
diss. eth no. 30025

T O WA R D S P R A C T I C A L D O M A I N A D A P TAT I O N
F O R S C E N E U N D E R S TA N D I N G

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES
(Dr. sc. ETH Zurich)

presented by

Rui Gong
Master of Science in Robotics, Systems and Control (ETH Zurich)

born on 26.08.1995

accepted on the recommendation of
Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Nicu Sebe, co-examiner

Prof. Dr. Ming-Hsuan Yang, co-examiner

2024



Rui Gong: Towards Practical Domain Adaptation for Scene Understanding,
© 2024



A B S T R A C T

Scene understanding, which aims to understand visual scenes com-
prehensively, stands as a pivotal element within the field of computer
vision. To empower machine with the human-like scene understanding
ability, semantic segmentation emerges as a crucial tool, forming the
essence of a broad range of applications, e.g., autonomous driving, robot
vision and human-computer interaction. Over the past decade, seman-
tic segmentation models have achieved significant success, propelled
by the availability of large-scale datasets and the rapid advancement of
deep learning techniques. However, generalization of these models to
new and different domains remains limited. Training domain-robust
models typically relies on the labor-intensive process of labeling exten-
sive and diverse datasets, resulting in significant costs and hindering
the practical deployment of these models in real-world applications.

In such cases, domain adaptation aims at adapting the semantic seg-
mentation model trained on the labeled source domain to the unlabeled
target domain, thereby eliminating the need for labeling the target
domain. Traditional domain adaptation typically relies on implicit or
explicit assumptions, such as assuming a single data distribution for the
source or target domain, or maintaining consistent taxonomies between
them. However, these assumptions prove impractical in real-world ap-
plications. Moreover, prevailing domain adaptation frameworks depend
on pseudo-labels assigned to the unlabeled target domain, introduc-
ing noise due to domain discrepancies. The presence of low-quality
pseudo-labels inevitably impedes the adaptation process. To tackle
these challenges, this dissertation introduces a set of domain adaptive
semantic segmentation methods that tackle these challenges and close
to practical scenarios, ultimately enhancing scene understanding. We
propose four main contributions detailed below.

Firstly, we propose a multi-source domain adaptation and label
unification (mDALU) problem along with a novel method to address
it. In the mDALU setting, there exist multiple source domains and
an unlabeled target domain, with only a subset of classes labeled in
each source domain. The objective of mDALU is to develop a model
encompassing all classes in the target domain. Our approach comprises
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a two-stage adaptation process: a partially-supervised adaptation stage
and a fully-supervised adaptation stage. In the partially-supervised
stage, partial knowledge is transferred from multiple source domains
to the target domain and integrated. In the fully-supervised stage,
knowledge is transferred within a unified label space following a label
completion process involving pseudo-labels.

Secondly, we present a principled meta-learning based approach to
tackle open compound domain adaptation (OCDA) problem, wherein
the target domain is considered as a compound of multiple unknown
sub-domains. Our approach comprises four essential steps: cluster,
split, fuse, and update. These steps establish a hyper-network to
uncover and integrate the knowledge from the unknown sub-domains
in the target domain. Additionally, we incorporate a meta-learning
strategy for online model updates during testing, achieved with just a
single-gradient step.

Thirdly, we propose a taxonomy adaptive cross-domain semantic seg-
mentation (TACS) problem, addressing both image-level and label-level
domain gaps. In particular, the label-level domain gap accommodates
inconsistent taxonomies between the source and target domains (e.g.,
the ”person” class in the source domain being fine-grained as ”rider”
and ”pedestrian” in the target domain). To tackle TACS comprehen-
sively, we develop an approach that simultaneously handles image-level
and label-level domain adaptation. At the label level, we utilize a bilat-
eral mixed sampling strategy to augment the target domain and employ
a relabelling method to harmonize and align the label spaces. To miti-
gate the image-level domain gap, we propose an uncertainty-rectified
contrastive learning method, resulting in more domain-invariant and
class-discriminative features.

Lastly, we introduce a framework based on implicit neural repre-
sentations to enhance domain adaptation performance. In greater
detail, the pseudo-label learning mechanism underlies the majority
of domain-adaptive semantic segmentation methods. Our proposal
involves estimating rectification values for predicted pseudo-labels us-
ing implicit neural representations, thereby enhancing the quality of
pseudo-labels and facilitating the domain adaptation process.

In a nutshell, we demonstrate that our proposed problems and ap-
proaches transcend traditional domain adaptation limitations, enriching
practical domain adaptation. This advancement facilitates robust scene
understanding and application in real-world scenarios.



Z U S A M M E N FA S S U N G

Szenenverständnis, das darauf abzielt, visuelle Szenen umfassend zu
verstehen, stellt ein entscheidendes Element im Bereich der Computer
Vision dar. Um Maschinen mit der fähigkeit des menschenähnlichen
Szenenverständnisses zu befähigen, erweist sich die semantische Seg-
mentierung als ein entscheidendes Werkzeug, das den Kern einer Viel-
zahl von Anwendungen bildet, z. B. autonomes Fahren, Roboter Vi-
sion und Mensch-Computer-Interaktion. In den letzten zehn Jahren
haben semantische Segmentierungsmodelle durch die Verfügbarkeit
von umfangreichen Datensätzen und den raschen Fortschritt von Deep-
Learning-Techniken erhebliche Erfolge erzielt. Die Generalisierung die-
ser Modelle auf neue und unterschiedliche Domänen bleibt jedoch
begrenzt. Das Training von domänenrobusten Modellen beruht in der
Regel auf dem arbeitsintensiven Prozess des Labelns umfangreicher
und vielfältiger Datensätze, was zu erheblichen Kosten führt und die
praktische Bereitstellung dieser Modelle in realen Anwendungen be-
hindert.

In solchen Fällen zielt die Domänenanpassung darauf ab, das auf der
gelabelten Quelldomäne trainierte semantische Segmentierungsmodell
an die ungelabelte Zieldomäne anzupassen, wodurch die Notwendig-
keit entfällt, die Zieldomäne zu labeln. Traditionelle Domänenanpassung
beruht in der Regel auf impliziten oder expliziten Annahmen, wie etwa
der Annahme einer einzigen Datenverteilung für die Quell- oder Ziel-
domäne oder der Beibehaltung konsistenter Taxonomien zwischen ih-
nen. Diese Annahmen erweisen sich jedoch als unpraktisch in realen An-
wendungen. Darüber hinaus sind gängige Domänenanpassungsrahmen
auf Pseudo-Labels angewiesen, die der ungelabelten Zieldomäne zuge-
wiesen sind, was aufgrund von Domänendifferenzen zu Rauschen führt.
Die Präsenz von qualitativ minderwertigen Pseudo-Labels behindert
zwangsläufig den Anpassungsprozess. Um diese Herausforderungen zu
bewältigen, führt diese Dissertation eine Reihe von domänenadaptiven
semantischen Segmentierungsmethoden ein, die diese Herausforderun-
gen bewältigen und nah an praktischen Szenarien liegen, um letztend-
lich das Szenenverständnis zu verbessern. Wir schlagen vier Hauptbei-
träge vor.
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Erstens schlagen wir ein Multi-Source-Domänenanpassungs- und
Labelvereinigungsproblem (mDALU) zusammen mit einer neuartigen
Methode zur Bewältigung vor. Im mDALU-Szenario gibt es mehre-
re Quelldomänen und eine ungelabelte Zieldomäne, wobei in jeder
Quelldomäne nur eine Teilmengen von Klassen gelabelt sind. Das Ziel
von mDALU ist es, ein Modell zu entwickeln, das alle Klassen in der
Zieldomäne umfasst. Unser Ansatz umfasst einen zweistufigen Anpas-
sungsprozess: eine teilweise überwachte Anpassungsstufe und eine
vollständig überwachte Anpassungsstufe. In der teilweise überwachten
Stufe wird Wissen von mehreren Quelldomänen auf die Zieldomäne
übertragen und integriert. In der vollständig überwachten Stufe wird
das Wissen in einem vereinheitlichten Labelraum nach einem Labelab-
schlussprozess unter Verwendung von Pseudo-Labels übertragen.

Zweitens präsentieren wir einen fundierten, auf Meta-Lernen basie-
renden Ansatz zur Bewältigung des Problems der offenen zusammen-
gesetzten Domänenanpassung (OCDA), bei dem die Zieldomäne als
Verbindung mehrerer unbekannter Subdomänen betrachtet wird. Unser
Ansatz umfasst vier wesentliche Schritte: Clustern, Teilen, Fusionie-
ren und Aktualisieren. Diese Schritte etablieren ein Hyper-Netzwerk,
um das Wissen aus den unbekannten Subdomänen in der Zieldomäne
aufzudecken und zu integrieren. Darüber hinaus integrieren wir eine
Meta-Lernstrategie für Online-Modellaktualisierungen während des
Tests, die mit nur einem einzelnen Gradientenschritt erreicht wird.

Drittens schlagen wir ein Problem der taxonomieadaptiven, domänen
-übergreifenden semantischen Segmentierung (TACS) vor, das sowohl
die Bild- als auch die Label-Ebene der Domänendifferenz bewältigt.
Insbesondere berücksichtigt die Label-Ebene der Domänendifferenz
inkonsistente Taxonomien zwischen den Quell- und Zieldomänen (z.
B. die Klasse ”Person” in der Quelldomäne wird in der Zieldomäne
feinkörnig als ”Reiter” und ”Fußgänger” betrachtet). Um TACS um-
fassend zu bewältigen, entwickeln wir einen Ansatz, der gleichzeitig
die Bild- und Label-Ebene der Domänenanpassung handhabt. Auf der
Label-Ebene verwenden wir eine bilaterale Mixed-Sampling-Strategie,
um die Zieldomäne zu erweitern, und setzen eine Neubelegungsme-
thode ein, um die Labelräume zu harmonisieren und abzustimmen.
Um die Bild-Ebene der Domänendifferenz zu mildern, schlagen wir
eine Unsicherheits-berichtigte kontrastive Lernmethode vor, die zu
domäneninvarianten und klassenunterscheidenden Merkmalen führt.
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Schließlich stellen wir ein auf impliziten neuronalen Repräsentationen
basierendes Framework zur Verbesserung der Domänenanpassungsleist
-ung vor. Genauer gesagt liegt dem Großteil der domänenadaptiven
semantischen Segmentierungsmethoden der Lernmechanismus für
Pseudo-Labels zugrunde. Unser Vorschlag beinhaltet die Schätzung von
Rektifikationswerten für vorhergesagte Pseudo-Labels unter Verwen-
dung impliziter neuronaler Repräsentationen, wodurch die Qualität
der Pseudo-Labels verbessert und der Domänenanpassungsprozess
erleichtert wird.

Kurz gesagt zeigen wir, dass unsere vorgeschlagenen Probleme und
Ansätze die traditionellen Einschränkungen der Domänenanpassung
überwinden und die praktische Domänenanpassung bereichern. Diese
Weiterentwicklung erleichtert ein robustes Szenenverständnis und die
Anwendung in realen Szenarien.
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1
I N T R O D U C T I O N

Human scene understanding is a remarkable cognitive ability, encom-
passing the recognition of objects, the understanding of contextual
information, and grasping the overall understanding of a visual scene.
To imbue machines with human-like scene understanding capabilities,
semantic segmentation stands out as a crucial tool, representing a foun-
dational challenge in computer vision. Semantic segmentation, which
aims to assign semantic labels to each pixel in an image, serves as the
cornerstone for a diverse array of applications such as autonomous driv-
ing, robot vision, human-computer interaction as well as virtual and
augmented reality. For instance, through the recognition of semantic
information at the pixel level, intelligent robots not only expand their
object recognition capabilities but also infer spatial relationships. Such
abilities lay the groundwork for robots to develop a comprehensive
understanding of the visual world, enabling them to foresee events,
make informed decisions, and navigate in complex environments.

In the past decade, given the triumphs of deep learning techniques [68,
165, 40] and large-scale datasets [38, 44, 222, 34], semantic segmenta-
tion has made significant strides, exemplified by deep learning based
semantic segmentation architectures like FCN [113], DeepLab [20], Seg-
Former [196] and Mask2Former [33]. Notwithstanding the tremendous
success, the training of these deep models primarily relies on extensive
labeled datasets on a large scale. However, two main issues, which hin-
der the practical applications, arise from such a reliance. 1) Manually
annotating dense labels for large-scale datasets in real-world scenarios
is challenging, incurring significant costs in both time and resources.
For example, annotating a single image from Cityscapes [34] requires
1.5 hours, and the process extends to 3.3 hours for more challenging
adverse weather conditions image in ACDC [160]. 2) The generalization
ability of trained deep models to novel and diverse domains remains
constrained, particularly in the presence of domain shift. When the
data distribution (i.e., target domain) diverges from the training data
(i.e., source domain) distribution, the model’s performance typically
experiences a significant drop [175, 227, 48, 116]. Consequently, in real-
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2 introduction

world applications encountering new scenarios and domains, there is a
consistent need to collect and label new data for fine-tuning pretrained
or re-training deep models. This process poses a considerable challenge
due to the labeling effort and associated costs.

To circumvent the issues, domain adaptation emerges as a strategic
approach [153, 184, 30, 72, 154]. The purpose of domain adaptation is to
enhance the testing performance of deep models in the target domain by
training on both labeled source domain and unlabeled target domain
data, where the distributions of source and target domain data are
different. This process involves adapting the model from the labeled
source domain to the unlabeled target domain, presenting an effective
mechanism to alleviate the labeling effort. For example, imagine the
source domain as street view scene images captured in clear sunny
weather, while the target domain consists of images depicting similar
street view scene in rainy weather. Adapting from clear sunny weather
to rainy weather significantly reduces the effort required for annotating
pixel-level semantic labels of rainy weather images, a challenging task
even for human annotation due to raindrop blurring and streaks.

A range of research endeavors has demonstrated the benefits of
domain adaptation on advancing scene understanding [175, 174, 75].
However, these works typically operate under two primary assump-
tions, either explicitly or implicitly. 1) Firstly, the setup assumes a
single source and a single target domain. 2) Secondly, it presupposes
compatibility between the semantic classes in the source domain and
those in the target domain; in other words, each class in the source
domain can be unambiguously mapped to the corresponding class in
the target domain, i.e., consistent taxonomy. This naturally raises the
question: Is the domain adaptation setup comprehensive and practical? 1)
Firstly, in practical scenarios, labeled source domain data may originate
from diverse sources, including but not limited to different modali-
ties [50, 12], various scenes [128, 181], and distinct classes [108, 14,
92]. For instance, when training a semantic segmentation model for
autonomous driving, one may encounter different public datasets with
varying modalities (such as images and LiDAR points) from differ-
ent cities, all of which collectively contribute to the source domain.
Furthermore, when deploying the model in real applications, it must
perform under different conditions, including various times of day and
weather conditions (such as night, rainy, snowy, and foggy), which are
all regarded as the target domain. Therefore, the single-source-single-
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target assumption is not practical in such multi-source or multi-target
scenarios. 2) Secondly, in many applications, the label spaces of the
source and target domains often exhibit inconsistencies, stemming from
different scenarios or requirements, inconsistent annotation practices, or
the strive towards an increasingly fine-grained taxonomy. For example,
in the Cityscapes [34] dataset, the ”road” class is further delineated into
”road” and ”crosswalk” in the Mapillary [128] dataset. This finer distinc-
tion aids in achieving a more detailed comprehension of street scenes,
particularly beneficial for applications in autonomous driving. When
considering Cityscapes as the source domain and Mapillary as the target
domain, the assumption of compatible source and target classes is not
valid. Consequently, the two typical assumptions of traditional domain
adaptation impede their applicability in real-world scenarios. Beyond
the impractical assumptions considerations, an additional aspect to
address from the approach mechanism side is: Does the domain adapta-
tion approach effectively and reliably transfer knowledge? Pseudo-labeling
or self-training [227, 226, 212, 174, 75, 76] has recently emerged as a
straightforward yet powerful approach for domain adaptation to trans-
fer knowledge. In pseudo-labeling methods, pseudo-labels are initially
generated for the unlabeled target domain using the current model.
The model is then iteratively fine-tuned with these target pseudo-labels.
However, due to domain shift, some pseudo-labels are inevitably incor-
rect. These low-quality pseudo-labels pose a hindrance to the effective
transfer of knowledge and limit the potential applications of domain
adaptation.

This dissertation is committed to further relaxing the impractical
assumptions and overcoming limitations associated with traditional do-
main adaptation, thereby enhancing scene understanding for real-world
applications. In practical scenarios, it is common for the knowledge of
deep models to come from various sources, such as different datasets,
and these models need to be deployed into diverse scenarios. Addition-
ally, the ground truth class labeling for the same object or pixel may
change over time and with evolving requirements. Guided by these
observations and insights, the primary methodological motivation be-
hind the proposed approaches in this dissertation is the consideration
of practical scenarios, where single-source-single-target and compat-
ibility between source and target classes assumptions does not hold.
Additionally, on the approach limitation side, existing domain adapta-
tion frameworks rely on pseudo-labels to transfer knowledge between
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Figure 1.1: Overview: Traditional domain adaptation vs. our practical
domain adaptation.

different domains. Building on this, the dissertation introduces the
pseudo-label rectification method to enhance the quality of pseudo-
labels, thereby facilitating more effective domain adaptation. More
specifically, this dissertation presents four deep learning based frame-
works, striving forward more effective domain adaptation in practical
scenarios, i.e., practical domain adaptation. 1) Firstly, we delve into
the transfer of knowledge from multiple source domains to the target
domain, moving beyond the single-source assumption (see Chapter 2).
2) Secondly, relaxing the single-target assumption, we devise a method
to adapt the model to multiple unknown target domains (see Chapter 3).
3) Thirdly, we investigate adapting the model in scenarios where there
is incompatibility between source and target domain classes, i.e., incon-
sistent taxonomy (see Chapter 4). 4) Fourthly, we propose a principled
and plug-in module to rectify and enhance knowledge transfer across
different domains (see Chapter 5.3.3).

• As our first contribution, we propose a new problem termed
multi-source domain adaptation and label unification (mDALU).
In this context, multiple source domains coexist with an unla-
beled target domain. Within each source domain, only samples
(e.g., pixels or LiDAR points) belonging to a subset of classes are
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labeled, leaving the rest unlabeled. The objective of mDALU is to
derive a scene understanding model that encompasses all classes
in the target domain. To address mDALU, we introduce a novel
method, comprising a partially-supervised adaptation stage and
a fully-supervised adaptation stage. In the former, we facilitate
the transfer of partial knowledge from multiple source domains
to the target domain, integrating it at the target domain. To avoid
negative transfer issues arising from unmatched label spaces, we
introduce three novel modules: domain attention, uncertainty
maximization, and attention-guided adversarial alignment. In
the latter stage, knowledge transfer occurs within the unified
label space after a label completion process involving pseudo-
labels. Through extensive experiments spanning diverse tasks –
2D semantic image segmentation, and joint 2D-3D semantic seg-
mentation – our method consistently outperforms all competing
approaches, demonstrating significant improvements.

• As our second contribution, we propose a principled meta-learning
based approach, known as MOCDA, designed for addressing
the open compound domain adaptation (OCDA) problem. In
OCDA, target domain is modeled as a compound of multiple
unknown homogeneous domains, offering the advantage of en-
hanced generalization to previously unseen domains. Our pro-
posed MOCDA method continuously models the unlabeled target
domain through four key steps. First, we cluster target domain
into multiple sub-target domains by image styles, extracted in
an unsupervised manner. Then, different sub-target domains are
split into independent branches, for which batch normalization
parameters are learnt to treat them independently. A meta-learner
is thereafter deployed to learn to fuse sub-target domain-specific
predictions, conditioned upon the style code. Concurrently, we
employ model-agnostic meta-learning (MAML) algorithm for on-
line model update, thus to further improve generalization. More
specifically, four steps involved in our MOCDA are realized as
follows. (i) Style codes are extracted from target images and
grouped into multiple clusters. (ii) For each cluster, a set of batch
normalization (BN) parameters is learned. (iii) Each image can
have different domain-specific predictions corresponding to its
cluster. The hypernetwork is trained to integrate these predic-
tions. (iv) MAML is employed during the hypertraining process,
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providing the model with the capability for online updates in an
open domain during the inference stage. We demonstrate the
advantages of our approach through extensive experiments on
synthetic-to-real knowledge transfer benchmarks. Our method
attains state-of-the-art performance in both compound and open
domains.

• As our third contribution, we introduce a taxonomy adaptive
cross-domain semantic segmentation (TACS) problem, accommo-
dating inconsistent taxonomies between the two domains. I.e.,
there can exist one-to-many mapping from the source domain to
the target domain classes. To address TACS, we propose a novel
approach, which addresses both image-level and label-level do-
main adaptation. At the label level, we employ a bilateral mixed
sampling strategy to augment the target domain, and introduce
both a stochastic label mapping strategy and a pseudo-label based
relabelling method to unify and align the label spaces. To tackle
the image-level domain gap, we propose an uncertainty-rectified
contrastive learning method, resulting in more domain-invariant
and class-discriminative features. We extensively evaluate the effi-
cacy of our framework in various TACS settings, including open
taxonomy, coarse-to-fine taxonomy, and implicitly-overlapping
taxonomy. Our proposed approach significantly outperforms the
previous state-of-the-art, demonstrating superior adaptability to
target taxonomies.

• As our fourth contribution, we propose a continuous rectification-
aware mixture model (RMM), which rectifies and enhances the
knowledge transfer of domain adaptation. While existing domain
adaptation approaches have made significant strides leveraging
pseudo-labels on unlabeled target-domain images, the presence
of low-quality pseudo-labels due to domain discrepancies poses
a hindrance to effective adaptation. This underscores the need
for accurate and effective methods to estimate the reliability of
pseudo-labels, aiming to rectify them. We propose to estimate rec-
tification values for predicted pseudo-labels using implicit neural
representations. We view the rectification value as a signal defined
across the continuous spatial domain. By taking image coordi-
nates and nearby deep features as inputs, the rectification value
at a given coordinate is predicted as an output. This approach
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enables high-resolution and detailed estimation of rectification
values, crucial for accurate pseudo-label generation, especially
at mask boundaries. The rectified pseudo-labels are then incor-
porated into our RMM, designed to be learned end-to-end, en-
hancing the adaptation process. We showcase the effectiveness of
our approach across various domain adaptation benchmarks, in-
cluding synthetic-to-real and day-to-night scenarios. Our method
consistently outperforms state-of-the-art methods.





2
M U LT I - S O U R C E D O M A I N A D A P TAT I O N A N D
L A B E L U N I F I C AT I O N

This chapter corresponds to our published article:
Rui Gong, Dengxin Dai, Yuhua Chen, Wen Li, and Luc Van Gool.

”mDALU: Multi-source domain adaptation and label unification with
partial datasets.“ In: ICCV. 2021

In this chapter, we propose a new problem, multi-source domain
adaptation and label unification (mDALU). One challenge of semantic
segmentation for scene understanding is to generalize to new domains,
to more classes and/or to new modalities. This necessitates methods
to combine and reuse existing datasets that may belong to different
domains, have partial annotations, and/or have different data modal-
ities. This paper formulates this as mDALU problem, and proposes
a novel method for it. Our method consists of a partially-supervised
adaptation stage and a fully-supervised adaptation stage. In the former,
partial knowledge is transferred from multiple source domains to the
target domain and fused therein. Negative transfer between unmatch-
ing label spaces is mitigated via three new modules: domain attention,
uncertainty maximization and attention-guided adversarial alignment.
In the latter, knowledge is transferred in the unified label space after
a label completion process with pseudo-labels. Extensive experiments
on different tasks - 2D semantic image segmentation, and joint 2D-3D
semantic segmentation - show that our method outperforms all com-
peting methods significantly. Besides, it is proven that our method can
be extended to other corresponding tasks such as image classification.

2.1 introduction

The development of semantic segmentation for scene understanding
is carried by two pillars: large-scale data annotation and deep neural
networks. With new applications coming out every day, researchers
need to constantly develop new methods and create new datasets.
While we are able to develop novel neural networks for new tasks,
the creation of new datasets can hardly keep up due to its huge cost.

9
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Road, Sidewalk, Vegetation, Building, Sign

Car, Person, Bike, Truck

Source 1

Source 2

Target

Road, Sidewalk, Vegetation, Building, 
Sign, Car, Person, Bike, Truck

Figure 2.1: mDALU learns a complete-class and complete-modality
semantic segmentation model for a new, unlabeled target
domain, by using multiple datasets with partial-class anno-
tation and partial data modality as source domains.

