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Abstract

Achieving high fidelity for the measurement and control of quantum experiments imposes
strict requirements on the precision and stability of surrounding electronics. Controlling electron-
ics from a central device is more challenging when they are distributed distantly in a laboratory
and require analog signals where effects like ground loops and radiative cross-talk can limit their
performance. The project aims to solve the noise issues in long coaxial cables with a flexible
and scalable system. The scalabiliy is achieved by showcasing that multiple arbitrary waveform
generators (AWG) can be synchronized and connected to one central device. The main idea is
to transmit and receive signals via low voltage differential signal (LVDS) carried by the shielded
and twisted pairs in the Ethernet cable, and then generate and sample the signals locally near
the electronics that require analog inputs or provide outputs. The interface between the single
ended signals and differential signals is very important as the signal integrity depends strongly
on this transition. Since it is very vulnerable it is therefore important to protect it against any
kind of damage that could occur from the outside. This project aims to showcase and improve
the durability and to increase the signal quality of the differential signal interface.

In conjunction with the hardware advancements outlined in the previous section, this project
addresses the critical software infrastructure necessary for the integration and control of dis-
tributed electronics in quantum experiments. Central to the software component is the develop-
ment of a robust framework written in C++, designed to orchestrate the control and measure-
ment tasks of quantum experiments across distributed electronics. The framework encompasses a
modular architecture that accommodates the integration of various devices represented as classes
within the software. A significant focus of the project is the incorporation of FPGA functional-
ity into the existing software framework. This involves the creation of a dedicated class for the
FPGA, facilitating the communication with other device classes. Moreover, the software compo-
nent comprises an interface that provides intuitive access to FPGA programming functionalities
and allows users to program and control the FPGA seamlessly, enhancing the overall usability
and accessibility of the system.
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Chapter 1

Introduction

1.1 System Setup

The system designed by Shijia Chen [1] contains a control computer, a Zybo Z7-20 Field
Programmable Gate Array (FPGA), a custom-designed Printed Circuit Board (PCB), and a
custom-designed Digital-to-Analog Converter (DAC) board. This system is built upon the pre-
vious system by Bahadir Dönmez [2]. Figure 1.1 shows the Low-Noise Eight-Channel Arbitrary
waveform generator (AWG) created by Shijia.
The goal of the system is to generate arbitrary low-noise waveforms and to send these signals to
receiving electronics that require analog inputs or provide outputs. The waveforms will be sent
via low voltage differential signals in an Ethernet cable to a DAC chip which converts the digital
signals to analog signals.

Figure 1.1: System setup, taken from [1]

The system is able to generate arbitrary low-noise waveforms and supports a minimum of
eight channels. The procedure to create these waveforms is given below:

1. The control computer runs a Python script which sends metadata and the digital waveform
to the FPGA via a Transmission Control Protocol (TCP) connection through an Ethernet
connection cable.

2. The FPGA uses the received digital signals to create Single-ended serial peripheral interface
(SPI) signals which it sends then to the breakout board.

3. The breakout board converts the SPI signals to Low-voltage differential signaling (LVDS)
pairs and sends them to the DAC board through an Ethernet connection cable.

4. The SPI board transforms these LVDS pairs back to single-ended SPI signals.

5. The DAC board then converts the SPI signals to analog signals. The dac board can then
be connected via Bayonet Neill–Concelman (BNC) connectors to the receiver hardware.
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1. Introduction

1.2 Improving the Hardware Interface

The hardware interface between the single ended signals and differential signals is crucial to
the signal quality and in the end to the viability of the whole system. As the current system
lacks any kind of protection against Electrostatic discharge (ESD) events [1], certain LVDS drivers
have been damaged during use. Therefore, the system needs protection measures against these
events to protect it in future use and to have a long living and robust device in an experimental
environment. This will be achieved by introducing ESD protection diodes. Additionally, the
whole systems needs to be scalable which means that the user should be able to have multiple
AWGs connected to one control computer. This step is not yet established, as currently only
one system can be connected and controlled from a PC.

Figure 1.2: TVS Diodes (D2_4, D3_4, D4-4) at output of LVDS chips

To achieve the proposed goals the following tasks had to be completed:

1. The source responsible for damaging the LVDS chips needs to be identified.

2. The durability of the protection devices needs to be tested to guarantee that in the future
the LVDS chips cannot be damaged anymore.

3. Changes to the PCB:

(a) The ESD diodes need to be strategically placed on the PCB to enhance their utility.

(b) As the system currently has no labels and silkscreens for all components, they need
to be added for an improved overview and a quicker assembly of the PCB.

4. For additional protection, a custom-designed enclosure needs to crafted to shield the PCB
and the FPGA.

5. The capability to connect two FPGAs to one PC and to synchronize them using a external
trigger signal needs to be demonstrated.

The Figure 1.2 shows a section of the previously designed PCB [1], showcasing the newly
added ESD protection diodes.
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1. Introduction

Figure 1.3: waveform played by the FPGA (oscilloscope screenshot)

1.3 Integrating the FPGA in the Control Software

The quantum optics laboratory’s control software is used to program a large number of devices
which can be used to control quantum optics experiments. It already comprised the settings to
collect the data to be sent to the FPGA, however, it lacked the piece of code to successfully send
all this information to the FPGA. The main tasks to accomplish this goal were:

1. Understanding the main structure of the quantum control software used in the laboratory;

2. Understanding the low-level software implemented in Python for communicating with the
FPGA;

3. Converting the low-level software implemented in Python to C++ and integrating it into
the control software;

4. Generating quantum control waveforms in the PC, transferring them to the RAM of the
FPGA, and sending the control commands to the FPGA.

Figure 1.3 shows an example of the waveforms the FPGA is able to play, once all the data
are transmitted correctly to it. While this was previously accomplished through a Python script,
the goal was to integrate it inside of the quantum optics control software.
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Chapter 2

Hardware and System Performance
Evaluation

2.1 Investigating Factors Behind LVDS Chip Failures

The objective of this section is to identify and address the problem of LVDS chip failures
observed in the PCB. Currently, as per Shijia’s breakout board [1], among the expected eight
functional channels, channel six and seven exhibit signal corruption issues. Additionally, at-
tempts to send waveform signals from the control computer result in the absence of correct wave
function generation.

2.1.1 Inspection of the LVDS Output Pins

During our investigation into the output connectors of the LVDS chips, we employed a
"Keysight U1252B" Multimeter to measure the resistance of the output pins to ground. The
pins represent the positive and negative logic signals of SPI, in particular the differential pairs of
the Clock Signal (CLK), the Chip Select (CS), and the Main Out, Sub In (MOSI) signal path.
Among these, the MOSI line is particularly crucial as it carries data from the main device to the
sub-device.

In Table 2.1, we conducted measurements on an unoperated LVDS chip to establish a reference
measurement of a chip expected to be entirely intact. Under normal conditions a LVDS chip that
is inoperative should always exhibit a Open Loop (O.L) behaviour across all output channels,
except for the ground connection.

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N O.L O.L
CS_LVDS_P O.L O.L
24V_NI O.L O.L
PGND 0.23 0.21

Table 2.1: Reference measurements on an unoperated LVDS chip
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2. Hardware and System Performance Evaluation

2.1.2 Measurement Results of the Output Channels and Discussion

The tables provided below present the measured resistances in Ohms (Ω) to ground. In
instances where there is no connection possible, denoted as O.L, it signifies an open circuit con-
dition. In the table, I signified with the colours "red" and "black" the polarity of the Multimeter
during the measurement process. Specifically, "red" denotes that the positive polarity of the
Multimeter was connected to the output pin while the negative polarity was grounded, and vice
versa. In Table 2.5 we see the measurements of the broken LVDS chips that produced corrupted
signals in red.

