rainfall to the HM. The Indian monsoon travels across the Indochina Peninsula
and the SCS then converges with the Southeast Asian monsoon, which carries moisture from the SCS and the
WNP into eastern China (R. Huang et al., 1998; Simmonds et al., 1999; Renhe, 2001; T. Zhou & Yu, 2005). In
contrast, the reduction of the HM in TRED11 weakens the large‐scale monsoon circulation, leading to decreased
eastward water vapor flux transport in the coastal region of Myanmar and upstream of the HM region (Figure 7f).
This finding aligns well with Yu et al. (2018), where adding the southeastern TP strengthens the monsoon cir-
culation and increases precipitation over the BoB. The orographically triggered precipitation in the southwestern
HM also significantly decreases due to the topographic modification and the overall weaker monsoon circulation.
Without the HM serving as a barrier, the warm tropical water vapor from the BoB flows northeastwards into
northern China before encountering the Qilian Mountains, resulting in increased precipitation there. Furthermore,
there is a reduction in moisture transport from the SCS to southeastern China, leading to increased local pre-
cipitation over the SCS region. More distantly, strong convergence of the subtropical and extratropical water
vapor flux anomalies is found at approximately 30°N between 140 and 170°E, favoring strengthened precipitation
over the WNP (Figure 7f).

The change in water vapor transport is closely tied to the alteration in monsoon circulation, which is in turn
influenced by topography (Huber & Goldner, 2012; B. Wang et al., 2008; R. Zhang et al., 2015; Z. Zhang
et al., 2004). To scrutinize the circulation changes governing water vapor transport, we examine how thermo-
dynamic structure alters in response to topographic modifications (Figures 7g–7l). In CTRL11 featuring modern
topography, the Asian landmass—including the Indian subcontinent—undergoes more rapid heating during the
summer months than the surrounding ocean. This leads to the formation of a low‐pressure system over the land
and a persistent high‐pressure system over the ocean (Figure 7j). As observed in previous studies (Boos &
Kuang, 2010), the upper‐tropospheric temperature displays a maximum located south of the Himalayas. Thermal
forcing from continental India and the TP triggers the formation of an anticyclone in the upper troposphere (not
shown). Driven by the pressure gradient, the thermal effect of land‐sea contrast propels the South Asian summer
monsoon circulation. In the lower troposphere, the monsoon's westerlies travel from the Indian Ocean and
converge with the southwesterly trades at the low‐level North Pacific subtropical anticyclonic ridge, forming the
southwesterlies (Figure 7a) (Z. Zhang et al., 2004).

In TRED11, the reduced diabatic heating induces a significant cooling of the upper troposphere over the southern
HM (Figure 7i). The reduction in diabatic heating leads to an anticyclonic change at lower levels and a cyclonic
change at upper levels. In the upper troposphere, a barotropic cyclone is found over the WNP, originating in the
TP and moving along the upper‐level westerly jet stream (Figure 7i). At lower levels, the weakened India
westerlies give rise to decreased water vapor transport. Additionally, cooling of the lower atmosphere over the
SCS suppresses the Walker circulation over the Indian Ocean, resulting in an overall weakening of the monsoon
circulation (Figure 7l). Remotely, the atmospheric response propagates northeastward along the monsoon winds
and favors the cyclonic change pattern to the east of Japan (Figure 7f). This circulation pattern curtails the water
supply along the northwestern flank of the western Pacific subtropical high, causing decreased precipitation over
the coastal region of northeastern China, the Korean Peninsula and Japan.

The effects of the envelope topography on precipitation are more localized and less pronounced due to the smaller
relative change in mountain volume. The influences of both the envelope and reduced topography on the local
HM climate, with particular emphasis on (extreme) precipitation indices, will be discussed in Sect. 4.3.