In the literature, a diverse set of learning paradigms, such as self-
learning [67], semi-supervised learning [74] and transfer learning [30],
have been developed to come to the rescue. We enrich this repository
by developing a method to combine multiple existing datasets that
have been annotated in different domains, for smaller-scale tasks (fewer
classes), and/or with fewer data modalities. The importance of the
method can be justified by the fact that as time goes, research goals will
become more and more ambitious, so semantic segmentation models for
more classes, new domains, and/or more data modalities are necessary.

To address this, we propose a multi-source domain adaptation and
label unification (mDALU) problem. In this setting, there are multiple
source domains and an unlabeled target domain. In each source domain,
only samples (images, pixels, or LiDAR points) belonging to a subset of
classes are labeled; the rest are unlabeled. The subsets of classes having
labels can be different over different source domains, and can have
inconsistent taxonomies, e.g., truck is labeled as “truck” in one source
domain but labeled as “vehicle” together with other types of vehicles
in another. Further, the data modalities in different source domains
can also be different, e.g., one contains images and the other contains
LiDAR point clouds. The goal is to obtain an semantic segmentation
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model for all classes in the target domain. Fig. 2.1 shows an exemplar
setting of mDALU. A comparison to other domain adaptation settings,
in Table 2.1, shows that mDALU is very flexible.

This goal is challenging. Firstly, there is the notorious issue of neg-
ative transfer. While negative transfer is an issue also for standard
transfer and multi-task learning, it is especially severe in our mDALU
task due to the influence of unlabeled classes. To address this, we
propose three novel modules, termed domain attention, uncertainty
maximization and attention-guided adversarial alignment, to avoid
making confident predictions for unlabeled samples in the source do-
mains, and to enable robust distribution alignment between the source
domains and the target domain. The method with the aforementioned
modules and attention-guided prediction fusion is able to generate
good results in the unified label space and on the target domain. In
order to further improve the results, we need to fuse the supervision
of all partial datasets to transfer the supervision in the unified label
space. To this aim, we propose a pseudo-label based supervision fusion
module. In particular, we generate pseudo-labels for the unlabeled
samples in the source domains and all samples in the target domain.
Standard supervised learning is then performed in the unified label
space for the final model.

To showcase the effectiveness of our method, we evaluate it on
different tasks: 2D semantic image segmentation, and joint 2D-3D
semantic segmentation. Synthetic and real data, and images and LiDAR
point clouds are involved. Also, non-overlapping, partially-overlapping
and fully-overlapping label spaces, and consistent and inconsistent
taxonomies across source domains are covered. Furthermore, it is
proven that our method can be seamlessly extended to related tasks such
as image classification. Experiments show that our method outperforms
all competing methods significantly.

2.2 related work

Multi-Source Domain Adaptation. Transfer learning and domain
adaptation have been extensively studied in the past years. Several
effective strategies have been developed such as minimizing maximum
mean discrepancy [178, 114], moment matching [206], adversarial do-
main confusion [47, 177], entropy regularization [184], and curriculum
domain adaptation [36]. While great progress has been achieved, most
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algorithms focus on the single-source adaptation setting. This limits the
methods from being used when data is collected from multiple source
domains. That is why multi-source domain adaptation methods are
proposed [35, 216, 140, 71, 218]. Yet, these methods all assume the same
label space for all domains. Xu et al. [198] explores the problem of the
category shift among different source domains, and adopts the k-way
domain discriminator to reduce the effect of category shift. But the
method is mainly proposed for the image classification task, and cannot
deal with the problem of partial annotation, inconsistent taxonomies
and modal differences among different source domains.

Open-Set/Partial Domain Adaptation. Recent research explores the
category “openness” between the source domain and the target domain,
which is divided into open-set domain adaptation and partial domain
adaptation. Open-set domain adaptation [134, 157, 146] assumes that
the target domain includes new classes that are unseen in the source
domain, and aims to classify the unseen class samples as “unknown”
class in the target domain. Partial domain adaptation [15, 210, 16,
84] aims to transfer knowledge from existing large-scale domains (e.g.
1K classes) to unknown small-scale domains (e.g. 20 classes) for cus-
tomized applications. Different than both open-set and partial domain
adaptation, our label space of the target domain is the union of label
spaces of all source domains.

Learning from multiple datasets. Several successful methods [148, 147,
189, 86] have been proposed to learn a single universal network, that
can represent different domains with a minimum of domain-specific
parameters. But those methods do not consider domain adaptation
and label space unification. Recently, Lambert et al.[92] presented a
composite dataset that unifies different semantic segmentation datasets
by reconciling the taxonomies, merging and splitting classes manually.
But they do not address the problem of domain adaptation, partial
annotation and cross-modal data, and they rely on the manual re-
annotation for unification. The object detection method by Zhao et
al. [219] performs label space unification from multiple datasets with
partial annotations, but it does not consider other problems that are
considered by our method such as domain discrepancies, inconsistent
taxonomies and mismatched data modalities across the datasets.
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2.3 approach

2.3.1 Problem Statement

For the problem of mDALU, we are given K source domains S1,S2, ...,SK.
The K source domains contain the samples from K different distribu-
tions PS1 , PS2 , ..., PSK , which are labeled with C1, C2, ..., CK classes, resp.
All the source domains can contain both partially labeled and unlabeled
samples. The unlabeled samples can belong to the labeled classes of
other domains. The label spaces C1, C2, ..., CK can be non-, partially-, or
fully-overlapping with each other. Moreover, both consistent and in-
consistent taxonomies among C1, C2, ..., CK are allowed. Then the union
of the label spaces Ci, i = 1, ..., K forms the unified and complete label
space C∪ = C1 ∪ C2 · · · CK, including C∪ classes. Besides, the unlabeled
target domain T is given, containing samples from the distribution
PT. Denoting the source samples xsi ∈ Si, i = 1, ..., K and the target
samples xt ∈ T , we have xsi ∼ PSi , xt ∼ PT, PS1 6= PS2 6= ... 6= PSK 6= PT.
The mDALU problem aims at training the model on the K source do-
mains Si, i = 1, ..., K, labeled with Ci classes in each, and the unlabeled
target domain T , to improve the performance of the model on the
target domain T in the unified label space C∪. We use ysi to indicate
the ground-truth label map of xsi . Note that we present most of our
approach with the notation of 2D semantic image segmentation. The
translation to image classification and 3D point cloud segmentation
is straightforward – by replacing pixels with images and by replacing
pixels with 3D LiDAR points.

2.3.2 Our Approach to mDALU problem

As shown in Fig. 2.2, there are two stages in our approach, the partially-
supervised adaptation stage and the fully supervised adaptation stage.
In the partially-supervised adaptation stage, the partial supervision is
transferred to the target domain from different source domains, respec-
tively. Then in the fully-supervised adaptation stage, the supervision,
in complete label space, is fused and self-completed on the unlabeled
samples, and jointly transferred in the source domains and target do-
main. In order to realize adaptation under partial supervision, we
propose three modules: DAT, UM and A3 for the first stage. Then in
the second stage, we use PSF and further learning. Below we provide
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details of all these components. From Sec. 2.3.2.1 to Sec. 2.3.2.5, we first
introduce our method for mDALU under consistent taxonomies. In this
part, we first describe a basic version of our method composed of DAT
and inference via attention-guided fusion, which will be followed by
UM and A3 to enhance the adaptation ability. Finally, we present PSF.
Then in Sec. 2.3.2.6, we extend our proposed method towards mDALU
under inconsistent taxonomies.

2.3.2.1 Partially-Supervised Learning

Different segmentation networks Gi, i = 1, ..., K are adopted for different
source domains Si. While their annotations cover partial label spaces Ci,
we train each network Gi in the unified label space C∪ – some classes
have no training data – with a standard cross-entropy loss Lpsu. The
network Gi is composed of a feature extractor Ei and a label predictor
Bi, i.e., Gi = {Ei, Bi}. While we can average the results of these models
directly in the target domain for predictions in the unified label space,
coined multi-branch (MBR) fusion, this generates poor results. This is
because the predictions of each model Gi for its unlabeled classes in
C∪ \ Ci can be arbitrary numbers that dominate the averages. We thus
propose the domain attention (DAT) module, which learns the attention
map for Gi to signal on which area its prediction is reliable, for more
effective fusion.

The attention map asi in domain Si is defined as:

asi(h, w)

{
= 1, if ysi(h, w) ∈ Ci

= 0, if ysi(h, w) = void,
(2.1)

where (h, w) are pixel indices and void means no label. We train an
attention network Mi for each source domain Si. The attention maps
are predicted as ãsi = Mi(xsi) and ãt

i = Mi(xt). The attention network
Mi is composed of the feature extractor Ei and a new label predictor
BM

i : Mi = {Ei, BM
i }. Mi is trained under an MSE loss Latt, together

with Gi in a multi-task setting.

2.3.2.2 Inference via Attention-Guided Fusion

We feed an image x into semantic segmentation networks Gi to gen-
erate the corresponding probability maps p̂i ∈ [0, 1]H×W×C∪ , and into
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different attention networks Mi to generate attention maps âi. Then we
fuse the predictions by averaging p̂i weighted by âi:

f = ∑K
i=1 âi ⊗ p̂i

∑C∪
j=1(∑

K
i=1 âi ⊗ p̂i)(j)

, (2.2)

where (∑K
i=1 âi ⊗ p̂i)

(j) yields the probability of the jth class. The pre-
dicted class is then obtained via argmax.

(a) Partially-Supervised Adaptation

(b) Fully-Supervised Adaptation

Figure 2.2: Illustration of our approach to mDALU. There are 2 stages,
(a) partially supervised adaptation and (b) fully-supervised
adaptation.
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2.3.2.3 Uncertainty Maximization (UM)

Due to the lack of ground truth class supervision, while we have the
attention-guided fusion, the wrong prediction of unlabeled samples in
the source domains can still have negative effects for our cross-domain
prediction fusion. In order to further reduce the negative effects of
unlabeled samples xsi

u in source domains, we propose a module specifi-
cally to maximize uncertainties of the predictions on unlabeled samples
in those domains. In particular, Gi(x

si
u ) is expected to equally spread

the probability mass to all classes, i.e., obeying the uniform categorical
distribution U (C∪). The probability density function q(j) of U (C∪)
is formulated as q(j) = 1

C∪ , where j = 1, 2, ..., C∪ is to represent dif-
ferent classes. The probability distribution of the network prediction
on unlabeled samples Gi(x

si
u ) is denoted as p(j) = Gi(x

si
u )

(j), where
Gi(x

si
u )

(j) represents the probability of the jth class. In order to maxi-
mize the uncertainty of the prediction on the unlabeled samples, the
distribution distance between p(j) and q(j) is expected to be minimized.
Following the distribution distance metric in [24], we adopt the Pear-
son χ2-divergence for measuring the distribution distance, which is
formulated as,

Dχ2(p||q) =
∫

j
((

p(j)
q(j)

)2 − 1)q(j), (2.3)

Dχ2(p||q) = C∪
C∪

∑
j=1

p(j)2 − 1. (2.4)

On the basis of Eq. (2.4), we propose the square loss Lum for minimiz-
ing the Pearson χ2-divergence, i.e., maximizing the uncertainty of the
prediction on the unlabeled samples. Lum can be written as

Lum =
C∪

∑
j=1

(Gi(xsi
u )

(j))2. (2.5)

Through the UM module, we encourage the model to make uniform
categorical probability predictions, 1

C∪ , for unlabeled samples over the
unlabeled classes, to best preserve the uncertainty to let the ground
truth supervision of those classes from other source domains make the
decision in the further attention-guided fusion and PSF process.
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2.3.2.4 Attention-Guided Adversarial Alignment (A3)

It has been proven in the literature that adversarial alignment is effective
for domain adaptation. We extend the idea to mDALU. For adversarial
alignment, one discriminator Di is used for each source domain, to align
the distribution between the source domain Si and the target domain T .
In general unsupervised domain adaptation, the discriminator training
loss Ld and the adversarial loss Ladv [175] for the source domain Si and
the target domain T is defined as

L(i)
adv(x

t) = − log(Di(Gi(xt))) (2.6)

L(i)
d (xsi

i , xt) = − log(Di(Gi(xsi)))

− log(1− Di(Gi(xt))). (2.7)

Yet, in our mDALU problem, there is no ground truth label guidance
available for the unlabeled classes. A direct alignment between the
source domain and the target domain will cause negative transfer, i.e.,
the transfer of incorrect knowledge from the unlabeled parts in the
source domains to the target domain. Here, we again use our attention
map asi to alleviate this problem by proposing an attention-guided
adversarial loss:

L(i)
a3 (xt) = − log(Di(Gi(xt)⊗Mi(xt))), (2.8)

L(i)
d (xsi

i , xt) = − log(Di(Gi(xsi)⊗Mi(xsi)))

− log(1− Di(Gi(xt)⊗Mi(xt))), (2.9)

where ⊗ represents element-wise multiplication.
Then the overall loss for our method at the first stage is:

Lall = Lpsu + Latt + Lum + λ
K

∑
i=1
L(i)

a3 , (2.10)

where λ is the hyper-parameter to balance out the attention-guided
adversarial loss against other losses. The whole optimization objec-
tive for our first partially-supervised domain adaptation stage can be
formulated as:

min
Gi

max
Di
Lall . (2.11)
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2.3.2.5 Pseudo-Label Based Supervision Fusion (PSF)

In the first partially-supervised adaptation stage, knowledge in different
label spaces Ci is transferred from different source domains to the target
domain. In the second fully-supervised adaptation stage, we aim at
learning and transferring knowledge in the complete and unified label
space C∪ between all domains jointly. In order to realize that, we
complete the label spaces for all the related domains S1,S2, ...,SK, T
with pseudo-labels, i.e., fuse the supervision from different label spaces
Ci to get the complete and unified supervision C∪. Here we present our
pseudo-label based supervision fusion (PSF) method.

In order to complete the label space in the source domain Si, we
feed each of the source image samples xsi into every semantic model
Gk, k = 1, ..., K, to generate ‘partial’ semantic probability maps p̂si

k ∈
[0, 1]H×W×C∪ and to every attention network Mk, k = 1, ..., K for the
attention map âsi

k ∈ [0, 1]H×W . The fused prediction fsi is obtained via
Eq.( 2.2). We denote the predicted label map as ȳsi , generated by using
an argmax operation over fsi . The ‘pseudo-label’ map ŷsi for the source
domain Si is defined as:

ŷsi(h, w) =


ysi(h, w), if ysi(h, w) 6= void

ȳsi(h, w)if ysi(h, w) = void

and fsi(h, w, ȳsi(h, w)) > δ

void, otherwise

(2.12)

where δ is a threshold determining whether to select the predicted
pseudo-label.

On the target domain T , since no ground truth labels are available, we
obtain pseudo labels directly from the predicted label map ȳt (obtained
from ft via an argmax):

ŷt(h, w) = ȳt(h, w) if ft(h, w, ȳt(h, w)) > δ. (2.13)

By using the generated fused pseudo-label ŷsi , ŷt, i = 1, ..., K, we
complete the label space from Ci to C∪ for the source domain Si, and
from ∅ to C∪ for the target domain T . We then train the network
G for all the related domains S1,S2, ...,SK, T with all the datasets in
the unified label space. In total, the loss L f sa for our second ‘fully-
supervised’ adaptation stage is:

L f sa =
K

∑
i=1
Lsi

ce + Lt
ce, (2.14)
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where Lce is the standard cross-entropy loss.

2.3.2.6 Inconsistent Taxonomies

The above method is able to deal with the mDALU problem under
consistent taxonomies, i.e., the different classes in all source domains are
exclusive with each other. Yet, there might be inconsistent taxonomies
between different source domains, causing a performance drop for
the inconsistent taxonomies classes. Here, we introduce the extension
of our above method, to handle the inconsistent taxonomies problem.
Denoting the classes in the label spaces Ci as co

i , we have Ci = {co
i , o =

1, 2, ..., Ci}. Then the inconsistent taxonomies among different source
domains can be defined as, ∃cq

p ∈ Cp, cn
m ∈ Cm, p, m = 1, ..., K, p 6=

m, q = 1, ..., Cp, n = 1, ..., Cm, we have cq
p 6= cn

m, and cq
p ∩ cn

m 6= ∅. The
inconsistent taxonomies classes between different source domains Sp

and Sm are denoted as cq
p ∈ Cp and cn

m ∈ Cm. For example, the truck
is labeled as “truck” class cq

p in one dataset Sp, while it is labeled as
“vehicle” class cn

m together with other vehicles in another dataset Sm.
Another typical example is motorcycles being labeled as “cycle” class
cq

p together with other cycles in one dataset Sp, but being labeled as
“vehicle” class cn

m together with other vehicles in another dataset Sm. In
the unified label space of the target domain, the conflict part cq

p ∩ cn
m is

assigned to either cq
p or cn

m exclusively. Without loss of generality and for
reasons of clarity, it is assumed that the cq

p ∩ cn
m is assigned to cq

p. Then
in order to solve the conflict of cq

p and cn
m, in the attention-guided fusion,

we introduce the additional class-wise weight map wi ∈ RH×W×C∪ , and
Eq. (2.2) is extended to Eq. (2.16),

wi(h, w, j) =


= v, if argmax p̂i(h, w) = q′, and i = p,

and argmax p̂m(h, w) = n′, and j = q′

= 1, otherwise

(2.15)

f = ∑K
i=1 âi ⊗ p̂i ⊗wi

∑C∪
j=1(∑

K
i=1 âi ⊗ p̂i ⊗wi)(j)

, (2.16)

where v > 1 in Eq. (2.15) is a hyper-parameter, set to 5.0. v is used to
increase the weight of class cq

p of the corresponding prediction p̂p in
Eq. (2.16), to convert cq

p ∩ cn
m to cq

p in the prediction fusion. q′, n′ are the
class indices of cq

p and cn
m in the unified label space C∪. Correspondingly,

under inconsistent taxonomies, besides the unlabeled samples in the
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source domains being completed with the predicted pseudo-label as in
Eq. (2.12), the conflict part cq

p ∩ cn
m, which is labeled as cn

m originally in
Sm, is relabeled with the predicted pseudo-label ȳsi(h, w), i.e.,

ŷsm(h, w) = q′, if fsm(h, w, q) > δ

and ȳsm(h, w) = q′ and ysm(h, w) = n′.
(2.17)

2.4 experiments

We evaluate the effectiveness of our method mDALU under different
settings. We build benchmarks for image classification, 2D semantic
image segmentation, and 2D-3D cross-modal semantic segmentation.

Parameters. In the image classification experiment, the hyperparam-
eter λ in Eq. (2.10) is set as 1.0, and δ in Eq. (2.12) and Eq. (2.13) is set
as 0.5. The images are resized to 32× 32. We use the the Adam opti-
mizer [88] with β1 = 0.9, β2 = 0.999 and the weight decay as 5× 10−4.
The learning rate is set as 2× 10−4. We adopt the same network archi-
tecture as that of the digits classification experiments in [140]. In the 2D
semantic image segmentation experiments, the hyperparameter λ in Eq.
(2.10) is set as 0.001, and δ in Eq. (2.12) and Eq. (2.13) is set as 0.2, 0.5
and 0.4 for SYNTHIA, GTA5 and Cityscapes dataset, respectively. The
images are resized to 1024× 512. We use the SGD optimizer for training
the semantic segmentation network, whose momentum is 0.9, weight
decay is 5× 10−4 and learning rate is 2.5× 10−4 with polynomial decay
of power 0.9. Meanwhile, the Adam optimizer is used for training
the discriminator network, whose momentum is β1 = 0.9, β2 = 0.99,
weight decay is 5× 10−4 and learning rate is 1× 10−4 with polynomial
decay of power 0.9. We adopt the same semantic segmentation and
discriminator network architecture as that of [175]. In the cross-modal
semantic segmentation experiments, we follow the exactly same data
augmentation and preprocess procedure as that of [83]. The hyperpa-
rameter δ in Eq. (2.12) and Eq. (2.13) is set as 0.2. We use the Adam
optimizer for training the 2D and 3D semantic segmentation network,
with β1 = 0.9, β2 = 0.999. The learning rate is set as 1× 10−3.
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Experiment Label Space

Non-Overlapping(Table 2.3)
Domain Source1 Source2 Target Source1 Source2 Target Source1 Source2 Target
Dataset SVHN SYN MT MT SVHN SYN MNIST SYN SVHN
Class 0∼4 5∼9 0∼9 0∼4 5∼9 0∼9 0∼4 5∼9 0∼9

Partially-Overlapping(Table 2.5)
Domain Source1 Source2 Target Source1 Source2 Target Source1 Source2 Target
Dataset SVHN SYN MT MT SVHN SYN MNIST SYN SVHN
Class 0∼6 3∼9 0∼9 0∼6 3∼9 0∼9 0∼6 3∼9 0∼9

Table 2.2: Label space of different source domains and the target do-
main in the mDALU image classification benchmark.

2.4.1 Image Classification

Datasets. MNIST [93] is a hand-written numbers image dataset, SVHN
[127] is a street view house numbers image dataset and Synthetic Digits
[47] is a synthetic numbers image dataset.

Setup. In the classification benchmark, we adopt the digits classi-
fication images from three different datasets, MNIST [93], Synthetic
Digits [47], and SVHN [127], coined “MT”, “SYN” and “SVHN”, resp.
Each time, one of them is taken as the target domain, the other two as
source domains. There are 10 classes, from ’0’ to ’9’, in the target do-
main. In our main setting, we adopt the most difficult setup to evaluate
different methods, where the label spaces of different source domains
are non-overlapping. Only half the classes are labeled in each of the
source domains. The partially-overlapping situation is also explored.
For fair comparison, we adopt the same network architecture used
in [140] for all methods. The classification performance is evaluated on
all 10 classes in the target domain. The label spaces of different source
domains and target domain are detailed in Table 2.2.

Comparison with SOTA. Table 2.3 compares our method with other
SOTA methods which include 1) unsupervised domain adaptation
method DANN [47], 2) category-shift unsupervised domain adaptation
method DCTN [198], 3) multi-source unsupervised domain adaptation
method M3SDA [140], and 4) label unification method AENT [219]. It
can be seen that without the pseudo label (PL) generation part, other
domain adaptation based methods, DANN, DCTN, and M3SDA show
the negative transfer effect, or perform similarly to the baseline trained
with source data only. This is because each source domain can only pro-
vide guidance for a partial label space, and the adaptation in the partial
label space guides the prediction on the target domain to the biased
label space when training with data from different source domains.
This renders the prediction on the target domain contradictory and
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Method MT SYN SVHN Avg
Source 76.76 ± 0.63 61.77 ± 1.05 43.42±1.89 60.65±1.19

DANN[47] 77.30 ± 2.57 60.31 ± 0.99 41.65±2.34 59.75±1.97

DANN ∗
71.29 ± 0.48 55.94 ± 0.51 35.60 ± 1.63 54.28 ± 0.87

DCTN [198] 68.10±0.2 62.72±0.30 48.11±0.57 59.64±0.36

DCTN ∗
72.01 ± 1.22 63.33 ± 0.20 49.34 ± 1.28 61.59 ± 0.90

M3SDA [140] 76.56±0.71 61.25±2.33 43.13±3.55 60.31±2.20

M3SDA ∗
72.50 ± 2.64 55.92 ± 1.04 36.24 ± 1.70 54.89 ± 1.79

AENT[219] 73.24±1.76 68.66±1.32 52.80 ± 0.92 64.90 ± 1.33

Ours w/o PSF 81.23±0.92 78.97±0.45 65.20±0.58 75.13±0.65

DCTN w/ PL [198] 73.40±0.85 65.63±0.43 52.12±0.07 63.72 ± 0.45

AENT[219] w/ PL 78.56±1.23 70.25 ± 0.39 59.24 ± 1.01 69.35 ± 0.88

Ours 86.18±0.45 81.91±0.33 68.92±0.81 79.00 ± 0.53

Table 2.3: Quantitative comparison of image classification. “MT”,
“SYN”, and “SVHN” represent the target domain. “PL” rep-
resents to add the pseudo-label training module, which is
specifically adjusted according to their own paper’s design. ∗

represents to remove the unlabeled samples in the training
data. We implement AENT for classification by utilizing the
ambiguity cross entropy loss proposed in [219].

the model hard to adapt to the complete label space. In contrast, the
label-unification based method AENT obtained a performance gain of
4.25%, from 60.65% to 64.90%, compared with the source-only baseline.
This is because it uses an ambiguity cross entropy loss, to avoid the
prediction of the source domain data being restricted in a partial label
space.

