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Abstract

This Master’s Thesis aims to develop efficient yet user-friendly tools to perform
seismic tomography using the Full Waveform Inversion (FWI) approach, as de-
rived from the field of Earth sciences, and apply them in the realm of ultrasound
medical tomography. Since its introduction in geosciences a few years ago, FWI
has provided spectacular images of the Earth’s subsurface at different scales,
revealing, with unprecedented details, the internal structure of our planet. Re-
cently, FWI has also started to be used to reconstruct high-resolution medical im-
ages of soft tissues from ultrasound data. However, due to its high computational
cost and complexity, it has yet to see extensive use in real-world applications.

This work aims to fill the gap between theory and practice by providing
efficient, easy-to-use, and scalable finite-difference-based solvers for acoustic FWI
written in the high-level Julia programming language. This allows also non-expert
users to perform numerical experiments to test different setups and algorithms
and to address real applications with ultrasound data. Our solvers are device-
agnostic and simulations can be distributed on multiple devices (multi-xPUs),
providing the user with a range of parallelization options that can fit different
problems.

The correctness of the solvers is checked using rigorous tests and synthetic
inversions, where we show the potential and pitfalls of the method. Finally, as an
application, a case study inversion with ultrasound data gathered in a medical
imaging setting is performed, to assess the feasibility in real-world scenarios. A
set of benchmarks testing the memory throughput, since the algorithms under
study are memory-bound, show that our solvers achieve a very high percentage of
peak memory throughput (up to 90%) on modern GPUs and good weak scaling
on distributed systems.

We conclude that using modern advances in software and hardware provided
by the scientific computing community, the computational challenges of FWI can
be addressed to make it a feasible method for ultrasound medical tomography.
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Chapter 1

Introduction

Space: the final frontier.
These are the voyages of the starship Enterprise.

Its five-year mission: to explore strange new worlds,
to seek out new life and new civilizations,

to boldly go where no man has gone before.

Star Trek The Original Series, by Gene Roddenberry

Humans have always been attracted, in one way or the other, to the unknown.
Maybe it is just because we are, as a species, curious by nature. Was it not for
our incredible curiosity you would not be able to read these words printed on a
piece of paper or displayed by a monitor.

A strange feeling of emptiness and incompleteness pervades our senses when-
ever faced with a situation that eludes our understanding. We must, or we feel
like we must, close this gap by exploring, searching, and testing the environment
and our surroundings, in the never-ending pursuit of knowledge.

Let us perform a thought experiment: imagine being faced with a closed box
containing an unknown object. Our first reaction is to try and open it such that
we can see what lies inside. But what if, for some reason, we cannot open the box,
because it is locked and we do not possess the key or maybe because the object
contained inside of it would be ruined by the process of opening it. We then must
find a way of knowing what is inside of the box without actually opening it. We
could start by measuring the dimensions of the box, weighting it or even shaking
it (if this does process does not ruin the object within of course). In other words,
we need to gather indirect measurements from the box by interacting with it and
use the gathered observations to infer some properties of the object for which we
do not have direct access.

The process of computing, from a set of observations, the causal factors that
produced them is called an inverse problem. Inverse problems are very fascinating
because they represent the core value of curiosity, meaning the search for the
unknown.

An interesting class of inverse problems is the one related to tomography,
which is the process of imaging slices of an object by gathering measurements
from any kind of penetrating waves that interact with the object. Tomography
is used to solve different kinds of imaging problems in different scientific areas,
ranging from atomic to planetary scale.

To better introduce the context and motivation of this thesis, in the next
sections, we will talk about seismic tomography and how the imaging techniques
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Chapter 1. Introduction

used in this field can be extended to related tomographic problems such as medical
ultrasound tomography. We will then talk about the Julia programming language
and how it is set to solve the two-language problem in the scientific computing
field. Finally, we will give an outline of the contents of this thesis by briefly
introducing each chapter.

1.1 Seismic tomography and full waveform inversion

Seismic tomography [1] utilizes data recorded at seismic stations on the surface
of the Earth to infer the structure and material properties of the subsurface by
solving a tomographic inverse problem. Many techniques have been developed
over the years to tackle this challenging problem, the main categories being ray
tomography[2] and, more recently, full waveform inversion (FWI) [3]. In most of
this thesis, we will use as reference for the concepts regarding FWI in the context
of seismic tomography the book ‘Full Seismic Waveform Modelling and Inver-
sion’ [4] and for the concepts regarding inverse problems the ‘Lecture Notes on
Inverse Theory’ [5] both by Andreas Fichtner. The term ‘full waveform inversion’
comes from the fact that this method uses the complete recorded seismograms,
meaning not only the phase information or the arrival times of the different waves
but also their amplitudes. In practice, this is not always the case: for example,
surface waves are commonly ignored in exploration geophysics applications, and
amplitudes are often disregarded in global tomographic reconstructions.

Ray-based inversion utilizing arrival times of seismic waves can nowadays be
routinely used thanks to its small requirements in terms of computational re-
sources, which makes it a very fast method. On the other hand, the resolution
and quality of resulting images are substantially limited in comparison to FWI.
FWI, in contrast, can provide much higher resolution images by exploiting most
of the information contained in the recorded seismograms instead of only the first
arrival time. These capabilities, though, come at the cost of being computation-
ally much more expensive and with a more complex workflow.

1.2 Medical ultrasound tomography

Medical ultrasound tomography (or ultrasound computed tomography) is a type
of tomography utilizing ultrasound waves for imaging and it is mostly used for soft
tissue medical imaging. The object, submerged in water, is exposed to ultrasound
waves transmitted by ultrasound transducers in the direction of the object and
received with other or the same transducers. The data regarding the modulated
ultrasound waves collected by the receiver transducers is then used to perform
an image reconstruction of the interior parts of the object.

In recent years, the techniques used for imaging the solid Earth are increas-
ingly employed also in the field of medical ultrasound tomography [6], since, apart
from a drastic change of scale and frequency, the underlying physics are the same.
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1.3. The two-language problem: Julia as a possible solution

This allows for a transfer of knowledge across the two fields and permits us to
apply seismic methods directly to help improve the results of medical imaging.

The work conducted in this thesis is motivated by the recent advances in
applying FWI methods for medical ultrasound tomography. In particular, FWI
methods coming from seismic tomography have been recently used to produce
high-resolution images for transcranial ultrasound computed tomography [7] and
breast imaging for cancer detection [8].

1.3 The two-language problem: Julia as a possible so-
lution

Computational scientists and engineers that develop and maintain numerical code
bases for scientific computations have been dealing for years with the so-called
two-language problem: one high-level language (e.g. Python [9] or MATLAB [10])
for prototyping and visualization, and one low-level language (e.g. C [11] or FOR-
TRAN [12]) for implementing efficient and fast production-level code. This means
doubling the work by learning two programming languages and maintaining two
different code bases, which may or may not interact with each other.

Julia [13] is a general-purpose, high-level, modern, interactive, and high-
performance programming language, specifically designed for scientific comput-
ing. Julia aims at bridging the gap between high-level and low-level languages by
being both easy-to-use by non-developers and very fast where high performance is
needed. The language is based on Just-In-Time (JIT) compilation, meaning that
code is compiled only when needed. This allows interactivity and interpreter-like
behavior without sacrificing the performance of optimized and compiled code.

In recent years, Julia has seen growing success in the scientific community,
especially in the field of computational physics. For this reason, many hardware
companies such as NVIDIA and AMD started to aid the development of Julia
packages for high-performance computing that could enable developers to write
code for their specific architectures. Consequently, users started to develop spe-
cialized packages for high-performance computing written purely in Julia. The
development of the solvers for FWI in this thesis was mostly possible because
of recently developed packages for parallel stencil computations on CPUs and
GPUs, namely ParallelStencil.jl and ImplicitGlobalGrid.jl [14]. These
two packages are used to write device-agnostic multi-xPUs code (i.e. that can be
run on both multiple CPUs and multiple GPUs), thus having to maintain and
develop a single version of the solvers that can run on different device architec-
tures.

1.4 Motivation and aims

This thesis aims at developing efficient yet user-friendly tools to perform acoustic
FWI with a focus on medical ultrasound imaging, although the implemented
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Chapter 1. Introduction

solvers can be used for a variety of different applications involving acoustic wave
propagation.

The main motivation for this work is the current lack of availability of open-
source software packages combining easiness of use, good performance, and scal-
ability to address the amount of computation required by FWI methods. Our
goal is to provide tools that can be used by non-experts in high-performance
computing to tackle acoustic FWI for both educational and scientific research
purposes, enabling the domain scientists with an open-source alternative that is
efficient and scalable on modern massively-parallel architectures and clusters but
can also run on a laptop if needed.

1.5 Outline

In this section, we outline the structure of this thesis and its contents by briefly
introducing each chapter.

In chapter 2 we dive deep into the theoretical concepts of inverse problems,
focusing our attention on deterministic acoustic full waveform inversion methods.
We perform a case study on the acoustic wave equation and derive expressions
for sensitivity kernels using the continuous adjoint method for both constant and
variable density formulations.

In chapter 3 we describe the discretization method used to implement numer-
ical solvers for the acoustic wave equation. The finite differences method (FD)
is introduced and update schemes are described for forward and adjoint solvers,
as well as expressions for the computation of sensitivity kernels with respect to
model parameters. We also go over some technical details of the implementation,
like checkpointing and xPU computing.

We perform numerical gradient checking and synthetic inversions using our
solvers in chapter 4 to test their implementation. Finally, a case study is con-
ducted to perform a real data inversion in the context of medical ultrasound
tomography.

We show that our solvers are efficient and scalable in chapter 5 where nu-
merous benchmarks are performed to assess their performance on a range of
different devices, from consumer GPUs to professional ones and distributed high-
performance computing clusters.

We conclude the thesis in chapter 6 with a retrospective and some final re-
marks on the work done, as well as outlining future work and problems that still
need to be addressed.
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Chapter 2

Theory

Don’t drink and derive!

Unknown but obviously experienced author.

In this chapter, we will explore some theory-related concepts regarding this thesis.
Although the focus and the goal of this thesis are mostly on implementation and
numerical experiments, we will devote a fair amount of it to understanding the
physics behind the problem of ultrasound full waveform inversion for medical
imaging and talk about inverse problem theory in general, as well as diving into
issues of more mathematical nature.

2.1 Forward and inverse problems

In this section, we will introduce the concept of forward and inverse problems,
and how the two differ from each other but are related at the same time. We
will not give a comprehensive study of inverse theory and limit ourselves to the
scope of solving an inverse problem in the acoustic FWI setting.

