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Abstract

The Hitchin component is a special connected component of the space of represen-
tations of a finitely generated group into a split real simple Lie group G, such as
PSL(n,R),PGSp(2n,R),PO(n, n + 1) and PO(n, n). It was first studied by Hitchin
[19] in the case of representations of the fundamental group π1(S) of a closed surface S
of genus g ≥ 2 into PSL(n,R): when n = 2 the Hitchin component coincides with the
Teichmüller space of the surface and Hitchin showed that for general n it is homeomor-
phic to R(2g−2)(n2−1). Later work of Choi and Goldman [8] for n = 3 and Labourie [22]
for general n shows that Hitchin components share many properties with Teichmüller
space. In particular they consist of discrete and faithful representations and so they
are part of the interesting family of spaces called higher Teichmüller spaces.

In this thesis we study the Hitchin component of hyperbolic triangle groups ∆(p, q, r)
into GSp(2n,R), where by hyperbolic triangle group we mean the group generated by
the reflections in the sides of a geodesic triangle in the upper half plane. The notion
of Hitchin component was extended from surface groups to fundamental groups of 2-
dimensional orbifolds by Alessandrini, Lee and Schaffhauser [2], who show that it is
homeomorphic to an open ball and they compute its dimension explicitly. The class
of finitely generated groups studied in [2] covers fundamental groups of all surfaces of
finite type, as well as the triangle groups considered in this work and their 2-index
subgroups, which were already treated by Long and Thistlethwaite [25] and Weir [40].

In the first part of this work we show that the Hitchin component is a higher
Teichmüller space (Proposition 2.4.3), that all representations in it are smooth points of
the representation variety (Proposition 4.5.1) and we compute its dimension (Theorem
4.5.4). These results stem from the identification of the Zariski tangent space to the
representation variety with the space of 1-cocycles twisted by the adjoint representation.

The second part of the thesis is devoted to give a parametrisation of the Hitchin
component of the triangle group ∆(3, 4, 4) into PGSp(4,R), which is one-dimensional,
in the same spirit as the work of Cooper, Long and Thistlethwaite [12] for fundamental
groups of hyperbolic 3-manifolds.
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Riassunto

La componente di Hitchin è una particolare componente connessa dello spazio delle
rappresentazioni di un gruppo finitamente generato in un gruppo di Lie semplice e split,
come ad esempio PSL(n,R),PGSp(2n,R),PO(n, n+1) e PO(n, n). Il primo a studiarla
fu Hitchin [19] per rappresentazioni del gruppo fondamentale π1(S) di una superficie
chiusa di geno g ≥ 2 in PSL(n,R): per n = 2 la componente di Hitchin coincide con
lo spazio di Teichmüller della superficie e Hitchin ha dimostrato che per n qualiasi è
omeomorfa a R(2g−2)(n2−1). In seguito, il lavoro di Choi e Goldman [8] per n = 3 e di
Labourie [22] per n qualsiasi ha mostrato che la componente di Hitchin possiede molte
proprietà in comune con lo spazio di Teichmüller. In particolare, fa parte della famiglia
di spazi chiamati higher Teichmüller spaces, in quanto tutte le rappresentazioni al suo
interno sono discrete e iniettive.

Questa tesi si occupa dello studio della componente di Hitchin per rappresentazioni
di gruppi triangolari iperbolici ∆(p, q, r) in GSp(2n,R), dove con gruppo triangolare
iperbolico si indica il gruppo generato dalle riflessioni nei lati di un triangolo geodetico
nel piano iperbolico H2. La nozione di componente di Hitchin è stata generalizzata da
gruppi di superficie a gruppi di orbifold 2-dimensionali da Alessandrini, Lee e Schaff-
hauser [2], i quali hanno dimostrato che è omeomorfa a una palla aperta e ne hanno
calcolato esplicitamente la dimensione. La classe di gruppi finitamente generati trattata
in [2] include tutti i gruppi di superficie di tipo finito, come anche i gruppi triangolari
di questa tesi e i loro sottogruppi di indice 2 già studiati da Long e Thistlethwaite [25]
e Weir [40].

Nella prima parte della tesi dimostriamo che la componente di Hitchin è un higher
Teichmüller space (Proposition 2.4.3), che tutte le rappresentazioni al suo interno sono
punti regolari della varietà (Proposition 4.5.1) e ne calcoliamo la dimensione (Theorem
4.5.4). Questi risulati sono ottenuti tramite l’identificazione dello spazio tangente di
Zariski alla varietà delle rappresentazioni con lo spazio dei cocicli 1-dimensionali su cui
si agisce tramite la rappresentazione aggiunta.

La seconda parte della tesi è dedicata a dare una parametrizzazione della compo-
nente di Hitchin del gruppo triangolare ∆(3, 4, 4) in PGSp(4,R), che è 1-dimensionale,
analogamente al lavoro di Cooper, Long e Thistlethwaite [12] per i gruppi fondamentali
di 3-varietà.
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1. Introduction

1.1 Teichmüller space: classical and higher rank

Let S be a closed connected oriented topological surface of genus g ≥ 2. The Te-
ichmüller space Teich(S) of S is the space of equivalence classes of marked hyperbolic
structures, i.e. pairs (X, f) where X is a hyperbolic surface and f : S → X is a
homeomorphism. Two such pairs (X, f) and (Y, g) are equivalent if there exists an

isometry α : X → Y such that α ◦ f is isotopic to g. The universal cover X̃ of a
hyperbolic surface X can be identified with the hyperbolic plane H2 on which the fun-
damental group π1(X) acts as deck transformations by orientation-preserving isome-
tries, thus π1(X) is a subgroup of Isom+(H2) ∼= PSL(2,R). If (X, f) is a marked
hyperbolic structure, once a base point is fixed, f induces an isomorphism on funda-
mental groups f∗ : π1(S) → π1(X) ≤ PSL(2,R), which is called the holonomy. The
holonomies of two equivalent hyperbolic structures are conjugated by an element of
PSL(2,R), thus the Teichmüller space can be identified as a subset of the character va-
riety χ(π1(S),PSL(2,R)), which is the space of all group homomorphism from π1(S) to
PSL(2,R) up to PSL(2,R)-conjugation. Since π1(S) is finitely generated, the character
variety carries a natural topology induced by the topology of PSL(2,R) and Teich(S)
forms a connected component of χ(π1(S),PSL(2,R)) that is homeomorphic to R6g−6

and consists entirely of discrete and faithful representations [14].
This algebraic realization of the Teichmüller space as a space of representations is

the starting point of higher Teichmüller theory: instead of studying representations of
surface groups into PSL(2,R), one replaces PSL(2,R) by a simple Lie group G of higher
rank, such as PSL(n,R), n ≥ 3 or PSp(2n,R), n ≥ 2. The object of interest is then the
representation variety χ(π1(S), G) = Hom(π1(S), G)/G, or more precisely its connected
components that consist entirely of discrete and faithful representations. A union of
such connected components is called a higher Teichmüller space [41]. There are two
main known families of higher Teichmüller spaces: Hitchin components Hit(π1(S), G),
which are defined when G is a split real simple Lie group, and spaces of maximal
representations M(π1(S), G) defined when G is a non-compact simple Lie group of
Hermitian type. The symplectic group Sp(2n,R) is both split and of Hermitian type
and for this group Hitchin representations are maximal, that is Hit(π1(S), Sp(2n,R)) ⊂
M(π1(S), Sp(2n,R)) [6] and the inclusion is proper [18]. Real split Lie groups and
Lie groups of Hermitian type now fit in the broader class of Lie groups which admit
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a Θ-positive structure as defined by Guichard and Wienhard [18]. All known higher
Teichmüller spaces consist of Θ-positive representations, and Guichard, Labourie and
Wienhard [16] proved that Θ-positive representations are discrete and faithful. It is
conjectured that all higher Teichmüller spaces arise as such [17].

1.2 The Hitchin component

The existence of a component of the character variety analogous to Teichmüller space
for representations into a Lie group of higher rank was first demonstrated by Hitchin
in 1992. In [19] he considers surface group representations into G = PSL(n,R) (and
more generally into a split real simple Lie group) and singles out a special component
of χ(π1(S), G) that is homeomorphic to R(2g−2) dimG and which we now call the Hitchin
component. Any split real simple Lie group G admits an embedding π : PSL(2,R) → G
which is unique up to conjugation. For the classical Lie groups PSL(n,R), PSp(2n,R)
and PSO(n, n+ 1) this is the irreducible representation of SL(2,R) in the appropriate
dimension. The Hitchin component Hit(π1(S), G) is defined as the connected com-
ponent of the character variety χ(π1(S), G) containing the composition π ◦ i, where
i : π1(S) → PSL(2,R) is a holonomy of S. Since the Teichmüller space is connected,
any holonomy defines the same component.

The fact that the Hitchin component is an example of a higher Teichmüller space
was proven for n = 3 by Choi and Goldman [8] and for general n by Labourie [22].

The geometric significance of representations in the Hitchin component or in other
higher Teichmüller spaces leads to the natural study of the situation for surfaces with
boundary and more generally for 2-dimensional compact orbifolds. Analogously to sur-
faces, a 2-dimensional closed orbifold Y admits hyperbolic structures if and only if it
has negative orbifold Euler characteristic, see e.g. [38]. The space of hyperbolic struc-
tures, i.e. the Teichmüller space of the orbifold, was studied by Thurston [38] who
showed that it is a connected component of χ(π1(Y ),PSL(2,R)) consisting of discrete
and faithful representations, which is homeomorphic to some Euclidean space. In [9]
Choi and Goldman considered the Hitchin component of π1(Y ) in PGL(3,R) and in [2]
Alessandrini, Lee and Schaffhauser introduced PGL(n,R)-Hitchin components for all
n ≥ 2. In fact, they consider any split real Lie group G and prove that the Hitchin
component gives new examples of higher Teichmüller spaces. They also show that it
is homeomorphic to an open Euclidean ball and compute its dimension explicitely. We
remark that they consider the larger family of compact 2-dimensional orbifolds with
negative orbifold Euler characteristic, thus allowing non-orientable surfaces as well as
boundary components. The PGL(n,R)-Hitchin component for orientable surfaces with
boundary was already introduced by Labourie and McShane in [23] and the dimen-
sion of the Hitchin component for the orbifold given by the 2-sphere with three cone
points was computed by Long and Thistlethwaite [25] for PSL(n,R) and by Weir [40]
for PSp(2n,R). In this thesis we focus on the Hitchin component of hyperbolic trian-
gle groups, which are fundamental groups of some closed 2-dimensional orbifolds with
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negative orbifold Euler characteristic.

Definition 1.2.1. A triangle group ∆(p, q, r) is a group with presentation

∆(p, q, r) = ⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1⟩.

The group is called hyperbolic if π
p
+ π

q
+ π

r
< π. In this case the generators can

be realized as reflections in the sides of a triangle ∆ in the hyperbolic plane with
internal angles π

p
, π
q
, π
r
, which is unique up to congruence. This action of ∆(p, q, r)

gives a tiling of the hyperbolic plane H2 and the stabilizer of ∆ is trivial [29, Thereom
2.8 and references therehein]. The quotient space is a triangle in which the boundary
points (except the vertices) have a neighborhood isomorphic to (Z/2Z) \ R2 (where
(Z/2Z) acts on R2 via reflections through a line) and each vertex has a neighborhood
isomorphic to Dk \ R2, where k = p, q or r and Dk is the dihedral group generated
by the reflections through two lines with an angle π/k between them. This is to say
that the quotient space is a closed 2-dimensional orbifold with mirror singularities (the
boundary of the triangle) and three cone points with cone angle 2π/k (the vertices).
Notice that the orbifold has no boundary, although the underlying topological space
does. For background on orbifolds we refer to [38] and [35]. The universal cover of
an orbifold is defined in the same way as for surfaces and the orbifold fundamental
group is the group of its deck transformations. For orbifolds arising from hyperbolic
triangle groups, the universal cover is the hyperbolic plane H2 and it is not difficult
to show that the orbifold fundamental group is isomorphic to ∆(p, q, r) [35, Section 2].
We conclude the discussion on orbifolds by recalling that one can define the orbifold
Euler characteristic χ(Y ) of an orbifold Y as the sum of the Euler characteristic of the
underlying topological space and some constants depending on the number and order
of the singularities. For a hyperbolic triangle group ∆(p, q, r) this is given by

χ(∆) = 1− 1
2
(1− 1

p
+ 1− 1

q
+ 1− 1

r
) = 1

2
(1
p
+ 1

q
+ 1

r
− 1) < 0.

In Section 2.2 we give an explicit description of the realisation of ∆(p, q, r) as a sub-
group of the isometry group of H2, that is a discrete and faithful representation ρ0 :
∆(p, q, r) → PGL(2,R). Since a triangle in the hyperbolic plane is determined by its
angles, up to congruence, the representation ρ0 is unique up to conjugation and we call
it the geometric representation of ∆(p, q, r).

The image of the irreducible representation π2n of PGL(2,R) into PGL(2n,R) is
contained in the general symplectic group PGSp(2n,R), which is the group of linear
transformations of R2n that preserve up to sign a non-degenerate skew-symmetric bi-
linear form (see Section 2.3). Having illustrated how hyperbolic triangle groups fit in
the context of orbifolds, we now define the Hitchin component of the character variety
χ(∆,PGSp(2n,R)).

Definition 1.2.2. The Hitchin component Hit(∆(p, q, r),PGSp(2n,R)) is the con-
nected component of χ(∆(p, q, r),PGSp(2n,R)) which contains the representation [π2n◦
ρ0].
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We call a homomorphism ϕ : ∆(p, q, r) → PGSp(2n,R) a Hitchin representation if
its class [ϕ] belongs to the Hitchin component. It follows from the analogous statement
for surface groups that triangle group Hitchin representations are discrete and faithful
(Proposition 2.4.3).

Before stating our results, we give some additional context and motivation for the
interest in triangle groups. Every hyperbolic triangle group ∆(p, q, r) contains a sub-
group of index 2 generated by the rotations about the vertices through angles 2π/p,
2π/q, 2π/r, which in the presentation of Definition 1.2.1 is the orientation-preserving
subgroup generated by the products ab, bc and ac. We denote such subgroups by
T (p, q, r) and call them rotation triangle groups. In the literature they also appear
under the name of von Dyck groups or simply of triangle groups.

Much work has been done in the past years to study representations of T (p, q, r)
partly motivated by the fact that they contain surface subgroups of finite index. Long,
Reid and Thistlethwaite [27] find a one-parameter family of representations of T (3, 3, 4)
into SL(3,Z), the image of which gives a non-conjugate family of subgroups of SL(3,Z)
which are Zariski dense in SL(3,R). This family of representations lies in the Hitchin
component. In the same vein Long and Thistlethwaite [26] find infinite families of
Zariski dense surface groups of fixed genus inside SL(4,Z) and SL(5,Z) (as images of
representations of T (3, 3, 4)) and Sp(4,Z) (as images of representations of T (2, 4, 5)).
Again, these families consist of discrete and faithful representations and lie in the
Hitchin component of the respective representation varieties. These families of represen-
tations do not parametrize the whole Hitchin component, which in all the above cases is
2-dimensional. Formulas for the dimension of the Hitchin component of T (p, q, r) have
been computed by Long and Thistlethwaite [25] when the target Lie group is PSL(n,R)
and by Weir [40] when the target Lie group is PSp(2n,R) or PSO(n, n+ 1), n ≥ 1. As
we mentioned above, the dimension of the Hitchin component for orbifold fundamental
groups has been computed in great generality by Alessandrini, Lee and Schaffhauser
[2].

The first part of this thesis is devoted to the proof of a formula for the dimension
of the Hitchin component Hit(∆(p, q, r),PGSp(2n,R)). The result of [2] covers the
∆(p, q, r)-case, but we give an independent more elementary proof. The result is the
following.

Theorem 1.2.3. Let ∆ = ∆(p, q, r) be a hyperbolic triangle group with generators
a, b, c. Let G = PGSp(2n,R) with Lie algebra g and let Ad : G → GL(g) be the adjoint
representation. The dimension of the Hitchin component of χ(∆,PGSp(2n,R)) is

dimHit(∆, G) = 1
2
(dim g− dim gAd(ϕ0(ab)) − dim gAd(ϕ0(bc)) − dim gAd(ϕ0(ac))), (1.1)

where ϕ0 : ∆ → PGSp(2n,R) is the base representation.

In fact, the group GSp(2n,R) can be replaced by GL(n,R).
We remark that (1.1) is not as explicit as the formulas in [2],[25] and [40], which are

of combinatorial nature in p, q, r and n. To get a number from (1.1) one still needs to
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compute the dimension of gAdϕ0(xy) for every product of two generators x ̸= y ∈ {a, b, c}.
This is the same as the dimension of the Lie algebra of the centralizer in GSp(2n,R) of
x̃ỹ, where x̃, ỹ are lifts of ϕ0(x), ϕ0(y) (Lemma A.2.1). We carry out this computation
for the group GSp(4,R) (Proposition 4.6.1) and obtain

Corollary 1.2.4. The dimension of the PGSp(4,R)-Hitchin component is

dimHit(∆(p, q, r),PGSp(4,R)) =


0 if p = q = 3, r ≥ 4 or p = 2, q = 3, r ≥ 7,

1 if p = 2, 3, r ≥ q ≥ 4,

2 if p, q, r ≥ 4.

Computing the dimension of the centralizer ZGSp(2n,R)(x̃ỹ) for general n is essentially
the content of [40]. Even though (1.1) requires some additional work to be applied,
the methods used to obtain it are interesting on their own. They are based on the
identification of the Zariski tangent space to the representation variety with the space
of 1-cocycles twisted by the adjoint representation. A byproduct is that the Hitchin
component consists of smooth points of the character variety (Proposition 4.5.1). We
give an overview of the method and of the necessary tools in the following section.

1.3 The deformation space

A triangle in the hyperbolic plane is determined up to congruence by its angles, therefore
the geometric representation ρ0 : ∆(p, q, r) → PSL(2,R) is rigid in the sense that any
deformation is obtained by conjugation. However, composing ρ0 with the irreducible
representation of PSL(2,R) into PGSp(2n,R) might give sufficient space to obtain
deformations that do not come from conjugation by PGSp(2n,R) and the space of
deformations is the Hitchin component Hit(∆(p, q, r),PGSp(2n,R)).

For ease of notation let G = PGSp(2n,R) and ϕ0 = π2n ◦ ρ0 denote the base
representation of the triangle group ∆ = ∆(p, q, r). As done by Goldman [14] for the
classical case of surface groups, we study the deformation space of the representation
ϕ0 by looking at the local structure of Hom(∆, G) and of χ(∆, G) near ϕ0.

We start with the tangent space to Hom(∆, G) at ϕ0. Since ∆ is finitely generated
(with three generators and set of relations R) the space Hom(∆, G) is homeomorphic
to
⋂

r∈R f−1
r (e) ⊂ G3, where each map fr : G3 → G is defined by the evaluation of

the relation r ∈ R on G. Since G is a linear algebraic group this identification induces
an algebraic structure on the representation variety. The Zariski tangent space at a
homomorphism ϕ consists of all tangent vectors to a smooth path t 7→ ϕt inside G3

starting at ϕ which satisfies the relations fr = e up to first order, see Definition 3.1.2.
It can be identified with the space of 1-cocycles ∆ → g:

Z1(∆, g)ϕ = {u : ∆ → g | u(γδ) = u(γ) + Ad(ϕ(γ))u(δ) for all γ, δ ∈ ∆}.

Tangent vectors to paths in the G-orbit of ϕ correspond to 1-coboundaries

B1(∆, g)ϕ = {v : ∆ → g | ∃X ∈ g such that v(γ) = Ad(ϕ(γ))X −X}.
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A representation ϕ is a smooth point of Hom(∆, G) if the dimension of the Zariski
tangent space at ϕ is minimal. If this is the case, then the first cohomology group
H1(∆, g)ϕ0 is the tangent space to the character variety at [ϕ]. To prove Theorem 1.2.3
we show that every Hitchin representation ϕ is a smooth point and compute the di-
mension of H1(∆, g)ϕ. In fact, we find a formula for both the dimension of H1(∆, g)ϕ
and Z1(∆, g)ϕ and argue that they are constant on Hitchin representations (Proposi-
tion 4.4.5 and Proposition 4.4.6). This shows that Hitchin representations are smooth
points of the representation variety and that the dimension of the Hitchin component
is H1(∆, g)ϕ0 .

We add some remarks on how we obtained formula (1.1) for the dimension of
H1(∆, g)ϕ. Evaluation on the generators embeds 1-cocycles in g3 and the image can
be characterized as the intersection of the kernels of some linear maps g3 → g (Lemma
3.1.5). Then we exploit the triangle group relations to compute the dimension of these
spaces, in a similar way as one would do to compute the dimension of the Zariski tan-
gent space to the representation variety of a surface group [14]. We can not obtain such
a neat formula for the dimension (and consequent characterization of smooth points of
the representation variety) as Goldman does, since contrary to surface groups triangle
groups have more than one relation.

1.4 The Hitchin component of ∆(3, 4, 4) in PGSp(4,R)
The second part of this thesis is devoted to explicitly parametrize the Hitchin compo-
nent of the (3, 4, 4)-triangle group in PGSp(4,R). The choice of (3, 4, 4) was dictated by
the fact that according to Corollary 1.2.4, it is the triple of smallest possible numbers
for which the PGSp(4,R)-Hitchin component is not trivial. In fact, it is 1 dimensional,
which means that to describe it it suffices to find a one-parameter family of deforma-
tions of the base representation ϕ0. To this end we apply the method introduced by
Cooper, Long and Thistlethwaite [12] for the exact computation of character varieties of
fundamental groups of low-dimensional manifolds and orbifolds. The method has been
applied in [27] and in [26] to compute the families of representations mentioned above,
as well as by Weir [40] to find additional one-parameter families of representations in the
Hitchin component of χ(T (3, 3, 4),PSL(4,R)), and by Paupert and Thistlethwaite [33]
to describe the deformation space of the Bianchi group Bi(3). We thoroughly describe
the method in Section 5.2 and its implementation in Section 5.3, so that the interested
reader could follow it verbatim to parametrize the PGSp(4,R)-Hitchin component of
any triangle group ∆(p, q, r) with p = 2, 3 and r ≥ q ≥ 4 (if p = 2 and q = 4, then
r > 4). We are also inclined to think that computations of one-parameter families - or
of the entire two-dimensional component - for the case of p, q, r ≥ 4 can be performed
analogously.

On the other hand if one wishes to substitute the target group PGSp(4,R) with
one of higher dimension there are adjustments to be done. One of the crucial steps
of the method consists in finding a “normal form” to which (the generators of) each
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representation can be conjugated. This is usually done by finding an ad-hoc basis of
R4 using eigenvectors of the generators. Since triangle groups have three generators
(and not only two as for the groups considered in [12],[26] and [33]) we find an R4

basis exploiting the fact that dihedral representations are locally rigid and the sym-
plectic features of representations of triangle groups into GSp(2n,R). More precisely,
let ϕ : ∆(p, q, r) → GSp(2n,R) be a homomorphism. The images under ϕ of the gen-
erators a, b, c of the triangle group ∆(p, q, r) are involutions of R2n whose eigenspaces
are n-dimensional Lagrangian subspaces. These six eigenspaces (two for each genera-
tor) determine the representation ϕ. The conjugation action of the symplectic group
GSp(2n,R) on Hom(∆(p, q, r),GSp(2n,R)) becomes an action on the set of 6-tuples of
Lagrangian subspaces of R2n. The restriction of the representation ϕ to the dihedral
subgroup generated by a and c is given by a 4-tuple of (pairwise transverse) Lagrangian
subspaces, the orbit of which is determined by the crossratio of the 4-tuple together
with the Maslov index of a sub 3-tuple. For the exact definition of these two invariants
we refer to Appendix B, as for the purpose of this introduction it suffices to say that
the crossratio is the conjugacy class of an invertible n × n matrix whose eigenvalues -
in this dihedral group setting - belong to a finite set. In particular, if the crossratio
is diagonalizable one can determine the orbit of the 4-tuple of Lagrangians and find a
standard form for the images of a and c under the representation ϕ. When n = 2 the
crossratio is diagonalizable, but we do not know if this still holds true for larger n and
if it is not the case one needs another strategy.

Before describing the parametrization of the Hitchin component that we found,
we remark that by looking at the space of 6-tuples of pairwise Lagrangian subspaces
and their crossratios Burelle [5] proved that representations of triangle groups ∆(p, q, r)
into PGL(2n,R) and PGSp(2n,R) which factor through the (possibly twisted) diagonal
embedding of PSL(2,R) into PGL(2n,R) do not admit deformations.

We express the entire Hitchin component by means of a tautological representation,
in that for each generator we give a single matrix, whose entries are algebraic expression
in a single parameter u. Assigning values to u determines a specific representation.

Theorem 1.4.1. The 1-dimensional PGSp(4,R)-Hitchin component of the triangle
group ∆(3, 4, 4) is given by a tautological representation Ψu whose entries lie in the
field Q(u)(τ, σ,

√
2), where τ is a real root of the cubic polynomial

1
3
u2(32 + 86u2 − 5u4) + u2(−20 + 13

3
u2)τ + (2− 11

3
u2)τ 2 + τ 3 (1.2)

and σ =
√

3
2
(u2 + τ + 2). The images of the generators of ∆(3, 4, 4) are represented by

the matrices Ψu(a),Ψu(b) and Ψu(c) given in Appendix C. The base representation ϕ0

is obtained for u = 5
√
2.

We remark that any choice of a root of (1.2) and of sign for σ gives a homomorphism
of ∆(p, q, r), meaning that the images of a, b and c satisfy the triangle group relations
(up to sign). However, only one choice describes the Hitchin component. In particular,
for some values of u not all the roots of the cubic polynomial are real, this means
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that the representation maps into PGSp(4,C) and not PGSp(4,R). A description of
the situation is given in Section 5.4. The images of a and c have been conjugated to
standard form, so no parameter appears there.

1.5 Organization

The thesis is organized as follows. In Chapter 2 we define the representation vari-
ety, describe the geometric representation of a triangle group and precisely define the
PGSp(2n,R)-Hitchin component and Hitchin representations.

In Chapter 3 we define the Zariski tangent space and smooth points of the repre-
sentation variety and we summarize the cohomological theory of deformations, covering
also the particular cases of surface groups and triangle groups. Appendix A contains
the necessary background on group cohomology with twisted coefficients.

Chapter 4 is devoted to the computation of the dimension formula of Theorem
1.2.3. We describe the space of 1-cocycles for triangle groups and the first cohomology
group. Then we compute the dimension of the Zariski tangent space to a Hitchin
representation, discuss the smoothness of the Hitchin component and give a formula
for its dimension. In the last section of the chapter we explicitly compute the dimension
of the PGSp(4,R)-Hitchin component obtaining Corollary 1.2.4.

In Chapter 5 we compute the entire Hitchin component for ∆(3, 4, 4) in PGSp(4,R).
In Section 5.1 we determine a normal form for Hitchin representations up to conjugation,
as well as their trace field and matrix entry field. The necessary background about the
symplectic action on Lagrangian spaces is given in Appendix B. In Section 5.2 we give
an overview of the computation methodology. More details and the technical aspects
of the implementation are given in Section 5.3.
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2. The Hitchin component for trian-
gle groups

In this chapter we define the representation and the character varieties of a finitely
generated group Γ into a Lie group G. Then we define a geometric representation
for triangle groups, review the irreducible representation into the general symplectic
group and finally define Hitchin representations and the Hitchin component for triangle
groups.

2.1 The representation variety

Let Γ be a finitely generated group and G be a Lie group.

Definition 2.1.1. The representation variety is the set of homomorphisms Hom(Γ, G)
endowed with the compact-open topology.

Since Γ is discrete the compact-open topology is the topology of pointwise conver-
gence. Given a finite set S of generators of Γ we can identify Hom(Γ, G) as a closed
subset of the product GS. To see this, let R be a set of relations for the generating set
S. Every relation r ∈ R can be written in the form

r = sϵ11 . . . sϵmm

with si ∈ S, ϵi = ±1. We fix one such expression once and for all and denote by
fr : G

S → G the map
fr((gs)s∈S) = gϵ1s1 · . . . · g

ϵm
sm .

For every homomorphism φ : Γ → G it holds fr((φ(s))s∈S) = φ(s1)
ϵ1 · . . . · φ(sm)ϵm =

φ(r) = e.

Lemma 2.1.2. The space Hom(Γ, G) is homeomorphic to the closed subset
⋂
r∈R

f−1
r (e)

of GS via

Θ : Hom(Γ, G) → GS

φ 7→ (φ(s))s∈S.
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Proof. The map Θ is injective because every homomorphism is determined on the gen-
erators of Γ and the image is precisely

⋂
r∈R

f−1
r (e). Recall that a subbasis of the compact-

open topology on Hom(Γ, G) is given by the sets of the form

S(C,U) = {f : Γ → G | f(C) ⊂ U} ∩ Hom(Γ, G).