In our first partially-supervised adaptation stage, the performance is
further improved to 75.13%, which proves the effectiveness of our DAT,
UM and A3 module for preventing the negative transfer effect. After the
second fully-supervised adaptation stage, by adding the PSF module,
our model strongly outperforms DCTN [198] and AENT [219], both
with pseudo-label training, by 15.28% and 9.65%, resp. This proves the
effectiveness of our entire method for domain adaptation, label space
completion and supervision fusion. The ablation results in Table 2.4
show that each part of our model contributes to its performance.

Partially Overlapping. In Fig. 2.3, it is shown that the testing
accuracy on the target domain increases, as more and more common
classes in the source domains are available. In Table 2.5, we compare
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MBR UM A3 PSF MT SYN SVHN Avg
76.76 ± 0.63 61.77 ± 1.05 43.42±1.89 60.65±1.19

X 72.21±1.89 62.41±0.58 50.24±1.23 61.62±1.23

X X 84.74±0.54 76.12±0.85 58.39±0.57 73.08± 0.65

X X X∗ 81.38±0.79 78.20±1.3 65.12±0.64 74.90 ± 0.91

X X X 81.23±0.92 78.97±0.45 65.20±0.58 75.13 ± 0.65

X X X X 86.18±0.45 81.91±0.33 68.92±0.81 79.00 ± 0.53

Table 2.4: Ablation study under the image classification setting. MBR:
multi-branch network, i.e., adopts different networks Gi for
different source domains. ∗ indicates there is no adversarial
part in the A3 module, i.e., only the DAT module. The best
results are denoted in bold.

Method MT SYN SVHN Avg
Source 82.10±1.50 73.37± 0.67 57.50±1.93 70.99 ± 1.37

DANN[47] 80.13±1.60 72.97±0.49 55.00±0.73 69.37 ± 0.94

DCTN[198] 78.56±0.47 72.33 ± 0.04 60.86±0.21 70.58 ± 0.24

M3SDA[140] 81.52 ± 1.55 72.91 ± 0.68 54.26±0.66 69.56 ± 0.96

AENT[219] 79.12 ± 1.07 81.99 ± 0.87 69.07 ± 1.93 76.73 ± 1.29

Ours w/o PSF 85.39 ± 1.32 85.33± 1.21 76.48±1.31 82.40 ± 1.28

Table 2.5: Quantitative comparison of image classification, under the
partial overlap setting with 4 common classes.

the model performance of our method with other SOTA methods when
the source domains are partially overlapping, with 4 common classes.
It is shown that our method still strongly outperforms the adaptation-
based methods, DANN, DCTN, M3SDA, and the label unification based
method, AENT, 82.40% v.s. 69.37%, 70.58%, 69.56%, 76.73%. It further
verifies the effectiveness of our model in the partial overlap situation.

2.4.2 2D Semantic Image Segmentation

Datasets. Cityscapes. Cityscapes is a dataset composed of the street
scene images collected from different European cities. We use the
training set of Cityscapes covering 2993 images, without the label
information, as the target domain during the training stage. And we
adopt the validation set of Cityscapes, which are composed of 500

images and densely labeled with 19 classes, to evaluate the semantic
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Figure 2.3: Accuracy in the target domain as a function of the number
of overlapping classes between the source domains.

segmentation performance of the model on the target domain. GTA5.
GTA5 is a synthetic urban scene image dataset, whose images are
rendered from the game engine. The scene of the images is based on the
city of Los Angeles. In our 2D semantic image segmentation benchmark,
we use 24966 densely labeled images in the GTA5 dataset as one of our
source domains, whose annotation is compatible with that of Cityscapes.
SYNTHIA. SYNTHIA is a synthetic dataset, containing photo-realistic
images rendered from a virtual city. We use the SYNTHIA-RAND-
Cityscapes subset, which contains 9400 densely labeled images and the
16 class annotation of which is compatible with that of Cityscapes. In
our 2D semantic image segmentation benchmark, the labeled SYNTHIA
dataset serves as one of our source domains.

Setup. In the single mode semantic segmentation setting, we adopt
the synthetic-to-real image semantic segmentation setup. The synthetic
image datasets GTA5 [149] and the SYNTHIA [152] are taken as the
source domains, while the real image dataset Cityscapes [34] is used
as the target domain. Information of 19 classes needs to be transferred
to the Cityscapes dataset. In our main setting, the label spaces of
SYNTHIA and GTA5 are non-overlapping. In the SYNTHIA dataset, the
label of 7 classes are available, incl. road, sidewalk, building, vegetation,
sky, person and car. In GTA5, the labels of 12 classes are available,
being wall, fence, pole, light, sign, terrain, rider, truck, bus, train,
motorcycle and bicycle. Furthermore, we also explore the performance
of our model when the images of the two source domains are fully
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labeled. Moreover, we verify the effectiveness of our model when
the taxonomies of different source domains are inconsistent. In those
inconsistency experiments, for GTA5, the labels wall, fence, pole, light,
sign, terrain, truck, bus, train, person (incl. person and rider), cycle (incl.
bicycle and motorcycle) are available. In SYNTHIA, the labels road,
sidewalk, building, vegetation, sky, person, rider, car, public facilities
(incl. wall, fence, pole), motorcycle and bicycle are available. In order
to further evaluate the performance of all methods when combined
with the pixel-level domain adaptation methods [225, 72], we conduct
experiments in two settings; 1) source domain images are not translated
with CycleGAN [225], named as “NT”; 2) source domain images are
translated with CycleGAN, named as “T”. Also, in order to verify model
performance combined with output-level adaptation method [175], we
conduct additional experiments which include “ADV” in the fully-
supervised adaptation stage. “ADV” generates the complete source
domain label as in PSF, and then trains the semantic segmentation
model via adversarial adaptation between pseudo-complete source
domain and unlabeled target domain in the output-level space. For
fair comparison, all the methods use the DeepLabv2-ResNet101 [20, 68]
semantic segmentation network.

Comparison with SOTA. In Table 2.6a, we show a quantitative com-
parison for semantic segmentation between our method and other
SOTA methods. It is shown that our method without adding PSF
strongly outperforms the adaptation-based AdaptSegNet[175], the self-
supervision-based MinEnt[184], and the method combining adaptation
and self-supervision Advent [184]. Our method achieves 36.3% and
38.1% in the ”NT” and ”T” settings, resp. Similar to the image classifica-
tion results, without using the translated source images, the adaptation-
based methods suffer from negative transfer and the performance is
lower than the source-only baseline. By using the translated source
images in “T”, different source domain images are all Citysapes-like
images. The different source domains can be seen as a larger unified
source domain, which can provide guidance for the complete label
space to some extent. So all adaptation-based or self-supervision based
methods perform much better in the “T” situation, compared with the
non-adapted baseline. Yet, even in the “T” situation, our method still
provides an advantage by further completing the label space, through
our partially supervised adaptation. This proves the effectiveness of
our method in preventing negative transfer and in completing the label
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Method NT T
Source 17.7 24.0

AdaptSegNet[175] 7.7 30.8
MinEnt[184] 27.1 30.1
Advent[184] 11.8 30.3

Ours w/o PSF 36.3 38.1

Ours (ADV) 40.1 41.5
Ours (PSF) 37.3 42.4

Ours (ADV+PSF) 40.6 42.8

(a)

MBR UM A3 PSF ADV NT T
17.7 24.0

X 20.9 21.4
X X 27.6 36.8
X X X∗ 29.1 37.0
X X X 36.3 38.1
X X X 35.4 40.9
X X X 31.4 41.5
X X X X 40.1 41.5
X X X X 37.3 42.4
X X X X X 40.6 42.8

(b)

Table 2.6: (a) Quantitative comparison of single mode semantic segmen-
tation, SYNTHIA+GTA5→ Cityscapes. The mIoU results are
reported for 19 classes. (b) Ablation study for single mode
segmentation. ∗ indicates there is no adversarial part in the
A3 module, i.e., only the DAT module. “ADV+PSF” means to
combine “ADV” and “PSF” by completing the label space and
generating pseudo-labels in the source and target domains,
then adversarial alignment in the output space is adopted
during the second stage training.

space. By further adding the second “fully-supervised” adaptation
stage, the model achieves a new SOTA performance in both the “T”
and the “NT” settings. An ablation study, see Table 2.6b, confirms
all parts of our method add to its performance, and the output space
alignment “ADV” is helpful as well. Fig. 2.4 shows qualitative results
on Cityscapes.

Fully labeled. In the fully labeled setting, i.e., the source domain im-
ages are labeled with all considered classes - 16 classes in SYNTHIA and
19 classes in GTA5 - Table 2.7 shows that our model still outperforms
other unsupervised domain adaptive semantic segmentation methods,
43.1% vs. 40.8%, 42.2%, and 42.9%. Our model also outperforms the
SOTA method for multi-source domain adaptive semantic segmentation
MADAN [218], 41.9% vs. 41.4%.

Inconsistent Taxonomies. Table 2.8 shows that our method is ad-
vantageous when taxonomies are inconsistent, 40.0% vs. 28.1%, 31.9%,
32.2%. In the partially supervised adaptation stage, as in Sec. 2.3.2.6, by
adding higher weights to “person”, “rider”, “motorcycle” and “bicycle”
for SYNTHIA and “wall”, “fence” and “pole” for GTA5, our method
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Method Base mIoU∗ mIoU
Source

R
es

N
et

-1
0
1 42.8 39.1

AdaptSegNet[175] 45.2 40.8
Minentropy[184] 46.4 42.2

Advent[184] 46.7 42.9
Ours w/o PSF 46.8 43.1

Source[218]

V
G

G
-1

6

37.3 –
MADAN[218] 41.4 –
Ours w/o PSF 41.9 38.0

Table 2.7: Single mode segmentation results, under fully-labeled setting
and “T”. mIoU∗ is the mean IoU of 16 classes in SYNTHIA,
while mIoU is that of all 19 classes.

(a) Image (b) Ground Truth (c) Source Only (d) MinEnt (e) Ours

Figure 2.4: Qualitative results of 2D semantic segmentation.

can achieve a higher performance than inference without weighting,
37.2% vs. 35.3%. After the fully supervised adaptation stage, the perfor-
mance can be further improved to 40.0%. The detailed performance for
inconsistent taxonomies classes in Table 2.8 underlines the effectiveness
of our method for the inconsistent taxonomies.

Attention visualization for semantic segmentation. During the
“partially-supervised adaptation” stage, we introduce the attention map
in the domain attention (DAT) module, the attention-guided adversarial
alignment (A3) module and the inference via attention-guided fusion.
In order to verify the effectiveness of our attention map prediction, we
show the qualitative visualization of the attention map on the target do-
main images in Fig. 2.5. Corresponding to the Sec. 2.3.2.1, the attention
map ãt

1 and ãt
2, are generated by feeding the target domain image xt

into the attention network M1 and M2. It is shown that our predicted
attention map ãt

1, corresponding to the source domain S1, has higher
attention value, for the objects belonging to the partial label space C1,
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mIoU
Source 2.6 12.0 12.3 40.6 0.5 0.1 28.6 19.8

AdaptSegNet[175] 7.1 2.6 4.0 33.2 6.9 1.8 37.6 28.1
Minentropy[184] 6.7 18.1 23.0 28.8 6.6 1.0 42.3 31.9

Advent[184] 6.2 11.5 11.4 32.8 12.2 0.9 41.2 32.2
Ours w/o PSF 12.3 15.2 21.2 48.4 3.3 1.3 42.4 35.3

Ours w/o PSF ∗ 14.1 15.3 30.6 48.1 17.9 13.0 42.1 37.2
Ours (PSF) 13.3 17.9 30.6 53.7 18.2 19.8 43.2 40.0

Table 2.8: Quantitative comparison of single mode segmentation, with
inconsistent taxonomies, in the “T” setting. ∗During inference,
an additional weights map is adopted in case of inconsistent
taxonomies as in Sec. 2.3.2.6. The detailed performance on
inconsistent taxonomies classes is also shown. The mIoU is
reported for 19 classes.

such as the road, sidewalk, building, vegetation, sky and car. And the
predicted attention map ãt

2, corresponding to the source domain S2,
has higher attention value, for the objects belonging to the partial label
space C2, such as the fence, pole, light, sign, bus, motorcycle and bicycle.
It proves the validity of our attention map prediction.

2.4.3 Cross-Modal Semantic Segmentation

Datasets. Nuscenes. Nuscenes [13] is an autonomous driving dataset
covering 1000 driving scenes, which are collected from the Boston and
Singapore. Each scene, of 20-second length, is sampled and annotated at
2HZ, resulting in 40K well-annotated keyframes for 3D bounding boxes
of the objects. In our cross-modal semantic segmentation benchmark,
we adopt the training set of the Nuscenes, including 28130 keyframes
3D LiDAR points, as the 3D source domain. Then as done in [83], we
generate the 3D point-wise semantic labels from the 3D bounding boxes,
by assigning the object label to the points inside the bounding box and
taking the points outside the bounding box as unlabeled points. A2D2.
A2D2 [50] is an autonomous driving dataset, including simultaneously
recorded paired 2D images and 3D LiDAR points. The A2D2 covers
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(a) Cityscapes (b) Attention1 (c) Attention2 (a) Cityscapes (b) Attention1 (c) Attention2

Figure 2.5: Visualization of the attention map ãt
1 and ãt

2 of the target
domain images. (a) is the Cityscapes image xt. (b) is the
attention map ãt

1, generated by feeding the xt into the atten-
tion network M1. (c) is the attention map ãt

2, generated by
feeding the xt into the attention network M2. Red parts are
the parts with higher attention value, while the blue parts
with lower attention value.

20 scenes, which are corresponding to 28637 frames for training. And
the scene 20180807 145028 is used for validation. The 2D images are
densely labeled with 38 semantic classes. Following [83], the 3D point-
wise semantic labels are generated by the reprojection to the 2D images.
In our cross-modal semantic segmentation benchmark, the A2D2 serves
as the target domain. We use the training set of A2D2 without the label
information during training, including the paired 2D images and 3D
LiDAR points. And we use the validation set 20180807 145028 with the
ground truth label for evaluating the performance.

Setup. In the cross-modal semantic segmentation setting, the 2D
RGB images from Cityscapes [34], and the 3D LiDAR point clouds from
Nuscenes [13] are treated as two different source domains, while the
paired but unlabeled 2D RGB images and 3D point clouds from A2D2

[50] are used as the target domain. There are 10 classes in total that
need to be transferred to the target domain. In Cityscapes, the label for
6 classes are given, covering road, sidewalk, building, pole, sign and
nature. In Nuscenes the labels for 4 classes are given, incl. person, car,
truck and bike. The 2D RGB images and 3D point clouds in the target
domain are registered via a projection matrix between the 2D pixel and
3D points. Following [83], we adopt U-Net-ResNet34 [151, 68] as the
2D semantic segmentation network, and SparseConvNet [62] for 3D
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Cityscapes + Nuscenes→ A2D2 2D 3D Fuse
Source 37.5 2.0 42.5

xMUDA[83] 16.3 1.7 9.1
ES + MinEnt[184] 22.3 1.5 20.8

ES + KL[83] 21.7 1.5 19.7
xMUDA + AKL 27.5 2.3 21.1

xMUDA + AKL + COMP 32.1 2.9 37.7

Ours w/o PSF 38.1 2.4 49.9
Ours 54.9 37.1 55.7

Table 2.9: Quantitative comparison of cross modal segmentation,
Nuscenes+Cityscapes→ A2D2. ”Fuse” represents the av-
erage fusion of the prediction probability from 2D models
and 3D models; the final class prediction is the maximum of
the fused probability. “ES” means 2D and 3D average fusion
ensemble. “KL” means KL-divergence alignment. “AKL”
means adaptive KL-divergence alignment. “COMP” means
complementary condition constraint for the point. The mIoU
is reported over 10 classes on A2D2.

semantic segmentation. Due to the challenge of aligning features for
the 3D point clouds, the A3 module is not included in the cross-modal
setting.

Comparison with the SOTA. As shown in Table 2.9, similar to the
image classification and the single mode semantic segmentation results,
the SOTA cross-modal unsupervised adaptation method xMUDA [83]
shows an obvious negative transfer effect, resulting in a performance
drop for the 2D model, 3D model and the fused one. Furthermore, we
designed reasonable baseline methods for comparison: 1) ES + MinEnt:
the prediction from 2D and 3D networks are averaged in the target
domain through the 2D and 3D point correspondence during training,
and the fused prediction probability is optimized using the minimum
entropy loss [184]. 2) ES + KL: the KL-divergence [83] is utilized to
align between the 2D/3D prediction and the fused predictions for
the corresponding points in the target domain, resp. 3) xMUDA +
AKL: the KL-divergence alignment between 2D and 3D in the target
domain is weighted adaptively, to reduce the wrong guidance from
the unlabeled parts. 4) xMUDA + AKL + COMP: following baseline
3), another constraint, that the weights related to 2D and 3D need to
be complementary, is added. It is shown that our method prevents
negative transfer without the PSF component, outperforming the non-
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(a) A2D2 (b) Ground Truth (c) 2D (Ours) (d) 3D (Ours)

Figure 2.6: Qualitative results of the cross-modal setting.

adapted baseline. Then by adding the PSF module, the 2D and 3D
single-model performance is strongly improved, achieving 54.9% and
37.1%, resp. In Fig. 2.6, we show qualitative results in the target domain.
The good performance proves the effectiveness of our method for the
mDALU with partial modalities. This opens up the avenue to combine
datasets collected with different sensors and offers the possibility of
cheaply evaluating new combinations of sensors without annotating
their data.

2.5 conclusion

In this paper, we proposed the multi-source domain adaptation and
label unification with partial datasets problem, called mDALU. Then we
proposed a novel multi-stage approach for mDALU, including partially
and fully supervised adaptation stages. Our approach is demonstrated
through extensive experiments on different benchmarks.
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M E TA - L E A R N I N G F O R O P E N C O M P O U N D D O M A I N
A D A P TAT I O N

This chapter corresponds to our published article:
Rui Gong, Yuhua Chen, Danda Pani Paudel, Yawei Li, Ajad Chhatkuli,

Wen Li, Dengxin Dai, and Luc Van Gool. ”Cluster, split, fuse, and
update: Meta-learning for open compound domain adaptive semantic
segmentation.“ In: CVPR. 2021

In this chapter, we investigate the open compound domain adap-
tive semantic segmentation (OCDA) problem, where target domain
is modeled as a compound of multiple unknown homogeneous do-
mains. It brings the advantage of improved generalization to unseen
domains. To this end, we propose a principled meta-learning based
approach to OCDA for semantic segmentation, MOCDA, by model-
ing the unlabeled target domain continuously. Our approach consists
of four key steps. First, we cluster target domain into multiple sub-
target domains by image styles, extracted in an unsupervised manner.
Then, different sub-target domains are split into independent branches,
for which batch normalization parameters are learnt to treat them in-
dependently. A meta-learner is thereafter deployed to learn to fuse
sub-target domain-specific predictions, conditioned upon the style code.
Meanwhile, we learn to online update the model by model-agnostic
meta-learning (MAML) algorithm, thus to further improve generaliza-
tion. We validate the benefits of our approach by extensive experiments
on synthetic-to-real knowledge transfer benchmark, where we achieve
the state-of-the-art performance in both compound and open domains.

3.1 introduction

The traditional domain adaptation problem typically assumes the target
domain as a single homogeneous domain. However, this assumption is
not valid when the target domain images are collected under mixed,
continually varying, and even unseen conditions. This gives rise to the
challenge known as open compound domain adaptation [111]. The
open compound domain adaptation treats the target as a compound

33
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(b) Cluster/Split

(c) Fuse (d) Update

(a) Traditional Domain Adaptation

Figure 3.1: (a) The traditional unsupervised domain adaptation (UDA)
vs. (b,c,d) the proposed meta-based open compound do-
main adaptation (MOCDA). Unlike the traditional UDA,
MOCDA treats target as a compound of multiple unknown
sub-domains. These sub-domains are discovered and pro-
cessed using the cluster and the split module (b). The fuse
module (c) then combines the sub-domain splits as basis
(dash lines). On open domains, MOCDA adapts through
online update during inference (blue arrow) in (d). Meta-
learning serves in the fuse and the update module.

of multiple unknown sub-domains. Such assumption has been shown
to be very promising by Liu et al. [111] for many practical settings of
image classifications. However, the method developed in [111] does not
fully exploit the same assumption for the task of image segmentation. 1

In this work, we show that the homogeneous sub-domain assumption
can be exploited effectively also for image segmentation. We propose a
novel meta-learning based approach to OCDA (abbreviated as MOCDA)
that consists of four modules: cluster; split; fuse; and update, as
illustrated in Fig. 3.1.

1 Open compound domain adaptation [111] does not fully exploit the domain informa-
tion for segmentation task due to the inaccessibility of the domain encoder. Refer the
original paper [111] for details.
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Similar to OCDA, the proposed MOCDA utilizes two image sets
for training from: a single labeled source domain; and a diverse unla-
beled target domain, which is assumed to be a compound of multiple
unknown sub-domains. Such an assumption is suitable for real chal-
lenging situations, where the target domain is a combination of many
factors including diverse weather, cities, and acquisition time [141, 34,
120]. The considered learning setup not only performs domain adap-
tation to the compound target domain, but also has generalization
potential to unseen open domains. In this context, the process of do-
main adaptation happens to exhibit a meta-behaviour [97, 5, 32], which
learned dynamically makes the open world semantic segmentation
possible. In this work, we show that the meta-behaviour of OCDA can
be learned using (a) a hypernetwork for dynamic fusion of knowledge,
and (b) the online update. On the one hand, the update process – which
is carried out using the model-agnostic meta-learning strategy – creates
an opportunity for better open set generalization with only one gradient
step. On the other hand, the learned dynamic fusion allows images to
appear from the continuous manifold of the compound target domain.

In essence, the proposed framework serves in following four steps.
(i) From target images, style codes are extracted and grouped into
multiple clusters. (ii) For each cluster, a set of batch normalization (BN)
parameters are learned. (iii) Corresponding to each cluster, each image
can have different domain-specific predictions. The hypernetwork, then,
learns to fuse these predictions. (iv) Model-agnostic meta-learning
(MAML) [45] is exploited during hypertraining process, endowing the
online update ability of the model on open domain during inference
stage. The key contributions of this chapter can be summarized as
follows:

• We propose a novel framework for semantic segmentation in the
OCDA setting. We use meta-learning in the dynamic fusion and
MAML strategy based online update, to address the limitations
of [111].

• We propose to model the compound target domain continuously,
taking the sub-target domain as the basis, which offers the ad-
vantage of adapting to target domain and generalizing to unseen
open domains.
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• We demonstrate the adequacy of image style features, learned in
an unsupervised manner, for our meta-based method MOCDA.

• The proposed method provides the state-of-the-art results in
synthetic-to-real knowledge transfer benchmark datasets, for both
compound and open domains.

