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Abstract

Cardiovascular diseases are a significant global public health challenge, necessitat-
ing early detection of cardiac pathophysiological changes. Cardiovascular Magnetic
Resonance (CMR) has emerged as a versatile diagnostic tool, providing clinical as-
sessments of anatomy, function, and perfusion. Standard CMR protocols, including
cine imaging and contrast-enhanced techniques, offer a comprehensive evaluation
of global cardiac parameters and anatomy. In addition, advanced CMR methods,
such as relaxometry, strain imaging, and diffusion tensor imaging (DTI), provide
information for detailed tissue characterization and local function assessment. De-
spite the recent increase of interest in cardiac DTI (cDTI), it primarily remains a
research tool, hindered by a lack of consensus on optimal acquisition parameters
for clinical translation.

The challenges in cDTI acquisition and processing include high demands on hard-
ware, sensitivity to artifacts and the necessity to address respiratory and contractile
motion. A comprehensive comparison of proposed techniques based on simulations
is envisioned to support clinical translation. To this end, an open-source MR simula-
tion framework incorporating complex motion and flow is presented. In addition,
an MR sequence definition software package was implemented, contributing to
reproducibility and supporting comparison in the research community.

Deep learning (DL) algorithms present a promising avenue to accelerate and improve
cDTI processing. However, due to the inherent complexity of cDTI, high-quality
training data is scarce. Furthermore, careful consideration is required to address
potential biases in the training datasets to facilitate generalization for varying
acquisition parameters and to minimize risk of systematic errors. Here, a novel
approach exclusively using in-silico data to train a DL model for diffusion tensor
inference is proposed, demonstrating improved performance on in-vivo data while
allowing for control over the training data distribution. Thereby, a method for
creating benchmark datasets to test and train reliable algorithms is proposed.

The macroscopic assessment of contractile cardiac motion can be achieved by
strain imaging. As cardiac contraction is directly determined by the state of tissue
microstructure, combining strain imaging and cDTI is a promising approach. To
avoid the scan time penalty of acquiring separate scans, a joint encoding strategy
for cDTI and tissue velocity mapping (TVM) is proposed, showing good agreement
of tissue velocities with established reference measurements and negligible effect
on the estimated diffusion tensors.

In conclusion, this dissertation contributes methodological advances in simulation,
encoding and inference in cDTI, supporting a potential clinical translation.
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Kurzfassung

Kardiovaskuläre Erkrankungen stellen eine erhebliche Belastung für das Gesund-
heitswesen dar. Deshalb sind diagnostische Verfahren für das frühzeitige Erken-
nen von pathophysiologischen Veränderungen des Herzens erforderlich. Kardio-
vaskuläre Magnetresonanzbildgebung (CMR) ist ein etabliertes Verfahren, das
die klinische Beurteilung von Anatomie, Funktion und Perfusion des Herzens
ermöglicht. Standard CMR-Protokolle beinhalten Cine-Bildgebung und kontrast-
mittelbasierte Methoden, welche die Bewertung globaler kardialer Parameter zu-
lassen. Darüber hinaus erlauben komplexere CMR-Methoden wie Relaxometrie,
Strain-Bildgebung und Diffusionstensorbildgebung (DTI) eine detaillierte Charak-
terisierung des Gewebes. Trotz des wachsenden Interesses an DTI im Herzen (cDTI)
wird es derzeit hauptsächlich in der Forschung genutzt. Das Fehlen eines Konsens
über die optimale Methodik und ihrer Parameter erschwert dabei die klinische
Anwendung.

Herausforderungen bei der Aufnahme und Verarbeitung von cDTI-Daten sind die
hohen Hardwareanforderungen, die Anfälligkeit für Bildartefakte und das Berück-
sichtigen von Atem- und Kontraktionsbewegungen. Ein detaillierter Vergleich der
bestehenden Methoden, basierend auf Simulationen, könnte die Entwicklung der
klinischen Anwendung von cDTI unterstützen. Hierzu wird ein Open-Source MR-
Simulationsframework vorgestellt, das komplexe Bewegungen und Blutfluss berück-
sichtigt. Zusätzlich wurde ein Softwarepaket zur Sequenzdefinition implementiert,
um den Vergleich verschiedener Pulssequenzen zu verbessern.

Deep Learning (DL)-Algorithmen stellen einen vielversprechenden Ansatz zur
Beschleunigung und Verbesserung der Verarbeitung von cDTI-Daten dar. Aufgrund
der inhärenten Komplexität von cDTI sind hochwertige Trainingsdaten jedoch
rar. Darüber hinaus sollten öffentliche Datensätze mit Vorsicht genutzt werden,
sodass statistische Verzerrungen erkannt, die Generalisierbarkeit ermöglicht und
das Risiko systematischer Fehler minimiert wird. In dieser Arbeit wird eine Meth-
ode vorgestellt DL-Modelle ausschließlich mit In-Silico-Daten zur Inferenz von
Diffusionstensoren zu trainieren. Diese Methode liefert verbesserte Resultate auf
In-Vivo-Daten und ermöglicht gleichzeitig die Kontrolle über die Trainingsdaten.
Damit können Benchmark-Datensätze erstellt werden, um Algorithmen zuverlässig
zu trainieren und zu testen.

Kardiale Kontraktion kann durch Strain-Bildgebung beurteilt werden. Da die Kon-
traktion durch den Zustand der Gewebemikrostruktur bestimmt wird, ist die Kom-
bination von Strain-Bildgebung und cDTI ein vielversprechender Ansatz. Um eine
höhere Scanzeit durch separate Aufnahmen zu vermeiden, wird in dieser Arbeit
eine Strategie zur simultanen Kodierung von cDTI und Gewebe-Geschwindigkeits-
quantifizierung (TVM) präsentiert. Die Ergebnisse der Gewebe-Geschwindigkeiten
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stimmen mit etablierten Referenzmessungen überein und der Einfluss auf die
Diffusionstensoren ist vernachlässigbar.

Zusammenfassend trägt diese Dissertation zu methodischen Fortschritten in der
Simulation, Kodierung und Inferenz in cDTI bei und unterstützt damit potenziell
die Entwicklung klinischer Anwendungen.
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Introduction

As cardiovascular diseases are among the leading global public health issues, early
diagnosis of pathophysiological changes in the heart is urgently required1. Cardiac
Magnetic Resonance (CMR) has emerged as a versatile, clinically feasible tool to
assess parameters such as anatomy, function and perfusion and thereby providing
diagnostic value1,2. Standard CMR protocols include balanced Steady-State Free
Precession (bSSFP) cine imaging in a variety of cardiac views to measure global
parameters such as ventricular volumes and ejection fraction. Furthermore, contrast
agent enhanced imaging such first pass or stress perfusion and late gadolinium
enhancement as well as blood-flow quantitation with phase-contrast (PC) MRI3,4

are routinely performed.

Additionally, tissue characterization techniques and local function assessment of
the heart is possible using advanced CMR methods5,6, such as relaxometry7, strain
imaging8–10 as well as Diffusion Tensor Imaging (DTI)11,12. While some of the
advanced methods recently started gaining popularity in clinical settings3, cDTI,
with its capability to non-invasively assess microstructural information of the cardiac
muscle11,12, is still mostly used in research5. The association of diffusion tensors
with the cardiac tissue microstructure has been validated in multiple studies; ex-vivo
including histology13–15 as well as in-vivo16. Moreover, values for diffusion metrics
have been reported in several pathological cardiac conditions17–25. However, no
consensus regarding the optimal parameters such as resolution, type of selective
excitation, readout strategies or diffusion weightings has been reached yet, which is
a crucial step for clinical translation26.

The acquisition and processing of cDTI data is challenging due to high demands on
hardware11,12, the necessity for a theoretically sound tissue model to interpret the
signal27, as well as the sensitivity to a variety of artifacts28. In addition, respiratory
motion as well as the inevitable, complex contractile motion of the heart introduces
technical challenges, hampering the clinical translation of cDTI5. As free-breathing
acquisitions are generally preferred in clinical CMR1, Spin Echo (SE) with single
shot echo-planar imaging (EPI), allowing the acquisition within a single cardiac
cycle, is advantageous. However, this requires the diffusion encoding gradient
waveforms to be motion compensated11,12,29,30, which increases their duration.
Moreover, the gradient-induced eddy currents alter the the EPI readout, causing
image distortions31. Furthermore, off-resonance fields e.g., due to blood flow in
cardiac vasculature can create image distortions32.

The macroscopic assessment of contractile cardiac motion can be achieved with
strain imaging8–10. Although ultrasound-based strain imaging is wide-spread due
to its low cost, CMR strain imaging with its 3D capability is the gold standard
due to its high accuracy and reproducibility33. On the one hand, certain global
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introduction

strain metrics are routinely used in diagnostics33, on the other hand regional strain
estimation can provide valuable information in a variety of conditions8–10. One
method, called feature tracking, uses post-processing algorithms on bSSFP cine
images to obtain strain values. All other strain imaging techniques require separate
scans, while also providing superior spatial resolution8–10.

Cardiac function is directly determined by the state of the cardiac microstructure34.
Therefore, combining microstructural and strain information promises to yield
a more sensitive and accurate biomarker for early pathological changes. To this
end, recent work has used strain and cDTI data of separate scans to project the
macroscopic deformation onto the dominant microstructural orientations35–38. The
strain along the myocyte orientation is a promising biomarker for local function
alterations34. However, the long protocol duration due to many different measure-
ments as well as low scan-efficiency due to prospective respiratory motion gating
are key barriers to clinical usability, hence acquiring the required separate scans is
not ideal3.

In all areas of MRI, there is an increasing use of machine learning algorithms
(often referred to as Artificial Intelligence (AI))39, ranging from reconstruction40,
image processing steps like registration41, segmentation42–45, denoising46 or param-
eter estimation47, to even optimization of the measurement sequence along with
the reconstruction48,49. The application of AI algorithms in cDTI is a promising
approach to reduce the required time for scanning and processing as well as to
increase the robustness of the inferred metrics50–54. However, biases in the training
dataset affect the generalization capabilities of AI algorithms, requiring special care
to be taken when using public data for training55. This is especially relevant in med-
ical image processing, where the behaviour for out-of-sample data and worst-case
scenarios is critical56.

Due to the complex nature of cDTI, the diffusion signal is inherently coupled to the
acquisition technique57. With respect to training AI algorithms for processing and
inference in cDTI, this poses the problem of obtaining sufficient training data with
matching imaging parameters. Since ground-truth is inherently not available and
high-resolution and -quality scans are practically infeasible to acquire with cDTI, it
is fundamentally difficult to create a high-quality dataset for training and testing
the critical cases58.

Simulations are an important and established tool in MR research to evaluate the
performance of reconstruction algorithms, estimate effects of sequences on the signal
or investigate the validity of post-processing algorithm in quantitative mapping59.
Publicly available, open-source software to implement such simulations supports
the reproducibility of the results. However, currently available frameworks have
not specifically addressed the inclusion of complex motion and flow as present
in CMR60–69. In addition to the simulation software, there is an ongoing effort in
creating digital phantoms capturing healthy and diseased population statistics of
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all aspects of the heart70, potentially serving as input to the simulation. Generating
images from personalized digital twin models can improve early diagnosis71, and fa-
cilitate a systematic comparison of methodology in acquisition and post-processing,
including the training and testing of AI algorithms.
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Outline

Chapter 1 provides a general review of the physiology of the heart, its microstructure
and its connection to macroscopic function.

The role of motion in CMR, as a technical challenge as well as a biomarker is
summarized in chapter 2. Firstly, the commonly applied strategies to deal with
respiratory and contractile motion in CMR are presented. Secondly, the principles
of encoding bulk tissue motion, i.e. the macroscopic contraction, are highlighted.
Thirdly, an overview of concepts for inferring micro-structural information with
cDTI is provided. Finally, cardiac pathologies studied with the presented methods
are briefly reviewed. The basics of SE-cDTI with single shot EPI are discussed in
chapter 3.

In chapter 4, the foundations of simulating cDTI data are summarized, which
include the representation of digital phantoms as well as the generation of contrasts
and signal formation based on solving the Bloch equations. Furthermore, available
digital phantoms and sequence definition frameworks are reviewed. The publication
in chapter 5 provides a detailed description of the open-source simulation framework
CMRsim, specifically targeting cardiovascular MR simulations.

A general introduction to inverse problems, and the application of learning-based
methods to solve them, is provided in chapter 6. This is followed by the published
paper in chapter 7, in which a pipeline to train deep neural network on synthetic
cDTI data is proposed.

Finally, the paper in chapter 8 presents a method to jointly encode cardiac tissue
velocity and diffusion tensor maps without additional scan time.
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Contributions of this Thesis

The work presented in this thesis explores the possibility of improving the value
and usability of cDTI in three aspects.

Firstly, an open-source framework for MR simulations, including complex motion
and flow, is presented. The aim of this project was to increase reproducibility,
robustness and to facilitate comparison of CMR methods. Extensive documentation,
including examples, was created and is publicly available. Along with the simulation
framework, an open-source package for sequence definition was implemented. It
follows the concepts of the increasingly popular PulSeq framework, while the
scope was extended to build a library of sequences, supporting vendor-independent
methodological comparisons.

Secondly, the feasibility of training a neural network on synthetic cDTI data is
demonstrated. The parameterized training data generation incorporated a sampling
process to obtain random eigenvalue triplets with uniform marginal distributions
on MD and FA. Thereby, it reflects the expected statistics for healthy and infarcted
tissue. Furthermore, the spatial structure of the random samples was imposed
by tensor-valued interpolation in radial and circumferential coordinates in left-
ventricular (LV) segmentations obtained from in-vivo data. The network inference
on in-vivo data showed improved diffusion metrics while avoiding over-smoothing
and allowing for a reduction of required averages. Thereby, a pipeline for training
algorithms for new acquisition methods, as well as rigorous testing of AI algorithms
is presented.

Finally, strain-rate and diffusion tensor encoding were combined into a single scan
without scan time penalty, potentially increasing the value cDTI. This was achieved
by encoding tissue velocity into the image phase, while using the signal magnitude
for diffusion estimation. Simulations showed negligible influence of the addition
strain-rate encoding gradients on diffusion metrics and in-vivo measurements
showed good agreement with reference methods.
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1. Physiology of the Heart

1.1 Anatomy

The heart is the central organ of the cardiovascular system and consists of four
chambers, left and right atria and ventricles as illustrated in Figure 1.1a. It is
responsible for pumping blood throughout the body by periodically contracting
and relaxing. The deoxygenated blood from the entire body arrives in the right
atrium via the vena cavae, from which it flows through the tricuspid valve into
the right ventricle during diastole. In systole, the right ventricle ejects the blood
into the pulmonary arteries to reach the lungs, where it is oxygenated. Oxygenated
blood flows back to the left atrium via the pulmonary veins. During diastole, blood
from the left atrium flows into the left ventricle through the mitral valve. Finally,
during systole, the LV ejects the oxygenated blood into the aorta from which it is
distributed through the entire body. The mitral and tricuspid valves are supported
by the papillary muscles (Figure 1.1).

Figure 1.1: a) Illustration of the cardiac anatomy from an anterior view, based on [72]), b) bSSFP cine
image in short-axis view (SAX) and four chamber view (4CH). In the SAX view (top), ventricles are
annotated with RV (right ventricle) and LV (left ventricle). Papillary muscles are indicated by the blue
arrows. In the 4CH view (bottom), the white line indicates the LV long axis, and the blue box indicates
the positioning of a mid-ventricular SAX slice.
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physiology of the heart

Figure 1.2: Schematic illustration of cardiac vasculature (based on [74]) from an anterior view (left) and
a posterior view (right). Coronary arteries are drawn in red and coronary veins are drawn in blue. The
anterior view corresponds to the orientation in Figure 1.1a.

To reproducibly capture the anatomy of the heart in 2D images, a set of standardized
views are defined3. Two of them, namely short-axis (SAX) and the four-chamber
(4CH) view are presented in Figure 1.1b. The short axis is perpendicular to the long
axis, which is defined by the line between the apex and the mitral valve73.

The heart itself is perfused with nutrients and oxygen via the coronary arteries. The
corresponding draining of deoxygenated blood takes place via the cardiac veins.
Figure 1.2 illustrates the vasculature, where the two cardiac arteries emerge from
the aorta and the cardiac veins connect to the right atrium. Most of the myocardium
is drained by the three large veins (great, middle and small cardiac vein) which
run parallel to the coronary arteries74. As the contraction of the ventricles results
in significant tissue pressure, the flow in the coronary arteries and veins follow
a complex pattern. The majority of the antegrade flow in the coronary arteries
happens during diastole, while the peak flow in the cardiac veins is reached in
late systole75. The flow of oxygen-rich and deoxygenated blood induces a dynamic
pattern in tissue susceptibility, and hence a varying off-resonance field for the tissue
in proximity of the coronary vasculature, directly impacting CMR applications76.

1.2 Microstructure

The myocardial microstructure is complex but highly organized. It consists of
myocytes and fibroblasts embedded in an extra-cellular matrix predominantly
composed of collagen77. Cardiomyocytes are approximately 100 µm to 150 µm long
and 10 µm to 30 µm wide78,79 and are the fundamental contractile elements. They
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1.2 microstructure

Figure 1.3: a) Illustration of the transmural variation of myocyte orientation characterized by the
Helix Angle. Helical orientation at endo- and epicardium are depicted as red and purple lines on the
corresponding surface. Orientations between epi and endo-cardium are only depicted in a small area to
improve visibility. b) Schematic illustration of sheetlets sliced perpendicular to the myocyte orientation.
The orange and green ellipses highlight the local sheetlet orientation. Based on [12].

are arranged in continuously branching, axially interconnecting sequences. The local
predominant structure, defined as axial myocyte-aggregate orientation, is referred
to as fiber80. The fiberorientation forms a left-handed helix at the epicardium and
a right-handed helix at the endocardium with a gradual transition through the
circumferential configuration in the mesocardium. The organizational structure can
be characterized by the so-called Helix Angle (HA), which transmurally progresses
from −60° to 60° relative to the short-axis plane81. The transmural variation of the
helix angle is illustrated in Figure 1.3a.

As a secondary organizational structure, groups of 5 to 10 myocytes are organized in
a laminar structure, separated by collagen layers filled with fluid. These secondary
structures are defined as sheetlets, extending in the direction of fiber orientations
and parallel to the shear layers81. The sheet orientation can be characterized by the
angle between the sheet plane and the cross-myocyte plane. While the predominant
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physiology of the heart

pattern of sheet orientation is the subject of ongoing research, areas of sheets with
similar orientation can be observed. The sheet orientation varies smoothly within
the same area and shows abrupt changes in the boundary zones80. Figure 1.3b
illustrates the sheetlet structure sliced in a cross-myocyte direction (perpendicular
to the local myocyte orientation).

1.3 Contraction and Strain

The deformation pattern occurring during contraction of the myocardium involves
longitudinal shortening, radial thickening and circumferential shortening. Addi-
tionally, a twist of the LV is induced by the counter-rotation of apex and base. This
includes a brief initial clockwise rotation of the apex at the onset of contraction,
followed by a global counter-clockwise LV rotation near the apex and a clockwise
rotation near the LV base during ejection82.

The changes in the macroscopic configuration of the heart are caused by the short-
ening and subsequent relaxation of myocytes combined with reorientation at tissue
scale. During contraction the myocytes shorten by ∼15 % and thicken by ∼8 %83.
While longitudinal ventricular shortening is directly connected to the myocyte,
further mechanics are required to explain the observed wall thickening12,34. During
contraction sheets re-orient, such that they are more perpendicular to the tangential
epicardial plane during systole84,85. This reorientation in combination with concomi-
tant relative shearing displacement between layers is hypothesized to be the main
contribution to LV wall thickening, with minor contribution from cardiomyocyte
thickening12.

On a macroscopic scale LV contraction can be characterized by local tissue strains,
defined as the relative material deformation in response to the applied load. The
formal definition of strain depends on the frame of reference (see 4.1). In the
Lagrangian formulation, following material points through space, strain is defined
as the change in length dL of the myocardial tissue compared to a reference state L0.
Considering all directions in 3D, the strain definition becomes a symmetric tensor10:

ϵ =


dux
dx

1
2

(
duy
dx + dux

dy

)
1
2

(
duz
dx + dux

dz

)
1
2

(
duy
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dy

)
duy
dy

1
2

(
duz
dy +

duy
dz

)
1
2

(
duz
dx + dux

dz

)
1
2

(
duz
dy +

duy
dz

)
duz
dz

 , (1.1)

where u = (ux, uy, uz)T are the displacements of material point along the three
orthogonal directions x, y, z. The analysis of myocardial strains is commonly per-
formed using the local coordinate system of radial, circumferential and longitudinal
directions as shown in Figure 2.7a).
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1.3 contraction and strain

The temporal change of the strain defined in equation 1.1, is called the strain-rate
tensor86:

ϵ̇ =
1
2

(
(∇v) + (∇v)T

)
, (1.2)

where v = u̇ is the velocity of the material point and ∇v denotes the velocity
Jacobian. As strain-rate theoretically encodes the same information of wall motion,
it can also serve as an equivalent biomarker. The choice between the two defini-
tions often depends on the imaging technique33, assessing either displacements
or velocities (see 2.2 and 2.3). Clinically, the most relevant parameter is the global
longitudinal strain (corresponding to the total longitudinal shortening with respect
to the end-diastolic shape) with physiological healthy values between −18.9 % to
−20.4 %33. Normal peak systolic strain rates in longitudinal direction are reported
from 1.0 s−1 to 1.4 s−1. Typically, the radial strain component, mainly related to wall
thickening, is the largest and is larger in the free wall than in the septum10. Healthy
global radial strains were reported within 35 % to 59 %33.

While used as clinical indicators, the macroscopic projections in radial, circumfer-
ential and longitudinal direction do not coincide with the fiber orientation of the
myocardium. When strains are projected onto the fiber orientation, the resulting my-
ofiber strain is more spatially homogeneous (−0.14 ± 0.2)35 and strain-line patterns
emerge34,87–89.
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2. Motion Encoding in Cardiac MRI

2.1 Physiological Motion - Compensation Strategies

The most prominent effects of motion in CMR are potential spatial mismatch
between image acquisitions, as well as ghosting and blurring caused by motion
during sampling. Moreover, motion occurring while gradients are played out creates
additional signal phase. On one hand, this phase can be used to encode motion-
related information as described in 2.3 and 2.4, on the other hand, it can also lead to
unintended signal modulation or even signal loss. Aside from involuntary motion,
two types of physiological motion need to be addressed: respiratory motion and
contractile cardiac motion.

Motion compensation strategies can be categorized into prospective and retrospec-
tive. Prospective strategies use physiological real-time information to synchronize
and modify parameters of the acquisition90. Retrospective methods correct motion
during reconstruction or post processing.

2.1.1 Contractile Motion

The Electrocardiogram (ECG) is the physiological signal most commonly used for
scan synchronization in CMR. The R-peak of the ECG signal is used as a reference
point of the cardiac cycle. The duration between the R-peak and the acquisition
is defined as trigger delay ttrig. The concept of an ECG-triggered acquisition is
illustrated in Figure 2.1. For steady-state imaging, k-space segments are acquired
continuously and are retrospectively sorted into bins according to their temporal
distance to the last R-peak, allowing the reconstruction of one image per cardiac
phase90. The ECG signal can be significantly degraded by strong MR gradients and
RF pulses, which is especially relevant in diffusion-weighted imaging, hampering
the accuracy for ECG triggering. Peripheral pulse units (PPU) detect the pulse
wave of systolic ejection in peripheral vasculature. The intrinsic long delay, however,
makes the PPU unsuitable for prospective triggering.