To see continuity, consider an open set
∏
s∈S

Us of G
S, then the preimage

Θ−1

(⋂
f−1
r (e) ∩

∏
s∈S

Us

)
=
⋂
s∈S

C(s, Us)

is open. To see that Φ is open, notice that every element γ ∈ Γ defines a continuous
map fγ : GS → G, in the same way as we saw above for the relations r. Then for any
finite set C ⊂ Γ and any open set U ⊂ G the image of S(C,U) is

Θ(S(C,U)) = Θ

(⋂
γ∈C

S(γ, U)

)
=
⋂
γ∈C

Φ(S(γ, U)) =
⋂
γ∈C

{(φ(s))s∈S | φ(γ) ∈ U}

=
⋂
γ∈C

{(φ(s))s∈S | fγ((φ(s))s) ∈ U} =
⋂
γ∈C

f−1
γ (U).

Hence open and this concludes the proof.

There is a continuous action of G by conjugation on Hom(Γ, G): for g ∈ G and
φ : Γ → G we define g · φ : Γ → G by

(g · φ)(γ) = gφ(γ)g−1.

We denote the quotient, called the character variety, by

χ(Γ, G) = Hom(Γ, G)/G.

The image in χ(Γ, G) of a homomorphism ϕ is denoted by [ϕ].

2.2 Triangle groups

Recall from the introduction that a hyperbolic triangle group ∆(p, q, r) is a group with
a presentation

⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1⟩,

with 1/p+1/q+1/r < 1. It can be realized as a subgroup of the isometry group of the
upper half plane H2 by fixing a geodesic triangle with angles π/p, π/q, π/r in H2 and

10



letting the generators of ∆(p, q, r) act as reflections in its sides. The resulting represen-
tation is what we call a geometric representation and it is unique up to conjugacy since
triangles in H2 are determined up to congruence by their angles. In this section we fix
one explicit geometric representation. We need to recall some hyperbolic geometry.

The Lie group PGL(2,R) = {g ∈ GL(2,R) | det(g) = ±1}/{±id} acts on the
hyperbolic plane as follows: a matrix ( a b

c d ) ∈ PGL(2,R) with determinant 1 determines
the Möbius transformation

z 7→ az + b

cz + d

while one with determinant −1 gives the Möbius anti-transformation

z 7→ az + b

cz + d
.

This action identifies the isometry group of H2 and PGL(2,R). Indeed, the former is
generated by reflections along Euclidean vertical half-lines (line reflections) and along
half-circles orthogonal to ∂H2 (circle inversions) [30, Proposition 2.1.11]. Every circle
inversion can be obtained by conjugating the inversion z 7→ 1

z
along the unit circle

with translations z 7→ z + b and dilations z 7→ az. Conjugation by translations also
transform every line reflection into z 7→ z. This embeds the isometry group of H2 as a
subgroup of the group of all Möbius transformations and anti-transformations, and in
fact they are isomorphic [30, Proposition 2.3.8].

As hyperbolic triangle groups are realized by reflections along geodesics, which are
vertical lines and half-circles orthogonal to ∂H2, we need to describe line reflections and
circle inversions explicitly. Denote by r∞x the reflection along the vertical line at x ∈ R.
As the line at x can be translated to the vertical line at 0 by the map z 7→ z − x and
r∞0 (z) = −z, it follows that r∞x (z) = −z + 2x. This is given by the matrix

r∞x =

(
−1 2x
0 1

)
∈ PGL(2,R).

Denote by rCr(x) the circle inversion along a half circle Cr(x) of radius r with center in
x ∈ R. The half circle can be translated and scaled to the unit half circle by the map
z 7→ z−x

r
. Therefore rCr(x) is given by z 7→ r2

z−x
+ x which corresponds to the matrix

1
r

(
x r2−x2

1 −x

)
∈ PGL(2,R). The reflection along a half circle with endpoints x < y ∈ R is

described by the matrix

ryx =
1

y − x

(
x+ y −2xy
2 −(x+ y)

)
∈ PGL(2,R),

since the radius of the half circle is y−x
2

and it is centered at x+y
2
.

To fix a geometric representation ρ0 : ∆(p, q, r) → PGL(2,R) it suffices to choose
a triangle in the hyperbolic plane with geodesic sides and desired internal angles. Let
one side be the half circle between 0 and 1, the second side be the vertical line at
k ∈ R ⊆ ∂H2 and the third side be the half circle with endpoints m < l ∈ R ⊆ ∂H2.

11



0 k

∞

1m ℓ

ρ0(c)

ρ0(a)

ρ0(b)π
r

π
p

π
q

Figure 2.1: The geometric representation ρ0 of ∆(p, q, r).

The representation ρ0 maps the generators a, b, c of the triangle group ∆(p, q, r) to
the reflections in the sides, as in Figure 2.1. By the above discussion we have matrix
representatives

ρ0(a) = r10 =

(
1 0
2 −1

)
ρ0(b) = rk∞ =

(
−1 2k
0 1

)
ρ0(c) = rℓm =

1

ℓ−m

(
m+ ℓ −2mℓ
2 −(m+ ℓ)

) (2.1)

The endpoints m, k, ℓ are determined by the internal angles of the triangle. Indeed,
suppose that (x, y, z, w) ∈ (∂H2)4 are so oriented that the geodesic

⌢
xz with endpoints

(x, z) and the geodesic
⌢
yw with endpoints (y, w) intersect. Let v =

⌢
xz ∩ ⌢

yw be the

intersection point and θ be the angle between the arcs
⌢
vx and

⌢
vy (cfr. Figure 2.2).

Then cos2
(
θ
2

)
= (x−w)(y−z)

(x−z)(y−w)
(see [42, Example 2]). In our setting we have

cos2 (π/2p) = k, cos2 (π/2q) =
ℓ− k

ℓ−m
, cos2 (π/2r) =

ℓ(1−m)

ℓ−m
. (2.2)
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yx wz

v

θ

Figure 2.2: The angle between intersecting hyperbolic geodesics.

Solving for k, ℓ,m gives

k = cp

ℓ =
mcq − cp
cq − 1

m =
cp + cq − cr ±

√
(cp + cq − cr)2 + 4cpcq(cr − 1))

2cq
.

(2.3)

where cp = cos2(π/2p), cq = cos2(π/2q), cr = cos2(π/2r). The two solutions correspond
to the triangles lying on the left (solution with the minus) and on the right (solution
with the plus) of the vertical line at k.

Remark 2.2.1. For the matrix representatives of (2.1) it holds ρ0(a)
2 = ρ0(b)

2 = ρ0(c)
2 =

id and (ρ0(a)ρ0(b))
p = (ρ0(a)ρ0(c))

r = −id, while (ρ0(b)ρ0(c))
q = (−1)q+1id. We outline

the argument for ρ0(a)ρ0(c), the other cases being analogous. An explicit computation
shows that ρ0(a)ρ0(c) has the two distinct eigenvalues eiπ/r, e−iπ/r. Therefore it is
diagonalizable over C and so is (ρ0(a)ρ0(c))

r with eigenvalues (e±iπ/r)r = −1. The
alternating sign for ρ0(b)ρ0(c) is due to the fact that its eigenvalues are −eiπ/q,−e−iπ/q.

2.3 The irreducible representation

Let SL±(2,R) = {g ∈ GL(2,R) | det(g) = ±1}. For any m ≥ 2 denote by πm :
SL±(2,R) → GL(m,R) the representation where(

a b
c d

)
∈ SL±(2,R)

acts on the space Pm−1[X, Y ] of homogeneous polynomials of degree m− 1 in the two
variables X, Y by (

a b
c d

)
·Xm−1−iY i = (aX + cY )m−1−i(bX + dY )i
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for every 0 ≤ i ≤ m − 1. We call πm the (m-dimensional) irreducible representation.
Let m = 2n be even, then the skew-symmetric 2n× 2n-matrix

Fn =


(
2n−1

0

)−1

−
(
2n−1

1

)−1

. .
.

−
(
2n−1
2n−1

)−1


describes a non-degenerate symplectic form. With respect to the basis {X2n−1, X2n−2Y, . . . , Y 2n−1}
of P2n−1[X, Y ] the irreducible representation preserves Fn up to sign, more precisely for
all g ∈ SL±(2,R) it holds

π2n(g)
TFnπ2n(g) = det(g)Fn. (2.4)

That is, π2n(g) is (anti)symplectic. We denote the set of symplectic and antisymplectic
matrices with respect to the form Fn by GSp(Fn,R). By a change of basis we can
conjugate GSp(Fn,R) into GSp(2n,R) = {g ∈ GL(2n,R) | gTΩ2ng = ±Ω2n}, where
Ω2n is the standard symplectic form:

Ω2n =

(
0 idn

−idn 0

)
. (2.5)

The homomorphism that we get after conjugation is still called and denoted the irre-
ducible representation π2n : SL±(2,R) → GSp(2n,R). Denote also π2n : PGL(2,R) →
PGSp(2n,R) the induced representation.

Example 2.3.1. When n = 2 the irreducible action of g = ( a b
c d ) on P3[X, Y ] with

respect to the basis {X3, X2Y,XY 2, Y 3} is given by

π4(g) =


a3 a2b ab2 b3

3a2c 2abc+ a2d b2c+ 2abd 3b2d
3ac2 bc2 + 2acd 2bcd+ ad2 3bd2

c3 c2d cd2 d3

 .

It preserves (up to sign) the symplectic form

F2 =


1

−1/3
1/3

−1

 .

After conjugating by the 4× 4 matrix x =

( −1 0
0 1

0 1
1/3 0

)
it holds π4(g) ∈ GSp(4,R) and
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the irreducible representation is

π4 : SL
±(2,R) → GSp(4,R)

(
a b
c d

)
7→


a3 −a2b −b3 −3ab2

−3a2c 2abc+ a2d 3b2d 3(b2c+ 2abd)
−c3 c2d d3 3cd2

−ac2 (bc2 + 2acd)/3 bd2 2bcd+ ad2

 .

2.4 Hitchin representations

A group homomorphism ϕ : ∆(p, q, r) → PGSp(2n,R) is called a Fuchsian represen-
tation if there is a geometric representation ρ : ∆(p, q, r) → PGL(2,R) such that
ϕ = π2n ◦ ρ where π2n is the irreducible representation π2n : PGL(2,R) → PGSp(2n,R)
of Section 2.3. When ρ = ρ0 is the geometric representation of (2.1) we call

ϕ0 = π2n ◦ ρ0 : ∆(p, q, r) → PGSp(2n,R). (2.6)

the base representation. Every Fuchsian representation is conjugate to the base repre-
sentation.

Definition 2.4.1. The Hitchin component Hit(∆(p, q, r),PGSp(2n,R)) is the con-
nected component of the character variety χ(∆(p, q, r),PGSp(2n,R)) which contains
[ϕ0].

A homomorphism ϕ : ∆(p, q, r) → PGSp(2n,R) is called a Hitchin representation if
its conjugacy class [ϕ] is an element of Hit(∆(p, q, r),PGSp(2n,R)). We denote the set
of Hitchin representations by Hit(∆(p, q, r),PGSp(2n,R)).

This is analogous as Hitchin representations in the context of surface groups (see
Section 1.2). The fact that every triangle group contains a finite index surface group
[30, Prop 3.1.14], allows one to deduce results for ∆(p, q, r)-Hitchin representations from
the analogous statements for surface groups Hitchin representations.

Lemma 2.4.2. Let ι : π1(S) → ∆(p, q, r) be a finite index surface group in ∆(p, q, r),
G := PGSp(2n,R), H := PGL(2n,R) and let ȷ : G ↪→ H be the inclusion map. If
ϕ : ∆(p, q, r) → G is a Hitchin representation, then also ϕ ◦ ι : π1(S) → G and
ȷ ◦ ϕ ◦ ι : π1(S) → H are Hitchin representations in the corresponding representation
varieties.

Proof. Let ∆ = ∆(p, q, r). Let ϕ0 : ∆ → G be the base representation, then ȷ ◦ ϕ0 :
∆ → H, ȷ ◦ ϕ0 ◦ ι : π1(S) → H and ϕ0 ◦ ι : π1(S) → G are Fuchsian representations
in the respective spaces and [ȷ ◦ ϕ0] ∈ Hit(∆, H), [ȷ ◦ ϕ0 ◦ ι] ∈ Hit(π1(S), H), [ϕ0 ◦ ι] ∈
Hit(π1(S), G).

We have the following commutative diagram
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Hom(∆, G) Hom(π1(S), G) Hom(π1(S), H)

Hom(∆, G)/G Hom(π1(S), G)/G Hom(π1(S), H)/H

ι∗

p p

ȷ∗

p

ι∗ ȷ∗

thus the set

p(ȷ∗ι∗Hit(∆, G)) = ȷ∗ ι∗(p(Hit(∆, G))) = ȷ∗ ι∗(Hit(∆, G))

is a connected subset of Hom(π1(S), H)/H, which contains [ȷ ◦ ϕ0 ◦ ι] = ȷ∗ ι∗([ϕ0]).
Therefore it is contained in Hit(π1(S), H), that is, p(ȷ∗ι∗Hit(∆, G)) ⊆ Hit(π1(S), H).
Which means that ȷ∗ι∗Hit(∆, G) ⊆ Hit(π1(S), H).

Analogously,

p(ι∗Hit(∆, G)) = ι∗(p(Hit(∆, G))) = ι∗(Hit(∆, G))

is connected, contains the Fuchsian representation [ϕ0 ◦ ι] of Hom(π1(S), G)/G and
therefore it is contained in Hit(π1(S), G). That is, p(ι∗Hit(π1(S), G)) ⊂ Hit(π1(S), G)
and ι∗Hit(∆, G) ⊂ Hit(π1(S), G).

Proposition 2.4.3. Hitchin representations ϕ : ∆(p, q, r) → PGSp(2n,R) are faithful
and have discrete image.

Proof. Let ι : π1(S) ↪→ ∆(p, q, r) be a finite index surface group and let ȷ : PGSp(2n,R) →
PGL(2n,R) be the inclusion. Let ϕ : ∆ → PGSp(2n,R) be a Hitchin representation.
Then ȷ◦ϕ◦ι : π1(S) → PGL(2n,R) is a Hitchin representation and therefore discrete and
faithful by results of Labourie [22, Theorem 1.5]. Thus also ϕ◦ι : π1(S) → PGSp(2n,R)
is discrete and faithful. We show that the same holds for ϕ. For ease of notation set
∆ = ∆(p, q, r) and Γ = π1(S).

First, we claim that ϕ is injective. Let 1 ̸= δ ∈ ∆. Then there is q ∈ N such
that δq ∈ Γ. For, since Γ is of finite index in ∆, the sequence (δiΓ)∞i=1 is finite and
there are i < j such that δiΓ = δjΓ. Thus with q = j − i it holds δq ∈ Γ. If δq ̸= 1,
then since ϕ

∣∣
Γ
is injective it holds e ̸= ϕ(δq) = ϕ(δ)q and thus ϕ(δ) ̸= e. If δq = 1,

then ϕ(δ) is of finite order and since there are finitely many conjugacy classes of finite
order elements in PGSp(2n,R) (see Proposition 4.4.8) it follows that ϕ(δ) is conjugate
to ϕ0(δ), where ϕ0 denotes the base representation (cfr. Proposition 4.4.9) which is
injective. In particular, ϕ0(δ) ̸= e and thus ϕ(δ) ̸= e as well.

To see that ϕ has discrete image, notice first that since ϕ is injective, ϕ(Γ) is of finite
index in ϕ(∆). Let 1 ̸= g1, . . . , gk ∈ ϕ(∆) be such that ϕ(∆) = ϕ(Γ)⊔

⊔k
i=1 giϕ(Γ). Since

ϕ(Γ) is discrete, there is an open subset W ⊂ PGSp(2n,R) such that ϕ(Γ) ∩W = {e},
then W̃ = W \

⊔k
i=1 giϕ(Γ) is open and W̃ ∩ϕ(∆) = W ∩ϕ(Γ) = {e}, which shows that

ϕ(Γ) is discrete as well.
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3. Deformation theory

When G is an algebraic group the notions of Zariski tangent space and of smooth point
of the representation variety play an important role in the discussion about the structure
of the spaces Hom(Γ, G) and χ(Γ, G). In this chapter we review these notions and their
relation with the (infinitesimal) deformation theory of representations. We follow and
expand on Section 8 of [10], which gives a good short exposition of the material. Other
references are [39], [21] and Chapter VI of [34]. An important role in the discussion
is played by the group cohomology of Γ twisted by the adjoint representation of G.
Background on the subject is given in Appendix A.

Throughout this chapter Γ denotes a finitely generated and finitely presented group
with generating set S = {γ1, . . . , γk} and relations R.

3.1 The Zariski tangent space

Let G be linear algebraic group defined over R such as GL(n,R), SL(n,R),O(n,R),
GSp(2n,R) or its quotient. In particular G is both a Lie group and an affine algebraic
group. Then evaluation on the generating set of Γ (see Lemma 2.1.2) induces a structure
of affine variety on Hom(Γ, G), that is Hom(Γ, G) is the zero locus of a set of polynomials
with real coefficients in a number of variables which depends on the group G and the
chosen generating set of Γ.

Example 3.1.1. Let G = GSp(2n,R) = {g ∈ M2n×2n(R) | gTΩ2ng = ±Ω2n} where
Ω2n is the standard symplectic form on R2n given in (2.5). The set M2n×2n(R) of
2n× 2n matrices over R can be idenfied with the (2n)2-dimensional affine space R(2n)2

with coordinates xij such that xij(g) is the i, j-entry of the matrix g. The condition
gTΩ2ng = ±Ω2n can be reformulated as

(
gTΩ2ng − Ω2n

) (
gTΩ2ng + Ω2n

)
= 0. Since

each matrix entry of the left-hand-side of the equation is a polynomial in the entries of
g we conclude that GSp(2n,R) is the zero locus of a set of (2n)2 polynomials.

Let Γ be a finitely generated group with generating set S and relations R. Then GS

is an affine variety in R(2n)2|S|. As in the discussion before Lemma 2.1.2 each relation r
defines a map fr : R(2n)2|S| → R(2n)2 which is polynomial in the (2n)2|S| variables and
since Hom(Γ, G) ∼=

⋂
r∈R f−1

r (0), we conclude that Hom(Γ, G) is the zero locus of a set
of polynomials. When Γ = ∆(p, q, r) there are 6 relations, each of which gives (2n)2

polynomials. However some conditions might be redundant.

17



The affine algebraic structure on Hom(Γ, G) allows one to study the tangent space
to a representation: the space Hom(Γ, G) is closed in GS, so tangent vectors in the
usual sense are not defined, but instead there is a notion of Zariski tangent vector.
Namely, let X ⊆ RN be an affine variety described by X = {F1 = . . . = Fm = 0},
Fi : RN → R, then the Zariski tangent space at x ∈ X is the kernel of the Jacobian of
F = (F1, . . . , Fm), that is

TZar
x X = ker dxF = ker

(∂Fi

∂xj

)
ij
.

Since we are considering representation varieties it is more convenient to work in GS

instead of RN .

Definition 3.1.2. For r ∈ R let fr : G
S → G be the maps defined by the relations of

Γ, so that Hom(Γ, G) ∼=
⋂
r∈R

f−1
r (e) (see Lemma 2.1.2). Let F = (fr)r∈R : GS → GR.

The Zariski tangent space at ϕ ∈ Hom(Γ, G) is:

TZar
ϕ Hom(Γ, G) = ker dϕF ⊂ TeG

S.

Equivalently, the Zariski tangent space at ϕ consists of all tangent vectors d
dt

∣∣
t=0

ϕt

tangent to a smooth path t 7→ ϕt inside G
S with ϕ0 = ϕ and which satisfy the relations

fr = 0 up to first order, i.e. d
dt

∣∣
t=0

fr(ϕt) = 0 for all r ∈ R.
The Zariski tangent space can be reformulated in terms of group cohomology (see

Appendix A for background material on group cohomlogy). Since G is an affine alge-
braic group, it is in particular a Lie group and we denote its Lie algebra by g and the
adjoint representation by Ad : G → GL(g).

Given a representation ϕ : Γ → G the composition Ad ◦ϕ : Γ → GL(g) defines a
homomorphism and the space of 1-cocycles Γ → g is

Z1(Γ, g)ϕ = {u : Γ → g | u(γη) = u(γ) + Ad(ϕ(γ))u(η), for all γ, η ∈ Γ}.

Lemma 3.1.3. Let ϕ ∈ Hom(Γ, G). Then

TZar
ϕ Hom(Γ, G) ∼= Z1(Γ, g)ϕ.

Proof. Let S = {γ1, . . . , γk} be a generating set for Γ with relations R and set gi =
ϕ(γi) ∈ G, so that ϕ ∈ Hom(Γ, G) corresponds to (g1, . . . , gk) ∈ Gk (and we will write
ϕ also when we are in Gk).

By definition TZar
ϕ Hom(Γ, G) =

⋂
r∈R ker dϕfr ⊂ TϕG

k, where fr : G
k → G. Every

g ∈ G induces an isomorphism deRg : g → TgG by right-multiplication, so that a vector
v ∈ g corresponds to deRgv = d

dt

∣∣
t=0

exp(tv)g. In particular we can identify gk ∼= TϕG
k

via

Φ := deRg1 × . . .× deRgk : gk →
k∏
i

TgiG
∼= TϕG

k. (3.1)

18



In this way the Zariski tangent space
⋂

r∈R ker dϕfr becomes a subspace of gk:⋂
r∈R

ker dϕfr ∼=
⋂
r∈R

ker (dϕfr ◦ Φ) ⊆ gk.

For every r ∈ R we set

Lr := ker(dϕfr ◦ Φ) = ker d(e,...,e)fr ◦ (Rg1 × . . .×Rgk).

Evaluation on the generators of Γ embeds the space of 1-cocycles on Γ as a subspace of
gk and we claim that ⋂

r∈R

Lr = Z1(Γ, g)ϕ in gk.

Let F be the free group on S and q : F → Γ be the canonical map induced by the
inclusion S ↪→ Γ. Then ϕ◦q is a homomorphism F → G and since there are no relations
on F it holds Z1(F, g)ϕ◦q ∼= gk via v 7→ (v(γi))

k
i=1.

Suppose that for every v = (v(γi))i ∈
∏

i g = Z1(F, g)ϕ◦q and every relation r ∈ R
it holds

d(e×...×e)fr ◦ (Rg1 × . . .×Rgk)(v(γi))
k
i=1 = v(r). (3.2)

Then
⋂
r∈R

Lr = {v ∈ Z1(F, g)ϕ◦q | v(r) = 0 for all r ∈ R}. Every 1-cocycle v on F which

vanishes on R satisfies

v(zr) = v(z) + Adϕ(z)v(r) = v(z)

for every z ∈ F and r ∈ R, hence it is of the form v = u1 ◦ q where u1 is a 1-cocycle on
Γ. This shows that⋂

r∈R

Lr = {v ∈ Z1(F, g)ϕ◦q | v(r) = 0 for all r ∈ R} = Z1(Γ, g)ϕ,

as claimed. It remains to prove (3.2). To this end, let r = sϵ11 . . . sϵmm with si ∈ S,
ϵi = ±1. Since the curve (exp(tv(s1)), . . . , exp(tv(sk))) in G is tangent to (v(si))i, the
left-hand-side of (3.2) is the initial velocity of the curve

g(t) := fr(exp(tv(s1))g1, . . . , exp(tv(sk))gk)

and it suffices to show that d
dt

∣∣
t=0

g(t) = v(r). The proof is straightforward but lengthy.
We write

g(t) =
m∏
i=1

(etv(si)gi)
ϵi

= (etv(s1)g1)
ϵ1

m∏
i=2

(etv(si)gi)
ϵiϕ(sϵ11 . . . sϵmm )−1︸ ︷︷ ︸

=id

= (etv(s1)g1)
ϵ1ϕ(sϵ11 )

−1︸ ︷︷ ︸
=:g1(t), path through e

m−1∏
i=1

ϕ(sϵ11 . . . sϵii )(e
tv(si+1)gi+1)

ϵi+1ϕ(sϵ11 . . . s
ϵi+1

i+1 )
−1︸ ︷︷ ︸

=:gi+1(t),path through e
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and differentiating at t = 0 we get d
dt

∣∣
t=0

g(t) = d
dt

∣∣
t=0

g1(t) +
∑m−1

i=1
d
dt

∣∣
t=0

gi+1(t).

It holds d
dt

∣∣
t=0

g1(t) = v(sϵ11 ). Indeed, if ϵ1 = 1,

d

dt

∣∣
t=0

g1(t) =
d

dt

∣∣
t=0

etv(s1) = v(s1) = v(sϵ11 ),

and if ϵ1 = −1,

d

dt

∣∣
t=0

g1(t) =
d

dt

∣∣
t=0

g−1
1 e−tv(s1)g1 = Ad(g−1

1 )(−v(s1)) = v(s−1
1 ) = v(sϵ11 ),

where in the second-to-last step we used that v is a cocycle.
For i ≥ 1 it holds d

dt

∣∣
t=0

gi+1(t) = Ad(gϵ11 . . . gϵii )v(s
ϵi+1

i+1 ). Indeed,

Ad(gϵ11 . . . gϵii )v(s
ϵi+1

i+1 ) =

{
Ad(gϵ11 . . . gϵii )v(si+1) if ϵi+1 = 1

Ad(gϵ11 . . . g
ϵi+1

i+1 )(ϵi+1v(si+1)) if ϵi+1 = −1

=

{
d
dt

∣∣
t=0

gϵ11 . . . gϵii e
tϵi+1v(si+1)(gϵ11 . . . gϵii )

−1 if ϵi+1 = 1
d
dt

∣∣
t=0

gϵ11 . . . g
ϵi+1

i+1 e
tϵi+1v(si+1)(gϵ11 . . . g

ϵi+1

i+1 ) if ϵi+1 = −1

=


d
dt

∣∣
t=0

gϵ11 . . . g
ϵi+1

i+1 (g
ϵi+1

i+1 )
−1 etv(si+1)g

ϵi+1

i+1︸ ︷︷ ︸
(etv(si+1)gi+1)

ϵi+1

(gϵ11 . . . g
ϵi+1

i+1 )
−1 if ϵi+1 = 1

d
dt

∣∣
t=0

gϵ11 . . . g
ϵi+1

i+1 e
tϵi+1v(si+1)︸ ︷︷ ︸

g
ϵ1
1 ...g

ϵi
i (etv(si+1)gi+1)

ϵi+1

(gϵ11 . . . g
ϵi+1

i+1 )
−1 if ϵi+1 = −1

=

{
d
dt

∣∣
t=0

gϵ11 . . . gϵii (e
tv(si+1)gi+1)

ϵi+1(gϵ11 . . . g
ϵi+1

i+1 )
−1 if ϵi+1 = 1

d
dt

∣∣
t=0

gϵ11 . . . gϵii (e
tv(si+1)gi+1)

ϵi+1(gϵ11 . . . g
ϵi+1

i+1 )
−1 if ϵi+1 = −1

=
d

dt

∣∣
t=0

gi+1(t).

Therefore we conclude

d

dt

∣∣
t=0

g(t) = v(sϵ11 ) +
m−1∑
i=1

Ad(gϵ11 . . . gϵii )v(s
ϵi+1

i+1 ).

On the other hand since v is a 1-cocyle by Lemma A.1.1 it holds

v(r) = v(sϵ11 . . . sϵmm = v(sϵ11 ) +
m−1∑
i=1

Ad(gϵ11 . . . gϵii )v(s
ϵi+1

i+1 ),

which concludes the proof.

The space of 1-cocyles also describes the initial velocities of paths t 7→ ϕt of
maps ϕt : Γ → G which are homomorphisms up to the first order, that is such that
d
dt

∣∣
t=0

ϕt(γ)ϕt(η)ϕt(γη)
−1 = 0 for all γ, η ∈ Γ.

20



Proposition 3.1.4. Given u ∈ Z1(Γ, g)ϕ the family ϕt := exp(tu(·))ϕ(·), t ∈ R, defines
a path of maps ϕt : Γ → G with

ϕ0 = ϕ and
d

dt

∣∣
t=0

ϕt(γ)ϕt(η)ϕt(γη)
−1 = 0 for all γ, η ∈ Γ. (3.3)

Conversely, every path t 7→ ϕt satisfying (3.3) defines a 1-cocycle u ∈ Z1(Γ, g)ϕ by

u(γ) =
d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1.

Proof. Let u ∈ Z1(Γ, g)ϕ be a 1-cocyle and for each γ ∈ Γ consider the path t 7→
ϕt(γ) = exp(tu(γ))ϕ(γ) through ϕ(γ). Then since ϕ is an homomorphism, for γ, η ∈ Γ
we have

d

dt

∣∣
t=0

ϕt(γ)ϕt(η)ϕt(γη)
−1 =

d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1ϕ(γ)ϕt(η)ϕ(γη)

−1(ϕt(γη)ϕ(γη)
−1)−1

=
d

dt

∣∣
t=0

exp(tu(γ))cϕ(γ)(exp(tu(η)))(exp(tu(γη)))
−1

=
d

dt

∣∣
t=0

exp(tu(γ)) +
d

dt

∣∣
t=0

cϕ(γ)(exp(tu(η)))

+
d

dt

∣∣
t=0

(exp(tu(γη)))−1

= u(γ) + Ad(ϕ(γ))u(η)− u(γη) = 0.