3.2 related works

Unsupervised Domain Adaptation and Generalization. Our work is
related to domain adaptation [155, 132, 173, 53, 182, 140] and domain
generalization [97, 96, 103, 99] works. Unsupervised domain adaptation
aims at training a model on the labeled source domain and transferring
the learned knowledge to the unlabeled target domain. The traditional
unsupervised domain adaptation works [114, 47, 115, 177] typically
focus on solving adaptation problem from a single source domain to
a single target domain. Even though being effective in several tasks,
the single target domain assumption is still restricted in many practical
applications. Recently, multiple-target domain adaptation problem [32,
52] has received increasing research interests. The problem investigates
knowledge transfer to multiple unlabeled target domains. Yet another
important aspect not prioritized by the classical domain adaptation
methods is the knowledge transfer to unseen but related open domains
[111, 60, 102].
Cross-Domain Semantic Segmentation. In order to improve the adap-
tation and the generalization ability of the semantic segmentation
model [20, 188, 151, 113, 22, 21], cross-domain semantic segmentation
topic is extensively studied, both in the domain adaptation setting [214,
162, 227, 31, 29, 184] and in the domain generalization setting [183, 41,
60, 144, 111]. Most works either assume the target domain as a single
domain [162, 214, 156, 72, 31, 29, 227], or a composition of multiple
known domains [60, 213, 218, 144], with an exception of OCDA [111].
OCDA assumes target domain as a composition of multiple unknown
domains, which is more realistic in practice. [111] follows a different
approach for semantic segmentation compared to the classification task.
The curriculum learning therefore is based on the average class confi-
dence scores, rather than the neatly learned domain-focused factors in
case of the classification task. Nevertheless, the experimental setup of
our work is inspired by [111]. Concurrently, [136] develops the image
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translation based method for the OCDA problem, which is complemen-
tary to our method. Besides the open domain in [111, 136], our work
further explores the generalization ability of the model when facing
more diverse extended open domains.
Meta-Learning for Domain Adaptation/Generalization. Meta-learning
addresses the problem of learning to learn and has been successfully
applied to various applications including image classification [66], im-
age restoration [78], visual tracking [8], and network compression [104].
The principle of meta-learning [163, 70] has also been investigated for
the task domain adaptation [143, 95, 32] and generalization [97, 5, 41],
with the algorithmic advances [3, 45, 145]. Our work can be related to
those works in terms of general methodology. Among those works, the
ones most related are [32] and [209]. The similarities are : 1) both of [32]
and our MOCDA study the domain adaptation problem when there
are multiple unknown target domains through meta-learning. 2) both
of [209] and our MOCDA aims at improving the domain generalization
performance for semantic segmentation model, with the help of MAML
strategy. However, we have significant differences in the following as-
pects: 1) [32] utilizes the meta-learner for clustering the target domain
into different sub-target domains, and the target domain is modeled
as a union of multiple sub-target domains. And [32] does not include
the open domain. However, our meta-hypernetwork is utilized to fuse
the knowledge from different clusters, to model the target domain as a
continuous compound target domain. 2) [209] does not study the do-
main adaptation problem, and only focus on the domain generalization.
The MAML strategy in [209] is only used during training stage on the
well labeled source domain. By contrast, MOCDA utilizes the MAML
strategy in both of the well labeled source domain and the unlabeled
target domain during the training stage. During inference, the MAML
strategy is exploited for online update.

3.3 the mocda model

Preliminaries. We consider that the labeled source domain S is com-
posed of the source images xs, and the corresponding semantic labels ys,
i.e., S = {(xs, ys)|xs ∈ RH×W×3, ys ∈ RH×W}, where H, W are height
and width of the image, respectively. In OCDA, the unlabeled target
domain T consists of target images xi

t from multiple homogeneous
sub-target domains, T i = {xi

t|xi
t ∈ RH×W×3}, i = 1, . . . N, where N is
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Figure 3.2: (a) The overview of MOCDA framework demonstrating four
modules; (i) Cluster, (ii) Split, (iii) Fuse, and (iv) Update. (b)
Illustration of compound domain modeling, taking K = 3

for example. The sub-target domain P(f̃t
1|xt, 1), P(f̃t

2|xt, 2)

and P(f̃t
3|xt, 3) is taken as basis. The cluster/split module

models the compound target domain as the union set of
three points, i.e., red, green and blue points. But the fuse
module models the compound target domain P(f̃t|xt) as the
vector H(ct) = [H(ct)(1), H(ct)(2), H(ct)(3)]′, composing the
purple half quarter-spherical surface.

number of sub-target domains. In the context of this work (and also in
OCDA), these sub-target domains are unknown. Therefore, the images
xi

t from some unknown sub-target domain T i are simply denoted as xt,
for notation convenience and clarity.
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In this section, we propose the MOCDA model for semantic segmen-
tation. The MOCDA model is composed of four modules: cluster, split,
fuse, and update. The Cluster module extracts and clusters the style
code from the target domain images automatically, dividing the target
domain into multiple sub-target domains. The Split module adopts
the compound-domain specific batch normalization (CDBN) layer to
process different sub-target domain images using different branches.
The Fuse module exploits a hypernetwork to predict the weights cor-
responding to each branch adaptively, conditioned on the style code
of the input image. The final output of the network is the weighted
combination of the outputs of different branches. The MAML method is
utilized to train the Fuse module, so as to make the model be adapted
quickly in Update module. Finally, the Update is carried out online
during the inference time with one-gradient step, which is found to
be beneficial for open domains. The framework overview is shown in
Fig. 3.2. In the following, we provide the details of all four modules,
separately.

3.3.1 Cluster: Style Code Extraction and Clustering

The aim of the cluster module is to cluster the target domain T into
different sub-target domains T k, k = 1, . . . , K, serving the OCDA’s
assumptions of unknown multiple sub-target domains of the target
domain. As shown in [111, 81], the major differences of the target
domain images due to varying conditions, such as the weather, lighting,
and inter-dataset, can be effectively reflected by the style of the images.
Our cluster module consists of two mappings; Ec(·) and El(·). Ec(·)
maps the target domain T to the style code domain Ct = {ct|ct ∈ Rl}
as Ec : T → Ct, where l is the dimension of the style code. More
specifically, the target domain image xt is mapped to a low-dimension
style code ct = Ec(xt). Then a clustering algorithm, K-means [112], is
adopted to automatically cluster the style code domain Ct, partitioning
into K clusters with centroids {ck

t}. We use the mapping El(·) to
assign xt to one of the sub-target domains, represented by the set
K = {k|k = 1, . . . , K}, as El : T → K. Here, we adopt the nearest
neighbor strategy for El(·). More specifically, each target image is
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assigned to the nearest cluster, using the Euclidean distance between
style codes of the image and the centroids, given by,

El(xt) := argmin
k
‖ct − ck

t‖. (3.1)

The key of our cluster module is to find an adequate mapping Ec(·).
In this work, the unsupervised image translation framework MUNIT
[81] is trained to translate between the source domain S and the target
domain T . During the translation training process, the style code
encoder of MUNIT is trained to extract the style code from images
unsupervisedly. The trained style encoder of MUNIT is used as Ec(·).
Then, the target domain T is clustered into K sub-target domains T k,
where the number of sub-target domains K is a hyperparameter. Using
the nearest neighbour search, refer Eq. (3.1), each target image xt is
assigned to one of the sub-target domains T k. Henceforth, the image xt

assigned image kth cluster is denoted as xk
t .

3.3.2 Split: Domain-Specific Batch Normalization

In [17], the domain-specific batch normalization (DSBN) is shown
to be beneficial for the unsupervised domain adaptation (UDA), by
separating the batch normalization layer for the source and target
domain.

Similar to DSBN for UDA, the aim of our split module is to separate
the multiple sub-target domain-specific information from the domain-
invariant information. We propose DSBN for OCDA (abbreviated
as CDBN), to conduct such separation for source domain S and the
multiple (clustered) sub-target domains {T k}. Note that DSBN for
UDA learns only two sets of BN parameters (with possible extension
given more labeled domains). However, the proposed CDBN learns
K + 1 sets of BN parameters for source domain and multiple unlabeled
sub-target domains, i.e., BS, B1

T, ..., BK
T , formulated as,

BS(xs, µs, σs, βs, γs) = γs
xs − µs

σs
+ βs, (3.2)

Bk
T(x

k
t , µk

t , σk
t , βk

t , γk
t ) = γk

t
xk

t − µk
t

σk
t

+ βk
t , (3.3)

where k is the sub-target domain label, k = 1, ..., K. Our split mod-
ule replaces BN layers by CDBN. As shown in Fig. 3.2, our split
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module includes the multi-branch semantic segmentation network
G = {Gs, G1, ..., GK} and the discriminator D. Gk is formed by selecting
the k-th branch Bk of the CDBN layer. Through the adversarial learning,
the discriminator D aligns the prediction distributions of source domain
and that of the sub-target domains, in the output space. Therefore, the
full optimization objective of the split module includes the semantic
segmentation loss and the adversarial loss, presented below.

Semantic Segmentation Loss. We train the semantic segmentation
network G with a standard cross entropy loss, using the source domain
image xs and the associated ground truth label ys,

Lseg(G) = − 1
HW

HW

∑
n=1

M

∑
m=1

y(n,m)
s log(Gs(xs)

(n,m)), (3.4)

where (n, m) represents (pixel, class) indices for M classes.
Multi-Branch Adversarial Loss. Recall the cluster module, each

target image xt is assigned to a unique sub-target domain label k, i.e.,
xk

t . Here in the split module, the image xk
t is processed using only the

corresponding branch Gk, i.e., Gk(xk
t ). Our multi-branch adversarial

loss is an extension of the adversarial loss [175], which aligns the
prediction distributions of the source domain Gs(xs), and the sub-target
domains {Gk(xk

t )}. The multi-branch adversarial loss Lsadv and the
corresponding discriminator training loss Lsd are formulated as,

Lsadv(G) = −∑K
k=1 Exk

t∼PTk
log(D(Gk(xk

t ))
(n,1)), (3.5)

Lsd(D) = −Exs∼PS log(D(Gs(xs))(n,1)) (3.6)

−∑K
k=1 Exk

t∼PTk
log(D(Gk(xk

t ))
(n,0)),

where PS and PTk are the underlying data distributions of S and Tk, re-
spectively. The following full optimization objective is used for training
our split module,

Lsplit(G) = Lseg(G) + λ1Lsadv(G), (3.7)

where λ1 is a trades-off parameter. During the training process, we
alternatively optimize the discriminator D and the generator G with
the objective in the Eq. (3.6) and the Eq. (3.7), respectively.
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3.3.3 Fuse: HyperNetwork for Branches Fusion

The cluster and split module discretizes the target domain into a few
clusters, providing an initial discrete modeling of the target domain.
The fuse of the discretized modes forms continuous manifold, the
sample on which reflects the continuous change of the target domain
and might correspond to an unseen domain. In the fuse module, we
learn to combine the sub-target domain to model the compound target
domain continuously.

Compound Domain Modelling. Here we model the target domain
T in the corresponding feature domain F , which is mapped by F :

T → F . Let P(f̃t
k|xt, k) be the feature distribution corresponding to

image xt when assumed to be from the kth cluster. Then the distribution
of the feature f̃t of the image xt, i.e., P(f̃t|xt), is expressed as,

P(f̃t|xt)=
K

∑
k=1

P(f̃t
k
, k|xt)=

1
N

K

∑
k=1

P(k|xt)P(f̃t
k|xt, k) (3.8)

where N =
∫

f̃t
k ∑K

k=1 P(f̃t
k|xt, k)P(k|xt)df̃t

k
. P(k|xt) describes the proba-

bility distribution of the sub-target domain’s label of image xt. By taking

the sub-target domain distributions P(f̃t
k|xt, k) as basis, the compound

target domain can be modeled with the vector, i.e., {[P(1|xt), ..., P(k|xt),
..., P(K|xt)]′}.

HyperNetwork for Branches Fusion. In essence, the cluster and
split module can be seen as modeling the sub-target domain label
distribution as P(k|xt) = 1, if El(xt) = k and P(k|xt) = 0, if El(xt) 6= k.
It models the compound target domain as the discretized points in the
vector space, as illustrated in Fig. 3.2. In order to model the compound
target domain in the continuous space, in our fuse module, we adopt
the categorical distribution for P(k|xt), i.e.,

P(k|xt) = wk, with,
K

∑
k=1

wk = 1, wk > 0, (3.9)

where w = [w1, ..., wk, ..., wK]
> is the K-dimensional categorical vector,

whose element wk represents the probability that the target image xt

belongs to the sub-target domain Tk. Then the hypernetwork H(·) is
adopted to learn the P(k|xt), by taking the style code ct of the image
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sample xt as input, i.e., [w1, ..., wk, ..., wK]
> = H(ct). Substituting the

H(ct) in Eq. (3.8), the feature distribution P(f̃t|xt) can be derived as,

P(f̃t|xt) ∼
K

∑
k=1

H(ct)
(k)P(f̃t

k|xt, k). (3.10)

where H(ct)(k) is the kth element of H(ct). Eq. (3.10) shows that the
compound target domain is modeled in the continuous vector space,

H(ct), taking the sub-target domain distributions P(f̃t
k|xt, k) as basis,

as illustrated in Fig. 3.2.
From above, it is shown that H(ct) weights the different sub-target

domain distribution differently to get the compound target domain
distribution. Here we adopt the network G as our mapping F . Follow-

ing [80], we reweight each feature sample f̃t
k
= Gk(xt) with H(ct), so

that the feature sample from dominant sub-target domain has higher
weight, whereas the sample from non-dominant sub-target domain has
lower weight. The final prediction can be represented as,

ỹt =
K

∑
k=1

H(ct)
(k)Gk(xt). (3.11)

By combining Eq. (3.11) and Eq. (3.5), the adversarial loss for the fuse
module L f adv and the corresponding discriminator training loss L f d
can be formulated as,

L f adv(G, H) = −Ext∼PT log(D(ỹt)
(n,1)) (3.12)

L f d(D) = −Exs∼PS log(D(Gs(xs))
(n,1)) (3.13)

−Ext∼PT log(D(ỹt)
(n,0)).

The optimization objective of our fuse module is a combination of Eq.
(3.4) and Eq. (3.12), which is given by,

L f use(G, H) = Lseg(G) + λ2L f adv(G, H), (3.14)

where λ2 is the hyperparameter to balance between the adversarial loss
and the segmentation loss. During the training process, we alternatively
optimize the discriminator D and the generator G, the hypernetwork
H with the objective in the Eq. (3.13) and the Eq. (3.14), respectively.
In our MOCDA model, the training of the fuse module is combined
with the MAML strategy, which is explained further in Section 3.3.4
and Algorithm 3.1.
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3.3.4 Update: MAML based Online Update

In the previous OCDA work [111], the open set is only treated as a
testing set to verify the generalization ability of the model. In contrast,
in our work, the open set is also used for updating the model online
during testing, for better generalization to the unseen domain, realized
by MAML.

MAML. The MAML strategy [45] aims at learning the optimal model
parameters θ∗, which eases the adaptation process for new tasks. In each
iteration of MAML, there are two training loops; inner and outer. Let
the data of inner and outer loops be Din and Dout, respectively. In each
training iteration, the model parameters θ are first updated with the
inner loop loss Lin and data Din. The updated model is then evaluated
on the outer loop loss Lout and data Dout, to test the generalization
ability of the updated model. Furthermore, the evaluation performance
Lout is also adopted during update, to better generalize the model. This
nested training fashion mimics the training and testing phase of the
model. In order to endow adaptation ability, the optimization objective
of MAML is formulated as,

θ∗ = argmin
θ

Lout(θ − α∇Lin(θ, Din), Dout), (3.15)

where α is the learning rate for updating the model.
MAML for OCDA. In our addressed problem of OCDA for semantic

segmentation, images from the set {xo} of the unseen open domain O
are available only during testing. We adopt the MAML algorithm in
our MOCDA during training to be combined with the fuse module.
MAML then offers us the advantage of quick adaptation to the open
set during testing, by means of online update within one gradient step.

In the inner loop, we sample data from the target domain T , i.e.,
Din = {xt}. Meanwhile, in order to update the model without supervi-
sion, we use the unsupervised self-entropy loss [184] Lent as the inner
loop loss Lin – which mimics the model update process during testing,
given by,

Lin = Lent = − 1
HW

HW

∑
n=1

C

∑
c=1

ỹt
(n,c) log ỹt

(n,c). (3.16)

In the outer loop, the data is sampled from both source domain S and
the target domain T , i.e., Dout = {xs, ys, xt}. In order to evaluate the
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Algorithm 3.1 MAML algorithm for OCDA (Training)
Require: Source data S = {(xs, ys)}, target data T = {xt}, segmenta-
tion network G, hypernetwork H, discriminator D, the learning rate α

of G, H, and the learning rate ζ of discriminator D.
1: Initialize the parameters θGH and θD, respectively of the segmenta-

tion network G, hypernetwork H, and the discriminator D;
2: while not done do
3: Sample Din from T . Inner Loop
4: θ+GH ← θGH − α∇θGHLin(Din, θGH);
5: Sample Dout from S and T . Outer Loop
6: θGH ← θGH − α∇θGHLout(Dout, θ+GH);
7: θD ← θD − ζ∇θDL f d(Dout, θD);
8: end while

model’s performance on different domains and in different way, the
outer loop loss Lout uses the optimization objective of the fuse module
in Eq. (3.14) and the self-entropy loss in Eq. (3.16), such that,

Lout = L f use + δLent, (3.17)

where δ is the hyperparameter to balance between the fuse module loss
and the unsupervised self-entropy loss. The MAML algorithm used
during OCDA training is presented in Algorithm 3.1. Similarly, the
MAML used during the online update, of OCDA testing, is given in
Algorithm 3.2.

3.3.5 Training Protocol of MOCDA

In total, our MOCDA model is trained in the multi-stage way, consisting
of three steps: i) training the MUNIT model for style code extraction
and clustering, ii) training with the CDBN layer in split module, iii) the
CDBN layer is frozen, adding the hyper-network and the fuse module,
and training the hypernetwork H and fine-tuning the semantic segmen-
tation network G with MAML strategy as described in Algorithm 3.1.
Then during testing stage, our whole model, except for CDBN layer, is
online updated with the MAML strategy as clarified in Algorithm 3.2.
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Algorithm 3.2 MAML algorithm for OCDA (Testing)
Require: Data {xo} from the unseen novel domain O, segmentation
network G, hypernetwork H.

1: Use trained parameters θGH of the segmentation network, G and
the hypernetwork H, from the training phase;

2: F ← 0
3: for i = 1, ..., n do
4: Sample the ith image xi

o from {xo};
5: ỹi

o ← G(xi
o);

6: θGH ← θGH − η∇θGHLent(ỹi
o, θGH)

7: end for

3.4 experiments

In this section, we demonstrate the benefits of our MOCDA model
under the open compound domain adaptive semantic segmentation
setting. We compare our MOCDA model with other state-of-the-art
(SOTA) methods on both of the target domain and the open domain. In
order to further prove the effectiveness of our MOCDA model for open
domain with online update, we introduce more diverse and challenging
extended open domains to test the model performance additionally.

3.4.1 Experiments Setup

Implementations. Cluster. In the cluster module, we train the MUNIT
[81] model to translate between the source domain images and the
compound target domain images in the unsupervised way. We follow
the experimental set up in the urban scene image translation set up in
MUNIT [81]. The shortest side of the images are firstly resized to 512,
and then the images are randomly cropped with the size of 400× 400.
The loss weights for image reconstruction loss, style reconstruction loss,
content reconstruction loss, and domain-invariant perceptual loss are
set as 10, 1, 1, and 1, respectively. The Adam optimizer [88] is adopted
with β1 = 0.5, β2 = 0.999, and the learning rate is set as 0.0001. Also,
the dimension of the style code is set as 8. The number of the clusters K
is set as 4. Split, Fuse, and Update. In the split and fuse module, we have
the semantic segmentation network and the discriminator. We adopt
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the DeepLab-VGG16 [20, 166] with synchronized batch normalization
layer [82] for the semantic segmentation network. And we adopt the
discriminator structure in [175]. The compound target domain images
and the open domain images, from BDD100K [203], Cityscapes[34],
WildDash [207] and KITTI [2], are resized to 1024× 512, and the source
domain images from GTA5 [149] and SYNTHIA-SF [69] are resized to
1280× 720. The λ1 in Eq. (3.7), and λ2 in Eq. (3.14) are set as 0.001.
In the update module, during the training stage, the δ in Eq. (3.17) is
set as 0.0001. In the split, fuse and update module, we adopt the SGD
optimizer to train the hypernetwork and the semantic segmentation
network, where the momentum is 0.9 and the weight decay is 5 ×
10−4. The learning rate is set as 2.5× 10−4, and uses the polynomial
decay strategy with power of 0.9 as done in [175]. We keep the same
learning rate for online updating the hypernetwork and the semantic
segmentation network. Also, we adopt the Adam optimizer [88] for
training the discriminator with β1 = 0.9, β2 = 0.99. The learning rate is
set as 1.0× 10−4 and uses the polynomial decay strategy with power of
0.9. And our MOCDA model is implemented with PyTorch [138].

Datasets. Following [111], we adopt the synthetic image dataset
GTA5 [149] or SYNTHIA-SF [162] as the source domain, the rainy,
snowy, and cloudy images in BDD100K [203] as the target domain,
while the overcast images in BDD100K are utilized as the open do-
main. Besides, more diverse images from other real image datasets,
Cityscapes[34], KITTI[2] and WildDash [207] are introduced as extended
open domains. The datasets are detailed as follows. 1) GTA5. GTA5

[149] is a synthetic urban scene image dataset, rendered from game
engine. The scene of the GTA5 images is based on the city of Los
Angeles. The GTA5 dataset covers 24966 densely labeled images, the
annotation of which is compatible with that of Cityscapes. In OCDA
benchmark, GTA5 → BDD100K, the GTA5 images, with the ground
truth label, serve as source domain. 2) SYNTHIA-SF. SYNTHIA-SF [69]
is a synthetically rendered image dataset from virtual city. There are
2224 images in the SYNTHIA-SF dataset, featuring different scenarios
and traffic conditions. The images are densely labeled and the labels are
compatible with Cityscapes. In our OCDA benchmark, SYNTHIA-SF
→ BDD100K, the SYNTHIA-SF dataset and the associated ground truth
label serve as the source domain. 3) BDD100K. BDD100K [203] is a real
urban scene image dataset, mainly taken from US cities. And the images
in BDD100K dataset are diverse in different aspects such as weather and
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environment. We adopt the C-driving subset of BDD100K proposed in
[111], which is composed of rainy, snowy, cloudy and overcast images.
During training stage, 14697 images, without the ground truth label,
are used as the unlabeled compound target domain, including rainy,
snowy and cloudy weather images. All different weather images are
mixed and not assigned the weather information. During the testing
stage, 803 images covering rainy, snowy and cloudy weather, with
ground truth semantic annotation, are used as the validation set of the
compound target domain, for evaluating the adaptation performance
of the model. Besides, during the testing stage, 627 images with the
ground truth semantic label, containing overcast weather, are taken as
the validation set of the open domain, for evaluating the generalization
performance of the model. The semantic label of the BDD100K dataset
is compatible with that of Cityscapes. 4) Cityscapes. Cityscapes [34] is a
real street scene image dataset, collected from different European cities.
In our OCDA benchmark, during the testing stage, the validation set
of Cityscapes, covering 500 densely labeled images, is used as one of
the extended open domains to evaluate the generalization ability of the
model. 5) KITTI. KITTI [2] covers the real urban scene images, taken
from the mid-size European city, Karlsruhe. In our OCDA benchmark,
the validation set of KITTI, including 200 densely labeled images, is
used as one of the extended open domains for generalization ability
evaluation during the testing stage. The ground truth label of KITTI
dataset is compatible with that of Cityscapes. 6) WildDash. WildDash
[207] is a dataset covering images from diverse driving scenarios under
the real-world conditions. The images in WildDash possess the diversity
in different aspects, such as the time, weather, data sources and camera
characteristics. In our OCDA benchmark, during the testing stage,
the validation set of WildDash, containing 70 Cityscapes annotation
compatible images, serves as one of the extended open domains for
measuring the generalization performance of the model.

3.4.2 GTA5 to BDD100K

Comparison with SOTA. In Table 3.1, we present our open compound
domain adaptation results, in comparison with other SOTA methods.
For fair comparison, all of the methods adopt the DeepLab-VGG16

model with the batch normalization layer. Compared with our base-
line method AdaptSegNet[175], our split module achieves 3.1% and
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(a) Clustering visualization (b) Example images of different clusters
Cluster “1” Cluster “2” Cluster “3” Cluster “4”
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Figure 3.3: Visualization of clustering results. (a) is the t-SNE visualiza-
tion of the style code extracted by the cluster module, (b) is
example images from different clusters.

2.4% gain on the target domain and the open domain, respectively.
Compared with the SOTA method OCDA[111], our split module per-
formance outperforms by 0.9% on the target domain and by 1.6% on
the open domain. It proves the effectiveness of our cluster module
and the split module, for sub-target domain discovery and sub-target
domain-specific information disjointing. The clustering visualization
is shown in Fig. 3.3. Then by adopting the meta-learning with the
hypernetwork and the MAML training strategy in the fuse module,
our MOCDA model achieves the state-of-the-art performance, which
improves the split module performance by 2.3% from 25.4% to 27.7%,
and by 1.9% from 29.5% to 31.4% on the target domain and the open
domain, respectively. It proves the advantage of our MOCDA model on
fusing the different sub-target domains knowledge, modeling the target
domain continuously through the hypernetwork, and adopting the
MAML training strategy. The qualitative comparison of the semantic
segmentation results on the target domain is shown in Fig. 3.6.