Forward problem

A forward problem is usually given in the form

d = G(m), (2.1)

where m are model parameters on which an operator G is applied to compute
some observable quantity d. The forward problem consists of, given a suitable
representation ofm andG, to compute the observable d. This can be done analyt-
ically in the case that to operator G can be expressed as an explicit (closed-form)
function of m, but it is often the case that such a representation is not possible
or only given for a very simple problem. In most real-world scenarios, espe-
cially when dealing with problems related to physics, G is given as a differential
equation and needs to be solved numerically.

An example of a forward problem is computing the trajectory of an asteroid
approaching a planet with a certain initial velocity. In this case, some of the
model parameters m would be the mass of the planet and the current distance
and velocity of the asteroid, the operator G would be a combination of some
Newton’s laws for motion and universal gravitation, while the observable d would
be the position of the asteroid in time.
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Chapter 2. Theory

A few things related to practical purposes should be noted. First of all, the
observable d can only be computed (or measured) discretely, meaning we need to
deal with a discrete number of observable quantities d. In the case these observ-
ables come from measurements, we have a vector of observed values dobs that
come, for example, from some experiment or direct observation of a phenomenon
in the real world. For the same reason, the model has to be discretized and thus
the operator is now acting discretely on the model parameters. For this reason,
the forward problem can be rewritten as

d = G(m, c), (2.2)

where c is a vector of control parameters that influence the amount and type
of observables d and are chosen accordingly to the problem to be solved. We
will omit the dependency of the control parameters c for convenience, but it is
important to keep in mind that they can have a huge influence on the amount of
information that is gathered by the observables.

Another important thing to note is that various types of errors can be en-
countered: for example, while measuring observables dobs or when approximat-
ing G with a numerical solver. That means that even if the true model mtrue is
given precisely, it is impossible to obtain a computed observable d that perfectly
matches the observed data dobs.

Inverse problem

The inverse problem, as suggested in the name, deals with the recovery of an
estimated model given the observed data generated by it

mest = G−1(dobs). (2.3)

The task of solving an inverse problem is more problematic than one would think.
First of all, a representation for the inverse operator G−1 usually does not even
exist. Furthermore, there might be different models explaining the observed data
equally well and, as explained above, the data might contain errors that would
lead to a mistaken model estimation [15]. All of these issues and others which we
will not discuss, make the task of finding a model mest close to the real solution
mtrue that generated the observed data dobs extremely difficult.

Returning to the example of the orbiting asteroid, an inverse problem might
be finding the position and mass of the planed given the trajectory of the asteroid
measured at some times. We can imagine that the trajectory of the asteroid
might be the same for different combinations of position and mass of the planet.
A lighter planet closer to the asteroid might perturb the trajectory of the asteroid
equally as well as a heavier planet located further away.

The main difference between a forward and inverse problem is the uniqueness
of the solution. We know that we can compute the trajectory of the planet given
some sufficient model parameters, but it is very hard to determine how much data
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2.2. Methods for solving inverse problems

we would need to estimate correctly the position and mass of the planet. Perhaps
we would need not one, but multiple different asteroid trajectories. Or it might
as well be that no matter how many we are given, we still would not be able to
say precisely where and how heavy the planet is. This intrinsic characteristic of
the inverse problem makes its treatment sometimes very obscure and subject to
interpretation and subjectivity.

But why do we even care about inverse problems? The answer is simple: many
tasks in physics deal with the study of processes and properties in a medium for
which direct access is not possible. This is the case for the problem treated in this
thesis, i.e. we are not allowed to take a sample of the tissue we want to study. For
this reason, we are forced to observe some other quantities (in our case, acoustic
pressure waves) by ‘probing’ the tissue and, hopefully, measuring some kind of
‘response’ from it.

In the next section, we will focus on some classes of methods used to solve
inverse problems and, in particular, on deterministic general descent methods.

2.2 Methods for solving inverse problems

We can divide methods for solving inverse problems into two macro-categories:
probabilistic methods and deterministic methods. Both methods are different but
related to each other and are the result of two different philosophies originating
from different perspectives on what can be regarded as a solution to an inverse
problem.

It is not the scope of this thesis to make a detailed analysis of such methods
as we will mostly focus on a specific deterministic optimization-based method for
solving our inverse problem of interest. Nevertheless, it is useful to gain some
insight into different methods and understand their advantages and disadvantages
to make an informed choice on what is better suited for the problem at hand.

2.2.1 Probabilistic methods

The philosophy of probabilistic methods follows the Bayesian view of finding
the solution to the inverse problem. Instead of focusing on the ‘optimal’ model
that reproduces the observed data as best as possible, probabilistic methods aim
to construct a probability density function (p.d.f.), called the posterior density,
which represents the ‘probability’ that a certain model has, in fact, ‘produced’ the
observed data. If we take the maximum a posteriori model, i.e. the model which
has the maximum probability of being the ‘true model’ according to the resulting
p.d.f., we can get a single ‘solution’ to the inverse problem (which can be useful
for practical purposes), but we are not, in theory, limited to this when using
probabilistic methods. In fact, one can recover multiple equally likely models
and estimate their uncertainties as well, which makes probabilistic methods a
very powerful class of methods for solving inverse problems.
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Chapter 2. Theory

More formally, following from Bayes’ theorem for probability densities, the
probability density of the model parameters m given the observed data dobs is

ρ(m|dobs) =
ρ(dobs|m)ρ(m)

ρ(dobs)
, (2.4)

where the other terms are described as follows:

• ρ(dobs|m) is called the prior in data space (also named likelihood func-
tion) which encodes the prior knowledge about the data given a specific
realization of model parameters.

• ρ(m) is called the prior in model space which encodes the prior knowledge
about model parameters.

• ρ(dobs) is called the evidence which encodes how well the data fits the
assumptions giving all possible model parameters’ realizations.

Prior in data space. The most important term in the right hand side of
eq. (2.4) is ρ(dobs|m). In simpler words, it describes how ‘likely’ our data
matches a specific model. It is usually specified as some sort of ‘difference’ be-
tween the observed data dobs and the data computed by solving the forward
problem d = G(m) on a specific realization of model parameters m. The choice
of the likelihood function depends on the type of errors in the observed data
that we take into consideration. One of the most common choices is to consider
normally distributed errors, hence:

ρ(dobs|m) = c e−
1
2
(d−dobs)C−1

noise(d−dobs), (2.5)

where C−1
noise is the covariance matrix describing the covariance of the noise in the

observed data, and c is a normalization constant. Returning the the example of
inverting for the mass and position of a planet given the trajectory of an asteroid
approaching it, we might approximately know the magnitude of the instrumental
noise affecting the device recording the asteroid’s trajectory data and consider
that when constructing the covariance matrix.

Prior in model space. The term ρ(m) is used to define some kind of prior
information we have on the model parameters. Returning to the example as
before, we might as well consider that the mass of the planet cannot be arbitrarily
big, otherwise it would be a star which is out of the scope of our assumption (all of
this knowledge is, in fact, encoded into the prior information that we have on the
model). So we penalize some model parameters by constructing a suitable prior
in model space ρ(m) that effectively ‘scales’ the prior in data space ρ(dobs|m).
Say that we want to restrict the possible masses m of the planet to the range
[a, b] ⊂ R. Then the prior in model space we would use is going to be

ρ(m) =

{
1

b−a if m ∈ [a, b]

0 otherwise
(2.6)

8



2.2. Methods for solving inverse problems

Evidence. The last term is the evidence ρ(dobs) which is a term that scales the
posterior probability density by a constant factor. It is often ignored in practice
because it only scales the posterior by a fixed amount, hence it is not needed
by most methods. Nevertheless, it is still a meaningful quantity that can be
used, for example, to measure how well the hypotheses we have made (e.g. model
discretization, forward modeling simplifications, etc...) match our measurements.

Posterior in model space. In the context of a probabilistic method, the
posterior ρ(m|dobs) is the solution to the inverse problem. It contains all the
information needed to assess which models are more likely than others and their
uncertainties. But how do we obtain this probability density? For a specific
realization of model parameters m we need to compute the likelihood function
(which involves solving a forward problem) and the prior in model space. Their
multiplication gives the desired value of the posterior for the chosen model. We
need to repeat the above procedure for all candidate models for which we want to
know the posterior. This process of picking different models and assessing their
posterior is called sampling.

Sampling the model space may be challenging due to its high dimensionality
and usually requires a huge computational effort because, for each sample, we
need to solve at least one forward model and we may need a very large amount
of samples to accurately recover the posterior.

Sampling methods. The most simple sampling method is grid sampling, i.e.
choosing the models and computing their posterior density by trying different
combinations of uniformly spaced model parameters. This method becomes easily
unfeasible in high-dimensional model spaces, so it is almost always never used
apart for small ‘toy’ problems.

Importance sampling methods are a common choice to sample the model
space more ‘cleverly’ by trying to focus the sampling in regions of the model
space with higher relevance, hence making the required number of samples for
accurate sampling smaller overall. There are many different importance sampling
methods, some of them more complicated than others and some requiring more
information or computations than others.

2.2.2 Deterministic methods

Deterministic methods, in contrast to probabilistic ones, will not give as the solu-
tion of the inverse problem a probability density of all possible model parameter
choices. Instead, they focus on finding a single ‘best’ choice for model parame-
ters minimizing some sort of misfit functional χ[d;dobs], which, loosely speaking,
measures the ‘distance’ between the observed data dobs and the synthetic data
d = G(m) computed by solving the forward problem on some model parameters
m. This approach essentially involves finding the solution of the minimization
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Chapter 2. Theory

problem
minimize

m
χ[d;dobs]

subject to d = G(m).
(2.7)

To task of solving the problem in (2.7) may be formidable for a variety of
reasons. First of all, we have no guarantees that a unique minimizer exists, so
there might be multiple models minimizing the misfit functional with the same
minimum value. We call one of the solutions of problem (2.7) an optimal model
m̂.

Now, say that our observed data was obtained by solving the forward problem
with the true model mtrue. For the same reason, we have no guarantees that a
solution m̂ to eq. (2.7) is even close to the true model mtrue, because we base
our optimization problem on minimizing the ‘closeness’ of dobs to the synthetic
data generated by m̂ and not of mtrue to m̂ itself.

General descent methods

Let us now focus on some practical aspects of finding a solution to the problem
(2.7). Finding it analytically is (almost always) out of the question, so we have
to rely on some iterative optimization-based method. Most of these methods are
designed so that, given an initial model m0, a sequence of models {mn}n∈N is
constructed such that

lim
n→∞

mn = m̂. (2.8)

We have to note that the convergence of the sequence {mn}n∈N to m̂ is usually
only guaranteed, for every choice of the initial model m0, if the objective function
to minimize is convex with respect to the model parameters. Since the misfit
functional χ is usually not convex, this means that a suitable choice for the
initial model m0 is crucial in order to find a global optimum and not get stuck
in some local optima.