4.2. Effect of Topographic Changes on Monsoon Precipitation Onset

Figure 8 shows the Hovmöller diagrams that illustrate the seasonal precipitation cycle, which is zonally averaged
over the BoB, HM and eastern China. The shift from the dry season to the rainy season is vividly depicted in the
latitude‐time cross‐sections of mean precipitation. We first discuss the situation in the CTRL11 climate (left‐hand
panels in Figure 8). The transition from the dry to rainy season upwind of the HM happens quite suddenly around
the latitude of approximately 25°N, typically occurring around mid‐March (Figure 8a). Before this transition, the
rainfall belt remains relatively stable over the southern BoB, located south of 10°N (Figure 8a). However, after
mid‐March, there's a noticeable northward shift in the near‐equatorial rainfall belt. This belt gradually moves
northwards, merging with the HM rainfall belt by mid‐May. This gradual migration is in contrast to the abrupt
transition observed in Myanmar (Figure 8b). There, a substantial increase in rainfall occurs early in May, which
signifies the onset of the monsoon over the Indochina peninsula. This onset process aligns with observations
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documented in previous studies (Y. Ding & Chan, 2005; B. Wang & LinHo, 2002). Over the SCS, the rainy
season typically commences around mid‐May, as shown in Figure 8c. This occurrence is a result of the eastward
expansion of the southwesterly monsoon into the SCS region, accompanied by the eastward retreat of the western
Pacific subtropical high (Z. Zhang et al., 2004).

After reducing the HM's elevation (TRED11, middle panels in Figure 8), both the shift from the dry season to the
rainy season and the precipitation intensity experience notable changes. However, the effects vary across different
regions. Over Bangladesh and northeasternmost India, the onset of the rainy season is delayed by approximately
one month, starting around mid‐April. Additionally, precipitation intensity throughout the rainy season typically
decreases by approximately 10 mm d− 1 (Figure 8a). In the northern BoB, while the start of the rainy season
remains consistent, there is a noticeable decrease in precipitation intensity. Over the HM, the precipitation in-
tensity during the rainy season also declines, but not as significantly as it does upwind, underscoring the role of the
mountains in orographic rainfall (Figure 8b). Over the SCS, we observe an increase in rainfall in July and August,
which is consistent with our previous discussion. The mountains affect the surrounding circulation, reducing the

Figure 8. Hovmöller diagrams of the seasonal precipitation cycle zonally averaged over (a) Bay of Bengal (85–95°E), (b) Hengduan Mountains (95–105°E) and
(c) eastern China (110–120°E) in mm d− 1. A 5‐day moving average has been applied to the 5‐year climatology to remove high‐frequency variability.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040208

XIANG ET AL. 15 of 26

 21698996, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040208 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [28/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



amount of water transported to mainland China, and subsequently increasing local rainfall in the SCS (Figure 8c).
Nonetheless, the Hovmöller diagram reveals that the thermal forcing of the HM, which impacts the circulation,
begins to exert its influence at a later stage during the advance of the Asian summer monsoon. This observation
aligns with previous research by Z. Zhang et al. (2004).

4.3. Effects on Regional Climate

The evaluation presented in Section 3.2 reveals that the ET/HM climate, particularly mean rainy season pre-
cipitation in terms of patterns and magnitudes, is overall very similar between CTRL11 and CTRL04. However,
when considering precipitation indices investigated in this section, CTRL04 generally outperforms CTRL11 (see
Figure 6). For these reasons, we have opted to discuss the results of the CPM simulations exclusively in this
section. Figure 9 shows the maps of vertically integrated water vapor flux, precipitation indices and convective
available potential energy (CAPE) over the HM. Statistics over the HM and its sub‐regions are computed over the
rainy season and presented in Table 3.

Figure 9a depicts the water vapor transport in the ET region during the rainy season in CTRL04. The atmospheric
water flux is approximately parallel to the elevation gradient on the southwestern side of the HM. This causes the
distinctive spatial distribution of climatological rainy‐season precipitation, which leads to pronounced orographic
precipitation in easternmost India and northernmost Myanmar, as shown in Figure 9d. A secondary peak is visible
at the western side of the Sichuan Basins (WSSB). The average daily precipitation during the rainy season and
simulation period upwind of the HM amounts to 12.7 mm d− 1. Over the HM, high precipitation amounts often
coincide with local topographic peaks, whereas the valleys often receive smaller precipitation amounts due to
rain‐shadow effects. On average, the daily precipitation over the central HM is 7.2 mm d− 1. Figures 9g and 9j
show the extreme daily precipitation p99D and extreme hourly precipitation p99.9H in CTRL04. For both
extreme precipitation indices, maxima are found southwest of the HM, along the Indian/Myanmar border, and
over the BoB and its adjacent land area. In the area upwind of the HM, p99D averages to 97.0 mm d− 1, while
p99.9H reaches 29.4 mm hr− 1. In contrast to mean precipitation, the distinct signature of the eastern HM is not
evident, with p99D and p99.9H reaching 56.5 mm d− 1 and 17.3 mm hr− 1 in HMC, respectively. Central China
experiences more intense extreme precipitation compared to the central and eastern HM. This pattern reflects the
distribution of the convective available potential energy (CAPE) and is consistent with the fact that daily/hourly
precipitation extremes are more related to convective‐triggered precipitation events (i.e., thunderstorms) than to
orographically induced or stratiform precipitation (Figure 9m).

