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The distributional single index model is a semipara-
metric regression model in which the conditional
distribution functions P(Y ≤ y|X = x) = F0(𝜃0(x), y)
of a real-valued outcome variable Y depend on
d-dimensional covariates X through a univariate, para-
metric index function 𝜃0(x), and increase stochastically
as 𝜃0(x) increases. We propose least squares approaches
for the joint estimation of 𝜃0 and F0 in the important
case where 𝜃0(x) = 𝛼⊤0 x and obtain convergence rates of
n−1∕3, thereby improving an existing result that gives
a rate of n−1∕6. A simulation study indicates that the
convergence rate for the estimation of 𝛼0 might be
faster. Furthermore, we illustrate our methods in an
application on house price data that demonstrates the
advantages of shape restrictions in single index models.

K E Y W O R D S

monotone regression, isotonic distributional regression, single index
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1 INTRODUCTION

Consider the classical regression framework in which one aims to predict a response variable
Y ∈ R with covariates X ∈  ⊆ Rd. The popular generalized linear models (GLMs) assume that

E[Y |X = x] = g𝜙(𝛼⊤0 x),
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2 BALABDAOUI et al.

where Y follows an exponential family distribution, 𝛼0 is unknown, and g𝜙 is a monotone
transformation known up to a dispersion parameter 𝜙 that does not depend on the covariates.
Balabdaoui, Durot, and Jankowski (2019) study a semiparametric variant of this model, the mono-
tone single index model, where the function g𝜙 is replaced by an unknown monotone function
𝜓0 that is estimated nonparametrically, jointly with 𝛼0. The focus of this article is an exten-
sion of the monotone single index model introduced by Henzi, Kleger, and Ziegel (2023), called
the distributional single index model, which aims at estimating conditional cumulative distri-
bution functions (CDFs) of Y given X rather than only its conditional expectation. The model
assumes that

P(Y ≤ y|X = x) = F0(𝜃0(x), y), (1)

where y → F0(z, y) is an unknown conditional distribution function for all fixed z ∈ R, 𝜃0 ∶
Rd → R a mapping of the d-dimensional covariates to R, and monotonicity of 𝜓0 is replaced
by the assumption of stochastic monotonicity. Stochastic monotonicity means that F0(z, y) is
non-increasing in z for all fixed y ∈ R, so graphically, the conditional CDFs F0(z, y) shift to the
right as z increases, or in simple words, Y tends to attain larger values when 𝜃0(X) is large. In
this article, we are interested in the special case where 𝜃0(x) = 𝛼⊤0 x is a linear function. The most
popular families in GLMs—Gaussian, Binomial, Poisson, Gamma, Inverse Gaussian—satisfy the
stochastic monotonicity assumption of the distributional single index model, save for a change
of sign of 𝛼0 for decreasing link functions. Thus, the model can be regarded as a semiparametric,
distributional extension of GLMs. If Y has finite expectation, then

E[Y |X = x] =
∫

∞

0

(
1 − F0(𝛼⊤0 x, y)

)
dy −

∫

0

−∞
F0(𝛼⊤0 x, y) dy,

is increasing in 𝛼⊤0 x, so the assumption of stochastic monotonicity is stronger than monotonicity
of the conditional expectation in this case. When Y is binary, the distributional single index model
becomes a special case of the monotone single index model. Both the monotone single index
model and the distributional single index model build on the idea of single index model intro-
duced by Härdle, Hall, and Ichimura (1993), and we refer the interested readers to the literature
reviews in Balabdaoui, Durot, and Jankowski (2019) and Henzi et al. (2023) for a comprehensive
discussion of related work.

Rates for the estimation of the conditional CDFs in the distributional single index model
have already been obtained by Henzi et al. (2023). They showed that for an independent and
identically distributed (i.i.d.) sample (X1,Y1), … , (Xn,Yn) from model (1), if �̂�n is a uniformly
consistent estimator for 𝜃0 converging at a rate of op((log(n)∕n)1∕2) and if F̂n is computed on
the data (�̂�n(X1),Y1), … , (�̂�n(Xn),Yn) with isotonic distributional regression (Henzi, Ziegel, &
Gneiting, 2021; Mösching & Dümbgen, 2020), then

sup
y∈R, x∈

𝜀n

|F̂n(�̂�n(x), y) − F0(𝜃0(x), y)| = op((log(n)∕n)1∕6), (2)

under certain regularity conditions. Here𝜀 = {x ∈  ∶ 𝜃0(x) ± 𝜀n ∈ I} for an interval I on which
𝜃(X)has density bounded away from zero and infinity, and 𝜀n > 0 is a certain sequence converging
to zero. When �̂�n and F̂n are computed on independent samples, a faster rate of op((log(n)∕n)1∕3) is
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BALABDAOUI et al. 3

achieved, if �̂�n converges to 𝜃0 at least at this rate. Henzi et al. (2023) provide no theoretical results
on the estimation of the index function, and the rate of op((log(n)∕n)1∕6) is likely to be suboptimal,
because if 𝜃0 = �̂�n it should be op((log(n)∕n)1∕3) by theorem 3.3 of Mösching and Dümbgen (2020),
or if Y is binary the results of Balabdaoui, Durot, and Jankowski (2019) yield Op(n−1∕3) for the
estimation of F0 and 𝜃0 when the latter is linear.

In this article, we focus on the linear case 𝜃0(x) = 𝛼⊤0 x, and propose to estimate (F0, 𝛼0) by
minimizing weighted least squares criteria of the form

Ln(Q;F, 𝛼) =
1
n

n∑

i=1
∫

R

(1{Yi ≤ t} − F(𝛼⊤Xi, t))2 dQ(t), (3)

where Q is a Borel measure. We obtain a rate of OP(n−1∕3)when Q has a finite support or it is com-
pactly supported Lebesgue continuous with a bounded density. Furthermore, we investigate an
approach with Q equal to the empirical distribution of Y1, … ,Yn, which has favorable invariance
properties under transformations of the response variable, but the consistency and convergence
rates of which remain an open challenge.

The article is structured as follows. In Section 2 we describe the estimation method in detail.
Convergence rates are derived in Section 3. In Section 4, we present the invariance property
result which holds when Q is taken to be the empirical distribution function of the responses. In
Section 5 we discuss computational aspects and present a simulation study and an application
on house price data. We conclude with a discussion in Section 6, and the proofs are deferred to
Appendix. Throughout the article, we denote the joint distribution of (X ,Y ) by P, the marginals
by PX and PY , and the conditional distributions by PY |X=x and PX|Y=y, respectively. The empirical
distributions of n independent observations are denoted by Pn, P

X
n , P

Y
n . We denote by supp(P) the

support of a probability measure P, and by A◦ the interior of a set A. The expectation operator E[⋅]
is understood to be with respect to P, unless explicitly defined differently.

2 ESTIMATION

Let (X1,Y1), … , (Xn,Yn) be a sample of covariates and response variable from model (1), where
from now on we always assume that 𝜃0(x) = 𝛼⊤0 x. Define 𝛼 = {𝛼⊤x ∶ x ∈ }, and let 𝛼 ∶ 𝛼 ×
R → [0, 1] be the class of bivariate functions F for which y → F(z, y) is a CDF for all fixed z ∈ R,
and z → F(z, y) is non-increasing for all fixed y ∈ R. The function F0 and the parameter 𝛼0 in
(1) are not identifiable, since F̌0(z, y) = F0(z∕c, y) and �̌�0 = c ⋅ 𝛼0 for c > 0 yield the same condi-
tional distributions. Hence, we assume that 𝛼0 ∈ d−1 = {x ∈ Rd ∶ ||x|| = 1}, and define the class
of candidate functions for estimation by

 = {(F, 𝛼) ∶ 𝛼 ∈ d−1, F ∈ 𝛼}.

To estimate (F0, 𝛼0), we propose to minimize the least squares criteria of the form given in (3).
The following proposition describes the solutions of this minimization problem.

Proposition 1. Assume that Q is locally finite.

(i) For a fixed 𝛼 ∈ d−1, let z1 < · · · < zm be the distinct values of 𝛼⊤X1, … , 𝛼
⊤Xn,

with multiplicities n1, … ,nm. The minimizer of Ln(Q;F, 𝛼) in F is uniquely
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4 BALABDAOUI et al.

defined in the first argument on {z1, … , zm} and in the second argument on
supp(Q), and it is given by

F̂n,𝛼(zi, y) = min
k=1,… ,i

max
l=i,… ,m

⎛
⎜
⎜
⎝

1
nk+···+nl

l∑

j=k

∑

s∶ 𝛼⊤Xs=zj

1{Ys ≤ y}
⎞
⎟
⎟
⎠

, i = 1, … ,m. (4)

(ii) Let SX = {𝛼 ∈ d−1 ∶ 𝛼⊤Xi ≠ 𝛼
⊤Xj, i, j = 1, … ,n, i ≠ j}. The minimum of

Ln(Q;F, 𝛼) is achieved for a pair (F̂n,�̂�n , �̂�n) with �̂�n ∈ SX and F̂n,�̂�n given by (4).
The minimizer is not unique.