Leaving the problem of convexity aside for now, we still need to give a clear
procedure on how to find the sequence {mn}n∈N. This is a task for general descent
methods that need information on the gradients (or higher order derivatives)
of the misfit functional with respect to model parameters. The model update
procedure to construct the sequence {mn}n∈N can be summarized in the following
way:

1. Choose an initial model m0 and set i = 0,

2. Compute the misfit χ(mi) and a the descent direction hi associated to mi,

3. Update the model with mi+1 = mi + γihi with a suitable step length γi
such that χ(mi+1) < χ(mi),

4. Set i → i + 1 and go back to step 2 if χ(mi+1) > ϵ with ϵ a convergence
constant that depends on the noise of the data.

10



2.2. Methods for solving inverse problems

The most crucial and computationally expensive step in the procedure is
step 2, where the direction hi needs to be computed. Depending on the spe-
cific method, this direction usually involves the computation of the gradients
∇mχ(mi) or even higher order derivatives like the Hessian matrix.

The most simple method is the so-called steepest descent method where the
descent direction hi = −∇mχ(mi) is chosen as the negative of the gradient.
The method used in the context of this thesis is called L-BFGS [16](Limited
memory BFGS) which is a quasi-Newton method approximating the current step
Hessian matrix using information on a limited amount of previous iterations steps
instead of storing the whole Hessian matrix approximation like for the original
BFGS method.

We will not go into the details on how hi is computed or step 3 is performed
since it is out of the scope of this thesis. Nevertheless, the choice of a suitable
descent method is severely tied to the specific inversion problem, the choice of the
misfit functional, and the amount of computational resources available since some
methods require more misfit and gradients evaluations than others to converge.
Usually, the choice is made by confronting different methods directly on the
problem instance and picking the one that seems more successful in minimizing
the misfit functional.

Regarding computational costs of gradient descent methods versus general
probabilistic methods, we can say that the former need far less computations
of the forward operator than the latter in order to ‘converge’1, given that the
computation of gradients is done efficiently (which is what we will focus on sec-
tion 2.3).

Choice of misfit functional

The choice of a misfit functional for our deterministic method is dictated by the
forward operator, the noise on the observed data, and the characteristics of the
model we would like to estimate. A common choice is the squared L2-norm of
the difference between the synthetic data and observed data

χL2 [G(m);dobs] :=
1

2
∥G(m)− dobs∥22, (2.9)

where the norm ∥·∥2 is defined depending on the norm definition in the data
space. In the continuous case, this is an integral in space and time, while in
the discrete case, it is an inner vector product. The factor of one-half in the
definition is purely a convention and its usefulness will be revealed later on in
the case study at section 2.4. Other similar definitions come from generalizing
the concept of the norm induced by an inner product. In the discrete case, we

1Converge is not really the proper wording choice when talking about probabilistic methods.
In this context, ‘convergence’ can be substituted with ‘good enough’ sampling of the model
space.
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Chapter 2. Theory

have that an inner product between two vectors x and y can be expressed by a
positive-definite matrix A such that

⟨x,y⟩A = xTAy, (2.10)

and using the definition of the norm induced by the inner product we have

∥x∥A := ⟨x,x⟩A = xTAx. (2.11)

If the matrix A is the identity matrix I, the inner product is just the classic dot
product between vectors and the norm ∥·∥I is just the L2-norm for the vector
space. This leads to the definition of a misfit using the inner product defined by
an arbitrary matrix. One of the most common choices is the matrix C−1

noise which
is the inverse of the covariance matrix containing the noise in the observed data.
Using this matrix we can define the misfit

χ
C−1

noise
[G(m);dobs] :=

1

2
∥G(m)− dobs∥2

C−1
noise

. (2.12)

In practice, we do not know the matrix C−1
noise precisely, but a fair approximation

can be constructed by analyzing the observed data. A link between the misfit
defined in eq. (2.12) and the prior in data space ρ(dobs|m) for the probabilistic
case can be established by considering the data to be affected by Gaussian noise
with a covariance matrix equal to Cnoise. In this case, the prior in data space
would just be the exponential of −χC−1

noise
.

Regularization

One of the most common approaches to deal with the problem of non-convexity
of the misfit functional is to add a regularization term R[m;mprior] to the mis-
fit, involving some prior knowledge of the model mprior, much of in the spirit
of choosing the model prior in the probabilistic approach2. The misfit is then
redefined as

χ[d,m;dobs,mprior] = χ[d;dobs] +R[m;mprior], (2.13)

where we fully explicit the dependence of the misfit on both the model and data.
We will omit the dependence on the constants dobs and mprior to slim the notation
when they are clear from the context. If we replace d = G(m) using the forward
operator, we get

χ[G(m),m] = χ[G(m)] +R[m], (2.14)

in which now is clear that the misfit depends on the forward operator G as well
as a specific choice of the model parameters m.

2Although with some philosophical differences since the prior in model space ρ(m) is a
probability density chosen by hypothesis, while the regularization term R[m;mprior] is usually
chosen arbitrarily.
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2.2. Methods for solving inverse problems

Similar reasoning can be applied to the definition of the regularization term
R(m) by defining it as a suitably chosen norm multiplied by a scaling factor α,
called regularization parameter, which controls the strength of the regularization
term with respect to the data misfit term. A list of well-known regularization
terms is given:

• ∥m∥2 is the zeroth order Tikhonov regularization,

• ∥gradm∥2 is the first order Tikhonov regularization (higher orders can be
derived similarly),

• ∥gradm∥1 is the total variation regularization (defined with the L1-norm),

Once again, the norm ∥·∥ can be defined as the standard L2-norm or a general
norm induced by a vector product. An example of a misfit used in practice could
be combining eq. (2.12) with a zeroth order Tikhonov regularization applied to
the difference between the model and a prior model

χ[G(m),m] =
1

2
∥G(m)− dobs∥2

C−1
noise

+
α

2
∥m−mprior∥2

C−1
prior

, (2.15)

where C−1
prior is the inverse of the covariance matrix in model space. Similarly to

the prior in data space, the prior in model space ρ(m) is linked to the definition
of eq. (2.15) in the case we consider the a priori most likely model mprior to be
affected by Gaussian noise with covariance matrix Cprior.

Although there exist other misfit and regularization functionals (see [4]), for
the context of this thesis we will limit ourselves to the aforementioned cases as
they are well suited for the problem at hand.

Link between probabilistic and deterministic. As we have quickly men-
tioned above, the choice of the misfit functional in eq. (2.13) can be linked to the
case of having Gaussian priors in model and data space from the probabilistic
point of view. It turns out that, in this case, if the forward operator G is linear,
the posterior in model space too is a Gaussian probability density. In this par-
ticular case, solving the minimization problem (2.7) is equivalent of finding the
maximum likelihood model for the probabilistic inversion, i.e.

m̂ = argmax
m

ρ(m|dobs)

ρh(m)
, (2.16)

where ρh(m) expresses the homogeneous probability density in the model space3.
This means that, under the above assumptions, the two methods are practically
equivalent, if not for the fact that we have access to the whole posterior prob-
ability distribution from the probabilistic point of view, while we only have the
reconstructed most likely model m̂ from the deterministic point of view.

3This term is used to scale the posterior probability density to take into consideration
possible changes of coordinate system.
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2.3 Adjoint methods

In the previous section, we have seen the importance of efficiently computing
derivatives with respect to model parameters of some misfit functional χ. First-
order (and sometimes second-order) gradients are at the core of optimization-
based methods for solving inverse problems and are also required by some prob-
abilistic methods that rely on these gradients to sample the model space more
effectively.

The difficulty in computing gradients of a general misfit functional is that
dependencies with the model parameters m are usually not direct. Instead, the
relation between model parameters and the misfit functional is given by some
physical quantities u(m) that depend on the model m and are used to compute
the misfit χ(u(m)). These physical quantities u(m) are usually observable quan-
tities we can measure using sensors or instruments. For example, in the case of
elastic waves propagating in a 3D medium, u would represent the displacement
field which in 3D has three components u = [ux, uy, uz]

T .
To compute these physical quantities we solve the forward problem d = G(m)

where G is used to ‘extract’ the synthetic data d from those physical quantities.
In fact, we can reformulate the forward problem as

d = G(m) = D(u(m)), (2.17)

where D is an operator acting on the physical quantities u, and u is the solution
to the physical relationship

L[u,m] = f(m), (2.18)

where L is an operator and f represents external forces which may depend on
model parameters. For our purposes, eq. (2.18) will represent some IBVP, hence
solving a PDE with specified initial and boundary conditions. The operator
D just selects some components of u which match the observed data dobs to
produce synthetic data d such that the two are ‘comparable’ to each other. That
comparison is done via the misfit functional χ(u), which we recall as some kind
of ‘difference’ measure between synthetic and observed data.

To compute the gradient of the misfit functional with respect to a single model
parameter mi, we could simply use a second-order finite difference approximation

∂χ

∂mi
≈
χ(u(m+∆miei))− χ(u(m−∆miei))

2∆mi
, (2.19)

where ∆mi is a perturbation of the i-th model parameter and ei is the unit vector
in the i-th direction. Following this method, to compute a derivative in a single
direction we would need to evaluate the misfit functional 2n times (where n is
the number of model parameters) which means solving the forward problem as
many times. This becomes soon unfeasible for big values of n or high-cost misfit
evaluations.
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2.3. Adjoint methods

To efficiently compute ∂χ/∂m we need adjoint methods. In adjoint methods
the connection between u and m is captured by the so-called adjoint field. The
adjoint field is computed through solving the adjoint forward problem which has
almost the same cost as solving the original forward problem. After that, the
gradient of the misfit can be recovered by ‘correlating’ the adjoint field and some
u-related quantity. Essentially, the cost of computing ∂χ/∂m becomes roughly
the same as solving two forward problems4.

In the following sections, we will discuss two types of adjoint methods: con-
tinuous and discrete adjoint methods. While related to each other, they follow
two different philosophies, namely first optimize then discretize and first dis-
cretize then optimize respectively. It is useful to note that the two methods are
usually equivalent, although understanding the differences in the case they are
not equivalent is essential because the discretization choice that naturally occurs
when solving inverse problems in practice can lead to substantial errors if not
taken into consideration.

For the next sections regarding the continuous and discrete adjoint method,
we will mostly follow [5] for the definitions and theoretical concepts.