Conversely, suppose that t 7→ ϕt satisfies (3.3) and for every γ ∈ Γ set u(γ) =
d
dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1. Then similary as above for every γ, η ∈ Γ it holds

0 =
d

dt

∣∣
t=0

ϕt(γ)ϕt(η)ϕt(γη)
−1

=
d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1ϕ(γ)ϕt(η)ϕ(γη)

−1
(
ϕt(γη)ϕ(γη)

−1
)−1

=
d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1 +

d

dt

∣∣
t=0

ϕ(γ)ϕt(η)ϕ(γη)
−1 +

d

dt

∣∣
t=0

(ϕt(γη)ϕ(γη)
−1)−1

= u(γ) + Ad(ϕ(γ))u(η)− u(γη).

Another useful characterization of the Zariski tangent space is the following

Lemma 3.1.5. Let Γ be finitely generated with generating set S = {γ1, . . . , γk} and
relations R. Then

Z1(Γ, g)ϕ ∼= {(u1, . . . , uk) ∈ gk |
k∑

i=1

Adϕ(∂ir)ui = 0 for all r ∈ R}

where ∂i =
∂
∂γi

is a derivation defined by ∂i(γj) := δij and satisfying ∂i(xy) = ∂i(x) +

x∂i(y) and Adϕ(∂ir) is defined by linearity.
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For the proof, which uses Fox derivatives, we refer to [28, Proposition 3.5] and [14,
Section 3.6].

The space of 1-coboundaries

B1(Γ, g)ϕ = {v : Γ → g | ∃X ∈ g such that v(γ) = Ad(ϕ(γ))X −X}

also plays a role in this context as it can be identified with the tangent space to orbit
of ϕ under the G-action by post-conjugation. We denote the orbit by

Oϕ = {gϕ(·)g−1 | g ∈ G} ⊂ Hom(Γ, G).

Notice that Oϕ is isomorphic to the quotient of G by the stabilizer of ϕ for the conjuga-
tion action, which is the centralizer of the subgroup ϕ(Γ) in G, so it is closed. Therefore
the orbit is a smooth manifold and the Zariski tangent space coincides with the usual
notion of tangent space.

Lemma 3.1.6. The isomorphism Φ : gk → TϕG
k of (3.1) restricts to an isomorphism

B1(Γ, g)ϕ ∼= TϕOϕ,

where the the 1-coboundaries B1(Γ, g)ϕ are a subspace of gk via evaluation at the gen-
erators of Γ:

B1(Γ, g)ϕ = {(Ad(ϕ(γ1))X −X, . . . ,Ad(ϕ(γk))X −X) | X ∈ g} ⊂ gk.

Proof. For every γi in the generating set S of Γ let gi = ϕ(γi) ∈ G. As a subspace of
Gk the orbit of ϕ is given by Oϕ = {(gg1g−1, . . . , ggkg

−1) | g ∈ G}.
Let X ∈ g and t 7→ gt a path in G with d

dt

∣∣
t=0

gt = X. Then for every g ∈ G

d

dt

∣∣
t=0

gtgg
−1
t g−1 =

d

dt

∣∣
t=0

gt +
d

dt

∣∣
t=0

gg−1
t g−1 = X +

d

dt

∣∣
t=0

cg(g
−1
t )

= X + de(cg ◦ i)X = X − decgX

= X − Ad(g)X,

(3.4)

and thus deRgi(X − Ad(gi)X) = d
dt

∣∣
t=0

gtgig
−1
t . This shows that Φ(B1(Γ, g)ϕ) ⊆ TϕOϕ.

Equality follows since every tangent vector to the orbit is the inivial velocity of a path
t 7→ (gtg1g

−1
t , . . . , gtgkg

−1
t ).

Definition 3.1.7. The first cohomology group with coefficients in g twisted by the
adjoint action of ϕ is

H1(Γ, g)ϕ = Z1(Γ, g)ϕ/B
1(Γ, g)ϕ.
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3.2 Deformations and smooth points

The space Z1(Γ, G)ϕ of 1-cocyles is sometimes called the space of infinitesimal deforma-
tions of ϕ [21]. This is because by Proposition 3.1.4 a 1-cocycle is the tangent vector to
a deformation ϕt : Γ → G which consists of homomorphisms only up to the first order.
It is natural to ask when there exist tangent paths consisting of actual homomorphisms.

Definition 3.2.1. (i) A 1-cocycle u ∈ Z1(Γ, g)ϕ is integrable if it is a tangent vector
to a smooth deformation t 7→ ϕt in Hom(Γ, G).

(ii) A homomorphism ϕ ∈ Hom(Γ, G) is said to be an integrably smooth point if every
1-cocyle u ∈ Z1(Γ, g)ϕ is integrable.

Following [10] we investigate when the 1-cocycle is integrable up to second order,
meaning it is the tangent vector to a path t → ϕt of maps which satisfies the group
relations up to the second derivative, i.e. for all γ, η ∈ Γ

d2

dt2
∣∣
t=0

ϕt(γ)ϕt(η)ϕt(γη)
−1 = 0.

Let u ∈ Z1(Γ, g)ϕ and let t 7→ ϕt be a path of homomorphisms up to first order with
ϕ0 = ϕ and such that d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1 = u(γ). Such a path exists by Lemma 3.1.3

and we first notice that there is an infinite sequence of maps ui : Γ → g, i ∈ N, such
that for all γ ∈ Γ it holds

ϕt(γ) = exp
(
tu(γ) +

∞∑
i=2

tiui(γ)
)
ϕ(γ).

To see this, fix γ ∈ Γ. Then t 7→ ϕt(γ)ϕ(γ)
−1 is a smooth path in G through e and

since the Lie group exponential of G is a local diffeomorphism, there is a smooth path
t 7→ Uγ(t) ∈ g with Uγ(0) = 0 and ϕt(γ)ϕ(γ)

−1 = exp(Uγ(t)) for t small. By means
of the Taylor series we can write Uγ(t) =

∑∞
i=1 t

iui(γ), where ui(γ) ∈ g for all i ≥ 1.
Notice that

u(γ) =
d

dt

∣∣
t=0

ϕt(γ)ϕ(γ)
−1 =

d

dt

∣∣
t=0

exp(
∞∑
i=1

tiui(γ)) = u1(γ).

Thus ϕt(γ) = exp
(
tu(γ) +

∑∞
i=2 t

iui(γ)
)
ϕ(γ), as desired. The first obstruction to u

being integrable is the 2-cocycle σ2(u) defined by

σ2(u) := [u, u] : (γ, η) 7→ 1

2
[u(γ),Ad(ϕ(γ))u(η)],

where [·, ·] : g× g → g denotes the Lie bracket. The fact that σ2(u) is a 2-cocycle is a
straightforward computation (using that u is a 1-cocycle).
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Lemma 3.2.2. Let u ∈ Z1(Γ, g)ϕ and let ϕt : Γ → G be given by

ϕt(γ) = exp
(
tu(γ) +

∞∑
i=2

tiui(γ)
)
ϕ(γ).

Then ϕt is a homomorphism up to second order if and only if the 2-cocyle [u, u] is a
2-coboundary.

Proof. For any γ ∈ Γ set Uγ(t) = tu(γ) +
∑∞

i=2 t
iui(γ). It holds

ϕt(γ)
−1ϕt(γη) =

(
exp(tu(γ) +

∞∑
i=2

tiui(γ))ϕ(γ)

)−1

exp(tu(γη) +
∞∑
i=2

tiui(γη))ρ(γη)

= ϕ(γ)−1 exp(tu(γ) +
∞∑
i=2

tiui(γ))
−1 exp(tu(γη) +

∞∑
i=2

tiui(γη))ρ(γη)

= ϕ(γ)−1 exp(−tu(γ)−
∞∑
i=2

tiui(γ)) exp(tu(γη) +
∞∑
i=2

tiui(γη))ϕ(γ)ϕ(η)

= ϕ(γ)−1 exp(−Uγ(t)) exp(Uγη(t))ϕ(γ)ϕ(η).

Thus ϕt(γη) = ϕt(γ)ϕt(η) if and only if

exp (−Uγ(t)) exp (Uγη(t)) = ϕ(γ) exp (Uη(t))ϕ(γ)
−1. (3.5)

Let 0 ∈ V ⊂ g be a symmetric neighborhood of 0 such that the exponential map exp :
V → exp(V ) is a diffeomorphism, and let t be small such that Uγ(t), Uη(t), Uγη(t) ∈ V .

Then with the Baker-Campbell-Hausdorff formula we can express the left-hand-side
of (3.5) as

exp (−Uγ(t)) exp (Uγη(t)) = exp(−Uγ(t) + Uγη(t) +
1

2
[−Uγ(t), Uγη(t)]

+
1

12
([−Uγ(t), [−Uγ(t), Uγη(t)]] + [Uγη(t), [Uγη(t),−Uγ(t)]]) + . . .)

Let Zγ,η(t) be the argument of the right-hand-side. It holds Zγ,η(t) ∈ V . Therefore
(3.5) becomes

exp(Zγ,η(t)) = ϕ(γ) exp(Uη(t))ϕ(γ)
−1

and since the exponential is a diffeomorphism on V this holds if and only if

Zγ,η(t) = exp−1(ϕ(γ) exp(Uη(t))ϕ(γ)
−1) = Ad(ϕ(γ))(Uη(t)).

This is an equation in V ⊂ g and ϕt(γη) = ϕt(γ)ϕt(η) up to to order 2 if and only if

d

dt

∣∣
t=0

Zγ,η(t) =
d

dt

∣∣
t=0

Ad(ϕ(γ))Uη(t) and
d2

dt2
∣∣
t=0

Zγ,η(t) =
d2

dt2
∣∣
t=0

Ad(ϕ(γ))Uη(t).
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The summands of Zγ,η(t) containing t are −Uγ(t) + Uγη(t) thus

d

dt

∣∣
t=0

Zγ,η(t) =
d

dt

∣∣
t=0

Ad(ϕ(γ))Uη(t) ⇔
d

dt

∣∣
t=0

(−Uγ(t) + Uγη(t)) = Ad(ϕ(γ))
d

dt

∣∣
t=0

Uη(t)

⇔ −u(γ) + u(γη) = Ad(ϕ(γ))
d

dt

∣∣
t=0

Uη(t)

⇔ −u(γ) + u(γη) = Ad(ϕ(γ))u(η).

which is the condition of u being a 1-cocycle. The summands of Zγ,η(t) containing t2

are −Uγ(t) + Uγη(t) +
1
2
[−Uγ(t), Uγη(t)] thus

d2

dt2
∣∣
t=0

Zγ,η(t) =
d2

dt2
∣∣
t=0

Ad(ϕ(γ))Uη(t)

⇔ d2

dt2
∣∣
t=0

(
−Uγ(t) + Uγη(t) +

1

2
[−Uγ(t), Uγη(t)]

)
= Ad(ϕ(γ))

d2

dt2
∣∣
t=0

Uη(t)

⇔ − u2(γ) + u2(γη)−
1

2
[u(γ), u(γη)] = Ad(ϕ(γ))u2(η)

⇔ 1

2
[u(γ), u(γη)] = −u2(γ) + u2(γη)− Ad(ϕ(γ))u2(η)

⇔ [u(γ), u(γ)] + [u(γ),Ad(ϕ(γ))u(η)] = 2(−u2(γ) + u2(γη)− Ad(ϕ(γ))u2(η))

⇔ [u(γ),Ad(ϕ(γ))u(η)] = −2∂
1
(u2)(γ, η).

This shows that the homomorphism condition is satisfied up to order 2 if and only if

[u, u] = −2∂
1
(u2), that is the obstruction σ2(u) = [u, u] is a 1-coboundary.

If one keeps asking the same question for third order and so on, one finds a sequence
of obstructions σk(u) ∈ H2(Γ, g)ϕ, k ≥ 2, each defined in terms of the preceeding
solutions. This is to say that the 1-cocycle u is integrable up to order n if and only if
σk(u) = 0 for all 2 ≤ k ≤ n (see [4], [14]).

Definition 3.2.3. A 1-cocycle u ∈ Z1(Γ, G)ϕ is formally integrable if the obstructions
σn(u) = 0 for all n ≥ 2.

Being formally integrable a priori does not imply being tangent to a smooth defor-
mation, but it turns out that this is the case.

Theorem 3.2.4 ([3]). If a 1-cocycle is formally integrable, then it is integrable.

Corollary 3.2.5. If H2(Γ, g)ϕ = 0, then every 1-cocycle is the tangent vector to a
smooth deformation and ϕ is an integrably smooth point of Hom(Γ, G).

For surface groups we have the following result, due to Goldman [14, Section 1.4].

Theorem 3.2.6. Let Γ = π1(S) be the fundamental group of a closed surface, let G be
a reductive1 Lie group and ϕ : Γ → G. Then

dimH2(Γ, g)ϕ = dimH0(Γ, g)ϕ.
1Here one needs a non-degenerate symmetric bilinear form g × g → R which is Ad(G)-invariant.

For the Lie group PGSp(2n,R) we can take the killing form.
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In general, for any finitely generated group Γ and Lie group G with Lie algebra g
the space H0(Γ, g)ϕ coincides with the Lie algebra of the centralizer ZG(ϕ) = {g ∈ G |
gϕ(γ) = ϕ(γ)g for all γ ∈ Γ} of the representation ϕ (Proposition A.2.2), that is,

H0(Γ, g)ϕ = LieZG(ϕ).

From Goldman’s theorem it follows that surface group Hitchin representations (i.e.
homomorphisms of π1(S) into PGSp(2n,R) such that their conjugacy class is in the
π1(S)-Hitchin component) are integrably smooth points:

Corollary 3.2.7. Let S be a closed surface and ρ : π1(S) → PGSp(2n,R) be a Hitchin
representation. Then H2(π1(S),Lie PGSp(2n,R))ρ = 0.

Proof. By Lemma 10.1 in [22] the representation ρ is absolutely irreducible, that is
ρC : π1(S) → PGSp(2n,C) is irreducible. Therefore by Schur’s Lemma ρC has trivial
centralizer in PGSp(2n,C) and hence ρ has trivial centralizer in PGSp(2n,R). Since
the Lie algebra of the centralizer coincides with H0(π1(S),Lie PGSp(2n,R))ϕ, the con-
clusion follows from Goldman’s Theorem 3.2.6.

We can deduce that Hitchin representations of triangle groups are integrably smooth
as well.

Corollary 3.2.8. Let ϕ : ∆(p, q, r) → PGSp(2n,R) be a Hitchin representation. Then

H2(∆(p, q, r),Lie PGSp(2n,R))ϕ = H0(∆(p, q, r),Lie PGSp(2n,R))ϕ = (0).

In particular, Hitchin representations are integrably smooth.

Proof. Let ι : π1(S) ↪→ ∆(p, q, r) be a finite index surface group [30, Prop 3.1.14]. Let
ϕ : ∆(p, q, r) → PGSp(2n,R) be a Hitchin representation, then by Lemma 2.4.2 the
composition ϕ ◦ ι : π1(S) → PGSp(2n,R) is a surface group Hitchin representation and
thus by Corollary 3.2.7

H2(π1(S),Lie PGSp(2n,R))ϕ◦ι = H0(π1(S),Lie PGSp(2n,R))ϕ◦ι = (0).

The statement now follows from the fact that the mapHn(∆(p, q, r), g)ϕ → Hn(π1(S), g)ϕ◦ι
induced in cohomology by the inclusion ι is injective in every degree n (Proposition
A.4.1).

Remark 3.2.9. Corollary 3.2.7 and Corollary 3.2.8 hold also if we replace the group
PGSp(2n,R) by PGL(n,R).

We go back to the general setting. There is a general notion of smoothness for
points of an affine variety which in the context of representation varieties is stronger
than being integrably smooth.

Definition 3.2.10. A point x of an affine variety X ⊂ Rn is a smooth point if there is
an open neighbourhood U ⊂ X of x such that U is an embedded submanifold of Rn.
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A useful criterion to deduct smoothness of a represention ϕ is to look at the dimen-
sion of the Zariski tangent space and show that it is minimal at ϕ (over a neighborhood
of ϕ).

Lemma 3.2.11. Let X = F−1(0) ⊂ RN be an affine variety and x ∈ X, F : RN → Rm.
Suppose that rank dxF ≥ rank dyF for all y in an open set containing x. Then x is a
smooth point of X.

Proof. Let µ := rank dxF . Since F : RN → Rm is a smooth map and the rank of
a smooth map is a lower semicontinuous map there is an open subset V ⊆ RN with
x ∈ V such that rank dyF ≥ µ for all y ∈ V (i.e. the set {y ∈ RN | rank dyF ≥ µ}
is open, which is true for any µ). By assumption (up to restricting V ) then it holds
rank dyF = µ for all y ∈ V , so the rank is constant on V . Thus F

∣∣
V
: V → Rm is a

smooth map of constant rank. Thus F
∣∣−1

V
(0) = V ∩ R−1(0) = V ∩X is a submanifold

of V and hence (V open) it is a submanifold of RN .

3.3 Local rigidity

If the second cohomology group tells something about the existence of smooth defor-
mations, the first cohomology group can be used to determine when a deformation is
trivial, that is, to study the local rigity of a representation.

Definition 3.3.1. A representation ϕ : Γ → G is locally rigid if the G-orbit of ϕ is
open in Hom(Γ, G).

Definition 3.3.2. A representation ϕ : Γ → G is infinitesimally rigid if H1(Γ, g)ϕ =
(0).

The following theorem motivates the terminology.

Theorem 3.3.3 (Weil’s rigidity theorem [39]). If ϕ is infinitesimally rigid, then it is
locally rigid.

A nice presentation of Theorem 3.3.3 can be found in [34, Theorem 6.7]. Another
proof is given in Theorem C of [31].

Since all cohomology groups of a dihedral group Dr of order 2r vanish (Lemma
A.3.1) we obtain the following.

Corollary 3.3.4. Let φt : Dr → PGSp(2n,R) be a continuous path of homomorphisms
defined on an interval I ∋ 0. Then there is T > 0 such that for all |t| ≤ T φt is in the
orbit of φ0.
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4. The dimension of the Hitchin com-
ponent

As before let ∆(p, q, r) = ⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = 1⟩ be an
hyperbolic triangle group. We denote by T (p, q, r) the 2-index subgroup generated by
the products ab, bc and ca. In this chapter we find a formula for the dimension of
the Zariski tangent space at any representation ϕ : ∆(p, q, r) → PGSp(2n,R) whose
restriction to T (p, q, r) has trivial centralizer. Then we show that the dimension is
constant on the set of Hitchin representations. In particular, Hitchin representations
are smooth points of the representation variety and we give a formula for the dimension
of the Hitchin component. We end the chapter by explicitly computing the dimension
for PGSp(4,R).

Throughout this chapter, unless otherwise specified, G is a simple1 Lie group with
Lie algebra g.

4.1 Preliminaries

We set some notation and prove a few technical facts that we will need. Given a subset
U ⊂ GL(g) we denote the space of U-invariant vectors by

gU = {v ∈ g | u(v) = v for all u ∈ U}.

Given a subset S ⊆ G, then AdG(S) is a subset of GL(g) and by Lemma A.2.1 it holds

gAdG(S) = LieZG(S),

where ZG(S) is the centralizer of S in G. In particular when S = {g} is a single-point
set, we have

gAdG(g) = ker(AdG(g)− idg) = LieZG(g). (4.1)

Since G is a simple Lie group the Killing form Bg of g is a non-degenerate bilinear
form on g× g. Recall that it is also AdG-invariant.

1The results in Section 4.2 and Section 4.3 hold for any Lie group G. The assumption is needed for
Lemma 4.1.1.
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Lemma 4.1.1. Let g ∈ G. Then im(AdG(g) − id)⊥ = ker(AdG(g) − id), where the
orthogonal complement is taken with respect to the Killing form Bg of g.

Proof. We show that the kernel of AdG(g)− id is contained in the orthogonal comple-
ment of the image. Let ξ ∈ ker(AdG(g)− id). Then for all η ∈ g

Bg(ξ, (AdG(g)− id)η) = Bg(ξ,AdG(g)η)−Bg(ξ, η)

ξ∈ker(AdG(g)−id)
= Bg(AdG(g)ξ,AdG(g)η)−Bg(ξ, η)

AdG −inv
= Bg(ξ, η)−Bg(ξ, η) = 0.

For the other inclusion, suppose that η ∈ im(AdG(g) − id)⊥, that is Bg(η, (AdG(g) −
id)ξ) = 0 for all ξ ∈ g. Let ζ ∈ g be arbitrary and let ξ := AdG(g)

−1ζ. Then

Bg((AdG(g)− id)η, ζ) = Bg(AdG(g)η, ζ)−Bg(η, ζ)

AdG −inv
= Bg(η,AdG(g)

−1ζ)−Bg(η, ζ)

= Bg(η, ξ)−Bg(η,AdG(g)ξ)

= Bg(η, (id− AdG(g))ξ)

= −Bg(η, (AdG(g)− id)ξ) = 0.

Since ζ ∈ g was arbitrary and Bg is non-degenerate, it follows that (AdG(g) − id)η =
0.

Lemma 4.1.2. Let V be a vector space and T : V → V be linear with T k = id. then

ker
k−1∑
i=0

T i = im(id− T ).

Proof. Let S :=
∑k−1

i=0 T
i. We want to show ker(S) = im(id− T ).

⊇: It holds S ◦ T =
∑k

i=1 T
i, thus S ◦ (id− T ) =

∑k−1
i=0 T

i −
∑k

i=1 T
i = T 0 − T k = 0.

⊆: Let X ∈ kerS, so that X = −
∑k−1

i=1 T
iX and set Y := 1

k

∑k−1
i=1 (k − i)T i−1X.
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Then

(1− T )(kY ) =
k−1∑
i=1

(k − i)T i−1X −
k−1∑
i=1

(k − i)T iX

=
k−2∑
i=0

(k − (i+ 1))T iX −
k−1∑
i=1

(k − i)T iX

= (k − 1)X +
k−2∑
i=1

(k − i− 1− k + i)T iX − (k − (k − 1))T k−1X

= (k − 1)X −
k−2∑
i=1

T iX − T k−1X

= (k − 1)X −
k−1∑
i=1

T iX

= kX.

4.2 1-cocycles of triangle groups

Let ϕ : ∆(p, q, r) → G be a homomorphism. We describe the Zariski tangent space at
ϕ both to the representation variety and to the orbit Oϕ using the descriptions given
in Section 3.1 (Lemma 3.1.3 and Lemma 3.1.5).

Corollary 4.2.1. Let γ1, γ2, γ3 be the generators of ∆ and let ϕ : ∆ → G be a homo-
morphism. Let gi := ϕ(γi) for i = 1, 2, 3. Then

Z1(∆, g)ϕ ∼=
{
(u1, u2, u3) ∈ g3 |Ad(g1)u1 + u1 = 0, Ad(g2)u2 + u2 = 0, Ad(g3)u3 + u3 = 0,

p−1∑
i=0

Ad(g1g2)
i (u1 +Ad(g1)u2) = 0,

q−1∑
i=0

Ad(g2g3)
i (u2 +Ad(g2)u3) = 0,

r−1∑
i=0

Ad(g3g1)
i (u3 +Ad(g3)u1) = 0

}
.

(4.2)

We give two proofs of this result, one using Lemma 3.1.5 and one using the isomor-
phism Φ of Lemma 3.1.3.
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Proof 1 of Corollary 4.2.1. Lemma 3.1.5 asserts that if Γ = ⟨γ1, . . . , γk | R⟩, then

Z1(Γ, g)ϕ ∼= {(u1, . . . , uk) ∈ gk |
k∑

i=1

Adϕ(∂ir)ui = 0 for all r ∈ R}

where ∂i =
∂
∂γi

is a derivation defined by ∂i(γj) := δij and satisfying ∂i(xy) = ∂i(x) +

x∂i(y) and Adϕ(∂ir) is defined by linearity. In our case ∆(p, q, r) is generated by
γ1, γ2, γ3 with defining relations

ra = γ2
1 , rb = γ2

2 , rc = γ2
3 , rp = (γ1γ2)

p, rq = (γ2γ3)
q, rr = (γ3γ1)

r.

We compute the term
∑k

i=1Adϕ(∂ir)ui for all relations r.
Let r = ra, then ∂1ra = ∂1γ1γ1 = ∂1γ1 + γ1∂1γ1 = 1+ γ1 and ∂2ra = ∂3ra = 0. Thus

3∑
i=1

Adϕ(∂ira)ui = Adϕ(1)u1 +Adϕ(γ1)u1 = u1 +Adϕ(γ1)u1.

Analogously,

3∑
i=1

Adϕ(∂irb)ui = u2 +Adϕ(γ2)u2,

3∑
i=1

Adϕ(∂irc)ui = u3 +Adϕ(γ3)u3.

For r = rp it holds

∂1rp = ∂1(γ1γ2)
p−1 + (γ1γ2)

p−1∂1(γ1γ2)

= ∂1(γ1γ2)
p−2 + (γ1γ2)

p−2∂1(γ1γ2) + (γ1γ2)
p−1∂1(γ1γ2)

...

= ∂1(γ1γ2) + γ1γ2∂1(γ1γ2) + . . .+ (γ1γ2)
p−1∂1(γ1γ2)

=

p−1∑
i=0

(γ1γ2)
i∂1(γ1γ2)

=

p−1∑
i=0

(γ1γ2)
i

and

∂2rp =

p−1∑
i=0

(γ1γ2)
i∂2(γ1γ2) =

p−1∑
i=0

(γ1γ2)
iγ1,

∂3rp =

p−1∑
i=0

(γ1γ2)
i∂3(γ1γ2) = 0.
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Thus
∑3

i=1Adϕ(∂irp)ui =
∑p−1

i=0 Adϕ(γ1γ2)
iu1 +

∑p−1
i=0 Adϕ((γ1γ2)

iγ1)u2.
Analogously,

3∑
i=1

Adϕ(∂irq)ui =

q−1∑
i=0

Adϕ(γ2γ3)
iu2 +

q−1∑
i=0

Adϕ((γ2γ3)
iγ2)u3,

3∑
i=1

Adϕ(∂irr)ui =
r−1∑
i=0

Adϕ(γ3γ1)
iu3 +

r−1∑
i=0

Adϕ((γ3γ1)
iγ3)u1.

Proof 2 of Corollary 4.2.1. In the proof of Lemma 3.1.3 we saw that if Γ = ⟨γ1, . . . , γk |
R⟩, the space of 1-cocyles is isomorphic to the intersection over all relations r ∈ R of
the subspaces

Lr = ker d(e,...,e)fr ◦ (Rg1 × . . .×Rgk) ⊂ gk,

where fr : G
k → G are such that Hom(Γ, G) =

⋂
r∈R f−1

r (e), gi = ϕ(γi) and Rgi denotes
right multiplication by gi. In our case ∆(p, q, r) is generated by γ1, γ2, γ3 with defining
relations

ra = γ2
1 , rb = γ2

2 , rc = γ2
3 , rp = (γ1γ2)

p, rq = (γ2γ3)
q, rr = (γ3γ1)

r.

We compute the differential de,e,e (r(Rg1(·), Rg2(·), Rg3(·))) : g3 → g of every relation
r ∈ R.

• For ra we have:

de,e,e (ra(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) =
d

dt

∣∣
t=0

ra(exp(tu1)g1, exp(tu2)g2, exp(tu3)g3)

=
d

dt

∣∣
t=0

exp(tu1)g1 exp(tu1)g1

g21=e
=

d

dt

∣∣
t=0

exp(tu1)g1 exp(tu1)g
−1
1

=
d

dt

∣∣
t=0

exp(tu1)cg1(exp tu1)

=
d

dt

∣∣
t=0

exp tu1 +
d

dt

∣∣
t=0

cg1(exp tu1)

= u1 +Ad(g1)u1.

• Analogously for rb and rc:

de,e,e (rb(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) = u2 +Ad(g2)u2,

de,e,e (rc(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) = u3 +Ad(g3)u3.
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• For rp we have to compute

de,e,e (rp(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) =
d

dt

∣∣
t=0

(exp(tu1)g1 exp(tu2)g2)
p.

For ease of notation let x = exp(tu1)g1 exp(tu2)g2. For i = 0, . . . , p it holds

(g1g2)
ixp−i = (g1g2)

ixxp−(i+1) = (g1g2)
ix(g1g2)

−(i+1)(g1g2)
i+1xp−(i+1)

= (g1g2)
i exp(tu1)g1 exp(tu2)g2(g1g2)

−(i+1)(g1g2)
i+1xp−(i+1)

= (g1g2)
i exp(tu1)(g1g2)

−i(g1g2)
ig1 exp(tu2)g2(g1g2)

−1(g1g2)
−i︸ ︷︷ ︸

=((g1g2)ig1)−1

(g1g2)
i+1xp−(i+1)

= c(g1g2)i(exp(tu1))c(g1g2)ig1(exp(tu2))(g1g2)
i+1xp−(i+1)

Thus recursively we get

xp = (g1g2)
0xp−0 =

p−1∏
i=0

(
c(g1g2)i(exp(tu1))c(g1g2)ig1(exp(tu2))

)
(g1g2)

px0

=

p−1∏
i=0

(
c(g1g2)i(exp(tu1))c(g1g2)ig1(exp(tu2))

)
.