In TRED04, the absence of a topographic barrier that alters atmospheric circulation leads to a shift in the direction
of water vapor flux to the northeast (Figure 9b). This change results in a 33% decrease in mean precipitation
upwind of the HM and an 18% reduction over the central HM. Conversely, precipitation increases in the northern
HM (Figure 9e). Figures 9h–9k display the changes in extreme daily precipitation p99D and extreme hourly
precipitation p99.9H between CTRL04 and TRED04. Over the HM region, where topographic changes exceed
500 m, the spatial patterns of different precipitation indices exhibit substantial variation. The distribution of
changes in extreme daily precipitation displays a distinct pattern (Figure 9h), as the northern part of HM expe-
riences an increase in extreme daily precipitation after elevation reduction, while the rest remains almost un-
changed (Figure 9h). On average, the HMC region sees an increase of 8%, while the upwind region experiences a
decrease of 12%.Moreover, changes in extreme hourly precipitation contrast with that of mean precipitation, with
nearly the entire region with modified topography experiencing an increase in extreme hourly precipitation,
averaging to an increase of 20% (Figure 9k). We assume that this more uniform change in hourly extreme pre-
cipitation is caused by a combined effect of higher surface temperatures and a deeper atmosphere, which favors
convection. This hypothesis is confirmed by the change in simulated CAPE as seen in Figure 9n. Specifically, the
increase in CAPE is most prominent in the central and southern HM in TRED04. In addition to changes in
precipitation, there is a notable decrease in net water flux at the surface (i.e., runoff) across the entire HM region,
amounting to a 40% decrease. This includes a substantial decrease of 51% in runoff upwind of the mountains and a
more moderate reduction of 35% over the HMC region.

The summer mean precipitation in TENV04 exhibits two peaks, similar to the CTRL04 simulation, with one
located over the western HM and the other over the WSSB (not shown). Figure 9c shows the spatial distribution
and magnitude of differences between CTRL04 and TENV04 for integrated water vapor flux. The topographic
change in TENV04 results in less moisture transport from the ocean. However, the western HM experiences a
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very small increase in precipitation (see Figure 9f) probably due to enhanced orographic precipitation caused by
the larger mountain volume (Imamovic et al., 2019). A few dry valleys in the north, such as the Three Parallel
Rivers (i.e., Salween, Mekong, and Yangtze), experience increased precipitation in the TENV scenario due to the
vanished rain shadowing effect. However, in the majority of the central and eastern HM region, mean precipi-
tation during the rainy season decreases substantially (− 19%), amounting to a very similar reduction as in TRED.