We can observe that out of the two faulty LVDS chips, the resistance to ground for pins
MOSI_LVDS_P and MOSI_LVDS_N is significantly reduced, almost to the level of a short circuit.
This finding aligns with the corrupted output waveforms observed on the oscilloscope, indicating
that a damaged MOSI path disrupts signal transmission. This fact is supported by the claim that
supposedly functional chips also exhibit pins with high resistance to ground. For instance, in
Table 2.2, the resistance of pin CS_LVDS_P in Channel 1 to ground is notably low compared to the
reference chip, yet Channel 1 still produces a correct signal. This must be because this working
channel still has an open circuit connection to ground in the MOSI signal path. Therefore, we can
deduce that only chips with a damaged MOSI signal path fail to generate a correct output signal.
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2. Hardware and System Performance Evaluation

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N 501.17 O.L
CS_LVDS_P 10.79 10.72
24V_NI O.L O.L
PGND 2.11 1.87

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N 501 O.L
CS_LVDS_P 10.72 10.73
24V_NI O.L O.L
PGND 2.14 2.82

Table 2.2: Measurements of Channel 1 left and Channel 2 right

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N 502.92 O.L
CS_LVDS_P 150.63 150.35
24V_NI O.L O.L
PGND 2.23 2.25

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N O.L O.L
CS_LVDS_P O.L O.L
24V_NI O.L O.L
PGND 2.13 2.21

Table 2.3: Measurements of Channel 3 left and Channel 4 right

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N 501.2 O.L
CS_LVDS_P 4.31 4.3
24V_NI O.L 286
PGND 1.56 1.58

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P O.L O.L
MOSI_LVDS_N O.L O.L
CS_LVDS_N 484.3 O.L
CS_LVDS_P 4.67 4.67
24V_NI O.L 284
PGND 1.73 1.67

Table 2.4: Measurements of Channel 5 left and Channel 8 right

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P 20.11 20.11
MOSI_LVDS_N 495 O.L
CS_LVDS_N 496 O.L
CS_LVDS_P 6.44 6.4
24V_NI O.L 284.5
PGND 1.6 1.58

PINS red[Ω] black[Ω]
SCLK_LVDS_N O.L O.L
SCLK_LVDS_P O.L O.L
MOSI_LVDS_P 498 O.L
MOSI_LVDS_N 10.9 10.89
CS_LVDS_N O.L O.L
CS_LVDS_P O.L O.L
24V_NI O.L 283
PGND 1.83 1.83

Table 2.5: Measurements of Channel 6 left and Channel 7 right
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2. Hardware and System Performance Evaluation

2.1.3 ESD Protection Diodes

One of the factors contributing to the breakdown of the LVDS chips are ESD events. ESD
events can occur, for example, when a person walks over a carpet or a floor with poorly conductive
shoes, charges themselves up with static electricity, and then touches the integrated circuit,
resulting in an ESD strike. To determine whether this is the root cause of the chips breaking,
we utilized an ESD simulation device capable of generating rapid, high-voltage pulses [3].
A way to protect electronic devices against ESD is with Transient Voltage Suppressor (TVS)
Diodes [4]. When the voltage on the transient voltage suppressor reaches a certain threshold,
the avalanche effect in the semiconductor causes the p-n junction to be conductive which then
creates a low-impedance path to ground and can redirect the high-voltage pulse that the circuit
receives. The reason why we use TVS diodes is because their response time is extremely fast in
ranges of a few picoseconds. It is crucial for our purposes to employ bidirectional TVS diodes
because ESD events can occur not only from the signal line but also from the ground region.
Moreover, since our circuit handles differential signals consisting of both positive and negative
polarity, the use of bidirectional diodes is recommended [5]. The LVDS chips we utilize come
equipped with ESD protection rated at 4kV. To demonstrate their susceptibility to ESD events,
we had to surpass this threshold. Furthermore, we aimed to illustrate that by employing TVS
diodes with a higher voltage rating, we could safeguard the LVDS chips.

2.1.4 ESD Gun Tests

In our experiments, we utilized three distinct types of TVS diodes, each with varying rated
voltages and connection configurations. These diodes were soldered onto the output pins of a
freshly assembled PCB equipped with unused LVDS chips. The experiment was conducted by
delivering voltage pulses to the output pins of the chips. Figure 2.1 displays the ESD gun used
in the experiment, while Figure 2.2 showcases the setup featuring the soldered diodes.

Figure 2.1: ESD Simulation Device used in the experiment [6]
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2. Hardware and System Performance Evaluation

Figure 2.2: Experiment setup: On the top, the black PCB with the to be tested LVDS
chips soldered onto it. On the bottom, the ESD protection diodes soldered onto a
green spare PCB. The labels indicate where the ESD shots have been applied, the
protection level of each channel, and where the diodes were placed.
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2. Hardware and System Performance Evaluation

We equipped each of the four channels with varying levels of protection. Channel 1 relies solely
on the integrated ESD protection of the chip itself (4kV) and has no additional diode. Channel
2 is equipped with a bidirectional TVS diode designed for differential signals up to 8kV (TVS
DIODE 5.5VWM 8VC SOT9X3). Channel 3 features a unidirectional TVS diode protecting it up
to 20kV (ESD7004, SZESD7004), while Channel 4 is equipped with a unidirectional protection
diode offering protection up to 30kV (SOD-882 esd protection). For the unidirectional diodes we
can apply the voltage only on the output pins and not at ground. To have a constant reference
we also applied the voltage only at the output pins for the bidirectional diodes. But in general
one wants to use bidirectional diodes in the final implementation, as it also protects the chips
from the ground. But for our tests it was sufficient to only apply the shocks at the ouput pins
as we wanted to showcase the durability of the diodes.
The use of long cables is not ideal for TVS diodes as it can lead to reflections and thus to signal
integrity corruption while using it normally. In these tests we had to use long cables as we did
not have a place to solder them. But for testing the diodes durability with the ESD gun, it is
not a problem to have long cables as we are solely interested if the LVDS chips break and not if
the signal quality is good.

Initially, we subjected each channel to a 4kV voltage pulse to test the effectiveness of the
integrated protection. If a resistance measures O.L, it corresponds to 100MΩ to ensure visual
clarity in the plot. Different pins of each channel were utilized in the plots; however, it can be
assumed that all pins behave similarly. Therefore, if one pin is damaged during the tests, we
can switch to another pin and continue testing. All of our tests were conducted with the contact
discharge mode of the ESD simulation device.
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2. Hardware and System Performance Evaluation
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Figure 2.3: ESD Simulation Tests Ch1 and Ch2
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2. Hardware and System Performance Evaluation