2.1.2 Respiratory Motion

The conceptually easiest strategy to mitigate motion effects is breath-held acquisition.
This requires splitting the entire measurement into parts, which are sufficiently short.
Furthermore, the breath-holds must be consistent with respect to the respiratory
state, such as full expiration. As the strategy relies on patient compliance, which
can be problematic in clinical settings, free-breathing scans are preferable. To this
end, navigator echoes are commonly interleaved with image acquisition to assess
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motion encoding in cardiac mri

Figure 2.1: a) Transversal plane of a 3D survey scan with a 1D navigator placement on right hemi-
diaphragm, indicated by the white rectangle b) Sagittal plane corresponding to the navigator placement
shown in a). c) A schematic breathing curve (blue) with a navigator acceptance window indicated
by horizontal green lines. Above the breathing curve, an ECG signal is plotted. A prospectively ECG-
triggered and respiratory-gated acquisition is indicated by the boxes in the ECG signal. Data is not
acquired if the navigator yields a breathing state outside of the acceptance window (indicated by the red
cross).

the current breathing state. The basic version of such navigators, is a 1-dimensional
column placed on the right hemi-diaphragm as depicted in Figure 2.1a,b90,91. The
lung-liver interface shows as a transition from dark to bright in the navigator
signal, providing a traceable feature. It has been shown that the respiratory motion
of the heart can be mainly described by a large superior-inferior and a smaller
anterior-posterior translation, which is proportional to the diaphragm position92. In
prospective navigator gating, which is particularly useful for single shot imaging,
the actual image acquisition is accepted/rejected based on the position of the
interface as illustrated in Figure 2.1. In retrospective strategies, the acquired k-space
points are binned according to the navigator position to reconstruct images per
breathing state. Depending on the sequence, more sophisticated strategies using
2D navigators, the fat-signal93 or self-navigation94 have been proposed to overcome
specific limitations of the 1D diaphragm navigator.

In cardiac diffusion imaging most methods use single shot acquisitions per diffusion
weighting12 (see 3.2). Typical protocols contain on the order of 100 images per
dataset, which are assumed to be in the same motion state, i.e. at the same cardiac
and respiratory phase. A single-breath-hold acquisition ensuring spatial consistency
is infeasible due to the long scan duration. Multiple breath holds with navigator
gating potentially suffer from longer total scan times, depending on patient compli-
ance. For small gating windows, the preferable free-breathing acquisition becomes
relatively inefficient, while larger gating windows provide less spatial consistency.

To facilitate the use of larger gating windows, image registration is commonly
applied as retrospective motion compensation95. The registration methods differ by
the degrees of freedom in the applied transformation, such as rigid motion, affine
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transformation and deformable registration96,97. As the contrast varies significantly
between different diffusion weightings, registration can be challenging. To address
this, a variety of approaches including low-rank tensor decomposition prior to
registration98, respiratory binning based on spectral embedding99, deep learning
algorithms50 and the inclusion of the full tensor information100 have been proposed.

2.2 Encoding Displacements

2.2.1 DENSE

In displacement encoding with stimulated echoes (DENSE), the displacement with
respect to a reference (usually the end-diastolic motion state) is encoded in the
image phase for multiple points within the RR interval101. To this end, a mono-polar
displacement encoding gradient is added between the initial excitation and the
second RF pulse in a Stimulated Echo Acquisition Mode (STEAM) sequence (see
Figure 2.2). After the third RF pulse, which generates the echo used for imaging,
the displacement encoding gradient is played out again, resulting in zero net phase
for static tissue. For a gradient pulse GE of duration tenc, resulting in the encoding
strength kenc = γGEtenc along e.g. the x-axis, a material point that has moved by ∆x
during the mixing time TM (defined by the temporal gap between the second and
third RF pulse), accumulates the phase ϕ = kenc∆x. While the Lagrangian strain
(equation 1.1) can theoretically be computed directly from the measured phase102,
phase wraps occurring in practice need to be addressed in data processing.

To obtain strain over the cardiac cycle, the sequence is repeated with increasing
mixing time TM. For 3-dimensional displacement information, each mixing time
has to be acquired with displacement encoding along each of the spatial axes
separately102,103.

2.2.2 Tagging

There is a variety of tagging methods, all using sequences consisting of a preparation
stage and an imaging stage. In the preparation stage, magnetization is spatially
modulated, thereby creating patterns (referred to as "tags") in the signal magnitude,
phase, or both. The deformation of the tags caused by tissue motion between tagging
and image acquisition is derived during image processing. In the imaging stage,
usually a spoiled gradient-recalled echo (GRE), EPI or a bSSFP sequence is used104.

The most widely used tagging strategy is SPatial Modulation of Magnetization
(SPAMM)105 (Figure 2.3) and its improved versions. In SPAMM, tagging is per-
formed by applying two RF pulses and a gradient pulse between them. The first
pulse flips the magnetization into the transverse plane, where the gradient dephases
the magnetization. The second RF pulse flips the magnetization back to the longitu-
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Figure 2.2: Schematic sequence diagram (bottom) of displacement encoding with stimulated echoes
(DENSE) with reference to the ECG signal (top). The preparation or encoding module (blue box),
consisting of slice-selective excitation, an encoding gradient pulse kenc (blue trapezoidal gradients) and
90° hard pulse followed by a crusher is played out at the reference time. Imaging phases containing the
third 90° pulse, the decoding gradient kdec rewinding the kenc-phase for static tissue and a segmented
EPI readout, each correspond to one frame. The mixing time TM defines which imaging phase is imaged.
Each imaging phase corresponds to one frame of the cine acquisition.

dinal direction, followed by a crusher. In the subsequent imaging stage, the image
magnitude is modulated sinusoidally due to the spatially modulated saturation.
The encoding moment kenc defines the distance as well as the direction of the tag
lines. The highest possible spatial resolution of the obtained deformation field is
defined by the minimum detectable distance of the tag-lines.

To create sharper edges of the tags, higher-order polynomial tagging pulses106

or the Delays Alternating with Nutation for Tailored Excitation (DANTE) (Figure
2.3) method can be used. In DANTE, a series of block pulses is applied during a
tagging gradient, resulting in a Dirac-comb like response function107 (Figure 2.3).
To address the effect of tag fading due to T1 recovery, Complementary-SPAMM
(CSPAMM)108,109 was proposed, where the tagging is acquired a second time with
inverted magnetization. By subtracting the two tagged images the tag fading is
compensated. To achieve 2D deformation fields, the tagging stage can be repeated
in a second direction resulting in a grid of taglines. Alternatively, radial, ring or
variable density tagging may be applied104.
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2.2 encoding displacements

Figure 2.3: Schematic sequence diagram of a tagging sequence relative to the ECG signal. The preparation
or tagging module (blue box) is played out at the reference contractile state. Two types of tagging modules
are illustrated: SPAMM and DANTE. As imaging module, a spoiled gradient echo sequence with
increasing flip-angle is depicted. Each imaging phase corresponds to one frame of the cine acquisition

2.2.3 Feature Tracking

In contrast to the methods described above, feature tracking (FT) does not re-
quire a separate scan, as it uses bSSFP cine images routinely acquired in cardiac
protocols8,10. The tracked features are anatomic structures rather than magnetization
tags, which are detected by image-processing algorithms. Features are extracted
from the neighbourhood of initially defined reference points. The trajectory of the
points is tracked based on optical flow algorithms, using the extracted features110.
As the signal in the myocardium is homogeneous, this approach mostly works
based on points along the myocardial borders with high contrast. Strain estimation
based on FT is therefore subject to the accuracy of segmentation and positioning
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of reference points. Furthermore, since feature tracking is typically performed on
2D images, features moving out of the imaging plane potentially hamper the FT
performance110.

2.3 Encoding Tissue Velocity

2.3.1 Phase Contrast MRI

In an MR measurement with static and homogeneous magnetic field B0 and an
applied, arbitrary gradient waveform G(t), assuming the Lagrangian framework of
moving material points (see 4.1) with trajectories r(t), each material point accumu-
lates a phase ϕ(t) according to

ϕ(t) =γ
∫ t

t0

G(t′) · r(t′)dt′ (2.1)

=γ
∞

∑
n=1

1
n!

dnr(t)
dtn

∣∣∣∣
t0

·
∫ t

t0

G(t′)(t′ − t0)
ndt′. (2.2)

Here, equation 2.2 is the Taylor expansion of the phase defined in equation 2.1111.
The integral in the nth-order expansion term, including the gradient waveform G(t′),
is called the nth-order gradient moment mn(t). By defining the gradient waveform,
such that all moments up to a given order evaluate to zero, the accumulated phase
ϕ(T) directly corresponds to the nth-order term of the particle-trajectories’ Taylor
expansion.

In PC MRI, this principle is used to encode the velocity of flowing blood or moving
tissue112. To this end, a bipolar gradient with a non-vanishing first order moment
m1(T) is added between excitation and readout of a given MR sequence. For a
sufficiently short encoding duration, the phase corresponds to the velocity by v · g =
ϕv(T)/γ |m1(T)| along the encoding direction g = m1(T)/|m1(T)|. This approximation
assumes, that the blood flow is accurately represented by the first-order term over
the duration T of the applied gradient waveform G(t)111.

As the phase is cyclic, high velocities can result in phase wraps. To avoid wraps and
utilize the full dynamic range of velocity encoding, m1(T) is chosen such that the
maximum expected velocity results in a phase of π = γm1(T) · vmax. Accordingly,
the encoding strength VENC = π/γ |m1(T)| can be defined, yielding the following
expression

v = g
ϕv

π
VENC. (2.3)
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2.3 encoding tissue velocity

In addition to the motion-induced phase accumulation, other effects such as off-
resonance, eddy currents, and concomitant fields result in phase contributions,
contributing to a background phase term ϕ0. To separate the phase contribution of
the three-dimensional velocity ϕv from ϕ0, at least four measurements with varying
velocity encoding gradients are necessary. A set of N measurements, where each
measurement n uses the encoding strength VENCn, can be formulated as encoding
matrix Ev ∈ RN×4

Φ = Ev ·
(

ϕ0,
π

VENCn
vx,

π

VENCn
vy,

π

VENCn
vz

)T
, (2.4)

where Φ ∈ RN contains the image phase of a single image pixel. The simplest en-
coding matrix corresponds to a reference measurement and three velocity encodings
along the Cartesian axes resulting in the matrix113:

Ev,Simple =


1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

 . (2.5)

Another commonly used 4-point encoding scheme, referred to as Hadamard
encoding113,114, is given by the matrix:

Ev,Hadamard =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 . (2.6)

The simultaneous encoding of all directions in each acquisition results in directional
independence of the estimation variance, which is determined by the measurement
noise. Furthermore, for a given encoding moment, the estimation variance is reduced
by a factor of 2 using the Hadamard scheme compared to the simple 4-point
scheme113. On the other hand, the dynamic range, defined as the maximum velocity
that can be encoded in all directions without a phase wrap, also is reduced by
a factor of

√
2 for a fixed encoding moment113. Hadamard encoding can lead to

non-integer phase wraps115 that are directionally coupled113 and thus more difficult
to remove in post-processing than phase-wraps in simple 4-point encoding.
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2.3.2 Practical acquisition

The most basic MR sequence used in Tissue Velocity Mapping (TVM) is a spoiled
GRE sequence116. To achieve velocity sensitization, bipolar gradients are inserted
between excitation and readout117,118 as illustrated in Figure 2.4, showing the
sequence kernel for a single repetition. One repetition corresponds to a single
k-space line, and a single velocity encoding. The sequence kernel is repeated
continuously during each RR interval, which is subdivided into a given number of
bins. The number of bins determines the temporal resolution of the cine acquisition,
as each bin corresponds to one image. Kernel repetitions within a bin can be used
to acquire multiple k-pace lines as illustrated in 2.4b. Thus, the number of required
RR intervals to acquire all k-space lines for each of the bins depends on the number
of TRs per bin and the image resolution.

Most of the published TVM work used breath-held acquisitions to reduce the phase
contribution due to breathing motion119–124. However, depending on the temporal
and spatial resolution, the required breath-hold duration becomes infeasible. To this
end, view-sharing of bins has been proposed119,120, where the acquisition order of k-
space lines allows to reconstruct intermediate frames. The increased scan efficiency
allows to acquire the reference and two velocity encoding directions, for a single
slice, with a temporal resolution of 68 ms in 16-19 RR-intervals. Furthermore, free-
breathing approaches using interleaved respiratory navigators125 or self-navigated
golden angle spiral acquisition126 have been proposed.

Figure 2.4: a) Sequence diagram of showing a single repetition of a spoiled gradient echo with a
velocity-sensitizing bipolar gradient and Cartesian readout. Phase encoding is indicated for multiple
lines b) Sequence with three TR in a single imaging phase, with increasing phase encoding relative to an
ECG signal.
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2.4 Encoding Diffusional Motion

As described in 1.2, the relevant length scales of the myocardial microstructure
are on the order of 10 µm to 100 µm, which is well beyond the achievable image
resolution of clinical CMR. To assess information at this scale, diffusion weighting
with bipolar diffusion encoding gradients has been used127. The diffusion gradients
impose a phase on randomly moving spins. The random motion creates a phase
distribution in the spin population within a voxel. This results in a magnitude
modulation of the ensemble magnetization57.

2.4.1 Signal Model & Encoding

An effective description of the ensemble magnetization, including the effect of
diffusional spin motion, is provided by the Bloch-Torrey equation128,129:

∂

∂t
m(t, r) =

∂

∂r

[
D(r)

∂

∂r
m(t, r)

]
− [R2(r) + iΩ(t, r)]m(t, r), (2.7)

where D(r) and R2(r) are the diffusion coefficient and transverse relaxation rate at
location r. The Larmor frequency Ω(t, r) = Ω(r) + G(t) · r consists of the sample-
intrinsic term Ω(r) and the field variation due to the applied gradient G(t). This
description can only be fully determined for a specified spatio-temporal scale, as its
parameters are scale dependent129. The scale is implicitly defined by the measure-
ment duration and the instantaneous diffusion constants within the compartments.
One fundamental challenge of obtaining information about the microscopic scale
is to identify which feature of the effective parameters remain observable after the
intrinsic spatial averaging of the MR acquisition129.

Assuming a spatially homogeneous relaxation rate and Larmor frequency on a
length scale that is larger than the diffusion length, equation 2.7 can be rewritten:

∂

∂t
ψ(t, r) =

∂

∂r

[
D(r)

∂

∂r
ψ(t, r)

]
− G(t)ψ(t, r), (2.8)

with
ψ(t, r) = e−R2t−i⟨Ω⟩t. (2.9)

There is no universal signal expression when applying arbitrary diffusion gradients.
The signal has a functional dependency on the gradient applied during the measure-
ments S[g(t)]. To obtain an explicit expression of this dependency, equation 2.8 can
be treated for small diffusion weightings. This yields the general expression57,129:

S[g(t)] = S0⟨eiϕ(t)⟩ (2.10)
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with

ϕ(t) =
∫ t

0
dt′g(t′) · r(t′), (2.11)

where ϕ(t) is the phase a single spin with position r(t) accumulates due to the
applied gradients g(t). The angle brackets represent the averaging over all spins
in one voxel. Under the condition of balanced gradients

∫ T
0 dt′(g(t′)) = 0 over the

duration T, integration by parts in equation 2.11 yields57,130:

ϕ(t) = −
∫ t

0
dt′q(t′) · v(t′) with q(t′) =

∫ t

0
dt′G(t′). (2.12)

To associate the general signal representation in equation 2.10 to the diffusional
motion of the spins, the Taylor expansion of the logarithmic signal can be written as

ln S[q(t)] = i
∫

u(1)
a (t1)qa(t1)dt1

− 1
2!

∫
u(2)

ab (t1, t2)qa(t1)qb(t2)dt1dt2

− i
3!

∫
u(3)

abc(t1, t2, t3)qa(t1)qb(t2)qc(t3)dt1dt2dt3

+
1
4!

∫
u(4)

abcd(t1, t2, t3, t4)qa(t1)qb(t2)qc(t3)qd(t4)dt1dt2dt3dt4

+ ...

(2.13)

where the rank n tensor u(n) is the n-th cumulant of the molecular velocity distri-
bution and assuming normalization by S0. Here abcd... indexes the three spatial
dimensions and repeating indices in the integral imply summation according to
Einstein’s convention. As an example, the 3 × 3 rank 2 tensor constituting the
second-order cumulant (also known as variance) can be written as130:

u(2)
ab = ⟨va(t1)vb(t2)⟩ − ⟨va(t1)⟩⟨vb(t2)⟩. (2.14)

The first term of equation 2.14 is the averaged product of molecular velocity at
n = 2 time points, called the n-point correlation function. This correlation function
contains information about the microstructure. As previously stated, a fundamental
challenge in probing the tissue micro-structure with MRI is to develop a model
of the tissue capable of explaining the velocity correlations on the scales of the
measurement duration27,57. An exemplary explanation for the two-point correlation
of velocities is collisions with barriers introducing negative correlations, where the
correlation time depends again on the presence of other restrictions.

Equation 2.13 is a general signal representation, where its applicability is limited by
the encoding strength of the applied gradients. Commonly, the diffusion weighting
strength is stated as b-value for a measurement with echo time TE:
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b =
∫ TE

0
q2(t)dt. (2.15)

Achievable b-values on clinical scanners with high-performance gradient systems
(80 mT/m and 100 mT/(m ms)) are on the order of 500 s/mm2. The achievable b-
value is relatively low when compared with diffusion experiments in other organs,
because of the additional constraints arising from cardiac motion (see 3.1). The
regime of b-values is well within the convergence radius of the cumulant expansion
(equation 2.13)130. Furthermore, the signal is well represented by the first two terms
of equation 2.13 for such low b-values131, where the first term evaluates to zero in
case of zero net bulk motion (corresponding to 2.3.1). Using only cumulants up to
the second order is referred to as the Gaussian phase approximation providing the
framework for DTI.

In the most basic form of DTI, the signal is fitted to a simplified version of the
Gaussian phase approximation:

S(b, ni) = S0e−bni D
app
ij nj , (2.16)

where b is the b-value defined in equation 2.15, gi is the direction of the applied
linear diffusion encoding and Dapp

ij is an entry of the symmetric 3 × 3 apparent
diffusion tensor. Again, repeating indices imply summation.

The integrals in equation 2.13 contain the gradient waveforms (inside the definition
of q(t)) which implies that the measured diffusion tensor in equation 2.16 depends
on the gradient duration and shape. To formalize this dependency the velocity

correlation u(2)
ab is expressed using its retarded form, reflecting the causality of the

correlation:

Dab(t) = u(2)
ab θ(t2 − t1), (2.17)

where θ is the step function. To evaluate the actual signal response, it is more
convenient to rewrite the signal equation in the Fourier domain by using D(ω) =
F{D(t)} and q(ω) = F{q(t)}132:

ln(S(ω, q(ω))/S0) = −
∫ dω

2π
qi(ω)Dij(ω)qj(ω). (2.18)

Figure 2.5 illustrates how the gradient spectrum corresponds to the diffusion
sampling process. For free diffusion, the velocities at different times are completely
uncorrelated, which translates to a second-order cumulant represented by a delta
function, hence a flat spectrum. If the correlation time is on the same order as the
diffusion gradient waveform duration, the dependence of the measured apparent
diffusion tensor
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Figure 2.5: a) Second-order motion-compensated gradient waveform G(t). b) q(t) (equation 2.12)
corresponding to the waveform in a). c) Power spectrum of the function depicted in b). The dashed line
corresponds to a the spectrum of free diffusion.

Dapp =

∫ dω
2π qi(ω)Dij(ω)qj(ω)∫ dω

2π |q(ω)|2
(2.19)

on the actual gradient shape becomes obvious. The denominator in equation 2.19

is equivalent to the time-domain definition of the b-value in equation 2.15 and
connected via Parseval’s theorem. As a consequence of the time dependency, directly
comparing measured diffusion values only makes sense if identical sequences are
applied.

2.4.2 Tensor Inference

For diffusion encoding schemes with a given set N ≥ 6 different encodings with
b-value b and direction g yielding bn = bggT , the simplest, pixel-wise estimation of
the diffusion tensors Dij and unweighted signal S0 from the measurements Sn is
given by the direct matrix inversion. Therefore, let

d̃ = (log(S0), Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)
T , (2.20)

b̃n = (−1, bxx, byy, bzz, bxy, bxz, byz)
T
i → B = (b̃1, b̃2, ...), (2.21)

and the signal model for Gaussian noise be

x = (log(S1), log(S2), ...)T = Bd̃ + η, (2.22)

then the solution to the optimization problem

arg min
d̃

|x − Bd̃|22 (2.23)
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is the pseudo inverse of B133. More theoretical background on inverse problems is
provided in chapter 6.

The SNR in strongly weighted images is lower due to the intended magnitude
modulation, which potentially introduces a bias during fitting if the signal is close
to the noise floor134. To address this effect, advanced fitting algorithms such as
weighted linear least squares135 or iterative linear and nonlinear inversion136–138

have been proposed.

2.4.3 Interpretation

To infer information about myocardial microstructure, the apparent diffusion tensor
is decomposed into its three eigenvalue-eigenvector pairs λi=1,2,3 and eλ,i=1,2,3.
Assuming descending order of the eigenvalues λ1 > λ2 > λ3, the first eigenvector
eλ1 has been shown to align with the direction of the cardiomyocytes13,15,139,140.
The combination of eλ1 and eλ2 spans a plane, with eλ3 being the normal, that
is associated with the sheetlet orientation as described in 1.2141,142. Figure 2.6a
illustrates the correspondence between eigenvectors and myocyte as well as sheetlet
orientation.

Figure 2.6: a) Illustration of correspondence between diffusion tensor eigenvectors eλ1 (red), eλ2 (blue),
eλ3 (green ) and myocyte (red cylinders) / sheetlet (opaque white box) orientations. b) Illustration of
diffusion tensor shape resulting from myocyte-orientation (dis-)order; overall alignment results in high
anisotropy (left) while disarray results in a more spherical tensor. Figure is based on [12].

To obtain scalar measures, the first eigenvector is described by the helix angle
(HA) on the one hand and the transverse angle (TA) on the other. HA and TA
can be computed relative to the local coordinate system of radial, circumferential
and longitudinal direction, as shown in Figure 2.7a. The angle between the radial-
circumferential plane and eλ1 defines HA and the angle between the projection
of eλ1 onto that plane and the circumferential basis vector defines TA143 (Figure
2.7a). The sheetlet angle can be computed as the angle between the cross-myocyte
orientation eCF and the projection of eλ3 onto the cross-fiber plane143 as illustrated
in Figure 2.7c .

27



motion encoding in cardiac mri

Figure 2.7: a) Definition of the local coordinate system with radial er , circumferential ec and longitudinal
el basis vectors. The long axis of the ventricle is depicted as dotted green arrow, from apex to base.
b) Graphical definition of the helix angle (α) and transverse angle (β). The local epicardial plane
(perpendicular to the local radial direction er) is depicted as gray rectangle. The first diffusion-eigenvector
eλ1 is depicted as red arrow and its projection onto the epicardial plane is depicted as beige arrow. c)
Graphical definition of the sheetlet angle (γ). The cross-myocyte plane is depicted as gray rectangle, the
beige arrow is the eλ1-projection from b), er and ec are local radial and circumferential directions and eCF
defines the cross-myocyte direction. The third eigenvector eλ3 and its projection onto the cross-myocyte
plane are depicted as green and turquoise arrows. Definitions are based on [143].