Online Update. Another meta-learning paradigm in our MOCDA
model, besides the fuse module, is the MAML algorithm based on-
line update during testing stage. From Table 3.2, it is shown that
our MOCDA model without online update outperforms the baseline
method AdaptSegNet [175] on both of the open domain and the ex-
tended open domain by 5.6% in average. It proves the effectiveness
of our cluster, split and fuse module for open domain generalization.
By further using the MAML based online update strategy described
in Algorithm 3.2 during the testing stage, our MOCDA model perfor-
mance on all the open domains improves by 0.7% in average, from
28.1% to 28.8%. Our model w/ or w/o online update has the same
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Source Compound Open Avg
GTA→ Rainy Snowy Cloudy Overcast C C+O

Source Only[111] 16.2 18.0 20.9 21.2 18.9 19.1
Source Only ∗ 19.7 18.4 20.5 22.5 19.7 21.0

AdaptSegNet[111] 20.2 21.2 23.8 25.1 22.1 22.5
AdaptSegNet[175] ∗ 21.6 20.5 23.9 27.1 22.3 24.4

CBST[227] 21.3 20.6 23.9 24.7 22.2 22.6
IBN-Net[133] 20.6 21.9 26.1 25.5 22.8 23.5
PyCDA [106] 21.7 22.3 25.9 25.4 23.3 23.8
OCDA [111] 22.0 22.9 27.0 27.9 24.5 25.0
Ours (Split) 23.5 23.5 27.8 29.5 25.4 27.1
Ours (Fuse) 24.4 27.5 30.1 31.4 27.7 29.4

Table 3.1: Semantic segmentation performance comparison with SOTA:
GTA→ BDD100K with DeepLab-VGG16 backbone. The re-
sults are reported on mIoU over 19 classes. ∗ means our
reproduced result.

Figure 3.4: Extended open domains, open domain and target domain
style code t-SNE visualization. The domain gap between
the BDD100K open domain image and the target domain
image (red and green points) is narrow due to the similar
style. Our introduced extended open domain Cityscapes,
KITTI and WildDash images have much larger domain gap
from the BDD100K images. And the style code extracted by
our cluster module can effectively reflect the domain gap.

performance on the open domain, BDD100K overcast image. It is due
to that the BDD100K overcast image is still from the BDD100K dataset,
and the style gap between the overcast image and the target domain
image is very narrow, whose visualization is shown in Fig. 3.4. The
benefit from our cluster, split and fuse module has been able to han-
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Source Open Extended Open
Avg

GTA→ BDD Cityscapes KITTI WildDash

Source[111] 21.2 – – – –
Source∗ 22.5 19.3 24.1 16.0 20.5

AdaptSegNet[111] 25.1 – – – –
AdaptSegNet[175] ∗ 27.1 22.0 23.4 17.5 22.5
w/o Online Update 31.4 30.4 29.8 20.6 28.1
w/ Online Update 31.4 31.1 30.9 21.6 28.8

Gain of Online Update – +0.7 +1.1 +1.0 +0.7

Table 3.2: Open domain semantic segmentation performance compar-
ison w/ or w/o online update: GTA→ BDD100K with
DeepLab-VGG16 backbone. The results are reported on mIoU
over 19 classes. ∗ means our reproduced result.

dle the narrow style gap and have good generalization performance
already. The performance gain, 0.7%, 1.1% and 1.0% on the extended
open domains where the style gap is much larger, Cityscapes, KITTI
and WildDash dataset, proves that the MAML based meta-learning
paradigm, in Algorithm 3.1 for training and Algorithm 3.2 for testing,
endows the fast adaptation ability to our model to generalize better on
open domains. The qualitative comparison, w/ or w/o online update,
on the open domains are shown in Fig. 3.6.

Ablation Study. We show the comparison of ablations and different
variants of our model in Table 5.6. From Table 5.6, it is shown that all
the modules, the cluster/split module (Lsplit), the fuse module (L f adv)
and the MAML training strategy are helpful to our whole MOCDA
model. The cluster and split module has been proven to be helpful
in the comparison with AdaptSegNet[175] and other SOTA methods.
Here we show the effectiveness of our meta-learning paradigm, the
hypernetwork and the MAML training strategy through the ablations
and variants methods comparison. Firstly, in order to prove the validity
of our hypernetwork, we build the baseline methods of the branch
fusion in non-adaptive way; 1), averagely fuse for prediction during
the testing stage of the split module. 2), averagely fuse during the
training and testing stage of the fuse module. 3) use the style code
distance from different clusters to weight different branches during
the training and testing stage of the fuse module. It is shown that
our hypernetwork based branch fusion strategy performance, 27.1%,
outperforms all other non-adaptive fusion strategy, 23.1%, 26.1%, 26.6%.
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Lseg Ladv Lsadv L f adv Lent MAML mIoU
X 18.9
X X 22.3
X X 25.4
X X 23.1†

X X 26.1‡

X X 26.6§

X X 27.1
X X X 27.3
X X X X 27.7

Table 3.3: Different ablations and variants comparison for OCDA,
tested on BDD100k target domain based on DeepLab-VGG16

with batch normalization layer backbone. The results are
reported on mIoU over 19 classes. † represents the average
fusion only during testing. ‡ represents the average fusion of
different branches during training and testing. § represents
the style code distance weighted fusion during training and
testing.

It benefits from the advantage of adaptive weights predicted from the
hypernetwork conditioned on the image sample style code. Secondly,
by comparing the performance of training the fuse module using the
Lout in the Eq. (3.17) and purely using the L f use in Eq.(3.14), it is
shown that there is 0.2% performance gain by adding the unsupervised
entropy loss, from 27.1% to 27.3%. By further introduce the MAML
training strategy in Algorithm 3.1 for the fuse module, as done in our
MOCDA model, the performance can be further improved to 27.7%.
It proves that the MAML training strategy is not only helpful to the
open domain generalization as described above, but also is beneficial to
improve the adaptation performance of the model on the target domain.
It results from that MAML training strategy mimics the training and
testing procedure with the outer loop and inner loop and makes the
model more domain adaptive.

Hypernetwork prediction. Besides ablation study and the variants
of our model, we provide additional t-SNE [119] visualization of our
hypernetwork prediction to prove the validity of the hypernetwork in
our MOCDA model. As shown in Fig. 3.5, for the image samples from
different sub-target domains, our hypernetwork prediction possesses



3.4 experiments 53

Figure 3.5: t-SNE visualization of hypernetwork prediction. For image
samples belonging to different sub-target domains 1, 2, 3, 4,
our hypernetwork prediction shows different attributes even
though we do not explicitly input the sub-target domain
information during the fuse module training, which proves
the validity of our hypernetwork.

different feature attributes, even though we do not explicitly provide
the sub-target domain information in this process. It proves that our
hypernetwork is able to adaptively adjust the prediction, conditioned
on the style code of the image samples.

3.4.3 SYNTHIA-SF to BDD100K

In this section, SYNTHIA-SF is used as the source domain. Following
[223], we only take 11 main classes in the SYNTHIA-SF dataset to mea-
sure the semantic segmentation performance, which are road, sidewalk,
building, wall, fence, pole, light, vegetation, sky, person and car.

Comparison with SOTA. In Table 3.4, we report the quantitative com-
parison results between our MOCDA model and other SOTA methods
for the open compound domain adaptation setting, from the SYNTHIA-
SF to the BDD100K. From Table 3.4, it is shown that our MOCDA model
outperforms MinEnt [184] and AdaptSegNet [175] on both of the target
domain and the open domain. It further verifies the effectiveness of our
MOCDA model for OCDA.

Online Update. In Table 3.5, the performance of our MOCDA model
for the open domain and the extended open domain are shown. Our
MOCDA model w/o online update outperforms the AdaptSegNet
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Source Compound Open Avg
SYNTHIA-SF→ Rainy Snowy Cloudy Overcast C C+O

Source Only 16.5 18.2 21.4 20.6 19.2 19.8
MinEnt[184] 21.8 22.6 26.2 25.7 23.9 24.7

AdaptSegNet[175] 24.9 26.9 30.7 30.3 28.0 29.0
Ours (Split) 25.2 27.9 32.4 31.8 29.1 30.3
Ours (Fuse) 26.6 30.0 33.0 32.6 30.4 31.4

Table 3.4: Semantic segmentation performance comparison with SOTA:
SYNTHIA-SF→ BDD100K with DeepLab-VGG16 backbone.
The results are reported on mIoU over 11 classes. The best
results are denoted in bold.
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Figure 3.6: Qualitative comparison of semantic segmentation results on
the target domain, including the rainy, snowy and cloudy
weather, and on the open domains, KITTI, WildDash and
Cityscapes.

method by 2.2% in average on all the open domains. By further utilizing
the online update in the open domain, the peformance can be further
improved by 1.1% in average, from 30.1% to 31.2%. It further proves
the validity of the online update for the open domain.

3.5 conclusion

In this chapter, we address the problem of open compound domain
adaptation, and propose a meta-learning based model, MOCDA. MOCDA
is composed of four modules, cluster, split, fuse and update module.
Meta-learning serves in fuse and update module for continuously mod-
eling the compound target domain and online update. The extensive
experiments show that our model achieves the state-of-the-art per-
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Source Open Extended Open
Avg

SYNTHIA-SF→ BDD Cityscapes KITTI WildDash

Source 20.6 24.7 20.7 17.3 20.8
AdaptSegNet[175] 30.3 35.9 24.7 20.7 27.9

w/o Online Update 32.6 29.9 33.2 24.5 30.1
w/ Online Update 32.6 32.2 34.2 25.8 31.2

Gain of Online Update – +2.3 +1.0 +1.3 +1.1

Table 3.5: Open domain semantic segmentation performance compar-
ison w/ or w/o online update: SYNTHIA-SF→BDD100K
with DeepLab-VGG16 backbone. The results are reported on
mIoU over 11 classes.

formance on different benchmarks, proving the effectiveness of our
proposed MOCDA model.





4
TA X O N O M Y A D A P T I V E C R O S S - D O M A I N
S E M A N T I C S E G M E N TAT I O N

This chapter corresponds to our published article:
Rui Gong, Martin Danelljan, Dengxin Dai, Danda Pani Paudel, Ajad

Chhatkuli, Fisher Yu, and Luc Van Gool. ”TACS: Taxonomy adaptive
cross-domain semantic segmentation.“ In: ECCV. 2022

In this chapter, we introduce a taxonomy adaptive cross-domain
semantic segmentation (TACS) problem, allowing for inconsistent tax-
onomies between the two domains. The motivation behind this intro-
duction is to address the limitation of traditional domain adaptation in
the output space. While tackling the input domain gap, the traditional
domain adaptation settings assume no domain change in the output
space. In semantic prediction tasks, different datasets are often labeled
according to different semantic taxonomies. In many real-world set-
tings, the target domain task requires a different taxonomy than the one
imposed by the source domain. To tackle TACS, we further propose an
approach that jointly addresses the image-level and label-level domain
adaptation. On the label-level, we employ a bilateral mixed sampling
strategy to augment the target domain, and a relabelling method to
unify and align the label spaces. We address the image-level domain
gap by proposing an uncertainty-rectified contrastive learning method,
leading to more domain-invariant and class-discriminative features.
We extensively evaluate the effectiveness of our framework under dif-
ferent TACS settings: open taxonomy, coarse-to-fine taxonomy, and
implicitly-overlapping taxonomy. Our approach outperforms the previ-
ous state-of-the-art by a large margin, while being capable of adapting
to target taxonomies.

4.1 introduction

Traditional unsupervised domain adaptation (UDA) approaches for
semantic segmentation [184, 72, 30, 175, 111, 174] typically focus on
the image level domain gap, which can involve visual style, weather,
lighting conditions, etc.. However, these methods are restricted by the
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assumption of having consistent taxonomies between source and target
domains, i.e., each source domain class can be unambiguously mapped
to one target domain class (Fig. 4.1 (a-c)), which is often not the case.
In many applications, the label spaces of the source and target domains
are inconsistent, due to different scenarios or requirements, inconsistent
annotation practices, or the strive towards an increasingly fine-grained
taxonomy [128, 92, 34].

The aforementioned considerations motivate us to consider the label
level domain gap problem. Even though recent open/universal/class-
incremental domain adaptation works [134, 202, 90] touched upon the
label level domain gap, they 1) only took image classification as test-bed,
and 2) only focused on unseen classes in the target domain. However,
the label level domain gap in practical scenarios is more complicated
than only involving unseen classes. We therefore formulate and explore
the label level domain gap problem in a more general and complete
setting. We identify three typical types of label taxonomy inconsistency.
i) Open taxonomy: some classes, e.g., “terrain” in Fig. 4.1(d), appear in
the target domain, but are unlabeled or unseen in the source domain.
ii) Coarse-to-fine taxonomy: some classes in the source domain, e.g.,
“person”, are split into several sub-classes in the target domain, e.g.,
“pedestrian” and “rider’ (Fig. 4.1(e)). iii) Implicitly-overlapping taxonomy:
for a certain class in the source domain, one or more of its sub-classes
are merged into other classes in the target domain. For example, there
exists a taxonomic conflict between {“vehicle”, “bicycle”} in the source
domain and {“car”, “cycle”} in the target domain (Fig. 4.1(f)).

We therefore introduce a more general and challenging domain
adaptation problem, namely taxonomy adaptive cross-domain semantic
segmentation (TACS). In traditional UDA for semantic segmentation, the
goal is to transfer a model learned on a labelled source domain to an
unlabelled target domain, under the consistent taxonomy assumption.
In contrast, TACS allows for inconsistent taxonomies between a labeled
source domain and a few-shot/partially labeled target domain, where
the inconsistent classes of the target domain are exemplified by a few
labeled samples. Thus TACS approaches domain adaptation on both
the image and label side, under the few-shot/partially labeled setting.
Such task setting is realistic, but involves practical challenges. On the
one hand, TACS allows methods to make full use of the labeled source
domain without annotation costs in the target domain for the consistent
classes. On the other hand, for the inconsistent classes the taxonomy
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Figure 4.1: Consistent vs. inconsistent taxonomy. In (a)-(f), the upper
row shows the source domain classes, and the lower row
the target domain classes. Circles represent classes while an
arrow represents a mapping from a source domain class to a
target domain class. (a)-(c) and (d)-(f) are examples of consis-
tent and inconsistent taxonomies, resp. Different from other
domain adaptation problems, e.g., universal/partial/open-
set domain adaptation [202, 16, 134], that only touch the
consistent taxonomy or special case of open taxonomy, our
TACS provides a more general problem, including the consis-
tent taxonomy and different inconsistent taxonomies types.
More detailed comparisons with other domain adaptation
problems are put in Sec. 4.2.

adaptation should only require very limited supervision in the target
domain, i.e., only few samples should be labeled there.

We put forward the first approach for TACS, addressing both the
image and label domain gaps. As to the latter, we aim to remedy the
gap using pseudo-labelling techniques. First, a bilateral mixed sampling
strategy is proposed to augment unlabeled images by mixing them
with both labeled source-domain and target-domain samples. Second,
we map inconsistent source domain labels with a stochastic label mapping
strategy, which encourages a more flexible taxonomy adaptation during
the earlier learning phase. Third, a pseudo-label based relabeling strategy
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is proposed to replace the inconsistent classes in the source-domain
according to the model’s predictions, to further enforce taxonomy
adaptation during the training process. To tackle the image level
domain gap, we introduce an uncertainty-rectified contrastive learning
scheme that facilitates the learning of class-discriminative and domain-
invariant features, under the uncertainty-aware guidance of predicted
pseudo-labels. Our complete approach for TACS demonstrates strong
results in different inconsistent taxonomy settings (i.e., open, coarse-
to-fine, and implicitly-overlapping). Moreover, our suggested mixed-
sampling and contrastive-learning scheme outperforms current state-
of-the-art methods by a large margin in the traditional UDA setting.

To summarize, our contributions are three-fold:

• A new problem – taxonomy adaptive cross-domain semantic segmen-
tation (TACS) – of addressing both image and label domain gaps
is proposed. It opens up a new avenue for more flexible cross-
domain semantic segmentation.

• A generic solution for UDA and TACS is proposed, for which
the unified mixed-sampling, pseudo-labeling and uncertainty-
rectified contrastive learning scheme is presented to solve both
image and label level domain gaps.

• Extensive experiments are conducted under the traditional UDA
and the new TACS settings, showing the effectiveness of our
approach.

4.2 related work

Domain adaptation: The traditional unsupervised domain adaptation
(UDA) [175, 214, 73, 47, 227, 114] considers the case when the source
and target domain share the same label space and where the target do-
main is unlabeled. However, this setting does not conform with many
practical applications. Some recent works have therefore explored al-
ternative settings. Open-set/universal domain adaptation [134, 158,
202] aims at recognizing the new unseen classes in the target domain
together as the “unknown” class. Class-incremental/zero-shot domain
adaptation [90, 11] are proposed to recognize the new unseen classes
explicitly and separately in the target domain under the source domain
free setting and in the zero-shot segmentation way, resp. These works
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touch upon the specific case of the open taxonomy setting in TACS.
However, the above works only consider the case where the unseen
classes are absent in the source domain. In contrast, the open taxon-
omy setting in TACS also allows for the unseen classes to exist in the
source domain, where they are unlabelled. Besides, the above works
do not consider the coarse-to-fine and implicitly-overlapping taxonomy
problems, which are covered by the more general TACS formulation.
Recent few-shot/semi-supervised domain adaptation works [172, 125,
211] aim at improving the domain adaptation performance by intro-
ducing few-shot fully labeled target domain samples. However, they
still assume a consistent taxonomy between the source and target do-
main. Moreover, all the aforementioned non-UDA works, except for
[11] and [211], only touch upon the image classification task. Instead,
our TACS aims at semantic segmentation, which is more challenging
and raises particular interest due to its great importance in autonomous
driving [175, 184, 174, 123]. Next, we compare our TACS with different
domain adaptation problems in more detail, respectively.

TACS vs., Unsupervised Domain Adaptation (UDA). The traditional
UDA [175, 184] only focuses on the image-level domain gap, but ignores
the label-level domain gap (cf. Fig. 4.1), i.e., assuming the consistent
taxonomy between the source domain and the target domain.

TACS vs., Partial Domain Adaptation (PDA). The implicitly-overlapping
taxonomy in our TACS is totally different from PDA [16]. PDA only
assumes the reduced label space from the source domain to the target
domain, e.g., {“vehicle”, “bicycle”}→ {“bicycle”}, which actually still
assumes consistent taxonomy between the source domain and the
target domain (cf. (c) in Fig. 4.1). However, the implicitly-overlapping
taxonomy setting in our TACS touches the problem that, for a certain
class in the source domain, one or more of its sub-classes are merged
into other classes in the target domain, e.g., {“vehicle”, “bicycle”} →
{“car”, “cycle”}, which tackles the inconsistent taxonomy between the
source domain and the target domain (cf. (f) in Fig. 4.1).

TACS vs., Few-Shot/Semi-Supervised Domain Adaptation (FS/SS DA).
FS/SS DA [211, 125, 172] aims at improving the domain adaptation
performance by introducing the few-shot fully labeled target domain
samples. However, FS/SS DA still assumes the consistent taxonomy
between the source domain and the target domain.

TACS vs., Open-Set/Universal Domain Adaptation (OS/US DA). OS/US
DA [202, 134, 158] aims at recognizing the new unseen classes in the
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target domain together as an “unknown” class, which can be seen as
a special case of our open taxonomy setting in our TACS. Differently,
the open taxonomy setting in our TACS aims at recognizing different
new unseen classes explicitly and separately. For example, assuming
{“terrain”, “train”} are the new unseen classes in the target domain,
OS/US DA just aims at recognizing the pixels of {“terrain”, “train”}
classes as the “unknown” class pixel together. However, the open tax-
onomy setting in our TACS aims at recognizing the pixels of {“terrain”,
“train”} classes as the “terrain” and “train” classes explicitly and seper-
ately, as the recognition of the seen class. Besides, OS/US DA does
not consider the coarse-to-fine taxonomy and implicitly-overlapping
taxonomy setting in our TACS.

TACS vs., Zero-Shot/Class-Incremental Domain Adaptation (ZS/CI DA).
Similar to the open taxonomy setting of our TACS, ZS/CI DA [11,
90] aims at recognizing the new unseen classes in the target domain
explicitly and separately, which can be seen as a specific case of the open
taxonomy setting of our TACS. However, ZS/CI DA only considers
the case where the unseen classes are absent in the source domain. In
contrast, the open taxonomy setting in our TACS also allows for the
unseen classes to exist in the source domain, where they are unlabelled.
Besides, ZS/CI DA does not consider the coarse-to-fine taxonomy and
implicitly-overlapping taxonomy setting in our TACS.

Contrastive learning: Recently, contrastive learning [25, 63, 26, 67, 27,
180] was proven to be successful for unsupervised image classification.
Benefiting from the strong representation learning ability, contrastive
learning has been applied to different applications, including seman-
tic segmentation [188], image translation [137], object detection [195]
and domain adaptation [87]. In [87], contrastive learning is exploited
to minimize the intra-class discrepancy and maximize the inter-class
discrepancy for the domain adaptive image classification task. How-
ever, since the approach is designed for the image classification task, it
utilizes the contrastive learning between the whole feature vectors of
the different image samples, which is not directly applicable to dense
prediction tasks, such as semantic segmentation. Instead, we develop
a pseudo-label guided and uncertainty-rectified pixel-wise contrastive
learning, to distinguish between positive and negative pixel samples to
learn more robust and effective cross-domain representations.
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4.3 method

4.3.1 Problem Statement

In our taxonomy adaptive cross-domain semantic segmentation (TACS)
problem, we are given the labeled source domain Ds = {(xs

i , ys
i )}

ns
i=1,

where xs ∈ RH×W×3 is the RGB color image, and ys is the associated
ground truth CS-class semantic label map, ys ∈ {1, ..., CS}H×W . In the
target domain, we are also given a limited number of labeled samples
Dt = {(xt

i , yt
i)}nt

i=1, which we refer to as few-shot or partially labeled
target domain samples. We are also given a large set of unlabeled target
domain samples Du = {xu

i }nu

i=1. The target ground truth yt follows the
CT-class semantic label map. Denoting the source and target image
samples distributions as PS and PT, we have xs ∼ PS, xt, xu ∼ PT. The
source and target image distributions are different, i.e., PS 6= PT. The
label set space of Ds and {Dt,Du} are given by Cs = {cs

1, cs
2, ..., cs

CS
}

and Ct = {ct
1, ct

2, ..., ct
CT
} resp., and Cs 6= Ct. The inconsistent taxonomy

subsets of Cs, Ct are denoted as Cs, Ct, resp. Our goal is to train the
model on Ds, Dt and Du, and evaluate on the target domain data in the
label sets space Ct.
Inconsistent Taxonomy. 1 Specifically, we consider three different
cases of inconsistent taxonomy. 1) The open taxonomy considers the case
where new classes, unseen or unlabeled in the source domain, appear
in the target domain. That is, ∃ct

j ∈ Ct such that cs
i ∩ ct

j = ∅, ∀cs
i ∈ Cs. 2)

The coarse-to-fine taxonomy considers the case where the target domain
has a finer taxonomy where source classes have been split into two or
more target classes. That is, ∃cs

i ∈ Cs, ct
j1 ∈ Ct, ct

j2 ∈ Ct, j1 6= j2 such that
ct

j1 , ct
j2 6= cs

i and (ct
j1 ∪ ct

j2) ⊆ cs
i . 3) The implicitly-overlapping taxonomy

considers the case where a class in the target domain has a common
part with the class in the source domain, but also owns the private
part. That is, ∃cs

i ∈ Cs, ct
j ∈ Ct such that ct

j 6⊆ cs
i ,c

s
i ∩ ct

j 6= ∅, and
(ct

j \ (cs
i ∩ ct

j)) 6∈ {∅, cs
q, q = 1, ..., CS}.

Few-shot/Partially Labeled. In TACS, the Dt is only few-shot/partially
labeled for the inconsistent taxonomy classes, in the class-wise way.
More specifically, for each of the class ct

j ∈ Ct, we have nt-shot labeled

1 With a slight abuse of notation, each class, e.g., cs
i , is also considered as a set consisting

of its domain of definition. The set operations ∩,∪, \,⊂ thus applies to the underlying
definition of the class.
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samples {(xtj
i , y

tj
i )}nt

i=1, where only the class ct
j is labeled in y

tj
i . When

nt � nu, it is called few-shot labeled. When nt 6� nu, it is named
partially-labeled. The sample and corresponding semantic map is
written as xtj and ytj .