2.1.5 Discussion of Results

As anticipated, the tests conducted with a 4kV voltage burst on all diodes demonstrated that
the protection mechanism functions reliably, even under repeated voltage applications. So we
can safely assume that the basic protection provided by the manufacturer works fine, thus the
ESD shots that the LVDS chips received through contact discharge must have been much higher
than that threshold.
Channel 1:
As the applied voltage level increases, we observe a significant decrease in measured resistance
to ground in the absence of additional protection, especially evident with 12kV shots. Notably,
for 8kV shots, the resistance stabilizes at a fixed value, contrasting with the continued decrease
seen with higher voltage shots.
Channel 2:
This channel demonstrates resilience against repeated 8kV voltage bursts; however, at 12kV, the
resistance begins to decrease significantly, as expected. Similarly to the behavior we observed in
Channel 1.
Channel 3:
While Channel 3 withstands small to moderate voltage bursts, it exhibits signs of failure after
just two ESD shots at the 20kV level, despite the diode’s rated protection. This issue may stem
from a falsely applied voltage shock or a faulty connection at the diode. Naturally, it must be
acknowledged that the rated voltage serves as an upper limit. Therefore, even if we apply this
voltage precisely, there remains a possibility that the diode may not fully protect against such
voltage due to voltage fluctuations in the ESD simulation device. Additionally, under normal
circumstances TVS diodes should be connected with a short cable, but in our setup the cables to
the diodes where of a few centimeters, as we didn’t have space to solder them directly onto the
PCB. Also, ordering new PCBs just to test diodes would not have been financially worth as we
are trying to destroy the LVDS chips. Therefore, there is a possibility that the 20kV and 30kV
shocks still reached to the chips.
Channel 4:
In Channel 4, the impact of 20kV is substantial, despite the TVS diode being rated at 30kV.
Similarly to Channel 3, we assume that due to the considerable length of the cable connected to
the diode, there was a possibility that the 20kV and 30kV ESD shocks reached the LVDS chip
before the TVS diode could redirect the high voltage.

One can see a clear connection between the resistances to ground of the LVDS chips and
the applied voltage bursts so we can conclude that the damage was most likely due to a contact
discharge by humans. Additionally, the symptoms of the damaged LVDS chips that we observed
in section 2.1.2 are very similar to those recreated during our ESD simulation tests. It is therefore
important to add an additional protection on top of what is already integrated. That is why
we decided to improve the PCB design of Shijia [1] by adding TVS diodes at the outputs of the
vulnerable chips.

2.1.6 Improvements in PCB Design

In the PCB design, it’s crucial to position the diodes in close proximity to the output con-
nector pins, especially those directly connected to the socket where the Ethernet connector will
be plugged in. This placement ensures that in the event of an ESD occurrence, the voltage pulse
is intercepted long before it reaches the LVDS chips.
During testing, we observed an issue when attempting to transmit SPI signals to the LVDS chips
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2. Hardware and System Performance Evaluation

that had previously endured ESD events. Despite their resilience to ESD, we encountered un-
wanted errors in the oscilloscope’s differential signal readings. This problem stemmed from our
testing setup, where diodes were connected to lengthy (8-10cm) copper wires for testing. Given
the high-frequency nature of the SPI data transmission (operating at 31.25MHz), the extended
wiring introduced signal reflections and superposition, leading to signal corruption.
Therefore it is advisable to have the TVS diode placed directly onto the signal line to minimize
signal reflections and maintain signal integrity.

We therefore incorporated TVS diodes which are made for differential signals, like the one in
Channel 2, where the data lines go through the diode, as can be seen in picture 2.6. We use the
diode "USBLC6-2P6" which provides very low capacitance ESD protection up until 8kV contact
discharge produced by STMicroelectronics. In figure 2.6 one can see the different connections
through the diode. The data lines to be protected are connected to pins 1, 3, 4, 6 of the diode.
Pin 2 serves as the Ground (GND) connection, while pin 5 functions as the Common Collector
Voltage (VCC) connection.
In figures 2.7 and 2.8 one can see the TVS diodes incorporated into the PCB design. As,
mentioned before they are placed very close to the output pins.

Figure 2.5: TVS diode in our
setup [7]

Figure 2.6: Signal line paths
through the diode [8]
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2. Hardware and System Performance Evaluation

Figure 2.7: Close-up of the LVDS chips close to output pins (PCB Desing)

Figure 2.8: Connecting lines going through the diodes (PCB Desing)

13



2. Hardware and System Performance Evaluation

2.2 Enclosure Design

In the previous section, we observed the critical significance of ESD protection, particularly
in devices susceptible to human touch. To fortify our defense against these potentially damaging
events, the subsequent important endeavor involves crafting an enclosure for the entire system
consisting of the FPGA and the PCB. This enclosure serves as a fundamental barrier, ensuring
basic protection for the device while affording users greater ease in handling, thereby mitigating
the need for excessive caution.
Yet another crucial advantage of employing a metal enclosure is its ability to diminish suscep-
tibility to environmental electromagnetic noise. Such interference threatens to signal quality,
potentially introducing unwanted errors that undermine our objective of achieving low-noise
waveforms. By adopting a metal enclosure, we effectively shield the device from electromagnetic
disturbances emanating from other equipment within the laboratory environment, thereby safe-
guarding the integrity of our signals. In this section, we will show the design steps and the final
result of the 3D printed enclosure.

2.2.1 Design of the Enclosure

An important feature of the enclosure is to prevent users from touching any surface of the
device that isn’t necessary. Therefore, we’ve ensured that the enclosure fits tightly, making it
close to impossible to manipulate any components from the outside. The enclosure features
four stilts for securely fastening the FPGA which are drilled in through the enclosure from the
bottom side. So it is advisable to use plastic screws in order to prevent any ESDs going through
the enclosure to the FPGA. It’s advisable to refrain from frequently removing the FPGA and
breakout board from the enclosure due to the tight fit, which could potentially damage certain
components of both the FPGA and PCB during removal. Furthermore, we’ve incorporated holes
for connectors, allowing the power and SMA connectors of the PCB to be securely screwed in
place, thereby minimizing contact with interior components. This can be seen in the 3D model
2.11. We’ve installed ventilation holes on both the left and right sides of the enclosure to ensure
good airflow for the components, preventing overheating. We have also designed a lid which can
be screwed on the enclosure. The print took around 23 hours to complete and it has been printed
with PLA filament material. PLA can start to lose its form and become pliable at temperatures
above 60°C so it is not recommended to go beyond that threshold.

Figure 2.9: Back View

Figure 2.10: Top-down View

Figure 2.11: 3D model of enclosure design
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Figure 2.12: Front View Figure 2.13: Back View

Figure 2.14: Back View

Figure 2.15: Top View

Figure 2.16: Top-down View Figure 2.17: Top-down View

3D-printed enclosure with the FPGA and PCB incorporated in it with and without the lid.
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2.3 Scalability of the Low-Noise Eight-Channel AWG

A bottleneck hindering scalability is the current system’s reliance on only one FPGA con-
nected to the control PC. Enhancing the system to accommodate multiple FPGAs connected
simultaneously, generating identical signals, would be advantageous. Fortunately, Shijia’s system
[1] offers the capability to employ an external input trigger, enabling synchronization for concur-
rent signal transmission. Currently, the Python control software is only made to accommodate
only one FPGA but by having two python scripts open at the same time and making small
changes to the code, it is possible to connect the PC with two FPGAs at the same time.

2.3.1 Procedure to Connect two FPGAs

Following the part of the Python Script where the configuration flag is defined which deter-
mines how the waveforms are going to be played either in single or continuous play mode and
additionally if one would like to use the external or debug trigger mode. In this code example
the debug trigger mode is activated. The FPGA will wait until it receives the trigger signal, the
DACs are already configured.