2.3.1 Continuous adjoint method

The continuous adjoint method’s point of view is that of considering the continu-
ous version of the forward problem d = G(m) where m(x) is a continuous vector
field of model parameters. This method has the advantage of being independent
of the model discretization and it is mainly used when needing continuous deriva-
tives of the misfit functional χ, usually in the form of sensitivity kernels, which
we will introduce later on in this section.

Since the misfit in this case is a functional, hence a function of functions, we
need to generalize the definition of the derivative of a function to the derivative of
a functional. For this purpose, we introduce the Frechét derivative or functional
derivative of a functional f(u) at u in the direction δu as

δf(u; δu) = lim
ε→0

1

ε
(f(u+ εδu)− f(u)), (2.20)

where the direction δu describes a perturbation of the vector-valued function u.
To be precise, this definition requires the uniform convergence of the limit, which
is usually possible for the misfit functionals we are interested in. Note that this
definition is similar to the usual definition of directional derivative for regular
functions. The definition of the functional derivative shares many common prop-
erties with the usual derivative, such as linearity, product and chain rule, which
we will all use in this section to derive the continuous adjoint method. We will
sometimes use the short notation δf(δu) = δf(u; δu) when we consider f to be a
functional that depends only on the function u. We will also use the notation δuf
to denote the ‘functional gradient’ of f , which is a vector of functional derivatives

4With some caveats that are elaborated more in detail in chapter 3.
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for all ‘unitary’ directions δu (this means effectively changing just a component
of the function u).

We will now consider misfit functionals that can be written in the form

χ[u(m),m] =

∫ T

0

∫
Ω

χu(u(m)) dx dt+

∫
Ω

χm(m) dx

= ⟨χu(u)⟩+ ⟨χm(m)⟩Ω,
(2.21)

where χu(u(m)) and χm(m) are two functions (not functionals). The notation
⟨·⟩T , ⟨·⟩Ω is used for the integrals in time and space respectively, and ⟨·⟩ = ⟨⟨·⟩Ω⟩T
is used for double integration in time and space. The definitions of misfit func-
tionals that we introduced in section 2.2.2 dealt with the discretized observed
data dobs and the discretized model m, so they need to be slightly adapted to
the continuous case. This usually involves defining χu(u(m)) and χm(m) to
include delta functions picking only the values of u and m in time and space
where the measurements are performed. Notice that the role of the integrals in
eq. (2.21) is the same as the norm in the definitions of section 2.2.2. In fact,
integrals usually pop up when generalizing norms in infinite-dimensional spaces.

Now, we are interested in the functional derivative of the misfit functional at
m in a direction δm, so by applying the chain rule we get

δχ[u(m),m; δm] = δχ(u; δu) + δχ(m; δm)

= ⟨δχu(u; δu)⟩+ ⟨δχm(m; δm)⟩Ω,
(2.22)

where the perturbation δu = δu(m; δm) is the functional derivative of u in the
direction δm. The difficulty in computing δu (which requires solving a forward
problem for each direction δm) is what prohibits us from using eq. (2.22) to
efficiently compute gradients, so we need to find a way to remove the dependency
from δu in eq. (2.22). To do this we can use the physical relationship if eq. (2.18)
and define the term g as

g[u,m] := L[u,m]− f(m) = 0, (2.23)

which vanishes. If we take the functional derivative of g in the direction of δm
we obtain, by the chain rule,

δg(u(m),m; δm) = δL(δu) + δg(δm) = 0. (2.24)

We can now take the integral in both space and time, multiply by an arbitrary
test function λ and add the expression (which still vanishes) to eq. (2.22) and
get

δχ[u(m),m; δm] = ⟨δχu(δu)⟩+ ⟨λ · δL(δu)⟩
+ ⟨λ · δg(δm)⟩
+ ⟨δχm(δm)⟩Ω.

(2.25)
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2.3. Adjoint methods

Since χu(δu) is a function, the functional derivative is the equivalent of the
directional derivative, such that

δχu(δu) = δu · δuχu. (2.26)

We now need to find a way to isolate δu from the expression λ · δL(δu).
To do this, we introduce the Jacobian operator J(δu) = δL(δu) and its adjoint
operator J†(λ) implicitly defined by the following relation

⟨λ · J(δu)⟩ = ⟨δu · J†(λ)⟩, (2.27)

which should hold for every δu and every λ. Using eq. (2.26) and eq. (2.27) we
can rewrite eq. (2.25) as

δχ[u(m),m; δm] = ⟨δu · (δuχu + J†(λ))⟩
+ ⟨λ · δg(δm)⟩
+ ⟨δχm(δm)⟩Ω.

(2.28)

We now choose the arbitrary function λ to satisfy the following equation, which
we will call the adjoint equation

J†(λ) = −δuχu , (2.29)

so we can remove the first term on the right-hand side of eq. (2.28) and obtain
an expression for the functional derivative of the misfit functional

δχ[u(m),m; δm] = ⟨λ · δg(δm)⟩+ ⟨δχm(δm)⟩Ω (2.30)

that can be directly computed for a specific model perturbation δm.
In the special case that the operator L is linear with respect to the observables

u, we have that J = L and by invoking the adjoint operator L† of L, eq. (2.29)
can be simplified to

L†(λ) = −δuχu. (2.31)

A few observations should be made regarding the continuous adjoint method.
First of all, its abstractness, mainly due to the introduction of functional deriva-
tives, can be quite challenging especially if the reader has no experience in basic
functional analysis. In the derivation above, we have been quite loose with the
definitions and the steps we applied may not be very rigorous mathematically
speaking. Fortunately, once we use the continuous adjoint method to derive
adjoint equations and expressions for first-order derivatives in practice, i.e. by
choosing a specific physical operator L and a misfit functional χ, most of the
functional derivatives can be recast as common derivatives, making the task much
more manageable.

The method, in its general form, does not provide the steps necessary to find
the adjoint operator J† explicitly. In practice, this is usually done by manipu-
lating the expression ⟨λ · δL(δu)⟩, usually by means of integration by parts or
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similar techniques. This can be challenging depending on the properties of the
operator L and care must be taken to correctly recover the adjoint equation.
Fortunately, for the context of this thesis, the operator L describes a linear PDE
with respect to the observables u, so the simplification of eq. (2.31) can be used.

Sensitivity kernels The expression for the functional derivative of the misfit
functional of eq. (2.30) gives use a scalar value for a determined perturbation of
the model parameters δm. What we usually need in order to compute spatial
gradients are sensitivity kernel K(x), also called in this context Frechét kernel.
These are defined as the volumetric densities of the Frechét derivative as follows

K(x) =
d

dV
δmχ = ⟨λ · δmg⟩T + δmχm (2.32)

so we can rewrite the functional derivative δχ(u,m; δm) as the integral in space
of the sensitivity kernel

δχ(u,m; δm) = ⟨Kδm⟩Ω. (2.33)

The sensitivity kernel is a vector field with the same number of components as
the model parameters’ vector field and describes how much the misfit functional
is affected by a change in model parameters at the position x in space. The
sensitivity kernels are especially useful when we have to compute gradients with
respect to model parameters that have been discretized. Suppose that we have
discretized the model parameters using a set of basis functions bj with some
parameters aij that have been determined such that

mi(x) =
N∑
j=1

aijbj(x),∀i ∈ {1, . . . ,M}, (2.34)

where N is the number of discretization points, M is the number of continuously
defined model parameters (i.e. the components of the vector field m) and mi(x)
is the value of the i-th model parameter at position x. With this discretization
in place, we can compute the derivatives of the misfit functional with respect to
the parameter aij in the following way

∂χ

∂aij
= ⟨Ki bj⟩Ω, (2.35)

where Ki(x) is the i-th component of the vector field K(x). This can be inter-
preted as the projection of the sensitivity kernel onto the basis function. Using
the above expression, we can easily compute gradients with respect to model pa-
rameters (or more precisely to the parameters aij that, together with the basis
function, represent the discretized model parameters space) for the sake of using
general descent methods as described in section 2.2.2.

We have to note that finding an analytic expression for the sensitivity kernel
is usually impossible because the adjoint field λ is only given implicitly as the
solution to the adjoin equation. This means that, in practice, one needs to solve
eq. (2.29) numerically, meaning discretization is needed.
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2.3. Adjoint methods

Summary. To summarize, the continuous adjoint method gives an expression
for the sensitivity kernel K which can then be used to compute gradients with
respect to model parameters after choosing a proper discretization. This involves
the following steps:

1. find an expression for the adjoint operator J† using eq. (2.27),

2. find an expression for the gradient δuχu,

3. solve eq. (2.29) (or eq. (2.31) in the case that L is linear with respect to
the observables quantities u) to find the adjoint vector λ,

4. find an expression for the gradients δmg and δmχm,

5. integrate in time to find an expression for the sensitivity kernel K using
eq. (2.32),

6. compute gradients of the misfit functional with respect to the discretized
model parameters by integrating in space the sensitivity kernel with the
basis functions using eq. (2.35).

Steps 1, 2, and 4 can be done analytically using the continuous definitions of
L, g and χ, while steps 3, and 5 usually need to be done numerically. Step 6 is the
only part where we need to use the discretization. We can see that the continuous
adjoint method does not restrict ourselves to a particular discretization a priori,
but rather develops all the tools and expression continuously and only requires a
proper discretization at the end.

2.3.2 Discrete adjoint method

Although we could be done talking about the adjoint method after describing the
continuous adjoint method, there are settings in which the discretization must
be done a priori and have a certain impact on how gradients of the misfit func-
tional are computed. Following the principle of ‘first discretize then optimize’,
we will introduce the discrete adjoint method, which requires the discretization
of the model parameters and the forward operator to be done before obtaining
expressions for the gradients. Let us recall the physical relationship of eq. (2.18)

L[u,m] = f(m) (2.36)

where, in this context, L is a discrete differential operator acting on both the
observables and the model parameters, while f is some discrete external force
term that may depend on the model parameters.

The idea behind the adjoint method is to use eq. (2.36) to simplify the compu-
tations of the gradients of the misfit function5 with respect to model parameters,

5In the discrete case, the misfit is not a functional anymore, but just a function.
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similarly to what we have seen for the continuous adjoint method

dχ

dm
=
∂χ

∂u

du

dm
+

∂χ

∂m
, (2.37)

where we have used the total derivatives d/dm to express the gradients in the
general case that the misfit function is in the form χ[u(m),m]6. The difficulty
in eq. (2.37) is the presence of the term du/dm which is hard to compute given
that the dependency of the observables u on the model parameters m is only
given implicitly through eq. (2.36).