Figure 9. (a–c) Vertically integrated water vapor flux, (d–f) mean precipitation, (g–i) the 99th percentile of daily precipitation (p99D), (j–l) the 99th percentile of hourly
precipitation (p99.9H) and (m–o) convective available potential energy (CAPE) during the rainy season. From left to right are the results from CTRL04 and the
differences between TRED04 and TENV04 with respect to CTRL04. Regions with topographic changes greater than 500 m are delineated by the green line in the
differences maps.
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On the WSSB, the upward motions play a crucial role in the changes in precipitation (Tao et al., 2020). A
smoother terrain over the HM in TENV04 leads to a more streamlined atmospheric flow, with less turbulence and
mixing, which inhibits the formation of clouds and precipitation. This result is explained through differences in
vapor transport and stability between CTRL04 and TENV04 in the following section. Figure 9i shows changes in
extreme daily precipitation in TENV04, which largely mirror the spatial pattern of changes in mean precipitation.
These changes include an increase in heavy daily precipitation over the western HM and a decrease in the
northeastern HM. Figure 9l reveals that the spatially coherent decrease in precipitation indices for the northeastern
HM is not apparent for hourly extreme precipitation, which is consistent with the change in CAPE, as shown in
Figure 9o. Compared to CTRL04, the simulated CAPE over the HM in TENV04 decreases, although the change is
very small compared to changes in TRED04. This is reflected in the modest and less consistent changes observed
in extreme hourly precipitation. Notably, the envelope topography resulted in a 26% reduction in surface net water
flux over the HMC. This reduction suggests a positive precipitation‐erosion feedback for this region, where high‐
relief topography favors conditions for increased mean precipitation, which accelerates erosion and the further
formation of a more pronounced terrain relief.

To further analyze thermodynamic and dynamic processes during the rainy season, we examine how the along‐
section wind, moisture, vertical velocity, total diabatic heating, and equivalent potential temperature (θe) change
at different atmospheric heights with modified HM geometries. Figure 10 shows a transect that crosses the HM
and is approximately parallel to the prevailing (lower‐level) wind direction (see top left of Figures 10a and 1b for
location).

By examining the distribution of precipitation depicted in Figure 9a, it is evident that the western boundaries of
HM, facing the windward direction, receive a larger proportion of rainfall compared to other orographic features
(e.g., WSSB at ∼105°E) located further downwind. The reduction in precipitation observed in areas downwind
can be attributed to variations in specific humidity (Figure 10a). The vertical transect of total diabatic heating
across the HM reveals two distinct maxima of upward motions (Figure 10d), one at the southern flanks of the
Himalayas at ∼92°E and another over the eastern HM, where the significant upward motion can reach up to the
200 hPa pressure level. On the southern flanks of the Himalayas, the surface fluxes from the non‐elevated part of
northern India play an important role in the large‐scale South Asian monsoon by changing the meridional
temperature gradient between northern India and the equator (Boos & Kuang, 2013). The precipitation on the
WSSB is mainly caused by the vertical moisture flux convergence (Tao et al., 2020) and is related to the vertical
distribution of upward motions (Figure 10d). In the southwestern HM, upward motions and diabatic heating are
centered near the surface of the windward slopes. This suggests that mechanical lifting due to orographic forcing
is a contributing factor. The topography of the HM acts as a barrier to the southwest winds, leading to the
generation of lower‐level convergence, which contributes to horizontal moisture flux convergence and upward
motions.

Table 3
Changes in Precipitation in the Hengduan Mountains and Its Sub‐Regions (Figure 1c) for the Topographic Modification Experiments With Reduced Topography
(TRED04) and Envelope Topography (TENV04)

HM HMU HMC

CTRL TRED TENV CTRL TRED TENV CTRL TRED TENV

P [mm d− 1] 8.2 6.4 (− 1.9) 7.1 (− 1.1) 12.7 8.5 (− 4.2) 12.7 (+0.1) 7.2 5.9 (− 1.3) 5.8 (− 1.3)

P [%] − 23 − 13 − 33 +0 − 18 − 19

p99D [mm d− 1] 64.3 65.8 (+1.5) 58.2 (− 6.1) 97.0 85.7 (− 11.4) 95.9 (+1.1) 56.5 61.1 (+4.5) 49.3 (− 7.3)

p99D [%] +2 − 10 − 12 +1 +8 − 13

p99.9H [mm d− 1] 19.6 22.3 (+2.7) 18.5 (− 1.1) 29.4 29.0 (− 0.4) 28.7 (+0.7) 17.3 20.7 (+3.4) 16.1 (− 1.2)

p99.9H [%] +14 − 6 − 1 +2 +20 − 7

P − Q [mm d− 1] 5.5 3.3 (− 2.2) 4.5 (− 1.0) 9.4 4.6 (− 4.8) 9.4 (+0.0) 4.6 3.0 (− 1.6) 3.4 (− 1.2)