In addition to the fiber and sheetlet orientation, two more tensor metrics are defined
to characterize the tissue. The mean of eigenvalues or the mean diffusivity (MD) is
calculated as:

MD = Tr(Dapp)/3, (2.24)

and captures the isotropic component of the diffusional motion. A high MD gen-
erally hints at low hindrance for water molecules, associated with damaged mi-
crostructure (e.g. due to infarction)144,145. Fractional anisotropy is defined as:

FA =

√
3 ∑i(λi + MD)2

2 ∑i λ2
i

, (2.25)

and is the most common measure of anisotropy, which is associated with the degree
of fiber order within the voxel11,12 as depicted in Figure 2.6b.
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2.5 Related Cardiac Pathologies

A number of pathologies are intrinsically coupled to the state and contractility
of the myocardial microstructure. Additionally, the global function of the heart
is influenced by pre- and afterload as well as its LV geometry33. While strain in
general is a widely used marker for cardiac diseases33, the underlying factors
influencing strain vary between diseases89. In the clinics, mainly global strains
at certain time points in the cardiac cycle are regarded8–10,33,146. However, local
variations may provide additional information relevant for risk estimation and
treatment planning147.

One condition, cDTI was shown to provide detailed information about is myocardial
infarction and subsequent scar formation148–150. As myocytes in the infarcted region
are damaged, diffusion becomes less restricted, especially in cross-myocyte orienta-
tion. This results in decreased FA and increased MD values17,22. Furthermore, tissue
strain is regionally impaired in ischemic heart disease and subsequent infarction33,
directly correlating with infarct size, distinguishing transmurality as well as viability
of tisue147,151. As tissue viability is connected to the integrity of mycocytes, combin-
ing strain and cDTI information could improve treatment planning and outcome
prediction17,152,153.

The heart undergoes a process of remodelling in response to various pathophysio-
logical alterations of the body154. For example, as a result of infarction, the rest of the
myocardium remodels to compensate for the loss of contracting tissue14,21,149,153,155.
In hypertrophic cardiomyopathy, the heart muscle wall thickness and stiffness
increase, which is connected to reduced sheet mobility. The reduced sheetlet mo-
bility can be measured by comparing diastolic and systolic sheetlet angles from
cDTI data18,20 as well as reduced FA156. The reduced macroscopic contractility was
shown with TVM157. The interconnection of strain and microstructure in dilated
cardiomyopathy was investigated using tagging and cDTI19, revealing decreased
sheetlet reorientation and systolic strain, as well as steeper HAs. Remodelling can
also occur due to LV overload158 as in aortic stenosis, showing increased MD and
decreased FA as well as elevated HA slope25. Higher cardiac load in obesity was
shown to impair peak diastolic tissue velocity159 as well as increased MD with
decreased FA and HA transmurality53.

cDTI was also used to investigate the microstructural changes in cardiac amyloi-
dosis23,24 and congenital heart disease160,161. Moreover, early cardiac toxicity of
certain treatments such as radiotherapy can be monitored by strain imaging162.
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3. Spin Echo cDTI

There are two sequences commonly used for cDTI, namely STEAM and SE. Both
sequences rely on consistent ECG triggering (see section 2.1.1). STEAM-cDTI looks
similar to the DENSE acquisition but the excitation and readout are spread over
two RR-intervals, thus encoding and decoding of displacement occurs at the same
trigger delay with matching contraction state (see Figure 3.1a). Therefore, instead of
bulk motion, diffusion displacement of spins is encoded12. In SE diffusion sequences
excitation and readout are performed within the same RR interval as illustrated in
Figure 3.1b. This allows acquisition during free-breathing, hence it is more suitable
for clinical applications. The following sections provide a basic overview for all
blocks of SE-cDTI.

Figure 3.1: Comparison of a diffusion-weighted a) STEAM and b) SE sequence with reference to an
ECG-signal. The trigger-delay is marked as ttrig. Both sequences use a single-shot EPI readout and
REgional Saturation Technique (REST) slabs as well as a leading navigator. STEAM is acquired over two
RR intervals, while the SE acquisition is performed within a single heart beat. The diffusion encoding kenc
and decoding kdec gradients in STEAM are applied with the same delay to the previous RF-pulse. The
SE sequence uses a binomial spectral-spatial pulse and a second-order motion-compensated diffusion
gradient waveform. Based on [163].

3.1 Diffusion Encoding Waveforms

Compared to diffusion MRI applied in other anatomical regions (e.g. neurology),
the contractile motion of the heart creates restrictions for certain concepts. Foremost,
tissue strain results in intra-voxel phase gradients if diffusion encoding waveforms
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are applied. These intra-voxel gradients lead to signal magnitude modulation, poten-
tially even leading to signal dropout164. This signal modulation alters the estimation
of diffusion tensors, such that the diffusivity is artificially increased164–166.

For STEAM, one strategy of mitigating those strain effects is the so-called sweet
spot imaging167. This strategy, the trigger delay is chosen as one of two time points
(one systolic and one diastolic) in which the integral of the strain evaluates to zero,
therefore minimizing the effect on the measured diffusion tensor143.

For SE acquisitions the preferred strategy to mitigate these signal losses is to con-
struct the diffusion encoding waveforms such that the moments, as defined in
2.1, are zero up to a sufficient order29,30,166,168. This strategy is only feasible if the
diffusion encoding and acquisition are within intervals of the cardiac cycle in which
the material point trajectories are described by a Taylor polynomial of low order. In
early systole and around peak contraction this condition is violated, resulting in sig-
nal loss despite motion compensation169. While higher-order motion compensation
promises robustness against strain effects, the minimum achievable duration for the
waveform increases111. Second-order motion compensation has been shown to be
robustly applicable while yielding waveforms short enough12,29,30,170.

More recently, an advanced diffusion encoding strategy called q-space trajectory
encoding (QTE)171–173 was applied to cardiac imaging170,174. In QTE, instead of
using unidirectional gradients, the applied encoding waveforms describe a three-
dimensional trajectory in q-space (as defined in eq. 2.12). Therefore, instead of a
scalar b-value, eq. 2.15 generalizes to the so-called B-tensor Bij of rank 2. The expo-
nent in the signal model (equation 2.16) then evaluates as −ΣijBijDij. This allows
e.g. to measure the diffusion tensor trace with a single waveform170. Furthermore, if
signal contributions associated with higher than second order cumulants are consid-
ered, these waveforms allow access to information on distributions of tensors within
voxels171,174. Motion compensation is also necessary in these advanced encoding
waveforms172.

3.2 Echo Planar Imaging
This section is based on chapter 16 of the textbook [111]

EPI is one of the fastest encoding strategies in MRI, consisting of a train of gradients
in readout direction with alternating amplitude, combined with intermittent phase
encoding (referred to as blips). Each lobe of the readout gradient train generates
a gradient-recalled echo, corresponding to one k-space line. The phase blips shift
the trajectory to the next phase encoding (PE) step, which results in a meandering
k-space trajectory as illustrated in Figure 3.2b. Due to the fast gradient switching
and long acquisition window, EPI is prone to effects altering the effective trajectory,
often resulting in geometric distortions and so-called EPI ghosts. The ghost artifacts
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in PE direction stem from a mismatch of lines depending on the polarity of the
readout lobe. A calibration scan without blips allows to correct the phases per line.

Figure 3.2: a) Sequence diagram of a spin-echo acquisition with single-shot EPI readout. Echo Train
Length (ETL) and echo-spacing tESP b) k-space trajectory (blue line) and sampling points (red markers)
of the EPI readout.

The number of echos in the train is denoted as echo train length (ETL), where the
echos are commonly uniformly spaced by tESP. The bandwidth in PE direction
is defined by 1/tESP, which determines the degree of geometric distortions and
displacements due to local off-resonance fields as described below. Therefore, the
minimal achievable echo spacing (ESP) (corresponding to highest bandwidth) is
desirable for cDTI. In most cases the readout gradient train is gradient slew-limited,
hence, a short tESP requires sampling during the gradient ramps resulting in non-
equidistant k-space points.

With diffusion encoding gradients played out in the SE sequence, the achievable
minimum echo time (TE) is mainly determined by the ETL. One approach to reduce
the ETL is to skip the first couple of outer k-space lines at the beginning of the echo
train (referred to as partial Fourier acquisition).

3.3 Fat Suppression
This section is based on chapters 4 and 5 of the textbook [111]

The myocardium is surrounded by tissues containing fat, whose signal can be
spatially shifted depending on the acquisition bandwidth. Therefore, fat suppression
should be applied during cDTI acquisition. The two most common techniques to
achieve this are the use of SPectral-SPatial (SPSP) pulses for excitation and Spectral
Pre-saturation with Inversion Recovery (SPIR).

All variants of SPSP pulses are composed of multiple RF subpulses111. Concurrently,
an oscillating bipolar slice-selection gradient is applied, determining the spatial
selectivity, while the RF-envelope, modulating the subpulse flip angles, defines
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Figure 3.3: a) Diagram of a slice-selective binomial 1-3-3-1 spatial-spectral excitation pulse and b) the
corresponding frequency response. The suppressed frequency range is marked by vertical dashed lines
around the target frequency δB0γ. c) Sequence diagram of a SPIR fat-saturation pre-pulse, where the
inversion is applied such that the zero crossing occurs at SE excitation. The spatially selective inversion
pulse αSPIR has a frequency offset matching the chemical shift of fat.

spectral selectivity111. Binomial SPSP pulses are the most commonly used class,
where the subpulse flip angles follow the binomial coefficients as illustrated in
Figure 3.3a. The frequency response of these pulses is given as Sn( f ) = cosn(π f τ),
with n being the order of the binomial coefficient and τ is the spacing between
the subpulses. Thus, choosing τ = 1/2 f , with f determined by the chemical shift
frequency of fat, results in zero-crossings of the frequency response at the fat peak,
thus suppressing fat (see Figure 3.3b).

In SPIR, a spectrally selective pulse is played out before the actual image acqui-
sition, as illustrated in Figure 3.3c. This pulse excites the fat selectively followed
by a crusher gradient. The excitation of the image acquisition is timed such that
the recovery of the fat magnetization is at the zero crossing (see 3.3c, top row)
suppressing the fat signal contributions to the image.

3.4 Reduced Field of View

The resolution (field-of-view (FOV) divided by the matrix size) in the PE direction
mainly determines the echo time of the SE cDTI scan. Therefore, it is desirable
to reduce the number of acquired k-space lines corresponding to the number of
blips in the EPI train. To avoid fold-over artifacts when reducing the FOV in PE
direction below the anatomic extent, the magnetization outside of the FOV must be
suppressed. Commonly used techniques to achieve this are REST (also referred to
as pre-saturation pulses), inner-volume selection by rotated slice selective excitation,
and two-dimensional excitation pulses.
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Two types of multi-dimensional excitation pulses have been used in SE-cDTI: 2D
echo planar pulses98 and pencil-beam excitation with spiral readouts31. For an
extensive review of the general principle of multi-dimensional excitation pulses the
reader is referred to [111, pp. 125].

REST

In REST a series of slice-selective 90° pulses are applied followed by a crusher, prior
to the actual acquisition. The slice position and thickness are chosen such that the
magnetization in the slabs around the volume of interest is saturated. A sequence
diagram for a simple SE scan and an illustration of the regional saturation slab
placement is shown in Figure 3.4.

Figure 3.4: a) Sequence diagram of a regional saturation (REST) pre-pulse followed by a spin-echo
acquisition with single-shot EPI readout. b) Illustration of the saturation slab placement relative to the
heart in a short-axis view. Phase encoding (PE) and readout (RO) directions are indicated by arrows.

Inner Volume Excitation

When two slice-selective RF-pulses are used in a SE sequence, one way to suppress
signal in the PE direction is to rotate the slice selection gradient of the refocusing
pulse as illustrated in Figure 3.5. While a perpendicular configuration produces the
sharpest border in the PE direction and works well in single slice acquisitions, the
saturation of neighbouring slices and the resulting signal reduction is detrimental
for the acquisition of multiple slices. An adapted strategy of slice orientations in
combination with REST, as illustrated in 3.5b, is beneficial in this case175.

3.5 Off-Resonances

Tissue interfaces can introduce susceptibility gradients and hence local field homogeneity176,177.
Furthermore, the oxygenation of blood within coronary vasculature can introduce
significant differences in susceptibility compared to the surrounding tissue76. These

35



spin echo cdti

Figure 3.5: a) Sequence diagram of a spin-echo acquisition with single-shot EPI readout with orthogonal
inner volume excitation. The hatched gradient pulse corresponds to a simple slice-selective refocusing.
Instead of this pulse, the gradient is played out in PE direction, where the lower amplitude results
in a thicker slab to be refocused. Next to the sequence diagram is a 3D rendering, which illustrates
the resulting image (white) where the colored slices correspond to the slice-selective excitations. b)
Illustration of a SAX angulated inner volume excitation combined with REST slabs. Green boxes depict
slice-selective excitation and orange boxes depict the slice-selective SE refocusing, resulting in the
imaging volume marked by the hatches. REST slabs are placed in PE direction as in Figure 3.4.

local off-resonances mainly affect the SE EPI acquisition in two ways; namely
background phase contributions and geometric distortions.

For static off-resonance fields SE sequences refocus the resulting phase dispersion
at echo time, thereby not affecting the signal. If the off-resonance fields are, how-
ever, dynamically changing over the sequence duration, refocusing is not achieved,
hence resulting in residual background phase. This can be caused by e.g. blood
inflow in the coronary arteries or motion of the myocardium-liver or heart-lung
interfaces177,178. If the phase contribution is very strong, thus resulting in consider-
able intra-voxel phase gradients, the magnitude can be modulated32.

As EPI has a finite duration, samples are acquired before and after the exact echo
time, and as such even static off-resonance fields can result in geometric distortion.
Depending on the sign of the local off-resonance and the orientation of phase
encoding blips, these field variations result in localized stretching or compression
of the image32. This most prominently happens close to the posterior vein. These
distortions are possible to correct for during reconstruction using a B0 map.

3.6 Eddy Currents and Concomitant Fields

Motion compensated diffusion encoding waveforms, in SE-cDTI induce considerable
eddy currents in conductive parts of the MR scanner. This results in temporally and
spatially varying field alterations, on the one hand contributing to the image phase
and on the other hand adversely affecting the actual k-space vectors at sampling
events. In EPI readouts this can result in ghosting artifacts, apparent translation
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of objects in the image or even signal loss31. If available, a scanner-specific eddy
current response function can be used to correct for image distortions by adapting
the k-space locations during reconstruction.

Concomitant fields are a direct consequence of Maxwell’s equations, resulting
in a magnetic field contribution according to equation 4.14. The resulting phase
contribution due to diffusion gradients is zero at the echo time forSE-cDTI and
symmetric waveforms. Therefore, constructing diffusion encoding waveforms often
includes this symmetry around the refocusing pulse. One advantage of asymmetric
waveforms179,180, is the echo time reduction with unchanged EPI readout.

Multiple frameworks have been proposed to optimize diffusion encoding waveforms
with system and sequence timings constraints, while minimizing the effects of eddy
currents181 and concomitant fields172,182.
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4. Simulation and In-silico Ground Truth

Simulations require a definition of a computational domain, that captures the
physiology of the heart as well as a signal model for MRI. The computational
domain, also referred to as in-silico phantom, contains the physical properties of
the tissue, that are relevant for the simulation.

4.1 Lagrangian vs Eulerian Description

The representation of phantoms can be based on the Eulerian or the Lagrangian
framework. In the Eulerian framework, the phantom geometry is discretized, and
the resulting mesh is used to compute spatial derivatives of fields. Using these
derivatives, the governing differential equations of the domain can be numerically
solved for given boundary conditions. The evolution of the fields is observed at pre-
scribed nodal locations in the mesh. Examples for this approach are Computational
Fluid Dynamics (CFD) simulations solving the Navier-Stokes equations to obtain
the blood flow in, for example, the aorta183, simulating the diffusion-weighted
MR-signal by solving the Bloch-Torrey equations (equation 2.7) on meshed virtual
tissue models184 or simulating the mechanical contraction of the LV of personalized
shape models185.

Figure 4.1: a) Illustration of a meshed (tetrahedral) left ventricle used for biophysical simulation in the
Eulerian description. The cell edges are plotted as black lines. b) Particles representing a slice of the
left ventricle moving in space (Lagrangian). The trajectories are drawn as lines and the particles are
depicted as spheres c) Particles representing flowing blood in a meshed aorta. The particle trajectories
are obtained by solving the kinematics of particles in the flow field inside the aorta (Euler-Lagrangian
method).
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In the Lagrangian framework, the domain is populated by particles which are
associated with a set of properties. They can move in the domain and interact. The
particle trajectories are obtained e.g. by iteratively solving the kinematics inside the
domain fields. Applications of this framework are e.g. simulations of MR-signals
of flowing blood by seeding particles in the velocity fields obtained from CFD
simulations or modelling diffusion processes as random walkers within restricted
compartments, where collisions with boundaries are checked based on a meshed
domain186.

4.2 MR Signal Simulation
This section is based on the appendix of the paper in chapter 4, referencing specific implementations in CMRsim (see

chapter 5)

Although nuclear magnetic resonance is a quantum mechanical phenomenon, the
emergent macroscopic behaviour of spin 1⁄2 particles (such as hydrogen) in the
classical limit of quantum statistics can be described by the Bloch-equations:

dM
dt

= γM × B +
M0 − Mz

T1
ez −

Mxex + Myey

T2
. (4.1)

These differential equations describe the evolution of the macroscopic magneti-
zation vector M in a prescribed volume V in a magnetic field B. The change of
magnetization is characterized by the longitudinal relaxation time T1 and transversal
relaxation time T2, γ denotes the gyromagnetic ratio, and M0 is the equilibrium
magnetization. This formulation assumes mass-less and non-interacting particles,
which makes the Lagrangian description of the digital phantom preferable. On the
contrary, the Eulerian description is capable of incorporating interactions captured
by differential equations, such as the Bloch-Torrey equation (equation 2.7).

As the signal picked up by the receive coils in MR measurements is the voltage
induced by the precession of all magnetization vectors, it is necessary to integrate
M(t) over the entire digital phantom. In the discrete case, this is achieved by
summing all magnetization vectors, weighted by the volume each of them represents.
As for all discrete representations of a continuous reality, the discretization must
be fine enough to avoid simulation artifacts. In the Lagrangian particle-based
description for MR simulations, this requires using sufficiently many particles per
image-pixel as input, to avoid e.g. spurious echoes or residual magnetization after
spoiling. Furthermore, to prevent inverse crimes when using the simulation as
ground truth in reconstruction algorithms, the phantom must be defined on a
multiple times finer scale than the image, which is especially relevant when using
voxelized or regularly gridded phantoms187.

Since the gradients and RF pulses alter the magnetic field B, finding a solution
to equation 4.1 is specific to the actual sequence definition. Theoretically, it is
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possible to find analytical solutions to the Bloch equations for sequences, however,
these solutions often assume specific simplifications to subdivide the sequence into
manageable sections. Nevertheless, analytical signal equations are a useful tool in
many cases, as highlighted in section 5.2.4. The most general approach to find a
solution is to numerically integrate the evolution of magnetization. While adaptive
step-width methods like Runge-Kutta accelerate the numerical simulation for static
phantoms, their application with complex motions is not straight forward. The
following paragraph describes the application of simple forward integration with
fixed step size. An overview of available simulation frameworks is provided in
section 5.1.

The evolution of magnetization is described by the Bloch equations, with the
magnetization vector Mn(t) of a single particle n represented as

Mn(t) = [M+n(t), M−n(t), Mzn(t)]
T ,

with M+ = Mx + iMy, M− = Mx − iMy,
(4.2)

where Mx, My and Mz are the spatial components of the magnetization. Solving the
Bloch equations in the rotating frame of reference can be achieved by discretizing
in time using a temporal step size of δt and iteratively updating the magnetization
corresponding to asymmetric operator splitting188

Mn(t + δt) = Tn(δt) ◦ Φn (t, δt, r(t)) ◦ R (t, δt, r(t)) ◦ Mn(t). (4.3)

Here, R (t, δt, r(t)) is the rotation operator corresponding to RF application:

R(t, δt) =

 cos2 α(t,δt)
2 ei2θ sin2 α(t,δt)

2 −ieiθ(t,δt) sin α(t, δt)

ei2θ(t,δt) sin2 α(t,δt)
2 cos2 α(t,δt)

2 ie−iθ(t,δt) sin α(t, δt)

− i
2 e−iθ(t,δt) sin α(t, δt) i

2 eiθ(t,δt) sin α(t, δt) cos α(t, δt)

 . (4.4)

Using a trapezoidal discrete integration step, the flip angle α and the phase θ of the
applied B1 (complex) RF field is given as:

α(t, δt) = γ|B1(t + δt) + B1(t)|
δt
2

(4.5)

θ(t, δt) = ∠
(

B1(t + δt) + B1(t)
2

)
. (4.6)

The subsequent precession of the n-th particle is defined as

Φn(t, δt, rn(t)) ◦ Mn = diag
(

eiϕn(t,δt,rn), e−iϕn(t,δt,rn), 1
)
· Mn, (4.7)

where the precession phase ϕ(t, δt, rn) depends on the phase-generating effects
captured by dedicated sub-modules φs. These sub-modules are e.g. off-resonance
or concomitant fields, and depend on the dynamic properties of the particle or of
the fields that the particle is moving through, thus requiring an update of these
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quantities Γ(rn(t), t). The precession phase for a single integration step is thus given
by

ϕ(t, δt, rn) =γ (G(t + δt) · rn(t + δt) + G(t) · rn(t))
δt
2

Σs φs (G(t), rn(t), Γ(rn(t), t)) ,
(4.8)

where G(t) is the gradient waveform defined by the MR-sequence. Lastly, the
relaxation operator Tn(δt) is defined as

Tn(δt) ◦ Mn = diag
(

e−δt/T2 n , e−δt/T2 n , e−δt/T1 n

)
· Mn +

[
0, 0, (1 − e−δt/T1 n )

]T
, (4.9)

where T1n, T2n are relaxation times assigned to a single particle n. The acquisition
of signal sm(t) at sampling times defined in the MR-sequence, weighted by spatially
varying coil sensitivities Cm (r(t)) can be evaluated as

sm(t) =
N

∑
n=1

M+nCm(rn(t))e−iϑACQ(t), (4.10)

where ϑACQ denotes the receiver phase.

Off-resonance induced phase accumulation can be incorporated into the simulation
by using the corresponding sub-module computing the phase contribution for a
single particle n as φ∆B0 (ωn(t), δt) = γωn(t)/2πδt. Examples for frequency difference
with respect to the rotating frame ωn(t) are the particles representing myocardial
tissue close to a cardiac vein or a blood particle flowing through an off-resonance
field defined by the surrounding tissue. A chemical shift translates to a constant
off-resonance frequency in this description.

Modelling T∗
2 in the Langrangian framework, can be achieved by assigning each

particle a random phase rate ϕT∗
2 n, which is sampled from a zero mean Lorentzian

distribution

ϕT∗
2 n~P(x, T2′) =

T2′
π (1 + (x/γ)2)

with T2′ =
1

1
T∗

2
− 1

T2

, (4.11)

assuming sufficient particles withing each voxel. Relaxation times T2 and T∗
2 corre-

spond to a tissue type as defined in the digital phantom. To avoid extreme values of
ϕT∗

2 n in smaller particle populations, the sampling process of P(x, T2′) involves a cut-
off in the intermediate uniform sample u˜U (0.01, 0.99), which is used to calculate
the phase rate as

ϕT∗
2 n =

1
T2′

tan
(

π

(
u − 1

2

))
. (4.12)
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This phase rate is added as phase contribution for each simulation step and particle
within the corresponding sub-module

φT∗
2
(ϕT∗

2 n, δt) = ϕT∗
2 nδt. (4.13)

Phase contributions due to concomitant fields Bc for any given particle n are
calculated based on the applied gradients G(t) and particle positions rn(t) as

φBc (G(t), rn(t), δt) =
γ

2B0
[

(
Gx(t)zn(t) +

1
2

Gz(t)xn(t)
)2

+

(
Gy(t)zn(t) +

1
2

Gz(t)yn(t)
)2

]δt

(4.14)

4.3 Digital Cardiac Phantoms

Simulating the signals obtained from encoding motion in CMR at the macroscopic
(see 2.2 and 2.3) and microscopic scales (see 2.4) and their interaction requires
cardiac phantoms that incorporate macroscopic deformation as well as information
about tissue microstructure. Therefore, the following sections review the available
approaches to represent the digital phantom in MR simulations at both scales, as
well as one approach to combine them.