We will use the Lagrangian formulation and eq. (2.36) to simplify eq. (2.37)
and get explicit expressions for the gradients. We use the same term g as defined
in eq. (2.23) and invoke the implicit function theorem (see [17]) which allows us
to recast u = u(m) as in the definition of the misfit function. From now on we
will omit the dependencies on m and u for the sake of conciseness, unless they
are needed.

We define the Lagrangian L function as

L := χ+ λTg, (2.38)

where λ is a arbitrary vector. We observe that the Lagrangian is just the misfit
to which we added a term equal to zero, since g = 0 by definition. It results that
L = χ for every u,m satisfying g = 0, so their gradients are also equal.

We can now take the derivative of the Lagrangian with respect to a single
model parameter mi which is the i-th component of m and we get

dL
dmi

=
dχ

dmi
+
dλT

dmi
g︸︷︷︸
=0

+λT dg

dmi
(2.39)

=
∂χ

∂u

du

dmi
+

∂χ

∂mi
+ λT

[
∂g

∂u

du

dmi
+

∂g

∂mi

]
, (2.40)

where in the first equality we have used the product rule of differentiation and
in the second equality we have also used the chain rule for total derivatives. The
term ∂g/∂u is also called the Jacobian Jg,u which is a matrix containing the
partial derivatives of all components of g with respect to all components of u.
We can now continue the derivation by grouping the terms containing du/dmi

in the following way

dL
dmi

=

[
∂χ

∂u
+ λTJg,u

]
du

dmi
+

∂χ

∂mi
+ λT ∂g

∂mi
. (2.41)

6This is not precisely the case we have seen in section 2.2.2. To be more precise we should
have used the notation χ[d,m] and the relation of eq. (2.17) to express d as a function of u.
In practice, this is rarely a problem since the operator D usually just picks some of the values
in u so that ∂d/∂u = D where D is a (0,1)-matrix.
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We choose the arbitrary vector λ cleverly such that the term inside the square
brackets vanishes. We call the vector λ the adjoint vector and the equation
resulting from this choice the adjoint equation such that

JT
g,uλ = −

(
∂χ

∂u

)T

. (2.42)

The inverse of the Jacobian (JT
g,u)

−1 must exist for λ to be a unique solution to
the linear system eq. (2.42). This condition is in the hypothesis of the previously
invoked implicit function theorem.

We end up with an expression for the gradients of the misfit function of the
form

dχ

dmi
=

∂χ

∂mi
+ λT ∂g

∂mi
. (2.43)

In the special case that the differential operator L is linear with respect to
the observables u, g can be written as g = L(m)u−f , where L is now a matrix
taking the role of the differential operator7. This means that the Jacobian is just
the matrix L and so eq. (2.42) becomes

LTλ = −
(
∂χ

∂u

)T

. (2.44)

A few things should be noted regarding this method. First of all, in order
to find compute eq. (2.43) we first need to solve the adjoint equation eq. (2.42)
for λ. This means that we need to be able to compute the partial derivatives
of the misfit function with respect to the observables u. This can be arbitrarily
complex depending on the definition of the misfit function. Fortunately, the misfit
functions introduced in section 2.2.2 are all easy to differentiate with respect to d
and subsequently easy to differentiate with respect to u by substituting d = D(u)
and considering d a function of u so that, by the chain rule, we have:

∂χ

∂u
=
∂χ

∂d

∂d

∂u
(2.45)

and the term ∂d/∂u is usually easy to compute (see footnote 6).
After having found a solution to eq. (2.42), we need to compute the partial

derivatives of g with respect to the model parameters, which are once again the
Jacobians of g and f with respect to the model parameters, that is

∂g

∂m
= Jg,m = JL,m − Jf ,m (2.46)

7Note that the matrix L still depends on the model parameters m in a (possibly) non-linear
way.

21



Chapter 2. Theory

and rewriting eq. (2.43) for the gradient with respect to all model parameters of
the misfit function we get

dχ

dm
=

∂χ

∂m
+ λT (JL,m − Jf ,m) . (2.47)

In the case that the force term f is independent of m we have

dχ

dm
=

∂χ

∂m
+ λTJL,m. (2.48)

Computation of the Jacobians JL,m and Jf ,m can almost always be done an-
alytically, even if the dependencies on m are non-linear, although one must be
careful to correctly differentiate the discrete versions of the operator L and the
force term f . This gets particularly complicated when interpolations of material
properties are performed for the discretization of, for example, the differential
operator.

Another thing to consider is the computation of the partial derivatives of the
misfit function with respect to the model parameters, but this is easy for the
same reasons as the partial derivatives with respect to the observables.

Summary. To summarize, the discrete adjoint method lets us compute gra-
dients of the misfit function with respect to model parameters by applying the
following steps:

1. Solve the forward equation given by eq. (2.36) for u,

2. Compute the matrix JT
g,u (or just the transpose of the forward operator

LT if linear) and the partial derivatives ∂χ/∂u using the solution u from
step 1,

3. Solve the adjoint equation given by eq. (2.42) for the adjoint vector λ,

4. Compute the gradients of the misfit function by computing the partial
derivatives ∂χ/∂m, the Jacobians JL,m,Jf ,m and putting all together with
the adjoint solution vector λ from step 3 using eq. (2.47).

The two most expensive steps are steps 1 and 3 in which we basically solve a
forward problem for each one. Steps 2 and 4 are relatively less expensive, in
particular, eq. (2.47) can be computed on the fly while performing step 3.

2.3.3 Main takeaways from the adjoint method

Although some technical issues must be overcome to store u fully (which is usually
not needed when solving the forward problem), the adjoint method essentially
lets us compute the gradients of the misfit functional needed by first-order general
descent methods at the cost solving two forward problems instead of 2n problems
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2.4. Case study: acoustic wave equation

using the naive finite differences approach (reduced to n + 1 by using a less
accurate first-order finite difference approximation).

The two approaches for the adjoint method, namely continuous and discrete,
are essentially equivalent in the case that the operator L is linear in u, but may
lead to different results for other cases. Fortunately, for the context of this thesis
the operators used will all be linear, so we can either use the continuous or the
discrete adjoint method.

In the next sections, we will explore the (acoustic) wave equation and use
the continuous adjoint method to derive expressions for the sensitivity kernels.
Later in chapter 3 we will use those expressions combined with a finite difference
discretization to compute gradients with respect to model parameters that are
needed to optimize the misfit and solve the deterministic inverse problem using
general decent methods.

2.4 Case study: acoustic wave equation

In this section, we will introduce the wave equation and, in particular, the acous-
tic wave equation. This equation models the propagation of (acoustic) waves in
a medium. Depending on the parametrization of the equation and the problem
dimensionality, the medium can assume different physical counterparts: for ex-
ample, the one-dimensional wave equation is generally used to model a string with
both endpoints attached and stimulated with a pinch or bent from the relaxed
position causing, after its release, oscillations producing waves.

For the sake of this thesis, we will mostly concentrate on the acoustic wave
equation, modeling acoustic pressure waves in a fluid. This equation will be
used to model the problem of ultrasound wave propagation with the specific
application of medical imaging. However, the same approach can be used to
model different types of problems related to acoustics or simplifications of elastic
wave propagation models that lead to an acoustic-like behavior of the medium.

2.4.1 Wave equation

We start by introducing the two-way scalar wave equation, which is
a second-order hyperbolic PDE involving an unknown displacement field
u = u(x, t) : Ω × [0, T ] → R and a known spatially varying wave propagation
speed field c = c(x) : Ω → R (m/s)

∂2u

∂t2
= c2∇2 u, (2.49)

where Ω ⊂ Rn is the spatial domain of interest and [0, T ] is the temporal domain
of interest (s), i.e. we are interested in the values of the displacement field u inside
Ω from time 0 to time T .

The wave equation is perhaps the most simple second-order hyperbolic PDE
and has been a subject of study for mathematicians like d’Alambert, Euler, and
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many others. We can interpret eq. (2.49) with the following statement: the
displacement’s acceleration is proportional to the divergence of the displacement’s
rate of change in each direction. In more simple terms, the way the displacement
gets ‘pushed around’ is proportional to how ‘spiky’ the displacement is. The
constant in the proportion is the propagation speed squared c2, so if c doubles
the acceleration of the displacement field will get four times bigger.

Note that the acceleration of the displacement field is related to the speed
of propagation via the PDE but it has a completely different physical meaning,
which is described in the following example. Consider a membrane stretched over
one of the two open sides of a drum. The displacement of the membrane from
the ‘relaxed’ state will be modeled as the displacement field u. The membrane’s
wave propagation speed c will depend on the membrane’s thickness, tension,
and material type. This is the speed at which transverse vibration waves (i.e.
waves where the particles are displaced perpendicular to the direction of wave
propagation) will travel on the membrane. The acceleration of the displacement
field is, instead, the acceleration of the membrane’s particles which move ‘up and
down’ with respect to the ‘relaxed’ position.

Equation (2.75) is called the two-way wave equation because it can be used
to describe standing waves (i.e. waves with a peak amplitude profile that does
not change) where the displacement field can be computed as the superposition
of two waves traveling in opposite directions. There is also a simpler, first-order
wave equation, called one-way wave equation, which is used in the case that only
the propagation of a single wave in a predefined direction is of interest. Note
that will not consider this type of wave equation in our case study.

Some questions that arise spontaneously need to be addressed:

1. do solutions to the wave equation exist, meaning is there a function u such
that eq. (2.49) is satisfied?

2. can the wave equation be solved analytically, and if it can be solved, is the
solution unique?

3. if it can be solved analytically for some particular cases, which are these
cases?

4. if it cannot be solved in the general case, how much information regarding
the solution can be obtained without actually retrieving it?

The answers to all of these questions will come more thoroughly in the following
sections. We will give a brief summary of the answers right away, but first, we
need to understand what solving a partial differential equation even means. In
general, solutions to PDEs are not unique, meaning multiple different functions
can be found satisfying a partial differential equation. There is usually a class
of functions containing all solutions to a specific PDE. If we go back to the
physical implication of this fact, we soon conclude that it does not make sense.
We should have a unique solution for a given physical problem right? Well, we
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need to understand that PDEs do not model a physical problem in its entirety.
They merely model the interactions between the physical quantities that appear
in the equations, but this is not enough to provide a unique solution, for it can
only say so much if we have not given enough context to begin with. Going
back to the example of the drum head membrane oscillating, we have assumed
in our imagination that it was stretched over and attached uniformly to the sides
of the drum. But we could have attached it only partially or even not at all!
This information we tacitly assumed is nowhere to be found in the PDE, so the
solution cannot distinguish between the infinitely many cases arising from the
physical model setup.