The estimator F̂n,𝛼 in (4) is called the isotonic distributional regression in Henzi et al. (2021),
and the fact that it is a minimizer is due to theorem 2.1 of that article; the condition that Q is
locally finite is only necessary to ensure uniqueness in part (i). It follows directly from (4) that
y → F̂n,𝛼(𝛼⊤Xi, y) is indeed a CDF for i = 1, … ,m. For a fixed 𝛼, the estimator F̂n,𝛼 depends on Q
only through its support, as can be seen from (4). It suffices to compute it at the distinct values
y1 < · · · < yk of Y1, … ,Yn, since for y ≥ y1,

1{Yi ≤ y} = 1{Yi ≤ yl(y)}, i = 1, … ,n, with l(y) = max{j ∈ {1, … , k} ∶ yj ≤ y},

and 1{Yi ≤ y} = 0 if y < y1. Part (ii) of the proposition follows by the same steps as Prop. 2.2 in Bal-
abdaoui, Durot, and Jankowski (2019). Note that the minimizers �̂�n and, hence, F̂n,�̂�n do depend
on Q, which appears in the criterion (3). To lighten the notation, we write F̂n,�̂�n = F̂n in the follow-
ing, and only use the subscript when it is necessary to indicate the dependence on �̂�n. To define
F̂n beyond the set {�̂�⊤n X1, … , �̂�

⊤

n Xn} × supp(Q), we let

F̂n(z, y) =
⎧
⎪
⎨
⎪
⎩

0, y < y1,

F̂n(z, yj), y ∈ [yj, yj+1), j = 1, … , k − 1,
1, y ≥ yk,

(5)

for z ∈ {�̂�⊤n X1, … , �̂�
⊤

n Xn} and y ∈ R, and

F̂n(z, y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

F̂n(z1, y), z < z1,
zj+1−z
zj+1−zj

F̂n(zj, y) +
z−zj

zj+1−zj
F̂n(zj+1, y), z ∈ [zj, zj+1), j = 1, … ,m − 1,

F̂n(zm, y), z ≥ zm.

We apply these interpolation methods in our empirical studies in Section 5. For the theory,
any other interpolation methods satisfying the monotonicity constraints in both arguments is
admissible.

In the forecasting literature, the loss function (3) with Q equal to the Lebesgue measure 𝜆
is known under the name continuous ranked probability score (CRPS), which is a widely used
proper scoring rule for the estimation of distribution functions and for forecast evaluation (Gneit-
ing & Raftery, 2007). The criterion with general Borel measures Q are the so-called threshold
weighted forms of the CRPS (Gneiting & Ranjan, 2011). At a first sight, the CRPS seems to be a
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BALABDAOUI et al. 5

natural choice for the loss function since it weighs all thresholds equally, but it has the drawback
that E[Ln(𝜆;F0, 𝛼0)] is finite only if the conditional distributions corresponding to F0(𝛼⊤0 x, ⋅) have
finite first moment; see (21) in Gneiting and Raftery (2007). This is an unnecessary assumption
if the goal is the estimation of the conditional CDFs, rather than conditional expectations, and it
complicates proofs of consistency. We therefore focus on finite measures Q.

3 CONVERGENCE RATES

3.1 Assumptions

We proceed to establish consistency results for the bundled estimator F̂n(�̂�⊤n x, y) and for the the
separated estimators �̂�n and F̂n(z, y). The proofs and assumptions are closely related to those by
Balabdaoui, Durot, and Jankowski (2019) for the monotone single index model.

Assumption 1. The set  is bounded and convex.

Assumption 2. The measure Q and the distribution of (X ,Y ) satisfy one of the
following assumptions.

(i) The distribution of X admits a Lebesgue density pX which is bounded from below
by p

X
> 0 and from above by pX < ∞, and Q has finite support, putting mass only

on points t1 < · · · < tp.
(ii) For all y ∈ supp(PY ), the distribution of X conditional on Y = y admits a

Lebesgue density bounded from below by p
X
> 0 and from above by pX < ∞,

with constants not depending on y. The measure Q has support on [a, b] and
admits a Lebesgue density q bounded from above by c < ∞.

Assumption 3. For all t ∈ supp(Q) the function z → F0(z, t) is continuously differen-
tiable on 𝛼0 with derivative F(1)0 (z, t), and 0 < |F(1)0 (z, t)| ≤ Kt for all z ∈ ◦𝛼0

and some
Kt <∞.

Assumption 4. For all 𝛼 ∈ d−1, the random variable 𝛼⊤X admits a Lebesgue density
bounded from below by q > 0 and from above by q > 0.

Assumption 5. The density pX of X is continuous on  .

Assumptions 1,4 and 5 correspond to (A1), (A4) and (A6) in Balabdaoui, Durot, and
Jankowski (2019), respectively, and Assumption 3 is a direct extension of their condition (A5) to
our case.

In the next sections, we present one of the main convergence results of this work, derived
under the assumptions above. The case Q = P

Y
n would have been a natural choice. One referee

raised the point of whether one can derive rates of convergence in this case when the distribution
of Y is compactly supported. Unfortunately, compactness of the support does not solve the issue
that empirical process associated with the estimation problem at hand contains a term that cannot
be handled with the classical results such as Lemma 3.4.2 or Lemma 3.4.3 of van der Vaart and
Wellner (1996). The reason behind the additional difficulties is that this term in question is of the
form
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6 BALABDAOUI et al.

∫
𝜓n(t)(PY

n − P
Y )(t),

where 𝜓n is random function involving the empirical measure Pn; additional details are provided
in Section 4. More sophisticated tools need to be used in this context. The problem is beyond the
scope of this article but worth investigating in future research.

3.2 Convergence rate for the bundled estimator

The results for convergence rates for both types of Q in Assumption 2 are presented in a unified
framework. For the bundled estimator, we obtain the following result.

Theorem 1. Under Assumptions 1 and 2, it holds that

(

∫
R
∫

R

(F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t))2 dP
X (x)dQ(t)

)1∕2

= Op(n−1∕3).

The proof of Theorem 1 applies theorem 3.4.1 and Lemma 3.4.2 of van der Vaart and Well-
ner (1996), and it is given in Section A.1. In the following, we introduce empirical process
notation, provide auxiliary results that are of independent interest, and discuss the techniques
and problems involved in the proof.

In accordance with Assumption 1, assume ||x|| ≤ R for all x ∈  and some R > 0, so that
|𝛼⊤x| ≤ R for 𝛼 ∈ d−1. In the proofs, the following function classes appear,

 = {h ∶ [−2R, 2R] → [0, 1], nonincreasing},
 = {g ∶  → [0, 1], g(x) = h(𝛼⊤x), (𝛼, h) ∈ d−1 ×},

where the support in the class  has to be extended to [−2R, 2R] for technical reasons. Nonin-
creasing functions h̃ ∶ [−R,R]→ [0, 1] are considered as elements of by constant extrapolation
at the boundaries. Denote the L2-norm of functions from  to R, with respect to a Borel measure
𝜇, by

||f ||𝜇 =
(

∫


f (x)2 d𝜇(x)
)1∕2

.

For integration with respect to the Lebesgue measure over a set A, we write ||f ||A. The bracketing
entropy of a function class  with respect to some norm || ⋅ || is denoted by NB(𝜀,  , || ⋅ ||), and the
bracketing integral is defined as

J̃(𝛿,  , || ⋅ ||) =
∫

𝛿

0

√
1 + log NB(𝜀,  , || ⋅ ||) d𝜀.

The following proposition, which relies on theorem. 2.7.5 of van der Vaart and Wellner (1996)
and a result of Feige and Schechtman (2002), is crucial for all our results.

Proposition 2. Let 𝜇 be a Lebesgue continuous distribution with support in a bounded
set contained in a ball of radius R > 0 with density bounded from above by D > 0. Then,

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12336 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [16/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BALABDAOUI et al. 7

log(NB(𝜀,, || ⋅ || )) ≤
2(d+1)∕2d1∕4R(d−1)∕2(1 +

√
R)(d

√
A + K

√
R)

√
D

𝜀

for universal constants A,K > 0.

Due to Proposition 2, the entropy of the class of functions x → F(𝛼⊤x, y) for (F, 𝛼) ∈  and y
fixed is of the same order as the entropy of the monotone function class with values in [0, 1]. If Q
has finite support, this is sufficient to obtain the cubic convergence rate. However, as one would
expect, the constants in the bounds increase with the size of the support, and it is not possible to
extend the same proof strategy to Lebesgue continuous Q. For this case, a bound for the entropy
of the class

 ∶=
{

h ∶ R
d ×R → [0, 1], h(x, y) =

∫[y,∞)
F(𝛼⊤x, t)2dQ(t), (F, 𝛼) ∈ 

}

, (6)

is required. We find such a bound by constructing a suitable discretization of the support of Q.

Remark 1. One might think that a simpler way to bound the entropy of the
class  would be via the results of Gao and Wellner (2007) on the entropy
of multivariate monotone function. Indeed, the function (z, y) → F(z, y) is bivari-
ate monotone, and due to Proposition 2, the fact that we have 𝛼

⊤x in the first
argument only increases the entropy by a constant factor. However, according
to theorem 1.1 of Gao and Wellner (2007), the entropy of the class of bivariate
monotone functions is of order 1∕𝜀2, which leads to a diverging entropy inte-
gral. Even with the relaxation discussed on p. 326 of van der Vaart and Well-
ner (1996), which allows to integrate only from min(u𝛿2

, 𝛿)∕3 for small u > 0 in
the entropy integral, it is not possible to achieve the cubic rate with this entropy
bound.