1 # IP address of the FPGA board running the TCP/IP server
2 server_ip = "192.168.1. XX"
3 # Port number the server is listening to
4 server_port = 5001
5 # Use internal trigger (0) external trigger (1) debug trigger (2)
6 trigger_mode = 2
7

8

9 # Use internal clock (0) external clock (1)
10 clock_mode = 0
11 # Use channel 1 for testing on single channel
12 channel_states = int(’0b11111111 ’ ,2) #00000100 for channel 3,
13 # channel 1 must always be enabled , since common clock
14 # Combine all individual flags to obtain 32-bit config flag
15 # Shift left and add
16 config_flag = (debug_messages
17 + (command << 1)
18 + (play_mode << 4)
19 + (trigger_mode << 5)
20 + (clock_mode << 7)
21 + (channel_states << 8))

To connect two FPGAs to one PC each one needs it’s own Internet Protocol (IP) address.
So the last number of

1 server_ip = "192.168.1. XX"

needs to be changed so it’s different to all the other FPGAs had before. XX is therefore arbitrary
but needs to be different.Additionally, in the file tcp_perf_server.h the macro TCP_SERVER_I
P_ADDRESS needs to be changed such that it matches the IP address in the Python Code. Here
is the discussed C code snippet:

1 /* Server port to listen on */
2 #define TCP_SERVER_PORT 5001
3 /* Server IP information */
4 #define TCP_SERVER_IP_ADDRESS "192.168.1. XX"
5 #define TCP_SERVER_IP_MASK "255.255.255.0"
6 #define TCP_SERVER_GW_ADDRESS "192.168.1.1"

16



2. Hardware and System Performance Evaluation

After defining or changing the macros the FPGA needs to be reprogrammed or it will not be
possible to set up the TCP connection. After the Python Script has been executed, the console
should read:

All DACs are configured, playing initial value and waiting for trigger.

If that is the case, a trigger can be applied at both FPGAs to start sending the SPI signals at
the same time. To use trigger_mode = 2, the pin 5 (external_trigger_single) needs to be
used of the JD input pins, this corresponds to the pin 10 on the FPGA.

((a)) input pins of the PCB ((b)) PMOS output pins of FPGA

2.3.2 Generation and Results of the synchronized SPI Signals

To generate the actual trigger signal one can use a wave generator and connect it two the two
FPGAs. The following measurements were achieved while using pulse mode with a frequency of
1kHz, a high voltage of 3.3V, low voltage of 0.0V and a duty cycle of 50%.

On the following page, the Measurements presented in Figure 2.19 reveal a yellow signal
representing the trigger pulse. The orange and green signals depict the SPI signals originating
from the FPGAs. One can observe that there exists a latency of approximately 400ns between
the transmission of the trigger pulse and the initiation of the first SPI signals. Moreover, the
SPI signals from both FPGAs are synchronized to a few nanoseconds depending on the length
of trigger pulse cable, thereby achieving our intended objective.
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Figure 2.19: Oscilloscope measurement from two FPGAs (Simultaneous SPI signal gener-
ation initiated by a common trigger pulse)
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Chapter 3

High-Level Control Software

3.1 Understanding the Main Structure of the Software Used in
the Lab

3.1.1 ExperimentControl

The starting point of the software used in the lab is the application ExperimentControl. It is
from this application that the setup of the experiment can be chosen. Thanks to this application
we can control the devices connected to the computer, program the timings of the events and
generate the waveforms. After everything has been set up and the program is run, the application
generates an XML file which is read by the software and the devices are initialized.

To understand how to set up the devices, the events and the waveforms, I suggest reading one
of the ctr files saved in the control computer (which can directly be opened on ExperimentControl),
as one can understand where to click when setting up the devices.

Figure 3.1 shows how ExperimentControl shows itself. The first step is to add a device. To
do that, click on Hardware>I/O Devices. At this point, choose the QODAC device. Change the
number in the field Port to 5001. After having done that, click ok and close. Once the device
has been initialized, set up all the channels, from Channel 0 to Channel 7. To do that, click on
Hardware>Channels Setup... and then click on the single channels. After having clicked on
one channel, just click on enable and show.

After having done that, Figure 3.2 shows how the central field should look like. The next step
is creating events, i.e. time windows in which the device will produce the desired output. It is
important to note that a series of events, with the same starting and ending times, corresponds
to every channel; these events can contain different formulas, enabling different channels to have
different outputs in the same time window. To create an event, click on Event; assign a name to
the timing edge, say one, and give it a formula. If the event is the first one, write 0 in the formula.
This will create the first timing edge. As every event consists of two timing edges, to create at
least an event create a second timing edge; to do that, click again on Event, assign a name to
the event, and give it a formula. In this case the formula must be previousEnabled + t, and
write the desired duration of the first event instead of t.

At this point, the central field should look like Figure 3.3. In this case we have one event of
the duration of 1 s, delimited by two timing edges. There is actually a second event, which does
not play any role for the experiment, but it is important for the software, as every sequence must
end with an event without duration delimited by the last timing edge. After that, one can keep
on creating new events following the same procedure; note that there will always be one more
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Figure 3.1: ExperimentControl layout.

Figure 3.2: Channels layout.

Figure 3.3: How the central field looks like after having added one event lasting 1 second.
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Figure 3.4: Window which opens to set up the output of a channel in a certain event.

event at the end, which has the same meaning as the second event mentioned before.

The next step is to choose the waveform. To do that, double click on the field in Figure 3.3
corresponding to a channel and to an event; this will set the output of the channel in the time
window corresponding to that event. The window in Figure 3.4 opens. To choose the output
of the channel in that event, write in the field Formula. Let us assume we want a sinusoidal
wave with a frequency of 1 Hz and amplitude of 5 V. In this case, we would have to write
5*sin(2*pi*t) and tick the button Time dependent (otherwise, the software would read the
formula as time independent and output only one sample for the whole event). A crucial setting
is the Sampling Rate. It represents how many samples the FPGA will save for this event, and
set the duration of each sample accordingly. Let us assume we write 100 in this field. In this case
the computer will upload to the FPGA 100 samples per second, so 100 samples for this event
(which lasts one second); each sample will last for 1/Sampling Rate seconds, in this case 10
microseconds. Of course, the higher the Sampling Rate, the higher the precision of the output of
the FPGA, but more on this later. Figure 3.7 shows how the window will look like after we click
on the button Redraw. To save everything, we have to click on the button ok. This procedure
can be followed to set every event for every channel up, and obtain the desired waveforms.

3.1.2 ExpWiz

Let us now move on to the code. All the code is contained in the folder ExpWiz, which is
located in Development. The file of interest for our purposes is DeviceQODAC.h. It contains
the declaration of the class DeviceQODAC, which represents the device we set up in the previous
section. This class is a subclass of the classes IODevice and TCPIPDevice, and inherits all of their
attributes. The most important member variables of DeviceQODAC are buffer and buffer_idx.
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Figure 3.5: How the window looks like after clicking on Redraw.

The first one is an array which contains all the integers which will be sent to the FPGA, and
the second one is the number of bytes contained in the first one. The two important member
functions of DeviceQODAC are GenerateEvents, which is where the Python code was translated
and integrated inside of the control software, and sendCommands, which sends the buffer contained
inside of DeviceQODAC to the FPGA.

DeviceQODAC is a subclass of IODevice. Looking into this class we find the member variables
triggerExternal and clockExternal, which come from what was set in ExperimentControl.
Another important member variable is channels, which is an instance of the class IOChannelList.
channels represents a list of the channels which was set before in ExperimentControl.

Let us now delve into the class IOChannel. It contains the member variables show and
enabled, which again were set in ExperimentControl. Another important member variable is
events, which is an instance of the class IOEventList. events represents a list of all the events
which were set before in ExperimentControl.