Technical Challenges. The main technical challenge of TACS is to
deal with both of the label-level and image-level domain gap. On the
label level, there are two main problems: i) The inconsistent taxonomy
may induce there is the one-to-many mapping from the source domain
to the target domain classes. If we purely assign the source class of
inconsistent taxonomy to one of the corresponding target class, it will
generate incorrect supervision, degrading the performance of the model.
However, if we instead take the inconsistent source class as unlabeled,
the source domain information is not fully exploited. ii) The complete
target domain label taxonomy is partially inherited from the source
domain for the consistent taxonomy, and partially provided by the
few-shot/partially labeled target domain. The problem of how to unify
the consistent and inconsistent taxonomy classes for the target domain is
non-trivial. The naive way is to train the model on the source domain
for the consistent taxonomy classes, and on the few-shot/partially
labeled target domain for the inconsistent taxonomy classes separately,
in the supervised way. However, the few-shot labeled target domain
samples are far fewer than the labeled source domain samples, causing
the model training to be easily dominated by the consistent taxonomy
classes, therefore the inconsistent taxonomy classes are possibly ignored.
Meanwhile, most of the pixels in the few-shot/partially labeled target
domain samples are unlabeled except for the pixels of class ct

j, and
the arbitrarily incorrect prediction on these unlabeled parts can bring
the negative effect since most of these parts belong to the consistent
taxonomy classes or other inconsistent taxonomy classes. On the image
level, the image domain distribution difference between the source and
target domain, PS 6= PT, still exists in TACS.

4.3.2 Our Approach to the TACS Problem

Motivation. Motivated by the technical challenge i) of the label level
in Sec. 4.3.1, the stochastic label mapping (SLM) and pseudo-label
based relabeling (RL) module are proposed to solve the problem of the
one-to-many mappings from the source domain to the target domain
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Class A1/A2 in Few-Shot Target
Unlabel in Target

Class Boundary
Pseudo-Label BMS

SLM/RL Pseudo-Label
CT/UCTClass A/B in Source

Source

Unlabeled Target SLM/RL

Few-Shot Target

Source

Unlabeled Target

Pseudo-Label

Augmented Target Augmented Target

CT/UCT

BMS

Approach to Label-Level Domain Gap

Approach to Image-Level Domain Gap

Figure 4.2: Framework overview. Class A is an inconsistent taxonomy
class (e.g., “person”) in the source domain, related to class A1

(e.g., “pedestrian”) and A2 (e.g., “rider”) in the target domain.
Class B is a consistent taxonomy class. On the label level,
SLM/RL module maps the inconsistent taxonomy class A in
the source domain to the related classes A1, A2 in the target
domain. BMS module unifies label space and augments
the few-shot supervision, by randomly selecting samples
from the source domain and the few-shot/partially labeled
target domain and then mixing them in the unlabeled target
domain. On the image level, CT/UCT module adopts the
pseudo-label to distinguish the positive and negative pixel
samples, and then conducts the pixel-wise contrastive learn-
ing, to learn more domain-invariant and class-discriminative
features.

classes. Motivated by the technical challenge ii) of the label level in
Sec. 4.3.1, the bilateral mixed sampling (BMS) module is proposed to
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unify the consistent and inconsistent taxonomy classes and augment
the few-shot supervision for the target domain. Motivated by the
technical challenge of the image level in Sec. 4.3.1, the contrastive
learning (CT/UCT) module is proposed to train the domain-invariant
but class-discriminative features.
Training Strategy. The whole framework adopts the pseudo-label
based self-training strategy. Following the self-training structure of
[129], there are two components of our framework, namely a student
network Fθ and a mean-teacher network Fθ′ , which are both semantic
segmentation networks. The student network Fθ is used to backprop-
agate the gradients and update θ according to the training loss. The
pseudo-labels ỹu = Fθ′(xu) are generated by the mean-teacher network
Fθ′ by feeding the unlabeled target sample xu. The parameters θ′ are
the exponential moving average of the parameters θ during the opti-
mization process, which is proven to bring more stable training [174,
171]. During inference, the mean-teacher network Fθ′ is used to output
the final segmentation map.
Framework Overview. The framework overview is shown in Fig. 4.2.
The SLM and RL modules (Sec. 4.3.3) are used to map inconsistent
taxonomy class labels ys in the source domain to target-domain class
labels ỹs. Then in order to unify the label spaces, the source domain
sample (xs, ỹs) and the few-shot/partially labeled target domain sample
(xtj , ytj) is cut and mixed with the unlabeled target domain sample and
corresponding pseudo-label (xu, ỹu), to synthesize the sample (x̂u, ŷu)

through the BMS module (Sec. 4.3.3). In this way, the synthesized
sample (x̂u, ŷu) is a cross-domain mixed sample and covers the con-
sistent taxonomy class from (xs, ỹs) and inconsistent taxonomy class
from (xtj , ytj). The CT/UCT module (Sec. 4.3.4) is further utilized on
the (x̂u, ŷu) to train the domain-invariant and class-discriminative fea-
tures using pixel-wise contrastive learning. All the modules are thus
employed together in a single framework. Next, we detail individual
components.

4.3.3 Approach to the Label Level Domain Gap

In order to solve the problem of one-to-many class mappings, the SLM
and RL modules are proposed. In the initial training stage, the model
is unable to distinguish the different inconsistent taxonomy classes
reliably. Thus, taking the coarse-to-fine taxonomy as example, we pro-
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pose the SLM module, and it stochastically assigns the source “coarse
class” to different corresponding target “finer classes” to guide the
model to predict the uniform distribution over the “finer classes” on
the source domain samples. In this way, in the early training stage, the
prediction of the model on the “finer classes” will be mainly guided
by the few-shot labeled target samples. As the training goes on, with
the help of the few-shot labeled target samples, the teacher network
gradually has the capacity to distinguish the “finer classes”. In the
second stage, we then replace the SLM module with the RL module. It
relabels the “coarse-class” pixel in the source domain with the “finer
class” predicted by the teacher network.
Stochastic Label Mapping (SLM). We propose the SLM module, which
maps the source domain classes of inconsistent taxonomy, e.g., “person”
in Fig. 1 (e), to the corresponding target domain classes stochastically,
e.g., “pedestrian” and “rider” in Fig. 1 (e), in the initial training stage
and in each training iteration. Under the inconsistent taxonomy setting,
there might be the one-to-many class mapping from the source domain
classes to the target domain label space. Without loss of generality and
for the convenience of clarification, we take the example that the corre-
sponding classes in Ct of cs

i include q classes ct
p, ct

p+1, ..., ct
p+q−1. Then

the SLM module can be described as, ỹs(m,n) = rand(ct
p, ct

p+1, ..., ct
p+q−1),

where the (m, n) is the (row, column) index. The rand(·) represents the
uniformly discrete sampling function. With the obtained new labels ỹs,
we employ the standard cross-entropy loss, Lslm = CE(Fθ(xs), ỹs) to
learn the model.
Pseudo-Label based Relabeling (RL). As the training goes on, the
model learns to distinguish the different inconsistent taxonomy classes
to some extent. Instead of adopting SLM strategy at the latter part
of the training, we introduce an alternative strategy. To exploit the
capabilities learned by the model, we perform the pseudo-label based
relabeling (RL), which relabels the pixels of inconsistent taxonomy
classes in the source domain with the classes predicted by the model.
Without loss of generality and for the writing convenience, we take
the same example that cs

i is related to ct
p, ct

p+1, ..., ct
p+q−1 as in SLM

module. We generate predictions fs = Fθ′(xs) by feeding the source
domain sample xs into the mean-teacher network Fθ′ . Then the pre-
diction fs is used to relabel the source domain sample xs for the in-
consistent taxonomy classes cs

i , to generate the complete label ỹs as,
ỹs(ms

i ,ns
i ) = argmaxc fs(ms

i ,ns
i ), if maxc fs(ms

i ,ns
i ) > δ, and argmaxc fs(ms

i ,ns
i ) ∈
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{ct
p, ..., ct

p+q−1}. (ms
i , ns

i ) is the index of the pixel corresponding to cs
i .

The δ represents the threshold to decide whether the predicted label
is used. The pseudo-label based relabeling module loss is written as
Lrl = CE(ỹs,Fθ(xs)). The SLM module and the RL module are used
in the sequential manner during the training process, i.e., initially SLM
and then RL.
Bilateral Mixed Sampling (BMS). In order to unify the consistent and
inconsistent taxonomy classes and augment the few-shot supervision for the
target domain, we propose the bilateral mixed sampling (BMS) module,
which cuts and mixes the source domain and few-shot/partially labeled
target domain samples on the unlabeled target domain. Recently, the
mixed sampling based data augmentation approach [208, 51, 205] is
proven to be able to generate the synthetic data to combine the samples
and corresponding labels, thus provides such a potential to unify the
label space. In [174], the cross-domain mixed sampling (DACS) is
shown helpful to UDA of consistent taxonomy.

Similar to DACS for UDA, we adopt the class-mixed sampling strat-
egy for TACS. Different from DACS, which only focus on the labeled
source domain and the unlabeled target domain, our BMS module
conducts the class-mixed sampling in the bilateral way: 1) from labeled
source domain samples xs to unlabeled target domain samples xu; 2)
from few-shot/partially labeled target domain samples xtj to unlabeled
target domain samples xu. The bilateral mixed sampling mask ms of xs

is,

ms(m,n) =

{
1, if ỹs(m,n) = cr

0, otherwise,
(4.1)

where the sampling class cr is randomly selected from the available
classes in ỹs. Following [174], half of all the available classes in ỹs

is randomly selected as the sampling class in each training iteration.
Similar to ms, the bilateral mixed sampling mask mtj of xtj is defined.
Then the augmented target domain sample and the corresponding
pseudo-label x̂u, ŷu are,

x̂u = ms�xs+(1−ms)�(mtj�xtj+(1−mtj)�xu), (4.2)

ŷu = ms�ỹs+(1−ms)� (mtj�ytj+(1−mtj)�ỹu). (4.3)

where� denotes element-wise multiplication. On this basis, the pseudo-
label based self-training loss of our BMS module is formulated as,
Lbms = CE(x̂u, ŷu).
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4.3.4 Approach to the Image Level Domain Gap

Besides dealing with the label-level domain gap, we also need to
tackle the image-level domain gap. We propose a pseudo-label based
contrastive learning (CT) module, and further the pseudo-label based
uncertainty-rectified contrastive learning (UCT) module. They are easy
to be plugged into our self-training pipeline and trained jointly with
the BMS, SLM and RL modules.

Contrastive Learning (CT) for Domain Adaptation. The typical strat-
egy of image-level adaptation is to train the domain-invariant but
class-discriminative features in the cross-domain embedding space [47,
175, 48]. The pixels of the same class from different or same domains
need to have similar features in the feature embedding space, while
the pixels of different classes needs be distinguishable in the feature
embedding space. This kind of distinction between features can natu-
rally be formulated as a contrastive learning problem, where positive
pairs stem from pixels of the same class, irrespective of their domain.
In [188], the pixel-wise contrastive learning is proven to be helpful for
semantic segmentation. However, it relies on ground truth label, which
is unavailable for our unlabeled samples.

In order to exploit contrastive learning to train domain-invariant and
class-discriminative features under cross-domain setting, we propose
the pseudo-label based contrastive learning for domain adaptation.
We employ pseudo-labels as guidance for distinguishing the positive
and negative samples. The contrastive learning is conducted on the
augmented target domain image sample x̂u, and corresponding pseudo-
label ŷu in the BMS module. Our main semantic segmentation network
Fθ can be decomposed into the encoder Eθ and the decoderMθ . The
decoder is used to map the embedding space V to the label domain
Y . The encoder Eθ maps the source image domain S and the target
image domain T to the embedding space V , i.e., Eθ : S , T → V . The
feature embedding corresponding to the sample x̂u is denoted as v̂u, i.e.,
v̂u = Eθ(x̂u). Then the pseudo-label based contrastive learning module
loss Lct can be described as,

Lct = −∑h ∑w log ∑v+∈Pv
Contrast(v, v+), (4.4)

Contrast(v, v+) = exp(v·v+/τ)
exp(v·v+/τ)+∑v−∈Nv exp(v·v−/τ)

, (4.5)
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where v = v̂u(h,w) is the feature vector of v̂u at the position (h, w). The
positive samples in Pv are the feature vectors whose corresponding
pixels in ŷu have the same class label as that of the corresponding
pixel of v. The negative samples in Nv are the feature vectors whose
corresponding pixels in ŷu have the different class label from that of
the corresponding pixel of v. Eq. (4.5) tries to learn similar features for
the pixels of the same class, and learn discriminative features for the
different class pixels, no matter whether pixels are in the same domain
or not.
Uncertainty-Rectified Contrastive Learning (UCT) for Domain Adap-
tation. There unavoidably exist incorrect predictions in the pseudo-label
ŷu of the unlabeled part in CT module, resulting in incorrect guidance
to the contrastive module for the selection of the positive and negative
samples. In order to alleviate the incorrect guidance, we propose the
uncertainty-rectified contrastive learning (UCT) module based on the
CT module. In our UCT module, we use the prediction uncertainty of
the pseudo-label ŷu to rectify the contrastive learning, so that the un-
certain prediction of ŷu has less effect on the contrastive learning. The
uncertainty estimation map of ŷu is denoted as ûu, and the uncertainty
measurement function is denoted as U (·), i.e., ûu = U (ŷu). We adopt
the maximum prediction probability of x̂u as U (·), formulated as,

ûu = max
c
Fθ′(x̂u). (4.6)

Then, based on Eq. (4.5), the uncertainty-rectified CT loss Luct is formu-
lated as,

Luct = −∑
h

∑
w

ûu(v)ûu(v+)Contrast(v, v+), (4.7)

where ûu(v), ûu(v+) are the uncertainty estimation value of the pixel
corresponding to v, v+, resp.

4.3.5 Joint Training

With the above proposed BMS, SLM, RL and UCT modules, the total
loss function is derived as,

Ltotal = Lbms + λ1Lslm + λ2Lrl + λ3Luct (4.8)

where λ1 and λ2 are used to train the SLM and RL module in a se-
quential manner. When iteration t < T, λ1 = 1, λ2 = 0. When iteration
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t ≥ T, λ1 = 0, λ2 = 1. T is the number of iterations to start training the
RL module. λ3 is the hyper-parameter to balance the UCT module loss
and other loss, which is set as 0.01 in our work. Our model is trained
end-to-end with the loss in Eq. (4.8).

4.4 experiments

We evaluate the effectiveness of our framework under different scenar-
ios, including the consistent and inconsistent taxonomy settings. For
the consistent taxonomy, we follow the traditional UDA setting. For
the inconsistent taxonomy, we build different benchmarks for TACS,
including the open, coarse-to-fine and implicitly-overlapping taxon-
omy setting. The DeepLabv2-ResNet101 [20, 68] is adopted as the
segmentation network. The baselines in Table 4.3-4.5 adopt the SOTA
few-shot cross-domain semantic segmentation training strategy, i.e.,
fine-tuning [211] and pseudo-label [129], to exploit the supervision
from the few-shot labeled target domain.

4.4.1 Experimental Setup

Datasets. SYNTHIA. SYNTHIA [152] is a syntheic image dataset, con-
sisting of photo-realistic images rendered from a virtual city. We adopt
SYNTHIA-RAND-CITYSCAPES subset, including 9400 densely labeled
synthetic images. GTA5. GTA5 [149] is a synthetic image dataset,
containing 24966 urban scene images. The images in GTA5 dataset
are rendered from game engine, and densely labeled with pixel-level
semantic annotation. The scene of GTA5 dataset is based on the city of
Los Angeles. Synscapes. Synscapes [192] is a photo-realistic synthetic
dataset, created with physically based rendering techniques. Synscapes
is built for street scene parsing, composed of 25000 densely pixel-level
annotated images. Cityscapes. Cityscapes [34] is a real street scene
image dataset, collected from different European cities. We adopt the
training set of Cityscapes during the training stage, covering 2975 im-
ages. And we use the validation set of Cityscapes, including 500 images,
to evaluate the performance of the semantic segmentation model.
UDA: Consistent Taxonomy. We adopt the UDA setting for the con-
sistent taxonomy. The target domain is completely unlabeled. In the
SYNTHIA→ Cityscapes experiment, SYNTHIA [152] is used as the
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source domain, while Cityscapes [34] is treated as the target domain.
The source domain and target domains share the same label space,
where there are 16 classes in total: road, sidewalk, building, wall, fence,
pole, traffic light, traffic sign, vegetation, sky, person, rider, car, bus, mo-
torcycle and bike. In the GTA5→Cityscapes experiment, we adopt the
GTA5 [149] dataset as the source domain, and the Cityscapes dataset
as the target domain. The label space of source domain is composed
of road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, terrain,
vegetation, sky, moving objects. The moving objects class in the source
domain is further divided into 8 classes, including person, rider, car,
truck, bus, train, motorcycle and bicycle in the target domain.
TACS: Open Taxonomy. The SYNTHIA dataset [152] is used as the
source domain, and the Cityscapes dataset [34] is adopted as the target
domain. In the SYNTHIA dataset, the main 13 classes are labeled: road,
sidewalk, building, traffic light, traffic sign, vegetation, sky, person, rider, car,
bus, motorcycle and bike. In the Cityscapes dataset, the 6 classes wall,
fence, pole, terrain, truck and train are few-shot labeled, with 30 image
samples per class.
TACS: Coarse-to-Fine Taxonomy. The GTA5 dataset [149] is utilized
as the source domain, and the Cityscapes dataset [34] as the target
domain. The label space of source domain is composed of road, sidewalk,
building, wall, fence, pole, traffic light, traffic sign, vegetation, sky, person, car,
truck, bus, train, cycle. The vegetation class of source domain is further
divided into vegetation and terrain in the target domain, person in source
domain is mapped to person and rider in the target domain, and cycle in
the source domain is fine-grained labeled into bicycle and motorcycle in
the target domain. In Cityscapes, each of the fine-grained 6 classes is
30-shot labeled.
TACS: Implicitly-Overlapping Taxonomy. The Synscapes dataset [192]
is treated as the source domain, while the Cityscapes dataset [34] is seen
as the target domain. The label space of the source domain contains the
road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation,
terrain, sky, person, rider and vehicle. The vehicle class in source domain
can be seen as the union of the car, truck, bus, and motorcycle classes. In
the target domain, each of 3 classes are few-shot labeled in 15 image
samples, including the vehicle, public transport and cycle. The vehicle
class in the target domain is the union of car and truck, the public
transport is the union of bus and train, and cycle is the union of the
bicycle and motorcycle.
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Batch Size. For the open taxonomy, coarse-to-fine taxonomy and
implicitly-overlapping taxonomy experiments of TACS, in each training
batch, there are 2 source domain images, 2 unlabeled target domain
images and 2 few-shot labeled target domain images mixed in the bilat-
eral mixed sampling module. For the consistent taxonomy experiments
of UDA, we strictly follow the traditional UDA setting, and the target
domain is completely unlabelled. Therefore, under UDA setting, in
each training batch, there are 2 source domain images and 2 unlabelled
target domain images mixed in the class mixed sampling way [174].
Parameters. The source domain images are resized to 1280×720, and
the target domain images are resized to 1024×512. And the random
crop with size 512×512 is then adopted. We adopt the SGD optimizer
to train the semantic segmentation network, whose momentum is set
as 0.9 and the weight decay is set to 5×10

−4. The learning rate is set
as 2.5×10

−4, with polynomial decay of power 0.9. The iteration T in
Sec. 4.3.5 for starting training the RL module is set as 130000. The total
training iteration is set as 250000.
Contrastive Learning. We adopt the 2048-dim output vector of the
final layer of feature extractor, i.e., , the layer before the classifier, of the
Deeplab-v2 framework. The 2048-dim vector is mapped to a 256-dim
vector with a projection head, composed of 1x1 Conv, Batchnorm, ReLU,
1x1 Conv layers. The 256-dim vector is then adopted as the pixel-wise
feature. For each mini-batch, we use 100 anchor pixel samples per
category. The 100 pixel samples of the same category are taken as
positive samples, while the other pixel samples of different categories
are all taken as negative samples.
Baseline Setup. In the baseline methods setup of Table 4.3, Table 4.4
and Table 4.5, we add the additional supervised loss to train the model
in the supervised way, with the few-shot/partially labeled samples in
the target domain. For the baseline methods which adopt the pseudo-
label based training strategy, such as FDA [200], IAST [123], and DACS
[174], the few-shot/partial label on the target domain samples is com-
bined with the generated pseudo-label to attain the final pseudo-label.
I.e., in the pseudo-label generation process on the few-shot/partially
labeled samples, we adopt the ground-truth label for the labeled parts,
while we adopt the generated pseudo-label for other unlabeled parts.
Compute Resources. The code is implemented with PyTorch [138].
Experiments are conducted on an NVIDIA GeForce RTX 2080 Ti GPU,
with 11GB memory, where it takes 3 days for training the whole 250000
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iterations. In the whole investigation process of our paper, the total
compute used is around 390×3 GPU days.

4.4.2 Experimental Results

Comparison with the SOTA. In Table 4.1, it is shown that our proposed
contrastive-learning based scheme outperforms the previous SOTA
methods under the UDA setting, including the adversarial learning
based ADVENT [184], the image translation based FDA [200], the self-
training based IAST [123], and the data augmentation based DACS
[174]. It proves the effectiveness of our contrastive learning for dealing
with the domain gap on the image level. In Table 4.3, Table 4.4, and
Table 4.5, it is shown that our proposed framework improves other
SOTA methods performance by a large margin, under the open, coarse-
to-fine and implicitly-overlapping taxonomy settings. It validates the
proposed framework for dealing with both of the image- and label-level
domain gap. In Fig. 4.6, we show qualitative semantic segmentation
results on the target domain.
Ablation Study. The ablation study in Table 4.3, Table 4.4, and Table
4.5 proves that each module, BMS, SLM, RL, CT/UCT, all contributes
to the final performance under open, coarse-to-fine, and implicitly-
overlapping taxonomy settings. In different settings, the improvement
brought by different modules are different. It is mainly because differ-
ent settings in TACS touch diverse and broad aspects of inconsistent
taxonomy. For example, the open taxonomy setting includes the new
classes which are unseen or unlabeled in the source domain. The RL
module is especially helpful to those unlabeled classes, e.g., “wall” class.
The SLM module is significantly beneficial under the coarse-to-fine
taxonomy setting since each fine class is corresponding to one coarse
class unambiguously. The CT/UCT module contribution difference is
mainly related to the image-level difference, e.g., the style difference of
SYNTHIA, GTA, Synscapes. Besides, it is shown that the UCT module
is able to reach higher performance than the CT module, verifying the
help of our uncertainty rectification for contrastive learning. It is also
observed that the combination of SLM and other baseline methods, e.g.,
ADVENT, FDA, IAST and DACS, does not necessarily bring the perfor-
mance improvement. It is because the model prediction, when using
SLM, is guided by the few-shot labeled target samples, but the baseline
methods cannot effectively extract and exploit few-shot supervision
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with the previous SOTA few-shot cross domain semantic segmenta-
tion strategy, i.e., fine-tuning [211] and pseudo-label [129]. Instead,
our proposed BMS can augment and utilize the few-shot supervision
effectively, guiding the model prediction when using SLM.
Partially Labeled/Oracle. In Table 4.3, Table 4.4, and Table 4.5, under
the open, coarse-to-fine and implicitly-overlapping taxonomy settings,
we report the partially labeled performance where inconsistent tax-
onomy classes are labeled in all the available target domain image
samples, i.e., nt = 2975. Compared to the few-shot performance, the
partially labeled performance is further improved due to more labeled
samples on the target domain being available. But there is still gap
to the fully supervised oracle performance on the target domain. It
shows that our method serves as a strong baseline, but still provides
the potential to develop stronger algorithms for the TACS problem.
Effect of Few-shot Samples Number. In order to analyze the effect of
the number of few-shot samples in the target domain for the inconsis-
tent taxonomy adaptation performance, we take the open taxonomy
setting as the example, and show the performance change with dif-
ferent number of few-shot samples in Fig. 4.3. It is shown that the
inconsistent taxonomy class adaptation performance is improved, when
more few-shot labeled samples are available.