2.4.2 Initial and boundary conditions

In this section, we will introduce the concept of initial and boundary conditions
as well as give some common ones for which eq. (2.49) can be solved (or at least a
unique solution exists). We will also give some insights into how these conditions
appear in differential equations theory and provide some physical intuition for
those regarding the wave equation.

Initial conditions and initial value problems

From the theory of ordinary differential equations (ODEs), we know that a
second-order ODE requires two initial conditions to be satisfied for it to have
a unique solution. Intuitively, this comes from the fact that we need to perform
two integral steps, each one ‘spawning’ an integration constant that can be chosen
arbitrarily if we do not impose such initial conditions.

For example, consider the following second-order ODE

y′′ = c, (2.50)

where c ∈ R is a real constant and y = y(x) : R → R is a real-valued function.
We can solve for y by double integration

y′ =

∫
c dx = cx+ c1, (2.51)

y =

∫
y′dx =

c

2
x2 + c1x+ c2, (2.52)

where c1, c2 ∈ R are two arbitrary constant. The resulting function y(x) is a
parabola with two yet-to-be-determined parameters. Let us impose two more
conditions on y and y′, namely

y(x0) = y0, y
′(x0) = y′0 (2.53)

where x0, y0, y′0 ∈ R are fixed real numbers. We will call these initial conditions
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of the ODE8. We can now determine the two constants c1, c2 by solving a system
of equations

y(x0) =
c

2
x20 + c1x0 + c2 = y0, (2.54)

y′(x0) = cx0 + c1 = y′0, (2.55)

which gives

c1 = y′0 − cx0, (2.56)

c2 = y0 +
c

2
x20 − x0y

′
0 (2.57)

and so the final solution of the original ODE is

y(x) =
c

2
x2 + (y′0 − cx0)x+ (y0 +

c

2
x20 − x0y

′
0). (2.58)

One can indeed substitute the values for y(x0), y′(x0) and recover the initial
conditions.

Returning to the scalar wave equation: it is a second-order PDE with respect
to time derivatives, so two initial conditions are to be given

u(x, t0) = u0(x), ∀x ∈ Ω, (2.59)
∂u

∂t
(x, t0) = u′0(x), ∀x ∈ Ω, (2.60)

where t0 = 0 since we chose the displacement field u to be defined from 0 to
T in time. In the PDE case, the initial conditions are a bit more complicated
because u0, u′0 are functions defined on the domain Ω instead of constants. From
a practical point of view, these initial conditions are equivalent to imposing the
initial ‘shape’ and ‘velocity’ of the displacement field at the initial time. A
special case of initial conditions is homogeneous initial conditions, meaning that
the functions u0, u′0 are actually constants, in the simplest case they are zero
everywhere in the domain. An ODE or PDE equipped with initial conditions
forms a initial value problem (IVP). Note that not all IVPs have a unique solution.
There are theorems (see [18]) specifying conditions for which a general IVP has a
unique solution, however, we will not cover these since they are out of the scope of
this thesis. Just note that specifying the wrong initial conditions for a particular
ODE may lead to the non-uniqueness of the solution, making an IVP ill-posed.

Returning to the example of the drum head membrane oscillating, imposing
initial conditions means specifying the initial position of the membrane and its
initial speed. One possibly simple scenario is when the membrane gets pushed
(or pulled) at some points and then released. In this case, the initial shape of
the membrane will not be in a relaxed (i.e. constant to zero) state, depending
on the position and strength of the force applied, and the initial velocity of the
membrane will be zero.

8The name ‘initial conditions’ comes from the literature on ODEs where the function rep-
resents the evolution over time of a variable y = y(t) and these conditions where usually given
for t = 0.
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Boundary conditions and boundary value problems

Other types of conditions that can be imposed on ODEs are the so-called bound-
ary conditions (BDCs). These conditions are usually way more complex to handle
than initial conditions and the theory behind the existence and uniqueness of so-
lutions in this case is more complicated as well. In PDEs theory, these conditions
are crucial to specify the behavior of the PDEs at the boundary of the domain
Ω, hence the name of the conditions.

An ODE example for boundary conditions can be done by considering the
following second-order ODE

y′′ + 4y = 0, (2.61)

where y = y(x) is again a real valued function. The general solution of the above
equation is (without derivation)

y(x) = c1 cos(2x) + c2 sin(2x), (2.62)

which can be easily checked by differentiation and substitution back to eq. (2.61).
Again we see that the general solution has two integration constants that make
this solution not unique. If we impose the following conditions on y

y(0) = y0, (2.63)
y(π/4) = y1, (2.64)

where y0, y1 ∈ R are fixed real numbers, and we substitute back to the general
solution eq. (2.62) we get the unique solution

y(x) = y0 cos(2x) + y1 sin(2x). (2.65)

Notice the main difference between initial and boundary conditions, namely
the fact that we have specified the values of the function y (or more generally
its derivatives) at two different points (i.e. x = 0 and x = π/4) while for initial
conditions we specified the values for y (and y′) at the same point x0. This
difference, while subtle, is important and makes boundary value problems (BVPs)
(i.e. the problem of solving an ODE/PDE with equipped boundary conditions)
much harder than IVPs.

Returning to the scalar wave equation, we need to impose some type of bound-
ary conditions on the displacement field u. For the purpose of this thesis, we will
introduce two types of boundary conditions useful to solve the wave equation: ho-
mogeneous Dirichlet BDCs (also known as free surface conditions in the context
of the wave equation) and C-PML BDCs (a special class of absorbing boundary
conditions).

Homogeneous Dirichlet BDCs. The (homogeneous) Dirichlet BDCs are one
of the most simple boundary conditions for PDEs. They impose the value of the
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solution u at the boundary of the domain of interest Ω. For the wave equation,
this would be

u(x, t) = u0(x),∀x ∈ ∂Ω, ∀t ∈ [0, T ], (2.66)

where ∂Ω ⊂ Ω is the boundary of the domain Ω and u0(x) : ∂Ω → R is a real
valued function defined on the boundary. Notice that the boundary condition
needs to be satisfied for all times t ∈ [0, T ]. In the case that the function u0(x)
is constant on the whole boundary (for all practical purposes u0 ≡ 0 is a standard
choice), the boundary conditions are called homogeneous Dirichlet BDCs. Back
to the example of the drum head membrane oscillating, these BDCs have the
physical meaning of ‘holding’ the membrane in place at the edge of the drum
head. The consequence of this choice will affect the temporal evolution of the
oscillations in the membrane. In particular, waves that arrive at the boundary
will be reflected back to the direction they came from.

Absorbing boundary conditions (C-PML BDCs) This physical behavior
of homogeneous Dirichlet BDCs is useful for simulating a drum head membrane,
but can become detrimental for some other applications, specifically the ones
we are interested in this thesis: simulating acoustic wave propagation for full-
waveform inversions in the context of ultrasound medical imaging. If we simulate
waves reflected from the domain’s boundary we would be making a mistake be-
cause, in reality, this is not what happens as waves continue to propagate outside
of the domain without necessarily being reflected back. We are only interested
in the behavior of waves propagating inside the domain and interacting with
the model that we want to eventually reconstruct by performing the inversion.
An easy fix to this problem would be to make the domain Ω bigger such that
no reflected waves from the boundary will come back to the original region of
interest before the end time T . This is unfortunately not feasible from a com-
putational point of view, because increasing the size of the domain increases the
computational cost of the simulation.

To overcome this problem, we need some sort of alternative BDCs that will
‘dampen’ the waves reaching the boundary. In particular, we need a BDC of
the class of absorbing boundary conditions. These BDCs are designed so waves
incident to the boundary decay quickly and do not ‘bounce back’ into the inner
part of the domain.

Various absorbing BDCs have been used in the literature, the most famous
ones being Gaussian tapering [19] and Perfectly Matched Layers (PML) [20].
Gaussian tapering works by applying a so-called sponge layer to the boundary of
the domain in which the amplitude of the waves is gradually reduced as it moves
away from the computational domain. It is widely used because of its simplicity,
especially in the context of finite difference solvers. Although Gaussian tapering
works fine for most applications it has some issues, mainly the fact that we
may need a large sponge layer when using higher-order methods. Otherwise,
Gaussian tapering may produce reflected waves from the boundary between the
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inner domain and the sponge layer. PML, on the other hand, introduced the
PML region (similarly to the sponge layer in Gaussian tapering) where the wave
equation is perfectly matched, effectively nullifying any reflections at the boundary
of the inner domain and the PML region. We chose a special variant of the PML
BDCs, namely Convolutional PML (or C-PML) [21] which has the advantage of
being more effective in absorbing waves at grazing angles, meaning waves that
are not perfectly incident to the domain’s boundary. We will not derive the PML
theory from scratch as it is out of the scope of this thesis (see [21, 22] for more
details), but rather show how the equations are modified in the PML region and,
in chapter 3, give more details on how to effectively implement CPML BDCs in
practice.

The main idea of PML BDCs is to introduce a complex coordinate stretching
parameter to the wave equation in the frequency domain and apply a recursive
convolution algorithm to convert the equation back to the time domain. This
effectively results in changing the definition of the spatial derivatives in the PML
region as such

∂u

∂ĩ
=
∂u

∂i
+ ψi, ∀x ∈ ∂̃Ωi, (2.67)

where i is used as Einstein notation to denote the various dimensions (e.g.
i ∈ {x, y, z} in 3D) and ∂̃iΩ denotes an extension of ∂Ω in the i dimension
which is the PML region. The variable ψi is an auxiliary variable (also called
PML memory variable) that controls the dampening of the wave in the PML
region and needs to be computed using a recursive convolution algorithm which
can be expressed by the following recursive equation

ψn
i = biψ

n−1
i + ai

(
∂u

∂i

)n

(2.68)

where n is an index that represents the current time step, not a power exponent.
The choice of the parameters ai and bi is what determines the strength of the
dampening and depends on multiple factors, which are detailed in chapter 3.

Since we have a second-order PDE with respect to space, we need to have two
PML memory variables per dimension, hence the modified second-order partial
derivative in space becomes

∂2u

∂ĩ2
=

∂

∂ĩ

(
∂u

∂ĩ

)
=
∂2u

∂i2
+
∂ψi

∂i
+ ξi,∀x ∈ ∂̃Ωi, (2.69)

where ξi is another PML memory variable with evolution

ξni = biξ
n−1
i + ai

[(
∂2u

∂i2

)n

+

(
∂ψi

∂i

)n]
. (2.70)

As last remark on absorbing boundary conditions is the fact that, even though
we have defined boundary conditions on the ‘extended’ boundary region (i.e. the
PML region in the above equations), we still need to define the behaviour of the
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displacement field at the boundary ∂Ω. Fortunately, since absorbing BDCs are
designed to make the displacement field vanish as it reaches the boundary, we
can combine them with homogeneous Dirichlet BDCs.