P − Q [%] − 40 − 18 − 51 +0 − 35 − 26

Note. Statistics are computed over the rainy season (MJJAS) and the years 2001–2005. P refers to mean precipitation, p99D to the daily 99th percentile, p99.9H to the
hourly 99.9th percentile and P − Q to precipitation minus evaporation (i.e., the net water flux at the surface).
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Figure 10b displays the moisture availability and along‐section wind in the reduced topography experiment,
which reveals an intensification of south‐westerly winds and a decrease in moisture supply compared to CTRL04.
Comparing the diabatic heating over the HM between CTRL04 and TRED04 (Figures 10d and 10e), it is apparent
that the reduction of the mountain range significantly weakens the diabatic heating and the upward movement
over the mountains, especially over the eastern HM where the moisture flux convergence is an important factor
for local precipitation. Moreover, the reduction of the mountain range has a significant impact on diabatic heating
to the west of the mountain range at ∼92°E (Figure 10e). Additionally, the vertical transects of θe across the HM
(Figures 10g and 10h) reveal decreased values in TRED04 at intermediate heights relative to CTRL04, indicating
a less stable atmosphere in TRED04, favoring higher convective activities (i.e., heavy hourly precipitation).
These findings suggest that the HM affect the Asian monsoon through both orographic insulation and plateau
heating.

The general patterns of moisture and along‐section winds are very similar in CTRL04 and TENV04 (Figures 10a
and 10c). However, differences in the strength of winds and the availability of moisture do exist. In TENV04,
southwesterly winds are stronger over the mountains, which contributes to the intensified precipitation on the
windward slopes (Figure 9f). The presence of filled valleys in TENV04 leads to an overall increase in surface
elevation, which results in a reduction of near‐surface specific humidity over the HM. This reduction can be
attributed to lower temperatures and saturation vapor pressure at higher elevations. Apart from the direct changes
in elevation, the filled valleys also create a more effective barrier to moisture flow, increasing the depletion of
water vapour due to orographic precipitation. This, in turn, limits the amount of moisture that can be transported
further into the interior of the region. Figure 10f shows the vertical transect of vertical velocity and total diabatic
heating in TENV04. Comparing these results with CTRL04 reveals a reduction in diabatic heating and upward
movement over the eastern HM. Inspection of θe shows decreased near‐surface values in TENV04 relative to
CTRL04 (Figure 10i). The modified topography obstructs the transport of moisture to the eastern HM and the
WSSB, resulting in a more stable atmosphere.

Figure 10. Vertical cross sections of (a–c) specific humidity (shading) and along‐section horizontal wind (contour; units: m s− 1), (d–f) total diabatic heating (shaded;
units: K d− 1) and vertical velocity (contour; units: pa s− 1), and (g–i) equivalent potential temperature (θe) averaged over the rainy season (MJJAS). The topography is
shaded in black. (left column) Modern topography experiment, (middle column) reduced topography experiment and (right column) envelope topography experiment.
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To complement the more localized perspective of the envelope experiment, the diurnal cycle of valley winds
across the Three Parallel Rivers, averaged over the rainy season, is shown in Figure 11 for both the CTRL04 and
TENV04 scenarios. At the end of the night (04:00), CTRL04 simulates an almost quiescent atmosphere at the
surface of the river valleys (Figure 11a). By late morning (10:00), the up‐valley flow begins to develop, becoming
more pronounced in the southern Mekong and Yangtze river valleys (Figure 11b). In the late afternoon (16:00),
the up‐valley wind intensifies in the Yangtze and Dadu river valleys, predominantly flowing in a south‐north
direction. However, in the Salween and Mekong valleys, the up‐valley wind is noticeable only in the southern
part of the domain, while in the north, southeastern winds prevail (Figure 11k). Finally, during the evening
(22:00), the Yangtze and Dadu exhibit a light up‐valley flow (Figure 11l). In the Salween andMekong, the flow is
dominated by weaker southeasterlies compared to those in the afternoon (Figure 11d). Compared to CTRL04,
TENV04 exhibits much stronger surface winds throughout the day, attributed to decreased surface roughness
(Figures 11e–11h). However, the along‐valley surface wind component, perpendicular to the cross‐section, is
significantly weaker than in CTRL04 (Figure 11o). This difference is particularly evident in the eastern region of
the HM, where the predominant surface wind runs from south to north. This configuration leads to a more stable
atmosphere, consequently resulting in a reduction in precipitation over the HM.