3.3 Convergence rate for the separated estimators

The rate for the separated estimators F̂n(z, y) and �̂�n relies on Theorem 1 and is proved in a
similar way as in theorem 5.2 and corollary 5.3 of Balabdaoui, Durot, and Jankowski (2019).
Note that under our model assumptions, the parameters F and 𝛼 are indeed identifiable.
More precisely, if F(𝛼⊤X , t) = F0(𝛼⊤0 X , t) almost surely for a fixed t, then F(z, t) = F0(z, t)
for (z, t) ∈ 𝛼0 × supp(Q), and 𝛼 = 𝛼0. This is shown in an analogous way as in proposi-
tion 5.1 of Balabdaoui, Durot, and Jankowski (2019), and it is proven in Section A.5 for
completeness.

Theorem 2. Let Assumptions 1, 2, and 4 hold true. Assume that for each t the func-
tion F0(⋅, t) is left-continuous, nonconstant and does not have discontinuity points on
the boundary of 𝛼0 . Furthermore, assume that from each subsequence (nk)k∈N we can
extract another subsequence (nkl )l∈N which satisfies

lim
l→∞∫

R
∫


(F0(𝛼⊤0 x, t) − F̂nkl
(�̂�⊤kl

x, t))2dP
X (x)dQ(t) = 0, (7)

almost surely. Then,
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8 BALABDAOUI et al.

(i) �̂�n converges to 𝛼0 in probability in the euclidean norm,
(ii) for all continuity points (z, t) of F0 in ◦𝛼0

× supp(Q), we have that F̂n(z, t) converges
to F0(z, t) in probability.

Remark 2. The condition (7) in Theorem 2 holds under our assumptions due to
Theorem 1.

Theorem 3. Define c = inf 𝛼0 and c = sup𝛼0 . Under Assumptions 1–5, we have that

(i) ||𝛼0 − �̂�n|| = OP(n−1∕3);
(ii) if supt∈supp(Q) Kt <∞, then

(

∫
R
∫

c−vn

c+vn

(
F0(z, t) − F̂n(z, t)

)2dz dQ(t)

)1∕2

= OP(n−1∕3), (8)

for all sequences vn such that c + vn ≤ c − vn and n1∕3vn → ∞ for n →∞.

Part (ii) of Theorem 3 can be regarded as analogous to the result (2) derived by Henzi
et al. (2023, theorem 5.1), with the weighted L2-norm replacing the supremum norm. Henzi
et al. (2023) do not assume a linear index function, but they impose the assumption that the index
function is estimated the rate of (log(n)∕n)1∕2, rather than deriving a convergence rate, which we
do in part (i) of the above theorem.

4 EMPIRICAL DISTRIBUTION AS WEIGHTING MEASURE

The methods proposed so far require the specification of a weighting measure Q. An interesting
variant of the criterion (3), which does not require an explicit weighting choice, arises when Q
equals the empirical distribution P

Y
n ; that is,

Ln(PY
n ;F, 𝛼) =

1
n

n∑

i=1
∫

R

(1{Yi ≤ t} − F(𝛼⊤Xi, t))2 dP
Y
n (t) =

1
n2

n∑

i,j=1
(1{Yi ≤ Yj} − F(𝛼⊤Xi,Yj))2.

According to the following lemma, for this choice of Q the estimator �̂�n and the pointwise error
of the CDFs at the observed values of the response variable do not depend on the scale of the
observations Y .

Lemma 1. Let f ∶ R → R be strictly increasing on the support of Y , and f −1(t) =
inf{s ∈ R ∶ f (s) ≥ t}. Then, the following hold with probability one.

(i) A tuple (F̂n,�̂�n , �̂�n) minimizes Ln(PY
n ; ⋅) if and only if (F̃n,�̂�n , �̂�n) with F̃n,�̂�n(t, z) =

F̂n,�̂�n(z, f
−1(t)) is a minimizer of Ln(Pf (Y )

n ; ⋅), and it holds that Ln(PY
n ; F̂n,�̂�n , �̂�n) =

Ln(Pf (Y )
n ; F̃n,�̂�n , �̂�n).

(ii) With F̃0(z, t) = F0(z, f −1(t)) and ti = f (Yi), we have

F̃n,�̂�n(�̂�
⊤

n Xi, ti) − F̃0(𝛼⊤Xi, ti) = F̂n,�̂�n(�̂�
⊤

n Xi,Yi) − F0(𝛼⊤Xi,Yi), i = 1, … ,n.
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BALABDAOUI et al. 9

If F̃n,�̂�n and F̂n,�̂�n are interpolated as in (5), then the above equality holds for all
y ∈ R and t = f (y).

The above result is generally not true for Q ≠ P
Y
n in (3). The invariance property aligns well

with the fact that the transformed outcome f (Y ) again follows a distributional single index model
with the same parameter 𝛼0 and the corresponding CDFs t → F0(𝛼⊤0 x, f −1(t)). However, it turns
out that deriving convergence rates for this criterion is substantially more difficult than for fixed
measures Q, because the integral in the function class in (6) is now over the random measure
Pn instead of the fixed measure Q. We suspect that the rate for this estimator should still be of order
Op(n−1∕3), and our simulations confirm this intuition in certain examples. However, a completely
different strategy of proof seems necessary to prove this rate.

5 EMPIRICAL RESULTS

5.1 Simulations

We investigate the convergence of our estimators in simulations. For d = 2, 3, we simulate Xj ∼
Unif(0, 1), j = 1, … , d, independently, and generate the response variable in two ways,

Y (1) = (𝛼⊤0 X)3𝜀, 𝜀 ∼ (0, 1), Y (2) = (𝛼⊤0 X)3𝜂, 𝜂 ∼ Exp(1). (9)

For the weighting measure Q, we consider the empirical distribution P
Y
n , the uniform distribution

on [−10, 10] and the Gaussian distribution with variance 4 truncated to the interval [−4, 10] for
the simulations with Gaussian noise, and the uniform distribution on [0, 50] and the truncated
Gamma distribution with shape 3 and scale 1 for the simulations with exponentially distributed
noise, respectively. The rationale is that the uniform distribution over a large set provides a rather
rough choice for the weighting, whereas the truncated distributions more closely follow the actual
outcome distributions, up to truncation to a compact interval.

The index 𝛼0 is parameterized in spherical coordinates with 𝜃0 ∈ [0, 2𝜋] and
values 𝜃0 = 𝜋∕4, 𝜋∕3, 𝜋∕2 for d = 2, and 𝜃0 ∈ [0, 𝜋] × [0, 2𝜋] and values 𝜃0 =
(𝜋∕4, 𝜋∕2), (𝜋∕3, 𝜋∕3), (𝜋∕2, 𝜋∕4) for d = 3. To perform estimation, we parameterize 𝛼 in
spherical coordinates and do a grid search followed by local numerical optimization. For
d = 2, we choose 40 equidistant points 𝜃1 = 0 < 𝜃2 < · · · < 𝜃40 = 2𝜋, evaluate the criterion
(3) at 𝛼j = (cos(𝜃j), sin(𝜃j)), and perform numerical optimization of (3) with respect to 𝜃 in
𝛼 = (cos(𝜃), sin(𝜃)) around the 𝜃j for which the minimal value of the criterion is attained. The pro-
cedure for d = 3 is analogous, and for the grid we take all combinations of 20 equidistant points
𝜃1,j ∈ [0, 𝜋] and 40 points 𝜃2,k ∈ [0, 2𝜋], j = 1, … , 20, k = 1, … , 40. Numerical optimization is
performed with optimize in R (R Core Team, 2022) for d = 2, and nmkb from the package
dfoptim(Varadhan, Borchers, & Bechard, 2020) for d = 3. Estimation of the conditional CDFs
uses the isodistrreg package (Henzi et al., 2021). A general implementation of our estimator
and replication material for Section 5 are available on https://github.com/AlexanderHenzi/distr
_single_index.

To estimate the rates of convergence, we simulate 100 realizations of the examples described
above for each of the sample sizes n = 2m, m = 8, 9, … , 13, and compute the the index error
||�̂�n − 𝛼0||, the bundled error L(F̂n, �̂�n), and of the error of the CDFs LCDF(F̂n). The integrals in
L(F̂n, �̂�n) and LCDF(F̂n) are estimated with the mean of the integrand evaluated at 5,000 draws
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10 BALABDAOUI et al.

for y ∼ PY and x ∼ PX , or z ∼ Unif(c, c), respectively. We then estimate the convergence rate with
the slope coefficient from regressing log(errn,i), for all n and samples i = 1, … , 100, on − log(n),
for each setting and error measure. The estimates and SEs are shown in Table 1. Naturally, there
are many factors influencing the convergence rates estimates, such as noise in the estimation,
different constants in different examples, and, most importantly, the fact that the rates of the
errors are only estimated on a grid of finite sample sizes. Therefore, even if one might expect the
same asymptotic rates in the examples that we consider, there are some deviations due to different
constants and finite sample effects. However, Table 1 suggests that the rate of �̂�n is faster than
n−1∕3, as in the experiments of Balabdaoui, Durot, and Jankowski (2019), and the rates for the
bundled estimator and for the CDF are around n−1∕3. There are no systematic differences between
the results for Q = P

Y
n and for the other approaches, with average rates over all settings of 0.51,

0.28, and 0.39 for the index, CDF, and bundled estimator for the empirical weighting measure,
and 0.51, 0.30, and 0.38 for the other weighting methods. This suggests that the same rates should
hold for Q = P

Y
n .