4.3.1 Macroscopic Scale

The approaches to represent cardiac digital phantoms can be categorized into:
voxel-based, analytical, hybrid and shape models189. Voxel-based phantoms are
obtained from real data by labeling the tissues of interest from images190–192. The
less realistic, analytical phantoms are based on mathematical descriptions, of organ
shapes, tissue structure and contraction, where variation of anatomical features
or population statistics can be applied by modifying the model parameters. In
hybrid models the anatomy and its temporal configuration is represented e.g. by
4-dimensional B-splines193, allowing some variation with respect to the reference
phantom. The coupling of the phantom with a biophysical model of the heart
allows to include pathological changes194,195. More recently, cardiac shape models
have been proposed, yielding an expressive description of the dominant anatomic
features185,196–199. When coupled to a biophysical model even healthy and patho-
logical population variability can be represented189. The nodes of these cardiac
phantoms and their trajectories can subsequently serve as magnetization bearing
particles (Lagrangian description) and used in Bloch simulations.
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4.3.2 Microscopic Scale

Simulating diffusion-weighted MR signals for a single voxel is used to investigate
the influence of microstructural alteration on the signal. One simulation strategy is
to consider randomly moving particles, restricted within a synthetic microstructure.
The particles carry magnetization, which evolves according to the Bloch equations200.
Another approach solves the Bloch-Torrey equation on meshed microstructure184.

Synthetic microstructure can be obtained by building virtual tissue models as a
composition of simple geometric objects mimicking myocytes, such as cylinders or
cuboids with varying size and orientation201–206. A more complex and parameter-
ized strategy to create in-silico tissue models was proposed207. Here bundling into
sheetlets, with their respective orientation as well as a packing of sheetlets in the
myocardial wall, is included into the algorithm of composing cylinders. The tissue
parameters are chosen according to the statistics and disorder class of healthy and
diseased tissue. While the most realistic and detailed tissue phantom are obtained
from three-dimensional segmentation of histology208, these models cannot be easily
generalized to healthy and pathological statistics.

4.3.3 Model-Based Cardiac Diffusion

Performing detailed diffusion Monte-Carlo simulations in realistic tissue involving
scales of µm, embedded in the anatomical structure and its motion on the macro-
scopic scale (mm to cm), quickly becomes computationally infeasible. However,
given the practically feasible duration and diffusion weighting of the encoding
waveforms in cDTI, it is justifiable to separate large and small scale motions in the
simulation. Following the approach of distributions of diffusion tensors within a
voxel as signal model174, the combination of macroscopic motion and diffusion
contrast can be achieved by assigning diffusion tensors to the nodes of a mesh.
The diffusion tensor orientations can be constructed from statistical description of
myocyte aggregates as in209. The scaling of eigenvalues depends on the applied
sequence, which can be obtained from Monte-Carlo simulations in tissue models. In
chapter 5 such a phantom is used to simulate cDTI images. A 3D generalization for
constructing random diffusion tensors in the LV based on marginal distributions
of MD and FA and spatial correlation, as in chapter 7, is publicly available at
https://gitlab.ethz.ch/ibt-cmr/modeling/cmr-random-diffmaps.

4.4 Sequence Definition
This section is based on a conference contribution [210]

Defining MR sequences without vendor-specific nomenclature plays a central role
in simulation, as well as in the efforts to promote open and reproducible science.
In recent years, multiple software packages have been proposed aiming to provide
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a vendor-agnostic framework for sequence definitions211–214. Accompanying the
works presented in this thesis, the CMRseq Python package was implemented
(available at https://gitlab.ethz.ch/ibt-cmr/mri_simulation/cmrseq), building
on concepts from the increasingly popular Pulseq framework211. One core func-
tionality of sequence definition frameworks is the representation and composition
of MR-sequence atoms, such as RF pulses, gradient waveforms, and sampling or
acquisition events. Furthermore, to obtain realistic sequence timings, MR-systems
must be incorporated. The hierarchical composition of sequence atoms into re-
curring blocks, up to the level of full MR-measurements, is part of CMRseq. The
package structure supports building a comprehensive library of MR sequences in a
maintainable community effort.
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5.1 Introduction

Simulations are an important tool to evaluate the performance of MRI acquisi-
tion, reconstruction, and postprocessing algorithms59. Simulation frameworks may
target specific applications with assumptions on physiology, anatomy, and MR
physics31,215–220, or may take a more general approach, seeking to accommodate
a range of possible applications60–69. Additionally, the widespread deployment
of machine learning algorithms makes simulations increasingly relevant, such as
to optimize sampling strategies and/or sequences48,49,221, to facilitate access to
simulated ground-truth information for postprocessing algorithms, and to train and
test models on synthetic data183,222.

Requirements such as simulation time and availability of computational resources
play a major role in determining what level of simulation detail can be considered.
The most general approach, which has previously been implemented in multiple
available software projects60–69, is based on the numerical solution of the Bloch
equations for a selected sequence (defining gradient and RF waveforms as well as
sampling events). However, when generating large synthetic data sets, it can be
preferable to evaluate signal equations obtained from analytic rather than numeric
solutions to the Bloch equations, trading off generality for lower computational cost.
Although analytic simulation paradigms have been implemented for specific signal
models218,223–226, they are based on strong physical assumptions, which usually
limit extensibility to complex motion patterns.

In cardiovascular MR (CMR), motion plays a central role, not only as a challenge
to be addressed in acquisition and reconstruction, but also as a biomarker for
health and disease8,227,228. For example, CMR is uniquely suited to assess time-
resolved blood flow in three dimensions. Accordingly, the development of dedicated
simulations for phase-contrast (PC) CMR has been of significant interest. These
works can be approximately divided into two categories: (1) Euler-Lagrangian
frameworks, in which the Bloch equations are solved for magnetization moving
according to velocity-vector fields derived from computational fluid dynamics
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(CFD)186,215,220,229–234 ; and (2) Eulerian approaches, in which the Bloch equations
are solved in a fixed reference frame and motion is incorporated through transport
equations216,235–239.

Discretizing the digital anatomic structure into noninteracting particles is a common
strategy in MR simulations, which can also be deployed for incorporating complex
organ motion such as cardiac contraction. Although there are many openly available
simulation frameworks60–69, to the best of our knowledge, none have focused
specifically on the complex motion requirements of CMR. While some frameworks
allow for some form of motion to be incorporated, they do not permit efficient
embedding of complex cardiovascular motion, such as nonrigid deformation and
flow, due to limited analytic descriptions of motion63, computationally infeasible
preloading of trajectories232 or limited compatibility to specific phantoms240.

To this end, the objective of the work at hand is to describe an open-source MR
simulation framework, referred to as CMRsim, which facilitates the incorporation
of complex motion and flow on arbitrary digital phantoms for studying CMR
acquisition and reconstruction. Furthermore, special emphasis is put on modular
architecture with extensive documentation.

5.2 Methods

This section provides an overview of the package architecture and a formal def-
inition of the simulation, followed by an introductory simulation incorporating
cardiac and breathing motion, describing the basic workflow and functionality of
CMRsim. Next are two advanced exemplary simulation experiments highlight-
ing CMRsim’s capability and extensibility. A discussion on performance and
scaling of the simulation as well as a conceptual comparison to external sim-
ulations is provided Appendices B and C. A complete overview of CMRsim
functionality, including additional examples, is provided as Jupyter notebooks.
All source code, notebooks, and API documentation are publicly available at
https://cmr.ethz.ch/research/software.html.

5.2.1 Package Overview

CMRsim requires as inputs a target object (dynamic digital phantom) and a spe-
cific MR sequence. Two simulation paradigms are supported: (1) numerical Bloch
Simulations and (2) analytic signal models (hereby referred to as Bloch simulation
and analytic simulation, respectively). The package is subdivided into the following
components, as schematically shown in Figure 5.1. Italicization indicates class or
objects implementations.
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• Trajectory representation: Collection of Trajectory Modules creating a represen-
tation of motion and time-varying physical properties defined by a dynamic
digital phantom.

• Bloch Simulation: Numerically solving the Bloch equations for arbitrary
waveforms (RF, gradients) and motion. Additional submodules can be speci-
fied to incorporate effects such as off-resonance, T∗

2 and concomitant fields.
Implemented as Bloch Simulation module.

• Analytic Simulation: Evaluating signal models obtained from analytical
solutions to the Bloch equations, composed of a Contrast Model and and
Encoding Module.

• Dataset handling: Handling of dynamic digital phantoms and implementation
of utilities such as mesh refinement, generation of in- and outflow boundary
conditions and computation of motion fields on regular grids, implemented
as Dataset classes.

Figure 5.1: Overview of the CMRsim framework. Dashed-line blocks indicate required external inputs
for the definition of the dynamic digital phantom and the MR sequence. Solid-line blocks define
the constitutive components of CMRsim. The dynamic digital phantom (red box) contains P fields,
corresponding to properties such as velocity or off-resonance, in addition to the 3D mesh (a meshed aorta
containing velocity fields and a left-ventricle mesh model are shown as example). The core part of the
package is the definition of the Trajectory Modules (blue box), providing a continuous representation of
particle positions and dynamic particle properties. Trajectory Modules are used for analytic and numeric
Bloch Simulations, both yielding k-space signals as output. Analytic simulations evaluate signal models
based on analytical solutions of the Bloch equations, where the signal model is composed of a Contrast
Model and an Encoding Module. The required parameters for the Contrast Model and the Encoding
Module as well as the sequence definition (green box) for Bloch Simulations must be provided by the user.
ACQ, acquisition.
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The description of dynamic digital phantoms in CMRsim is based on the La-
grangian framework with noninteracting "massless" particles. Each particle n with
ιn = {rn(t), Γ(rn(t), t)} is defined by a time-dependent trajectory rn(t) and a set
of properties Γ(rn(t), t) = {M0(rn(t), t), T1(rn(t), t), T2(rn(t), t), ...} including avail-
able magnetization M0δVρ, where δV is the volume represented by the particle
and ρ is its proton density, and relaxation times T1 and T2. Although the phantom
resources necessary to run the exemplary notebooks are provided in the online
repository, the CMRsim package does not include any digital phantoms. Therefore,
phantoms containing all required material properties must be obtained externally.
To avoid restricting the use of any external phantoms, a generic representation
as vtk files or NumPy arrays ensures compatibility with CMRsim. The simplest
representation usable in CMRsim is a dictionary of arrays, each containing one
property of all particles. Common phantoms defined on 3D uniform grids (e.g.,
Shepp-Logan) can be easily transformed into the required format.

5.2.2 Trajectory Representation

Particle motion is described using Trajectory Modules, providing an interface to
query positions r(t) at any given time point t. This abstraction decouples motion
implementation from MR signal simulation and therefore ensures modularity and
extensibility. As such, it is possible to extend motion implementation (e.g., fit a
Taylor expansion for each particle, using a neural network for motion state retrieval,
or even iteratively solving the kinematics in a turbulent flow field) without changing
the simulation logic. All information required for instantiating a specific Trajectory
Module must be provided by the dynamic digital phantom. A complete list of
available modules is provided in the API reference.

In addition to particle position information, the Trajectory Module also returns a
dictionary containing user defined field-lookups or dynamic particle properties
Γ(r(t), t) (e.g., off-resonance, coil sensitivity, hereby referred to as additional fields)
at given positions. All valid Trajectory Modules must implement at least two query
methods using the signatures defined as follows:
1. The call function

f (r0, t′, ...) → {r(t′), Γ(r(t′), t′},

with r0 ∈ RN×3, t′ ∈ RT and r(t′) ∈ RN×T×3.
(5.1)

This function provides positions r(t′) as well as properties Γ(r(t′), t′) for all given
times contained in vector t′, for a current batch of N particles. In addition to time
points, the function takes the initial position of the particles as input arguments and
can be extended with keyword arguments.
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2. Iteratively advancing particle positions for an interval of δt

f (r(t), δt) → {r(t + δt), Γ(r(t + δt), t + δt)} with r(t) ∈ RN×3. (5.2)

This method takes the current positions r(t) as well as the temporal step size δt and
returns the updated position r(t + δt) and additional fields Γ(r(t + δt), t + δt). The
method is used inside the Bloch Simulation loop in every integration step.

Examples of Trajectory Modules are PODTrajectory, TaylorTrajectory, and Turbulent-
Trajectory which are used in the demonstrations of this work as described further
down.

5.2.3 Bloch Simulation

The evolution of magnetization is described by the Bloch equations, with the
magnetization vector Mn(t) of a single particle n represented as

Mn(t) = [Mn
+(t), Mn

−(t), Mn
z (t)]

T ,

with M+ = Mx + iMy, M− = Mx − iMy
(5.3)

where Mx, My and Mz are the spatial components of the magnetization. Solving
the Bloch equations in the rotating frame of reference is achieved by discretizing
in time and iteratively updating the magnetization using a temporal step size of δt
according to

Mn(t + δt) = Tn(δt) ◦ Φn (t, δt, r(t)) ◦ R (t, δt, r(t)) ◦ Mn(t), (5.4)

where R (t, δt, r(t)) is the rotation operator corresponding to RF application, Φn (t, δt, r(t))
is the rotation operator corresponding to precession and Tn(δt) is the relaxation
operator. During every iterative step, the particle positions are updated using the
Trajectory Module. Additional fields Γ(r(t′), t′), which are required for precession-
related effects, are looked up in the same call. Detailed descriptions of all operations
involved in solving the Bloch equations, including the application of concomitant
fields, T∗

2 and off-resonances are provided in 4.2.

The MR sequence definition including RF and gradient waveform input in CMRsim
(cf. Figure 5.1) is vendor-agnostic as the Bloch Simulations are instantiated using
waveforms in the form of NumPy arrays. Thereby, gradient and complex-valued
RF waveforms as well as sampling (ACQ) events with their corresponding receiver
phases are provided on the (not necessarily uniform) simulation time grid.
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5.2.4 Analytic Simulation

Evaluating signal models derived from analytic solutions to the Bloch equations is
commonly used to avoid the computational cost of numeric Bloch simulations31,218,223–225.
Although signal models are typically only valid for a specific sequence and set
of assumptions, certain terms are transferrable among models. To enable reuse
of such terms for simulation experiments, CMRsim defines operators ψi that can
be assembled into a contrast model Ψ, which maps each particle ιn to transverse
magnetization m̃xy,n

m̃xy,n = (ψL ◦ · · · ◦ ψ0)︸ ︷︷ ︸
Ψ

(ιn) (5.5)

This composition corresponds to a pipe-and-filter approach, in which the piped
data are a set of arrays containing the properties of each particle and all L return
the apparent magnetization capturing the MR contrast defined by the operators. To
facilitate parallel computation, such as when sweeping flip angles in a gradient-echo
sequence, the array containing the complex magnetization m̃xy,n has the shape
(N, R, K). N is the (batched) number of particles, Rs the number of scan repetitions
(corresponding to different image contrasts, e.g. defined by a set of flip angles)
computed in parallel, and K is the number of k-space vectors used for Fourier
encoding. Operators can expand axis R to efficiently handle the evaluation of
multiple parameters in each of the operators (e.g., using multiple coils for each scan
repetition). The resulting shape of the complex apparent magnetization before and
after the application of an operator ψi is (N, R, K) and (N, ei ∗ R, K), where eiis the
operator’s expansion factor (e.g., number of coils or flip angles). Every operator
defines which properties must be provided in the input, and all properties are
automatically available to all operators through keyword arguments.

The apparent magnetization returned by the model is passed to the Encoding module
which calculates a discretized Fourier integral to obtain the k-space signal s(ts) at
sampling times ts, as follows

s(ts) =
N−1

∑
n=0

m̃xy,n(ts)eik(ts)·rn(ts) + η. (5.6)

The shape of s(ts) is (Πiei, R, Nη , K), where Nη is the number of independent noise
instantiations η with specified standard deviation. The volume δVn that particle
n represents, which is necessary to evaluate the discrete Fourier integration, is
contained in the apparent magnetization m̃xy,n via the particle property M0,n =
δVnρn referred to as available magnetization, as described above. The k-space vectors
and sampling times used for evaluating eq. 5.6 can be explicitly specified on module
instantiation.
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5.2.5 Dataset Handling

Dataset classes bundle recurring functionality to transform and handle dynamic
digital phantoms, such that corresponding Trajectory Modules can be instantiated.
One example illustrating the use for flow simulations is the RefillingFlowDataset.
This class requires a meshed domain containing at least a mean velocity vector field.
Since Trajectory Modules for flow require a projection of the meshed domain onto a
regular grid, this is implemented as a method in RefillingFlowDataset. Furthermore,
the class implements density estimation for a given set of particles within the mesh,
as well as a random uniform seeding and pruning of particles that have left the
meshed domain (outflow). To address inflow, a region can be specified where the
dataset seeds new particles based on the density estimation to achieve uniform
filling. Another example used in this work is the CardiacMeshDataset, implementing
a contracting left ventricle obtained from biomechanical simulations185. A complete
list of available classes can be found in the API documentation.

5.2.6 Implementation Notes

CMRsim is compatible with Python versions later than 3.6. Pre-built docker images
that contain all dependencies to run simulations are provided to decrease the
burden of installation. As speed is often a focus in MR simulations, core functions
are implemented using the Python API of TensorFlow2

241 (version > 2.11) enabling
GPU acceleration, while also maintaining compatibility for non-GPU workflows.
Furthermore, handling and visualizing 3D phantoms can be conveniently achieved
using PyVista242. The project including a package and container registry is hosted at
https://gitlab.ethz.ch/ibt-cmr/mri_simulation/cmrsim, where the link to the
full API documentation as well as a collection of examples and tutorials can be
found. Additionally, an entry on the Python packaging index https://pypi.org/

project/cmrsim/ is available, containing all necessary links.

5.2.7 Introductory Simulation Example

To demonstrate the necessary steps to run a CMRsim simulation, an introductory
example is provided in the following, including pseudo code in Figure 5.2. The
example pertains to free-breathing cine balanced steady-state free precession (bSSFP)
imaging incorporating both cardiac and respiratory motion. All details including
sequence parameters can be found in the corresponding Jupyter notebook.

A dynamic digital phantom of a contracting left ventricle was obtained from biome-
chanical simulations185. Time-resolved deformation fields were saved for every
mesh node every 4 ms. Contractile motion was assumed to be periodic and uniform
and tissue specific T1 and T2 values were assigned to all nodes. Mesh nodes were
then resampled to a higher density to alleviate discretization artifacts187.
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Figure 5.2: Pseudocode for the introductory example. The program is divided into sections: first loading
and preparing the dynamic digital phantom, secondly initializing the required CMRsim objects, thirdly
calling the CMRsim objects to perform the simulation and finally saving the k-space data.
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To achieve consistent proton density over time, the available equilibrium magne-
tization M0 per particle (defining a weight for spatial integration) was computed
from mesh-cell volumes and evaluated for each repetition time (TR) of the sequence.
Breathing motion was assumed to be translational along the foot-head direction and
implemented using the SimpleBreathingMotion module, which uses time-dependent
breathing amplitudes and direction as input. Cardiac motion was parameterized
using Proper Orthogonal Decomposition (POD), implemented in the PODTrajectory
module, allowing to arbitrarily define the time resolution for sampling the deforma-
tion fields243,244. The Bloch Simulation module was instantiated containing the RF
and gradient waveforms as well as ACQ events for all sequence TRs. Although the
temporal reference of these arrays is not required to be uniform, all given arrays
must be defined using the same temporal grid. The Bloch Simulation module was
called once for each TR, using the particle definitions obtained from the CardiacMesh-
Dataset module as input. For each TR, the Bloch Simulation module accumulates
the MR signal at timings according to the defined temporal grid. The complete
k-space data can be retrieved by reading the samples from all signal accumulators
contained in theBloch Simulation module. Supporting information S1 contains a
Jupyter notebook showing the corresponding Python code.

5.2.8 Advanced Simulation Examples

Turbulent Flow Imaging Downstream of a Stenosis

This example illustrates a spoiled gradient echo (GRE)113,116 simulation of tur-
bulent flow downstream of a stenotic section. Figure 5.3 shows a flowchart of
the simulation experiment. The NumPy arrays defining gradient and RF wave-
forms, as well as sampling events were generated using the CMRseq210 package.
In addition to the unweighted reference, six velocity encodings (VENCs) were
used: (550, 50, 250, 50, 100, 50)cm s−1 in directions [(0, 0, 1), (0, 0, 1), (0, 1, 0), (0, 1, 0),
(1, 0, 0), (1, 0, 0)]. The mean velocity within the meshed domain was approximately
80 cm s−1. The sequence parameters were TR = 10 mm, TE = 5 ms and a flip angle
of 15°. A schematic illustration is in included in Figure 5.3c. Imaging resolution was
set to 2 mm × 2 mm with a FOV 22.2 cm × 14.2 cm. The temporal grid size was set
to 10 µs. The target density for initial seeding as well as for reseeding was 5 mm−3

resulting in a total of 1.5 million particles. Reconstruction was performed by inverse
Fourier transformation.
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Figure 5.3: Simulation of turbulent flow imaging downstream of a stenosis. a) A Dataset class is
instantiated using the mesh, mean velocity, and Reynolds stress tensors (RST) obtained from a prior
computational fluid dynamics (CFD) simulation. b) The orange box shows the inflow region where
density-based reseeding is performed. c) The instantiation of the Trajectory Module requires the CFD
mesh to be projected onto a uniform grid serving as a lookup map for the velocity and stress tensors. d)
When calling the Bloch Simulation module, the particle positions are updated by the Trajectory Module.
e) The MR sequence definition is used to get an array representation of timing, RF pulses, gradients,
and acquisition (ACQ) events per sequence TR. f) Looping over TRs and interleaving the reseeding
is captured by a flow simulation template. Calling the simulation yields k-space data for each velocity
encoding (VENC). The functionality implemented by CMRsim is marked by dark blue boxes.

The dynamic digital phantom, consisting of the meshed domain containing mean
velocity and Reynolds stress tensor fields (c.f. Figure 3a), was generated using a
Large Eddy Simulation (LES) on a previously published geometry183. The mesh
was used to create a RefillingFlowDataset instance. The inflow region was placed
upstream of the stenosis as shown in Figure 5.3b. Reseeding and pruning of outflow
were performed after every TR.

The positional update for all particles is performed by a TurbulentTrajectory instance.
For initial position rn(t) = [xn(t), yn(t), zn(t)]

T , the updated position at time t + δt
is calculated as

rn(t + δt) = rn(t) + δtvn(t), (5.7)

where the velocity vector vn(t) is obtained by a lookup of the velocity field at
location rn(t) containing the mean velocity U(rn), Lund transformation245 based
on the Cholesky decomposition of the Reynolds stress tensor a(rn) ∈ R3×3 and Lan-
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grangian integral time scale τ(rn). For each particle, a turbulent velocity component
un(t) is computed by solving the Markov chain integration of the modified classical
Langevin equation246

un(t + δt) = un(t)e
− δt/τ (rn(t)) + ζ(rn(t))a(rn(t))

√
1 − e− 2δt/τ (rn(t)), (5.8)

where ζ(rn(t)) = N 3(0, 1). Accordingly, the total velocity vector update per step
follows as

vn(t) = U(rn(t))︸ ︷︷ ︸
mean

+ un(t)︸ ︷︷ ︸
turbulent

. (5.9)

To evaluate the functionality of the TurbulentTrajectory module, trajectories were
tracked in a separate experiment only involving motion simulation. This included re-
seeding assuming 50 TRs each 5 ms long and a target density of 1 mm−3. To evaluate
density conservation, the final particle density was calculated. A detailed description
of all steps as well as additional illustrations are available in the corresponding
Jupyter notebook.