5. Discussion and Conclusions
In this study, we applied the limited‐area model COSMO with a large‐scale simulation at a horizontal resolution
of 12 km, covering an extended CORDEX East Asia domain, and a nested convection‐permitting simulation at a
horizontal resolution of 4.4 km, covering the Hengduan Mountains (HM), including parts of southwestern China
and Indochina. We first evaluated the model's ability to simulate the control climate for the period 2001–2005
(CTRL). We then proceeded with two sensitivity experiments involving modified HM topography scenarios—
a first scenario with a spatially heterogeneous reduction of the HM (TRED) and a second scenario with an en-
velope topography, in which the deep valleys were filled (TENV). To our knowledge, this is the first terrain
modification experiment conducted over the Tibetan Plateau (TP) using a convection‐permitting model (CPM).

Figure 11. Mean diurnal cycle of the surface winds during the rainy season (MJJAS). Left‐hand panels show the wind speed (shading) and direction (vectors) at 10 m
above ground for CTRL04 (a–d) and TENV04 (e–h). Gray shading indicates the terrain height (1,000 m contour interval) and the bold black line indicates the 4,000 m
contour. Right‐hand panels show a vertical cross‐section through the Three Parallel Rivers (see green line in panel (a)) for CTRL04 (i–l) and TENV04 (m–p). It depicts
the wind component normal to the cross‐section (shading; positive for northerly flow and negative for southerly flow) and potential temperature (gray contours; units:
K). Local time is indicated in the bottom right corner.
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The improved representation of precipitation frequency and intensity in CPMs allowed us to study the sensitivity
of these processes on the mountain geometry. This approach also allowed us to investigate the complex interplay
of HM topography, large‐scale processes and localized convective systems. The main findings of these experi-
ments are summarized below, followed by a section, in which we embed the results in a broader context, and an
outlook.

1. Validation results demonstrate the ability of the control simulations (using 12 and 4.4 km grid spacings) to
simulate the climate over East Asia and the HM region for the period 2001–2005. The simulated precipitation
reproduces the spatial variations well, albeit with a slight underestimation over India and the South China Sea
(SCS). Moreover, our simulation features lower precipitation biases over the TP compared to previous
modeling efforts owing to a higher spatial resolution (B. Huang et al., 2015; D. Wang et al., 2013; W. Zhou
et al., 2016). The simulated monsoon reproduces the temporal and latitudinal progression of both the Indian
and East Asian monsoon precipitation. Over the HM, both CTRL11 and CTRL04 capture the seasonal pre-
cipitation cycle well, but reveal an onset of the summer monsoon that is seasonally too early. An additional
validation against in situ rain gauge station data reveals that the explicit representation of convection at finer
spatial resolution is beneficial for reproducing accurate magnitudes of wet day frequencies and the spatial
range of precipitation intensities on a daily/hourly scale.

2. TRED results show that the HM acts as a topographic barrier, resulting in pronounced orographic precipitation
in easternmost India and northernmost Myanmar. The study also reveals an increase in diabatic heating over
the uplifted HM, which triggers circulation changes around the uplifted region and strengthens the westerly
wind from the ocean in South Asia. Consequently, there is a marked intensification of precipitation in
Indochina and southwestern China, along with decreased precipitation in the SCS. Additionally, the
strengthened cyclonic circulation in the Bay of Bengal extends eastward, indicating an intensification of the
East Asian summer monsoon upon the uplift of the HM. However, the uplift of the HM causes a shallower and
more stable atmosphere locally, leading to less convective activity and thus decreased extreme hourly
precipitation.

3. In contrast to TRED, the TENV's remote effects on climate are negligible. TENV results indicate that the
removal of valleys is associated with an overall reduction in precipitation and runoff. In the HM upstream
region, spatially integrated precipitation slightly increases, but the central and eastern HM experience a
marked drying. This finding suggests a positive feedback mechanism between precipitation and erosion—at
least for this region with its specific terrain configuration and flow regime during monsoon.