Initial-boundary value problem

Since the wave equation is a second-order PDE in both time and space, we need
to combine both initial conditions and boundary conditions to obtain a initial-
boundary value problem (IBVP). Again, choosing fitting initial and boundary
conditions is essential to ensure the existence and uniqueness of the solution.

As an example, we give a complete IBVP for the wave equation

∂2u

∂t2
= c2∇2 u , ∀x ∈ Ω,∀t ∈ [0, T ], (2.71)

∂2u

∂t2
= c2

(
∇2 u+

(
∂ψi

∂i

)
+ ξi

)
, ∀x ∈ ∂̃iΩ,∀t ∈ [0, T ], (2.72)

u = 0 , ∀x ∈ ∂Ω,∀t ∈ [0, T ], (2.73)

u = u0,
∂u

∂t
= u′0 , ∀x ∈ Ω, t = 0, (2.74)

where eq. (2.72) are the CPML BDCs (for every dimension), eq. (2.73) are ho-
mogeneous Dirichlet BDCs and eq. (2.74) are arbitrary initial conditions.

2.4.3 Acoustic wave equation

In this section, we will introduce the acoustic wave equation which is a specializa-
tion of the two-way scalar wave equation in the case of acoustic waves propagating
in a heterogeneous medium. In its most simple form, it is given as

1

c2
∂2p

∂t2
= ∇2 p+ s, (2.75)

where p is the acoustic pressure field (Pa) taking the role of the displacement
field u in eq. (2.49) and s = s(x, t) : Rn × [0, T ] → R (Pa/m2) is the source field.
The acoustic pressure field p actually represents the difference from equilibrium
pressure p = P−P0, where P is the pressure of the fluid and P0, is some reference
equilibrium pressure.

There are two main differences from eq. (2.49): the propagation speed c is
moved to the left-hand side and a new term is added to the right-hand side,
namely the source field. The source field term s is related to an external ‘force’
acting on the domain of interest that perturbs the pressure field at a location
in space and time. We can think of this term from a physical point of view as
the ‘sound’ generated by something (or someone). Source terms are essential for
modeling acoustic sources like ultrasonic transducers.
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Equation (2.75) is accurate for fluids with homogeneous density, hence
grad ρ = 0 where ρ = ρ(x) : Rn → R (kg/m3) is the medium’s density field.
In the case of spatially varying density, the acoustic wave equation becomes

1

κ

∂2p

∂t2
= div

(
1

ρ
grad p

)
+

1

ρ
s, (2.76)

where κ = κ(x) : Rn → R (Pa) is the medium’s bulk modulus. Bulk modulus
and density are related to the propagation speed by Newton-Laplace equation

c =

√
κ

ρ
, (2.77)

meaning we can recover another version of eq. (2.76) by substituting κ with ρc2

1

ρc2
∂2p

∂t2
= div

(
1

ρ
grad p

)
+

1

ρ
s. (2.78)

There are two differences between eq. (2.75) and eq. (2.78) that should be
noted. In the first place, the presence of the density term ρ. Secondly, the
Laplacian operator ∇2 has been split into its components (namely the divergence
and the gradient) to leave space for the density term to ‘squeeze in’ between the
two. Obviously, in the case of constant density grad ρ = 0, eq. (2.78) reduces to
eq. (2.75).

Equation (2.78) can also be written in the so-called pressure-
velocity formulation which introduces the particle velocity vector field
v = v(x, t) : Rn × [0, T ] → Rn (m/s) and it is a system of first-order
PDEs as follows

ρ
∂v

∂t
= − grad p (2.79a)

1

ρc2
∂p

∂t
= −div v + f (2.79b)

where f = f(x, t) : Rn × [0, T ] → R (1/s) is a different source field. The original
second-order scalar PDE of eq. (2.78) can be recovered from eq. (2.79) by partial
derivation in time of eq. (2.79b) and substitution on its right-hand side with
eq. (2.79a).

The two source fields s and f are related as follows

s(x, t) = ρ
∂f

∂t
(x, t) ⇔ f(x, t) =

1

ρ

∫ t

s(x, τ)dτ (2.80)

and express different ways of injecting an acoustic source field into the equation.
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2.4.4 Derivation of adjoint equations and sensitivity kernels us-
ing the continuous adjoint method

In this section, we will derive the continuous adjoint equations and expressions
for the sensitivity kernels with respect to the model parameters. In the case of
the acoustic wave equation with constant density, our only model parameter will
be the wave propagation speed c, which can be interpreted as the speed of sound.
In the case of variable density, we also need to account for changes in the density
ρ which will be another model parameter for which to compute the sensitivity
kernel. We will use the continuous adjoint method detailed in section 2.3.1. For
this purpose, we will consider a general misfit functional χ which can be expressed
as the sum of two integrals as in eq. (2.21).

Constant density acoustic wave equation

We will use L = L, g = g,f = f since we have a scalar equation with observables
u = p and model parameters m = c. We will also omit dependencies for the sake
of conciseness when not needed.

We start by writing the acoustic wave equation with constant density
eq. (2.75) in the form of eq. (2.18).

L(p; c) = f ⇔ 1

c2
∂2p

∂t2
−∇2 p = s, (2.81)

and complement this PDE with initial and boundary conditions to form an IBVP.
For simplicity, we choose homogeneous zero initial conditions and homogeneous
Dirichlet boundary conditions (see section 2.4.2).

We note that the right-hand side term does not depend on p nor m and that
the differential operator L is linear in p. Since this is the case, the functional
derivative of the operator L with respect to p in the direction δp is just L(δp).
The same reasoning can be applied to the derivative of the adjoint operator L†

with respect to p. Thus the implicit definition of the adjoint operator in eq. (2.27)
can be rewritten as

⟨λL(δp)⟩ = ⟨δpL†(λ)⟩, (2.82)

where λ = λ is also a scalar field in this context. In order to find an explicit
expression for L† we start by expanding the left-hand side of eq. (2.82)

⟨λL(δp)⟩ =
〈
λ

(
1

c2
∂2δp

∂t2
−∇2 δp

)〉
=

〈
λ

(
1

c2
∂2δp

∂t2

)〉
−
〈
λ
(
∇2 δp

)〉
(2.83)

and we focus on the two double integrals separately.
First, we integrate twice by parts the first double integral of eq. (2.83) with

respect to time, such that〈
λ

(
1

c2
∂2δp

∂t2

)〉
=

〈
λ
1

c2
∂δp

∂t
− δp

1

c2
∂λ

∂t

〉
Ω

∣∣∣∣t=T

t=0

+

〈
δp

(
1

c2
∂2λ

∂t2

)〉
. (2.84)
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We want the boundary values resulting from the integration by parts to vanish.
For this to happen we need to provide final conditions on λ, i.e. the equivalent
of initial conditions for p but for final time t = T , such that

λ =
∂λ

∂t
= 0,∀x ∈ Ω, t = T. (2.85)

Using these final conditions in combination with the provided initial conditions
for p (which also apply for the perturbation direction δp), the boundary values
indeed vanish and we get the relation〈

λ

(
1

c2
∂2δp

∂t2

)〉
=

〈
δp

(
1

c2
∂2λ

∂t2

)〉
. (2.86)

Similarly, we integrate twice by parts the second double integral of eq. (2.83)
with respect to space, such that

〈
λ
(
∇2 δp

)〉
=

〈∮
∂Ω

(λ grad δp− δp gradλ) · n dS

〉
T

+
〈
δp
(
∇2 λ

)〉
. (2.87)

Again, we want the surface integral resulting from the integration by parts to
vanish. Similarly, we define the boundary conditions for λ to be the following
homogeneous Dirichlet BDCs

λ = 0, ∀x ∈ ∂Ω, ∀t ∈ [0, T ]. (2.88)

Combining these with BDCs for p (which also apply for the perturbation direction
δp), the surface integral indeed vanishes and we get the relation〈

λ
(
∇2 δp

)〉
=
〈
δp
(
∇2 λ

)〉
. (2.89)

Combining the two relations eq. (2.86) and eq. (2.89) we can rewrite the
implicit definition of the adjoint operator eq. (2.82) as〈

λ

(
1

c2
∂2δp

∂t2
−∇2 δp

)
︸ ︷︷ ︸

L(δp)

〉
=

〈
δp

(
1

c2
∂2λ

∂t2
−∇2 λ

)
︸ ︷︷ ︸

L†(λ)

〉
. (2.90)

We have finally found an explicit expression for the adjoint operator L†, which
is the following

L†(λ, c) =
1

c2
∂2λ

∂t2
−∇2 λ . (2.91)

We note that the operator L and L† are the same, so the differential operator
L is called self-adjoint. This is very useful in practice (as we will see in chapter 3)
because it makes it possible to solve the adjoint equation using the same numerical
method we used to solve the forward equation.
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There remains only one major difference in the adjoint equation, namely the
fact that we have final conditions instead of initial conditions for the field λ. In
practice this means that we have to solve the adjoint equation backward in time.
We will see in chapter 3 how this is done, but we need not worry for now.

Now we need to retrieve the expression for the sensitivity kernel K with
respect to the model parameter c. To do this, we need to compute the functional
derivative of g = L− s with respect to c in the direction δc, that is

δg(δc) = δL(δc)− δs(δc)︸ ︷︷ ︸
=0

= − 2

c3
∂2p

∂t2
δc (2.92)

and we recover the functional derivative of the misfit functional using eq. (2.30)
such that

δχ(p, c; δc) = −
〈
λ
2

c3
∂2p

∂t2
δc

〉
+ ⟨δcχc⟩Ω, (2.93)

where χc depends on the misfit definition. The time-independent sensitivity
kernel K(x) is easily retrieved using eq. (2.32) as

K(x) = −
〈
λ
2

c3
∂2p

∂t2

〉
T

+ δcχc . (2.94)

Variable density acoustic wave equation

For this derivation, we will use a slightly more general form of the acoustic wave
equation, given by

m0
∂2ϕ

∂t2
− div(m1 gradϕ) = s̃, (2.95)

where ϕ is a general scalar wavefield, m0,m1 are two scalar fields parameters and
s̃ is a source term. We rewrite eq. (2.95) into a system of first-order PDEs by
introducing the auxiliary vector field ν as follows

1

m1

∂ν

∂t
+ gradϕ = 0, (2.96a)

m0
∂ϕ

∂t
+ div ν = f̃ , (2.96b)

where f̃ is another source term. It is clear that we can recover eq. (2.95) from
eq. (2.96) in a similar way we can recover eq. (2.78) from eq. (2.79). The source
term s̃ is easily recovered by partial differentiation in time of the other source
term f̃ .