Differentiating at t = 0 we get

d

dt

∣∣
t=0

(exp(tu1)g1 exp(tu2)g2)
p =

p−1∑
i=0

d

dt

∣∣
t=0

c(g1g2)i(exp(tu1)) +
d

dt

∣∣
t=0

c(g1g2)ig1(exp(tu2))

=

p−1∑
i=0

Ad((g1g2)
i)u1 +Ad((g1g2)

ig1)u2

=

p−1∑
i=0

Ad(g1g2)
i (u1 +Ad(g1)u2) .

• Analogously, for rq and rr we have:

de,e,e (rq(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) =

q−1∑
i=0

Ad(g2g3)
i (u2 +Ad(g2)u3)

de,e,e (rr(Rg1(·), Rg2(·), Rg3(·))) (u1, u2, u3) =
r−1∑
i=0

Ad(g3g1)
i (u3 +Ad(g3)u1) .
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4.3 First cohomology group of triangle groups

The restriction of a representation ϕ : ∆(p, q, r) → G to the dihedral group generated
by any two of the generators of ∆(p, q, r) is infinitesimally rigid and this allows us to
characterize the first cohomology group of ϕ in a simpler way. Throughout this section
for ease of notation we denote ∆ = ∆(p, q, r). We refer to Appendix A for the notation
on group cohomology.

Recall from Section 3.1 that

Z1(∆, g)ϕ = {u : ∆ → g | u(γδ) = u(γ) + Ad(ϕ(γ))u(δ) for all γ, δ ∈ ∆},
B1(∆, g)ϕ = {v : ∆ → g | ∃X ∈ g s.t. v(γ) = Ad(γ)X −X for all γ ∈ ∆} ⊆ Z1(∆, g)ϕ,

H1(∆, g)ϕ = Z1(∆, g)ϕ/B
1(∆, g)ϕ.

We define

Z̃1
ϕ := {u ∈ Z1(∆, g)ϕ | u(a) = u(c) = 0}

B̃1
ϕ := Z̃1

ϕ ∩B1(∆, g)ϕ.

Proposition 4.3.1. Every cohomology class in H1(∆, g)ϕ has a representative in Z̃1
ϕ.

Therefore

H1(∆, g)ϕ ∼= Z̃1
ϕ/B̃

1
ϕ.

Proof. Let u ∈ Z1(∆, g)ϕ. The two generators a, c of ∆(p, q, r) generate the dihedral
subgroup Dr = ⟨a, c | a2 = c2 = (ac)r = 1⟩ of order 2r, and we denote by i : Dr ↪→
∆ the inclusion. Since Dr is finite every 1-cocyle in Z1(Dr, g)ϕ◦i is a 1-coboundary
(Lemma A.3.1) and thus the restriction of u to Dr is an element of i∗

(
Z1(∆, g)ϕ

)
=

Z1(Dr, g)ϕ◦i = B1(Dr, g)ϕ◦i. Thus there is v ∈ g such that for all γ ∈ Dr it holds

u(γ) = ∂
0

Dr
(v)(γ). Let ũ := u − ∂

0

∆(v) ∈ Z1(∆, g)ϕ. Then [u] = [ũ] ∈ H1(∆, g)ϕ and

for all γ ∈ Dr it holds ∂
0

∆(v)(γ) = ∂
0

Dr
(v)(γ) therefore ũ(γ) = u(γ) − ∂

0

∆(v)(γ) =

u(γ)− ∂
0

Dr
(v)(γ) = 0.

Our next goal is to make these spaces more explicit.

Proposition 4.3.2. The map C̄1(∆, g) → g3, u 7→ (u(a), u(b), u(c)) identifies

Z̃1
ϕ
∼= im(id− AdG(ϕ(b))) ∩ im(id− AdG(ϕ(ab)) ∩ im(id− AdG(ϕ(bc))), and

B̃1
ϕ
∼= (id− AdG(ϕ(b))) ((ker(AdG(ϕ(a))− id) ∩ ker(AdG(ϕ(c))− id)) .

Proof. 1-cocycles in Z1(∆, g)ϕ are determined by their values on the generators of ∆
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as long as they respect the group relations and by Corollary 4.2.1:

Z1(∆, g)ϕ ∼=
{
(u1, u2, u3) ∈ g3 |Ad(ϕ(a))u1 + u1 = 0, Ad(ϕ(b))u2 + u2 = 0, Ad(ϕ(c))u3 + u3 = 0,

p−1∑
i=0

Ad(ϕ(ab))i(u1 +Ad(ϕ(a))u2) = 0,

q−1∑
i=0

Ad(ϕ(bc))i(u2 +Ad(ϕ(b))u3) = 0,

r−1∑
i=0

Ad(ϕ(ca))i(u3 +Ad(ϕ(c))u1) = 0
}
.

By definition, then space Z̃1
ϕ consists of those cocycles in Z1(∆, g)ϕ which vanish on a

and c, which means

Z̃1
ϕ
∼= {u2 ∈ g | AdG(ϕ(b))u2 + u2 = 0,

p−1∑
i=0

AdG(ϕ(ab)
iϕ(a))u2 = 0,

q−1∑
i=0

AdG(ϕ(bc))
iu2 = 0}.

Notice that if AdG(ϕ(b))u2 + u2 = 0, then the condition
∑p−1

i=0 AdG(ϕ(ab)
iϕ(a))u2 = 0

is equivalent to
∑p−1

i=0 AdG(ϕ(ab))
iu2 = 0. Therefore we conclude that

Z̃1
ϕ
∼= {u2 ∈ g : AdG(ϕ(b))u2 + u2 = 0,

p−1∑
i=0

AdG(ϕ(ab))
iu2 = 0,

q−1∑
i=0

AdG(ϕ(bc))
iu2 = 0}

= ker
1∑

i=0

AdG(ϕ(b))
i ∩ ker

p−1∑
i=0

AdG(ϕ(ab))
i ∩ ker

q−1∑
i=0

AdG(ϕ(bc))
i

Lemma 4.1.2
= im(id− AdG(ϕ(b))) ∩ im(id− AdG(ϕ(ab)) ∩ im(id− AdG(ϕ(bc))).

We now describe B̃1
ϕ. Recall (Section 3.1) that in g3 the space B1(∆, g)ϕ is given by

B1(∆, g)ϕ = {(AdG(ϕ(a))X)−X,AdG(ϕ(b))X −X,AdG(ϕ(c))X −X) | X ∈ g} .

Thus

B̃1
ϕ = B1(∆, g)ϕ ∩ Z̃1

ϕ

∼= {AdG(ϕ(b))X −X | X ∈ g with AdG(ϕ(a))X −X = AdG(ϕ(c))X −X = 0}
= (AdG(ϕ(b))− id)

(
(ker(AdG(ϕ(a))− id) ∩ ker(AdG(ϕ(c))− id)

)
.
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4.4 The dimension of the Zariski tangent space at

ϕ

In this section we find a formula for the dimension of the Zariski tangent space and
deduce from it that it is constant on Hitchin representations. In fact we prove more
generally that it is constant on connected components consisting of representations
whose restriction to the 2-index subgroup T (p, q, r) has finite centralizer.

The strategy is to first compute the dimension of the first cohomology groupH1(∆, g)ϕ
using the simplification of the previous section and then deduce from it the dimension
of the tangent space. The computations are elementary, but require some algebraic
manipulations. Let ϕ : ∆(p, q, r) → G be a homomorphism. By Proposition 4.3.1 it
holds dimH1(∆, g)ϕ = dim Z̃1

ϕ − dim B̃1
ϕ. We set

X := im(AdG(ϕ(b))− id), Y := im(AdG(ϕ(ab))− id), Z := im(AdG(ϕ(bc))− id).

By Proposition 4.3.2 and using the notation of (4.1)

Z̃1
ϕ
∼= X ∩ Y ∩ Z

B̃1
ϕ
∼= (id− AdG(ϕ(b)))

(
gAd(ϕ(a)) ∩ gAd(ϕ(c))

)
.

We want to compute the dimension of Z̃1
ϕ and B̃1

ϕ and we notice that by Lemma 4.1.1
it holds

X⊥ = ker(AdG(ϕ(b))− id) = gAd(ϕ(b)),

Y ⊥ = ker(AdG(ϕ(ab))− id) = gAd(ϕ(ab)),

Z⊥ = ker(AdG(ϕ(bc))− id) = gAd(ϕ(bc)).

We will use the following two lemmas.

Lemma 4.4.1. Let x, y ∈ G with x2 = y2 = id. Then g⟨AdG(x),AdG(y)⟩ = gAdG(x)∩gAdG(y)

and

dim g⟨AdG(x),AdG(y)⟩ = 1
2

(
dim gAdG(x) + dim gAdG(y) + dim gAdG(xy) − dim g

)
.

Proof. We first claim that for X, Y ∈ GL(g) with X2 = Y 2 = id it holds:

(gX ∩ gY ) + (g−X ∩ g−Y ) = gXY . (4.3)

The ⊆-inclusion is obvious: if v is both X- and Y -invariant, then XY v = Xv = v
and if it is (−X)- and (−Y )-invariant, then XY v = (−X)(−Y )v = −Xv = v. For
the other inclusion, suppose that v is XY -invariant, that is XY v = v. This implies
Y Xv = Y XXY v = Y Y v = v, as well as Y v = X2Y v = Xv. We decompose

v =
1

2
(v +Xv) +

1

2
(v −Xv).
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The first summand is both X- and Y -invariant. Indeed, X(v + Xv) = Xv + X2v =
Xv + v and Y (v + Xv) = Y v + Y Xv = Xv + v. The second summand is both
(−X)- and (−Y )-invariant. Indeed, (−X)(v − Xv) = −Xv + X2v = −Xv + v and
(−Y )(v −Xv) = −Y v + Y Xv = −Xv + v. This shows (4.3).

Now, for a subspace V ⊂ g we denote by V ⊥ its orthogonal complement with respect
to the killing form Bg. By Lemma 4.1.1 and Lemma 4.1.2 it holds

(gAd(x))⊥ = (ker(id− AdG(x)))
⊥ = im(id− AdG(x)) = ker(id + AdG(x)) = g−Ad(x).

Analogously (gAd(y))⊥ = g−Ad(y). Therefore by (4.3) it holds

(gAd(x) ∩ gAd(y)) + ((gAd(x))⊥ ∩ (gAd(y))⊥) = gAd(xy).

Notice that the intersection of the two summands is trivial and thus the sum is direct
and

dim((gAd(x))⊥ ∩ (gAd(y))⊥) = dim gAd(xy) − dim(gAd(x) ∩ gAd(y)).

On the other hand, using that for two subspaces U, V ⊂ g it holds (U∩V )⊥ = U⊥+V ⊥,
dimU⊥ = dim g− dimU and dim(U ∩ V ) = dimU + dimV − dim(U + V ), we get:

dim((gAd(x))⊥ ∩ (gAd(y))⊥) = dim(gAd(x))⊥ + dim(gAd(y))⊥ − dim((gAd(x))⊥ + (gAd(y))⊥)

= dim(gAd(x))⊥ + dim(gAd(y))⊥ − dim(gAd(x) ∩ gAd(y))⊥

= dim(gAd(x))⊥ + dim(gAd(y))⊥ −
(
dim g− dim(gAd(x) ∩ gAd(y)

)
= dim g− dim gAd(x) − dim gAd(y) + dim(gAd(x) ∩ gAd(y)

)
.

Therefore we conclude:

2 dim(gAd(x) ∩ gAd(y)) = dim gAd(xy) − dim g+ dim gAd(x) + dim gAd(y).

The lemma follows from g⟨Ad(x),Ad(y)⟩ = gAd(x) ∩ gAd(y).

Let T := T (p, q, r) the 2-index subgroup of ∆(p, q, r) generated by the rotations
ab, bc and ca.

Lemma 4.4.2. Let ϕ : ∆(p, q, r) → G be a representation such that the restriction ϕ|T
has finite centralizer. Then

gAd(ϕ(ab)) ∩ gAd(ϕ(bc)) = (0).

Proof. Since ac = (ab)(bc) the two elements ab and bc suffice to generate the subgroup
T and using Lemma A.2.1

gAd(ϕ(ab)) ∩ gAd(ϕ(bc)) = g⟨Ad(ϕ(ab)),Adϕ(bc)⟩ =
⋂
γ∈T

ker(id− AdG ϕ(γ)) = LieZG(ϕ
∣∣
T
) = (0).
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Lemma 4.4.3. Let ϕ : ∆(p, q, r) → G be a homomorphism such that ϕ|T has finite
centralizer. Let x, y, z be the generators of ∆(p, q, r). Then

gAdϕ(x) ∩
(
gAdϕ(xy) + gAdϕ(xz)

)
= g⟨Adϕ(x),Adϕ(y)⟩ ⊕ g⟨Adϕ(x),Adϕ(z)⟩

Proof. We fix some notation. Let X := Adϕ(x), Y := Adϕ(y) and Z := Adϕ(z). Let

fx := id−Ad(ϕ(x)) = id−X, fy := id−Ad(ϕ(y)) = id−Y, fz := id−Ad(ϕ(z)) = id−Z,

so that gAdϕ(x) = gX = ker fx and analogously for y and z. In this notation we have to
show

gX ∩
(
gXY + gXZ

)
= g⟨X,Y ⟩ + g⟨X,Z⟩.

Notice that the sum on the right-hand-side is direct because by Lemma A.2.1 it holds

g⟨X,Y ⟩ ∩ g⟨X,Z⟩ = g⟨X,Y,Z⟩ = LieZG(ϕ) = (0).

Moreover, g⟨X,Y ⟩ = g⟨X,XY ⟩ = gX ∩ gXY . Analogously, g⟨X,Z⟩ = gX ∩ gXZ . Thus using
the above notation what we have to show is

ker fx ∩ (ker fxy + ker fxz) =
(
ker fx ∩ ker fxy

)
+
(
ker fx ∩ ker fxz

)
.

The ⊇ inclusion is straightforward since ker fx is a vector space.
To show the ⊆ inclusion, we first claim that

fx(ker fxy) ∩ fx(ker fxz) = (0).

Indeed, let v ∈ fx(ker fxy) ∩ fx(ker fxz), so that there are u ∈ ker fxy, w ∈ ker fxz with
fx(u) = v = fx(w). Since XY u = u and X2 = id we have

Xu = XXY u = Y u

and since XZw = w and X2 = id

Xw = XXZw = Zw.

Thus

v = fx(u) = u−Xu = u− Y u = fy(u)

v = fx(w) = w −Xw = w − Zw = fz(w),

which shows that (using Lemma 4.1.2)

v ∈ im(fy) ∩ im(fz) ∩ im(fx) = ker(id + Y ) ∩ ker(id + Z) ∩ ker(id +X)

= g−X ∩ g−Y ∩ g−Z

⊆ g⟨XY,Y Z,ZX⟩ = LieZG(ϕ
∣∣
T
) = (0).
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Thus v = 0 and proves the claim.
Finally let v = u+ w ∈ ker fx with u ∈ ker fxy, w ∈ ker fxz. Since fx(u+ w) = 0 it

follows by the claim that

fx(u) = fx(−w) ∈ fx(ker fxy) ∩ fx(ker fxz) = (0).

Thus
u ∈ ker fx ∩ ker fxy

and
w ∈ ker fx ∩ ker fxz.

Lemma 4.4.4. Let ϕ : ∆(p, q, r) → G be a representation such that ϕ|T has finite
centralizer. Then

(i) dim Z̃1
ϕ = 1

2
(dim gAd(ϕ(a)) + dim gAd(ϕ(c)) − dim gAd(ϕ(ab)) − dim gAd(ϕ(bc))).

(ii) dim B̃1
ϕ = 1

2
(dim gAd(ϕ(a)) + dim gAd(ϕ(c)) + dim gAd(ϕ(ac)) − dim g).

Proof. (i) LetX, Y and Z be as in the beginning of the section so that Z̃1
ϕ = X∩Y ∩Z.

Then

dim Z̃1
ϕ = dimX + dim(Y ∩ Z)− dim(X + (Y ∩ Z))

= dimX + dimY + dimZ − dim(Y + Z)− dim(X + (Y ∩ Z))

= dim g− dimX⊥ + dim g− dimY ⊥ + dim g− dimZ⊥

− (dim g− dim(Y + Z)⊥)− (dim g− dim(X + (Y ∩ Z))⊥)

= dim g− dimX⊥ − dimY ⊥ − dimZ⊥ + dim(Y ⊥ ∩ Z⊥)

+ dim(X⊥ ∩ (Y ⊥ + Z⊥))

= dim g− dim gAd(ϕ(b)) − dim gAd(ϕ(ab)) − dim gAd(ϕ(bc))

+ dim(gAd(ϕ(ab)) ∩ gAd(ϕ(bc))) + dim
(
gAd(ϕ(b)) ∩ (gAd(ϕ(ab)) + gAd(ϕ(bc)))

)
= dim g− dim gAd(ϕ(b)) − dim gAd(ϕ(ab)) − dim gAd(ϕ(bc))

+ dim g⟨Ad(ϕ(a)),Ad(ϕ(b))⟩ + dim(g⟨Ad(ϕ(b)),Ad(ϕ(c))⟩.

In the last equality we used Lemma 4.4.2 and Lemma 4.4.3. Moreover by Lemma
4.4.1

dim g⟨Ad(ϕ(a)),Ad(ϕ(b))⟩ =
1

2

(
dim gAd(ϕ(a)) + dim gAd(ϕ(b)) + dim gAd(ϕ(ab)) − dim g

)
,

dim g⟨Ad(ϕ(b)),Ad(ϕ(c))⟩ =
1

2

(
dim gAd(ϕ(b)) + dim gAd(ϕ(c)) + dim gAd(ϕ(bc)) − dim g

)
.

Therefore

dim Z̃1
ϕ =

1

2
(dim gAd(ϕ(a)) + dim gAd(ϕ(c)) − dim gAd(ϕ(ab)) − dim gAd(ϕ(bc))). (4.4)
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(ii) It holds B̃1
ϕ
∼= (id− AdG(ϕ(b)))

(
gAd(ϕ(a)) ∩ gAd(ϕ(c))

)
. Let

F := (id− AdG(ϕ(b)))|gAd(ϕ(a))∩gAd(ϕ(c)) : gAd(ϕ(a)) ∩ gAd(ϕ(c)) → g.

Then

ker(F ) = ker(id−AdG(ϕ(b)))∩gAd(ϕ(a))∩gAd(ϕ(c)) = g⟨ϕ(a),ϕ(b),ϕ(c)⟩ = LieZG(ϕ) = (0).

Together with Lemma 4.4.1 we conclude

dim B̃1
ϕ = dim(gAd(ϕ(a)) ∩ gAd(ϕ(c)))− dimker(F ) = dim(gAd(ϕ(a)) ∩ gAd(ϕ(c)))

=
1

2
(dim gAd(ϕ(a)) + dim gAd(ϕ(c)) + dim gAd(ϕ(ac)) − dim g).

We can finally compute the dimension of the first cohomology group.

Proposition 4.4.5. Let ϕ : ∆(p, q, r) → G be a representation such that ϕ
∣∣
T
has finite

centralizer. Then

dimH1(∆, g)ϕ =
1

2

(
dim g− dim gAd(ϕ(ab)) − dim gAd(ϕ(bc)) − dim gAd(ϕ(ac))

)
.

Proposition 4.4.6. Let G = PGSp(2n,R) with Lie algebra g and let ϕ : ∆(p, q, r) → G
be a Hitchin representation. The dimension of TZar

ϕ Hom(∆(p, q, r), G) is

dimTZar
ϕ Hom(∆(p, q, r), G) =

1

2

(
3 dim g−dim gAd(ϕ(ab))−dim gAd(ϕ(bc))−dim gAd(ϕ(ac))

)
and it is constant on Hitchin representations.

Proof. The Zariski tangent space is isomorphic to Z1(∆, g)ϕ and

dimZ1(∆, g)ϕ = dimH1(∆, g)ϕ + dimB1(∆, g)ϕ

= dimH1(∆, g)ϕ + dim g− dimH0(∆, g)ϕ.

We used that H0(∆, g)ϕ and B1(∆, g)ϕ are respectively the kernel and the image of the

linear boundary map ∂
0
: g → C

1
(∆, g)ϕ (see Appendix A). By Corollary 3.2.8 it holds

dimH0(∆, g)ϕ = 0 for every Hitchin representation, so the formula for the dimension
follows from Proposition 4.4.5.

It is constant on connected components because there are finitely many conjugacy
classes of finite order elements in PSp(2n,R), which implies that if γ ∈ ∆ is of fi-
nite order and ϕ1, ϕ2 are any two representations in the same connected component
of Hom(∆,PSp(2n,R)), then two group elements ϕ1(γ) and ϕ2(γ) are conjugate in
PSp(2n,R) (A precise proof is given in Proposition 4.4.9 below).
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Remark 4.4.7. Proposition 4.4.6 holds also if we replace PGSp(2n,R) by PGL(n,R),
since the 0th cohomology group remains trivial (Remark 3.2.9) and an argument analo-
gous of the one of Proposition 4.4.8 below shows that there are finitely many conjugacy
classes of finite order elements in GL(n,R).

We end the section by showing that there are finitely many conjugacy classes of
finite order elements in the symplectic group.

Proposition 4.4.8. There are finitely many conjugacy classes of finite order elements
in Sp(2n,R).

Proof. Let g ∈ Sp(2n,R) be of finite order, that is gp = id for some p < ∞. Then the
eigenvalues of g are contained in the finite set Λp = {ωk | k = 1, . . . , p} with ω = e2πi/p.

The group generated by g is a finite subgroup of Sp(2n,R), in particular it is con-
tained in a maximal compact subgroup. All maximal compact subgroups are conju-
gated, and the map ι : A+ iB 7→

(
A −B
B A

)
embeds U(n) as a maximal compact subgroup

of Sp(2n,R). Thus there is u ∈ U(n) such that g is conjugated to ι(u). Unitary matri-
ces are unitarily diagonalizable, so we might assume that u = diag(λ1, . . . , λn) for some
λi ∈ C. One can show that the eigenvalues of ι(u), and hence of g are λi, λi, i = 1, . . . n,
and since belong to the set Λp it holds

{λi | i = 1, . . . n} ⊆ {ω, ω | ω ∈ Λp} =: Λp.

So there is a finite set Λp ⊂ C such that for all g ∈ Sp(2n,R) of order p there are
λ1, . . . , λn ∈ Λp such that g is in the conjugacy class of ι(diag(λ1, . . . , λn)).

Proposition 4.4.9. Let G = PGSp(2n,R) with Lie algebra g. For all γ ∈ ∆ of finite
order dim gAd(ϕ(γ)) is constant on connected components of Hom(∆, G) and on G-orbits
of connected components of Hom(∆, G)/G.

Proof. We have to show that for all γ ∈ ∆(p, q, r) of finite order and all ϕ1, ϕ2 in the
same connected component of Hom(∆, G) it holds dim gAdϕ1(γ) = dim gAdϕ2(γ).
Since for g, h ∈ G it holds gAd(ghg−1) = AdG(g

−1)gAd(h), it suffices to show that ϕ1(γ)
and ϕ2(γ) are conjugate in G. To this end, let γ ∈ ∆ of order k and consider the
continuous map

Φγ : Hom(∆, G) G G/ ∼

φ φ(γ) [φ(γ)] ,

where g1 ∼ g2 if and only if they are conjugate. It induces the continuous map

Φγ : Hom(∆, G)/G → G/ ∼
[φ] 7→ [φ(γ)]
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Since there are only finitely many conjugacy classes of elements of finite order k in G
it holds

Φγ(Hom(∆, G)) ⊆ {[g1], . . . , [grk ]}.
and

Φγ(Hom(∆, G)/G) ⊆ {[g1], . . . , [grk ]}.
If C ⊆ Hom(∆, G) is a connected component, then Φγ(C) is connected and a finite
(disjoint) uonion of [gi]’s each of which is closed, hence Φγ(C) = [gi0 ], which is shows
that the images of γ under two representations in C are conjugate.

The argument for the orbit in Hom(∆, G) of a connected component C of Hom(∆, G)/G
is analogous. Namely, let C ⊆ Hom(∆, G) be the orbit of C, that is the preimage of C
under the map Hom(∆, G) → Hom(∆, G)/G. Then

Φγ(C) = Φγ(C) ⊆ {[g1], . . . , [grk ]},

and we conclude as above.

4.5 Smoothness of the Hitchin component

In this section we show that the Hitchin component Hit(∆(p, q, r),PGSp(2n,R)) is an
analytic manifold and obtain a formula for its dimension from the results of the previous
sections.

Proposition 4.5.1. Hitchin representations are smooth points of the representation
variety Hom(∆(p, q, r),PGSp(2n,R)).

Proof. Let ϕ : ∆(p, q, r) → PGSp(2n,R) be a Hitchin representation. Let F : GN →
Gm be such that Hom(∆, G) is the zero locus of F . Then dimTZar

ϕ Hom(∆, G) =
dimker dϕF = N−rank dϕF . By Proposition 4.4.6 the dimension of the Zariski tangent
space TZar

ϕ Hom(∆,PGSp(2n,R)) is the same for all Hitchin representations. Thus
rank dϕF is constant as well and the conclusion follows from Lemma 3.2.11.

Next we argue that the conjugation action of PGSp(2n,R) on Hitchin representa-
tions of triangle groups is free and proper.

Since a triangle group is the orbifold fundamental group of a closed 2-orbifold
(compare with the introduction) by Lemma 2.9 of [2] every Hitchin representation is
PGSp(2n,C)-irreducible and has trivial centralizer in PGSp(2n,R) and in PGSp(2n,C).
In particular, it follows by Theorem 1.1 of [21] that Hitchin representations are stable2

and by Proposition 1.1 of the same [21] that the PGSp(2n,R)-action on Hitchin repre-
sentation is proper.

Moreover, since the action of a Lie group G on set of representations ∆ → G
with trivial centralizer is free, it follows also that the PGSp(2n,R)-action on Hitchin
representations is free. It follows that the Hitchin component is an analytic manifold.

2A representation ρ : ∆ → PGSp(2n,C) is stable if its conjugation-orbit is closed in
Hom(∆,PGSp(2n,C) and if it has finite centralizer.
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Corollary 4.5.2. Let ∆ = ∆(p, q, r) be an hyperbolic triangle group. The space of
Hitchin representations Hit(∆,PGSp(2n,R)) is an analytic manifold on which the
PGSp(2n,R)-action by conjugation is free and proper. The Hitchin component

Hit(∆,PGSp(2n,R)) = Hit(∆,PGSp(2n,R))/PGSp(2n,R)

is an analytic manifold as well.

Proposition 4.5.1 implies that for a Hitchin representation ϕ the first cohomology
group computes the tangent space to the character variety.

Lemma 4.5.3. Let ϕ be a Hitchin representation. Then T[ϕ]χ(∆,PGSp(2n,R)) ∼=
H1(∆, g)ϕ.

Proof. Let ϕ ∈ Hom(∆,PGSp(2n,R)) be a Hitchin representation and denote by Oϕ

its PGSp(2n,R)-orbit. The projection π : Hit → Hit is a submersion and it holds
ker dϕπ = TϕOϕ

∼= B1(∆, g)ϕ by Lemma 3.1.6. Moreover, by Lemma 3.1.3 the tangent
space to the representation variety at ϕ is given by the space of 1-cocycles. We conclude
that

T[ϕ]χ(∆,PGSp(2n,R)) ∼= Tϕ Hom(∆,PGSp(2n,R))/ ker dϕπ
∼= Z1(∆, g)ϕ/B

1(∆, g)ϕ = H1(∆, g)ϕ.

Using Proposition 4.4.5 we finally deduce Theorem 1.2.3.

Theorem 4.5.4. Let ∆ = ∆(p, q, r) be a hyperbolic triangle group with generators
a, b, c. Let g be the Lie algebra of PGSp(2n,R) and let Ad : PGSp(2n,R) → GL(g) be
the adjoint representation. The dimension of the Hitchin component of χ(∆,PGSp(2n,R))
is

dimHit(∆,PGSp(2n,R)) = 1
2
(dim g− dim gAd(ϕ0(ab)) − dim gAd(ϕ0(bc)) − dim gAd(ϕ0(ac))),

(4.5)
where ϕ0 : ∆ → PGSp(2n,R) is the base representation.

4.6 The dimension of the PGSp(4,R)-Hitchin compo-

nent

In this section we explicitly compute the dimension of the PGSp(4,R)-Hitchin compo-
nent for the hyperbolic triangle group ∆(p, q, r).

Proposition 4.6.1. Let x, y ∈ {a, b, c} be two of the generators of ∆(p, q, r), so that
x2 = y2 = (xy)k = 1 for some k ∈ {p, q, r}. Let ϕ0 : ∆(p, q, r) → PGSp(4,R) be the
base representation. Then

dim gAd(ϕ0(xy)) =

{
4 if k = 2, 3

2 if k ≥ 4.
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Proof. The proof is essentially as in [40, Section 2.4]. It is more convenient to work in
GSp(4,R) instead of in the quotient, so that we don’t have to deal with representatives.
This is possible because the differential of the quotient map p : GSp(4,R) → PGSp(4,R)
is a Lie algebra isomorphism, which for any x ∈ PGSp(4,R) restricts to an isomorphism

dep : gAd(x̃) = ker(AdG(x̃)− id)
∼=→ ker(AdPG(x)− id) = Lie(PG)Ad(x),

where x̃ is any lift of x. Let A,B,C ∈ GSp(4,R) be the lifts of ϕ0(a), ϕ0(b), ϕ0(c) given
by the image of (2.1) under the irreducible representation π2. We have to show that
for x̃, ỹ ∈ {A,B,C}

dim
(
LieGSp(4,R)

)Ad(x̃ỹ)
=

{
4 if k = 2, 3

2 if k ≥ 4.