Cardiac Diffusion Tensor Imaging

The experiment described in this section aims at studying the effect of cardiac
motion-induced phase on cardiac diffusion tensor estimation when using acceleration-
compensated diffusion encoding with spin-echoes (SE-M012)29. The SE-M012 single-
shot EPI sequence including binomial excitation pulses was defined using CMRseq210.
The temporal grid for RF and gradient waveforms was set to 100 µs. The EPI readout
was defined using a 91 × 49 matrix and an in-plane resolution of 2 mm × 2 mm.
Diffusion encoding included 3 low (100 s/mm2) and 9 high (450 s/mm2) b-values247.
All timings and waveforms required in the analytic signal model were obtained
from this sequence definition as shown in Figure 5.4. The model used for computing
the coil- and diffusion weighted apparent transverse magnetization is given by

m̃xy,n(ts) =
[
ψC ◦ ψDi f f ◦ ψT∗

2
◦ ψ∆B0 ◦ ψϕ ◦ ψSE ◦ ιn

]
, (5.10)

with

ψSE = M0,ne
− TE

T2,n

(
1 − e

− TR
T1,n

)
, (5.11)

ψϕeiγ
∫ tb

ta
G(t)·rn(t)dt, (5.12)

ψ∆B0 = e−iγ∆B0,n |ts−TE|, (5.13)

ψT∗
2
= e

− |ts−TE|
T∗2 n , (5.14)
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ψDi f f = e−bgT Dng, (5.15)

ψC = C(rn), (5.16)

(5.17)

where T∗
2,n, T2,n, T1,n, ∆B0,n, Dn, and M0, n refer to relaxation times, off-resonance,

diffusion tensor and available magnetization. Parameters are coil sensitivities C(rn)
at particle location rn, sampling times ts, linear diffusion weightings (b, g), gradient
waveforms G(t) defined from ta to tb, echo time TE and repetition time TR. k-space
vectors for sampling times are denoted k(ts), complex Gaussian noise is denoted as
η.

The MRXCAT 2.0 workflow189 was used to generate a dynamic digital phantom,
yielding a co-registered, texturized background and a mesh model of a contracting
left ventricle (LV) with 4801 mesh nodes. The off-resonance frequency for each
particle for one static configuration was calculated as described in176 starting from
typical susceptibilities as implemented in the RegularGridDataset module. The off-
resonance per particle was assumed to be approximately constant over the duration
of the EPI readout.

To reduce the effect of discretization artifacts, the CardiacMeshDataset implements
functionality to refine the mesh as well as to render and inspect the motion trajecto-
ries of all mesh nodes. The trajectory of the refined mesh nodes for all snapshots
between 150 ms and 350 ms is captured by the PODTrajectory module. To evaluate
the diffusion weighting operator, spatially coherent random diffusion tensors were
assigned to all LV mesh nodes according to the sampling procedure described in222.
A slab of 30 mm thickness was extracted from the LV as well as the background
phantom surrounding the target field of view with a margin of 20 mm. Breathing
motion was incorporated by assuming a periodic global translation of the slab and
the LV using the SimpleBreathingMotion module. Figure 5.4 provides an overview of
the process.

To obtain an estimate of the diffusion tensors without the necessity of registering
the data, a second simulation run without breathing motion was conducted. All
reconstructions were performed using the NUFFT implementation of the BART
Toolbox248. A detailed description of all for all steps as well as additional illustrations
are available in the corresponding notebook.

5.3 Results

5.3.1 Introductory Simulation Example

The range of motion of the contracting left ventricle over the duration of image
acquisition, including the constant position of the excitation slice is illustrated in
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Figure 5.4: Simulation of cardiac diffusion tensor imaging. a) The dynamic digital phantom consists of a
contracting left-ventricular (LV) mesh and background derived from MRXCAT2.0. b) Off-resonances for
all particle locations are computed using the RegularGridDataset module. c,d) The LV mesh is refined
using the CardiacMeshDataset module c) and used as input to generate random diffusion tensors per
mesh node using the cmr-random-diffmaps package d). e,f) The Trajectory Module e) and AnalyticDataset
f) (responsible for streaming of data to GPU) are instantiated from all particles and their properties
contained in the refined dynamic digital phantom. The properties M0, T1, T2, T∗

2 , r(t), D, ∆B0 refer to
available magnetization, relaxation times, the discretized particle trajectory, diffusion tensor, and off-
resonance. g, h) From the sequence parameters and waveforms g), the AnalyticSimulation module h)
including the Contrast Model and Encoding module ψFT is constructed. Parameters derived from the
sequence definition are sampling times tk and k-space vectors k(tk), linear diffusion weighting with
b-value b and direction g, discretized diffusion gradient waveform gD(t), echo time TE, and RR-interval
time TRR . The Contrast Model consists of the operators ψC (coil sensitivity weighting), ψDiff (model-based
diffusion weighting), ψT∗2

(T∗
2 -weighting), ψ∆B0 (off-resonance weighting during readout), ψϕ (phase

accumulation during diffusion encoding) and ψSE (spin-echo contrast). The apparent magnetization
m̃xy computed by the Contrast Model has the shape (#particles, #coils · #diffusion-weightings, #k-space
samples). Calling the AnalyticSimulation instance yields k-space data of shape (#coils · #diffusion-
weightings, #noise-instantiations, #k-space samples).
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Figure 5.5a). Figure 5.5b) shows the image resulting from the simulation as described
in the methods section. For comparison the simulation was repeated using only
contractile motion (Figure 5.5c) and no motion (Figure 5.5d). The number of dummy
shots was set to 81, which results in steady state magnetization within the imaging
slice for the static phantom. The ghosts appearing in Figures 5.5b) and c) are caused
by non-steady state magnetization entering the excitation slice due to through-plane
motion. Motion blurring corresponding to breathing and cardiac motion can be
seen in Figures 5.5b) and c) but not in d) as expected.

Figure 5.5: a) Illustration of the range of motion including breathing and contraction over 750 ms
(duration of the simulated sequence). The red arrow indicates the translation of the center of mass
from the initial position (light blue mesh) to the final position (light green mesh). The constant slice
for excitation is indicated by the black opaque box. The images correspond to simulation runs with b)
combined breathing and contractile motion, c) contractile motion only and d) static phantom.

The total simulation time was 128 s when motion of the approximately 385.000
particles was included, while for the static case the simulation took 62 s on a
NVIDIA TITAN RTX. For all three cases the sequence duration was about 750 ms
using a maximal temporal step size of 10 µs.

5.3.2 Turbulent Flow Imaging Downstream of a Stenosis

Figure 5.6a) and 5.6b) contain the density estimation at the end of particle tracking
as two-dimensional histograms in y-z and x-y plane. The histograms show homo-
geneity in the outflow and inflow region. Figure 5.6c) shows the trajectories for a
subset of particles. Velocity fluctuations in the post-stenotic region as well as the
laminar flow at the inlet of the U-bend can be seen.

The images resulting from the simulation are shown in Figure 7. The third and fourth
rows show the phase difference from which the mean-velocity can be evaluated
as well as Turbulent Kinetic Energy (TKE). As expected, multiple phase wraps are
present when the VENC is too low, specifically along the flow direction (phase
difference in Figure 5.7c). With a larger VENC phase wrapping is not present and
a jet can be seen (phase difference in Figure 5.7b). Additionally, as the Cartesian
readout is parallel to the jet, the zero-VENC case shows a jet structure in the
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Figure 5.6: a) 2D histogram of particles at their final location within a central 10mm thick slice in the
y-z plane after repeated reseeding and trajectory integration according to eq. (17) b) 2D histogram in
the x-y-plane of the same particle configuration as in a); c) shows the integrated trajectories for a set of
particles initially placed in a line right before the stenosis.

Figure 5.7: Simulation for the phase contrast imaging of turbulent flow downstream of a stenosis in
a UBend. Columns a) to g) correspond to the applied velocity encoding. Rows one and two show
the simulated magnitude, and phase images. Row three shows the phase difference relative to the
non-encoded reference image a). Bottom row shows the estimated turbulent kinetic energy. Color bars
correspond to all images contained in the row above it. TKE, turbulent kinetic energy; VENC, velocity
encoding.

phase image (phase in Figure 5.7a). At larger VENC, TKE estimates show minimal
structure, however at lower VENC turbulence around the jet is seen (Figures 5.7c,e,g).
All magnitude images show some degree of signal loss due to intra-voxel dephasing,
as expected.

The total duration of the simulation for all seven VENCs was 29 minutes on a single
NVIDIA TITAN RTX (24 Gb) including re-seeding. The number of particles was
approximately 1.5 million. Based on the sequence definition (71 k-space lines with
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a TR of 10 ms) approximately 71.000 temporal integration steps were performed.
Re-seeding per TR took approximately 20% of the simulation time.

5.3.3 Cardiac Diffusion Tensor Imaging

Figure 5.8 shows the magnitude and phase of a subset of simulated images. Rows
correspond to magnitude and phase, with each column corresponding to one
diffusion weighting. The overlay of the LV mask obtained from the motion state
of the unweighted image emphasizes the displacements due to breathing motion.
Furthermore, magnitude decay due to diffusion weighing can be seen. Phase images
show both phase variation due to the coil sensitivities as well as residual motion
sensitization of the diffusion waveform in the left ventricle.

Figure 5.8: Magnitude (upper row) and phase images (lower row) obtained from analytic simulation.
Each column corresponds to a single diffusion weighting. Residual motion sensitivity can be seen by the
diffusion-weighting dependent phase inside the LV. The translational displacement between TRs is due
to breathing motion.

The estimation of tensor metrics shown in Figure 5.9 was performed on images
simulated without breathing motion to mitigate the necessity of registration. The
upper row of maps / blue curves correspond to a simulation without motion-
induced phase, while orange curves and the second row of maps show results with
motion phase. As expected, the phase-gradient introduced by strain within the LV
results in increased mean diffusivity estimation (MD). The distributions of and
fractional anisotropy (FA) correspond to the randomly sampled diffusion tensors
(compare Figure 5.4).

Evaluation of the signal model took 6 s, using approximately 200 000 particles. As the
motion-induced phase due to the diffusion gradient waveforms was only evaluated
for the LV, the simulation time per image was approximately 10 s including the
computation of trajectories on a 100 µs grid for approximately 50 000 particles on a
single NVIDIA TITAN RTX (24 Gb).
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Figure 5.9: Diffusion tensor estimation on the magnitude data obtained from simulation without
breathing motion. Columns from left to right show mean diffusivity (MD), fractional anisotropy (FA),
helix angle (HA) and sheetlet angle (E2A). The histograms in the top row show the distribution withing
the masked maps in the bottom row. The first row of images corresponds to the blue lines and markers
in the histogram plots, therefore including no motion induced phase in the tensor estimation. Lower row
images and orange plots correspond to simulation incorporating motion phase respectively.

5.4 Discussion and Conclusion

In this work we have presented an open-source Python CMR simulator facilitating
the incorporation of complex organ motion and flow. Our numerical experiments
show that CMRsim results in expected motion effects such as motion-induced phase
accumulation and magnitude modulation due to intra-voxel phase gradients and
incoherent motion.

The most significant and relevant feature of CMRsim is the decoupling of motion
implementation from the MR signal simulation by introducing Trajectory Modules.
This allows the incorporation of virtually any Langrangian motion description and
reduces the requirements for adding custom modules. The choice of not relying
on a rasterized phantom comes at the cost of computing magnetization density.
This limitation also holds for calculating fields that usually depend on the phantom
state such as off-resonance or B1 maps. The definition of CMRsim Trajectory Modules
easily allows the incorporation of these properties as additional fields, if they are
computed prior to MR simulation and therefore contained in the dynamic digital
phantom. Accordingly, in contrast to frameworks that include pre-defined digital
phantoms or require a regular spatial grid, some aspects are shifted to the choice
of the correct modeling approach for each dynamic digital phantom. While this is
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not fundamentally included in CMRsim, the package does include functionality to
handle specific phantoms as presented in this work.

The limitations of the modeling approach can be discussed based on the presented
diffusion simulation example. Here a separation of scales between diffusional
and bulk motion is assumed. Furthermore, the diffusion encoding is assumed to
only capture the Gaussian component, which holds true only for certain b-value
ranges27,57. If detailed microstructure is of interest, Monte-Carlo simulations in
realistic microstructures206,249,250 are a suitable method, which in principle could
also be implemented within a Trajectory Module.

Furthermore, for flow in deformable meshes incorporating fluid–structure interac-
tions, feasibility depends on whether the projected flow fields (as currently required
by CMRsim) are sufficient for particle tracking methods. Although technically this
is possible to implement in CMRsim (similar to the readily available pulsatile flow
simulation), it is untested and requires future development. Another aspect that is
easily implemented in CMRsim but needs practical consideration is the interleaving
of particle interactions or projections of the particle distribution to a mesh or grid,
such as used for the density estimation in refilling. If the required interval for these
interleaved calculations is about 100 times the temporal step of the Bloch solver,
the Lagrangian description may become computationally inefficient, and combined
MR–computational fluid dynamics simulations can be preferable.

A key objective of CMRsim was to develop a package in Python focusing on
maintainability, usability and extensibility. Firstly, Python is widespread in science,
is seen as comparably beginner friendly, has a large community with many scientific
packages and its GPL compatible license supports open-source availability. Secondly,
due to the absence of a build process and the dynamic nature of Python, code
changes are easier than in a compiled language. Finally, using TensorFlow for
the computationally heavy tasks reduces the maintenance component of checking
compatibility for system-specific drivers. Leveraging the provided containers and
python packages provided by TensorFlow ensures long-term maintenance and, as
such, transferability to modern systems is anticipated to be more easily feasible
than reported for i.e. JEMRIS and MRIlab61.

To achieve good extensibility, CMRsim abstracts recurring computations into mod-
ules with minimal coupling. Therefore, changing functionality inside single oper-
ators does not require changes in other code locations. This allows, for example,
to implement new contrast models without cloning the CMRsim repository. Aside
from code quality, providing development environments is crucial to reduce the
threshold to use and extend the functionality of a package. To this end, several
docker containers are provided in the project container registry. To make the pack-
age usable, documentation including examples is crucial. Furthermore, catching
breaking changes increases robustness to feature extensions. To this end, automatic
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unit-test execution, and package documentation as well as docker image builds
using GitLab’s CI/CD functionality are set up for CMRsim.

While other frameworks require sequence definition files either internally defined or
obtained from other packages, CMRsim uses NumPy arrays. CMRsim deliberately
does not contain functionality to define MR sequences as this functionality is not
inherent to the simulation logic and therefore should be implemented separately, for
example using (Py)Pulseq211,212. Sequence definitions for the experiments described
in this work were based on CMRseq210.

In conclusion, CMRsim is a simulation framework that allows the incorporation of
complex motion to systematically study advanced CMR acquisition and reconstruc-
tion approaches. The open-source package features modularity and transparency
facilitating maintainability and extensibility in support of reproducible research.

5.5 Appendix A

This section was moved to 4.2.

5.6 Appendix B - Comparison to External Implementations

This section is meant to provide a perspective on how incorporating motion into
MR simulations potentially can be achieved without using CMRsim. JEMRIS60 is
chosen as reference, as it is the only available framework allowing to specify particle
trajectories in Bloch simulations. In JEMRIS, these trajectories are read from a file;
hence, the user is required to calculate and correctly write particle trajectories using
the same temporal grid used in the MR sequence definition before MR simulation.

For flow simulations, this specifically requires the user to perform particle tracking,
reseeding, and trimming themselves, resulting in particle trajectories that need to
be written/read for each TR in the sequence. Furthermore, as often more than 4

million particles are used for flow simulation, these files can easily exceed 10 GB,
hence adding significant read/write overhead.

Finally, a rough comparison can be made for simulation times based on the results
of232. They presented an example of a one-dimensional PC simulation in JEMRIS,
with a simulation time of 330 min when using 600 CPU cores on the ROMEO
HPC center. In comparison, a simulation with matching particle count, TR (in ms),
and number of TRs in CMRsim takes about 180 min on a Titan RTX. Furthermore,
it is unclear whether the JEMRIS simulation time includes particle tracking and
reseeding, which is included in the CMRsim simulation time.
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5.7 Appendix C - Performance and Scaling

Memory use in CMRsim is driven primarily by the size of the digital phantom
mesh and the number of particles, with memory scaling linearly with both. Both
simulation paradigms are implemented such that the particles are processed in
batches, assuming the trivial decomposition of noninteractive particles during signal
evaluation. Therefore, memory requirements can generally be alleviated by choosing
smaller batch sizes.

An upper estimate for a large mesh (2503×25 timesteps for pulsatile flow × 4
fields) and 100 million particles requires about 12 GB of memory (6 GB for each);
however, this level of detail is often unnecessary and typical simulations require
less than 5 GB. With modern GPUs commonly exceeding 20 GB of memory, these
simulations are easily attainable. Time complexity can be divided into reseeding
and core simulation, with both scaling linearly with particle count, while the core
simulation additionally scales linearly with number of timesteps.

Both analytic and Bloch simulations obey the same scaling laws; however, generally,
analytic simulations can allow lower particle densities and reduced number of
timesteps per TR, decreasing the simulation time.

Finally, simulation time can be decreased by reducing particle count or number of
timesteps, although this may lead to discretization errors or particle density errors.
Otherwise, methods of reducing real-world scan time work as well, such as reduced
matrix size, increased gradient performance, or undersampling.
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As shown in the previous sections, diffusional and tissue motion are encoded into
the complex-valued MR signal. Aside from spin motion, the signal includes statistic
effects such as sample noise as well as deterministic effects, i.e. the point-spread-
function (PSF), partial-volume effects, local field homogeneity and eddy currents.
A forward model capturing all relevant physical processes can be represented as a
mapping F (ρ|Ω) with parameters Ω, which maps some ground-truth parameters
ρ to a set of signals s.

Figure 6.1: Illustration of the inverse problem of estimating tissue parameters ρ from a set of measured
signal s, assumed to result from the forward modelF (ρ|Ω) containing the model parameters Ω, using
an inference model V(s; Ω).

Since the acquisition is partially stochastic, this mapping corresponds to the con-
ditional probability p(s|ρ). For in-vivo measurements, the prior distribution of
true tissue parameters p(ρ) is not known. Estimating the tissue parameters from
given s, hence the inversion of mapping F (ρ|Ω) usually corresponds to finding
a point estimate based on the posterior distribution. To this end, the following
sections introduce three commonly used point estimates and their corresponding
background.

6.1 Linear Models
This section is based on [251]

Linear models are used as a simple tool to describe processes in quantitative fields
of study. Their advantage is the simplicity and favourable analytic properties, while
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providing sufficiently accurate results in many cases. The description of a linear
model yielding the observation y as linear combination of a set of L predictors xl

y = ΣL
l=0xl βl + ϵ, (6.1)

where the constant term x0 = 1 is introduced to incorporate the intercept value
β0, and ϵ is a random error, e.g. due to measurement noise. The model is linear
in the coefficients βi, such that non-linear transformations of the predictors (such
as the exponential magnitude decay in diffusion) can be included without losing
the property of linearity. The random error is typically assumed to be a zero-mean
and uncorrelated between measurements, while having the same variance in each
measurement. When processing magnitude data as in cDTI it should be noted, that
the noise is Rician distributed with non-zero mean252, which becomes especially
relevant for low signal-to-noise ratio (SNR) data. For a set of n measurements
contained in the vector y, Equation 6.1 can be written in matrix form

y = Xβ + ϵ, (6.2)

where X ∈ Rn×(L+1) is the so-called design matrix, defined by the forward model
and its parameters F (ρ|Ω).

Minimizing the residual sum of square (or least squares approach) under the as-
sumption of zero-mean random error, is guaranteed to result the unbiased estimator
β̂ with minimal variance

β̂ = arg min
β

|y − Xβ|22 = (XTX)−1XTy. (6.3)

This also holds in case of non-spherical errors, which means the variance varies
for different predictors xi and are allowed to be correlated. The generalized least
squares solution in this case is given by the unbiased, minimum variance estimator

β̂ = (XTV−1X)−1XTV−1y, (6.4)

where the positive definite matrix V is given by the covariance matrix of the error
cov(ϵ) = σ2V.

Assuming, the error terms to be a (multivariate) Gaussian random variable, the
least squares solution (eq. 6.3/6.4) is equal to the maximum likelihood estimator.
Referencing Figure 6.1, this means, the estimated tissue parameters are the ones
maximizing the likelihood of obtaining the given signal given by p(s|ρ).

6.2 Bayesian Modelling
This section is based on [251]

68



6.3 learning based methods

In Bayesian methods, the full posterior distribution of the tissue parameter given
the signal p(ρ|s) is modelled by as composition of parameterized, closed-form
distributions. Using Bayes’ rule the posterior evaluates to

p(ρ|s) = p(s|ρ)p(ρ)∫
p(s|ρ)p(ρ)dρ

, (6.5)

where the denominator is independent of the parameters and can be calculated by
sampling the learned priors. The learning process consists of choosing a statistical
model for p(s|ρ) and updating the priors according to the observed data points.
While Bayesian hierarchical modelling has been used to improve Intra-Voxel In-
coherent Motion (IVIM) inference253–255, explicitly modelling the distribution for
tensor-valued inference quickly becomes too complex to be efficiently handled. A
commonly used point estimate is the maximum posterior (MAP)

ρ̂MAP = arg max
ρ

{p(ρ)p(s|ρ)}. (6.6)

When the full posterior is not available, the MAP can be obtained via regularized
least square estimates, where the L2-regularization corresponds to a Gaussian
prior on the parameters p(ρ) ~N (µ, σ) and the L1-regularization corresponds to a
Laplacian prior.

6.3 Learning Based Methods

In recent years, the success of neural networks in a variety of fields and their
basic principles have been discussed. For a detailed introduction into theoretical
background, implementation aspects, parameter optimization and application see
[256]. This section is restricted to stating a few implications, relevant for using
neural networks as inference model in diffusion tensor imaging.

All neural networks are fundamentally a parameterized function estimator Vθ(s) →
ρ that inverts the forward model F (ρ|Ω), where θ contains all parameters of the
network. The process of minimizing a loss function, e.g. the squared difference be-
tween network prediction and ground truth with respect to the network parameters
θ over a joint distribution p(s, ρ)

min
θ
Ep(s,ρ)|ρ − Vθ(s)|22 (6.7)

is called supervised training. To this end, a training data set T containing data and
the corresponding ground truth (referred to as labels) is required. The optimality
condition for the functional Vθ in eq. 6.7, obtained using the corresponding Euler-
Lagrange equation shows that the point estimate from a neural network trained this
way, yields the mean of the posterior. In case of a multi-modal posterior, e.g. due to
mixed signal of healthy and diseased tissue, this point estimate is not particularly
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good as the modes are averaged. One strategy to address this, is to introduce a
variational approximation of the posterior distribution as output of the network and
using the Kullback-Leibler divergence

DKL(p||q) = ΣX∈T p(X) · log
(

p(X)

q(X)

)
, (6.8)

as loss (measuring the similarity of two distributions p and q), such that the training
becomes

min
θ

DKL(p(ρ|s)||Vθ(s)), (6.9)

where X are the examples in the training set T . Another approach is the field of vari-
ational networks, where the prediction of the network becomes non-deterministic
and by sampling outputs an estimate of the learned posterior distribution can be
obtained257.

As real ground truth is intrinsically not available in CMR the construction of
training datasets for tissue parameters requires special attention. Biases in the
training dataset were shown to transfer to the predictive performance of networks55.
To address the problem of missing ground truth data, the approach of training
networks on synthetic data obtained from simulation has been proposed58,258. Using
parameterized anatomic models and tailored priors of tissue parameters allows
to generate training sets with control over statistical properties (see chapter 4).
Furthermore, the out-of-sample behaviour, i.e. how the network predicts when
being presented a sample, that lies outside of the ranges of the training data, can be
accessed this way. This is especially relevant in the context of medical imaging to
estimate the robustness of Deep Learning (DL) assisted classifiers56.