Remark 3. For dimension d = 1, the computation of �̂�n is a one-dimensional opti-
mization problem, and �̂�n can be approximated to a high accuracy provided that the
grid for the initial grid search is fine enough. For d > 2 the grid search becomes expen-
sive, and there are no guarantees that a pair (�̃�n, F̃n) chosen by our implementation
is a global minimizer of our target function, which is nonsmooth and nonconvex.
Estimation in the monotone single index model for the mean suffers from the
same optimization difficulties, and although there has been extensive research on
implementation and alternative methods for estimating �̂�n (Balabdaoui & Groene-
boom, 2021; Balabdaoui, Groeneboom, & Hendrickx, 2019; Groeneboom, 2018;
Groeneboom & Hendrickx, 2019), the computation of �̂�n remains a challenge, espe-
cially in higher dimensions.

5.2 Illustration on house price data

We illustrate the distributional single index model in a data example by Jiang and Yu (2023,
section 4.4). The dataset, which is available on https://doi.org/10.24432/C5J30W, contains 414
real estate transaction records from Tapiei City and New Taipei City. The dependent variable is the
price per unit area, and the covariates are the number of convenience stores in the living circle on
foot, the building age, the transaction year and month, and the distance to the nearest metro sta-
tion. The transaction time is transformed to a numerical variable with values in between 2,012.67
and 2,013.58, and it is a proxy variable which captures effects such as trends in the house prices,
or different policy regimes over time that might influence the prices.

Figure 1 depicts the index values �̂�⊤n Xi and prices Yi, i = 1, … , 414, for the distributional sin-
gle index model, the monotone single index model, and for the noncrossing quantile regression
estimator by Jiang and Yu (2023); the results for the latter are equal to those shown in (Jiang &
Yu, 2023, figure 3(c)) and reproduced with the code from the supplement of their article. We
implemented the distributional index model with the empirical measure and with the uniform
measure over a large set including all observed prices. For the distributional methods, the lines
in the figure show estimated conditional quantiles at levels 𝜏 = 0.1, 0.5, 0.9, which are obtained
by inversion of the CDFs for our estimator. Jiang and Yu (2023) center all covariates around
their mean before estimation. With shape restricted estimation methods, such centering is not
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Monotone single index model Non−crossing quantile regression

Distributional single index model (empirical) Distributional single index model (uniform measure)
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Index
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e

F I G U R E 1 Pairs (�̂�⊤n Xi,Yi), i = 1, … , 414, for the distributional single index model, the monotone single
index model, and for noncrossing quantile regression. The lines for the distributional methods are estimated
conditional quantile curves at the levels 𝜏 = 0.1, 0.5, 0.9.

necessary since it does not change the order of the projections �̂�⊤n Xi. As the scatterplots sug-
gests, the order of the index values �̂�⊤n Xi, i = 1, … , 414, obtained with the three methods are
very similar, and the pairwise Spearman correlations between them are indeed all above 0.98.
In the given data application, all methods have advantages and disadvantages. The computa-
tion of the estimator by Jiang and Yu (2023) is fast, but it involves several tuning parameters,
namely, an initial quantile level for estimation, set to 𝜏 = 0.5, bandwidths for kernel smoothing,
and a prespecified grid of quantiles on which the estimator is computed and evaluated, chosen
to be 𝜏 = 0.1, 0.2, … , 0.9. Estimation for our method and for the monotone single index model
is slower, since we take a fine grid for the grid search over 𝛼 and perform local optimization in
several regions to ensure a good approximation of the minimum. However, the parameters of the
shape restricted methods are more easily interpretable due to the monotone dependence on �̂�⊤n X .
One can draw the—reasonable—conclusions that the price is increasing in the number of closely
situated convenience stores and over time, and decreasing in the distance to the nearest metro
station and in the age of the building; see Table 2. The interpretation is more difficult for the esti-
mator by Jiang and Yu (2023). Although the signs of �̂�n in their estimator agree with those of the
shape restricted methods, the conditional quantile curves are nonmonotone and interpolate the
prices for some of the observations.

6 DISCUSSION

In this article, we proposed estimators for the distributional single index model, and proved a con-
vergence rate of OP(n−1∕3) both for bundled and separated estimators. This greatly improves upon
the (log(n)∕n)1∕6-rate known so far. There are several avenues for future research. Consistency for
our transformation-invariant estimator proposed in Section 4 is an open challenge, which goes
beyond the techniques applied for the convergence rates in this article. A possible future research
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T A B L E 2 Estimates �̂�n for the different methods.

Method
Number
stores

Building
age

Transaction
date

Distance
metro

Distributional index model (empirical) 0.706 −0.263 0.658 −0.013

Distributional index model (uniform) 0.750 −0.186 0.634 −0.008

Monotone single index model 0.415 −0.122 0.902 −0.006

Noncrossing quantile regression 0.152 −0.060 0.987 −0.004

Notes: For the noncrossing quantile regression, we show the entries for NCCQR9 from table 6 of Jiang and Yu (2023),
standardized to norm 1 for comparability.

direction is to study convergence under more general weighting measures Q with possibly an
unbounded support. This would allow analyzing whether there is an optimal choice of Q in terms
of the estimation error for 𝛼0. As for the monotone single index model, our simulations also sug-
gest that 𝛼0 is estimated at a faster rate. Deriving this rate, as well as a comparison to the estimators
for 𝛼0 in the monotone single index model, would be an interesting direction for future work.
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APPENDIX A. PROOFS

A.1 Proof of Theorem 1
The proof of Theorem 1 is slightly different for the two cases in Assumption 2, which involve
different entropy calculations. We first give a proof for the theorem with an unspecified constant
in an entropy bound, and then derive the constant for the two cases in separate lemmas.

Proof of Theorem 1. The proof applies theorem 3.4.1 and Lemma 3.4.2 of van der Vaart
and Wellner (1996).

Mn(F, 𝛼) =
∫

R
∫

Rd×R

(1{y ≤ t} − F(𝛼⊤x, t))2 dPn(x, y)dQ(t),

M(F, 𝛼) =
∫

R
∫

Rd×R

(1{y ≤ t} − F(𝛼⊤x, t))2 dP(x, y)dQ(t).

Expanding the squares and using the fact that E[1{Y ≤ t}|X = x] = F0(𝛼⊤0 x, t) yields

M(F, 𝛼) −M(F0, 𝛼0) =
∫

R
∫

R

(F(𝛼⊤x, t) − F0(𝛼⊤0 x, t))2 dP(x)dQ(t) =∶ d((F, 𝛼), (F0, 𝛼0))2.
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BALABDAOUI et al. 15

Furthermore, we have

Mn(F, 𝛼) −M(F, 𝛼) =
∫

R
∫

Rd×R

(1{y ≤ t} − F(𝛼⊤x, t))2dQ(t) d(Pn(x, y) − P(x, y)),

or, when rescaling with
√

n and using empirical process notation,

√
n(Mn(F, 𝛼) −M(F, 𝛼)) = Gn

∫
R

(1{y ≤ t} − F(𝛼⊤x, t))2dQ(t).

We now analyze the functions of the form

𝓁(x, y) =
∫

R

(1{y ≤ t} − F(𝛼⊤x, t))2dQ(t),

with (F, 𝛼) ∈  , and denote the class of such functions by . Also, let 𝛿 contain all
functions of type

𝓁(x, y) = 𝓁(x, y) −
∫

R

(1{y ≤ t} − F0(𝛼⊤0 x, t))2dQ(t),

with 𝓁 ∈  and for which

𝛿
2
≥ ||𝓁||2

P
= d((F, 𝛼), (F0, 𝛼0))2 = M(F, 𝛼) −M(F0, 𝛼0).

The elements in 𝛿 are obtained by shifting elements of  by a fixed function, so we
have NB(𝜀,𝛿, || ⋅ ||P) ≤ NB(𝜀,, || ⋅ ||P). To apply Lemma 3.4.2 of van der Vaart and
Wellner (1996), we have to find an upper bound for the bracketing entropy of the class
. Since Q is a finite measure, we have

𝓁(x, y) = 1 − Q([t,∞))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=∶f (t)

+
∫

R

F(𝛼⊤x, t)2dQ(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶g(x)

+
∫[y,∞)

F(𝛼⊤x, t)dQ(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶h(x,y)

.

The function f above does not contribute to the entropy, and g does not depend on y
and belongs to the class , for which we know from Assumptions 1 and 2 and Proposi-
tion 2 that log(NB(𝜀,, || ⋅ ||PX )) ≤ C̃∕𝜀 for a constant C̃ > 0. In separate lemmas below,
we show that the entropy of the functions of the form h above, with (F, 𝛼) ∈  , is
bounded from above by D̃∕𝜀 for some constant D̃. Let now [l,u] be an 𝜀-bracket con-
taining g and [L,U] an 𝜀-bracket containing h. We interpret l,u as functions of (x, y)
which are constant in y. Then the functions U + u + 1 − Q([t,∞), L + l + 1 − Q([t,∞)
form a (2𝜀)-bracket containing 𝓁, because

||U + u − L − l||2
P
=
∫

Rd×R

{
(U − L)2 + (u − l)2 + 2(U − L)(u − l)

}
dP(x, y)

≤ 2𝜀2 + 2
(

∫
Rd×R

(U − L)2 dP(x, y)
)1∕2(

∫
Rd×R

(u − l)2 dP(x, y)
)1∕2

≤ 4𝜀2
.
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16 BALABDAOUI et al.