Notice that x̃2 = ỹ2 = id ∈ GSp(4,R) and (x̃ỹ)k = ±id (depending on k). As before,
let Ω4 be the standard symplectic form of (2.5) and set G := GSp(4,R) and GC :=
GSp(4,C). We denote by ch : GC → GC, x 7→ hxh−1 conjugation by h ∈ GC, and we let

ZG(g) := {h ∈ G : hgh−1 = g}
ZGC(g) := {h ∈ GC : hgh−1 = g}

be the centralizer of g in the respective groups. The relation between the centralizer of
one element and its conjugate is given by the following proposition.

Proposition 4.6.2. Let G ≤ GL(4,C), g ∈ G and Y ∈ GC. Then

cY
(
ZG(g)

)
= ZGL(4,C)(cY (g)) ∩ cY (G).

Proof.

h ∈ ZG(g) ⇔ h ∈ G and hgh−1 = g

⇔ h ∈ G and hY −1cY (g)Y h−1 = Y −1cY (k)Y

⇔ h ∈ G and (Y hY −1)cY (g)(Y hY −1)−1 = cY (k)

⇔ h ∈ G and cY (h) ∈ ZGL(4,C)(cY (g))

⇔ cY (h) ∈ cY (G) ∩ ZGL(4,C)(cY (g)).

By Lemma A.2.1 it holds dim gAd(x̃ỹ) = dimLieZG(x̃ỹ) and this is what we want to
compute. So let r ∈ SL(2,R) with x̃ỹ = π2(r). Then r has the two distinct complex
conjugate eigenvalues ei

π
k , e−iπ

k or −ei
π
k ,−e−iπ

k . Let ζ := ±ei
π
k . In particular r is

diagonalizable over C and there is τ ∈ SL(2,C) such that τrτ−1 = diag(ζ, ζ−1). Then

cπ2(τ)(x̃ỹ) = π2(τrτ
−1) = π2(diag(ζ, ζ

−1)) =


ζ3

ζ
ζ−3

ζ−1

 =: D.
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It holds ZG(x̃ỹ) = ZGC(x̃ỹ)∩G and LieZGC(x̃y) is a complex Lie subalgebra of LieGC,
which, as complex vector space, has defining equations with coefficients in R because
x̃ỹ ∈ GSp(4,R). Thus

dimC LieZGC(x̃ỹ) = dimR Lie (ZGC(x̃ỹ) ∩G) = dimR LieZG(x̃ỹ).

Since π2(τ) ∈ Sp(4,C), cπ2(τ) is an isomorphism of GC and we have cπ2(τ) (ZGC(x̃ỹ)) =
ZGC(cπ2(τ)(x̃ỹ)) = ZGC(D) as well as

LieZGC(x̃ỹ)
∼= decπ2(τ) LieZGC(x̃ỹ) = Lie cπ2(τ) (ZGC(x̃ỹ)) = LieZGC(D).

Putting everything together

dimR LieZG(x̃ỹ) = dimC LieZGC(x̃ỹ) = dimC LieZGC(D),

and we compute the latter. We consider the three distinct cases k > 3, k = 3 and k = 2
separately.

k > 3 In this case we remark the following:

Claim. For all k > 3 the diagonal entries of D are distinct and are all ̸= ±1.

Proof. The diagonal entries of D are ζ, ζ−1, ζ3, ζ−3 with ζ = ±ei
π
k and they lie on

the unit circle. Therefore they are equal to ±1 if and only if they are real, which
holds if and only if ζ = ζ−1 or ζ3 = ζ−3. Since k > 1 the first case is not possible.
The second case holds if and only if ζ6 = 1 which holds if and only if 6

k
∈ 2N

which is never the case if k > 3.

To show that they are all distinct it suffices to show that ζ3 ̸= ζ and ζ3 ̸= ζ−1.

• ζ3 = ζ ⇔ ζ2 = 1 ⇔ 2π
k
= 2π, which is never the case if k > 3.

• ζ3 = ζ−1 ⇔ ζ4 = 1 ⇔ 4π
k
= 2π, which is never the case if k > 3.

We have ZGC(D) = ZGL(4,C)(D) ∩GC, so we first look at matrices with commute
with D and then determine the ones which are in GC.

For h ∈ GL(4,C) it holds

hD = Dh ⇔ (hD)ij = (Dh)ij for all 1 ≤ i, j ≤ 4

⇔ (Dii −Djj)hij = 0 for all 1 ≤ i, j ≤ 4,
(4.6)

since

(hD)ij =
4∑

k=1

hik Dkj︸︷︷︸
̸=0 iff k=j

= hijDjj

(Dh)ij =
4∑

k=1

Dikhkj = Diihij.
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Since k > 3 we have Dii ̸= Djj for all i ̸= j, thus h commutes with D if and only
if h = diag(h1, h2, h3, h4) with hi ̸= 0.

Let now h = diag(h1, h2, h3, h4), then h ∈ GC if and only if hTΩ4h = ±Ω4, which
holds if and only if

h1h3

h2h4

−h1h3

−h2h4

 = ±


1

1
−1

−1

 ,

which is equivalent to h1h3 = ±1 = h2h4.

We conclude that when k > 3 the centralizer is

ZGC(D) = {


h1

h2

±h−1
1

±h−1
2

 : h1, h2 ∈ C∗},

and therefore LieZGC(D) is 2-dimensional over C.

k = 3: When k = 3 it holds ζ = ±ei
π
3 and D =


∓1

±ei
π
3

∓1
±e−iπ

3

, in particular

D11 = D33 ̸= D22, D44 and D22 ̸= D44. By (4.6) a matrix h ∈ GL(4,C) commutes
with D if and only if it is of the form

h =


h11 0 h13 0
0 h22 0 0
h31 0 h33 0
0 0 0 h44


with det(h) = h22h44(h11h33 − h13h31) ̸= 0.
For such an h it holds

hTΩ4h =


h11h33 − h13h31

h22h44

h13h31 − h11h33

−h22h44


and thus hTΩ4h = ±Ω4 if and only if h11h33 − h13h31+ = ±1 and h22h33 = ±1.
Thus the entries of h depend on six variables with two independent equations,
which means that ZGC(D) is 4-dimensional.
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k = 2: When k = 2 it holds ζ = ±i andD = ±


−i

i
i

−i

. In particularD11 = D44

and D22 = D33 and D11 ̸= D22. By (4.6) a matrix h ∈ GL(4,C) commutes with
D if and only if it is of the form

h =


h11 0 0 h14

0 h22 h23 0
0 h32 0 h33

h41 0 0 h44

 .

For such an h it holds

hTΩ4h =


0 h11h32 − h22h41 h11h33 − h23h41 0

−h11h32 + h22h41 0 0 −h14h32 + h22h44

−h11h33 + h23h41 0 0 −h14h33 + h23h44

0 h14h32 − h22h44 h14h33 − h23h44 0


and thus hTΩ4h = ±Ω4 if and only the eight non-zero entries of h satisfy four
independent equations. Thus ZGC(D) is 4-dimensional.

Theorem 4.6.3. The dimension of the Hitchin component of χ(∆(p, q, r),PGSp(4,R))
is

dimHit(∆(p, q, r),PGSp(4,R)) =


0 if p = q = 3, r ≥ 4 or p = 2, q = 3, r ≥ 7

1 if p = 2, 3, r ≥ q ≥ 4

2 if p, q, r ≥ 4.

Proof. By Theorem 4.5.4 and Proposition 4.6.1 the dimension of Hit(∆(p, q, r),PGSp(4,R))
is

1

2

(
dim g− dim gAd(ϕ(ab)) − dim gAd(ϕ(bc)) − dim gAd(ϕ(ac))

)
=


1
2
(10− 4− 4− 2) = 0 p = q = 3 r ≥ 4, or p = 2, q = 3, r ≥ 7

1
2
(10− 4− 2− 2) = 1 p = 2, 3, r ≥ q ≥ 4,

1
2
(10− 2− 2− 2) = 2 r ≥ q ≥ p ≥ 4.
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5. Parameters for the Hitchin com-
ponent of χ(∆(3, 4, 4))

Cooper, Long and Thistlethwaite introduced in [12] a method for the exact computa-
tion of character varieties of fundamental groups of hyperbolic 3-manifolds, which has
been applied also for character varieties of Bianchi groups [33] and extensively for fun-
damental groups of some orientable 2-dimensional orbifolds [26], [40], [11]. The groups
considered in [26], [40], [11] are triangle groups T (p, q, r) generated by rotations about
the vertices of a hyperbolic triangle, hence subgroups of index 2 of the triangle groups
treated in this work. To our knowledge no work has been done to compute varieties of
full triangle groups, which is the subject of this chapter.

The method is described in some detail in [12] and [26] and often works well when
the variety has dimension at most 2. Here we illustrate thoroughly how the technique
applies to the 1-dimensional Hitchin component of the full triangle group ∆(3, 4, 4).
The choice of ∆(3, 4, 4) was dictated by the fact that according to Theorem 4.6.3 it
is the triangle group whose Hitchin component has smallest positive dimension with
smallest parameters p, q, r (also (2, 4, 5) would have been a possibility).

Let H = Hit(∆(3, 4, 4),PGSp(4,R)) be the Hitchin component. Our aim is to
find a 1-parameter family of deformations of the base representation ϕ0 : ∆(3, 4, 4) →
PGSp(4,R) which describes H. Since it is a 1-dimensional algebraic variety, the image
of each generator of ∆(3, 4, 4) is a matrix whose entries are algebraic functions of one
parameter u. Therefore the matrix entries at a generic point of H can be considered
to lie in a field F of transcendence degree1 1 over R and H is specified by a single
tautological representation Ψ into PGSp(4, F ). Individual representations are obtained
from Ψ by evaluating at specific point u in the parameter space.

Theorem 5.0.1. The 1-dimensional PGSp(4,R)-Hitchin component of the triangle
group ∆(3, 4, 4) is given by a tautological representation Ψu whose entries lie in the
field Q(u)(τ, σ,

√
2), where τ is a real root of the cubic polynomial

1
3
u2(32 + 86u2 − 5u4) + u2(−20 + 13

3
u2)τ + (2− 11

3
u2)τ 2 + τ 3

1Recall that if K is a field extension of F , then an element k of K is called algebraic over F if
there exists some non-zero polynomial g ∈ F [x] such that g(k) = 0. Elements of K which are not
algebraic are called transcendental. The transcendence degree of an extension field K over a field F is
the smallest number of elements of K which are not algebraic over F but are needed to generate K.
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and σ =
√

3
2
(u2 + τ + 2). The images of the generators of ∆(3, 4, 4) are represented by

the matrices Ψu(a),Ψu(b) and Ψu(c) given in Appendix C. The base representation ϕ0

is obtained for u = 5
√
2.

Recall that ∆(3, 4, 4) = ⟨a, b, c | a2 = b2 = c2 = (ab)3 = (bc)4 = (ca)4 = 1⟩, and
using Example 2.3.1 and (2.1) we can get representatives a0, b0, c0 ∈ GSp(4,R) of the
images of the generators under the base representation ϕ0. The values of the parameters
k, l and m in (2.1) are k = cos2(π/8), l = 3

(12−4
√
3) sin2(π/8)

and m = (3−
√
3) sin2(π/8).

They satisfy

a20 = b20 = c20 = id and (a0b0)
3 = (b0c0)

4 = (c0a0)
4 = −id. (5.1)

It suffices to find a family (ϕu(a), ϕu(b), ϕu(c)) of triples in GSp(4,R)3 which satisfy
(5.1) for every value of the parameter u. Then the map into PGSp(2n,R)3

u 7→ ([ϕu(a)], [ϕu(b)], [ϕu(c)]) (5.2)

defines a deformation of ϕ (by homomorphisms).
For a matrix x ∈ M4×4(R) let Symp(x) = (xTΩ4x− 1)(xTΩ4x + 1) be the relation

which describes being a symplectic or antisymplectic matrix: x ∈ GSp(4,R) if and only
if Symp(x) = 0. Consider the polynomial map

Rel : (R16)3 → (R16)9

(a, b, c) 7→ (a2 − 1, b2 − 1, c2 − 1, (ab)3 + 1, (bc)4 + 1, (ca)4 + 1,

Symp(a), Symp(b), Symp(c)).

We are looking for a family (ϕu(a), ϕu(b), ϕu(c)) in Rel−1({(0, . . . , 0)}) (which induces
the tautological representation Ψ : ∆(p, q, r) → PGSp(4, F )).

5.1 Trace field and matrix entry field

There are two fields that will play an important role in finding the tautological repre-
sentation Ψ. Suppose that (a, b, c) ∈ Rel−1(0) represents a homomorphism ϕ. The first
field under consideration is the field K generated by the entries of image matrices of
ϕ, that is by the matrix entries of (a, b, c). The second field of interest is the subfield T
of K generated by the traces of image matrices. We call T the trace field, notice that
it is independent of conjugation.

We prove that, after a sensible conjugation, the matrix entry fieldK can be obtained
from T by adding one generator and the proof of this fact will actually show that both T
as well as K are determined by a finite number of traces tr(ϕ(γi)), i = 1, . . . , 8 (Remark
5.1.6).

The following in an analogue of Proposition 3.1 in [12] adapted to our setting.
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Proposition 5.1.1. Let G be the subgroup of GL(4,R) generated by matrices a, b, c
where

a =


−1

−1
−2 0 1
0 2 1

 , c =


1 −2k 0

1 0 2(1− k)
−1

−1

 , b = (bij)i,j. (5.3)

Let T be the trace field of G, and let K be the field obtained by adjoining k to T .
Then the matrix entries

b11, b22, b33, b44, b13, b24, b31, b42

and the products of matrix entries

b12b21, b12b23, b12b41, b12b43, (5.4)

b14b21, b14b23, b14b41, b14b43, (5.5)

b21b32, b21b34, b23b32, b23b34, (5.6)

b32b41, b32b43, b34b41, b34b43 (5.7)

are in K.

Proof. It is easily checked that the eight traces

tr(b), tr(cb), tr(ab), tr(abc), tr(acb), tr(abac), tr(cacb), tr(abcac)

in which b occurs only once are all linear expressions (with coefficients in Q(k)) in the
eight entries

b11, b22, b33, b44, b13, b24, b31, b42.

Therefore we have a linear system for the entries b11, . . . , b42 over K and one can verify
(e.g. using Mathematica) that the determinant of the matrix of coefficients is -256 .
Therefore the system has a unique solution and b11, . . . , b42 lie in K.

Consider the sixteen traces

tr(b2), tr(ab2), tr(acb2), tr(acab2), tr((ac)2b2), tr((ac)2ab2), tr((ac)3ab2),

tr(acbcb), tr(acabcb), tr((ac)2bcb), tr((ac)2abcb), tr((ac)3abcb),

tr(acbab), tr((ac)2bab), tr((ac)2abab), tr(acbacb).

in which b occurs exactly twice. Using Mathematica one checks that they are all
linear expressions in the sixteen products

b12b21, b12b23, b12b41, b12b43,

b14b21, b14b23, b14b41, b14b43,

b21b32, b21b34, b23b32, b23b34,

b32b41, b32b43, b34b41, b34b43

with coefficients in T (k, b11, . . . , b42) which by the above is equal to K. The matrix of
coefficients has full rank.
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Corollary 5.1.2. Let G,K as in Proposition 5.1.1 and assume that the (1, 2)-entry of
b is b12 ̸= 0. Let

q =


1

b12
1

b12

 .

Then qGq−1 is generated by a, b, c as in (5.3) with b12 = 1 and the field generated by
the matrix entries of qGq−1 is K.

Proof. The group G′ = qGq−1 is generated by a′ = qaq−1, c′ = qcq−1, b′ = qbq−1. Let
K ′ be the field generated by the matrix entries of G′. Since conjugation does not affect
traces the tracefield of G′ is T . Let q = diag(q1, q2, q3, q4), then

qaq−1 = q


−1

−1
−2 1

2 1

 q−1 =


−1

−1
−2 q3

q1
1

2 q4
q2

1

 = a′,

and

qcq−1 = q


1 −2k 0

1 0 2(1− k)
−1

−1

 q−1 =


1 −2k q1

q3
0

1 0 2(1− k) q2
q4

−1
−1

 = c′,

and

qbq−1 = q


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 q−1 =


b11

q1
q2
b12

q1
q3
b13

q1
q4
b14

q2
q1
b21 b22

q2
q3
b23

q2
q4
b24

q3
q1
b31

q3
q2
b32 b33

q3
q4
b34

q4
q1
b41

q4
q2
b42

q4
q3
b43 b44

 = b′

For all q in the statement of the corollary it holds q1 = q3 and q2 = q4, thus a′ = a
and c′ = c. In particular k ∈ K ′ so K = T (k) = T ′(k) ⊆ K ′. Moreover, for the
other inclusion it suffices to show that the entries of b′ are in K = T (k). Let q =
diag(1, b12, 1, b12) and b′12 = q1

q2
b12 = 1. Thus by Proposition 5.1.1 applied to G′ the

following entries of b′ 
b′11 1 b′13

b′22 b′24
b′31 b′33

b′42 b′44


as well as 1 · b′21, 1 · b′23, 1 · b′41, b′43 (by (5.4)) are in K. Again by the proposition using
(5.5) and (5.6) this in turn implies that b′14, b

′
32, b

′
34 are in K.
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Remark 5.1.3. (i) The matrix q of Corollary 5.1.2 is not symplectic, and there does
not exist a symplectic matrix s which (under conjugation) preserves a and c and
sends b to a matrix which has one entry equal to 1.

(ii) When b12 = 0 one can obtain the same result conjugating by

q =



id if b12 = b14 = b23 = b34 = b21 = b41 = b32 = b43 = 0,
1

b

1

b

 with b = any of b14, b32, b34 which is ̸= 0,


1

b−1

1

b−1

 with b = any of b21, b41, b23, b43 which is ̸= 0.

Given a deformation ϕt of the base representation ϕ0, we can always conjugate
within the symplectic group so that the generators are as in Proposition 5.1.1.

Lemma 5.1.4. Let ϕt : ∆(p, q, r) → PGSp(4,R) be a continuous deformation of the
base representation ϕ0 and let at, ct ∈ GSp(4,R) be the images of the two generators a, c.
Then a2t = c2t = id and (atct)

r = −id and moreover for each t there is gt ∈ GSp(4,R)
such that

gtatg
−1
t =


−1

−1
−2 1

2 1

 , gtctg
−1
t =


1 −2k

1 2(1− k)
−1

−1

 ,

where k = cos2(π/(2r)).

This result is a consequence of the fact that representations of dihedral groups are
locally rigid and that Sp(4,R)-orbits in the set of quadruples of pairwise transverse
Lagrangian subspaces of R4 can be characterized by their crossratio (under some finite
order assumption). We prove the lemma and give all the necessary background in
Appendix B.

Remark 5.1.5. In Lemma 5.1.4 one can take the matrix gt to vary continuously in t.
Since after conjugation by g0 the image of the generator b under the base representation
has non vanishing (1, 2)-entry, the same holds for every gtbtg

−1
t when t is sufficiently

small. In particular, the matrix entry field of gt⟨at, bt, ct⟩g−1
t is Tt(k), where Tt is the

trace field of ⟨at, bt, ct⟩.
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Remark 5.1.6 (Finitely many traces suffice). By Corollary 5.1.2 and the proof of Proposi-
ton 5.1.1 after conjugating the matrix entry field is determined by the twenty-four traces

tr(b), tr(cb), tr(ab), tr(abc), tr(acb), tr(abac), tr(cacb), tr(abcac),

tr(b2), tr(ab2), tr(acb2), tr(acab2), tr((ac)2b2), tr((ac)2ab2), tr((ac)3ab2),

tr(acbcb), tr(acabcb), tr((ac)2bcb), tr((ac)2abcb), tr((ac)3abcb),

tr(acbab), tr((ac)2bab), tr((ac)2abab), tr(acbacb).

Since conjugation does not change the trace field, these traces determine the “original”
trace field as well. In our specific (3,4,4)-triangle group setting and for representations
close to the base representation most of these traces are constant or coincide with each
other. In fact we can use the following properties to simplify the expressions of certain
traces:

(i) If gTΩg = Ω, then Ω−1gTΩ = g−1 and

tr(g) = tr(gT ) = tr(Ω−1gTΩ) = tr(g−1);

and if gTΩg = −Ω, then Ω−1gTΩ = −g−1 and

tr(g) = tr(gT ) = tr(Ω−1gTΩ) = tr(−g−1) = −tr(g−1).

In particular, the images a, b, c of the generators of ∆(3, 4, 4) are antisymplectic
of order 2, therefore their trace is zero.

(ii) The (lifts of) images of the products ab, bc, ca satisfy (ab)3 = (bc)4 = (ca)4 = −id.
Hence it holds (ac)2 = −(ac)−2 = −(ca)2 and analogous identities.

(iii) The (lifts of) images of the products ab, bc, ca are of finite order, and there are
finitely many conjugacy classes of elements of finite order in Sp(2n,R) (Propo-
sition 4.4.8). Therefore for representations a, b, c nearby the base representation
a0, b0, c0 it holds tr(ab) = tr(a0b0), tr(bc) = tr(b0c0) and tr(ca) = tr(c0a0).

(iv) If an antisymplectic element x satisfies x = x−1 then

tr(abx)
(i)
= − tr((abx)−1) = − tr(xba) = − tr(bax).

We obtain:

tr(b) = 0 tr(acab2) = tr(c) = 0

tr(cb) = 0 tr((ac)2b2) = tr(acac) = 0

tr(ab) = −1 tr((ac)2ab2) = − tr(a) = 0

tr(acb)
(i)
= − tr(abc) tr((ac)3ab2) = − tr(c) = 0

tr(b2) = 4 tr((ac)3abcb) = − tr(caabcb) = − tr(cbcb) = 0

tr(ab2) = tr(a) = 0 tr(acbab) = tr(cbaba) = − tr(cab) = − tr(abc)

tr(acb2) = tr(ac) = 0 tr((ac)2abab) = − tr((ac)2ba) = − tr(cacb)

tr((ac)2bab) = tr(cacbaba) = − tr(cacab) = − tr(abcac)

tr(acbacb)
(i)
= tr((acbacb)−1) = tr(bcabca) = tr(abcabc)

tr((ac)2abcb) = tr(−(ca)2abcb) = − tr(cacbcb) = tr(cabcbc) = tr(abcb) = − tr(babc) = − tr(abac)
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Thus the only traces one needs to consider are

tr(abc), tr(abac), tr(cacb), tr(abcac), tr(acbcb), tr(acabcb), tr((ac)2bcb), tr(abcabc). (5.8)

5.2 Overview of computational methodology

In this section we describe the strategy, without giving much detail on the technical as-
pects (Newton algorithm, polynomial interpolation, integer relation finding algorithms)
needed to put it into practice, which will be the subject of section 5.3. This overview
follows closely and expands on Sections 6 and 7 of [12].
Step 1. Starting from the base representation we apply arbitrarily small perturbations
to the (matrix coordinates of the) generating matrices a0, b0, c0. This gives three new
generating matrices, which have no reason to satisfy the group relations Rel anymore,
but we can use the Newton process to converge to matrices (a1, b1, c1) which are in the
zero set of Rel and define a homomorphism ϕ1. We check that ϕ1 is not conjugate to
ϕ0, for example by looking at the traces of some γ ∈ ⟨a1, b1, c1⟩.
Step 2. By Proposition 5.1.1 the matrix entry field is determined by the trace field,
so the next step is to find a parameter for the trace field. We choose some γ ∈ ∆ such
that tr(ϕ0(γ)) ̸= tr(ϕ1(γ)) and check whether u := tr(ϕ(γ)) it is a suitable parameter
for the trace field. By “suitable” we mean that all other traces tr(ϕ(η)), η ∈ ∆, should
be of small degree over Q(u). Notice that if u is suitable in this sense and it gives
representations ϕu, then when assigning to u a rational value the traces tr(ϕu(η)) are
of small degree over Q. Therefore to decide whether the chosen parameter is a good
candidate, one chooses some rational values u1, . . . , un ∈ Q close to u0 = tr(ϕ0(γ)) and
runs the Newton process again n times, each time adding the constraint that it has to
converge to a representation ϕi such that tr(ϕi(γ)) = ui ∈ Q. Then one checks that for
each η ∈ ∆ and each i the traces tr(ϕi(η)) are algebraic over Q and of which degree.
The proof of Proposition 5.1.1 provides a finite list of traces that is sufficient for this
purpose, which can actually be reduced to the eight traces (5.8) of Remark 5.1.6.

In practice (cfr. Section 5.3) we chose γ = abc ∈ ∆(p, q, r), so that for the base
representation u0 = tr(ϕ0(abc)) = tr(A0B0C0) = 5

√
3 ≈ 8.66025 and we set ui =

86/10 + 1/(100 + i) for i = 1, . . . , 20. Then all the traces are of degree 3 or 6 over Q,
and when they are of degree 6, their minimal polynomial is even.
Step 3. Guess the trace field T as an extension of finite degree over the field Q(u).
By the previous step all traces seem to be algebraic of degree 3 or 6 over Q(u), and we
suspect that the trace field has degree 6 over Q(u). If so, we can determine it using
two traces. Indeed, let t1 be a trace of degree 3, then

6 = [T : Q(u)] = [T : Q(u)(t1)][Q(u)(t1) : Q(u)] = 3[T : Q(u)(t1)],

therefore [T : Q(u)(t1)] = 2 and any t2 ∈ T \ Q(u)(t1) is algebraic of degree 2 over
Q(u)(t1) and it holds T = Q(u)(t1, t2).

If we find an expression for the minimal polynomial pτ (x) of a degree 3 trace τ as
an element of Q(u)[x], then Cardano’s formulas describe τ in terms of u. Then finding
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the degree 2 minimal polynomial in Q(u)(τ) of a second trace σ gives an expression
σ(u, τ). The result are two parameters τ = τ(u) and σ = σ(u) such that the trace field
is Q(u)(τ, σ).

So Step 3 consists in finding an expression for the minimal polynomial pτ (x) of a
degree 3 trace τ as an element of Q(u)[x]. The implementation is explained in Section
5.3 but roughly speaking at the end of Step 2 one has a sequence of 20 representations
ϕi, and for the trace τ = tr(ϕ(γ)) a corresponding sequence of minimal polynomials
piτ (x) ∈ Q[x] such that piτ (τi) = 0 (where τi = tr(ϕi(γ))). The coefficients of each piτ (x)
are inQ and for fixed τ one interpolates each of them over ui to find a polynomial inQ[u]
which fits it. One ends up with a “tautological” minimal polynomial pτ (x) ∈ Q(u)[x]
for the trace τ , the roots of which are elements of Q(u). We choose τ = tr(abcabc).
Step 4. We compute the degree of other traces over Q(u)(τ) to find one which is of
degree 2 and then seek validation that the extension Q(u)(τ, σ) is the trace field.

After some testing with different traces we notice that the trace of abac is algebraic
of degree 2 over Q(u)(τ) with minimal polynomial

2x2 − (3τ + 3u2 + 6).

We infer that the trace field is Q(u)(τ)(σ) where σ = +
√

3
2
(u2 + τ + 2). A basis over

Q(u) for the trace field would then be {1, τ, τ 2, σ, τσ, τ 2σ}.
To check that a given basis {ρ1, . . . , ρk} is the correct guess one has to verify that

over a lattice in the parameter space every trace t in (5.8) can be expressed as a linear
combination

∑k
j=1 qj(u)ρj where the qj(u) are rational functions of the parameter u.

Let ϕi = ϕ(ui) be the representations obtained in Step 2 from rational values ui. For
each i the trace t corresponds to a trace ti and by means of an integer relation finding
algorithm (such as Mathematica’s FindIntegerNullVector) one can identify integer
numbers qi0 and (qij)

k
j=1 such that

qi0ti =
k∑

j=1

qijρ
i
j,

where ρij = ρj(ϕi). Finally for every j = 0, . . . , k polynomial interpolation over ui gives
a polynomial qj(u) ∈ Z[u] such that qj(ui) = qij.

To summarize, upon completing this step we have a generic expression of the form
tr(ϕ(γ)) =

∑k
j=1 qj(u)ρj for each trace, where the basis elements ρj depend on u as well.