Let us examine the class IOEvent. It contains the corresponding channel, and the other
important argument is timing. It is an instance of the class TimingEvent and it can call its
member function getValue(), and this will give us the value of t at the start of the event. Another
important value is eventSamplingRate contained in the QODACEventFormula (which is a subclass
of IOEvent). QODACEventFormula is also a subclass of the class EventWaveformFormula, which
contains the formula f, which in turn can be evaluated by its member function evaluate() to
obtain the value of the function (written in ExpWiz) corresponding to that event. Note that the
class formula contains an instance of the class FormulaEvironment, to whom the notion of time
can be given by calling the member function addVariable.

Now that the classes, which are interesting for our purposes, have been analyzed, let us move
on to the overall working mechanism of the software. The important files are Generator.cpp,
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Figure 3.6: Visual representation of the classes of interest in ExpWiz

SDIMain.cpp and Player.cpp. These files working together initialize all the devices which were
set up in ExperimentControl, read the information contained in the XML file generated by
ExperimentControl and pass all the information to the instances of the various classes repre-
senting the devices.

3.2 Understanding the Low-Level Software Implemented in
Python

3.2.1 Configuration Flags

The first thing which the low-level software implemented in Python does is to set up some
of the settings to be sent to the FPGA. They are collected in a 32-bit configuration flag, called
config_flag. The parameters are the following:

1. debug_messages: it occupies one bit. If it is 1, the debug messages are sent to the PC,
otherwise they aren’t;

2. command: it occupies three bits; if it is 1, which is the value of interest, the data are
uploaded to the DDR and the waveforms are played by the FPGA.

3. play_mode: it occupies one bit. If it is 0, the FPGA will be in single mode and the
waveforms will be played only once, otherwise the waveforms will be played continuously;

4. trigger_mode: it occupies two bits. If it is 0 the FPGA will use an internal trigger, if it is
1 the FPGA will use an external trigger, if is 2 the FPGA will use a debug trigger;

5. clock_mode: it occupies one bit. If it is 0, the FPGA will use an internal clock, otherwise
it will use an external clock;

6. channel_states: it occupies 8 bits. If it is set to 11111111 (in the decimal system 255),
which is our value of interest, all channels are enabled. Every 1 corresponds to an enabled
channel.

All these configuration flags are combined together in one 32-bit doubleword configuration
flag called config_flag. This is done by summing debug_messages, command shifted by one bit,
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play_mode shifted by 4 bits, trigger_mode shifted by 5 bits, clock_mode shifted by 7 bits and
channel_states shifted by 8 bits.

3.2.2 Metadata

After having set the configuration flag, the Python script builds an array containing the
metadata to be sent to the FPGA, called metadata. The metadata are organized as follows:

1. linearity error compensation: one 32-bit integer per channel; for +10V/-10V voltage refer-
ences, this value must be 12;

2. initial/safe voltages for analog outputs: one 32-bit integer per channel; for +10V/-10V
references, DAC word for 0V is 524288;

3. list of number of events: one 32-bit integer per channel, representing how many events are
expected for every channel (1 for one event, 2 for two events etc.);

4. list of sampling periods: one 32-bit integer per event, representing the time period for which
one sample will be played. Note: it is one 32-bit integer per event; if, for example, Channel
1 has two events, the metadata must be extended by two 32-bit integers for Channel 1, one
with the sampling period of the first event and one with the sampling period of the second
event. The value of sampling_period has the unit of microseconds;

5. list of number of samples for each event: one 32-bit integer per event, representing how
many samples will be stored in the DDR for that specific event. Note: again, it is one
value per event. This value is directly dependent on the sampling period and the duration
of the event.

3.2.3 Waveform Samples

After having set the metadata, the Python script finally collects the waveform samples. They
are collected in an array with the size equal to the sum of all the numbers of samples per event.
First they are computed as values in Volts, going from -10V to 10V, then they are passed to the
function voltages_to_dac_words, which extracts the value the FPGA expects for that voltage
(0 for -10, 1 048 576 for 10, all the values in between are scaled linearly).

Once the samples are put together in the array waveform_samples, a new array called data
is put together, consisting of config_flag concatenated with metadata and waveform_samples.
Ultimately data is sent to the FPGA.

3.3 Integrating the DeviceQODAC in the Control Software

The main work I have done throughout this project is translating the Python script which
sets up the values in the DDR of the FPGA in C++ and integrating it into the control software
used in the lab. After having done that, most of the work has consisted of debugging. In this
section I am going to explain how I have translated the Python script (with the substantial help
of Jeffrey Mohan); after that I am going to provide a quick guide to the procedure that must
be followed to make the FPGA play the desired waveforms, and finally, I am going to show the
steps I have done towards having a working environment.
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3.3.1 Translating the Low-Level Software Implemented in Python

I will now go over the code written to integrate the FPGA in the control software. The func-
tion I have written is DeviceQODAC::generateEvents. In the beginning, the function prepares
the metadata like it was done in the python script: the vectors lin_error_comp, initial_value
and num_events are initialized. Also, sampling_periods and num_samples are initialized as vec-
tors of vectors; a two-dimensional space is needed because there sampling periods and numbers of
samples for every event in every channel. Finally, the vector containing the samples is initialized
(samples).

After that, the function contains a loop which iterates over every channel. The iteration is
done through the aforementioned channel list. For every iteration over the channels the values
in lin_error_comp and num_events of the corresponding channel are updated by accessing the
data in the channel class. Next, two vectors called sampling_periods_ch and num_samples_ch
are initialized. They will contain the sampling periods and the numbers of samples for every
event in the corresponding channel and will be pushed into the matrices sampling_periods and
num_samples.

After that, the function contains a loop which iterates over every event in the corresponding
channel. This is done by iterating over the aforementioned events list present in every chan-
nel class. The variables timeCurrenEvent and timeNextEvent (which are obtained through the
member function getTimingEvent()) will give the time span corresponding to that event; note
that timeNextEvent is read from the next event in the list, while the first event is initialized
as NULL and the first timeCurrentEvent is initialized as zero, and the first event initialized as
NULL is skipped as soon as the first timeNextEvent is read; at the end of the iteration corre-
sponding to that event, timeCurrentTime takes over the value of timeNextEvent. Next, the
loop computes the duration corresponding to a single sample in that event as (timeNextEvent -
timeCurrentEvent)/ eventSamplingRate. This value multiplied by 1e6 is pushed in the vector
sampling_periods_ch (remember that the unit of a sampling period is microseconds).

After that, there is a last loop which iterates over the time, which always increases by the
time span corresponding to one sample; this loop evaluates the function which was written in
ExpWiz and pushes that value into the vector samples. This evaluation is done through the
function evaluate(), which in turn is passed to the function applyFunction, the equivalent of
voltage_to_dac_words in the python script. The loop keeps track of the number of samples
added to samples, and updates the vector num_samples_ch.

To sum up, this loop updates the information which will go into the metadata and extracts
the samples out of the information contained in the classes, storing them in the vector samples.
It also handles two edge cases: the first one is when an event is time-dependent, and in this case,
we save only one sample for he whole event; the second one is the last event. In this case, what
changes with respect to the other events is that, instead of taking the time of the next event as
upper bound of its time span, we take the time maxTime, which is one of the arguments given to
the function.