Wall Fence Pole Terrain Truck Train mIoU
0

10

20

30

40

50

60

Io
U
(%
)

Figure 4.3: Performance of inconsistent taxonomy classes under open
taxonomy setting, varying nt.

Contrastive Learning. In Fig. 4.4, the performance when varying the
number of negative samples in the contrastive learning is shown. It
is observed that the performance increases as more samples are taken.
Balancing the performance and memory, we adopt 100 samples per
class. In Fig. 4.5, we compare the t-SNE visualization [179] of the
feature embedding of the model trained with/without UCT, taking
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Figure 4.4: Negative samples number study for contrastive learning,
under M+UCT in Table 4.3.

(a) Without Contrastive (b) With Contrastive

Figure 4.5: t-SNE visualization of the features with/without contrastive
learning under the open taxonomy setting.

open taxonomy setting as example. It verifies the contrastive learning
is helpful to train the cross-domain invariant and class-discriminative
features.

4.5 conclusion

We propose the new TACS problem, allowing inconsistent taxonomies
between the source and the target domain in the cross-domain se-
mantic segmentation. Three typical types of inconsistent taxonomies
are identified. To resolve TACS, the mixed-sampling, pseudo-label



4.5 conclusion 81

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorcycle Bicycle N/A

Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign
Vegetation Terrain Sky Person Rider Vehicle Public Transport Cycle

(a) RGB (b) GT (c) w/o Adaptation (d) IAST (e) Ours

O
pe

n 
Ta

xo
no

m
y

C
oa

rs
e-

to
-F

in
e 

Ta
xo

no
m

y
Im

pl
ic

itl
y-

O
ve

rla
pp

in
g 

Ta
xo

no
m

y

Figure 4.6: Qualitative semantic segmentation results on the target
domain under different inconsistent taxonomy settings,
open taxonomy, coarse-to-fine taxonomy and implicitly-
overlapping taxonomy. (a) shows the RGB target domain
image. (b) gives the ground truth semantic segmentation
map. (c) is the semantic segmentation result without adapta-
tion. (d) is the semantic segmentation result adapted by the
IAST [123] method. (e) is the semantic segmentation result
adapted by our proposed method. Refer to the red box re-
gion for the adaptation results of the inconsistent taxonomy
classes.

and contrastive learning based techniques are developed. Extensive
experiments prove the effectiveness of our approach.
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P S E U D O - L A B E L R E C T I F I C AT I O N W I T H I M P L I C I T
N E U R A L R E P R E S E N TAT I O N S

This chapter corresponds to our published article: Rui Gong, Qin
Wang, Martin Danelljan, Dengxin Dai, and Luc Van Gool. ”Continuous
Pseudo-Label Rectified Domain Adaptive Semantic Segmentation With
Implicit Neural Representations.“ In: CVPR. 2023

In this chapter, we present a novel approach based on implicit neural
representations to rectify pseudo-labels in domain adaptation, boosting
the effectiveness of knowledge transfer across different domains. While
previous methods have shown impressive progress using pseudo-labels
on unlabeled target domain, the presence of low-quality pseudo-labels,
stemming from domain discrepancies, poses a challenge to adaptation.
Addressing this issue requires effective and accurate strategies for
estimating the reliability of pseudo-labels to rectify them. Motivated
by this challenge, we propose to estimate the rectification values of the
predicted pseudo-labels with implicit neural representations. We view
the rectification value as a signal defined over the continuous spatial
domain. Taking an image coordinate and the nearby deep features
as inputs, the rectification value at a given coordinate is predicted
as an output. This allows us to achieve high-resolution and detailed
rectification values estimation, important for accurate pseudo-label
generation at mask boundaries in particular. The rectified pseudo-labels
are then leveraged in our rectification-aware mixture model (RMM) to
be learned end-to-end and help the adaptation. We demonstrate the
effectiveness of our approach on different UDA benchmarks, including
synthetic-to-real and day-to-night.

5.1 introduction

Different from the predominant UDA methods that explicitly align the
source and target distributions on the image-level [200, 72, 60, 105] or
the feature-level [184, 175, 176], pseudo-labeling or self-training [227,
226, 212, 75, 76, 174] has recently emerged as a simple yet effective
approach for UDA. Pseudo-labeling approaches typically first generate
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pseudo-labels on the unlabeled target domain using the current model.
The model is then fine-tuned with target pseudo-labels in an iterative
manner. However, some pseudo-labels are inevitably incorrect because
of the domain shift. Therefore, pseudo-label correction, or rectification,
is critical for the adaptation process. This is typically implemented in
the literature by removing [227, 226] or assigning a smaller weight [220,
212, 76, 190] to pixels with low-quality and potentially incorrect pseudo-
labels. The key problem is thus to formulate a rectification function that
estimates the pseudo-label quality. We identify two important issues with
current approaches.

First, most existing methods use hard-coded heuristics as the rectifica-
tion function, e.g., hard thresholding of the softmax confidence [226,
227], prediction variances of different learners [220], or distance to
prototypes [212, 190]. These heuristic rectification functions assume on
strong correlations between the function and the pseudo-label quality,
which may not be the case. For example, the rectification function that
uses the variance of multiple learners [220] to suppress disagreement on
the pseudo-labels can be sensitive to small objects in the adaptation [76].

The second issue is that the existing works [76] typically model the
rectification function in a discrete spatial grid (see Fig.5.1). Rectification
values are predicted by the pixel-wise decoding from the fixed-grid
feature space, which is constrained by the limited resolution. This
is especially harmful when the objects in the test images are of a
different scale than in the training, since the rectification function
cannot generalize well on these unseen scales (see Fig.5.1). Existing
approaches also lose vital high-frequency information through down-
/up-sampling operations [76, 164, 77, 121], which may lead to poorer
pseudo-labels, in particular close to mask boundaries.

To address these two issues, we propose a novel continuous rectification-
aware mixture model (RMM). First, instead of formulating the recti-
fication function with heuristics and priors, we propose a principled
mixture model representation, i.e., rectification-aware mixture model
(RMM), ensuring a probabilistic end-to-end learnable formulation. Sec-
ond, the rectification function in RMM is represented by our proposed
implicit rectification-representative function (IR2F), to model the pixel-
wise rectification of pseudo-labels in continuous spatial coordinates, i.e.,
continuous RMM. The primary idea of IR2F is to learn pixel-wise rectifi-
cation values as latent codes, which are decoded at arbitrary continuous
spatial coordinates. Given a queried coordinate, our IR2F inputs latent
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(a) Discrete Modeling

(b) Continuous Modeling
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Figure 5.1: Discrete vs., Continuous Rectification Function Modeling.
Discrete modeling suffers from the convolutional pixel-wise
decoding in the fixed-grid, where some coordinates are miss-
ing (see dashed circle in (a)). Thus, the rectification values
corresponding to these coordinates can only be obtained by
upsampling/interpolation, which is constrained by the blur-
ring effect and induces the inaccurate rectification values
estimation in some areas, e.g., mask boundaries. In contrast,
our continuous modeling decodes the features – in the con-
tinuous coordinate space – into rectification values, which
can be generalized to arbitrary resolution and preserve finer
details. (The coordinate space and rectification values are
shown in 1-D axis just for better viewing.)
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codes around the given coordinate from the different learners (e.g.,
high-/low-resolution decoder in [76] and primary/auxiliary classifier
in [220]) along with their spatial coordinates. IR2F then predicts the rec-
tification value at the queried coordinate. Our principled formulation is
a general plug-in module, compatible with different rectification-aware
UDA architectures.

We thoroughly analyze our continuous RMM on different UDA
benchmarks, including synthetic-to-real and day-to-night settings. Ex-
tensive experimental results demonstrate the effectiveness of continu-
ous RMM, outperforming the previous state-of-the-art (SOTA) meth-
ods by a large margin, including on SYNTHIA→Cityscapes (+1.9%
mIoU), Cityscapes→Dark Zurich (+3.0% mIoU) and ACDC-Night
(+3.4% mIoU). Overall, continuous RMM reveals the significant po-
tential of modeling pseudo-labels rectification for UDA in the learnable
and continuous manner, inspiring further research in this field.

5.2 related work

Unsupervised Domain Adaptation (UDA). UDA for semantic segmen-
tation aims at adapting the model from the labeled source domain to
the unlabeled target domain. To this end, different strategies are pro-
posed, which can be generally categorized into two classes: 1) adversarial
learning based algorithms make use of domain discriminator to align
the domain distributions on the images inputs space [142, 43, 126],
features space [73] and outputs space [118, 175, 185]; 2) pseudo-labeling
(or self-training) based algorithms typically generate pseudo-labels on
the unlabeled target domain. To avoid the error accumulation caused
by noisy pseudo-label drift, different approaches have been developed
for pseudo-label rectification, e.g., confidence thresholding [227, 226],
uncertainty estimation [220, 190] and pseudo-label prototypes [212,
190]. These methods formulate the pseudo-label rectification function
as hard-coded heuristics, while our method formulates the rectification
function in the end-to-end learnable manner.
Implicit Neural Representations (INR). Implicit neural representa-
tions are originally proposed for 3D reconstruction, where object
shapes [29, 4, 64, 135, 201], scene surfaces [168, 85, 139, 204] and
structure appearances [124, 6, 122, 221] are represented as a multi-layer
perceptron (MLP). The core idea is to map coordinates to signals with
MLP. Very recently, the vast success of implicit neural representations
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in 3D reconstruction motivates the further exploration in 2D tasks, e.g.,
image representations [167, 29], image super-resolution [28, 199], and
feature alignment [77]. Different from previous methods that explore
the in-domain learning, we focus on leveraging implicit neural repre-
sentations to rectify pseudo-labels to help the cross-domain adaptation.

Auxiliary Decoder
Different Resolutions

Augmentations

Additional Decoder

Variance

Distance

Prototype
Implicit Neural 
Representations

(a) Rectification-Aware Mixture Model (Ours)

(d) Discrete Modeling
(b) Prediction Variances (Heuristics)

(c) Distance to Prototypes (Heuristics) (e) Continuous Modeling IR2F (Ours)

Backpropagation

Figure 5.2: Rectification-Aware Mixture Model (RMM) and Different
Rectification Function Modeling. Our rectification func-
tion is learned end-to-end by our proposed RMM as shown
in (a), without relying on the predefined heuristics in (b)
and (c). Moreover, rectification function in our RMM is
modeled in the continuous manner, by the proposed im-
plicit rectification-representative function (IR2F) in (e), to
overcome the resolution limitation of the fixed-grid discrete
modeling in (d).
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5.3 method

5.3.1 Preliminary

In UDA problem, we are given the well-labeled source domain, Ds =

{(xs
i , ys

i )}
ns
i=1, and the unlabeled target domain, Dt = {xt

i}
nt
i=1, where

xs, xt ∈ RH×W×3 are RGB images while ys ∈ {0, 1}H×W×C is the C-class
semantic label map associated with xs. The goal of UDA is to train
the semantic segmentation model Fθ on Ds,Dt and evaluate Fθ on the
target domain testing data.

Since the ground truth label yt corresponding to xt is not available, the
pseudo-labeling (or self-training) strategy for UDA generates pseudo-
labels by, ŷt(i,j,c) = [c = argmaxFθ(xt)(i,j)], where (i, j, c) represents
(row, column, class) index and [·] is the Iverson bracket. Then Fθ is
trained by, Lce = CE(Fθ(xt), ŷt) +CE(Fθ(xs), ys), where CE(·) denotes
the cross-entropy loss. As pseudo labels ŷt are not necessarily correct,
different schemes are advocated to rectify pseudo labels, where the
rectification function is denoted asH(·). Most existing pseudo-label rec-
tifying methods can be categorized into one of the following three types,
1) weighting pseudo-label based cross-entropy loss with the estimated
rectification values H(xt) [220], i.e., Lt

ce = H(xt)� CE(Fθ(xt), ŷt); 2)
weighting soft pseudo-labels with the estimated rectification values
H(xt) [212, 190], i.e., ŷt(i,j,c) = [c = argmax(H(xt)(i,j) �Fθ(xt)(i,j))]; 3)
averaging pseudo-labels from multiple K learners (e.g., decoders) [79,
7, 187] to rectify pseudo labels of each single learner, i.e., ŷt(i,j) =
1
K ∑K

k=1 Fθk(xt)(i,j), where � denotes the element-wise multiplication.

In general, such pseudo-labeling-based approaches can be catego-
rized into non-ensemble (type 1 and 2) and ensemble based solutions
(type 3). In the domain adaptation and generalization field, numerous
empirical and theoretic comparisons [224, 18, 1, 107, 118, 79] between
these two classes have been conducted before and after the deep learn-
ing revolution. The consensus is that ensembles can take advantage of
different ensemble members (e.g., different data augmentation, different
resolutions image and different level features as shown in Fig. 5.2) to
adaptively filter pseudo-label noise, and have the potential to over-
come the problem of mode collapse/overfitting [18, 89, 187, 150] in
non-ensemble methods. Thus, the ensemble method is particularly
remarkable and taken as the test-bed in this work.
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5.3.2 Rectification-Aware Mixture Model

The key is how to formulate a rectification function to estimate the pseudo-
labels quality. Instead of utilizing hard-coded heuristics and priors as
the rectification function, we propose a principled end-to-end learnable
formulation. Based on the fact that existing methods make use of
multiple members (auxiliary classifiers/decoders, prototypes, differ-
ent images resolutions/augmentations) to rectify the models [220, 76],
we reformulate the pseudo-labels rectification problem in principled
manner as learning a rectification-aware mixture model (RMM), draw-
ing inspiration from mixture density networks (MDN) [9] and deep
ensembles [91, 131]. In RMM, each mixture member is weighted by
the rectification function, which is the measurement of pseudo-labels
quality of the corresponding member, formulated as,

p(ŷt|xt) =
K

∑
k=1

rkφk(ŷt|θk, xt) , (5.1)

where K is the number of mixture members, φk(·|θk) denotes an arbi-
trary parametric distribution conditioned on parameters θk, and rk =

H(xt) are the estimated rectification values by the rectification func-
tion H(·), satisfying ∑K

k=1 rk = 1. Specifically, the primary/auxiliary
decoders in [220], the high-resolution/low-resolution image decoders
in [76] and the different data augmentation techniques in [1] can be
seen as φ(·|θk) in Eq. (5.1), as shown in Fig. 5.2. Benefiting from RMM,
the rectification function H(·) can be learned in the end-to-end way.

5.3.3 Implicit Rectification-Representative Function

In this section, we first introduce how to model the rectification function
continuously with implicit neural representations, and then leverage
the continuous rectification function in RMM to obtain the continuous
RMM.
Continuous Rectification Function Modeling with IR2F. Representing
rectification functionH(·) is the core part of building a rectification-aware
mixture model. Current approaches essentially model rectification func-
tion in a discrete way. They compute rectification values on a pre-defined
discrete grid, often using convolutional decoders and disregarding inter-
mediate locations. For example, as shown in Fig. 5.2, [76] introduces an



90 pseudo-label rectification with implicit neural representations

additional convolutional decoder, as H(·), to predict rk on the discrete
fixed-grid. However, this leads to coarse and over-smoothed outputs
due to the low resolution and up/down-sampling stages in the decoder.
On the other had, spatially detailed rectification values are important in
order to achieve high-quality pseudo labels, especially at mask bound-
aries [76, 19]. To overcome the problems and get spatially accurate
rectification values, the key idea of this work is to employ the continuous
rectification function modeling mechanism, which is learnable and then
decoded at continuous spatial coordinates in arbitrary resolution.

To this end, our proposed implicit rectification-representative func-
tion (IR2F) views the pixel-wise rectification value rk as a continuous
signal in the 2D coordinate space. Inspired by implicit neural repre-
sentations [124, 168] for 3D shape reconstruction and 2D image super-
resolution [28, 199], our implicit rectification-representative function
(IR2F) aims at learning the implicit function fθ′ to decode the feature
map G(xt) into the pixel-wise rectification values rk. That is, H(·) in
Sec. 5.3.2 is represented by fθ′ . rk is continuously decoded in the 2D
coordinate space O, formulated as,

roq = (roq
k )K

k=1 = fθ′(G(xt)∗, oq − o∗), (5.2)

where oq ∈ O is a queried 2D coordinate in the continuous coordinate
space O, and (roq

k )K
k=1 = (roq

1 , . . . , roq
K ) is the predicted rectification

values for all ensamble members at location oq. fθ′ is parameterized by
θ′ as a multi-layer perceptron (MLP). G(xt)∗ is the nearest feature vector
from oq in G(xt), and o∗ is the 2D coordinate of G(xt)∗ in O. IR2F can
be seen as the mapping from the coordinate space to the rectification
value space, i.e., fθ′(G(xt), ·) : O → R.
Spatial Encoding. As noticed by previous works [167, 199], directly
inputting the spatial coordinates to an MLP of the implicit neural
representation leads to a loss of high-frequency content. However, the
high-frequency information, e.g., the edge information between the
objects, is crucial to UDA for semantic segmentation as pointed out
in [19, 76, 109]. In order to overcome this shortcoming, following [199,
77], we employ a spatial encoding of the spatial coordinates, before it is
fed into the MLP of our IR2F in Eq. (5.2). We use a sinusodal positional
encoding,

ψ(o) = (sin(ω1o), cos(ω1o), . . . , sin(ωno), cos(ωno)), (5.3)

roq = fθ′(G(xt)∗, ψ(oq − o∗), oq − o∗). (5.4)
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where the frequencies ω1, ω2, . . . , ωn are learnable during training and
n is the spatial encoding dimension.
Continuous RMM based on IR2F. Benefiting from the continuous recti-
fication function modeling with IR2F in Sec. 5.3.3, rectification values of
our proposed RMM in Sec. 5.3.2 are predicted in the continuous coordi-
nate space, and can be generalizable to arbitrary resolution. Moreover,
to take advantage of multiple learners in our RMM, the input represen-
tation G(xt) in Eq. (5.4) is obtained by stacking the feature information
from different ensemble members,

G(xt) = Concat(G1(xt),G2(xt), . . . ,GK(xt)), (5.5)

Then rectification values for RMM are obtained by substituting Eq. (5.5)
into Eq. (5.4). Therefore, considering Eq. (5.4) and Eq. (5.1), the continu-
ous RMM can be formulated as,

p(ŷt|xt, oq) =
K

∑
k=1

roq
k φk(ŷt|θk, xt). (5.6)

Here, p(ŷt|xt, oq) is the predicted class distribution at spatial location oq.
The rectification values roq

k can thus be queried at any pixel coordinate,
by the continuous implicit neural representations fθ′ .

5.3.4 IR2F-RMM Rectified Self-Training

Our proposed continuous RMM based on IR2F can be used as a plug-in
strategy, to promote and rectify the pseudo-labels used for self-training
in UDA. In this section, we introduce how our continuous RMM can be
plugged into two popular UDA frameworks.
HRDA. HRDA [76] is a multi-resolution inputs framework for UDA
semantic segmentation, fusing the predictions of low-/high-resolution
(LR/HR) inputs to capture both the long-range context from LR and
the detailed knowledge from HR. Our continuous RMM module can be
plugged into the HRDA framework by considering the two resolution
branches as two mixture members, as shown in Fig. 5.3. Rectified
pseudo-labels ŷt can then be formally written as,

roq = fθ′(Concat(Glr(xt),Ghr(xt))∗, ψ(oq−o∗), oq−o∗),

ỹt
lr = φ1(ŷt|θk, xt), ỹt

hr = φ2(ŷt|θk, xt),

ỹt = rỹt
lr + (1− r)ỹt

hr,

ŷt(i,j,c) = [c = argmax ỹt(i,j)], (5.7)
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(High-Resolution)

(Low-Resolution)

Figure 5.3: Plugging continuous RMM into HRDA.

where ỹt
lr, ỹt

hr are soft pseudo-labels predicted by low-/high-resolutions
branches, resp. Glr(xt),Ghr(xt) are feature maps from low-/high-resolutions
branches, resp. Concat is realized by firstly up-sampling with bi-linear
interpolation, and then pixel-wise concatenation. (i, j, c) are the (row,
column, class) index, and [·] is the Iverson bracket.

MRNet. MRNet [220] is a rectification-aware UDA framework, where
there are primary and auxiliary classifiers. In MRNet, the variances
between the primary and auxiliary classifiers are used as the rectifica-
tion values. Our continuous RMM can be used to replace this rule and
instead learn the rectification. By inserting the continuous RMM into
MRNet, the pseudo-labels ŷt can be written as,

roq = fθ′(Concat(Gpr(xt),Gaux(xt))∗, ψ(oq−o∗), oq−o∗),

ỹt
pr = φ1(ŷt|θk, xt), ỹt

aux = φ2(ŷt|θk, xt),

ỹt = rỹt
pr + (1− r)ỹt

aux,

ŷt(i,j,c) = [c = argmax ỹt(i,j)], (5.8)

where ỹt
pr, ỹt

aux are the soft pseudo-labels from the primary and auxil-
iary classifiers, resp. Gpr(xt),Gaux(xt) are feature maps from primary
and auxiliary classifiers, resp.

Rectified Pseudo-Labels based Self-Training Loss. With pseudo-labels
ŷt rectified by our continuous RMM, the semantic segmentation net-
work Fθ and our implicit neural representations fθ′ are trained jointly in
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the end-to-end manner, through the standard cross-entropy loss written
as,

L = CE(Fθ(xt), ŷt). (5.9)

5.4 experiments

In this section, we demonstrate the effectiveness of our continuous RMM
for UDA semantic segmentation on different benchmarks, synthetic-
to-real and day-to-night. We compare our continuous RMM to other
heuristics-based and/or discrete rectification modeling methods, to
show the benefits of our learnable and continuous rectification function
modeling based on RMM and IR2F.

5.4.1 Experimental Setup

Datasets. We use the conventional notation A→B do describe the
domain adaptation task, where A is the labeled source domain and
B is the unlabeled target domain. We consider four different tasks in
two categories. Syntheic-to-Real: There are two settings, GTA [149]→
Cityscapes [34] and SYNTHIA [152]→ Cityscapes [34]. Day-to-Night:
There are also two tasks, Cityscapes [34] → Dark Zurich [161] and
Cityscapes [34] → ACDC-Night [160]. The datasets are described as
follows.

GTA. GTA [149] is a synthetic urban-scene image dataset, rendered
from the game engine. There are 24966 images included in the GTA
dataset, which are of 1914×1052 pixels and are densely labeled with
pixel-wise semantic segmentation annotations. The urban scene of GTA
dataset is built based on the city of Los Angeles, thus with typical U.S.
urban scene layout. Following previous UDA works [75, 76, 220, 175,
184, 227, 174, 212], the GTA images are resized to 1280×720 for low-
resolution inputs [76], and to 2560×1440 for high-resolution inputs [76].

SYNTHIA. SYNTHIA [152] is a synthetic photo-realistic image dataset,
whose images are rendered from a virtual city. We adopt SYNTHIA-
RAND-Cityscapes dataset, which is built for street scene parsing and
consists of 9400 densely labeled images. The images are of 1280×760

pixels. In accordance with previous UDA works [75, 76, 220, 175,
184, 227, 174, 212], the SYNTHIA images are resized to 2560×1520
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for high-resolution inputs [76], and keep 1280×760 for low-resolution
inputs.

Cityscapes. Cityscapes [34] is a real street-scene image dataset, col-
lected from different European cities. We utilize the training set of
Cityscapes during the training stage, consisting of 2975 images. And
we use the validation set of Cityscapes, covering 500 images, to evaluate
the model performance. Cityscapes images are of 2048×1024 pixels.
The resolution is maintained for high-resolution inputs in experiments,
and resized to 1024×512 for low-resolution inputs.

Dark Zurich. Dark Zurich [161] is a real nighttime urban-scene image
dataset, which is captured in Zurich. We use the training set of Dark
Zurich during the training stage, including 2416 images. And we utilize
the test set of Dark Zurich, consisting of 151 images, to evaluate the
model performance. The evaluation on the test set of Dark Zurich is
only accessible through the online benchmark, where the ground truth
is not publicly available. The images in Dark Zurich is of 1920×1080

pixels. The resolution is kept for high-resolution inputs, and is resized
to 960×540 for low-resolution inputs.

ACDC-Night. ACDC [160] is a real street-scene image dataset under
adverse conditions, e.g., fog, snow, rain and nighttime. We adopt
the nighttime subset of ACDC, i.e., ACDC-Night, where there are
400 images as training set and 500 images as test set. Similar to the
evaluation of Dark Zurich, the evaluation on the test set can only be
conducted through the online benchmark, and the ground truth is
not publicly available. The images in ACDC-Night is of 1920×1080

pixels. The resolution is kept for high-resolution inputs, and is resized
to 960×540 for low-resolution inputs.