Consequently, the number of 𝜀-brackets required to cover  is bounded from above
by 2(C̃ + D̃)∕𝜀 =∶ 𝜅∕𝜀, which yields the following bound on the entropy integral,

J̃(𝛿,, || ⋅ ||P) =
∫

𝛿

0

√
1 + log NB(𝜀,, || ⋅ ||) d𝜀 ≤

∫

𝛿

0
1 +

(
𝜅

𝜀

)1∕2
d𝜀 = 𝛿 + 2𝜅1∕2

𝛿
1∕2
.

Lemma 3.4.2 of van der Vaart and Wellner (1996) with M = 2 implies

E

[

||Gn
∫

R

(1{y ≤ t} − F(𝛼⊤x, t))2dQ(t) −
∫

R

(1{y ≤ t} − F0(𝛼⊤0 x, t))2dQ(t)||
𝛿

]

≤ (𝛿 + 2𝜅1∕2
𝛿

1∕2)
(

1 + 2𝛿 + 2𝜅1∕2
𝛿

1∕2

𝛿2n1∕2

)

.

Consequently, with

𝜙n(𝛿) ∶= (𝛿 + 2𝜅1∕2
𝛿

1∕2)
(

1 + 2𝛿 + 2𝜅1∕2
𝛿

1∕2

𝛿2n1∕2

)

𝜙n(𝛿) ∶= 𝜙n(𝛿)∕𝜙n(1),

we have

E

[

sup
(F,𝛼)∶d((F,𝛼),(F0,𝛼0))≤𝛿

|(Mn −M)(F, 𝛼) − (Mn −M)(F0, 𝛼0)|

]

≤ 𝜙n(𝛿),

and, for rn = n2∕3, r2
n𝜙n(1∕rn) ≤ n1∕2. Since (F̂n, �̂�n) maximizes Mn by

definition, theorem 3.4.2 of van der Vaart and Wellner (1996) implies that
n1∕3d((F̂n, �̂�n), (F0, 𝛼0)) = Op(1). ▪

For the entropy of the function class

 =
{

h ∶ R
d ×R → [0, 1], h(x, y) =

∫[y,∞]
F(𝛼⊤x, t)dQ(t), (F, 𝛼) ∈ 

}

,

we begin with the simpler case that Q has finite support.

Lemma 2. Under Assumptions 1 and 2 (i), we have

log(NB(𝜀,, || ⋅ ||P)) ≤
C̃ + p
𝜀

, 𝜀 ∈ (0, 1),

where C̃ = C̃(d,R, pX ) is the constant from Proposition 2, and p is the cardinality of the
finite support of Q.

Proof of Lemma 2. Recall that Q puts all its mass on the points t1 < · · · < tp. Let li,ui,
i = 1, … ,N be 𝜀-brackets covering , and let li(j),ui(j) be an 𝜀-bracket containing x →
F(𝛼⊤x, tj), j = 1, … ,m. Then,

L(x, y) ∶=
∑

j∶tj≥y
Q({tj})li(j)(x), U(x, y) ∶=

∑

j∶tj≥y
Q({tj})ui(j)(x),
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BALABDAOUI et al. 17

are an 𝜀-bracket containing h, because

||U − L||2
P
=
∫

Rd×R

⎛
⎜
⎜
⎝

∑

j∶tj≥y
Q({tj})(ui(j)(x) − li(j)(x))

⎞
⎟
⎟
⎠

2

dP(x, y)

≤
∫

Rd×R

∑

j∶tj≥y
Q({tj})(ui(j)(x) − li(j)(x))2 dP(x, y)

≤
∫

Rd×R

p∑

j=1
Q({tj})(ui(j)(x) − li(j)(x))2 dP(x, y)

=
∫

Rd

p∑

j=1
Q({tj})(ui(j)(x) − li(j)(x))2 dP(x)

≤ 𝜀
2
.

Moreover, there are pN functions of the form of L,U, corresponding to N choices for
li(j),ui(j) and p choices of tj. So for 𝜀 ∈ (0, 1), we have

log(NB(𝜀,, || ⋅ ||P)) ≤ C̃∕𝜀 + p ≤
C̃ + p
𝜀

.

▪

For Q with Lebesgue continuous distribution, the entropy bound is as follows.

Lemma 3. Under Assumptions 1 and 2 (ii), we have

log(NB(𝜀,, || ⋅ ||P)) ≤
3C̃ max(1, c) + b − a + 1

𝜀
, 𝜀 ∈ (0, 1),

where C̃ = C̃(d,R, pX ) is the constant from Proposition 2.

Proof of Lemma 3. We assume that Q is Lebesgue continuous on [a, b] with density
bounded from above by c < ∞. Discretize the interval [a, b]with a net of suitable size,
namely, let N′ = ⌈(b − a)∕𝜀⌉ and define

tj ∶= a + (j − 1)(b − a)∕N′
, hj(x) ∶=

∫[a,tj]
F(𝛼⊤x, t) dQ(t), j = 1, … ,N′ + 1.

The functions hj are contained in the class . Let li,ui, i = 1, … ,N be 𝜀-brackets for
, such that NB(𝜀,, || ⋅ ||PX|Y=y ) ≤ C̃∕𝜀 for all y ∈ supp(PY ). For j = 1, … ,m let i(j) be
an index such that li(j) ≤ hj ≤ ui(j), and for t ∈ (−∞, b], define

r(t) ∶= max{j ∈ {1, … ,N′ + 1} ∶ tj ≤ t}, s(t) ∶=

{
min(r(t) + 1,N′ + 1), t ≥ a,
r(t), t < a

,

and the functions

L(x, y) ∶= li(r(y))(x), U(x, y) ∶= ui(s(y))(x), y ∈ (−∞, b],
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18 BALABDAOUI et al.

with L(x, y) ∶= U(x, y) ∶= 0 for y > b. Note that there are at most N(N′ + 1) such func-
tions for all choices of r(y) ∈ {1, … ,N′ + 1} and i(j) ∈ {1, … ,N}, j = 1, … ,N′ + 1.
By construction, we have

L(x, y) ≤
∫[y,∞]

F(𝛼⊤x, t) dQ(t) ≤ U(x, y), y ∈ R.

We show that L,U form an 𝜀-bracket. First, notice that

||U − L||2
P
=
∫

Rd×R

(U(x, y) − L(x, y))2 dP(x, y)

=
∫

Rd×R

(ui(s(y))(x) − li(r(y))(x))2 dP(x, y)

=
∫

R
∫

Rd
(ui(s(y))(x) − li(r(y))(x))2 dP

X|Y=y(x)dP
Y (y).

We separate the outer integral into three parts. The lower part, over (−∞, a), satisfies

∫

a

−∞ ∫Rd
(us(y)(x) − lr(y)(x))2 dP

X|Y=y(x) dP
Y (y) =

∫

a

−∞∫

a

−∞
(ui(1)(x) − li(1)(x))2 dP

X|Y=y(y) dP
Y (x)

≤
∫

a

−∞
(ui(1)(x) − li(1)(x))2 dP

X|Y=y(y),

since li(1),ui(1) are 𝜀-brackets. The upper part over (b,∞) equals 0 because L(x, y) =
U(x, y) = 0 for y > b. For the middle part over [a, b], let y in [tj, tj+1). Then,

∫
Rd
(ui(s(y))(x) − li(r(y))(x))2 dP

X|Y=y(x) =
∫

Rd
(ui(j+1)(x) − li(j)(x))2 dP

X|Y=y(x),

and we expand the integrand as follows

∫
Rd
(ui(j+1)(x) − li(j)(x))2 dP

X|Y=y(x)

=
∫

Rd
(ui(j+1)(x) − hj+1(x) + hj+1(x) − hj(x) + hj(x) − li(j)(x))2 dP

X|Y=y(x).
(A1)

Since l(i(k)), i = 1, … ,N are 𝜀-brackets, we have

∫
Rd
(ui(j+1)(x) − hj+1(x))2 + (hj(x) − li(j)(x))2 dP

X|Y=y(x) ≤ 2𝜀2
,

and also, because tj+1 − tj ≤ (b − a)∕𝜀

∫
Rd
(hj+1(x) − hj(x))2 dP

X|Y=y(x) =
∫

Rd

(

∫(tj,tj+1]
F(𝛼⊤x, t) dQ(t)

)2

dP
X|Y=y(x)

≤
∫

Rd

(

∫(tj,tj+1]
1 dQ(t)

)2

dP
X|Y=y(x)
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BALABDAOUI et al. 19

≤
∫

Rd
(c𝜀)2 dP

X|Y=y(x)

≤ (c𝜀)2.

The cross-terms can be bounded by applying the Cauchy–Schwarz inequality,

∫
Rd
(ui(j+1)(x) − hj+1(x))(hj+1(x) − hj(x)) dP

X|Y=y(x)

≤

(

∫
Rd
(ui(j+1)(x) − hj+1(x))2dP

X|Y=y(x)
)1∕2

(

∫
Rd

hj+1(x) − hj(x)
)2

dP
X|Y=y(x)

)1∕2

≤ max(1, c)𝜀2
,

applying the bounds from above; the other cross terms are bounded in an analogous
way. Hence,

∫[a,b) ∫Rd
(us(y)(x) − lr(y)(x))2 dP

X|Y=ydP
Y =

N′
∑

j=1
∫[tj,tj+1)

∫
Rd
(us(y)(x) − lr(y)(x))2 dP

X|Y=ydP
Y

≤

N′
∑

j=1
∫[tj,tj+1)

9 max(1, c2)𝜀2 dP
Y

≤ 9 max(1, c2)𝜀2
,

where the factor 9 is due to the fact that one obtains three square terms and six
cross-terms from expanding the square in (A1). So we have

∫
R
∫

Rd
(us(y)(x) − lr(y)(x))2 ≤ 9 max(1, c2)𝜀2

.