Geological evidence shows that the southern two‐thirds of the HM have grown higher in the latest Miocene or
Pliocene (Hoke et al., 2014). Additionally, geological studies indicate that northeastern India experienced a more
humid climate between the Late Miocene to Pliocene (Hoorn et al., 2000). Thus, both the geological evidence and
the simulations conducted in this study support the notion that the uplift of the HM contributes to the intensi-
fication of the Asian monsoon. However, some relations remain uncertain. Molnar and Rajagopalan (2012) linked
the more arid northwestern Indian subcontinent between 11 and 7 million years ago to the growth of the eastern
margin of the TP. While in our study, the reduction in topography does not result in a significant change in
precipitation in northwestern India. Therefore, if the uplift of the eastern TP is not the primary cause, the arid
climate in northwestern India may be more closely related to the global climatic cooling (H. Lu & Guo, 2014).

The HM's complex interaction with monsoon systems has created a complex regional and local climate, where
dissected topography from erosion further enhances precipitation. This unique feedback between topography and
climate has likely shaped the complex topographic and climatic heterogeneity of the region, providing a wide
diversity of habitats for species (Antonelli et al., 2018). Therefore the unique combination of tectonic uplift and
the monsoon system has created unique conditions for biodiversity (W.‐N. Ding et al., 2020).

Further studies are needed to assess the influence of different HM geometries on both regional and large‐scale
climates under different climate conditions. Specifically, it would be intriguing to explore whether the
observed climate response to reduced HM topography is consistent across different paleoclimates, such as the
Last Glacial Maximumwith globally colder temperatures or periods of warmer temperatures. Another compelling
area for investigation involves examining if imprints of topography on large‐scale circulation depend on atmo-
spheric oscillations or modes, such as the El Niño‐Southern Oscillation and Indian Ocean Dipole, which are both
thought to influence the interannual variability of the Asian summer monsoon (Pothapakula et al., 2020).
Addressing this question would necessitate longer simulation periods; however, the substantial computational
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costs of fine‐scale, convection‐permitting simulations currently pose a significant challenge. With a resolution of
4.4 km, we are able to resolve the main valleys of the HM (see Figure 2a)—however, local wind systems that
could influence precipitation are still not fully resolved. Running simulations with even finer grid spacings would
therefore shed more light on the complex influence of (small‐scale) terrain relief on precipitation formation.
Regarding the envelope topography experiment, we noted that lower‐level atmospheric flow is predominantly
perpendicular to the main valleys and obtained results might therefore be limited to this specific configuration.
Additional experiments with more valley‐aligned flow would thus nicely complement the findings of this study.

Data Availability Statement
The ERA5 reanalysis data are available at the Copernicus Climate Change Service (C3S) Climate Data Store via
https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2018). The APHRODITE precipitation data are available
at http://aphrodite.st.hirosaki‐u.ac.jp/download (APHRODITE V1101EX, 2018). The AphroTemp temperature
data are available at http://aphrodite.st.hirosaki‐u.ac.jp/download (AphroTemp V1808, 2018). The CRU tem-
perature data are available at https://www.metoffice.gov.uk/hadobs/crutem4 (CRUTEM4, 2012). The GPM
IMERG precipitation data are available at https://disc.gsfc.nasa.gov via https://doi.org/10.5067/GPM/
IMERGDF/DAY/06 (GPM IMERG, 2020). The GPCC precipitation data are available at https://opendata.dwd.
de/climate_environment/GPCC/html/download_gate.html via https://doi.org/10.5676/DWD_GPCC/FD_M_
V2022_025 (GPCC, 2022). The PBCOR precipitation data are available at https://www.gloh2o.org/pbcor
(PBCOR, 2020). The CMA precipitation data are available at http://data.cma.cn (CMA, 2022). The source code
for topography modification is licensed under MIT and published on GitHub: https://github.com/ruolanxixi/HM_
Geometries (ruolanxixi, 2024). The weather and climate model COSMO is free of charge for research applica-
tions (for more details see: http://www.cosmo‐model.org (COSMO, 2022)). The raw model output is too large to
provide in an online repository. A post‐processed set of the model output as well as the COSMO namelists can be
obtained from the corresponding author.
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