A type of neural network architectures particularly successful in the field of image
processing are Convolutional Neural Networks (CNN). In CNNs, convolutions
with learnable filters with non-linear activation functions as well as down- and
up-sampling operations are concatenated. The inductive bias of picking up local
spatial information as intrinsic feature of convolutions makes these networks very
efficient in many computer vision tasks. The concatenation of convolutions and
down sampling operations increase the area from which information is processed
in the subsequent step, thereby implicitly performing a multi-scale analysis of the
image. To prevent the network from learning spurious correlations, e.g. based on
image position, organ shape or similar, the architecture should be chosen according
to the expected features in the data.
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7.1 Introduction

Cardiac Diffusion Tensor Imaging (cDTI) provides invaluable information about
the state of the myocardial microstructure20,23,24,163. Although it is a promising
technique, challenges with respect to motion sensitivity remain to be addressed11,12.
Cardiac motion-induced signal loss during data acquisition in spin-echo sequences
can be alleviated by using second-order motion-compensated diffusion gradient
waveforms29,30,145,163,170. Despite the use of respiratory navigators, patient-friendly
free-breathing acquisition strategies often result in spatial misalignment of the data.
Therefore, the use of non-rigid registration prior to parameter inference is required.
However, this registration step is a challenging task because of the varying contrast,
the intrinsically low signal-to-noise ratio (SNR), geometrical distortions due to local
off-resonances in the heart and partial volume effects, which are especially relevant
at the myocardial borders. The standard data processing approach includes the use
of non-rigid intensity-based registration algorithms as e.g. the elastix toolbox96 or
parameterized total variation (pTV) registration97. Motion registration can result in
significant differences of estimated diffusion tensors when compared to a breath-
hold acquisition98. Part of this issue is associated with the ill-conditioning of the
registration problem, which can cause larger variations in the subsequent diffu-
sion tensor estimation. As these variations are especially prominent at myocardial
borders, the evaluation of tensor metrics is commonly performed within a mask
excluding the left-ventricular (LV) borders12.

To reduce the variations in estimated diffusion metrics, regularized fitting algorithms
can be applied. For example, a hierarchical Bayesian framework has been used to
model the expected marginal distribution of the estimated parameters as well as their
spatial correlations253–255. While these works directly infer diffusion tensor metrics,
such as mean diffusivity (MD) and fractional anisotropy (FA), their application
to obtain full diffusion tensors from motion-affected data is not trivial, as explicit
modeling the spatial correlations of tensors and motion can quickly become too
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complex to be handled efficiently. Furthermore, taking both healthy and lesion
tissue into account requires Gaussian mixture models, which increase complexity
and compromise stability of Bayesian inference. Another approach to incorporate
the data’s spatial structure for tensor inference is the application of convolutional
neural networks (CNNs)53. However, when training such networks on in-vivo data,
parameter distributions of the training datasets can introduce potential biases into
tensor estimation259. Furthermore, ground truth diffusion tensor information of
in-vivo cDTI data is inherently not available. Synthetic data, on the other hand, can
provide ground truth, facilitating quantitative analysis of inference accuracy and
precision. Additionally, when exclusively using synthetically generated data to train
neural networks, all distributions of parameters are controllable. This allows to test
the algorithm’s performance also on out-of-distribution samples and increases the
interpretability of results.

In the work at hand we propose a parameterized pipeline to synthesize free-
breathing cDTI data with physiologically plausible statistics and subsequently train
a CNN to infer full diffusion tensors directly from unregistered in-silico and in-vivo
cDTI data, exclusively using synthetic data for training. We hypothesize that inte-
grating the explicit, intensity-based registration step into the synthetically CNN
yields higher precision and accuracy of the estimated diffusion tensors. The quantita-
tive analysis on synthetic test data shows reduced errors with the CNN compared to
the reference method, which uses conventional intensity-based registration followed
by linear least-square (LLSQ) tensor estimation. Furthermore, we show that training
on synthetic data transfers well to in-vivo data. Moreover, when only subsets of data
averages are used, the network still yields high quality predictions. By augmenting
the in-vivo data with artificial lesions we demonstrate that our approach is able to
discriminate healthy from diseased tissue.

7.2 Methods

7.2.1 In-vivo Acquisition Protocol

Data of 5 healthy volunteers (2 male) was acquired on a 1.5 T clinical MR system
(Philips Healthcare, Best, Netherlands) upon written informed consent according
to ethics and institutional guidelines. The gradient system of the scanner delivers
80 mT m−1 at 100 mT m−1 s−1 slew-rate. A 32-channel cardiac coil was used as re-
ceive array. Imaging was performed using a spin-echo sequence with single-shot
echo-planar imaging (EPI) readout and acceleration-compensated diffusion gradient
waveforms (M012)29. The protocol consisted of navigator-gated (5 mm - window)
free-breathing acquisitions of 12 diffusion directions with 10 averages each, includ-
ing 3 directions with 100 s/mm2 and 9 directions with 450 s/mm2163. Three slices
were obtained (apical, mid-ventricular, basal). The data was reconstructed using
ReconFrame (GyroTools LLC, Winterthur, Switzerland). For reference, all images
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were also registered to the first diffusion-weighted image using the pTV-registration
toolbox97. The left ventricle was manually segmented based on the first average of
the first diffusion direction.

7.2.2 Synthetic Data Generation

The data synthesis pipeline is illustrated in Figure 7.1. All parts of the pipeline were
implemented in Python (3.8) and TensorFlow (2.3)241. To obtain realistic binary LV
masks, varying in shape and size, we used myocardial segmentations from systolic
short-axis views provided in the ACDC dataset260. No other information than the
binary masks were used from the ACDC data. The set of masks was then split
into two subsets of 491 training and 69 test examples, while no subject case of the
ACDC dataset was included in both datasets. The masks were resized, shifted and
embedded into a reference short-axis slice of the XCAT phantom193,218 such that
the center of mass and size aligned with the reference LV. The spatial dimensions of
the phantom, the field of view and the physical properties (proton density, T1, T2)
per tissue type were taken from the MRXCAT framework218.

For each dataset, one LV mask was randomly chosen, and a helix angle (HA) map
as well as an absolute sheetlet angle (E2A) map were generated. Given that more
training datasets than unique LV mask were generated, the random choice of LV
masks was performed with replacement. The helix angle linearly varied from −60°
to 60° over the transmural direction, while the E2A map was constructed randomly
to contain blob-like areas of high and low values with smooth transitions (see 7.5.1).
A subset of LV mask pixels was randomly sampled as reference positions. For each
reference position, an eigenvalue triple Λ = (λ1, λ2, λ3) was sampled to generate
diffusion tensors according to D = Ûdiag(Λ)ÛT , where the eigenbasis hatU was
defined by HA and E2A. The rejection-acceptance sampling process yielding the
eigenvalue triples, resulted in uniform distributions of MD and FA over specified
ranges (see 7.5.2). The ranges were set to match the values reported in a patient
study by Das et al.20. The spatial structure of the tensor maps was introduced by
interpolating the reference tensors in log-Euclidian space using a kernel of radial
basis functions (RBF) κσ(d) with kernel-width σ261:

log D(rn) =
Σmκσ (d(rn, rm)) log D(rm)

Σmκσ (d(rn, rm))
, (7.1)

where log denotes the matrix logarithm and D(rn) denotes a diffusion tensor
assigned to location rn. The distance d(rn, rm) was defined as the geodesic in the
coordinate system of transmural depth and polar angle (see 7.5.3).

In half of the training datasets a lesion was included. Healthy and lesioned tissue was
defined by using different sampling intervals of MD and FA for the eigenvalue triples
based on data reported in patient studies20. For each example two tensor-maps were
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Figure 7.1: Flow chart of synthetic data generation. Starting from top left: based on a left-ventricular (LV)
mask, helix angle (HA) and sheet angle (E2A) maps are generated. Combined with random eigenvalue
triples, reference tensors are constructed at random locations within the mask, which are subsequently
interpolated to all LV points. Random lesion maps are used to compose tensor maps of healthy and
lesioned tissue. Displacement fields obtained from in-vivo data, the generated tensor map and physical
property maps are used as input to the signal model. The signal model is evaluated once without motion
and noise (left) and once with motion and noise (right). The former is used to generate the training
labels, while the latter serves as input to the network.
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generated, using healthy and lesioned tissue eigenvalue triples correspondingly. A
randomly generated lesion mask (see Appendix A) was then used to compose them.
The tensor maps for healthy and lesioned tissue were composed according to the
mask defining the lesion location, while HA and E2A for both tensor maps were
identical.

To introduce respiratory motion, deformation fields obtained from previous in-
vivo data25 were randomly selected and applied in simulations. To this end, the
deformation fields were aligned and scaled to match location and size of the LV
mask, and split across the training and test sets. For each synthetic data collection,
a subset of 119 deformation fields were used and further perturbed to increase
variability. As the first of the 120 images served as the reference motion configuration,
no deformation field was applied in this case.

Image generation was achieved by evaluating the signal model using the digital
phantom as input with its material point properties {ρ, T1, T2, T∗

2 , D}. The resulting
k-space signal s(k, tk, b, g) for a given diffusion weighting with b-value b and the
unit orientation vector of the diffusion encoding gradient g is calculated as:

s(k, tk, b, g) =Σpc(rp)ρ(rp)
(

1 − e− TR/T1(rp)
)

e− TE/T2(rp)...

... e− |tk − TE |/T∗
2 (rp)e−bgT D(rp)ge−ik(tk)·rp + η.

(7.2)

Index p runs over all material points in the digital phantom, which was defined on
a 5-fold finer grid as compared to the target image resolution. Matrix cr denotes coil
sensitivity weighting and η denotes complex zero-mean Gaussian noise. The k-space
vectors k and the sampling times tk were set according to the EPI trajectory used
in the in-vivo measurement protocol29. The noise standard deviation was varied
to obtain a mean SNR between 15 and 25 inside the left ventricle. From k-space
data s(k, tk, b, g), sets of images x for diffusion weightings B = (b1gT

1 g1, b2gT
2 g2, ...)

were reconstructed with standard inverse Fourier transform with zero padding and
subsequent coil combination.

Since D(rp) maps of the digital phantom were generated on 5-fold higher res-
olution, they could not be used as training labels directly. Therefore, for each
dataset, the simulation was repeated with all displacements set to zero and no
noise added (referenced as ground truth hereafter). The diffusion tensor training
labels at image resolution were calculated by solving the pixel-wise LLSQ prob-
lem arg mind̂ |I(r, b, g)− Bd̂|22 for the static data I(r, b, g133. The simulated image
datasets were normalized by the LV mean intensity in the b1-image. Furthermore, the
background was masked, by multiplying a morphologically dilated and smoothed
version of the LV mask.
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7.2.3 Network Training

As illustrated in Figure 7.2, an Inception-Resnet style262 network was implemented.
To monitor the training process and perform the hyperparameter search, a validation
subset of size 100 was split off the training dataset of 5000 examples. Hyperpa-
rameters as well as learning rate were tuned by a grid search for the number of
residual blocks (1, 2, 4, 6), layers per residual block combined with filters per layer
[64, 128, (64, 64), (32, 64, 128), (64, 64, 64)], dropout rate [0.05, 0.1, 0.15, 0.2, 0.25]
and number of filters in the initial convolutional layers. The metrics to determine
the best hyperparameters were mean absolute error (MAE) as well as explained
variance score (R2) for mean diffusivity (MD) and fractional anisotropy (FA).

To account for the different orders of magnitude of the tensor entries, the outputs of
the last convolutional layer of the network d̂i were scaled with the standard deviation
and shifted by the mean, which were calculated from the marginal distributions per
tensor entry over the entire training dataset. The loss function used for training was
a combination of the squared error of tensor values di, FA and MD:

L =Σi

(
dlabel

i − dpred
i

)2
+ α1

(
FA(dlabel)− FA(dpred)

)2

+ α2

(
MD(dlabel)− MD(dpred)

)2
,

(7.3)

where the superscripts stand for label and prediction and α1, α2 are hyperparameters
to weigh the iso-/anisotropic parts of the loss. As optimizer, Adam with a initial
learning rate of 2.5 × 10−3 and exponential decay rates for first/second moments of
β1 = 0.9, β2 = 0.99 was used. The network was trained for 100 epochs with a batch
size of 3. As reference a simple multilayer CNN as well as a U-Net263 were trained
in the same fashion, however, were discarded due to insufficient predictions.

7.2.4 Data Analysis

The network performance was evaluated on synthetic test data. Alongside the
network prediction (Network), three different LLSQ estimations were calculated:
(i) LLSQ inference on static i.e. motion-free data (LLSQStat) serving as lower error
bound, (ii) LLSQ inference on unregistered motion-corrupted data (LLSQUnreg) serv-
ing as baseline reference, and, (iii) LLSQ inference on registered motion-corrupted
data (LLSQReg). The noise level for all test examples was set to yield a mean SNR
of 18 inside the LV in the b1-image, approximately matching the average SNR of
the available in-vivo data. For LLSQReg, images were registered to the b1-image,
which matched the motion configuration of simulated ground truth. The errors for

76



7.2 methods

Figure 7.2: Network architecture. The lower part of the illustration provides detailed information on the
residual blocks. Stated hyperparameters such as number of convolutional channels and dropout rates are
identical to the configuration used to generate the results. ReLU refers to rectified linear unit while Dil.
Conv denotes convolution with dilation rate 2. For convolutional layers, (NxMxC) denotes the kernel
size and number of channels. Padding for all convolutions was set to “same”. The last convolutional
layer is not followed by an activation function and the output is scaled and shifted by standard deviation
and mean of the training label entries.

all tensor estimates were calculated with respect to the ground truth obtained as
described in 7.2.2.

The Network was compared to results obtained with LLSQStat, LLSQUnreg and
LLSQReg based on MD, FA, eigenvalues, HA and E2A. Mean and standard deviation
of the marginal distributions as well as MAE, root mean squared error (RMSE)
and R2 were calculated. Furthermore, the potential discrimination of tissue types
based on MD and FA was investigated. To this end, we calculated the Jenson-
Shannon-distance between lesion and healthy distributions for ground truth as well
as for Network versus LLSQReg. The SNR dependency of the prediction quality was
investigated by evaluating MAE and R2 of MD, FA, HA and E2A for SNRs between
10 and 50.

As no ground truth is available in-vivo, a qualitative comparison relative to the
results obtained with in-silico data was performed. To this end, the spatial char-
acteristics and marginal distributions of MD, FA, HA and E2A for the Network
inference as well as LLSQUnreg and LLSQReg were compared. Furthermore, the SNR
dependency of the estimation quality was investigated by retrospectively reducing
signal averages prior to tensor estimation. Finally, the Network’s sensitivity to
detect potential lesions was studied by augmenting the in-vivo data with synthetic
lesions. The Jenson-Shannon distance between distributions of healthy and lesioned
tissue was calculated to assess whether their discriminability was preserved. Before
passing the in-vivo data to the Network, the data was normalized by the mean LV
signal of the b1-image and subsequently masked using a morphologically dilated
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version of the LV mask. This pre-processing step corresponded to the procedure
applied on the synthetic data.

7.3 Results

7.3.1 Synthetic Test Data

The marginal distributions of MD, FA and the eigenvalues are shown in Figure 7.3.
The ground truth (blue bars) shows the metric prior implicitly modeled by data
synthesis. Comparing mean, standard deviation and RMSE as stated in the plots,
the Network inference is found to result in distributions closer to ground truth than
LLSQReg for all metrics. The mean MD and FA of LLSQReg are significantly lower
than ground truth.

Figure 7.3: Marginal distributions of MD, FA and the three eigenvalues (EV1-3) for the synthetic test
data. Blue bars show ground truth, dashed lines the optimal reference LLSQStat (orange) and least
optimal reference LLSQUnreg (green); solid lines correspond to LLSQReg (red) and Network inference
(purple). The histogram bins per metric are identical for all algorithms. Numbers stated next to the
legends are mean ± standard-deviation of the distribution and (RMSE) with respect to ground truth.
Top row shows boxplots of the distributions shown in the lower row with corresponding colors.

Figure 7.4 compares the marginal distributions of MD, FA and eigenvalues separated
into lesion (orange) and healthy (blue) tissue. The normalization of counts was
performed per class. The corresponding Jenson-Shannon distances between lesion
and healthy distributions are stated in the subplots for MD and FA. The distances for
MD are in better agreement with the ground truth for both LLSQReg and Network
inference than for FA. The mean absolute errors for MD, FA, E2A, HA and all
eigenvalues over the test set are reported in Tab. 1. The references LLSQStat and
LLSQReg yielded the lowest and highest mean absolute errors correspondingly.
Furthermore, Network inference resulted in lower errors than LLSQReg for all
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Figure 7.4: Marginal distributions for MD, FA and eigenvalues divided into lesion (orange) and healthy
(blue) tissue for ground truth (bars), LLSQreg (dashed lines), and Network inference (solid lines). The
vertical axis shows normalized counts, where the normalization is performed per class (healthy/class).
Top row shows the boxplots of the distributions shown in the lower row, where each pair of blue/orange
box corresponds to one algorithm as indicated in the first column. For MD and FA, the Jenson-Shannon
distance between healthy and lesion distributions are stated in correspondence to the legend.

metrics. Scatter plots comparing LLSQReg and Network versus ground truth (GT)
for MD, FA, HA and E2A are given in Figure 7.5. The R2 scores are stated in the
plot. The Network inference shows lower errors at high and low values of HA
which correspond to locations at the myocardial borders. For the other metrics the
Network inference is closer to the line of identity, resulting in higher R2 scores. The
boxplots in Figure 7.5 illustrate the distribution of signed errors, demonstrating the
lower number of outliers with Network inference.

Table 1: Mean absolute errors over test data for MD, FA, E2A, HA and eigenvalues of LLSQStat ,
LLSQUnreg , LLSQReg and Network. Lowest error, other than the optimal reference LLSQStat , is highlighted

MD FA E2A EV1 EV2 EV3 HA

10−4 mm2/s a.u. ° 10−4 mm2/s 10−4 mm2/s 10−4 mm2/s °

LLSQStat 0.246 0.016 3.2 0.414 0.381 0.345 3.5

LLSQUnreg 1.029 0.063 11.8 1.541 1.335 1.366 16.0

LLSQReg 0.626 0.037 7.2 1.155 7.642 0.674 10.9

Network 0.337 0.022 5.6 0.571 0.537 0.484 5.3

The SNR dependency of the estimation quality is shown in Figure 7.6 . MAE and
R2 scores for MD, FA, HA and E2A are plotted against the simulated SNRs of (10,
14, 18, 22, 26, 30, 50). For higher SNR the errors of LLSQStat and LLSQReg decrease,
while the Network inference is relatively insensitive to SNR changes. For SNR below
14, the Network yields even better estimates than LLSQStat.
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Figure 7.5: Overview of test errors (MD, FA, HA and E2A). First and second row show scatter plots
of LLSQReg and Network inference versus ground truth. Line of identity is plotted in red, and the
explained variance score is stated as text in each subplot. The bottom row shows boxplots of the signed
error distributions.

Figure 7.6: SNR dependency of R2 score (top row) and mean absolute error (bottom row) of tensor
metrics MD, FA, E2A and HA (from left to right) for Network inference (green) versus LLSQStat (blue)
and LLSQReg (orange).
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Figure 7.7: Exemplary in-vivo results of the mid-ventricular (left) and basal (right) slice of the same
volunteer. Images show MD, FA, HA, and E2A maps (from left to right) of LLSQReg (top), Network
(mid), and LLSQUnreg (bottom). Corresponding histograms and boxplots are shown below the maps

7.3.2 In-vivo Data

Plots of MD, FA, HA and E2A maps for LLSQReg, LLSQUnreg and Network inference
were created for all volunteer data and are provided as Supplementary Material.
Alongside the maps, the corresponding marginal distributions are plotted. Figure
7.7 shows exemplary results for the mid-ventricular and basal slice of the same
volunteer. The metric maps of the Network inference appear less grainy than with
LLSQReg. This is most prominent at the LV borders, where LLSQReg produces more
outliers. Furthermore, the low MD values close to the liver interface are not present
in the Network inference. The histograms in Figure 7.8 show that the Network yields
narrower distributions for MD and FA without outliers, while the median values
agree well. E2A maps are consistent between Network and LLSQReg. The HA maps
of the mid-ventricular slices contain a distorted region close to the posterior vein for
both algorithms. In Figure 7.8 the basal slices of two different volunteers are shown,
in which the data reveals signal dephasing close to the posterior vein and the lung
interface, respectively. These areas show lower MD and higher FA in LLSQReg and
LLSQUnreg, while the Network inference does not show these variations. The HA of
all inferences on the first dataset show distortions at the location corresponding to
the lowered signal.

The transmural helix angle variation averaged over all volunteers per slice location
is shown in Figure 7.9. For all slice locations, both algorithms result in a linear
transmural HA variation. The standard deviation of HA at the myocardial borders
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Figure 7.8: Exemplary in-vivo results of two different volunteers displaying under-estimation of MD and
over-estimation of FA in areas of low SNR (close to the posterior vein and the lung interface). Images
show MD, FA, HA, and E2A maps (from left to right) of LLSQReg (top), Network (mid), and LLSQUnreg
(bottom). Corresponding histograms and boxplots are shown below the maps.

shows the reduced number of outliers with Network inference, especially for basal
and mid-ventricular slices.

The SNR dependency of inference quality for LLSQReg, LLSQUnreg and Network
using the volunteer data shown in Figure 7.7, is illustrated in Figure 7.10. The
curves show the MAE as a function of reduced signal averages with respect to
inference using the full number of 10 signal averages per diffusion direction. In
the mid-ventricular and basal slice, the Network inference (green) changes less
than LLSQReg (blue). Especially for MD, FA, and HA the Network inference is less
sensitive to SNR changes.

Figure 7.11 displays the marginal distributions of MD and FA of the augmented
in vivo data as well as the Network inference. The distributions in healthy tissue
in-vivo differ from the synthetic ones shown in Figure 7.4, as they are obtained from
the grainy LLSQReg in-vivo inference. The parameter distribution for the lesioned
tissue was sampled with the same procedure as used for the synthetic data.
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Figure 7.9: Transmural variation of helix angles per slice over all in-vivo datasets. Area around the line
corresponds to the standard deviation. Blue lines show data for LLSQReg and green lines show Network
inference.

Figure 7.10: MAE of MD, FA, HA and E2A as a function of reduced signal averages for the volunteer data
shown in Figure 7.9. Reference value for MAE is the inference using 10 averages. Columns correspond to
slice location apical (left), mid-ventricular (middle) and basal (right). Rows correspond to metric. Colors
correspond to algorithm: LLSQReg (blue), LLSQUnreg(orange) and Network (green).

7.4 Discussion

In this work we have implemented a framework to generate synthetic data that
captures the statistics of in-vivo cDTI data. Physiologically plausible priors on
diffusion tensors, SNR variations, as well as respiratory-induced motion were
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Figure 7.11: Marginal distribution of MD and FA using Network inference on lesion-augmented in
vivo data. Blue and orange refer to healthy and lesioned tissue, respectively. Normalization of counts
was performed per class. Blue bars illustrate the LLSQReg inference which was augmented with lesions
(orange bars). Solid lines show the Network inference. Dashed lines depict the LLSQUnreg inference on
the augmented data. The Jenson-Shannon distances (JSD) between healthy and lesion distribution are
stated inside the subplots corresponding to the legend.

included into the training data. The residual neural network trained exclusively
on synthetic data yielded consistent and robust tensor estimates from in vivo data,
even in low SNR conditions ,significantly outperforming current reference methods.