Consequently, we obtain

log(NB(𝜀,, || ⋅ ||P)) ≤
3C̃ max(1, c)

𝜀
+ b − a + 1

𝜀
▪

A.2 Proof of Proposition 2

Proof. Fix 𝜀 ∈ (0, 1). By Lemma 21 of Feige and Schechtman (2002), we know that
d−1 can be partitioned into N subsets of equal size with diameter at most 𝜀 such
that N ≤ (A∕𝜀2)d, for a universal constant A. Let 𝛼1, … , 𝛼N be points in these N
subsets. Furthermore, from Theorem 2.7.5 of van der Vaart and Wellner (1996),
we can find N′ ≤ exp(K∕𝜀) brackets [hL

i , h
U
i ], i = 1, … ,N′ with respect to the

norm || ⋅ ||[−2R,2R].
Let g ∈ . Then, g(x) = h(𝛼⊤x) for some 𝛼 ∈ d−1 and h ∈ . Let i ∈ {1, … ,N}

and j ∈ {1, … ,N′} such that ||𝛼 − 𝛼i|| ≤ 𝜀
2 and hL

j ≤ h ≤ hU
j . Now, it follows from the

Cauchy–Schwarz inequality that

𝛼
⊤x = (𝛼 − 𝛼i)⊤x + 𝛼⊤i x ∈ [𝛼⊤i x − 𝜀2R, 𝛼⊤i x + 𝜀2R] ⊂ [−2R, 2R].
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20 BALABDAOUI et al.

By monotonicity of h this implies that

h(𝛼⊤i x + 𝜀2R) ≤ h(𝛼⊤x) ≤ h(𝛼⊤i x − 𝜀2R),

and hence

hL
j (𝛼

⊤

i x + 𝜀2R) ≤ h(𝛼⊤x) ≤ hU
j (𝛼

⊤

i x − 𝜀2R). (A2)

Now, using the Minkowski inequality, we have that

(

∫


{

hU
j (𝛼

⊤

i x − 𝜀2R) − hL
j (𝛼

⊤

i x + 𝜀2R)
}2

dx
)1∕2

≤

(

∫


{

hU
j (𝛼

⊤

i x − 𝜀2R) − h(𝛼⊤i x − 𝜀2R)
}2

dx
)1∕2

+
(

∫


{
h(𝛼⊤i x − 𝜀2R) − h(𝛼⊤i x + 𝜀2R)

}2 dx
)1∕2

+
(

∫


{

hL
j (𝛼

⊤

i x + 𝜀2R) − h(𝛼⊤i x + 𝜀2R)
}2

dx
)1∕2

=∶ I1 + I2 + I3.

Note that for any 𝛼 = (𝛼(1), … , 𝛼
(d)) ∈ d−1, there exists j ∈ {1, … , d} such that

|𝛼(j)| ≥ 1∕
√

d. Without loss of generality we assume that |𝛼(1)i | ≥ 1∕
√

d. Consider the
change of variable 𝜑(x) = t where

t1 = 𝛼⊤i x − 𝜀2R and tj = xj, forj = 2, … , d.

Then,

I1 ≤

⎛
⎜
⎜
⎝
∫
𝜑()

{

hU
j (t1) − h(t1)

}2
dt 1
𝛼
(1)
j

⎞
⎟
⎟
⎠

1∕2

≤

(√
d
∫

R

−2R∫

R

−R
…
∫

R

−R

{

hU
j (t1) − h(t1)

}2
dt
)1∕2

≤ d1∕4(2R)(d−1)∕2
(

∫

R

−2R

{

hU
j (t1) − h(t1)

}2
dt1

)1∕2

≤ d1∕4(2R)(d−1)∕2
(

∫

2R

−2R

{

hU
j (t1) − h(t1)

}2
dt1

)1∕2

≤ d1∕4(2R)(d−1)∕2
𝜀,

where above used that t1 = 𝛼⊤j x − 𝜀2R ∈ [−2R,R] for all x ∈  . Using a similar rea-
soning, we can bound I3 by the same constant. Now, we turn to I2. With the same
change of variable, we have that
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BALABDAOUI et al. 21

(

∫


{
h(𝛼⊤i x − 𝜀2R) − h(𝛼⊤i x + 𝜀2R)

}2 dx
)1∕2

≤ d1∕4(2R)(d−1)∕2
(

∫

R

−2R

{
h(z) − h(z + 2𝜀2R)

}2dz
)1∕2

≤ d1∕4(2R)(d−1)∕2
(

∫

R

−2R

{
h(z) − h(z + 2𝜀2R)

}
dz

)1∕2

,

using monotonicity of h and that h(z) − h(z + 2𝜀2R) ∈ [0, 1] for all z ∈ [−2R,R]. Now,

∫

R

−2R

{
h(z) − h(z + 2𝜀2R)

}
dz =

∫

R

−2R
h(z)dz −

∫

R

−2R
h(z + 2𝜀2R)dz

=
∫

R

−2R
h(z)dz −

∫

R+2𝜀2R

−2R+2𝜀2R
h(z)dz

=
∫

−2R+2𝜀2R

−2R
h(z)dz −

∫

R+2𝜀2R

R
h(z)dz

≤ 2𝜀2R.

Thus,

(

∫


{

hU
j (𝛼

⊤

i x − 𝜀2R) − hL
j (𝛼

⊤

i x + 𝜀2R)
}2

dx
)1∕2

≤ 2d1∕4(2R)(d−1)∕2
𝜀 + d1∕4(2R)(d−1)∕2

√
2
√

R𝜀

≤ 2d1∕4(2R)(d−1)∕2(1 +
√

R)𝜀.

If we put B = 2d1∕4(2R)(d−1)∕2(1 +
√

R), then the previous calculations and the
inequality (A2) imply that

NB(B𝜀,, || ⋅ || ) ≤ NN′
,

and hence

log(NB(B𝜀,, || ⋅ || )) ≤ log N + log N′

≤ d log A
𝜀2 +

2K
√

R
𝜀

= 2d log
√

A
𝜀

+
2K

√
R

𝜀

≤
2(d

√
A + K

√
R)

𝜀
,

which in turn implies that

log(NB(𝜀,, || ⋅ || ) ≤
2(d+1)∕2d1∕4R(d−1)∕2(1 +

√
R)(d

√
A + 2K

√
R)

𝜀
.
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22 BALABDAOUI et al.

Finally, since the Lebesgue density of 𝜇 is bounded from above by C, the previous
bound implies

log
(

NB(𝜀,, || ⋅ ||𝜇
)
≤

2(d+1)∕2d1∕4R(d−1)∕2(1 +
√

R)(d
√

A + 2K
√

R)C
𝜀

.

▪

A.3 Proof of Theorem 2

Proof. For simplicity of notation, index the subsequence by n, and choose an 𝜔 in the
underlying probability space such that (7) holds true. Recall that F̂n is non increasing
in the first entry and nondecreasing in the second entry for every n. Lemma 2.5. in van
der Vaart (1998) can be adapted to this case. Therefore F̂n converges pointwise along
a subsequence to a bivariate function G at each point of continuity of G that lies in
supp(Q). The limit G has the property that G(⋅, t) is left continuous and nonincreasing
for each t ∈ supp(Q) and G(z, ⋅) nondecreasing for every z. Furthermore, �̂�n ∈ d−1 is
a sequence in a compact space and hence converges along a further subsequence to
𝛽0 in the Euclidean distance.

Our goal is to show that G = F0 and 𝛼0 = 𝛽0. Recall that if the L2 distance between
two functions is zero then they coincide almost surely. We have

∫
×R

(G(𝛽⊤0 x, t) − F0(𝛼⊤0 x, t))2dP
X (x)dQ(t)

=
∫
×R

(
G(𝛽⊤0 x, t) − G(�̂�⊤n x, t) + F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t) + G(�̂�⊤n x, t) − F̂n(�̂�⊤n x, t)

)2dP
X (x)dQ(t)

≤ 3In,1 + 3In,2 + 3In,3,

by applying the Cauchy–Schwarz inequality, where

In,1 =
∫
×R

(
G(𝛽⊤0 x, t) − G(�̂�⊤n x, t)

)2dP
X (x)dQ(t),

In,2 =
∫
×R

(
F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X (x)dQ(t),

In,3 =
∫
×R

(
G(�̂�⊤n x, t) − F̂n(�̂�⊤n x, t)

)2dP
X (x)dQ(t).

We show that for n →∞ the terms In,1, In,2, In,3 converge to zero almost surely, so
G = F0 almost surely.

Recall that �̂�n converges to 𝛽0. Therefore, at all continuity points of G0 we have
that G0(�̂�⊤n x, t) converges to G0(𝛽⊤0 x, t). Note that G0 is bounded and monotone in both
variables. Lavrič (1993) shows that the set of all discontinuity points of the bivariate,
monotone function G may not be countable but has Lebesgue measure 0. When using
that both Q and PX are equivalent to the Lebesgue measure, under our assumptions,
we have that In,1 → 0 by Lebesgue’s dominated convergence Theorem. The second
integral In,2 converges to 0 directly by (7). Finally, we rewrite the third integral to

In,3 =
∫
×R

(
G(z, t) − F̂n(z, t)

)2dQn(z)dQ(t),
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BALABDAOUI et al. 23

where Qn denotes the distribution of �̂�⊤n X and X is a random variable that is inde-
pendent of the data, but has distribution PX . As at each point of continuity of G, the
function F̂n converges to G and the set of discontinuity points of G has Lebesgue
measure 0, Assumption 4 and Lebesgue’s dominated convergence theorem imply that
In,3 → 0.