We have now arrived at the end of the loop which iterates over the channels. Once we have
collected all the information for what we wrote on ExperimentControl, we can finally set up the
configuration flag and the metadata as it was done in the Python script. First of all, we initial-
ize the variables debug_messages, command, play_mode, triggerExternal, clockExternal and
channel_states and combine them together in the 32 bytes integer config_flag exactly as it
was done in the Python script. Subsequently, we collect the final data to be sent to the FPGA.
This is done with the array buffer, which is a member variable of the class DeviceQODAC; first
of all its size is calculated, then the necessary space is allocated, and finally it is populated with
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Figure 3.7: Visual representation of the function generateEvents

the values in config_flag, lin_comp_erorr, intial_value, num_events, sampling_periods,
num_samples and samples. Every time a value is pushed into the array buffer, the integer
buffer_idx (which is another member variable of the class DeviceQODAC) is increased by one;
finally, it is multiplied by four, because it represents the number of bytes contained in the buffer.

3.3.2 Quick Guide to the Setup

I will now provide a quick step guide to the setup, and explain how to make the FPGA play
the desired waveforms with the QO software. The FPGA must be connected to the power supply,
and also must be connected to the computer via the USB cable (to program it from Vitis) and
the Ethernet cable (to send the data).

1. step 1: launch ExperimentControl; I have already explained the functioning of the appli-
cation in 3.1.1.

2. step 2: open RX, and click on play (the green button). This will start the code, which now
will expect a file from ExperimentControl to set the classes in the software up. This will
make the application ExperimentRunner start. RX is the application where we make the
code start from, but we can modify it on VSCode without any problems; when opening
RX, we will see a notice that the code has been changed, and we just need to accept the
changement.

3. step 3: program the FPGA; launch Vitis, open the correct environment and program the
FPGA. Programming it means making it wait for data, and the FPGA is now in that state.

4. step 4: hit the yellow button on ExperimentControl as in Figure 3.8; this will give the file
coming from the whole setup on ExperimentControl to the control software. Now, if you
look at ExperimentRunner you will see continuous messages being printed; the software
sends data to the FPGA over Ethernet continuously, precisely it sends the data, waits for
a period of time corresponding to the total duration of the events and sends the data again
(the status of the FPGA does not matter). If everything worked fine, the FPGA should

26



3. High-Level Control Software

Figure 3.8: Yellow button to hit to make pass the setup to the code

receive the first packet of data, go to the status of play (meaning it continuously plays the
waveforms), and not accept data coming from the PC anymore. This is the reason why you
need to make sure you closed ExperimentRunner after the FPGA is playing the waveforms;
if you don’t close it, the computer will keep sending the data to the FPGA (which will not
accept it), but if you reprogram the FPGA to make it wait for data (step 3), it will accept
the data coming from the computer and possibly corresponding to what you programmed
before.

5. step 5: close ExperimentRunner (reason explained in step 4).

Finally, if you want to run the Python code, open the anaconda terminal; look for the file
TestProgram.py in ExpWiz and copy its path in the anaconda terminal. Run it by typing
the command python TestProgram.py on anaconda. This will launch the program and the
computer will directly send data to the FPGA, therefore you need to make sure the FPGA is
expecting the data (step 3).

3.3.3 Steps Towards a Working Environment

In this section I will explain the debugging steps and the process which led to a a working
environment.

The first step was translating the Python code in C++ and integrating it into the control
software. Of course the code was not perfect in the beginning, and I had to debug it. I have done
that by setting small experiments up, corresponding to the cases I wanted to test, then printing
the vector buffer to another file, finally inspecting this printed vector and checking whether it
was as expected (also by comparison with the Python script). After this step, I was almost sure
that the C++ code had no flaws and was ready to test it directly on the FPGA.

The first time I tried to run the C++ code on the FPGA something very strange happened:
when reading the messages the FPGA was sending to the computer, I saw that the FPGA was
continuously opening and closing communication sessions with the computer. What happened,
for example, could be the following: the FPGA accepts a first connection, writes to the memory
the configuration flag and the metadata, then the connection is lost, a new connection is accepted,
the FPGA writes to the memory the data corresponding to Channel 1, then the connection is lost,
a new one is accepted and so on. This behavior was very different from the behavior observed
with the Python script, but nevertheless I wanted to see if the FPGA was able to play something.

To do that I connected the FPGA to the oscilloscope and observed the played waveforms.
After some attempts, I noticed that the FPGA played only the data corresponding to the begin-
ning of Channel 1; then, no matter what should come afterwards, the FPGA played that same
data over and over again (always corresponding to the beginning of Channel 1). Since I was sure
the C++ code was generating the correct buffer, because I had "manually" inspected before, I
came to the conclusion that something was wrong with the communication between computer
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and FPGA, also considering what was happening with the messages coming from the FPGA
(continuous closing and opening of the session).

To verify my conclusion, I inspected the data saved in the memory of the FPGA. To do
that, I installed Vivado and Vitis on the QO computer, and ran some sessions in the debug
mode. I would program the FPGA from Vitis in debug mode, launch the C++ code from the
computer, place a breakpoint where the FPGA would start to play the waveforms and inspect
the data saved in the memory of the FPGA. After having done that, I could read the memory
of the FPGA: I saw that the beginning of the first channel was written correctly, then, for some
unknown reason, at some point in the middle of the memory reserved for Channel 1, instead
of having the correct data, there were again the configuration flag, the metadata and the data
corresponding to the beginning of Channel 1. This repetition of data occurred other times in
later memory addresses. This was totally unexpected, because the configuration flag and the
metadata are supposed to be saved somewhere else in the memory of the FPGA. However, this
confirmed my hypothesis that something was wrong with the communication between computer
and FPGA, and not with the C++ code.

At this point, we thought that the reason why the data repeated in the FPGA was the
following: the computer was sending all the data over and over again, and the FPGA would
continuously accept it, even without having finished to write everything to the memory. This
meant that the FPGA would start to write to the memory, and before having finished, accept
new data from the computer and write the newly accepted data instead of the old ones.

At this point, we saw two different debugging strategies in front of us. The first one would
be to change the C++ code in the control software to slow down the process of sending: I just
changed the function which wrote the bytes to the FPGA to make it sleep for a certain amount
of time after having sent all the data, but this approach did not work: after the end of the
data corresponding to the first packet, the data I saw in the FPGA were data corresponding to
another packet, not the second one but a completely different one; I did not investigate further
because it was clear to me that this was not a viable solution. The second strategy we adopted
was to modify the C code in the FPGA. When the FPGA accepted the first chunk of data, it
shouldn’t be open to accepting new data, but close any new connection. This solution did not
work, because the FPGA, as I noticed later, was already programmed to not accept new data
before all the data had been sent.

However, inspecting the code inside of the FPGA was still beneficial because we noticed
a variable, called payload, which was a pointer to the data received in one packet from the
computer. Its size, defined by the constant tcp_mss, was equal to 1400 and represented the
number of bytes the FPGA was supposed to receive in one packet of data. We also noticed that
the number of bytes written to the memory of the FPGA was exactly 1400; after these 1400
bytes, there was this phenomenon of repeating of the data. We came to the conclusion that the
following was happening: the FPGA receives the first packet of data, for some unknown reason
something goes wrong with the communication, the computer stops to send the data, the FPGA
does not have all the data it expects (this information is contained in the metadata) and still
waits for the data, the computer opens a new connection and sends a new packet of data, the
FPGA accepts the first chunk of data (which explains why the data are repeated in the memory),
and this sequence goes on until the FPGA has received all the data it expected. A posteriori,
this interpretation was the correct one. I note that this conclusion was different from the first
one, when we thought that the problem was only due to the FPGA not keeping up with the pace
of the computer.