Step 5. Determine an exact expression for the matrix entries in terms of the param-
eters. In Steps 1-4 we determined parameters u and τ = τ(u), σ = σ(u) such that
for some rational values ui we have generating matrices ai, bi, ci close to a0, b0, c0 whose
trace field is Q(ui)(τ(ui), σ(ui)). We can say that we have a tautological trace field
T (u), where the trace field to some individual representation close to ϕ0 is obtained by
evaluating at a specific rational point u in the parameter space. Let Gi = ⟨ai, bi, ci⟩. By
Lemma 5.1.4 and Corollary 5.1.2 after conjugation by some invertible matrix qi we get

56



G̃i = qiGiq
−1
i = ⟨ãi, b̃i, c̃i⟩, whose matrix entries are inQ(ui)(τi, σi, k) = Q(

√
2)(ui)(τi, σi)

(since k = cos2(π/8) = (2 +
√
2)/4). The matrices ãi, c̃i are in the standard form:

ãi =


−1

−1
−2 0 1
0 2 1

 , c̃i =


1 −2k 0

1 0 2(1− k)
−1

−1


(the same for all i), it holds (b̃i)12 = 1 and the other coefficients of b̃i can be recovered
by solving the two linear systems in the proof of Proposition 5.1.1. These two systems
consist of linear equations over the trace field. After inserting the generic traces obtained
in Step 4, the solution of the systems gives a tautological b̃ ∈ GL(4,Q(

√
2)(u)(τ, σ)) such

that b̃(ui, τi, σi) = b̃i.
Step 6. Use the formal algebra capabilities of Mathematica to verify that the generic
matrices obtained in Step 5 satisfy the triangle group relations (b2 = id and (ab)4 =
(bc)4 = −id).
Step 7. Conjugate back into GSp. The tautological expression that we found for the
matrix b̃ lies in GL(4,Q(

√
2)(u)(τ, σ)), but not in the symplectic group, cfr. Remark

5.1.3. We need a way to conjugate back into GSp and to explain how this is done we
summarize the procedure so far. Starting with a deformation ϕt of the base represen-
tation in the first four steps we find the tracefield Tt = Q(ut, τt, σt). Now the theory
tells us that we can conjugate ϕt in standard form (Lemma 5.1.4) and then conjugate
again (Corollary 5.1.2) to obtain representations ϕ̃t so that the matrix entry field is
M̃t = T̃t(k) = Tt(k) since conjugation preserves traces. It holds ϕ̃t(a) = a0, ϕ̃t(c) = c0
and ϕ̃t(b)12 = 1. The entries of ϕ̃t(b) are in M̃t = Tt(k) = Q(

√
2)(ut, τt, σt) and they can

be obtained by solving two systems of linear equations overQ(
√
2)(ut, τt, σt). Step 5 con-

sists in solving these systems with generic entries in Q(
√
2)(u, τ, σ) and get b̃ = b̃(u, τ, σ)

such that b̃(ut, τt, σt) = ϕ̃t(b). This generic b̃ satisfies the triangle group relations (Step
6), and therefore defines a tautological representation as desired, but it does not satisfy
the symplectic condition. In fact, the conjugation of Corollary 5.1.2 maps ϕt(b) out of

the symplectic group: it holds ϕ̃t(b) = qxtϕt(b)q
−1
xt
, where qxt = diag(1, xt, 1, xt) does

not act (by conjugation) on the standard symplectic group but it maps it into the group
preserving the form

Ωx2
t
=

(
1
1/x2

t
−1

−1/x2
t

)
.

That is ϕ̃t(b)
TΩx2

t
ϕ̃t(b) = −Ωx2

t
. So we solve

b̃TΩx2 b̃ = −Ωx2

for x2 to get a generic x2 = x2(u, τ, σ) such that q−1
x b̃qx is antisymplectic and together

with a, c in normal form generates a triangle group which deforms the base representa-
tion.

The resulting tautological representation is given in Appendix C.
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Figure 5.1: Newton method to approximate roots of F : R → R.

5.3 Computation of the Hitchin component of ∆(3, 4, 4)

We follow the steps outlined in Section 5.2 to compute the Hitchin component of the
character variety χ(∆(3, 4, 4),PGSp(4,R)).

The starting point is the base representation ϕ0 : ∆(3, 4, 4) → PGSp(4,R) and let
a0, b0, c0 be representatives in GSp(4,R) of the images of the triangle group generators.
Recall that they do not define an actual representation but satisfy the relations a20 =
b20 = c20 = id and (a0b0)

3 = (b0c0)
4 = (c0a0)

4 = −id. In the following when we talk about
“representation” we mean a triple (a, b, c) ∈ GSp(4,R) which satisfies these relations.
Step 1. We perturb a0, b0, c0 very slightly and then use Newton’s method to try to
converge to a representation a1, b1, c1 close but not conjugate to ϕ0. It is now fitting
to illustrate how Newton’s method is applied in this context. Using matrix coordinates
we identify GL(4,R) as an open subset of R16, so that representations of ∆(3, 4, 4) into
GSp(4,R) are characterized as the nullset of the polynomial map

Rel : (R16)3 → (R16)9

(a, b, c) 7→ (a2 − 1, b2 − 1, c2 − 1, (ab)3 + 1, (bc)4 + 1, (ca)4 + 1,

Symp(a), Symp(b), Symp(c)),

where Symp(x) = (xTΩ4x− id)(xTΩ4x+id) describes the general symplectic condition.
Newton’s method gives an algorithm to find roots of Rel which are close to the base
representation, by means of approximating Rel with a linear function and looking for
the roots of this function. To find roots of functions F : R → R of one variable, one
starts with a point x1 which should be close to the desired root of F , and considers the
linear approximation of F at x1, which is the tangent lineM(x) = F (x1)+F ′(x1)(x−x1)
to F at x1. If F satisfies certain conditions, the root of M is a better approximation of
the real root than x1 is. Thus one considers x2 = x1 − F (x1)/F

′(x1) and repeats the
process until a sufficiently precise value is reached. The method is illustrated in Figure
5.1. This method can be generalized to functions F : Rk → Rk, where at step n the
tangent line is replaced by the linear approximation Mn(x) = F (xn) + Jn(x − xn) in
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which Jn denotes the Jacobian of F at xn. The sequence approximating the roots is
then given by xn+1 = xn − J−1

n F (xn).
In practice, finding the inverse J−1

n of the Jacobian can be computationally demand-
ing and it is more convenient to solve the system of linear equations

Jn(x− xn) = −F (xn) (5.9)

for the unknown sn = x− xn and then set xn+1 = xn + sn. The solution sn of (5.9) is
called the search direction. Sometimes to reach convergence it might be necessary to
control the step length, that is to set xn+1 = xn + αnsn for some positive scalar αn.

The same strategy is used to find roots of a function F : Rk → Rm with m > k,
since the Jacobian is a m× k matrix. Notice that sn solves (5.9) if and only if

∥Jn(s) + F (xn)∥22 = 0. (5.10)

If the Jacobian has full-rank there is a unique solution sn of ∥Jn(s) + F (xn)∥22 = 0
and it is called the Gauss-Newton direction. This solution can be found using the
QR-decomposition of the Jacobian Jn. For, let Qn ∈ O(m) be orthogonal and Rn ∈
Mm×k(R) be upper triangular with QnRn = Jn. Then

∥Jn(s) + F (xn)∥22 = ∥QnRns+ F (xn)∥22 = ∥Rns+ F (xn)∥22,

thus s is a root if and only if Rns = −F (xn), which can be solved easily by backward
substitution since Rn is upper triangular.

When the Jacobian does not have full-rank or the rank is not known, the practical
computation of the QR-factorization of Jn might be troublesome [13, Section 4.7.2].

A different approach to find the roots of F : Rk → Rm, k ≥ m, comes from
optimization theory, where an overdetermined system of equations is not expected to
have an exact solution and one looks for a “best-possible” approximation. Write F =
(f1, . . . , fm) where each fi : Rk → R is real valued. Then the roots of F are the roots
of its (squared) 2-norm g(x) = ∥F (x)∥22 =

∑m
i=1 fi(x)

2, and one can look for points
x ∈ Rm which minimize it. Such points are solutions of the least squares problem

minimize
x∈Rk

m∑
i=1

fi(x)
2, (5.11)

which is also solved with iterative methods. In fact one often uses Newton methods: in
each iteration xn approximate the function g to be minimized with its quadratic Taylor
expansion

g(xn + s) ∼ mn(s) := g(xn) +∇g(xn)
T s+

1

2
sT∇2g(xn)s,

then look for points where the gradient∇mn(s) vanishes (which is a necessary condition
for local minimizer of mn [32, Theorem 2.2]), so the next iteration point will be xn+1 =
xn + sn where sn solves the Newton equation ∇2g(xn)s = −∇g(xn). If the Hessian
∇2g(xn) is positive definite, then sn is a minimum of mn (and not only a stationary
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point), otherwise one can use modified Newton methods [13, Section 4.4.2]. For least
squares problems as (5.11), the gradient and Hessian matrix of g have a special structure
which allows for ad-hoc methods. We shall remark two of these: the Gauss-Newton
method and the Levenberg-Marquardt method, both based on an approximation of the
Hessian of g. In fact, when the function g is a sum of squares g(x) = ∥F (x)∥22 =∑m

i=1 fi(x)
2, the Newton equation becomes

(JT
n Jn +Q(xn))s = −JT

n F (xn),

where Jn is the Jacobian of F = (f1, . . . , fm) at xn and Q(x) =
∑m

i=1 fi(x)∇2fi(x).
The Gauss-Newton method consists in approximating at each step the Hessian of g by
JT
n Jn, that is solving JT

n Jns = −JT
n F (xn) (compare with equation (5.9)).

Alternatively, in the Levenberg-Marquardt method the search direction is defined
as the solution of the equation

(JT
n Jn + λnI)s = −JT

n F (xn),

where λn is a non-negative scalar. It can be shown [32, Lemma 10.2] that for some
scalar ∆ related to λn, the solution s coincides with the solution of the constrained
problem

min
s∈Rn

∥JnF (s) + F (xn)∥22, subject to ∥s∥2 ≤ ∆.

(compare with (5.10)). We refer to Chapter 10 of [32] and Chapter 4 of [13] for more
details on the matter.

Mathematica has the built-in function FindMinimum[], which given a 2-tuple
(g, {{x1, X1}, . . . , {xk, Xk}}) consisting of a function g : Rk → R on k variables
x1, . . . , xk and a point (X1, . . . , Xk) ∈ Rk, outputs both the minimum of the function g
and the coordinate point at which this minimum is attained. When the function to be
minimized is a sum of squares FindMinimum uses the Levenberg-Marquardt method.

The result is a representation ϕ1 = (a1, b1, c1) distinct and not conjugate to (a0, b0, c0)
(we check it by finding some γ ∈ ∆ such that tr(ϕ1(γ)) ̸= tr(ϕ0(γ)).
Step 2. Find a parameter u for the trace field. This parameter is chosen as the
trace tr(ϕ(γ))) of some γ ∈ ∆ and must vary as the representations vary from ϕ0,
which can be checked by looking at the traces of the new representation found in
Step 1. We see that the trace of a1b1c1 varies. Moreover, if we add the constraint
on the trace of abc to be a rational value close to tr(a0b0c0), then the other traces
appear to be roots of a cubic or a (even) sextic polynomials. We shall explain what
we mean by “appear to be”. We perform Newton’s method of Step 1 again, this
time forcing it to converge to a representation ϕ1 = (a1, b1, c1) for which tr(a1b1c1) is a
chosen rational value u1 ∈ Q close to tr(a0b0c0). This is achieved by adding the function
fu1(a, b, c) = tr(abc)−u1 to the defining relations Rel. To see that all other traces of ϕ1

are now algebraic, we use the Mathematica built-in function MinimalPolynomial[],
which returns the minimal polynomial of any given algebraic number, in combination
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i pi(x)
1 −5181147932147786921984 + 222226846575612031040x− 2685096464057949250x2 + 9951751411884375x3

2 −5496249128085036664921 + 235748574930150517860x− 2848543233924582000x2 + 10557772680600000x3

3 −1942386854379992099232 + 83316361651585391520x− 1006732767909610250x2 + 3731413426653125x3

4 −6174510592732205598809 + 264855366748257496640x− 3200388189726208000x2 + 11862365798400000x3

5 −418492551608252416 + 17951693275434240x− 216924739463250x2 + 804057384375x3

6 −2307044317202712041643 + 98965735557248165580x− 1195908964386386000x2 + 4432872225800000x3

7 −7321756173859152813536 + 314090792399680657760x− 3795577727153980750x2 + 14069347048584375x3

8 −7741520509871087632081 + 332106236619655862160x− 4013367792174432000x2 + 14876946777600000x3

9 −2727050232352882956288 + 116991557137506444480x− 1413824577888749750x2 + 5240937846378125x3

10 −553049079128041409 + 23726598724572260x− 286738099318000x2 + 1062936600000x3

Table 5.1: Minimal polynomials of tr(abcabc) at selected points ui.

with RootApproximant[], which approximates a high-accuracy numeric value by an
algebraic number. So we feed a trace t = tr(γ1), where γ1 is word in the generators
a1, b1, c1, to MinimalPolynomial[RootApproximant[·]] and if t is (close to) an algebraic
number, the output is a polynomial in Z[x] of which t is a root. As pointed out in [12],
the input t is always rational if interpreted literally and one should consider unreliable
any polynomial whose coefficients are excessively large. Concretely, the exact value of
tr(a0b0c0) is 5

√
3 ≈ 8.66025 and we set u1 = 86/10 + 1/101. After converging to a

representation ϕ1, the minimal polynomial of tr(a1b1c1a1b1c1) is

−5181147932147786921984 + 222226846575612031040x− 2685096464057949250x2 + 9951751411884375 + x3,

and all the traces of (5.8) also have plausible minimal polynomials of low (3 or 6) degree.
To further confirm our guess that u = tr(abc) is a suitable parameter, we repeat

the above procedure for the sequence of rational values ui = 86/10 + 1/(100 + i),
i = 1, . . . , 20. The first ten minimal polynomials for the trace of γ = abcabc are
displayed in Table 5.1.
Step 3. We proceed to interpolate the thirty polynomials. For each i = 1, . . . , 20 the
trace tr(ϕi(abcabc)) has a minimal polynomial pi(x) of the form

pi(x) = ai + bix+ cix
2 + x3,

with ai, bi, ci ∈ Q and the minimal polynomial of tr(ϕ(abcabc)) is expected to be in
Q(u)[x], which means that the coefficients of pi(x) should each be the evaluation at
ui of a rational function in u (we normed the polynomials of Step 2 to have leading
coefficient 1). We use polynomial interpolation over the ui’s to find a, b, c ∈ Q[u] with

a(ui) = ai, b(ui) = bi, c(ui) = ci.

The result is

1

3
(32u2 + 86u4 − 5u6) + (−20u2 +

13

3
u4)x+ (2− 11

3
u2)x2 + x3.
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Step 4. Find a basis for the trace field as an extension of finite degree over the field
Q(u). Let τ be the trace of abcabc (Cardano’s formulas give an expression for τ = τ(u),
see discussion in Section 5.4) and let σ be the trace of abac. We check that σ is algebraic
over Q(u)(τ). A basis of Q(u)(τ) over Q(u) is given by {1, τ, τ 2}, and we hope to find
an expression2

σ2 = a1(u) + a2(u)τ + a3(u)τ
2,

with a1, a2, a3 ∈ Q[u]. For every 1 ≤ i ≤ 20 the integer relation detector algorithm
FindIntegerNullVector finds integers ai0, a

i
1, a

i
2, a

i
3 ∈ Z such that

ai0σ
2
i = ai1 + ai2τi + ai3τ

2
i , (5.12)

where σi = tr(aibiaici) and τi = tr(aibiciaibici). If these integers are not excessively large
one can reasonably believe to be on the correct path and proceed with the polynomial
interpolation of the coefficients. For each 0 ≤ j ≤ 3 polynomial interpolation of the data
(u1, a

1
j), . . . , (u20, a

20
j ) results in a polynomial aj(u) ∈ Q[u] such that aj(ui) = aij for all

1 ≤ i ≤ 20. Some remarks are in order here. For every i the relation (5.12) is preserved
under multiplication by any constant and in fact it is necessary to interpolate after an
appropriate “normalization” ki. To see why and how to determine the multipliers ki,
let us consider the coefficient a0, which we denote by a. The goal is to approximate the
integer values ai ∈ Z with a polynomial in the rational variable ui. This can almost
surely not be done: suppose that there exists a polynomial a(u) = α0+α1u+. . .+αmu

m

with a(ui) = ai. Write ui = ni/di with ni, di ∈ Z, then it must hold

Z ∋ ai = α0 + α1
ni

di
+ . . .+ αm

nm
i

dmi
,

which is only possible if the coefficients αk are very large. Therefore it is more sensible
to interpolate the values ai/dmi , where di ∈ Z is the denominator of ui and m is the
expected degree of the polynomial (in practice one starts with m = 1 and increases it
until the interpolation is successful). In the current example m = 2 seems to work.

Table 5.2 contains the output of FindIntegerNullVector for the coefficient a = a1,
divided by the denominator of u2. We denote this value by ã. It is clear that no
polynomial can fit these data, but many of them (ã1, ã3, ã4, ã6, ã7, ã9, . . .) seem to lie
(up to sign) on a curve. We fit a polynomial q(u) to these data points. The desired
polynomial might have higher degree than q(u), but we hope that it will be a close
approximation. This is given support by the fact that q(ui)/ã

i is an integer for all data
points, and we take these integers as our multipliers ki. The list of the 20 multipliers ki is
given in Table 5.2, alongside the ãi. Interpolating (ui, ki · ãi)1≤i≤20 gives the polynomial
a(u) = 3u2 + 6. The same procedure for all the coefficients gives

2σ2 = 3u2 + 6 + 3τ.

We conjecture that a basis over Q(u) for the trace field is {1, τ, τ 2, σ, στ, στ 2} and
we go ahead checking it. The strategy is analogous as the above. For each trace

2One might need to experiment with different traces.
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i ãi ki
1 -228.391 1
2 76.1287 -3
3 228.381 -1
4 -228.376 1
5 -76.1239 3
6 -228.367 1
7 -228.363 1
8 76.1193 -3
9 228.354 -1
10 228.349 -1

i ãi ki
11 76.115 -3
12 -228.341 1
13 -228.337 1
14 -76.111 3
15 -228.329 1
16 -228.325 1
17 -76.1071 3
18 228.318 -1
19 228.314 -1
20 -76.1034 3

Table 5.2: Interpolation data for the coefficient a0 of the trace σ = tr(abac).

tr(abc) = u tr(abcac) = −u
4
σ + 1

4u
τσ

tr(abcabc) = τ tr(acbcb) = −u2σ+στ
4u

tr(abac) = σ tr(acabcb) = −1
2
(3u2 + 2) + 1

2
τ

tr(cacb) = 1
2
(u2 − 2)− 1

2
τ tr((ac)2bcb) = 19

4
u− 5

8
u3 + (u− 3

4u
)τ − 3

8u
τ 2

Table 5.3: Traces of the words necessary to determine the trace field.

t of (5.8) we run the integer relation detector FindIntegerNullVector on the vector
(t, 1, τ, τ 2, σ, στ, στ 2) and interpolate the resulting coefficients over the data points. In
this way we obtain a generic relation p0(u)t + p1(u) + p2(u)τ + . . . + p6(u)στ

2 = 0,
where each pi is a polynomial in u with integer coefficients, and we record that t =
−p1(u)

p0(u)
− p2(u)

p0(u)
τ − . . . − p6(u)

p0(u)
στ 2. The results for the eight traces of (5.8) are presented

in Table 5.3.
Step 5. By Lemma 5.1.4 we can conjugate our family of representations ϕt in the
normal form of Proposition 5.1.1, so that

ϕt(a) =


−1 0 0 0
0 −1 0 0
−2 0 1 0
0 2 0 1

 , ϕt(c) =


1 0 −2k 0
0 1 0 2(1− k)
0 0 −1 0
0 0 0 −1

 .

with k = cos2(π/8) = 1
2
(2+

√
2). By Corollary 5.1.2 we can conjugate again preserving

the normal form of ϕt(a) and ϕt(c), so that the (1, 2)-entry of ϕt(b) is equal to 1 and
all other entries are in the trace field (extended by

√
2).

So we use the proof of Proposition 5.1.1 to compute each matrix ϕt(b) (after conju-
gation) by solving two linear systems of equations which involve only some traces for
which we have generic expressions in Q(

√
2)(u)(τ, σ) by the previous steps. Inserting

these generic expressions and solving the systems gives a generic expression for b with
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b11 =
(
(−4 + 2

√
2− 2

√
2u+ u2)− τ + σ 1

2
(u− 4)− τσ 1

2u

) √
2+1
8

b13 =
(
(2 + 2

√
2u− u2) + τ + σ 1

2
(2
√
2− u) + τσ 1

2u

)
1+

√
2

8

b22 =
(
(4 + 2

√
2− 2

√
2u− u2) + τ − σ 1

2
(u− 4) + τσ 1

2u

) √
2−1
8

b24 =
(
(2− 2

√
2u− u2) + τ − σ 1

2
(2
√
2 + u) + τσ 1

2u

) √
2−1
8

b31 =
(
u(u− 4)− τ + σ u−4√

2
− τσ 1√

2u

)
1
4

b33 =
(
(4− 2

√
2 + 2

√
2u− u2) + τ − σ 1

2
(u− 4) + τσ 1

2u

) √
2+1
8

= −b11

b42 =
(
−u(u− 4) + τ + σ u−4√

2
− τσ 1√

2u

)
1
4

b44 =
(
(−4− 2

√
2 + 2

√
2u+ u2)− τ + σ 1

2
(u− 4)− τσ 1

2u

) √
2−1
8

= −b22

Table 5.4: Generic entries of b obtained by solving the first linear system of Proposition
5.1.1.

coefficients in Q(
√
2)(u)(τ, σ). Going into more detail, we can find an invertible matrix

M1 ∈ GL(8,Q(
√
2)) such that

M1 ·



b11
b13
b22
b24
b31
b33
b42
b44


=



tr b
tr cb
tr ab
tr abc
tr acb
tr abac
tr cacb
tr abcac


.

We express the traces on the right-hand-side as elements of Q(u)(τ, σ), solve the system
and get expression for b11, . . . , b44 in Q(

√
2)(u)(τ, σ). These are given in Table 5.4.
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Then we find another invertible matrix M2 ∈ GL(16,Q(
√
2)) such that

M2 ·



b12b21
b14b21
b12b23
b14b23
b21b32
b23b32
b21b34
b23b34
b12b41
b14b41
b32b41
b34b41
b12b43
b14b43
b32b43
b34b43



=



tr(b2)
tr(ab2)
tr(acb2)
tr(acab2)
tr((ac)2b2)
tr((ac)2ab2)
tr((ac)3ab2)
tr(acbcb)
tr(acabcb)
tr((ac)2bcb)
tr((ac)2abcb)
tr((ac)3abcb)
tr(acbab)

tr((ac)2bab)
tr((ac)2abab)
tr(acbacb)



+ terms in R(u)(τ, σ). (5.13)

We express the traces on the right-hand-side as elements of Q(u)(τ, σ), solve the system
and get expression for the products b12b21, . . . , b34b43 in Q(

√
2)(u)(τ, σ). Since we are

looking for an expression of b after a conjugation for which b12 = 1 we can recursively
find all the remaining coefficients of b from the above products: we get directly the
entries b21, b23, b41 and b43 and the remaining unknown entries b14, b32 and b34 can be
obtained multiplying by the inverse of b21. The field Q(

√
2)(u)(τ, σ), as vector field

over Q(
√
2)(u), has basis

{1, τ, τ 2, σ, στ, στ 2}.

We find expressions in this basis for the inverse of b21 using the following algebraic
methods (cfr. [15, Example 7.3.8]). LetK be a field. Then any two nonzero polynomials
f, g ∈ K[x] have a greatest common divisor h ∈ K[x] of the form h = af + bg with
a, b ∈ K[x] [15, Theorem 1.8.6]. From this we deduce

Proposition 5.3.1. Let α be algebraic over K with minimal polynomial f(x) ∈ K[x]
and β ∈ K(α) = K[α] with g(x) ∈ K[x] such that g(α) = β. Then there are a, b ∈ K[x]
such that 1 = af + bg. In particular, 1 = a(α)f(α) + b(α)g(α) = b(α)g(α) and b(α) ∈
K[α] is the inverse of g(α) = β.

Proof. Let h ∈ K[x] be the greatest common divisor of f, g of the form h = af + bg for
some a, b ∈ K[x] [15, Theorem 1.8.6]. Since f is monic and irreducible, either h = 1 or g
is a multiple of f . But since f(α) = 0 and 0 ̸= β = g(α), it must hold h = 1. It follows
1 = a(α)f(α) + b(α)g(α) = b(α)g(α) and b(α) ∈ K[α] is the inverse of g(α) = β.

The polynomials a, b as in Proposition 5.3.1 can be computed with the Euclidean
algorithm using polynomial division with remainder. Suppose that deg(f) ≥ deg(g),
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then do repeated division with remainder each time obtaining a remainder of smaller
degree:

f = q1g + g1

g = q2g1 + g2

g1 = q3g2 + g3
...

gr−2 = qrgr−1.

One can show [15, Proposition 1.6.11] that gr−1 ̸= 0 is the greatest common divisor of

g and f . Moreover, for 1 ≤ i ≤ r, let Qi =

(
0 1
1 −qi

)
and set Q = Q1 · . . . · Qr ∈

GL(2, K[x]). Then
Q11f +Q21g = gr−1

and thus gr−1 ∈ K and b = Q21/gr−1.
In our setting, we apply the above to K = Q(

√
2)(u)(τ), α = σ (with minimal

polynomial f over K of degree 2) and β = b21 ∈ K[σ]. The polynomial g ∈ K[x]
with g(σ) = b21 is (necessarily) of degree 1, so the Euclidean algorithm stops with
g1 ∈ Q(

√
2)(u)(τ), q1, q2 ∈ Q(

√
2)(u)(τ)[x]. It holds (Q1Q2)21 = −q1, thus the inverse

of b21 is −q1(σ)/g1.
The element 1/g1 ∈ Q(

√
2)(u)(τ), i.e. the inverse of g1 in Q(

√
2)(u)(τ), can be

computed in the same way, this time over the field K = Q(
√
2)(u).

The matrix entries b21, b23, b41, b43, b14, b32, b34 are given in Appendix C.
Step 6. In Step 5 we produced a generic matrix b with entries in Q(

√
2)(u)(τ, σ)

which together with the matrices a, c in the standard form of Proposition 5.1.1 should
describe a triangle group representation. We check using the formal algebra capabilities
of Mathematica that indeed a, b, c satisfy the triangle group relations b2 = 1 and (ab)3 =
−id, (bc)4 = −id.
Step 7. The matrix b is not (anti)symplectic, because it is obtained after a conjugation
which maps outside of GSp(4,R). The final task is therefore to conjugate back. As
explained in Step 7 of the previous Section 5.2 we find y ∈ Q(

√
2)(u)(τ, σ) such that

bTΩyb = −Ωy, where

Ωy =

(
1
1/y

−1
−1/y

)
.

Notice that 1/y ∈ Q(
√
2)(u)(τ, σ) as well. The expressions for y and 1/y are given in

Appendix C. With x = ±√
y and qx = diag(1, x, 1, x) the matrix q−1

x bqx is antisymplec-
tic with respect to the standard form and together with a, c in normal form it generates
a triangle group. The base representation is obtained for x = −√

y. Finally we get an
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expression

b =


b11 b12x b13 b14x

b21/x b22 b23/x b24
b31 b32x b33 b34x

b41/x b42 b43/x b44


where the entries bij are the one obtained in Step 5 and are given in Appendix C.

5.4 About the parameters

We have a description of representations close to (a conjugate of) the base representation
ϕ0 for which the images of a and c are fixed and b varies in the parameters u, τ, σ, where
τ = τ(u) and σ = σ(τ) are such that

f(τ) =
1

3
(32u2 + 86u4 − 5u6) + (−20u2 +

13

3
u4)τ + (2− 11

3
u2)τ 2 + τ 3 = 0,

g(σ) = σ2 − 1
2
(3u2 + 6 + 3τ) = 0.

Any cubic root τ of f and any square root σ of g define a triangle group representation.
Cubic roots are given explicitly by Cardano’s formulas. Since we are interested in
describing representations close to the base representation ϕ0, we look at which values

we get when we insert u0 = tr(ϕ0(abc)), and we see that σ = +
√

1
2
(3u2 + 6 + 3τ).

Remark 5.4.1 (Analysis of the parameter τ). The roots of the cubic polynomial

f(x) =
1

3
(32u2 + 86u4 − 5u6) + (−20u2 +

13

3
u4)x+ (2− 11

3
u2)x2 + x3

are given according to Cardano’s formula [36, §I.5] by

t1(u) = S + T − 1
3
a1

t2(u) = −1
2
(S + T )− 1

3
a1 +

1
2
i
√
3(S − T )

t3(u) = −1
2
(S + T )− 1

3
a1 − 1

2
i
√
3(S − T )

where a1 = 2− 11
3
u2, a2 = −20u2 + 13

3
u4, a3 =

1
3
(32u2 + 86u4 − 5u6) and

Q =
3a2 − a21

9
, R =

9a1a2 − 27a3 − 2a31
54

,

S =
3

√
R +

√
Q3 +R2, T =

3

√
R−

√
Q3 +R2.

The expression ∆ = Q3 +R2 is the discriminant of f(x), which in this case is given by

∆ = − 256
2187

(u2(−3 + u2)2(−3− 74u2 + u4)).
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u
u0u1u20 ∆ < 0 ∆ > 0

t1(u), t2(u), t3(u) ∈ R
t3(u0) = tr(a0b0c0a0b0c0)

t2(u1) = t3(u1)

t2(u), t3(u) ∈ C \ R
t1(u) ∈ R

Figure 5.2: Description of the parameter τ(u).

u1
8.59 8.60 8.61 8.62 8.63 8.64 8.65 8.66

20

40

60

80

100

120

Figure 5.3: Roots of the minimal polynomial of the trace τ = tr(abcabc).