The results on the synthetic test data demonstrate the feasibility to train a CNN
for tensor estimation without requiring a prior registration step. The marginal
distributions of metrics as well as error distributions show the Network’s superior
inference quality. Relative to the LLSQReg reference, noise-induced granularity was
reduced with Network inference. Furthermore, for pixels close to the LV borders, the
Network inference resulted in more consistent tensors as spatial correlations helped
to address signal reduction caused by partial volume effects and susceptibility
gradients.

The in-vivo results suggest a good transfer from synthetic to real data. The Network
inference using in-vivo data as input showed similar features compared to using
synthetic data as input, namely, the reduction of noise-induced granularity and a
reduction of outliers especially at the LV borders. In two volunteers, the reduced SNR
at the lung-myocardial interface and next to the posterior vein led to underestimation
of MD and over estimation of FA by LLSQReg, an issue also discussed in134. The
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Network’s robustness against SNR changes, in contrast, prevented this effect in both
cases.

In general, the MD and FA distributions of the Network inference were found to be
narrower compared to the LLSQReg results. Comparing this finding with the results
on synthetic test data revealed the same characteristic, although the differences were
smaller. A possible explanation may relate to signal dephasing and deformation
caused by field gradients32 as well as residual signal from the blood pool, which
are not present in the synthetic test data, causing the error with LLSQReg inference
to be smaller compared to the in-vivo situation.

The slice orientation for some in-vivo measurements was not exactly perpendicular
to the long axis of the LV, which can be seen by the non-circular isolines in the HA
maps. Since the network yielded the same pattern combined with good agreement
of the E2A maps suggests that the network does not hallucinate unreasonable
angulation maps. This is also supported by the non-regular HA map with LLSQReg
as well as with Network inference on the apical slice in volunteer 5 which is
positioned too far apical.

Our results from retrospective reduction of signal averages clearly demonstrate the
increased SNR robustness of Network inference. Accordingly, the approach offers
potential clinical value in cases, where patients are not able to complete the full
examination. In general, our method allows to decrease the number of acquired
averages, while also providing control over the training distributions and thereby it
adds to studies which have trained neural networks on subsets of acquired in-vivo
DTI datasets to reduce the number of acquisitions52,53,264.

By augmenting the in-vivo data with artificial lesions it was demonstrated that
discrimination between healthy and lesion tissue based on MD and FA is preserved.
Residual overestimation of FA and under-estimation of MD in lesions can be
explained by the sharp edges introduced into the metric maps by the mix-and-
match strategy. Preserving the bimodality of MD, FA for lesion versus healthy tissue
and being able to verify it is a key aspect of the presented work given that training
data distributions have been shown to have an effect on potential inference biases259.
Especially in medical applications, the interpretability of deep learning algorithms
and knowledge about potential biases is very important.

As the current network implementation requires a LV mask to be applied before
inference, the presented pipeline is not fully automatic yet. Various deep learning
approaches have, however, shown the feasibility of obtaining an automatic LV
segmentation50,265. Combining such a segmentation algorithm with our approach
could offer direct feedback for the MR system operator while scanning.

Improving the alignment of the LV in free breathing cDTI data is an active area of
research50,98,99. As no ground truth information about diffusion tensors is available
in-vivo, these methods only take image intensities into account. Using full tensor
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information for determining the registration transformation has been shown to
improve tensor estimation100. To this end, by adapting our network approach to
estimate the full registration transformation, while having the tensor information
available during training could improve the algorithm’s robustness even further.
Additionally, the inclusion of further information into the forward model of our
simulation pipeline is straight-forward. As the tensor-sampling strategy is parame-
terized, it is also transferable to other sequences. The corresponding diffusion tensor
statistics could be estimated by Monte-Carlo simulations206,250. This would enable
the use of CNN based tensor fitting including its benefits, without the necessity to
newly acquire large amounts of in-vivo data.

In conclusion, our synthetically trained CNN offers increased tensor estimation
accuracy and precision of free-breathing in-vivo cDTI data when compared to con-
ventional registration followed by least squares fitting. The approach is particularly
beneficial in low SNR regimes, thereby enabling potential scan time reduction by
reduced-average acquisition in-vivo.

7.5 Appendix

7.5.1 A: E2A and Lesion Map Generation

The algorithm to generate random E2A maps works on any ring-like 2D LV mask.
Generating the maps involves two interpolation steps, first on a coarse resolution
and subsequently on the original scale. To this end, the original 2D mask MH of
size (X, Y) is resized by the parameter fr, resulting the coarser scale mask ML of
size (X// fR, Y// fR), where // denotes integer division. Therefore, the pixel size
of ML after resizing follows as ( fR∆xH , fR∆yH) → (∆xL, ∆yL). For each point in
MH and ML, polar coordinates p = (r, ϕ) are calculated, using the mask’s center
of mass as coordinate origin. the positions belonging to the LV in MH and ML are
denoted as pH,i with i ∈ [0, NH ] and p⃗L,j with i ∈ [0, NL] respectively. Given pL,j, a
subset of points is sampled randomly with uniform probability to serve as reference
points pRe f ,k with k ∈ [0, Np]. The number of reference points Np = f loor(NL fs) is
determined by the seed-fraction parameter fs with 0 < fs < 1.
For all reference points pRe f ,k a sheetlet angles is assigned according to a Bernoulli
distribution, where the probability for a high value pH igh is specified as parameter.
The resulting values are then interpolated to all pL,j using a nearest-neighbour
kernel, where the distances d(pRe f ,k, pL,j) are evaluated as described in 7.5.3. This
is followed by the second interpolation to pH,i, using pL,j as reference points.
the second interpolation uses a RBF kernel with width σRBF, again using the
distance definition d(pL,j, pH,i) as described in 7.5.3. The weights for radial and
circumferential direction in the distance definition (αrad, αcirc) are specified as
parameters.

86



7.5 appendix

The effect of each parameter on the map appearance can be investigated using the
Jupyter-notebook provided at https://gitlab.ethz.ch/ibt-cmr-public/synthetic-dti-
cnn/notebooks/Demo_E2A_Maps.ipynb. The main effects can be summarized as
follows:

• fR: Determines the map granularity. A higher fR results in a coarser scale in
the first interpolation step. The coarser this scale, the coarser is the structure
of the resulting E2A map.

• (αrad, αcirc): Determines the preferred direction of connected E2A areas. For a
low αcirc blobs of high/low E2A are more likely to be elongated in circumfer-
ential direction.

• σRBF: Determines the smoothness of spatial transition from high to low sheetlet
angles.

• pHigh: Controls the ratio pixels with high/low sheetlet angles.

Generating random lesion maps, uses the same seeding and interpolation scheme
as described for the sheetlet angle maps. However, a rounding step is included to
obtain binary masks, which are subsequently modified by morphological opening
to avoid too small or fractioned lesion areas. Furthermore, a rejection loop is used to
ensured the number of connected lesion areas as well as the ratio of lesion vs LV area
matches the specified values. To promote lesion positions close to the endocardial
border, the probability is weighted by the transmural position pHigh → pHigh(r). A
demonstration is provided in https://gitlab.ethz.ch/ibt-cmr-public/synthetic-dti-
cnn/notebooks/Demo_Lesion_Maps.ipynb

7.5.2 B: Rejection-Acceptance Sampling of Eigenvalues

The aim of the implemented rejection sampling algorithm is the generation of
eigenvalue-triples such that joint distribution p(MD, FA) is uniform within speci-
fied box-constraints. The rejection is performed based on the FA value. MD unifor-
mity is ensured by first sampling a uniform MD value followed by three uniform
eigenvalues Xi from the interval (0, 3) which are subsequently scaled according to
EVi = MDXi/Σi Xi.
To obtain an approximation of the FA distribution for the specified MD interval,
a burn-in phase of drawing 100 000 non-rejected eigenvalue-triples is used. the
kernel density estimation of the burned in samples is used and stored as rep-
resentation of the unrejected distribution. The rejection step follows the general
rejection-acceptance sampling scheme266:

1. Let fFA be the uniform target distribution on interval [a, b]

2. Generate Y from pFA

3. Generate U from the uniform distribution U (0, cpFA(Y))
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4. If U < fFA(Y) accept Y as sample

A demonstration including additional illustrations and implementation details can
be found at https://gitlab.ethz.ch/ibt-cmr-public/synthetic-dti-cnn/notebooks/Demo_Tensor_Maps.ipynb.

7.5.3 C: Geodesic in Relative Polar Coordinates

Every position inside the LV mask is described by a transmural depth r and an
angle ϕ. The geodesic between two points p1 = (r1, ϕ1)

T and p2 = (r2, ϕ2)
T is the

parameterized path described as fl(t) = p1 + (p2 − p1)t = (r1 + δrt, ϕ1 + δϕt)T .
Choosing the shortest path implies that δϕ ≤ 180° for all points p1, p2. To calculate
the length of the geodesic, the path is integrated as follows

d(p1, p2) =
∫ 1

0
|γ̇|2dt. (7.4)

Using the polar coordinate form γ(t) = r(t)er(t) and the basis vector definitions
er(t) = (cos ϕ(t), sin ϕ(t)), eϕ(t) = (− sin ϕ(t), cos ϕ(t)), the path derivative evalu-
ates to γ̇(t) = (̇r)(t)er(t) + r(t)ϕ̇(t)eϕ. From that follows:

d(p1, p2) =
∫ 1

0

∣∣∣∣∣
(

∆r cos ϕ(t) + r(t)∆ϕ sin ϕ(t)

−∆r sin ϕ(t) + r(t)∆ϕ cos ϕ(t)

)∣∣∣∣∣
2

dt (7.5)

=
∫ 1

0

√
(∆r)2 + (∆ϕ)2(r1 + ∆rt)dt. (7.6)

For the special cases of ∆r = 0 and ∆ϕ = 0 the integral becomes trivial, while for all
other cases the solution is given as:

d(p1, p2) =

[
∆r + r1

2∆r
A +

∆r
2∆ϕ

ln(A + ∆r∆ϕ + ∆r1)

]
−
[

r1
2∆r

B +
∆r

2∆ϕ
ln(B + ∆ϕr1)

] (7.7)

A =
√
(∆r)2 + (∆ϕ)2(r2

1 + ∆r)2 (7.8)

B =
√
(∆r)2 + (∆ϕ)2r2

1 (7.9)

Weighting the coordinate differences ∆̃r = αrad∆r and ∆̃ϕ = αcirc∆ϕ allows to
stretch and compress the distance in radial/circumferential direction separately as
described in 7.5.1.
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8.1 Introduction

Cardiovascular Magnetic Resonance (CMR) allows for the assessment of local ven-
tricular tissue microstructure12,20,23,24,29,53,168,169,267 and tissue strain8–10 in various
conditions. Tissue microstructural changes have been studied using cardiac diffusion
tensor imaging (cDTI) in cases of hypertrophic and dilated cardiomyopathies12,18,163,
aortic stenosis25, obesity53 and infraction21,149,150,154,155,268,269. The estimation of
diffusion tensors is affected by myocardial motion and strain143,164,166,167,169. To
alleviate these effects second-order motion-compensated diffusion encoding wave-
forms in combination with spin echo sequences (M012-SE) have been shown to be
widely applicable12,29,30,98,170. Since the macroscopic contraction pattern of the heart
is connected to its microstructure, the helical orientation of myocytes aggregates,
their interconnections, and their organization in sheetlets in relation to macroscopic
strain or its temporal derivative i.e. strain rate have been of particular interest12,153.

The most widely used strain measurement approach utilizes feature tracking
(FT) on standard cine image series9,10. Alternative techniques such as myocardial
tagging105,108,109, Displacement ENcoding with Stimulated Echoes (DENSE)101,102,
or Tissue Velocity Mapping (TVM)117,121 require additional measurements.

TVM utilizes the phase-contrast principle112 to encode three-directional tissue veloc-
ities into the image phase. From the estimated velocities, strain rates are obtained
by computing spatial derivatives9,10. Different sequences have been used for TVM,
such as spoiled gradient echo (GRE)118,120,121,123,124,126,270 and spin echo271–273.The
value of TVM has been shown for myocardial infarction147, obesity159, and atrial
fibrillation274. The systolic strain rate has been proposed as an imaging marker in
diabetes275, ischemic diseases276, pulmonary hypertension277, hypertrophic cardio-
myopathy157 and myocardial dysfunction after radiation therapy162.

Myofiber strain connects to macroscopic function and it is considered to be spatially
homogenous in healthy hearts35. To infer upon myofiber aggregate strain, estimates
of both macroscopic strain and local fiber orientation are required. Since projections
of measured strains onto radial, circumferential and longitudinal directions do not
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generally coincide with the microstructure, transmural variation of circumferential
strain has been reported35. Several works have proposed to combine cDTI data with
DENSE35–38, or TVM272,273 all acquiring separate scans. Co-registering the data is
challenging and a potential source of error35.

Since the sequence timing of M012-SE cDTI with Cartesian readout includes a gap
between excitation and the start of the diffusion encoding gradients, it is proposed
to include additional bipolar gradients to encode tissue velocities without changing
cDTI sequence timings. Biophysical simulations of a contracting left ventricle were
used to assess accuracy and precision of the proposed encoding scheme. In-vivo
feasibility of obtaining both cDTI and tissue velocity maps in a single scan was
demonstrated on healthy volunteers.

8.2 Methods

8.2.1 Joint Encoding Sequence

Bipolar velocity encoding gradients were inserted into the M012-SE cDTI29 sequence
between the spectral-spatial excitation and the start of the diffusion encoding
waveform. The velocity encoding strength (VENC) was set to 20 cm s−1122. To lower
the required amplitude of the bipolar gradients per direction, a Hadamard encoding
scheme114 was chosen.

The cDTI acquisition included three slices of the left ventricle (apical, mid-ventricular
and basal) with a slice thickness of 10 mm and a gap of 10 mm. For each slice, three
low b-values (100 s mm−2) and nine high b-values (450 s mm−2) were acquired plus
an additional unweighted reference. For each diffusion weighing, eight averages
were acquired, with half of them using inverted diffusion gradients to subtract
eddy current phase contributions up to the linear terms. The velocity encoding
direction was varied per average. Hence, each velocity encoding was acquired
for both the original and inverted diffusion waveforms.Figure 8.1 illustrates the
encoding scheme and sequence. The sequence timings correspond to a gradient
system with 80 mT m−1 maximum gradient strength and 100 T m−1 s−1 slew rate per
physical gradient axis.

8.2.2 Diffusion Tensor and Velocity Estimation

The individual single-shot images were registered using the parameterized Total
Variation toolbox97. Subsequently, left-ventricular (LV) masks were obtained using
manual annotations and LV local coordinates and directions (radial, circumferential,
and longitudinal) were derived168.
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Figure 8.1: Illustration of the proposed sequence. The velocity encoding scheme (left) and the diffusion
encoding scheme (right) are illustrated in the top row, where the green and orange spherical markers
correspond to original and inverted diffusion gradients. Every combination of one velocity and one
diffusion encoding yields a single image. The gradients corresponding to either velocity or diffusion
encoding waveforms are indicated by red and green arrows/lines, respectively. The image phase is used
to infer tissue velocity vectors (vx , vy , vz) and background phase ϕ0 (bottom left), while mean diffusivity
(MD), fractional anisotropy (FA), helix angle (HA) and sheet angle (E2A) are derived from the magnitude
images (bottom right)

Registered magnitude images were used to estimate the diffusion tensors d̂, using
the cdtipy python package, solving the pixel wise linear least-squares minimization
problem defined as
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d = [log(s0), Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T , (8.1)

x = [l log(s1), log s2, · ]T = Bd + η (8.2)

d̂ = arg min d|x − Bd|22, (8.3)

where si are the pixel-wise magnitude values of the diffusion encoding i, B is the
diffusion encoding matrix, d is the vector containing the unweighted signal intensity
as well as the six unique entries of the symmetric diffusion tensor per pixel and η

denotes random noise. The diffusion tensors were subsequently used to compute
mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA) and sheetlet
angles (E2A).

Registered phase images were first unwrapped using the scikit-image python pack-
age (v0.21) and subsequently a model containing tissue- and respiratory-related
velocities was fitted. In the following notation, subscripts q, n, h indicate an acquisi-
tion with diffusion weighting q ∈ [0, 12], gradient inversion n ∈ [0, 1], and velocity
encoding h ∈ [0, 3], and the subscript p indicates the pixel index. In the signal
model, the pixel-wise phase for a selected acquisition ϕ̂p,q,n,h, is defined by the
contribution of the background phase Φ0

p, the cardiac-related velocity vector vc
p, the

translational breathing-related velocity vb
q,n,h and a phase term, ϕ

eddy
q,p , accounting

for the first-order eddy currents due to the diffusion gradients31. Breathing motion
was assumed to be uniform for all LV pixels for a single-shot image and along a
constant direction nb for all acquisitions, such that vb

q,n,h = vb
q,n,hnb. The pixel-wise

cardiac velocity vc
p and background phase Φ0

p were assumed to be identical for all
acquisitions q, n, h.

Let φ = π
VENC

(
VENCΦ0

p
π , vc,x

p , vc,y
p , vc,z

p

)
∈ R1×4 be the phase contribution from

background phase Φ0
p and cardiac velocities vc

p for a single pixel p. Furthermore, let

ϑq,n,h = π
VENC

(
0, vb

q,n,hnb
x, vb

q,n,hnb
y, vb

q,n,hnb
z

)
∈ R1×4 be the phase contribution due

to breathing motion. Using the Hadamard encoding matrix defined as

Ev =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , (8.4)

and further assuming the eddy-current effects to be captured by a phase ramp
parameterized as

ϕ
eddy
p,q,n,h = aq,n,h · rp, (8.5)
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with the augmented in-plane pixel coordinate vector rp′ = (1, xp, yp)T and the plane
parameterization aq,n,h = ( w0

wx
, w0

wy
, w0

wz
)q,n,h, the total phase evaluates to

ϕ̂p,q,n,h = Ev ·φp + Ev · ϑq,n,h + ϕ
eddy
p,q,n,h. (8.6)

Inverting the diffusion gradients is assumed to invert the eddy-current phase
contributions according to ϕ

eddy
p,q,0,h = −ϕ

eddy
p,q,1,h.. Estimation of all parameters Φ0

p, vc
p,

vb
q,n,h, nb, and aq,n,h was achieved by minimizing the mean squared error of the

phase-signal model and the unwrapped measured phase Ip,q,n,h, using the Adam
optimizer implemented in TensorFlow (v2.12). The fitting process was divided
into two steps, because fitting the full model to all data where in a systematic
underestimation of through-plane contraction velocity. In the first step model eq 8.6
was fit according to

arg min
{φp ,ϑq,n,h,aq,n,h}

Σp,q,n,h|ϕ̂p,q,n,h − Ip,q,n,h|22 + α1Σp(|vc,x
p |+ |vc,y

p |) + α2

√
Σp(vc,z

p )2,

(8.7)
using all data. The regularization weights α1, α2 were chosen based on simulation
data. In the second pass, the fit of the through-plane contractile velocity was
performed while fixing in-plane contractile velocities, background phase as well as
the the breathing motion direction to the results of the first step. The fit model of
the second step was identical to eq. 8.6, although only the non-diffusion weighted
images were used as input and the longitudinal velocity was initialized with the
direct Hadamard inversion. Furthermore, the breathing motion was regularized
using the L2-norm of all velocity factors vb

q,n,h and a mean through-plane velocity

offset ⟨vc,z
p ⟩p, that was scaled with the expected motion amplitude was added. The

calibration of the respective factor α4 was also based on simulation data, resulting
in following optimization problem

arg min
vc,z

p ,vb
0,n,h

Σp,n,h|ϕ̂p,0,n,h − Ip,0,n,h|22 + α3

√
Σn,h(vb

0,n,h)
2 − α4⟨vc,z

p ⟩p. (8.8)

8.2.3 Biophysical Simulation

Diffusion tensor and velocity estimation was first tested in-silico on a numerical
phantom generated based on a biophysical model of the left ventricle185. A cardiac
cycle of 950 ms was simulated, with peak systole occurring at 340 ms185,189. The
MR signal was simulated using the CMRsim package278. Breathing motion was
incorporated as a sinusoidal breathing pattern with a period of 7 s, using CMRsim’s
breathing motion module. The simulation was repeated with varying breathing
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amplitudes Ab ∈ {0, 2.5, 6.25, 12.5, 18.75, 25}mm to investigate the impact of the
breathing on the velocity estimation. Random diffusion tensors, based on a rule-
based helix-angle model and a random sheetlet distribution were assigned at peak
systole222. The orientation of the tensors was warped during the simulation using
the biophysical deformation field. CMRsim’s proper orthogonal decomposition
module was used to retrieve a consistent tensor map along with isochromat position
and proton density. The corresponding single-shot k-space data were obtained using
the analytical signal model

s(k(ts)) = ΣN
p δVm̃pek(ts)·rp(ts) + η, (8.9)

where the particle apparent complex-valued magnetization m̃p, representing the
volume element δV, results from

m̃p = ψC ◦ ψDiff ◦ ψT∗
2
◦ ψϕ ◦ ψSE ◦ op, (8.10)

with material points denoted as op and operator definitions for spin-echo contrast
ψSE, phase due to motion during application of diffusion and velocity encoding
(from ta to tb) ψϕ, T∗

2 -decay and B0 inhomogeneity during readout, model-based
diffusion weighting ψDiff, and coil-sensitivity weighting ψC given as:

ψSE = ρpe
− TE

T2,p

(
1 − e

− TR
T1,p

)
, (8.11)

ψϕ = ejγ
∫ tb

ta
G(t)·rp(t)dt, (8.12)

ψT∗
2
= e

− |ts−TE|
T∗2,p ejγδB0,p(ts−TE), (8.13)

ψDiff = e−bgT Dpg, (8.14)

ψC = C(rp). (8.15)

Tissue properties ρp, T∗
2,p, T2,p, T1,p, δB0,p, Dp refer to proton density, relaxation times,

off-resonance and diffusion tensor. Parameters are echo time TE and repetition time
TR, diffusion and velocity encoding gradient waveforms G(t), sampling time ts,
diffusion weighting (b, g) and coil sensitivities C(rp) at particle location rp. k-space
vectors at sampling times are denoted k(ts) and the complex-valued Gaussian noise
is denoted as η.

The phase accrual due to motion was numerically integrated using the gradient
waveforms for velocity and diffusion encoding on a 10 µs time grid. To investigate
the effect of the velocity encoding gradients on diffusion estimates, the simulation
was performed by varying G(t) in eq. 8.12, for the following four simulation cases: (i)
no phase accrual; (ii) phase accrual due to velocity encoding; (iii) diffusion encoding
only; and (iv) phase accrual due to both waveforms. The simulation was run
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for multiple trigger delays ttrig ∈ {120, 129, 139, 148, 157, 166, 176, 185, 194, 204, 213,
222, 231, 241, 250}ms.

To compare the simulation results, the ground truth LV mask for each slice was
subdivided into 60 segments, where the transmural depth was divided into three
bins and the circumference was divided into 20 segments. As ground truth for
tissue velocity, the direct Hadamard inversion of the simulation results without
breathing motion (Ab = 0), no noise and only velocity encoding (ii) was used. The
calibration of α4 (see eq. 8.8) was achieved by comparing the velocities obtained
from applying the fitting routine to the data of simulation case (ii) to the tissue
velocity ground truth. The effect of phase accrual during diffusion encoding, as
well as the impact of respiratory motion on velocity estimates were investigated
by computing the signed error of velocity estimation for all breathing amplitudes
Ab comparing simulation cases (ii) and (iv). To investigate a potential effect of
the additional velocity encoding on the diffusion metrics, the signed error of the
diffusion metrics MD, FA, HA and E2A estimated for all breathing amplitudes Ab
was calculated for simulation case (iv) when using the same breathing motion Ab as
with simulation case (iii). Furthermore, the diffusion metrics for simulation cases (i)
and (iii) were compared to evaluate whether the simulation captures the increase of
MD caused by intravoxel phase gradients resulting from residual motion sensitivity
of the diffusion waveforms. Finally, the effect of registration on the diffusion metric
estimation was investigated by comparing results for non-zero breathing amplitudes
Ab to Ab = 0 with simulation case (i).