At this point we adopted a new strategy: we thought that the problem was connected to
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the size of the packets. In fact, the standard value of tcp_mss was 1460, while for some reason
in the FPGA it was set to 1400. We argued that the computer was expecting the FPGA to
receive the data in packets of 1460 bytes, and since this was not happening, it would close the
communication. Therefore, we modified the variable tcp_mss to 1460, but this approach did not
work, the FPGA would now just receive one packet with the size of 1460 bytes. Plus, the Python
script does not work with tcp_mss set to 1460, as it does not end the communication and does
not successfully transfer the last packet of data. Next, we tried to set it to 1444; in this case
the Python script worked, but the control software still did not work. We left tcp_mss set to
1444. One could think that a solution would be just to set this variable to the wished size, but
this approach would not work because the Ethernet communication protocol does not allow to
exchange packets larger than 1500 bytes.

This debugging strategy was nevertheless beneficial, because I could understand where the
mistake was likely happening: something was wrong with the communication between the com-
puter and the FPGA. The next strategy we adopted was to further investigate the code inside of
the FPGA, and we tried to erase the part of code that raised an exception. This did not work,
but at least we understood that the problem was not coming from the FPGA, but rather from
the computer. All these strategies might not have worked, but they allowed us to narrow down
the problem and understand where it was coming from.

The next strategy we adopted was to download the application Wireshark and to inspect
the exchange of information over the Ethernet between the FPGA and the computer, also to
better understand what was causing the issue. I compared the messages printed when running
the Python script and when running the control software. I will now briefly explain the meaning
of the messages I have been able to see.

Figure 3.9 shows the exchange of messages when running the Python script. Let us analyze
the entries we can see in a row: the first one is referred to how many messages have been
exchanged since Wireshark had started to read the communication; the second one is referred
to the time which has passed since Wireshark had started to read the communication; the third
and the fourth ones are respectively the address of the sender and the address of the receiver,
192.168.1.100 for the computer and 192.168.1.10 for the FPGA; next, we see the entry "TCP"
and another number (not of interest for our purposes); the seventh one signals the ports that
are involved in the communication (50882 in Figure 3.9 for the computer, 5001 for the FPGA);
next, we see numbers corresponding to the labels Seq, Ack, Win, Len, MSS, WS and SACK_PERM.
Of these last entries the only interesting one is Len, which represents the number bytes which
are being sent in the corresponding exchange. All the other entries are not interesting for our
purposes.

Let us now analyze the exchange of messages we can observe when running the Python script.
The first two messages (the gray ones) are the initialization of the communication: the first one
is sent from the computer, which starts the communication, and the second one is the FPGA’s
acknowledgement. Then we see a series of blue messages. The first one comes from the computer;
it shows that the computer is starting to send the data (it is still a "protocol message", as its
length is zero). After that, we see messages always coming together in couples: the computer
sends a packet of data and the FPGA sends it back to the computer. Both packets have the size
of 1444 in the first exchange, which is the value we previously gave to the variable tcp_mss; this
also shows that the size of the payload does not represent a problem for the communication, as
the control software can adapt the size of the packets it is sending. This exchange of messages
is continued until all the data have been sent.

Let us now analyze the exchange of messages we can observe when running the control
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Figure 3.9: Communication over the Ethernet when running the Python script

Figure 3.10: Communication over the Ethernet when running the control software (events
of 1 ms)
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Figure 3.11: Communication over the Ethernet when running the control software (events
of 30 s)

software shown in Figure 3.10. Already at a first glimpse we can see a noticeable difference and
imagine that something is going wrong. The first four messages are exactly the same that we
see when running the Python script: the computer initializes the communication, the FPGA
acknowledges it, the computer send the first "data start" message and the first packet of data.
At the fifth message we already see a difference: the computer has opened a new connection (we
can see this not only from the color of the message, but also from the number representing the
port of the computer, which has now changed from 51252 to 51253). Only the sixth message is
the FPGA recognizing that the first packet has arrived . Note that this message is sent to the
previous port. This triggers the seventh message (the red one), which is sent by the computer
(again by the port 51252) and shows that the computer has now closed the connection because
of an error. Then we see the FPGA accepting the new connection from port 51253 and the
computer sending a new packet of data (again, the data corresponding to the beginning of the
array buffer). Now the FPGA does not acknowledge the data coming from the computer: notice
that the length of the message is 140, not 1444, meaning that it must be some other kind of
message. After that, the computer issues an error and closes the connection from the port 51253.
After that, we see this behavior going on.

We could draw some important conclusions from the observation of the exchange of messages.
First of all, the error is issued by the computer. Secondly, the computer keeps opening new
sessions where it sends the data again from the beginning, and the FPGA accepts it, but it
interprets it as new packets (not as the first packet repeated). At this point, I noticed an
interesting fact: the computer opens new sessions independently from the messages received
from the FPGA, and independently from the status of the communication (whether or not a
mistake has occurred). In fact, the fifth message is sent even though no mistake has happened
yet. I noticed that the rate at which the computer tries to send new data corresponds to the
total duration of the events; later this has been explained to me, but at the time I was unaware
of that and I only made a guess. We now took our first hypothesis back into consideration: it
was possible that the FPGA was not keeping up to the pace of the computer, which was opening
new sessions before the preceding ones were over, and this was causing a intertwining between
messages sent to an by the various ports of the computer, which in turn raised the error messages
from the computer.

With this new idea, and together with the awareness that the rate at which the computer
was opening new sessions was related to the duration of the events, what came to mind was just
to program longer events on ExperimentControl. Before I was sending data corresponding to a
duration of one millisecond, so I tried to send data corresponding the to a duration of 30 seconds,
so that the FPGA would have all the time to write to its memory before a new connection was
opened. This approach proved to be wrong, but it revealed some information which later proved
to be essential to fix the problem.

Let us analyze the exchange of messages we can observe when running the control software
shown in Figure 3.11. We see the usual messages of initialization of a connection; next, the
computer starts to send the data but again the FPGA does not acknowledge it, and instead
sends another kind of message with the length of 140. Note that no new connection has started
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in between, meaning that the intertwining of communication between different ports is not the
problem triggering the error in this case. After this non-expected message, the computer raises an
error and stops the session. This leaves us in the following situation: the computer has stopped
sending the data and has sent only one packet, while the FPGA has not received all the data it
was expecting. It is not shown in the picture because in between there were many other messages
not related to the communication over the Ethernet, and it would be misleading, but exactly 30
seconds after this exchange a new exchange from another port of the computer would happen,
with the same exact results (computer raising an error after the feedback message of the FPGA).
The FPGA still can’t play the waveforms, because not all the data it was expecting have been
written to its memory yet. This exchange would happen over and over again until the FPGA has
collected an amount of data corresponding to the amount of data it was expecting; at this point
the FPGA would start playing the waveforms and not accept data anymore from the computer.
Of course, all the data received by the FPGA would correspond to the first packet of data sent
every time by the computer, i.e. the configuration flag, the metadata and the beginning of the
Channel 1 samples.

The next step I took was to analyze over Wireshark the exchange of messages between the
control software and a working device. What I could observe were messages very similar to the
ones observed when running the Python code. This made me realize that there was nothing
wrong with how the Ethernet communication was handled in the control software, so it excluded
another possible source of the mistake.