If necessary, modify G to not have discontinuity points at the boundary. By Propo-
sition 3 it follows that 𝛽0 = 𝛼0 and G = F0 everywhere on 𝛼0 × supp(Q). As we have
found almost sure convergence along a subsequence, we follow that the statements
hold true for convergence in probability. ▪

A.4 Proof of Theorem 3

Proof. We apply Lemma 2.5. from Murphy, van der Vaart, and Wellner (1999). Rewrite
the integrated error as follows,

∫
×R

(
F̂n;�̂�n(�̂�

⊤

n x, t) − F0(𝛼⊤0 x, t)
)2dP

X (x)dQ(t) =
∫
×R

(G1(x, t) + G2(x, t))2dP
X (x)dQ(t)

= E
[
(G1(X ,T) + G2(X ,T))2

]
,

where the expectation is a shorthand notation of integrating with respect to a ran-
dom variable (X ,T) whose distribution is the product measure of PX and Q. The
functions G1 and G2 are G1(x, t) = F̂n(�̂�⊤n x, t) − F0(�̂�⊤n x, t) = G̃1(�̂�⊤n x, t) and G2(x, t) =
F0(�̂�⊤n x, t) − F0(𝛼⊤0 x, t). The Cauchy-Schwarz inequality and the tower property of
conditional expectations yield

E[G1(X ,T)G2(X ,T)]2 = E

[

G̃1(�̂�⊤n X ,T)G2(X ,T)
]2

= E

[

G̃1(�̂�⊤n X ,T) E[G2(X ,T)|�̂�⊤n X ,T]
]2

≤ E

[

G̃1(�̂�⊤n X ,T)2
]

E
[
E[G2(X ,T)| �̂�⊤n X ,T]2

]

= cnE
[
G1(X ,T)2

]
E
[
G2(X ,T)2

]
,

where

cn =
E
[
E[G2(X ,T)| �̂�⊤n X ,T]2

]

E
[
G2(X ,T)2

] =
E
[
(F0(�̂�⊤n X ,T) − E[F0(𝛼⊤0 X ,T)| �̂�⊤n X ,T])2

]

E
[
(F0(�̂�⊤n X ,T) − F0(𝛼⊤0 X ,T))2

] .

If cn < 1 it follows by Murphy et al. (1999) that

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X (x)dQ(t)

≥ (1 −
√

cn)
(
E
[
(F̂n(�̂�⊤n X ,T) − F0(�̂�⊤n X ,T))2

]
+ E

[
(F0(�̂�⊤n X ,T) − F0(𝛼⊤0 X ,T))2

])
.

(A3)

We now prove that there exists a c < 1 such that from any subsequence (nk)k∈N, there
exists a subsequence (nkl )l∈N along which lim supl→∞cnl ≤ c < 1 almost surely. This
shows that (1 −

√
cn)−1 = OP(1).

To prove the claim, consider an arbitrary subsequence. For simplicity of notation,
index it with n. Define un = ||�̂�n − 𝛼0|| and 𝛾n = (�̂�n − 𝛼0)∕un. As ||𝛾n|| = 1 and d−1
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24 BALABDAOUI et al.

is compact, 𝛾n converges to some 𝛾0 ∈ d−1 along a subsequence. Recall that �̂�n con-
verges to 𝛼0 in probability. Therefore, we can extract a further subsequence along
which the convergence from �̂�n to 𝛼0 and from 𝛾n to 𝛾0 happens almost surely. To make
notation less cumbersome we index this subsequence again by n. Fix an event𝜔 in the
underlying probability space such that �̂�0 → 𝛼0 and 𝛾n → 𝛾0, so that we can consider
�̂�n and 𝛾n as nonrandom.

By Assumption 3, for every t ∈ R the map F0(⋅, t) is continuously differentiable on
𝛼0 . Extend the function F0(⋅, t) such that it is bounded and continuously differentiable
on R and the partial derivative z → F(1)0 (z, t) is bounded on R2. By Taylor’s Theorem
we have that for x ∈  and t ∈ R,

F0(𝛼⊤0 x, t) = F0(�̂�⊤n x, t) + F(1)0 (�̂�⊤n x, t)(𝛼0 − �̂�n)⊤x + o(un). (A4)

Thus the numerator of cn becomes

E
[
E[F0(�̂�⊤n X ,T) − F0(𝛼⊤0 X ,T)| �̂�⊤n X ,T]2

]

= E

[

E[F(1)0 (�̂�⊤n X ,T)(𝛼0 − �̂�n)⊤X + o(un)| �̂�⊤n X ,T]2
]

= E

[

E[F(1)0 (�̂�⊤n X ,T)(𝛼0 − �̂�n)⊤X| �̂�⊤n X ,T]2
]

+ o(u2
n),

as the mixed term can be controlled by

2o(un)
|
|
|
E

[

F(1)0 (�̂�⊤n X ,T)(𝛼0 − �̂�n)⊤X
]
|
|
|
= o(u2

n).

This is because the partial derivative z → F(1)0 (z, t) is bounded. Similarly the denomi-
nator becomes

E
[
(F0(�̂�⊤n X ,T) − F0(𝛼⊤0 X ,T))2

]
= E

[

(F(1)0 (�̂�⊤n X ,T)(𝛼0 − �̂�n)⊤X)2
]

+ o(u2
n).

We rewrite

cn =
E

[

(F(1)0 (�̂�⊤n X ,T)𝛾⊤n E[X| �̂�⊤n X ,T])2
]

+ o(1)

E

[

(F(1)0 (�̂�⊤n X ,T)𝛾⊤n X)2
]

+ o(1)
.

By Lemma 9.1 in the supplement of Balabdaoui, Durot, and Jankowski (2019) we have
that E[X| �̂�⊤n X ,T]→ E[X| 𝛼⊤0 X ,T] almost surely. By Lebesgue’s dominated conver-
gence theorem and the continuity of F(1)0 (⋅, t), we have that

lim sup
n→∞

cn =
E

[

(F(1)0 (𝛼⊤0 X ,T)𝛾⊤0 E[X| 𝛼⊤0 X ,T])2
]

E

[

(F(1)0 (𝛼⊤0 X ,T)𝛾⊤0 X)2
]

=
𝛾
⊤

0 E

[

F(1)0 (𝛼⊤0 X ,T)2E[X| 𝛼⊤0 X ,T]E[X| 𝛼⊤0 X ,T]⊤
]

𝛾0

𝛾
⊤

0 E

[

F(1)0 (𝛼⊤0 X ,T)2XX⊤

]

𝛾0

.
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BALABDAOUI et al. 25

As �̂�n ∈ d−1, it follows that 1 = ||�̂�n|| = ||𝛼0 + un𝛾n|| = ||𝛼0|| + u2
n + 2un⟨𝛼0, 𝛾n⟩ and

thus 2⟨𝛼0, 𝛾n⟩ = −un → 0 and ⟨𝛼0, 𝛾0⟩ = 0. Write

c = sup
𝛾∈d−1∶⟨𝛼0,𝛾⟩=0

𝛾
⊤E

[

F(1)0 (𝛼⊤0 X ,T)2E[X| 𝛼⊤0 X ,T]E[X| 𝛼⊤0 X ,T]⊤
]

𝛾

𝛾⊤E

[

F(1)0 (𝛼⊤0 X ,T)2XX⊤

]

𝛾

.

Then, we have that limn→∞ cn ≤ c where c does not depend on the chosen path 𝜔. It
remains to prove that c < 1. We first expand the matrix in the denominator and get

E

[

F(1)0 (𝛼⊤0 X ,T)2 XX⊤

]

= E

[

F(1)0 (𝛼⊤0 X ,T)2E[X| 𝛼⊤0 X ,T] E[X| 𝛼⊤0 X ,T]⊤
]

+ E

[

F(1)0 (𝛼⊤0 X ,T)2(X − E[X| 𝛼⊤0 X ,T])(X − E[X| 𝛼⊤0 X ,T])⊤
]

∶= A + B.