8.2.4 In-vivo Data

The proposed sequence was implemented on a 1.5 T clinical MRI scanner (Achieva,
Philips Healthcare, Best, the Netherlands) with a 80 mT m−1 max strength and
100 T m−1 s−1 slew rate gradient system. In-vivo data was acquired in 5 healthy
volunteers (3 males, 2 females, 28 ± 2.3 years) upon written informed consent
according to ethics and institutional guidelines. The imaging protocol included
the acquisition of a cine stack of short-axis slices covering the whole LV and a
four-chamber cine dataset with 1.3 mmm in-plane resolution and 25 heart phases.
. The cDTI protocol was acquired during a) breath hold (cDTI-TVM-BH) and b)
during free breathing (cDTI-TVM-FB). During a single breath hold, four averages
per diffusion encoding direction of the three slices were acquired, thus minimizing
the breathing contribution per Hadamard encoding tuple. The acquisition resolution
was set to 2.5 mm× 2.5 mm with a slice thickness of 10 mm. The echo and repetition
times were 92 ms and 3 RR intervals, respectively. The ECG trigger delay (ttrig)
was set to 60% peak systole. All images were reconstructed using ReconFrame
(GyroTools LLC, Winterthur, Switzerland) to a resolution of 1.25 mm × 1.25 mm
using zero filling. After reconstruction, images were registered as described above.
For each of the three slices, LV masks were manually drawn. Based on the non-
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diffusion weighted images, a phase ramp was fitted using points in the chest wall
and liver. This phase ramp was subtracted from all images to reduce the impact of
phase wraps on velocity estimation. The estimation of diffusion tensors and tissue
velocity was performed as described above.

As reference, a velocity-encoded (3 directions + reference) phase-contrast GRE
sequence was acquired with respiratory gating (7 mm gating window) for the mid-
ventricular slice and with 50 heart phases. Velocity maps were obtained offline
using ReconFrame (GyroTools LLC, Winterthur, Switzerland). LV masks for each
frame were obtained by mapping the automatic segmentation of the cine data189

to the GRE data using the imaging slice orientation matrices. Mean and standard
deviation of the velocity projections were computed.

For each volunteer, DTI metrics (MD, FA, HA, E2A) as well as background phase and
tissue velocities maps were computed. A sector-wise comparison of estimated veloci-
ties from the reference method (TVM), free-breathing cDTI-TVM-FB and breath-held
cDTI-TVM-BH was performed. The sectors used correspond to the AHA definition
for short-axis views73. To evaluate the agreement of velocity estimation between
TVM, cDTI-TVM-FB and cDTI-TVM-BH, Bland-Altman plots were calculated.

8.3 Results

8.3.1 Biophysical Simulation

Figure 8.2 compares velocity estimations for three of the six different breathing
amplitudes at all trigger delays with the proposed fitting method as well as with
the direct Hadamard inversion for breath-held data. For the simulation without
any breathing motion (cf. Figure 8.2a) the fitting algorithm converged to the direct
Hadamard inversion. Also, no bias is observed for the estimation of radial and
circumferential velocities for shallow and deep breathing for all trigger delays (first
two rows in Figure 8.2b,c). The interquartile ranges of in-plane velocity estimation
errors are on the order of 2 mm s−1. In the non-regularized case, longitudinal velocity
estimation suffers from a bias dependent on the breathing amplitude, which is
consistent for all trigger delays. Using regularization, the bias is removed (Figure
8.2, third row). The interquartile ranges of the longitudinal velocity estimation errors
are below 1 mm s−1.

The differences of the estimated velocities when comparing simulation (ii) to (iv)
(isolating the effect of residual motion sensitization of the diffusion waveforms) show
no bias and interquartile ranges on the order of 1 mm s−1 in-plane and negligible
differences in longitudinal direction. Box plots as in Figure 8.2 for this comparison
are provided in the supplementary material (Figure S2).
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Figure 8.2: Velocity estimation errors using the proposed fitting algorithm (cDTI-TVM) when compared
against direct Hadamard inversion (reference) for trigger delays from 120 ms to 250 ms. Configurations
for reference and fit are illustrated in the top row. Data for both scenarios were simulated using
simulation case (ii) i.e. only velocity encoding gradients in ψϕ (eq. 8.12). For the reference breath-hold
was assumed (Ab = 0 mm), while the cDTI-TVM data, processed with the two-step fit, incorporated a)
no breathing (Ab = 0 mm), b) shallow breathing (Ab = 6.25 mm) and c) deep breathing (Ab = 18.75 mm).
Rows of the boxplots correspond to (from top to bottom): radial velocity vr , circumferential velocity vc ,
longitudinal velocity vl with calibrated second fitting step, and longitudinal velocity obtained without
adjustment v( l, pre) (α4 = 0 in equation 8.8). Each box plot illustrates the distribution of signed errors
over all mask segments per trigger delay.

Figure 8.3 compares the estimation of diffusion tensor metrics MD, FA, HA and E2A
between simulation (i) to (iii). Breath-held (left column), shallow and deep breathing
show an increased MD for simulation case (iii) with a negative bias of approximately
10( − 5)mm2 s−1 in the box plots of the first row. MD estimation without breathing
motion (Figure 8.3a top row) shows a dependency on the trigger delay, where
the variance of the signed error is the lowest at around 185 ms corresponding to
approximately 60% systole. While the FA estimation is unbiased for the breath-held
simulation, the registered breathing data results in an underestimation of FA of
approximately 0.01. The FA estimation error for the breath-held data is lowest at
60% systole. The errors for both angles HA and E2A show no bias or dependency
on trigger delay.
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Figure 8.3: Box plots showing the differences in diffusion metrics when comparing simulation case (i) i.e.
no phase accrual and (iii) i.e. with cDTI waveform as illustrated in the top row for trigger delays from
120 ms to 250 ms. The reference only used breath-hold (Ab = 0 mm), while the cDTI data incorporated a)
no breathing (Ab = 0 mm) b) shallow breathing (Ab = 6.25 mm) and c) deep breathing (Ab = 18.75 mm).
Each box plot illustrates the distribution of signed errors over all mask segments per trigger delay. Rows
correspond to the diffusion metrics (from top to bottom): mean diffusivity (MD), fractional anisotropy
(FA), helix angle (HA) and sheetlet angle (E2A).

Differences for diffusion metrics estimated for simulation case (iii) versus (iv),
isolating the effect of the phase gradient induced by adding velocity encoding to
the diffusion measurements, are provided as supplementary material (Figure S2).
Interquartile ranges per metric are IQR∆MD ≈ 3 · 10−6mm2 s−1, IQR∆FA ≈ 0.003,
IQR∆HA ≈ 1°, and IQR∆E2A ≈ 0.5°.

The results comparing diffusion metrics obtained from the simulation with breathing
motion against no breathing motion both using simulation case (iii) are shown
in detail in the supplementary material. While no bias in MD is present, FA is
underestimated if the data incorporates breathing motion similar to the bias shown
in Figure 8.3.
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8.3.2 In-vivo Data

Figures 8.4 to 8.7 show the results for a single volunteer. The diffusion metrics
estimated from cDTI-TVM-FB as well as cDTI-TVM-BH acquisition are presented in
Figure 8.4, where except for an area in the anterior sector in the apical slice, all maps
are consistent. The lateral part of the ventricle shows elevated MD and reduced
FA in both cases, while the helix angle displays approximately linear transmural
progression. Mean and standard deviation for MD and FA over all volunteers
and slices were (1.50 ± 0.02) · 10−3mm2 s−1 and 0.32 ± 0.08 for cDTI-TVM-BH and
(1.47 ± 0.02) · 10−3mm2 s−1 and 0.32 ± 0.08 for cDTI-TVM-FB.

Figure 8.5 shows the background phase as well as the velocity vectors obtained
from cDTI-TVM-FB and cDTI-TVM-BH data. Mean and standard deviation of tissue
velocity vectors over all LV pixels per slice are stated in Figure 8.5. The global
velocity averages over all volunteers at 60% systole are given in Table 2. In all slices
an off-resonance background phase induced by the lung-myocardium interface of
the lateral LV is visible. Furthermore, the varying off-resonance induced by the
posterior cardiac vein is seen in all slices. In the apical slice in the anterior part close
to the great cardiac vein another area of elevated off resonance is apparent.

The mean and standard deviation of the projected velocities for the mid-ventricular
slice over the cardiac cycle, obtained from the reference method (TVM), are plotted
in the left column of Figure 8.6. The mean and standard deviation for the velocity
vectors obtained from cDTI-TVM-FB and cDTI-TVM-BH at a single trigger delay
(marked by the dashed gray line in Figure 8.6) are shown in the same plots as
orange and green error bars. In the right column of Figure 8.6, the velocity maps of
cDTI-TVM-FB and cDTI-TVM-BH as well as conventional TVM are shown.

Table 2: Global averages and standard deviations of tissue velocity projections in cm/s for radial (vr),
circumferential (vc), and longitudinal (vl ) direction over all volunteers, for all three slice positions (apical,
mid-ventricular, basal) and for all methods (TVM, cDTI-TVM-FB, and cDTI-TVM-BH).

Apical Mid-ventricular Basal

cDTI-TVM-BH cDTI-TVM-FB cDTI-TVM-BH cDTI-TVM-FB TVM cDTI-TVM-BH cDTI-TVM-FB

vr (cm s−1) 1.7 ± 0.4 1.8 ± 0.5 2.2 ± 0.5 2.1 ± 0.5 2.1 ± 1.3 2.2 ± 0.6 2.2 ± 0.9

vc (cm s−1) −0.8 ± 0.5 −0.7 ± 0.5 0.1 ± 0.6 0.2 ± 0.5 0.0 ± 1.5 1.1 ± 0.7 1.2 ± 0.6

vl (cm s−1) 0.3 ± 1.1 0.3 ± 0.8 2.3 ± 0.9 2.4 ± 0.8 1.5 ± 1.5 3.8 ± 1.5 3.9 ± 1.1

A spatially resolved comparison of the velocity projections for the three methods is
shown in Figure 8.7. As no reference acquisitions TVM (blue markers) for the basal
and apical slices are available, only the cDTI-TVM-FB (orange) and cDTI-TVM-BH
(green) data is shown for sectors 0 to 8 and 21 to 32. Each box plot illustrates the
distribution of velocities inside the corresponding sector. The lower radial velocity
in the septum for all slices, as well as the increasing (from apex to base) longitudinal
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Figure 8.4: DTI metrics derived from A) cDTI-TVM-FB (free breathing) and the B) cDTI-TVM-BH (breath-
hold) acquisition. From left to right: mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA)
and absolute sheetlet angle (E2A). Top rows show histogram plots for all three slices corresponding to
the maps shown below. The boxplots correspond to the histograms. The mean and standard deviation
for each histogram is given in the histogram axes, where the order corresponds to the legend right next
to it.
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Figure 8.5: Background phase (top row) and velocity projection maps obtained from A) cDTI-TVM-FB
(free breathing) and the B) cDTI-TVM-BH (breath-hold) acquisition. From second to last row: radial,
circumferential, and longitudinal velocities. For both A) and B), columns correspond to the results for
the apical (left), mid-ventricular (mid) and basal (right) slice. The numbers in the velocity plots state the
mean and standard deviation of the corresponding velocity over all LV-pixels in cm s−1.

velocity can be seen in the plot. TVM has higher intra-sector variability than cDTI-
TVM-FB and cDTI-TVM-BH for all velocities, indicated by the larger interquartile
range and fliers of the blue box plots.

Figure 8.8 shows the Bland-Altman plots comparing mean velocities for the sectors
as defined in Figure 8.7 for conventional TVM versus cDTI-TVM-FB (top row),
conventional TVM versus cDTI-TVM-BH (middle), and cDTI-TVM-FB versus cDTI-
TVM-BH (bottom row). The points corresponding to the data from Figure 8.7 are
represented by star-shaped markers. All comparisons show no systematic bias,
with mean differences on the order of 1 mm s−1. The limits of agreement for the
comparisons against the reference method are only slightly better for the breath-hold
data. Furthermore, the agreement between cDTI-TVM-BH and cDTI-TVM-FB for
longitudinal velocities is better than the agreement in their respective comparison
to the reference, while it is worse for the in-plane velocity components. Both
comparisons of cDTI-TVM-BH and cDTI-TVM-FB relative to the conventional TVM
show similar outliers, corresponding to sectors with high variability.

8.4 Discussion

Jointly estimating diffusion tensors and tissue velocities using a single sequence and
without scan time penalty has been demonstrated to be feasible. The addition of the
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Figure 8.6: Comparison of radial (top), circumferential (mid) and longitudinal (bottom) velocities
estimated by a) cDTI-TVM-FB (free-breathing), b) cDTI-TVM-BH (breath-hold) and c) conventional TVM
for the mid-ventricular slice of a single volunteer. On the left, curves for mean and standard deviation of
tissue velocities obtained by TVM are shown by the blue lines. The orange and green error bars illustrate
the mean and standard deviation of the tissue velocities estimated from cDTI-TVM data corresponding
to the chosen trigger delay (the markers for FB and BH are staggered for better visibility). The numbers
in the velocity plots (a-c) state the mean and standard deviation of the corresponding velocity over all
LV pixels in cm s−1.
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Figure 8.7: Boxplot of velocity projections per mask sector at a trigger delay of 230 ms for a single
volunteer. The top row shows radial velocity while the mid/bottom rows show circumferential and
longitudinal velocities. Sector indices plotted on the x-axis correspond to the mask areas shown in the
inlets which are derived from the AHA definition for twice the number of sectors. The vertical gray
dashed lines subdivide the apical/mid-ventricular/basal sector indices. Line colors in the inlets adhere to
the box plot colors: conventional TVM (blue), cDTI-TVM-FB (free breathing) (orange) and cDTI-TVM-BH
(breath-hold) (green). For the reference TVM (blue), only the mid-ventricular slice reference was acquired,
therefore no blue boxes are shown for the apical and basal slices.
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Figure 8.8: Bland-Altman plots comparing mean of local velocity vectors per sector for the three
estimates: conventional TVM, cDTI-TVM-FB and cDTI-TVM-BH. The top row shows the comparison of
TVM and cDTI-TVM-FB; the middle row shows the comparison of TVM and cDTI-TVM-BH and the
bottom row provides the comparison of cDTI-TVM-FB and cDTI-TVM-BH. Columns from left to right
correspond to radial (vr), circumferential (vc) and longitudinal (vl) velocity. Mean and 1.96 times the
standard deviation of the difference distributions are shown as blue and orange dashed lines as well as
numbers in cm s−1. Star-shaped markers of the scatter plot correspond to the values of the exemplary
volunteer as presented in Figure 8.7.
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velocity encoding gradients was shown to have negligible impact on the estimation
of diffusion metrics (cf. Figure S1 left column) while measured tissue velocities
agreed well with data obtained with the standard TVM method.

In-vivo, estimated diffusion metrics showed the expected characteristics such as
approximately linear transmural progression of HA12. Also, MD and FA values de-
rived in our work were close to those reported elsewhere (1.41 ± 0.07 · 10−3mm2 s−1

and 0.35 ± 0.0324 or 1.48 ± 0.11 · 10−3mm2 s−1 and 0.37 ± 0.04163). Furthermore, ar-
eas of high off resonance were found close to the posterior vein of the left ventricle
as well as the great cardiac vein (especially in the apical slice) in accordance to
previous findings76.

Tissue velocity estimates obtained from cDTI-TVM data showed no bias for in-plane
velocities and a small global overestimation for through-plane velocities when com-
pared to TVM as shown in Figure 8.8 and Table 2. The global averages obtained
with TVM at 60% peak systole for the mid-ventricular slice agreed with published
results122–124,270. Furthermore, global averages of radial and circumferential veloci-
ties obtained with TVM were close to values obtained with the proposed cDTI-TVM
sequence as shown in Table 2. The counter-rotation of base and apex was well
captured by cDTI-TVM (Table 2, Figure S4-S8). The global average velocities in the
apical and basal slices obtained with cDTI-TVM (Table 2) agreed well with literature
values122,123,270.

The presented simulations successfully captured effects of motion-induced phase
accrual during diffusion encoding. Accordingly, the trigger delay dependency of MD
due to the cardiac strain could be demonstrated (Figure 8.3). Moreover, the simulated
data showed a residual motion-induced phase due to diffusion encoding279. As the
main component of contractile motion was radial and the diffusion encoding linear,
the residual motion phase resulted in a phase ramp. To this end, the proposed signal
model used in the fitting algorithm contained a phase ramp term, resulting in low
errors on the order of 1 mm s−1 (cf. Figure S2).

In relation to the Bland-Altman analysis (Figure 8.8) it is noted that the variance of
velocity differences between TVM and cDTI-TVM was relatively high with a single
standard deviation being on the order of 1 cm s−1. Additionally, the cDTI-TVM ve-
locity maps appeared smoother than the TVM maps resulting in the apparent linear
dependency in Figure 8.8 for radial and circumferential velocities. In contrast to the
smooth cDTI-TVM maps, the TVM maps exhibited areas of high spatial variation
which could have been caused by insufficient motion correction (cf. sector 13 in
Figure 8.6 and 8.7). The standard deviation for the global TVM velocity estimates
were relatively high compared to the corresponding standard deviation reported
in123. This may in parts be attributed to imperfect masks used with TVM, causing
high variance in diastole in Figure 8.7 as border regions may have created outliers
(compare supplementary material S6). Excluding these outliers will likely reduce
the apparent cDTI-TVM overestimation of through-plane velocity. On the other
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hand, as computing strain-rate tensors involves evaluating the spatial derivative of
velocities, the smoothing due to the averaging in the presented fitting approach for
cDTI-TVM data might remove potential local spatial variations. Furthermore, the
quality of spatial derivates depends on image resolution, slice positions and gaps271.
Optimization of imaging parameters as well as increasing LV coverage98,280 (e.g. by
using simultaneous multi-slice imaging11,281) remains to be accomplished in future
work.

A systematic underestimation of through-plane tissue velocities was noted for both
simulated as well as in-vivo data. The calibration to address this effect was based
on simulated data which was applied to the in-vivo data. However, the compen-
sation remained incomplete. A potential cause for the residual underestimation is
thought to be related to the non-integer and directionally-coupled phase aliasing
of Hadamard encoding113. Therefore, if compatible with the sequence timing and
system limits, it is advised to use a standard referenced 4-point velocity encoding
scheme113 along the Cartesian axes. As the duration of the gap between excita-
tion and start of the diffusion encoding waveforms is determined by the EPI train
length12,29,30, the addition of stronger bipolar velocity encoding gradients is feasible
even when longer 2D spatial excitation pulses are used98. However, when utiliz-
ing partial Fourier acquisition, the gap might become too short to insert standard
referenced velocity encoding gradients.

Since M012-SE cDTI was performed in mid or late systole169,279, tissue velocity
estimates were obtained for a single time point of the cardiac cycle only, which is
a limitation. Furthermore, a minimum of four averages is required for cDTI-TVM.
When using the diffusion gradient inversion as proposed in this work, the minimum
number of averages increases to eight, which can be limiting.

8.5 Conclusion

The proposed sequence allows for joint estimation of cardiac diffusion tensors and
tissue velocities in the myocardium during free breathing. The approach offers
a single-scan solution to study the interrelation of cardiac microstructure and
macroscopic tissue motion.
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Discussion and Outlook

This thesis has addressed potential improvements in three aspects of cDTI. As a
variety of methodological advances in acquisition and processing of cDTI were pro-
posed, finding a consensus on preferred methods is required5,6,26. MR simulations
are an established tool to facilitate a quantitative comparison of such methods59

but are required to capture all relevant effects. A flexible representation of motion
is key to simulating MR signals of the cardiovasculator anatomy. To this end, an
open-source framework for MR simulation, including complex motion and flow,
has been developed. The framework’s capability has been demonstrated using a
simulation of turbulent flow encoding, as well as a SE-cDTI acquisition with con-
tractile and respiratory motion. Both yielded relevant image characteristics such as
motion-induced phase and magnitude modulation. Furthermore, the possibility of
using a wide range of digital phantoms as inputs was demonstrated, allowing to
use digital twins and tissue models from patient data189,243,282,283 as phantoms for
MR simulations.

As reproducibility and extensibility of simulation experiments also depend on
the usability and documentation of the software, emphasis was put on creating
the framework according to software-quality standards. Alongside the simula-
tion package, an MR-sequence definition package was implemented, to contribute
vendor-agnostic MR-sequence development211–214.

The application of deep learning algorithms helps reducing the computational bur-
den for registration and LV segmentation50. Furthermore, the increased robustness
against noise and artifacts potentially facilitates the reduction of required data
while preserving the accuracy of the estimated diffusion metrics51,53,54. However,
high-quality training data is scarce, and generalization between cDTI data from
substantially different scan methods is not given. Utilizing in-silico data, this con-
straint on training networks for new methodology can be alleviated. To this end,
the feasibility of training a deep learning model on synthetic data to infer diffusion
tensors directly from unregistered cDTI data was shown. The pipeline of data
generation includes a random sampling of diffusion tensors with spatial coherence,
allowing to control the prior of MD and FA to be box-constrained within intervals
corresponding to healthy and diseased tissue. The network showed superior tensor
inference on simulated test data as well as in-vivo data. Moreover, the inclusion of
spatial information allowed the network to maintain inference accuracy when the
averages were reduced. However, the simulation did not include off-resonance or
eddy current effects. Their inclusion will likely improve the estimation performance;
therefore, obtaining a sufficiently accurate description of the off-resonance fields
containing blood flow and motion could be beneficial177,178.
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discussion and outlook

As macroscopic cardiac function is directly determined by the state of cardiac mi-
crostructure, combined measurements of macroscopic strain and diffusion data are
a promising approach to obtain clinically valuable biomarkers34,35,37,38. However,
acquiring multiple scans increases the total protocol duration, and co-registering
can be challenging. Therefore, the last part of this thesis introduced a joint encoding
strategy of tissue velocity and diffusion tensors based on SE-cDTI without prolong-
ing TE. In the proposed sequence, a bipolar gradient was inserted to encode the
tissue velocity in the image phase. The proposed fitting algorithm was calibrated
and tested on simulated data and was capable of estimating the tissue velocities
in-vivo in agreement with a reference acquisition. At the same time, the estimated
diffusion metrics were unaffected by the sequence adaptation. By evaluating the
spatial derivative of the velocity, tissue strain can be obtained, which directly offers
clinically valuable information on local tissue contractility without extra scan du-
ration. This requires sufficient slice coverage in the longitudinal direction as well
as in-plane resolution. Therefore, the optimization of imaging parameters in cDTI
acquisitions could also include the improvement of velocity encoding schemes and
related parameters.

To solidify the foundation of cDTI, future work could be dedicated to implementing
the variety of cDTI acquisition methods as vendor-agnostic sequences. Furthermore,
standardized digital reference objects could be defined, to facilitate comparative
simulation experiments. Furthermore, based on these simulations, the optimization
of experimental design or even online scan-adaptation with i.e. reinforcement-
learning could be pursued. Using the image phase to encode macroscopic motion
could also be part of this approach. Another approach to potentially improve
3D coverage and leverage spatial information in cDTI is to use a digital twin
model for tensor inference. On the personalized cardiac meshes, (graph-) neural
networks could be used to fuse diffusion and strain-rate data with additional
tissue characterization, thereby possibly becoming more data efficient in diagnosing
cardiac diseases. Using synthetic data to train such models could facilitate this
approach. Although higher field strength are able to improve spatial resolution
and SNR, accessibility is favoured in lower field systems. In combination with an
increased data efficiency using DL algorithms, this could offer a path to increase
the usability of cDTI.
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