Since for u ∈ R the cubic polynomial f(x) has real coefficients it holds

∆ = 0 ⇔ two roots of f coincide,

∆ > 0 ⇔ f has one real root and two non-real conjugate roots,

∆ < 0 ⇔ f has three real roots.

The real roots of ∆ are u1 =
√

37 + 14
√
7, u2 =

√
3, 0, and −u2,−u1:

u
u0u1u20

∆ > 0 ∆ > 0 ∆ < 0

For u ≥ u1 all t1(u), t2(u), t3(u) ∈ R and t3(u0) = tr(a0b0c0a0b0c0). That is, the
choice τ = t3(u) describes the Hitchin component in b. When −u1 < u < u1 the only
real root is t1(u) and t1(u1) ̸= t3(u1), which means that the function t3(u) describing
the parameter τ can not be continuously continued for values smaller than u1. The
situation is represented in Figure 5.2. The three roots t1(u), t2(u), t3(u) nearby u1 are
printed out in Figure 5.3.
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A. Group cohomology with twisted
coefficients

Let G be a Lie group with Lie algebra g, Γ be a finitely generated group and ρ : Γ → G
be a homomorphism. In this section we recall the definition of the cohomology groups
H∗(Γ, g)ρ with coefficients in g twisted by the Adjoint action of ρ. Then we describe
how these groups behave when we restrict ρ to a finite index subgroup Γ′ ≤ Γ and when
we project G onto PG := G/C(G). That is, we express the relation between H∗(Γ, g)ρ
and H∗(Γ′, g)ρ◦i and H∗(Γ,Lie(PG))π◦ρ, where i : Γ′ → Γ is the inclusion of the finite
index subgroup and π : G → G/C(G) is the projection.

A.1 Group cohomology with coefficient in a Γ-module

We first recall the definition of the group cohomology of Γ with coefficients in a Γ-module
V . Let Γ be a group which acts on a module V via a homomorphism ρ : Γ → Hom(V ).
We denote the action by γ · v := ρ(γ)(v). Then H∗(Γ, V )ρ is the cohomology of the
complex

(
C̄n(Γ, V ), ∂̄n

)
n
, where

C̄0(Γ, V ) = V,

C̄n(Γ, V ) = {f : Γn → V },

and the differential ∂̄n : C̄n(Γ, V ) → C̄n+1(Γ, V ) is given by

∂̄0(v)(γ) = γ · v − v,

∂̄n(f)(γ1, . . . , γn+1) = γ1 · (f(γ2, . . . , γn+1)) +
n∑

i=1

(−1)if(γ1, . . . , γiγi+1, . . . , γn+1)

+ (−1)n+1f(γ1, . . . , γn).

An element f ∈ C̄n(Γ, V ) is a n-cocycle if ∂̄n(f) = 0. The space of n-cocycles is

Zn(Γ, V ) = ker ∂̄n ⊂ C̄n(Γ, V ).

An element f ∈ C̄n(Γ, V ) is a n-coboundary if there exists g ∈ C̄n−1(Γ, V ) with
∂̄n−1(g) = f . The space of n-coboundaries is

Bn(Γ, V ) = im ∂̄n−1 ⊂ C̄n(Γ, V ).
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Since ∂̄n ◦ ∂̄n−1 = 0 it holds Bn ⊂ Zn and the group cohomology of Γ with coefficients
in V is

Hn(Γ, V )ρ = ker ∂̄n/ im ∂̄n−1 = Zn/Bn.

We remark that the chain complex
(
C̄∗(Γ, V ), ∂̄∗) is called the bar resolution. It is

isomorphic to the complex
(
C∗(Γ, V )Γ, ∂∗) of Γ-invariant functions f : Γn+1 → V ,

where Γ acts on Cn(Γ, V ) by

(γ · f)(x0, . . . , xn) := γ ·
(
f(γ−1x0, . . . , γ

−1xn)
)
,

with differential ∂n(f)(x0, . . . , xn+1) :=
∑n+1

i=0 (−1)if(x0, . . . , x̂i, . . . , xn+1).
The isomorphism is given by

C̄n(Γ, V ) → Cn(Γ, V )Γ

f 7→
(
(x0, . . . , xn+1) 7→ x0 ·

(
f(x−1

0 x1, . . . , x
−1
n−1xn)

))
.

We remark the following properties of 1-cocycles.

Lemma A.1.1. For every 1-cocyle f ∈ Z1(Γ, V ) it holds

(i) f(e) = 0.

(ii) For every γ ∈ Γ: f(γ−1) = γ−1 · (−f(γ)).

(iii) For all γ1, . . . γk ∈ Γ

f(
k∏

i=1

γi) = f(γ1) +
k−1∑
i=1

(γ1 . . . γi) · f(γi+1).

Proof. (i) Since ∂
1
f = 0, we have 0 = ∂

1
(f)(e, e) = e · f(e)− f(e · e) + f(e) = f(e).

(ii) Since ∂
1
f = 0, using (i) we have 0 = ∂

1
(f)(γ, γ−1) = γ ·f(γ−1)−f(γγ−1)+f(γ) =

γ · f(γ−1) + f(γ) and thus f(γ−1) = γ−1 · (−f(γ)).

(iii) We proceed by induction. The claim holds for k = 2 by definition of 1-cocycle.
Thus suppose that it holds for k. Then by induction and since f is a 1-cocyle

f(
k+1∏
i=1

γi) = f(
k∏

i=1

γi) · f(γk+1)γi+1)

= (
k∏

i=1

γi) · f(γk+1) + f(
k∏

i=1

γi)

= (
k∏

i=1

γi) · f(γk+1) + f(γ1) +
k−1∑
i=1

(γ1 . . . γi) · f(γi+1)

= f(γ1) +
k∑

i=1

(γ1 . . . γi) · f(γi+1).
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A.2 Group cohomology with twisted coefficients

Let G be a Lie group with Lie algebra g, Γ be a finitely generated group and ϕ :
Γ → G be a representation. Then using the adjoint representation of G we obtain a
homomorphism AdG ◦ϕ : Γ → GL(g). We denote the space of n-cocycles by

Zn(Γ, g)ϕ = {u : Γn → g | ∂n
(u) ≡ 0},

and the space of n-coboundaries by

Bn(Γ, g)ϕ = {u : Γn → g | ∃v : Γn−1 → g with ∂
n−1

(v) = u}.

The resulting cohomology group is called the cohomology of Γ with coefficients twisted
by the Adjoint representation and we denote it by

H∗(Γ, g)ϕ := H∗(Γ, g)AdG ◦ϕ.

We denote by ZG(ϕ) the centralizer in G of the representation ϕ, that is,

ZG(ϕ) = {g ∈ G | gϕ(γ) = ϕ(γ)g ∀γ ∈ Γ}.

The Lie algebra of ZG(ϕ) can be characterized with the kernels of the linear maps
AdG(ϕ(γ))− idg : g → g, γ ∈ Γ. In fact we have

Lemma A.2.1. For a subset S ⊆ G denote by ZG(S) = {g ∈ G | gs = sg ∀s ∈ S} its
centralizer. Then

LieZG(S) =
⋂
s∈S

ker(AdG(s)− idg).

Proof. Let exp : g → G denote the Lie group exponential map. Then we have

LieZG(S) = {X ∈ g | exp tX ∈ ZG(S)∀t ∈ R}
= {X ∈ g | s exp tXs−1 = exp tX ∀s ∈ S,∀t ∈ R}

⊆ {X ∈ g :
d

dt

∣∣
t=0

s exp tXs−1 =
d

dt

∣∣
t=0

exp tX ∀s ∈ S}

= {X ∈ g : decsX = X ∀s ∈ S}
= {X ∈ g : AdG(s)X = X ∀s ∈ S}.

The inclusion is in fact an equality: Suppose that d
dt

∣∣
t=0

s exp tXs−1 = d
dt

∣∣
t=0

exp tX,
this means that t 7→ exp tX and t → s exp tXs−1 have the same initial velocity. Since
they are both one-parameter subgroups of G, they must agree.

We deduce the following characterization of the 0th cohomology group.

Proposition A.2.2. H0(Γ, g)ϕ = LieZG(ϕ).

Proof. By definition the spaceH0(Γ, g)ϕ is the kernel of the linear map ∂̄0 : g → C
1
(Γ, g)

which for X ∈ g, γ ∈ Γ is defined by ∂
0
(X)(γ) = Adϕ(γ)X −X. The result follows by

Lemma A.2.1 applied to the subgroup S = ϕ(Γ) ⊆ G.
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A.3 Group cohomology of finite groups

Lemma A.3.1. Let F be a finite group acting on a module V via a homomorphism
ρ : F → Hom(V ). Then Hk(F, V )ρ = (0) for all k ≥ 1.

Proof. We first notice that the chain complex (C∗(F, V ), ∂∗)∗ is exact. Indeed, let
f ∈ Ck(F, V ) be a cocycle, that is f : F k+1 → V so that for any (x0, . . . , xk+1) ∈ F k+1

∂kf(x0, . . . xk+1) =
k+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xk+1) = 0.

Fix x0 ∈ F and define g : F k → V by g(x1, . . . , xk) := f(x0, x1, . . . , xk). Then

∂k−1g(x1, . . . , xk+1) =
k+1∑
i=1

(−1)i−1g(x1, . . . , x̂i, . . . , xk+1)

=
k+1∑
i=1

(−1)i−1f(x0, x1, . . . , x̂i, . . . , xk+1)

=
k+1∑
i=0

(−1)i−1f(x0, . . . , x̂i, . . . , xk+1) + f(x1, . . . , xk+1)

= −∂kf(x0, . . . , xk+1) + f(x1, . . . , xk+1)

= f(x1, . . . , xk+1).

The group cohomology H∗(F, V )ρ is computed by the cochain complex C∗(F, V )F of
F -invariant cochains. Let f ∈ Ck(F, V )F be a F -invariant coycle, then by the above
there is g ∈ Ck−1(F, V ) such that ∂k−1(g) = f . Define g̃ := 1

|F |
∑

x∈F x · g. Then g̃ is
F -invariant and

∂k−1g̃ =
1

|F |
∑
x∈F

∂k−1(x · g) = 1

|F |
∑
x∈F

x · ∂k−1(g) =
1

|F |
∑
x∈F

x · f = f.

A.4 Group cohomology of finite index subgroup

Let Γ′ ≤ Γ be a finite index subgroup and denote by i : Γ′ → Γ the inclusion and let
ρ : Γ → Hom(V ) be a homomorphism. Then the cochain map

in : C̄n(Γ, V ) → C̄n(Γ′, V )

f 7→ f ◦ (i× . . .× i) = f
∣∣
(Γ′)n

induces a map in cohomology

Hn(i∗) : Hn(Γ, V )ρ → Hn(Γ′, V )ρ◦i.
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Proposition A.4.1. Hn(i∗) : Hn(Γ, V )ρ → Hn(Γ′, V )ρ◦i is injective in every degree n.

Proof. Let i : Γ′ ↪→ Γ be a subgroup. We want to show that the cochain map

in : Cn(Γ, V )Γ → Cn(Γ′V )Γ
′

induces an injective map in cohomology in every degree n. We write in are the compo-
sition of the inclusion

jn : Cn(Γ, V )Γ ↪→ Cn(Γ, V )Γ

with the restriction map

resn : Cn(Γ, V )Γ
′ → Cn(Γ′, V )Γ

′

f 7→ f
∣∣
Γ′×...Γ′ .

The latter induces an isomorphism in cohomology. So we consider the commutative
diagram

Cn(Γ, V )Γ Cn(Γ, V )Γ
′

Cn(Γ′, V )Γ
′

jn

in
resn

which in cohomology induces

Hn(Γ, V )ρ Hn(C∗(Γ, V )Γ
′
)

Hn(Γ′, V )ρ◦i.

Hn(j∗)

Hn(i∗)
Hn(res∗)∼=

To show that Hn(i∗) is injective it suffices to define a left-inverse Ln : Hn(Γ′, V )ρ◦i →
Hn(Γ, V )ρ of Hn(i∗), so that Ln ◦ Hn(i∗) = idHn(Γ,V )ρ . By the commutativity of the
above diagram it suffices to define a cochain map

T n : Cn(Γ, V )Γ
′ → Cn(Γ, V )Γ

such that T n ◦jn = idCn(Γ,V )Γ . Indeed, given such T n we set Ln := Hn(T ∗)◦Hn(res∗)−1

to obtain

Ln◦Hn(i∗) = Hn(T ∗)◦Hn(res∗)−1◦Hn(i∗)
⟲
= Hn(T ∗)◦Hn(j∗) = Hn(T ∗◦j∗) = idHn(Γ,V )ρ .

We now define T n : Cn(Γ, V )Γ
′ → Cn(Γ, V )Γ. Let k < ∞ be the index of Γ′ in Γ and

choose representatives Γ′γ1, . . . ,Γ
′γk so that Γ′ \ Γ = {Γ′γ1, . . . ,Γ

′γk}, γi ∈ Γ. Given a
Γ′-invariant map f : Γn+1 → V we define for (x0, . . . , xn) ∈ Γn+1

T n(f)(x0, . . . , xn) :=
1

k

k∑
i=1

(γ−1
i · f)(x0, . . . , xn)

=
1

k

k∑
i=1

γ−1
i · (f(γix0, . . . , γixn)) .

We have to check that
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1. T n(f) is Γ-invariant.

2. T n is a cochain map (i.e. it commutes with the differentials)

3. T n ◦ j = idCn(Γ,V )Γ .

1. Let γ ∈ Γ, (x0, . . . , xn) ∈ Γn+1. Then

(γ · T n(f))(x0, . . . , xn) = γ ·
(
T n(f)(γ−1x0, . . . , γ

−1xn)
)

=
1

k

k∑
i=1

γ ·
(
γ−1
i ·

(
f(γiγ

−1x0, . . . , γiγ
−1xn)

))
=

1

k

k∑
i=1

γγ−1
i · f(γiγ−1x0, . . . , γiγ

−1xn).

We have {Γ′γiγ
−1}ki=1 = {Γ′γj}kj=1, so for each i there is a unique j such that

Γ′γiγ
−1 = Γ′γj. This implies γj(γiγ

−1)−1 = γjγγ
−1
i ∈ Γ′. In particular, ((γjγγ

−1
i )−1)∗f =

f . Thus

f(γiγ
−1x0, . . . , γiγ

−1xn) = ((γjγγ
−1
i )−1)∗f(γiγ

−1x0, . . . , γiγ
−1xn)

= (γjγγ
−1
i )−1 ·

(
f(γjγγ

−1
i γiγ

−1x0, . . . , γjγγ
−1
i γiγ

−1xn)
)

= γiγ
−1γ−1

j · (f(γjx0, . . . , γjxn)) .

Inserting this back in the above summation we get

(γ · T n(f))(x0, . . . , xn) =
1

k

k∑
i=1

γγ−1
i · γiγ−1γ−1

j(i) · f(γj(i)x0, . . . , γj(i)xn)

=
1

k

k∑
i=1

γ−1
j(i) · γiγ

−1γ−1
j(i) · f(γj(i)x0, . . . , γj(i)xn)

=
1

k

k∑
j=1

γ−1
j · f(γjx0, . . . , γjxn)

= T n(f)(x0, . . . , xn).
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2. Let f ∈ Cn−1(Γ, V )Γ
′
and (x0, . . . , xn) ∈ Γn+1, then

T n ◦ ∂n−1(f)(x0, . . . , xn) = T n(∂n−1f)(x0, . . . , xn)

=
1

k

k∑
i=1

γ−1
i · ∂n−1(f)(γix0, . . . , γixn)

=
1

k

k∑
i=1

γ−1
i ·

n∑
j=0

(−1)jf(γix0, . . . , γ̂ixj, . . . , γixn)

=
n∑

j=0

(−1)j
1

k

k∑
i=1

γ−1
i f(γix0, . . . , γ̂ixj, . . . , γixn)

=
n∑

j=0

(−1)jT n−1(f)(x0, . . . , x̂j, . . . , xn)

= ∂n−1(T n−1(f))(x0, . . . , xn)

= ∂n−1 ◦ T n−1(f)(x0, . . . , xn).

3. Let f ∈ Cn(Γ, V )Γ, (x0, . . . , xn) ∈ Γn+1. Then γi · f = f for all i = 1, . . . , k and
therefore

(T n ◦ j)(f)(x0, . . . , xn) = T n(f)(x0, . . . , xn) =
1

k

k∑
i=1

(γ−1
i · f)(x0, . . . , xn)

=
1

k

k∑
i=1

f(x0, . . . , xn)

= f(x0, . . . , xn).

Corollary A.4.2. Let G be a Lie group with Lie algebra g, let ı : π1(S) ↪→ ∆(p, q, r) be
a surface group of finite index in ∆(p, q, r) and ϕ : ∆(p, q, r) → G be a homomorphism.
Then for every n ≥ 0

Hn(i∗) : Hn(∆(p, q, r), g))ϕ → Hn(π1(S), g)ϕ

is injective.
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B. Symplectic actions, Lagrangian
spaces and crossratio

In the context of representations of triangle groups into GSp(2n,R), Lagrangian sub-
spaces emerge as the eigenspaces of the images of the generators. Studying the sym-
plectic action on the set of (pairs, triples, quadruples of) Lagrangians turns out to be
a fruitful method to understand the local behaviour (rigidity) of representations. For
example, Burelle [5] shows that diagonally embedded triangle groups are locally rigid
by exploiting the relationship between the composition of two (Lagrangian) reflections
and the crossratio of the associated reflection subspaces (Proposition B.3.3). Another
rigidity result is Lemma 5.1.4, in which we give a normal form for representations of
dihedral groups which are closed to the (restriction of the) irreducible representation.

We remark that Lagrangian subspaces (with the symplectic action and invariants
thereof) come into play also in the context of surface groups representations, in particu-
lar when studying maximal and Hitchin components. Very roughly, maximal represen-
tations of surface groups are characterized by the existence of an equivariant boundary
map ξ : ∂H2 → Š satisfying a certain maximality condition [6, Theorem 8], where
Š is the Shilov boundary of the symmetric space associated to G = PSp(2n,R) and
coincides with the set of Lagrangian subspaces of R2n. A triple of pairwise transverse
Lagrangian subspaces is called maximal if its Maslov index (which is an integer between
−n and n) attains the maximal possible value. A maximal representation is one such
that the associated boundary map ξ maps positively oriented triples of points in ∂H2

to maximal triples of Lagrangians.
The analysis of the symplectic action on Lagrangian subspaces and the related in-

variants leads to further descriptions of (maximal) representations π1(S) → PSp(2n,R),
for example Alessandrini, Guichard, Rogozinnikov and Wienhard [1] characterize max-
imal representations as the positive locus of framed symplectic representations , Strubel
[37] gives Fenchel-Nielsen coordinates for maximal representations, and Burger and
Pozzetti [7] study representations over a real closed field F which admit a maximal
framing, obtaining a Collar Lemma for maximal representations.

In this chapter we review the symplectic action on tuples of pairwise transverse
Lagrangians, their Maslov index and crossratio. We explain how one associates to the
geometric representation of a triangle group a quadruple of Lagrangian subspaces and
describe its crossratio. Finally we combine the above with the local rigidity of dihedral
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groups to prove Lemma 5.1.4.

B.1 Symplectic action on Lagrangian subspaces

Let R2n be endowed with the standard symplectic form ω(x, y) =
∑n

i=1 xiyn+i −
xn+iyi which with respect to the standard basis e1, . . . , e2n is given by the matrix
Ω2n =

(
0n idn

−idn 0n

)
. We denote by Sp(2n,R) the symplectic group, the subgroup of

GL(2n,R) preserving ω and by GSp(2n,R) the general symplectic group, the subgroup
of GL(2n,R) preserving ω up to sign. It is useful to record that an element ( A B

C D )
belongs to (G)Sp(2n,R) if and only if

ATC − CTA = 0

BTD −DTB = 0

ATD − CTB = (±)1.

A Lagrangian subspace of R2n is an n-dimensional subspace l ⊂ R2n such that ω
∣∣
l×l

≡ 0.

We denote the set of Lagrangian subspaces of R2n by L(2n).
We can associate to any 2n×n matrix M = (X

Y ) of maximal rank the n-dimensional
subspace of R2n spanned by its columns (X, Y are n×n matrices). Right-multiplication
by GL(n,R) identifies matrices which span the same subspace and (X

Y ) is Lagrangian
if and only if XTY is symmetric.

Let l∞ be the Lagrangian subspace spanned by e1, . . . , en and l0 be the Lagrangian
subspace spanned by en+1, . . . , e2n; in the above notation they are respectively l∞ = ( id

0 )
and l0 = ( 0

id ). A subspace (X
Y ) is transverse to l∞ if and only the matrix (X id

Y 0 ) is non-
singular, that is, if Y is non-singular. Thus subspaces transverse to l∞ admit a basis of
the form (X

id ) and they are Lagrangian if and only if X is symmetric. Moreover, they
are transverse to l0 if and only if X is non-singular.

The symplectic group GSp(2n,R) acts on the set of Lagrangian subspaces by left
multiplication. It is well known that the action is transitive and it is also transitive on
pairs of transverse Lagrangians. We give a proof of this fact for completeness.

Lemma B.1.1. The symplectic group Sp(2n,R) acts transitively on pairs of transverse
Lagrangian subspaces.

Proof. Given two transverse Lagrangians l1 and l2 any basis (v1, . . . , vn) of l1 can be
extended (canonically) to a symplectic basis1 (v1, . . . , vn, w1, . . . , wn) of R2n such that
(w1, . . . , wn) is a basis of l2. Let g be the matrix whose columns are the vectors
v1, . . . , vn, w1, . . . , wn. Then gl∞ = l1, gl0 = l2 and g is symplectic since

gTΩ2ng =
(

ω(vi,vj) ω(vi,wj)

−ω(vi,wj) ω(vi,wj)

)
= Ω2n.

1A basis (v1, . . . , vn, w1, . . . , wn) is symplectic if ω(vi, vj) = ω(wi, wj) = 0 and ω(vi, wj) = δij for
all 1 ≤ i, j ≤ n.
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For 0 ≤ p, q ≤ n such that p + q = n let Ip,q =
(

idp 0p×q

0q×p −idq

)
∈ GL(n,R) and denote

by lp,q the Lagrangian subspace spanned by the columns of
(
Ip,q
id

)
.

Lemma B.1.2. Every triple (l1, l2, l3) of pairwise transverse Lagrangian subspaces of
R2n is in the Sp(2n,R)-orbit of (l0, lp,q, l∞) for some p+ q = n.

Proof. Let (l1, l2, l3) be pairwise transverse Lagrangians. By Lemma B.1.1 we can
assume that l1 = l0 and l3 = l∞, so that we consider the (l0, l, l∞) with l transverse to
both l0 and l∞. In particular l has a basis of the form (X

id ) where X is symmetric and
invertible. By Sylverster’s theorem there is S ∈ GL(n,R) such that SXST = Ip,q for

some p + q = n. Then h =
(

S 0
0 (ST )−1

)
∈ StabSp(2n,R)(l0, l∞) and h (X

id ) =
(

SX
(ST )−1

)
=(

Ip,q
id

)
.

Corollary B.1.3. There are n + 1 orbits of Sp(2n,R) in the set of triples of pairwise
transverse Lagrangians.

B.2 Maslov index and crossratio

A fundamental tool in the study of Lagrangian subspaces is the Maslov index.

Definition B.2.1. TheMaslov index of a triple (l1, l2, l3) of (not necessarily transverse)
Lagrangian subspaces of R2n is the signature of the quadratic form Q on the direct sum
l1 ⊕ l2 ⊕ l3 defined by

Q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1).

We denote it by M(l1, l2, l3).

The map M : L(2n)3 → Z, (l1, l2, l3) 7→ M(l1, l2, l3) is called the Maslov or Kashi-
wara cocycle. It follows directly from the definition that M is alternating

M(l1, l2, l3) = −M(l2, l1, l3) = −M(l1, l3, l2),

and invariant under Sp(2n,R). Let l1, l3 be two transverse Lagrangian subspaces, that

is R2n = l1⊕ l3. We denote by p
∥l3
l1

: R2n → l1 the projection onto l1 parallel to l3. Then
we have

Lemma B.2.2 ([24, Lemma 1.5.4]). If l1, l2, l3 ∈ L(R2n) are pairwise transverse, then
M(l1, l2, l3) is the signature of the quadratic form on l2 defined by

Ql1,l2,l3(v) = ω(p
∥l3
l1
(v), v).

Example B.2.3. M(l∞, lp,q, l0) = p− q.

79



Proof. Any v ∈ lp,q is of the form v =
(
Ip,q
id

)
α for some α ∈ Rn (i.e. in the basis given

by the columns of
(
Ip,q
id

)
the vector v is given by α). By the decomposition R2n = l0⊕l∞

there are β, γ ∈ Rn such that (
Ip,q
id

)
α = ( 0

id ) β︸ ︷︷ ︸
p
∥l∞
l0

(v)

+ ( id
0 ) γ︸ ︷︷ ︸

p
∥l0
l∞ (v)

.

It must hold γ = Ip,qα and β = α, which means that p
∥l0
l∞
(v) = ( id

0 ) Ip,qα. It follows

Ql1,l2,l3(v) =
(
Ip,qα
0

)T
Ω ( Ip,qα

α ) = αT Ip,qα,

which means that in the basis given by the columns of
(
Ip,q
id

)
the quadratic form Ql1,l2,l3

is given by Ip,q and has signature p− q.

Corollary B.2.4. The Maslov index classifies Sp(2n,R) orbits of triples of pairwise
transverse Lagrangians. In fact, (l1, l2, l3) is in the Sp(2n,R)-orbit of (l0, lp,n−p, l∞) if
and only if M(l1, l2, l3) = n− 2p.

Proof. Let m ∈ Z be the Maslov index of (l1, l2, l3). By Lemma B.1.2 there are g ∈
Sp(2n,R) and 0 ≤ p ≤ n such that g(l1, l2, l3) = (l0, lp,n−p, l∞). Since the Maslov index
is Sp(2n,R) invariant, it follows by Example B.2.3 that

m = M(l1, l2, l3) = M(l0, lp,n−p, l∞) = −M(l∞, lp,n−p, l0) = −(p− (n− p)) = n− 2p.

Therefore p = (n−m)/2 and the triple is in the orbit of (l0, ln−m
2

,
n+m
2

, l∞).

To describe quadruples of Lagrangian subspaces we need to introduce the crossratio.
We follow the approach of [7]. Let (l1, l2, l3, l4) ∈ L(2n)4 be such that l1 is transverse
to l2 and l3 is transverse to l4.

Definition B.2.5. The crossatio of (l1, l2, l3, l4) is the endomorphism of l1 defined by

R(l1, l2, l3, l4) = p
∥l2
l1

◦ p∥l3l4

∣∣
l1
.

The crossatio has the following equivariance property: for all g ∈ GL(2n,R), we
have

R(gl1, gl2, gl3, gl4) = gR(l1, l2, l3, l4)g
−1.

Fixing a basis for l1 we have an explicit expression for R.

Lemma B.2.6 ([7]). (i) Suppose that the columns of
(
Xi
id

)
form a basis Bi for li.

Then the expression for R(l1, l2, l3, l4) with respect to the basis B1 of l1 is given by

R(l1, l2, l3, l4) = (X1 −X2)
−1(X4 −X2)(X4 −X3)

−1(X1 −X3).
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(ii) Suppose that l0, l,m, l∞ are pairwise transverse. Then l and m admit bases of the
form =( L

id ) and m = (M
id ), respectively, and

R(l0, l,m, l∞) = L−1M.

Proof. We prove the second assertion. Since m, l are transverse to l0 and l∞ they
have bases of the stated form, with M and L symmetric and invertible. By definition
R(l0, l,m, l∞) = p

∥l
l0

∣∣
l∞

◦ p∥ml∞
∣∣
l0
, so we compute the two projections with respect to the

bases B0 = ( 0
id ) of l0 and B∞ = ( id

0 ) of l∞.
Let v ∈ l∞ with coordinates α ∈ Rn, so that v = ( id

0 )α. Since l0 ⊕ l = R2n there
are β, γ ∈ Rn such that

( id
0 )α = ( 0

id ) β + ( L
id ) γ.

It must hold α = Lγ and β = −γ = −L−1α. Therefore

p
∥l
l0
(( id

0 )α) = − ( 0
id )L

−1α.

For the other projection, let w ∈ l0 with coordinates α ∈ Rn and β, γ ∈ Rn such that

( 0
id )α = ( id

0 ) β + (M
id ) γ.

Then γ = α and β = −Mγ = −Mα. Therefore

p
∥m
l∞

(( 0
id )α) = − ( id

0 )Mα.

This gives
p
∥l
l0
◦ p∥ml∞ (( 0

id )α) = p
∥l
l0
(− ( id

0 )Mα) = ( 0
id )L

−1Mα

which shows that with respect to the basis B0 of l0, R is given by L−1M .

We end this section by analyzing the orbits of 4-tuples of pairwise transverse La-
grangians. We need the following linear algebra fact.