What led us to the solution of the problem was a comparison between the exchange when
running the Python script and when running the control software. A posterior, I recognized two
reasons why the computer raises errors. The first error in Figure 3.10 was due to the intertwining
of connections between different ports: the FPGA was recognizing the data corresponding to a
previous communication, while the computer had already started a new one. This is fixed by
making the events last longer. The second error in Figure 3.10 and the errors in Figure 3.11 were
due to the computer receiving a feedback message it is not expecting. We did not come to that
realization by then; we thought it was only a timing issue, because the FPGA was taking too
long to send the feedback message.

To solve the second kind of error I explained, we deactivated the debug messages sent by the
FPGA, thinking that they were increasing the time the FPGA needed to respond. Now, I realize
that this was only a lucky guess; actually, what was probably happening is that the message
with length 140 was a debug message sent by the FPGA, not expected by the computer, which
in turn would raise an error.

With this change in the settings of the FPGA, we finally did not see the error messages from
the computer anymore. However, not all the data were arriving yet, and the phenomenon of
repeating of packets was still present. But now, with the communication between computer and
FPGA finally working, the situation was much better, and the solution was just half an hour
away: I noticed that the amount of bytes received by the FPGA before repeating was not fixed to
one packet (1400 bytes) anymore, but it was always around one fourth of the total expected data.
The reason was that buffer_idx, member variable of the class DeviceQODAC, was not meant to
be number of integers the computer was supposed to send, but the number of bytes; therefore,
since buffer_idx was not multiplied by 4, the computer would always send an amount of data
corresponding to one fourth of the real amount. The fix was just multiplying buffer_idx by 4.

After all these steps, we had finally integrated the FPGA in the control software successfully.
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Figure 3.12: various concatenated waveforms (plotted from the .CSV file)

Figure 3.13: sine wave (plotted form the .CSV file)

3.3.4 Playing the Desired Waveforms with the FPGA, Programmed on
ExperimentControl

In this final section I will show some of the waveforms I was able to play with the FPGA
after having debugged the control software and the C code running on the FPGA.

The first waveform is just a concatenation of different functions, played with a total of 4
events. The first one is a ramp lasting for one second and going from 0 to 4 volts; the second
one is a sine wave lasting for one second, with a frequency of 4 Hz, amplitude of 1 V and offset
of 4 V; the third one is a cosine wave lasting for one second, with frequency of 2 Hz, amplitude
of 10 V and offset of 0 V; the last one is another sine wave lasting for one second, with frequency
of 20 Hz, amplitude of 1 V and offset of 0 V. Note how the FPGA is able to play discontinuous
waveforms.

The second waveform demonstrates how the chosen sampling rate can influence the played
waveform. In this case we have a sine wave with a frequency of 2 Hz, which is played with
three different sampling rates (meaning how many samples the FPGA produces per second; this
quantity is not related to the actual frequency of the signal, but it would be better to choose it
accordingly, meaning that longer lasting signals whose derivative is small can have lower sampling
rates, while shorter signals with a larger derivative should have a higher sampling rate). The first
one has a sampling rate of 500 Hz, the second one has a sampling rate of 50 Hz, the third one has
a sampling rate of 20 Hz. Choosing different sampling rates implies different trade-offs: lowering
the sampling rate allows to have more space for the samples on the memory of the FPGA, while
making the played waveform "rougher".
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Chapter 4

Conclusion

This thesis introduces several protection enhancements of the low-noise eight-channel arbi-
trary waveform generator against ESD events. Firstly, the robustness of TVS diodes has un-
dergone thorough testing. These diodes were integrated into the PCB housing the LVDS chips,
ensuring direct safeguarding of the chips.

Furthermore, an enclosure has been specifically designed to offer initial protection from
human-induced ESD occurrences and to be able to later upgrade to a metal enclosure, aimed at
further diminishing electromagnetic interference from the environment.

Additionally, it has been demonstrated that multiple FPGAs can be interconnected to a
single control PC and synchronized via a unified trigger input. This synchronization enables
simultaneous signal transmission from multiple FPGAs, showcasing the scalability possibilities
of the system.

At the end of the project the FPGA has been successfully integrated inside of the quantum
optics laboratory’s control software. It has been demonstrated that the data sent to the FPGA
can be collected with C++ code.

Finally, the Ethernet communication between the computer and the FPGA has been inves-
tigated, and all this information has been summarized in this project report.
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Chapter 5

Possible Improvements

5.1 High-Level Control Software

The FPGA has been successfully integrated into the control software, however there are still
two main flaws which could be fixed:

1. Setting up the configuration flag from ExperimentControl: at the moment, the
configuration flag, which determines the mode which the FPGA will operate in, is hard
coded and cannot be set from ExperimentControl. However, it has to be emphasized
that the configuration flag already correponds to the way the FPGA is to be used within
quantum optics experiments.

2. Taking into consideration the case where not all channels are enabled: currently,
the control software always assumes that all channels are enabled. I did not take the
first case into account because this case was also not contemplated in the Python script.
However, this second problem is minor, and its solution can be implemented very fast.

5.2 Hardware and System Performance Evaluation

Further improvements could be made to refine the system:

1. Integration of LEDs on the PCB: Incorporating LEDs to visually indicate the presence
of 24V and 5V power connections provides users with immediate feedback on power status,
enhancing usability and troubleshooting efficiency.

2. Testing with TVS Diode: Even though the TVS diode should have no effect on the SPI
signals it is still necessary to conduct tests to ensure that signal quality remains unaffected.

3. Metal Enclosure Production: Transitioning to a metal enclosure offers superior protec-
tion against environmental electromagnetic noise, thereby enhancing the overall durability
and signal integrity of our system.

4. Temperature Durability of the Enclosure: Since PLA starts to lose its form and
become pliable at temperatures above 60°C, tests about the operating temperature of the
FPGA and PCB need to conducted to ensure the temperature do not go beyond that
threshold. And if it does, to utilize the fan connectors of the PCB to redirect the heat.

5. Utilization of Plastic Screws: Substituting metal screws with plastic counterparts
serves to further isolate the enclosure, minimizing the risk of ESDs.

35



5. Possible Improvements

6. Perfect Fit for Ethernet Connectors To further minimize the enclosure’s dimensions,
the Ethernet connectors can be pushed into the wall. This requires the opposite wall to be
detachable and screwable to manage the installation.

7. Python Code Optimization for Multiple FPGAs: Refining our Python code to
allow the use of two FPGAs while only running a single script, which simplifies system
management. Afterwards incorporating it into the C++ based control software.
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Acronyms

AWG arbitrary waveform generator. 1, 2

BNC Bayonet Neill–Concelman. 1

CLK Clock Signal. 4

CS Chip Select. 4

DAC Digital-to-Analog Converter. 1, 16

ESD Electrostatic discharge. 2, 7–12, 14, 34, 35

FPGA Field Programmable Gate Array. 1, 2, 14–17, 34, 35

GND Ground. 12

IP Internet Protocol. 16

LVDS low-voltage differential signaling. 1, 2, 4, 5, 7–9, 11, 13, 34

MOSI Main Out, Sub In. 4, 5

O.L Open Loop. 4, 5

PCB Printed Circuit Board. 1, 2, 4, 7, 8, 11, 12, 14, 15, 17, 34, 35

SPI single-ended serial peripheral interface. 1, 4, 11, 12, 17, 35

TCP Transmission Control Protocol. 1, 17

TVS Transient Voltage Suppressor. 7, 9, 11, 12, 34, 35

VCC Common Collector Voltage. 12
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