NightCity+. NightCity [170] is a real urban driving scene dataset,
for nighttime scene parsing. The images in NightCity are collected
from different cities around the world. NightCity+ [39] is the extended
version of NightCity, where more accurate annotations in the validation
set are provided compared to NightCity. We utilize the validation set of
NightCity+, including 1299 images, to evaluate the model performance.
Implementation Details. Framework and Backbone: Our default frame-
work is based on HRDA [76] with the MiT-B5 [196] backbone. We utilize
AdamW [88, 117] optimizer, where betas of AdamW optimizer are (0.9,
0.999), the weight decay is 0.01, and learning rates of the encoder and
decoder are set as 6× 10−5, 6× 10−4, respectively. The batch size is
set as 2, and the linear learning rate warmup and DACS [174] data
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augmentation in [76, 75] are adopted. In addition, the method is also
evaluated with other backbones such as MRNet [220] (in Table 5.5), and
ResNet-101 [68] (in Table 5.4). For all experiments, we simply insert
our IR2F based continuous RMM into the decoder without modifying
the backbone architecture. Implicit Neural Representations: f ′θ in IR2F
is implemented with 4-layer MLP, with ReLU activation and hidden
dimension as 256. Training Details: By default, we follow the training
details of HRDA. In Table 5.5, we follow the training details of MR-
Net. The framework is implemented with PyTorch [138], and all the
experiments are conducted on a TITAN RTX GPU.

5.4.2 Experimental Results

Comparison with SOTA UDA Methods. In Table 5.1 and Table 5.2, we
compare our proposed IR2F-based continuous RMM with other existing
UDA semantic segmentation methods, under the synthetic-to-real and
day-to-night benchmarks, respectively. As observed in Table 5.1, our
IR2F-based continuous RMM outperforms other SOTA methods for
UDA semantic segmentation on the synthetic-to-real benchmark, espe-
cially by 1.9% mIoU under SYNTHIA→ Cityscapes setting. As shown
in Table 5.2, on the challenging day-to-night benchmark with a larger
domain gap, our IR2F-based continuous RMM shows a stronger perfor-
mance improvement over existing SOTA methods for UDA nighttime
segmentation, by 3.0% and 3.4% mIoU over the previous state-of-the-art
under the Cityscapes→ Dark Zurich and Cityscapes→ ACDC-Night
settings, respectively. Note that, the existing SOTA methods for UDA
nighttime segmentation always require the day images in the target
domain as the reference for adaptation (see Table 5.2). Instead, our IR2F-
based continuous RMM method does not need these auxiliary data,
and still outperforms the SOTA methods by a large margin. It verifies
the strong generalization ability of our proposed IR2F-based continuous
RMM compared to the existing SOTA UDA semantic segmentation
methods, under different scenarios.
Generalization. Following [94], we further evaluate the adapted model
(after domain adaptation) performance on another unseen dataset, to
show the generalization ability of our proposed continuous RMM.
More specifically, we take the trained model under Cityscapes→Dark
Zurich, and evaluate the trained model on the third dataset NightCity+.
As shown in Table 5.3, our proposed approach strongly outperforms
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(a) Source (b) Target (c) Visual Ref. (d) HRDA (e) Ours

Figure 5.4: Qualitative Comparisons for UDA Semantic Segmenta-
tion, under Cityscapes → Dark Zurich. (a) shows the ex-
ample of Cityscapes images. (b) includes the Dark Zurich
images. (c) covers the day images corresponding to the night
images in (b) for better visual references. Note that, the day
images in (c) are only used for visualization references, but
are not used for training and testing. (d) and (e) are the seg-
mentation results for (b) from HRDA [76] and our method,
respectively.

Method PSPNet [217] DANNet [193] DANIA [194] GLASS [94] HRDA [76] Ours

mIoU (%) 19.0 29.9 28.9 31.8 36.7 38.5

Table 5.3: Quantitative Generalization Comparisons, on NightCity+
dataset. The model is trained on the day-to-night bench-
mark, Cityscapes→Dark Zurich, and is tested on NightCity+
dataset.

other UDA methods on the generalization ability evaluation, 38.5% vs.,
36.7%, 31.8%, 28.9%, 29.9%, 19.0%. It proves that our model trained on
Cityscapes→Dark Zurich generalizes well to other unseen nighttime
datasets.
Rectification Values Prediction on Unseen Coordinates. In order to
test the generalization ability of rectification values prediction method
to the unseen coordinates, we conduct the experiments to predict the
rectification values on the 2× image coordinates. Since only the image
coordinates are utilized during the training, the 2× image coordinates
are unseen for training and are only used for testing. For the discrete
modeling method HRDA [76], the prediction on unseen 2× image coor-
dinates is realized by first predicting on the original image coordinate
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and then up-sampling (e.g., bilinear sampling) to the 2× image coordi-
nates. For our continuous modeling method, IR2F can directly output
the rectification values by inputting 2× image coordinates. As shown in
Fig. 5.5, it is observed that our IR2F-based continuous modeling method
generalizes well to the unseen coordinates and preserves finer details
compared to the discrete modeling method, especially the boundary
parts (see Fig. 5.5).

(a) RGB (b) Discrete (c) Continuous (Ous)

Figure 5.5: Rectification Values Prediction on Unseen Coordinates.
Rectification values are predicted on the 2× image coor-
dinates during the testing stage, which are unseen during
the training stage. (b) is realized through the bilinear sam-
pling of the output of HRDA [76], which is the discrete
modeling method. (c) is realized by directly predicting recti-
fication values on the 2× image coordinates with our IR2F,
which is continuous modeling method. It is shown that
our IR2F-based continuous modeling method can generalize
well to the unseen 2× image coordinates, preserving finer
details especially the boundary parts (see red dashed box).

Different Backbones. Besides the experimental results in Table 5.1
and Table 5.2, we show more quantitative comparisons between our
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Method GTA→ Cityscapes SYNTHIA→ Cityscapes

HRDA-ResNet 64.6 60.0
IR2F-ResNet (Ours) 65.4 61.4

Table 5.4: Comparisons to HRDA, with ResNet-101 backbone. As the
reference, the highest performance with ResNet-101 back-
bone, other than HRDA and our method, for GTA, SYNTHIA
→ Cityscapes are 62.7% in [23] and 57.9% in [101], respec-
tively.

method and the existing SOTA UDA method HRDA in Table 5.4, with
the ResNet101 [68] backbone, to further verify the advantage of mod-
eling rectification function in a continuous manner. As reported in
Table 5.4, by simply plugging our proposed learnable continuous recti-
fication model, our method outperforms HRDA in the GTA, SYNTHIA
→ Cityscapes benchmarks. Moreover, as the reference, the highest
performance with ResNet-101 backbone, other than HRDA and our
method, for GTA, SYNTHIA→ Cityscapes are 62.7% in [23] and 57.9%
in [101], resp. It means both HRDA and our IR2F, learnable rectification
function modeling methods, outperform other heuristics-based rectifica-
tion function modeling methods under the ResNet-101 backbone, and
supporting the validity and rationality of modeling the rectification
function in the learnable manner as done by our RMM in Sec. 5.3.2.
Insertion of IR2F-based Continuous RMM into MRNet. Our pro-
posed IR2F-based continuous RMM is in principle a plug-in module,
which can be inserted into different UDA frameworks. In order to prove
its compatibility with other UDA frameworks, we insert our IR2F-based
continuous RMM into MRNet [220]. In MRNet, pseudo-labels are origi-
nally rectified by the uncertainty measurement, which is formulated
as prediction variances between the primary and auxiliary classifiers.
The inputs into the primary and auxiliary classifiers are different-level
features. In Table 5.5, it is shown that our IR2F-RMM improves MRNet
by 2.0% and 1.8% under GTA, SYNTHIA→ Cityscapes, resp.
Ablation Study. In order to prove the effectiveness of different com-
ponents in our proposed IR2F-based continuous RMM, we conduct
a set of ablation studies under the synthetic-to-real benchmarks. In
Table 5.6, we ablate different ways of estimating rectification values rk
in Eq. (1), under the HRDA [76] framework. In our proposed IR2F, rk
is learned by the INR from the features of different mixture members.
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Method GTA→ Cityscapes SYNTHIA→ Cityscapes

MRNet 50.3 47.9
IR2F-RMM (Ours) 52.3 49.7

Table 5.5: Combination with MRNet. Our IR2F-based continuous
RMM is inserted into MRNet, to replace the original uncer-
tainty based pseudo-labels rectification adopted by MRNet.

Method GTA→ Cityscapes SYNTHIA→ Cityscapes

HRDA 73.8 65.8

w/o. IR2F w. AVE 71.0 61.9
w/o. IR2F w. Conv 72.9 65.6
w/o. IR2F w. IRE 73.3 66.3

IFA [77] 73.1 65.5
Ours 74.4 67.7

Table 5.6: Ablation Study. “AVE” means the average ensemble in
Eq. (5.7). “Conv” means to replace the MLP structure of
IR2F with the convolutional neural networks. “IRE” means
ensemble of the last-layer outputs instead of features from dif-
ferent mixture members with implicit neural representations,
i.e., Glr(xt) = ỹt

lr,Ghr(xt) = ỹt
hr in Eq.( 5.7). “IFA” leverages

the INR-based semantic segmentation decoder head, as done
in [77].

Other ways to estimate rk can be, 1) AVE: setting rk = 1/K, i.e., average
ensemble; 2) Conv: replacing IR2F with 5 convolutional blocks without
using the coordinate information; 3) IRE: taking the last-layer output
(before softmax) instead of features from each mixture member as input
to the IR2F. Besides, in Table 5.6, we compare to another alternative,
“IFA”, which leverages the INR-based segmentation decoder head as
done in [77]. It is shown that “IFA” does not bring obvious benefits to
UDA compared to HRDA [76], 73.1%, 65.5% vs., 73.8%, 65.8%, verifying
the necessity and importance of rectifying incorrect pseudo-labels for
UDA compared to a stronger decoder.
Comparisons to Heuristics-based/ Discrete Rectification Function Mod-
eling. In order to showcase the advantage of our learnable and contin-
uous rectification function modeling over the heuristics-based/ discrete
one, we employ different heuristics-based/ discrete rectification func-
tion modeling methods under the HRDA framework as the baselines.
As shown in Table 5.7, we compare our continuous IR2F to different
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(a) RGB (b) GT (c) HR (d) LR (e) Discrete (f) Continuous (Ours)

Figure 5.6: Qualitative Comparisons between Discrete and Contin-
uous Rectification Function Modeling. (a) and (b) are
the RGB inputs and corresponding ground truth seman-
tic segmentation maps, respectively. (c) and (d) are
the outputs of the HR, LR branches (see Sec. 5.3.4), i.e.,
argmax ỹt

hr, argmax ỹt
lr in Eq. (5.7), respectively. (e) and (f)

are the estimated rectification values, i.e., r in Eq. (5.7),
by discrete modeling method (i.e., additional decoder in
HRDA [76]) and our continuous modeling method, IR2F. In
(e) and (f), the brighter the part is, the ensemble result in
RMM relies more on HR branch result in (c). It is shown that
our continuous modeling method can rectify some areas,
which are ignored by the discrete modeling method (see or-
ange dashed boxes), and other areas, where the the discrete
modeling method is affected by the blurring effect and does
not perform well (see red dashed boxes). The red dashed
boxes are enlarged to red solid boxes for better visualization,
especially the red circle parts. Best viewed with zooming.

rectification function modeling methods, including the heuristics-based
method, 1) prediction variances [220] of ỹt

lr and ỹt
hr in Eq. (5.7), 2)

Monte Carlo Dropout (MC-Dropout) [46], activating dropout function
during inference to obtain different predictions for ensemble, and the
discrete method, 3) an additional convolutional decoder is exploited to
estimate rectification value as done in HRDA [76]. It is shown that
our learnable and continuous rectification function modeling method,
IR2F-RMM, outperforms all heuristics-based and discrete modeling
methods by a large margin. Furthermore, we provide the qualitative
comparisons for the discrete and continuous rectification function mod-
eling in Fig. 5.6. Benefiting from continuous modeling, the rectification
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Method GTA→ Cityscapes SYNTHIA→ Cityscapes

AVE + Variance 73.7 65.1
AVE + MC-Dropout 71.8 63.9
Additional Conv Decoder 73.8 65.8
IR2F 74.4 67.7

Table 5.7: Comparisons to Heuristics-based/ Discrete Rectification
Modeling. “AVE” represents the average the ensemble.
Heuristics-based modeling methods include, (1) “Variance”:
prediction variances are used to rectify pseudo-labels as done
in [220], (2) “MC-Dropout”: dropout is enabled during in-
ference to get different predictions for ensemble [46], and
discrete modeling method has (3) “Additional Decoder”: an
additional convolutional decoder is utilized to decode the
rectification value as done in [76].

values of IR2F are more accurate and insensitive to the blurring effect
of down-/up-sampling operations in DNNs (see Sec. 5.3.3), especially
at mask boundaries.

w/o ReLU sigmoid sin cos sin + cos
Spatial Encoding Bases

65

65.5

66

66.5

67

67.5

68
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)

Figure 5.7: Spatial Encoding Study. Different spatial encoding bases
are compared, and the combination of sin and cos reaches
the highest performance.

Spatial Encoding Study. As analyzed in Sec. 5.3.3, the implicit neural
representations are insensitive to the high-frequency signal in the image,
e.g., boundaries in the image. To overcome the shortcomings, we intro-
duce the spatial encoding in Eq. (5.3), where the combination of sin and
cos is adopted as encoding basis. To study the effectiveness of spatial
encoding with both sin and cos, we compare to different encoding bases
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in Fig. 5.7, including without spatial encoding, leakyReLU, sigmoid,
pure sin and pure cos. It is observed that all the spatial encoding bases
outperform the one without spatial encoding, proving the effectiveness
of the spatial encoding. Among different spatial encoding bases, the
combination of sin and cos reaches the highest performance, taken as
the spatial encoding basis in IR2F.

5.5 conclusion

In this work, we presented continuous rectification-aware mixture
model (RMM) based on implicit neural representations, which rec-
tifies pseudo-labels for UDA in a learnable, continuous and end-to-end
manner. As a principled and plug-in module, continuous RMM can
be combined with different UDA frameworks, boosting the quality
of pseudo-labels. Overall, our proposed continuous RMM achieves
superior results compared to state-of-the-art, on synthetic-to-real and
day-to-night UDA benchmarks.



6
C O N C L U S I O N S A N D O U T L O O K

6.1 contributions

This dissertation proposed a series of novel and practical domain adap-
tation problems along with their corresponding methods. The primary
goal of this dissertation is to overcome the limitations inherent in
traditional domain adaptation, with a focus on advancing towards a
more comprehensive and effective real-world scene understanding. To
achieve this objective, this dissertation addressed two key questions: 1)
How can we make domain adaptation more practical? (Chapter 2, 3, 4) 2)
How can we make domain adaptation more reliable? (Chapter 5) In response
to question 1), Chapter 2, 3, 4 relaxed the traditional single-source-
single-target and compatible label assumptions from the perspectives
of multi-source, multi-target and incompatible label space, respectively.
In addressing question 2), Chapter 5 rectifies negative knowledge trans-
fer within the domain adaptation process. Further details regarding
specific contributions are outlined below.

In Chapter 2, we deviated from the single-source assumption of tra-
ditional domain adaptation, by proposing a new problem named as
multi-source domain adaptation and label unification (mDALU). In
mDALU problem, multiple source domains coexist with an unlabeled
target domain, where each source domain only labels a subset of classes.
The primary objective of mDALU is to develop a model that encom-
passes all classes within the target domain. In addressing this challenge,
we proposed novel and effective two-phase framework. The initial
phase encompasses a partially-supervised adaptation stage, followed
by a fully-supervised adaptation stage. During the partially-supervised
stage, we developed domain attention, uncertainty maximization, and
attention-guided adversarial alignment modules to facilitate the partial
transfer of knowledge from different source domains to the target do-
main. These modules prevented negative transfer resulting from the
mismatched label space between different source domains. Following
this, in the fully-supervised stage, we devised pseudo-label based super-
vision fusion module to further enhance the knowledge transfer within

105
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the unified label space across all domains jointly. We demonstrated
the effectiveness of our proposed method across a spectrum of tasks,
encompassing 2D image semantic segmentation, 2D-3D cross-modal
semantic segmentation, and extending to image classification. This
chapter showcased the feasibility, validity, and effectiveness of extend-
ing single-source assumption of domain adaptation to multiple-source
scenario.

In Chapter 3, we relaxed the single-target assumption of traditional
domain adaptation, investigating the open compound domain adapta-
tion (OCDA) problem. OCDA views the target domain as a compound
of multiple unknown sub-domains. To address OCDA, we proposed a
meta-learning based approach, MOCDA, which involves four key steps
– cluster, split fuse and update. In the initial cluster step, style codes from
target domain images are extracted and grouped into distinct clusters in
the unsupervised manner. Subsequently, in the split step, different batch
normalization layers are learned for different sub-domains of the target
domain, based on the clustering results of previous step. Following this,
in the fuse step, a meta-learner is proposed to learn to fuse sub-target
domain-specific predictions, conditioned on the corresponding style
codes. Meanwhile, the training of the meta-learner utilizes the model-
agnostic meta-learning (MAML) algorithm, facilitating online update
and thereby enhancing generalization ability. Extensive experiments
on synthetic-to-real benchmarks validated the benefits of our proposed
method for OCDA, outperforming other competing methods signifi-
cantly. This chapter explored the practical multi-target scenario, further
demonstrating enhanced generalization in complex applications. This
marked a departure from the conventional assumption of a single-target
condition in traditional domain adaptation.

In Chapter 4, we departed from the compatible label space assump-
tion of traditional domain adaptation, newly proposing a problem –
taxonomy adaptive cross-domain semantic segmentation (TACS). In
TACS setting, a source domain class can be corresponding to multi-
ple classes in the target domain, leading to open, coarse-to-fine and
partially-overlapping taxonomy. Furthermore, we proposed the first
approach to TACS, which addressed both the label-level and image-
level domain gaps. At the label level, our proposed strategies included
bilateral mixed sampling, stochastic label mapping, and pseudo-label-
based relabeling modules to augment and align the target domain.
On the image level, we presented the uncertainty-rectified contrastive
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learning module, enabling the model to learn features that are both
class-discriminative and domain-invariant, thereby remedying the do-
main gap. Across various benchmarks, our method demonstrated
significant performance gains over the existing state-of-the-art, showcas-
ing superior adaptability to target taxonomies. This chapter challenged
the compatible label space assumption of traditional domain adaptation,
accommodating inconsistent taxonomies between source and target do-
mains and aligning with the dynamic requirements encountered in
practical scenarios.

In Chapter 5, we proposed a novel approach based on implicit neu-
ral representations to enhance the quality of pseudo-labels in domain
adaptation. This improvement contributed to the overall reliability and
effectiveness of domain adaptation in practical applications. Pseudo-
labels or self-training, commonly utilized in contemporary domain
adaptation frameworks, are often inevitably noisy resulting from do-
main discrepancy. To address this issue, we proposed a continuous
rectification-aware mixture model (RMM) based on implicit neural
representations. The model was designed to rectify pseudo-labels for
domain adaptation in a learnable, continuous, and end-to-end manner.
Serving as a principled and plug-in module, the continuous RMM
seamlessly integrates with different domain adaptation frameworks,
thereby improving the quality of pseudo-labels. Extensive evaluations
demonstrated the consistent superiority of our proposed continuous
RMM over state-of-the-art methods across synthetic-to-real and day-to-
night domain adaptation benchmarks. This chapter suggested a plug-in
module to boost the reliability and effectiveness of pseudo-labels in
domain adaptation, facilitating more dependable knowledge transfer.

6.2 challenges and outlook

This dissertation extends traditional domain adaptation to multi-source,
multi-target and taxonomy-adaptive scenarios and improves the reli-
ability of knowledge transfer in domain adaptation, pushing towards
real-world applications of domain adaptation for scene understanding.
Despite notable progress being made, several challenges and limitations
persist and necessitate further exploration to achieve a comprehensive
cross-domain scene understanding. In this section, we point out some
of these challenges and delve into potential avenues for future research.
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Adaptation Efficiency. While numerous domain adaptation studies
strive to enhance performance towards the oracle level (i.e., in-domain
supervised learning performance), current approaches often demand
substantial computational resources (e.g., GPUs) and sufficient data
for training or fine-tuning. This poses challenges in terms of both
computational efficiency and data efficiency, particularly in extreme
scenarios. For instance, the model update during the adaptation process
necessitates gradient backpropagation, which may be impractical in
low-computing edge device scenarios, such as smartwatches. Further-
more, in certain domains such as medical image research, the scarcity
of examples for rare diseases complicates adaptation efforts. Although
some recent works [10, 169] have acknowledged this problem, adapt-
ing the model in scenarios with computational and data insufficiency
remains a largely unexplored direction.

Automatic Data Factory. A practical challenge in domain adaptation
is the acquisition of target domain data for adaptation. Manual collec-
tion is straightforward but often expensive, and in extreme scenarios
like accidents, extreme weather, or volcanic eruptions, data collection
becomes nearly impossible. This challenge underscores the need for
an automatic data factory, where data can be synthesized based on
requirements (e.g., text description), and corresponding labels can be
generated accordingly. The synthesized data and labels become valu-
able resources for the domain adaptation process. While some recent
works [169, 98, 215] have started addressing this strategy, there is a need
for increased flexibility and enhancement in the synthesis methods.

Unified Multi-Modal Adaptation. In Chapter 2 of this dissertation,
we partly tackle cross-modal domain adaptation, focusing on knowl-
edge transfer between images and LiDAR points. In practical scenarios,
various modalities exist, such as images, LiDAR, text, and audio. While
individual works have explored domain adaptation within each modal-
ity, the challenge lies in developing a unified and extensible framework
for multi-modal domain adaptation, an open problem that requires
further exploration. The advantage of establishing such a unified frame-
work is not only in addressing multiple problems within the same
framework, but also in leveraging knowledge from different modalities
to mutually enhance and improve model robustness across various
scenarios. Notably, recent advancements in multi-modal foundational
models [130, 42] demonstrate strong prior knowledge acquisition across
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different modalities, presenting a promising avenue for designing a
unified multi-modality adaptation framework.
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and Patrick Pérez. ”ADVENT: Adversarial Entropy Minimiza-
tion for Domain Adaptation in Semantic Segmentation.“ In:
CVPR. 2019 (cit. on pp. 2, 11, 26–29, 31, 36, 44, 53, 54, 57, 61, 72,
75–77, 79, 83, 93, 97).

[185] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord,
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Joao P Costeira, and Geoffrey J Gordon. ”Adversarial Multiple
Source Domain Adaptation.“ In: NeurIPS. 2018 (cit. on p. 13).

[217] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang,
and Jiaya Jia. ”Pyramid scene parsing network.“ In: CVPR. 2017

(cit. on p. 98).

[218] Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu, Runbo
Hu, Hua Chai, and Kurt Keutzer. ”Multi-source domain adapta-
tion for semantic segmentation.“ In: NeurIPS. 2019 (cit. on pp. 12,
13, 27, 28, 36).

[219] Xiangyun Zhao, Samuel Schulter, Gaurav Sharma, Yi-Hsuan
Tsai, Manmohan Chandraker, and Ying Wu. ”Object Detection
with a Unified Label Space from Multiple Datasets.“ In: ECCV.
2020 (cit. on pp. 13, 22–24).



bibliography 133

[220] Zhedong Zheng and Yi Yang. ”Rectifying pseudo label learning
via uncertainty estimation for domain adaptive semantic seg-
mentation.“ In: IJCV 129.4 (2021), pp. 1106–1120 (cit. on pp. 84,
86, 88, 89, 92, 93, 95, 96, 100, 102, 103).

[221] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew
J Davison. ”In-place scene labelling and understanding with
implicit scene representation.“ In: ICCV. 2021 (cit. on p. 86).

[222] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler,
Adela Barriuso, and Antonio Torralba. ”Semantic understanding
of scenes through the ade20k dataset.“ In: International Journal of
Computer Vision 127 (2019), pp. 302–321 (cit. on p. 1).

[223] Brady Zhou, Nimit Kalra, and Philipp Krähenbühl. ”Domain
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