Lemma B.2.7 ([20, Table 4.5.15T]). Let A,B ∈ GL(n,R) be symmetric. Then A−1B
is real diagonalizable if and only if there is S ∈ GL(n,R) and D1, D2 diagonal matrices
with SAST = D1 and SBST = D2.

Proposition B.2.8. Let (l1, l2, l3, l4) ∈ L(2n)4 be pairwise transverse and suppose that
the crossratio R(l1, l2, l3, l4) is diagonalizable with real eigenvalues (not necessarily dis-
tinct). Then the 4-tuple (l1, l2, l3, l4) is in the Sp(2n,R)-orbit of (l0, lp,n−p, l, l∞), where
l is the column space of ( L

id ) with L invertible and diagonal.

Proof. The diagonal Sp(2n,R)-action conjugates the crossratio and by Corollary B.2.4
we can assume that (l1, l2, l3, l4) = (l0, lp,n−p, l, l∞) for some 0 ≤ p ≤ n. Since l is
transverse to both l0 and l∞ it admits a basis ( L

id ) with L invertible and symmetric.
By Lemma B.2.6 the crossratio is I−1

p,n−pL and it is diagonalizable. So according to
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Lemma B.2.7 there is S ∈ GL(n,R) such that SIp,n−pS
T and SLST are diagonal. Set

g =
(

S 0
0 (ST )−1

)
which is symplectic, fixes l0 and l∞ and it holds

gln,n−p =
(

SIp,n−pST

id

)
, gl =

(
SLST

id

)
.

Thus to conclude the proof it suffices to show that we can choose S such that SIp,n−pS
T =

Ip,n−p. By Sylvester’s theorem SIp,n−pS
T has p positive diagonal entries and the rest

are negative. We can find a permutation matrix P which reorders them so that the
first p diagonal entries r1, . . . , rp are positive and the other ones are negative. Now let
R := diag( 1√

r1
, . . . , 1√

rp
, 1√

|rp+1|
, . . . , 1√

|rn|
). Then

RPSIp,qS
TP TRT = R diag(r1, . . . , rn)R

T = Ip,n−p.

Since RP only permutes and multiplies the diagonal entries of SLST , the matrix
(RPS)L(RPS)T is still diagonal and we can take RPS instead of S to get the de-
sired result.

B.3 Eigenspaces of triangle group representations

Let ∆(p, q, r) = ⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)q = (ac)r = 1⟩ be a hyperbolic
triangle group, so that 1/p+ 1/q + 1/r < 1. Let a0, b0, c0 ∈ SL±(2,R) be the images of
a, b, c under the geometric representation ρ0 : ∆(p, q, r) → GL(2,R) given in (2.1) and
π2n : SL±(2,R) → GSp(2n,R) be the irreducible representation (see Section 2.3). Then
A0 = π2n(a0), B0 = π2n(b0) and C0 = π2n(c0) are lifts in GSp(2n,R) of ϕ0(a), ϕ0(b) and
ϕ0(c) respectively, where ϕ0 : ∆(p, q, r) → PGSp(2n,R) denotes the base representation
(2.6).

Proposition B.3.1. (i) A0, B0 and C0 are antisymplectic and satisfy A2
0 = B2

0 =
C2

0 = id.

(ii) The set of eigenvalues of A0B0 is {e
πi
p
(2n−(2j+1)) | j = 0, . . . 2n− 1}.

The set of eigenvalues of B0C0 is {−e
πi
q
(2n−(2j+1)) | j = 0, . . . 2n− 1}.

The set of eigenvalues of A0C0 is {e
πi
r
(2n−(2j+1)) | j = 0, . . . 2n− 1}.

(iii) (A0B0)
p = (A0C0)

r = −id and (B0C0)
q =

{
id if q is odd,

−id if q is even.

Proof. It is easy to compute from (2.1) that a20 = b20 = c20 = id and that a0, b0, c0 have
determinant −1. Since π2n is a homomorphism it holds A2

0 = B2
0 = C2

0 = id and (2.4)
shows that A0, B0, C0 are antisymplectic. This proves (i).

For (ii) and (iii), since the three elements a0b0, b0c0, c0a0 are diagonalizable (over C),
it suffices to study their eigenvalues and the image under the irreducible representation
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π2n of a diagonal element. Recall that the 2n-irreducible representation is defined by
the action of SL±(2,R) on the vector space of homogeneous polynomials P2n−1[X, Y ]
which for diagonal elements ( a 0

0 d ) ∈ SL±(2,R) is given by(
a 0
0 d

)
X2n−1−jY j = (a2n−1−jdj)X2n−1−jY j, for j = 0, . . . , 2n− 1.

Notice that as j varies the expression is symmetric in a and d. We prove the statements
for A0C0, the argument for other products being analogous. We saw in Remark 2.2.1
that the eigenvalues of a0c0 are eiπ/r, e−iπ/r. Therefore the eigenvalues of A0C0 =
π2n(a0c0) are

(eiπ/r)2n−1−j(e−iπ/r)j = e(iπ/r)(2n−2j−1)

for j = 0, . . . , 2n − 1. This implies that the eigenvalues of (A0C0)
r are e2π(n−j)ie−iπ =

−1.

Corollary B.3.2. A0, B0, C0 ∈ GSp(2n,R) have eigenvalues 1 and −1 and the corre-
sponding eigenspaces are Lagrangian subspaces of R2n.

Proof. Let x be any of A0, B0, C0. By Proposition B.3.1 x2 = id and x is antisymmetric.
Let λ be an eigenvalue of x with eigenvector v. Then λ = ±1 because v = x2v = λ2v.
Let E1(x) and E−1(x) be the corresponding eigenspaces. We show that neither of them
is trivial. Indeed, since x ̸= ±id there are u,w ∈ R2n such that xw − w ̸= 0 and
xu + u ̸= 0, and these are the desired eigenvectors because x(xw − w) = x2w − xw =
−(xw − w) and x(xu + u) = x2u + xu = u + xu. To see that the eigenspaces are
Lagrangian subspaces, let v, w ∈ E1(x). Since x is antisymmetric it holds

ω(v, w) = ω(xv, xw) = −ω(v, w),

thus ω(v, w) = 0. The proof for E−1(x) is identical.

Let l,m ∈ L(2n) be transverse, so that l ⊕m = R2n and denote by p
∥m
l : R2n → l

the projection into l parallel to m, as in Section B.2. The reflection in the pair l,m is
the map

Rm
l = p

∥m
l − p∥lm.

That is, Rm
l is the linear map which is the identity on l and minus the identity on m.

Notice that the imagesA0, B0, C0 under the representation ϕ0 : ∆(p, q, r) → PGSp(2n,R)
of the generators a, b, c are reflections in their eigenspaces.

The following result due to [5] relates the composition of two reflections with the
crossratio.

Proposition B.3.3 ([5, Proposition 3.1]). Let (l1, l2, l3, l4) ∈ L(2n)4 be pairwise trans-
verse. The characteristic polynomial pT (λ) of the composition T := Rl2

l1
◦ Rl3

l4
: R2n →

R2n is related to the characteristic polynomial pR(λ) of the crossratio R = R(l1, l2, l3, l4) :
l1 → l1 by the following equation:

pT (λ) = (−4λ)npR

(
(1 + λ)2

4λ

)
.
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Proof. Since the Sp(2n,R) action on pairs of transverse Lagrangians is transitive and
Rgm

gl = gRm
l g

−1 we might assume without loss of generality that (l1, l2, l3, l4) = (l0, l,m, l∞),
where l, m have bases given by the columns of ( L

id ) and (M
id ), respectively. The matrices

representing the linear maps Rl
l0
and Rm

l∞
with respect to the standard basis of R2n are

Rl
l0
=
( −id 0
−2L−1 id

)
, Rm

l∞ =
(
id −2M
0 −id

)
.

Thus Rl
l0
◦Rl∞

m =
( −id 2M
−2L−1 4L−1M−id

)
. Its characteristic polynomial is

pT (λ) = det(T − λid) = det
(

−(1+λ)id 2M

−2L−1 4L−1M−(λ+1)id

)
= det

((
4L−1M − (λ+ 1)id

)
(−(1 + λ))id + 4L−1M

)
= det

(
−4(1 + λ)L−1M + (1 + λ)2id + 4L−1M

)
= det

(
(1 + λ)2id− 4λL−1M

)
= (−4λ)n det

(
− (1+λ)2

4λ
id + L−1M

)
= (−4λ)npL−1M( (1+λ)2

4λ
)

The assertion now follows from Lemma B.2.6.

Since the compositions A0B0, B0C0 and C0A0 are of finite order, we can describe
the set of eigenvalues of the crossratio of the associated subspaces. We illustrate this
for the composition C0A0.

Example B.3.4 (Crossratio of irreducible representation). Consider the eigenspaces
of A0 = π2n(a0) and C0 = π2n(c0):

A+
0 = E1(A0), C+

0 = E1(C0),

A−
0 = E−1(A0), C−

0 = E−1(C0).

They are Lagrangian subspaces and we denote byR0 the crossratioR0 = R(A+
0 , A

−
0 , C

−
0 , C

+
0 ).

By Proposition B.3.1(ii) the eigenvalues of A0C0 are e
iθj with θj =

π
r
(2n− (2j + 1))

for
j = 0, . . . , 2n− 1 and therefore by Proposition B.3.3 the eigenvalues of R0 are

(1 + eiθj)2

4eiθj
= 1

4
(e−iθj + 2 + eiθj) = 1

2
(1 + cos(θj)) = cos2(

θj
2
).

Since θn−1−k = −θn+k for k = 0, . . . , n− 1, the set of eigenvalues of R0 is

{cos2
(

π
2r

)
, cos2

(
3π
2r

)
, . . . , cos2

(
π
2r
(2n− 3)

)
, cos2

(
π
2r
(2n− 1)

)
}.
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B.4 Standard form for dihedral representations

The goal is to prove Lemma 5.1.4, which states that given any deformation of the base
representation ϕ0 the images of two of the generators of ∆(p, q, r) can be conjugated
into some normal form.

As before, let ϕ0 : ∆(p, q, r) → PGSp(2n,R) be the base representation and let
A0, C0 ∈ GSp(2n,R) be lifts of ϕ0(a), ϕ0(c) as in the beginning of Section B.3. By
Corollary B.3.2 they have eigenvalues ±1 with corresponding Lagrangian eigenspaces
which we denote by

A+
0 = E1(A0), C+

0 = E1(C0),

A−
0 = E−1(A0), C−

0 = E−1(C0).

It holds (A0C0)
r = −id and when r > 3 the four eigenspaces are pairwise transverse.

We denote by M0 the Maslov index M0 = M(A+
0 , A

−
0 , C

+
0 ) and by R0 the crossratio

R0 = R(A+
0 , A

−
0 , C

−
0 , C

+
0 ), which is invertible and diagonalizable for n = 2 (see Example

B.3.4). We do not know whether it is diagonalizable for n > 2. The following is a
reformulation of Lemma 5.1.4 for general n.

Lemma B.4.1. Let ϕt : ∆(p, q, r) → PGSp(2n,R) be a continuous deformation of
the base representation ϕ0 and let at, ct ∈ GSp(2n,R) be lifts of ϕt(a), ϕt(c) starting at
A0 = π2n(a0), C0 = π2n(c0). Then A2

t = C2
t = id and (AtCt)

r = −id and moreover
if the crossratio R0 is diagonalizable, then for each t there exists gt ∈ GSp(2n,R) such
that

gtAtg
−1
t =

(
−idn 0

−2Ip0,n−p0 idn

)
, gtCtg

−1
t =

(
idn −2L
0 −idn

)
, (B.1)

where p0 =
1
2
(n−M0) and L is a n× n diagonal matrix whose entries satisfy

{L11, . . . , Lp0p0 ,−Lp0+1,p0+1, . . . ,−Lnn} = {cos2
(

π
2r
(2(n− k)− 1)

)
| k = 0, . . . , n− 1}.

Remark B.4.2 (Proof of Lemma 5.1.4). When n = 2 an explicit computation shows
that the Maslov index of (A+

0 , A
−
0 , C

+
0 ) is 0, therefore p0 = 1 and{

L11 = cos2(π/(2r))

L22 = − cos2(3π/(2r))
or

{
L11 = cos2(3π/(2r))

L22 = − cos2(π/(2r)).

One can explicitly conjugate the base representation in the standard form of (B.1) to
see that it holds the first case.

Proof. Let ϕt : ∆(p, q, r) → PGSp(2n,R) be a deformation of ϕ0 and let At, Ct ∈
GSp(2n,R) be continuous lifts of ϕt(a), ϕt(c) starting at A0 = π2n(a0), C0 = π2n(c0).

Let φt = ϕt

∣∣
⟨a,c⟩ : ⟨a, c⟩ → PSp(2n,R) be the restriction of ϕt to the subgroup of

∆(p, q, r) generated by a and c, which is isomorphic to the finite dihedral group Dr of
order 2r. By Corollary 3.3.4 φ0 is locally rigid, that is, there is a family (gt)t ⊂ Sp(2n,R)
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such that gtφt(·)g−1
t = φ0(·). So it suffices to show that we can conjugate φ0 into the

standard form of (B.1).
By assumption the crossatio R0 is diagonalizable, so by Proposition B.2.8 the 4-tuple

(A+
0 , A

−
0 , C

−
0 , C

+
0 ) is in the Sp(2n,R)-orbit of (l0, lp0,n−p0 , l, l∞), where p0 = 1

2
(n −M0)

and there is a basis for l given by the columns of ( L
id ) with L diagonal and invertible.

Thus φ0 is conjugate to the homomorpshim φ : ⟨a, c⟩ → GSp(2n,R) given by the

reflections φ(a) = R
lp0,n−p0
l0

, φ(c) = Rl
l∞
, whose matrix expression with respect to the

standard basis is

φ(a) =

(
−idn 0

−2Ip0,n−p0 idn

)
, φ(c) =

(
idn −2L
0 −idn

)
.

Thus φ0 and hence all the φt can be conjugated into (B.1). We conclude the proof by
showing that there are finitely many possibilities for the diagonal entries L11, . . . , Lnn

of L. Indeed, the crossratio R0 is conjugate to

R(l0, lp0,n−p0 , l, l∞) = I−1
p0,n−p0

L = diag(L11, . . . , Lpp,−Lp+1,p+1, . . . ,−Lnn),

which has eigenvalues {L11, . . . , Lpp,−Lp+1,p+1, . . . ,−Lnn}. On the other hand, by Ex-
ample B.3.4 the eigenvalues of the crossratio R0 are:

{cos2
(

π
2s
(2(n− k)− 1)

)
| k = 0, . . . , n− 1}.
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C. The tautological representation

The tautological base representation Ψu obtained in Chapter 5 is given on the generators
a, b, c of ∆(p, q, r) by

Ψu(a) =


−1 0 0 0
0 −1 0 0
−2 0 1 0
0 2 0 1



Ψu(b) =


b11 b12x b13 b14x

b21/x b22 b23/x b24
b31 b32x b33 b34x

b41/x b42 b43/x b44



Ψu(c) =


1 0 −1−

√
2/2 0

0 1 0 1−
√
2/2

0 0 −1 0
0 0 0 −1

 .

The entries bij are given in Section C.1 below. The elements x and 1/x are given in
Section C.2 below.

C.1 The entries bij

The coefficient bij are obtained in Step 5 of Section 5.3. The entries b11, b13, b22, b24, b31, b33, b42, b44
are given in Table C.1.
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b11 =
(
(−4 + 2

√
2− 2

√
2u+ u2)− τ + σ 1

2
(u− 4)− τσ 1

2u

) √
2+1
8

b13 =
(
(2 + 2

√
2u− u2) + τ + σ 1

2
(2
√
2− u) + τσ 1

2u

)
1+

√
2

8

b22 =
(
(4 + 2

√
2− 2

√
2u− u2) + τ − σ 1

2
(u− 4) + τσ 1

2u

) √
2−1
8

b24 =
(
(2− 2

√
2u− u2) + τ − σ 1

2
(2
√
2 + u) + τσ 1

2u

) √
2−1
8

b31 =
(
u(u− 4)− τ + σ u−4√

2
− τσ 1√

2u

)
1
4

b33 =
(
(4− 2

√
2 + 2

√
2u− u2) + τ − σ 1

2
(u− 4) + τσ 1

2u

) √
2+1
8

= −b11

b42 =
(
−u(u− 4) + τ + σ u−4√

2
− τσ 1√

2u

)
1
4

b44 =
(
(−4− 2

√
2 + 2

√
2u+ u2)− τ + σ 1

2
(u− 4)− τσ 1

2u

) √
2−1
8

=
−b22

Table C.1: Eight entries of Ψu(b) obtained in Step 5.

The remaining entries b14, b21, b23, b32, b34, b41, b43 have a slightly more complicated
expression. Each of them is an element of Q(

√
2)(τ, σ) which as vector space over

Q(
√
2) has basis 1, τ, τ 2, σ, στ, στ 2. Thus we can write each bij as

bij =
1

Dij

(
bij0 + bij1τ + bij2τ

2 + bij3σ + bij4στ + bij5στ
2
)
.

The coefficients Dij and bijk ∈ Q(
√
2)(u), k = 0, . . . , 5, are given in Table C.2 below.

b140 = −168(−82 + 75
√
2)u + (23508 − 7926

√
2)u2 + (5560 + 5508

√
2)u3 +

(−5110+1521
√
2)u4− 12(201+83

√
2)u5+(308− 48

√
2)u6+236u7− 15(−2+√

2)u8

b141 = 6(−462+273
√
2−6(106+15

√
2)u+(368−278

√
2)u2+(476−16

√
2)u3+

(−10 + 37
√
2)u4 + 2(−36 + 5

√
2)u5 + 4(−2 +

√
2)u6)

b142 = −9(154− 91
√
2− 4(−27 + 7

√
2)u+ 2(−4 + 7

√
2)u2 + 4(−5 +

√
2)u3 +

(−2 +
√
2)u4)

b143 = 2u(168(5 + 7
√
2) + 2(−716 + 1483

√
2)u + 10(−161 + 61

√
2)u2 + (97 −

677
√
2)u3 + (365− 209

√
2)u4 + (49 + 5

√
2)u5 + 5(−1 +

√
2)u6)

b144 = −4(63(−4+9
√
2)+9(−29+25

√
2)u+(41−259

√
2)u2+(107−99

√
2)u3+

7(3+2
√
2)u4+4(−1+

√
2)u5) b145 = 6(11−43

√
2+(11−15

√
2)u+(3+5

√
2)u2+

(−1 +
√
2)u3)

D14 = 32u(−3 + u2)(−511− 188u+ 66u2 + 28u3 + u4)

b210 = 48u+ 54u2 + 4u3 + 3u4 − 2u5

b211 = −6− 4u+ 4u3

b212 = −3− 2u
b213 = −u(−16 + 4u− 4u2 + u3)
b214 = 2(2− 2u+ u2)
b215 = −1
D21 = 64u
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b230 = 24u+ 54u2 + (100− 68
√
2)u3 + 3u4 + 4(−2 +

√
2)u5

b231 = −6 + 4(−7 + 5
√
2)u− 8(−2 +

√
2)u3

b232 = −3 + 4(−2 +
√
2)u

b233 = 2u(8 + (20− 17
√
2)u+ 2u2 + (−2 +

√
2)u3)

b234 = −2(4− 5
√
2 + 2u+ 2(−2 +

√
2)u2)

b235 = 2(−2 +
√
2)

D23 = 128(−2 +
√
2)u

b320 = 6u(560(1− 57
√
2)− 4(−27403 + 29272

√
2)u+ (142560− 83514

√
2)u2 +

(48894 − 22322
√
2)u3 + (−26329 + 15663

√
2)u4 + (−22692 + 14831

√
2)u5 +

4(13 + 43
√
2)u6 + (2576− 1782

√
2)u7 + (117− 89

√
2)u8 + (−98 + 69

√
2)u9)

b321 = −12(9030 − 8820
√
2 + (18512 − 12369

√
2)u + (5340 − 1687

√
2)u2 +

(−14273+9707
√
2)u3+(−7658+5063

√
2)u4+(2332−1587

√
2)u5−7(−214+

149
√
2)u6 + (−91 + 61

√
2)u7 + (−78 + 55

√
2)u8)

b322 = 6(210(−43 + 42
√
2) + (−13177 + 9399

√
2)u + (−2608 + 1319

√
2)u2 +

(2884− 2058
√
2)u3 + (964− 656

√
2)u4 + (−139+ 99

√
2)u5 + (−58+ 41

√
2)u6)

b323 = u(1680(−87+68
√
2)+4(−31781+31872

√
2)u+28(−5599+3852

√
2)u2+

(−27527+8463
√
2)u3+(63972−45339

√
2)u4+(12324−7764

√
2)u5+(−7738+

5520
√
2)u6 + (−873 + 597

√
2)u7 + (334− 237

√
2)u8)

b324 = 2(−210(19 + 12
√
2) − 6(−7027 + 5048

√
2)u + 9(−449 + 721

√
2)u2 +

(−29188+20931
√
2)u3+(442−876

√
2)u4+(5136−3672

√
2)u5+(61−21

√
2)u6+

7(−38 + 27
√
2)u7)

b325 = −3(−7795 + 6315
√
2 + (−5084 + 3641

√
2)u − 4(−410 + 333

√
2)u2 +

(1186− 848
√
2)u3 + (−69 + 57

√
2)u4 + (−66 + 47

√
2)u5)

D32 = 8u(−3 + u2)(−25 + 2u2)(−511 + u(−188 + u(66 + u(28 + u))))

b340 = 96180u−55440
√
2u−6(−55589+50324

√
2)u2+(238888−182538

√
2)u3+

(67283 − 28038
√
2)u4 + 4(−9521 + 7929

√
2)u5 + 4(−11261 + 7281

√
2)u6 +

2(−1211+507
√
2)u7+(5429−3684

√
2)u8+(386−228

√
2)u9+30(−7+5

√
2)u10

b341 = −6(7245 − 6720Sqrt
√
2 + (10302 − 7611

√
2)u + (3666 − 977

√
2)u2 +

32(−255 + 194
√
2)u3 + (−5605 + 3624

√
2)u4 + (1228 − 1011

√
2)u5 + (1086 −

747
√
2)u6 + 38(−1 +

√
2)u7 + 8(−7 + 5

√
2)u8)

b342 = −9(35(69− 64
√
2)− 4(−766 + 563

√
2)u+ (586− 308

√
2)u2 + (−650 +

496
√
2)u3 + (−231 + 158

√
2)u4 − 6(−5 + 4

√
2)u5 − 2(−7 + 5

√
2)u6)

b343 = u(420(−216+121
√
2)+(−22152+7061

√
2)u+(−32568+24229

√
2)u2+

15(−1237+1128
√
2)u3−2(−9300+6227

√
2)u4+(5460−4161

√
2)u5+6(−428+

287
√
2)u6 + (−369 + 254

√
2)u7 + (120− 85

√
2)u8)

b344 = 315(−56+53
√
2)−9(−3192+1997

√
2)u+(5382−5740

√
2)u2+48(−425+

274
√
2)u3+(−912+787

√
2)u4+(3672−2471

√
2)u5+(114−70

√
2)u6+8(−24+

17
√
2)u7

b345 = −3(5(−507 + 356
√
2) + 42(−44 + 29

√
2)u+ (540− 382

√
2)u2 + (432−

295
√
2)u3 + (−21 + 16

√
2)u4 + (−24 + 17

√
2)u5)

D34 = 4u(−3 + u2)(−25 + 2u2)(−511 + u(−188 + u(66 + u(28 + u))))
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b410 = −32(6 +
√
2)u2 + 96(1 + 3

√
2)u3 + (276 + 250

√
2)u4 − 48(3 + 2

√
2)u5 +

(18 + 5
√
2)u6

b411 = −96(1 +
√
2)u− 12(6 + 7

√
2)u2 + 48(4 + 3

√
2)u3 + (−42− 13

√
2)u4

b412 = −6(2 +
√
2)− 48(1 +

√
2)u+ (30 + 11

√
2)u2

b413 = 4u2(−16 + 4u− 4u2 + u3)
b414 = −8u(2− 2u+ u2)
b415 = 4u
D41 = 256u2

b430 = 160(3+2
√
2)u2−384u3−336

√
2u3−32u4−112

√
2u4+24(4+3

√
2)u5−

4(5+2
√
2)u6+3(3+2

√
2)(−4+u)u2(12+u)+3/2(3+2

√
2)(−4+u)u4(12+u)

b431 = 48(4+3
√
2)u−3(3+2

√
2)(−4+u)u+320u2+240

√
2u2−48(4+3

√
2)u3−

3/2(3 + 2
√
2)(−4 + u)u3 + 40u4 + 16

√
2u4 − 3(3 + 2

√
2)u(12 + u) + 3/2(3 +

2
√
2)(−4+u)u2(12+u)−3/2(3+2

√
2)u3(12+u)3(3+2

√
2)+24(4+3

√
2)u−

3/2(3+2
√
2)(−4+u)u+3/2(3+2

√
2)u2−4(5+2

√
2)u2−3/2(3+2

√
2)u(12+u)

b432 = 3(3+2
√
2)+24(4+3

√
2)u−3/2(3+2

√
2)(−4+u)u+3/2(3+2

√
2)u2−

4(5 + 2
√
2)u2 − 3/2(3 + 2

√
2)u(12 + u)

b433 = 32(2 +
√
2)u2 − 16u3 − 56

√
2u3 + 8(2 +

√
2)u4 − 4u5

b434 = 16u+ 24
√
2u− 8(2 +

√
2)u2 + 8u3

b435 = −4u
D43 = 256u2

Table C.2: Coefficients of b14, b21, b23, b32, b34, b41, b43.

C.2 y and 1/y in Q(
√
2)(u)(τ, σ)

The elements x and 1/x appearing in the matrix entries of b in (5.3) are

x = −√
y,

1/x = −
√
1/y.

Both y and 1/y are elements of the field Q(
√
2)(u)(τ, σ), which as vector field over

Q(
√
2) has basis 1, τ, τ 2, σ, στ, στ 2. It holds

y = 1
64u

(m0 +m1τ +m2τ
2 +m3σ +m4στ +m5στ

2)

and
1/y = 1

D
(q0 + q1τ + q2τ

2 + q3σ + q4στ + q5στ
2),

where the coefficients m0, . . . ,m5 ∈ Q(
√
2)(u) are given in Table C.3 and D, q0, . . . , q5 ∈

Q(
√
2)(u) are given in Table C.4.
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m0 = u2(78 + 72
√
2 + (92 + 84

√
2)u− 3(11 + 8

√
2)u2 + 2u3)

m1 = −6(5 + 4
√
2)− 4(11 + 9

√
2)u+ 12(4 + 3

√
2)u2 − 4u3

m2 = −15− 12
√
2 + 2u

m3 = u(−8(2 +
√
2) + 2(2 + 7

√
2)u− 2(2 +

√
2)u2 + u3)

m4 = −4− 6
√
2 + 2(2 +

√
2)u− 2u2

m5 = 1

Table C.3: Coefficients of y.

D = (u(−3 + u2)2(25(1089 + 680
√
2) + 70(310 + 223

√
2)u + (628 +

940
√
2)u2− 4(859+610

√
2)u3− (643+484

√
2)u4+2(68+47

√
2)u5+

(34 + 24
√
2)u6))

q0 = 42336u−54(3907+3460
√
2)u2+4(−765+14134

√
2)u3+(32735+

26432
√
2)u4+(16826−32066

√
2)u5+2(−323+868

√
2)u6+32(−296+

195
√
2)u7+(711− 900

√
2)u8− 18(−73+23

√
2)u9+90(−1+2

√
2)u10

q1 = 378(125 + 68
√
2) − 36(111 + 922

√
2)u − 108(398 + 143

√
2)u2 +

4(−1593+ 6412
√
2)u3 +2(5869− 1724

√
2)u4 +2(3022− 2992

√
2)u5 +

4(−499 + 533
√
2)u6 + 2(−542 + 204

√
2)u7 − 144(−1 + 2

√
2)u8

q2 = 189(125 + 68
√
2) − 6(297 + 541

√
2)u + 12(−595 + 32

√
2)u2 +

300(−1 + 4
√
2)u3 − 3(−311 + 304

√
2)u4 − 3(−62 + 30

√
2)u5 − 3(18−

36
√
2)u6

q3 = −u(72(550+43
√
2)−2(29878+7349

√
2)u+2(2914+8471

√
2)u2+

(21443− 6984
√
2)u3 − 2(3474 + 4925

√
2)u4 + (−5998 + 3206

√
2)u5 +

2(702 + 577
√
2)u6 + (907− 272

√
2)u7 + 10(−10 + 7

√
2)u8)

q4 = 2(63(−138 + 25
√
2) + 9(578 + 575

√
2)u+ (10735− 1588

√
2)u2 −

2(2270+1489
√
2)u3+(−3968+711

√
2)u4+9(122+27

√
2)u5+(531−

74
√
2)u6 + 8(−10 + 7

√
2)u7)

q5 = −3(2473+ 800
√
2− 2(422+ 19

√
2)u− 2(451+ 72

√
2)u2 + (264−

36
√
2)u3 + (105 + 4

√
2)u4 + 2(−10 + 7

√
2)u5)

Table C.4: Coefficients of 1/y.
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