Note that 𝛾⊤0 A𝛾0 equals the numerator in the expression of c. Consider some 𝛾 ∈ d−1
with ⟨𝛼0, 𝛾⟩ = 0. Define the 2 × d matrix A0 to have first row equal to 𝛼⊤0 and second
row equal 𝛾⊤ and Z = (Z1,Z2) = A0X . Since X has a density that is positive on  , the
variable Z admits a density that is positive on the set ∶= {A0x ∶ x ∈ }, which has
nonempty interior. Then,

𝛾
⊤
E

[

F(1)0 (𝛼⊤0 X ,T)2(X − E[X| 𝛼⊤0 X ,T])(X − E[X| 𝛼⊤0 X ,T])⊤
]

𝛾

= E

[

F(1)0 (𝛼⊤0 X ,T)2(𝛾⊤X − E[𝛾⊤X| 𝛼⊤0 X])2
]

,

is equal to zero if and only if 𝛾⊤X = E[𝛾⊤X| 𝛼⊤0 X ,T] almost surely or equivalently Z2 =
E[Z2|Z1] almost surely. This would mean that the distribution of Z is concentrated
on a one-dimensional subspace. This contradicts the fact that the density of Z with
respect to the Lebesgue measure is positive on . It follows that 𝛾⊤B𝛾 > 0 and thus
c < 1. This proves the claim. In integral notation, it follows from (A3) that

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X (x)dQ(t)

≥ (1 −
√

cn)
(

∫
×R

(F̂n(�̂�⊤n x, t) − F0(�̂�⊤n x, t))2dP
X dQ(t)

+
∫
×R

(F0(�̂�⊤n x, t) − F0(𝛼⊤0 x, t))2dP
X (x)dQ(t)

)

≥ (1 −
√

cn)
∫
×R

(
F0(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X dQ(t)

= (1 −
√

cn)
∫
×R

(

F(1)0 (�̂�⊤n x, t)(𝛼0 − �̂�n)⊤x + o(un)
)2

dP
X dQ(t)

≥ c′||�̂�n − 𝛼0||
2 inf
𝛽∈d−1 ∫×R

(𝛽⊤x)2dP
X (x)dQ(t),

for some c′ > 0 by the previous observations, for n large enough. Note that the
infimum above is strictly positive and achieved for some 𝛽, as the function
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26 BALABDAOUI et al.

𝛽 → ∫
×R

(𝛽⊤x)2PX (x)dQ(t) is continuous, d−1 is compact and the density pX is
bounded away from zero. Thus, there exists K > 0 such that

||�̂�n − 𝛼0||
2
≤ K

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X dQ(t) = OP(n−2∕3)

for large n and almost surely.
We turn to the second part. Recall that the density of �̂�⊤n X is bounded from below

by q > 0, so

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(�̂�⊤n x, t)

)2dP
X (x)dQ(t) ≥ q

∫C
�̂�n×R

(
F̂n(z, t) − F0(z, t)

)2dzdQ(t)

≥ q
∫

R
∫

c−vn

c+vn

(
F̂n(z, t) − F0(z, t)

)2dzdQ(t)

(A5)
with probability tending to one for n → ∞, using the definition of vn and that
||�̂�n − 𝛼0|| = OP(n−1∕3). The left-hand side of (A5) can be bounded from above by

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(�̂�⊤n x, t)

)2dP
X (x)dQ(t) ≤ 2

∫
×R

(
F̂n(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X (x)dQ(t)

+ 2
∫
×R

(
F0(�̂�⊤n x, t) − F0(𝛼⊤0 , t)

)2dP
X (x)dQ(t).

The first term is bounded OP(n−2∕3) by Theorem 1 and the seconded term can be han-
dled due to the fact that the absolute value of the partial derivative F(1)0 (z, t) is bounded
by K ∶= supt∈supp(Q) Kt; this yields

∫
×R

(
F0(�̂�⊤n x, t) − F0(𝛼⊤0 x, t)

)2dP
X (x)dQ(t) ≤ K2

∫
×R

((𝛼0 − �̂�n)⊤x)2dP
X (x)dQ(t)

≤ K2R2||𝛼0 − �̂�n||
2

= OP(n−2∕3).
▪

A.5 Identifiability
The identifiability result in this section is a direct adaptation of Theorem 5.1 of Balabdaoui, Durot,
and Jankowski (2019).

Proposition 3. Assume  ⊂ Rd is convex and has at least one interior point. Further-
more, assume X has a density with respect to the Lebesgue measure which is strictly
positive on  . Suppose that for each t ∈ supp(Q) the function F0(⋅, t) is left-continuous
(or right-continuous), non constant and does not have discontinuity points on the
boundary of 𝛼0 . Then (F0, 𝛼0) is identifiable.

Proof. We will prove the left-continuous case; the right-continuous case can be treated
with the same arguments. Consider pairs (F, 𝛼), (H, 𝛽) ∈  having the property that
for each t ∈ supp(Q), the functions F(⋅, t) on 𝛼 and H(⋅, t) are left-continuous on 𝛽 ,
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BALABDAOUI et al. 27

non constant and do not have discontinuity points on the boundary of their domain.
Assume

F(𝛼Tx, t) = H(𝛽Tx, t)

for PX almost all x ∈ Rd. Fix t0 ∈ R and define f = F(⋅, t0) and h = H(⋅, t0).
By assumption we have f (𝛼Tx) = h(𝛽Tx) for almost every x ∈  . As f , h are
left-continuous, this holds for all points in the interior of  . If we prove 𝛼 = 𝛽 we can
follow that f = h on the interior of 𝛼 = 𝛽 . As there are no discontinuity points on the
boundary, f = h holds everywhere on 𝛼 and finally, so F = H on 𝛼 ×R. Therefore,
it suffices to show 𝛼 = 𝛽.

As  is convex, for L > 0 small enough we can find an open ball BL of radius L
contained in  such that x → f (𝛼Tx) is non constant and

f (𝛼Tx) = h(𝛽Tx) (A6)

for every x ∈ BL. Without loss of generality, we assume that BL is centered at the
origin — if necessary, replace f (z) with f (z − 𝛼Tx0) and h(z) with h(z − 𝛽Tx0), where
x0 is the center of a ball with the desired properties. We first show 𝛽 ∈ {𝛼,−𝛼} and
then 𝛽 ≠ −𝛼.

Assume for a contradiction that 𝛽 ∉ {𝛼,−𝛼}. Then 𝛼 and 𝛽 are linearly indepen-
dent and by the Cauchy-Schwarz inequality for v = 𝛽 − 𝛼, it holds vT

𝛼 = 𝛽T
𝛼 − 1 < 0

and vT
𝛽 > 0. Using the monotonicity of f and h it follows that

f (z) = f (𝛼T(z𝛼)) = h(𝛽T(z𝛼)) = h(𝛼T(z𝛼) + vT(z𝛼)) ≥ h(z),
h(z) = h(𝛽T(z𝛽)) = f (𝛼T(z𝛽)) = f (𝛽T(z𝛽) − vT(z𝛽)) ≥ f (z),

for each z ∈ [0,L) and so f (z) = h(z) on [0,L). By the same arguments one shows
f (−z) = h(−z) on [0,L), and so f = h on (−L,L). Hence, for x ∈ BL we have

f (𝛼Tx) = f (𝛽Tx). (A7)

Since x → f (𝛼Tx) is non-constant on BL, there exists a point b ∈ (−L,L) of strict
decrease, so one of the following two conditions must hold,

f (b) > f (b + 𝜖), 𝜖 ∈ (0,L − b); (A8)

f (b − 𝜖) > f (b), 𝜖 ∈ (0,L + b). (A9)

The ball BL can be chosen in such a way that b ≠ 0. In the case (A8), if b > 0 we can
choose 𝜖 small enough such that for x ∶= (b + 𝜖)𝛽 it holds x ∈ BL and 𝛼Tx ≤ b, since
𝛼

T
𝛽 < 1. Then, we have

f (𝛼Tx) ≥ f (b) > f (b + 𝜖) = f (𝛽Tx),
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28 BALABDAOUI et al.

which contradicts (A7). If b < 0 we let x = b𝛼 and choose 𝜖 sufficiently small such
that b + 𝜖 < 0 and 𝛽Tx = b𝛽T

𝛼 ≥ b + 𝜖. Then,

f (𝛼Tx) = f (b) > f (b + 𝜖) ≥ f (𝛽Tx),

which contradicts (A7), again. The second case, (A9), can be proven with similar ideas.
Namely, if b < 0 choose x = (b − 𝜖)𝛽 and 𝜖 small enough such that 𝛼T

𝛽(b − 𝜖) ≥ b.
Then,

f (𝛽Tx) = f (b − 𝜖) ≥ f (b) ≥ f (𝛼Tx)

which contradicts (A7). If b > 0 choose x = b𝛼 and 𝜖 small enough such that b𝛼T
𝛽 ≤

b − 𝜖. Then,

f (𝛽Tx) ≥ f (b − 𝜖) ≥ f (b) = f (𝛼Tx)

which contradicts (A7). This proves 𝛽 ∈ {−𝛼, 𝛼}.
Finally, we assume for a contradiction that 𝛽 = −𝛼. For z ∈ [0,L) we have

f (z) = f (𝛼T(z𝛼)) = h(𝛽(z𝛼)) = h(−z),

by (A6). With the same argument one shows

h(z) = h(𝛽(z𝛽)) = f (𝛼(z𝛽)) = f (−a).

Thus by monotonicity of h we have for z ∈ [0,L),

f (z) = h(−z) ≥ h(z) = f (−z),

and so f (z) = f (−z) on [0,L). As f is also nonincreasing, we conclude that f is constant
on (−L,L), a contradiction. Consequently, 𝛼 = 𝛽 and Proposition 3 follows. ▪

A.6 Proof of Lemma 1

Proof. Replacing Y1, … ,Yn by f (Y1), … , f (Yn) in (4) and the fact that 1{Yi ≤

Yj} = 1{f (Yi) ≤ f (Yj)} almost surely for i, j = 1, … ,n imply Ln(PY
n ; F̂n,�̂�n , �̂�n) =

Ln(Pf (Y )
n ; F̃n,�̂�n , �̂�n), which also yields the statement about the minimizers in (i). Part

(ii) holds by definition of ti, i = 1, … ,n, F̃n,�̂�n , and F̃0. ▪
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