We will use eq. (2.96) as the physical relationship L[u,m] = f , where

u =

[
ν
ϕ

]
,m =

[
m0

m1

]
,L(m) =

[ 1
m1

∂
∂t grad

div m0
∂
∂t

]
,f =

[
0

f̃

]
. (2.97)
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From now on we will express the differential operator L as a matrix since it is
linear in u and omit its dependence on m. The physical relationship can be
written as a system

Lu = f . (2.98)

We also need to provide appropriate initial and boundary conditions to form
an IBVP. Similarly, as in the constant density case, we choose homogeneous
zero initial conditions for ϕ and ν and homogeneous Dirichlet BDCs for ϕ (see
section 2.4.2).

Now we can start the derivation of the adjoint operator L† in a similar way
as we did in the constant density case by using the linearity of the differential
operator and the fact that the right-hand side of eq. (2.98) is independent by both
u and m. We recall the implicit definition of the adjoint operator in eq. (2.27)
that in this case can be rewritten as

⟨λ ·Lδu⟩ = ⟨δu ·L†λ⟩, (2.99)

where λ is the adjoint vector field that can be split in two components
λ = [λ1, λ2]

T . We expand the left-hand side of eq. (2.99) and divide the product
between λ

⟨λ ·Lδu⟩ =
〈
λ1 ·

(
1

m1

∂δν

∂t
+ grad δϕ

)〉
+

〈
λ2

(
m0

∂δϕ

∂t
+ div δν

)〉
, (2.100)

where δu = [δν, δϕ]T is the perturbation determining the direction of the func-
tional derivative with respect to u.

We consider the two terms on the right-hand side of eq. (2.100) separately
and further separate each one in two parts, thus obtaining the four integrals that
we can integrate by parts, similarly to what we did in the constant density case〈

1

m1
λ1 ·

∂δν

∂t

〉
=

〈
1

m1
λ1 · δν

〉
Ω

∣∣∣∣t=T

t=0

−
〈

1

m1
δν · ∂λ1

∂t

〉
, (2.101a)〈

m0λ2
∂δϕ

∂t

〉
= ⟨m0λ2δϕ⟩Ω

∣∣∣∣t=T

t=0

−
〈
m0δϕ

∂λ2
∂t

〉
, (2.101b)

⟨λ1 · grad δϕ⟩ =
〈∮

∂Ω
δϕ(λ1 · n)dS

〉
T

− ⟨δϕdivλ1⟩ , (2.101c)

⟨λ2 div δν⟩ =
〈∮

∂Ω
λ2(δν · n)dS

〉
T

− ⟨δν · gradλ2⟩ , (2.101d)

and again providing homogeneous Dirichlet BDCs to λ2 and homogeneous zero
final condition to λ1 and λ2, the boundary terms and surface integrals spawning
from integration by parts vanish.

Summing up all the terms on the left-hand sides and right-hand sides of
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eq. (2.101) we rewrite the adjoint relationship〈
λ1 ·

(
1

m1

∂δν

∂t
+ grad δϕ

)〉
+

〈
λ2

(
m0

∂δϕ

∂t
+ div δν

)〉
=〈

δν ·
(
− 1

m1

∂λ1

∂t
− gradλ2

)〉
+

〈
δϕ

(
−m0

∂λ2
∂t

− divλ1

)〉
, (2.102)

from which we can extract the explicit definition of the adjoint operator L† (in
matrix form)

L† =

[
− 1

m1

∂
∂t − grad

−div −m0
∂
∂t

]
. (2.103)

The obtained adjoint operator is equal to the forward operator L but negated.
This is the result of the single integration by parts, while in the constant density
case we performed two successive integrations by parts.

We now retrieve the expressions for the sensitivity kernels K = [Km0 ,Km1 ]
T .

To do this, we need to compute two derivatives of g = Lu− f , one with respect
to m0 and the other with respect to m1

δm0g =

[
0
∂ϕ
∂t

]
, δm1g =

[
− 1

m2
1

∂ν
∂t

0

]
, (2.104)

Using eq. (2.32) we recover expressions for the sensitivity kernels

Km0(x) = ⟨λ · δm0g⟩T + δm0
χm

=

〈
λ2
∂ϕ

∂t

〉
T

+ δm0
χm

(2.105)

Km1(x) = ⟨λ · δm1g⟩+ δm1
χm

=

〈
λ1 ·

(
− 1

m2
1

∂ν

∂t

)〉
T

+ δm1
χm

=

〈
λ1 ·

(
1

m1
gradϕ

)〉
T

+ δm1
χm

(2.106)

where for the last equality of eq. (2.106) we have used eq. (2.96a) from the physical
relationship, so we can recast both sensitivity kernels on the scalar field ϕ only.
The reason for this will become more apparent when discussing the discretization
and implementation of gradients in chapter 3.

We can go one step further and consider the parametrization that leads to the
pressure-velocity formulation of the acoustic wave equation with variable density
(see eq. (2.79)), that is

m0 =
1

ρc2
,m1 =

1

ρ
,u =

[
v
p

]
,f =

[
0
f

]
. (2.107)
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2.5. Summary

Using this parametrization, we can express the sensitivity kernels with respect to
the model parameters ρ and c. We compute the derivatives of g with respect to
ρ and c by applying the chain rule

δρg =
∂m0

∂ρ
δm0g +

∂m1

∂ρ
δm1g = − 1

ρ2c2
δm0g − 1

ρ2
δm1g

= − 1

ρ2

[ 1
m1

gradϕ
1
c2

∂ϕ
∂t

]
= − 1

ρ2

[
ρ gradϕ

1
c2

∂ϕ
∂t

]
= −1

ρ

[
gradϕ
1
ρc2

∂ϕ
∂t

]
,

(2.108a)

δcg =
∂m0

∂c
δm0g +

∂m1

∂c︸ ︷︷ ︸
=0

δm1g = − 2

ρc3
δm0g (2.108b)

= − 2

ρc3

[
0
∂ϕ
∂t

]
, (2.108c)

then using eq. (2.32) we recover expressions for the sensitivity kernels with respect
to ρ and c

Kρ(x) = ⟨λ · δρg⟩T + δρχm

=

〈
−1

ρ
λ ·

[
gradϕ
1
ρc2

∂ϕ
∂t

]〉
T

+ δρχm

(2.109)

Kc(x) = ⟨λ · δcg⟩+ δcχm

=

〈
− 2

ρc3
λ2
∂ϕ

∂t

〉
T

+ δcχm

(2.110)

which can be used to compute gradients with respect to those parameters based
on the chosen discretization using eq. (2.35).

2.5 Summary

In this chapter, we have seen many theoretical aspects regarding the solution
of inverse problems, in particular with respect to this thesis case study, namely
acoustic full-waveform inversion. We have focused mostly on PDE-based forward
models and deterministic methods like general descent methods that require first-
order derivatives with respect to model parameters that are used to minimize
some sort of misfit functional. However, these concepts are still quite abstract
and present many technical difficulties when applying them in practice.

In the next chapter, we will explore how the yet-to-be-solved problems can
be tackled and efficient solvers can be implemented for the forward and adjoint
equations introduced in this chapter’s case study section.
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Chapter 3

Numerical Methods

Don’t approximate pi as 3.0!

Wisdom from a mathematician.

In this chapter, we will deal with the following yet-to-be-solved problems: dis-
cretization of model parameters and physical quantities, implementation of
solvers for both forward and adjoint equations, gradients computations with re-
spect to model parameters and chosen discretization, and efficient parallelization,
scalability and memory optimizations of implemented solvers (as well as many
more technical details).

Unsurprisingly, there are many ways to tackle these problems. Our focus,
for the context of this thesis, will be on time-explicit finite-difference-based (FD)
methods on a staggered and uniform grid. Although more accurate methods to
solve the wave equation exists [23], FD methods have been extensively used in the
scientific community to solve wave propagation [3, 24], especially in the context
of full waveform inversion [25]. Also, the choice of a uniform grid instead of
non-uniform mesh-based grids for inversions in the context of ultrasound medical
tomography is motivated by the fact that we usually do not know a-priori the
discontinuities in the model we are reconstructing. However, in some specific
applications where discontinuities from high contrasts in the model parameters
are present, e.g. transcranial ultrasound tomography [7], mesh-based methods
are to be preferred because they are more accurate near these discontinuities.

3.1 Finite differences discretization of the acoustic
wave equation

In this section, we will introduce the main concepts of the finite-difference dis-
cretization we use for implementing our acoustic wave equation solvers.

We will start from the lowest-order finite-difference stencils in space and time
and define the update formulas for the discretized pressure field. For the gener-
alized acoustic wave equation with variable density, we introduce the staggered
grid leap-frog scheme method. Using the same discretization, we give formulas
for the computation of the adjoint fields as well as the sensitivity kernels in the
case of an L2 misfit functional.

Then we quickly discuss extensions to higher-order stencils and their practical
implementation.
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We explain more in detail how to implement C-PML boundary conditions by
giving formulas for the computation of the damping coefficients and evolution of
the C-PML fields for both regular and staggered grids.

Finally, we talk about how point sources can be modeled and the required
numerical corrections needed to ensure correct solutions to the acoustic wave
equation with point sources.

3.1.1 Lowest-order finite difference stencils for acoustic wave
equation

Constant density formulation

For the constant density formulation of the acoustic wave equation (see
eq. (2.75)), we need to discretize the pressure field p and the source field s in
space and time, as well as the wave speed c model parameter. For the discretiza-
tion in space, the simplest way is to define a grid of points and consider the value
of the fields at each point.

Let us consider, for simplicity, the case where our model has only one dimen-
sion, hence the domain of interest can be defined as an interval Ω = [0, L] where
L (m) is the length of the domain. We define a grid of points such that all points
are equally spaced (hence why the grid is called uniform). We call the distance
between two points the grid step size ∆x (m). Then the grid is defined by the
position of its grid points x0, . . . , xN where N + 1 is the number of grid points
such that N = L/∆x. The grid points positions are defined as

xi = i∆x,∀i ∈ {0, . . . , N}. (3.1)

Then we can define the spatially discrete values c0, . . . , cN for the wave speed
field c : [0, L] → R as such

c2i = c(xi) = c(i∆x), ∀i ∈ {0, . . . , N}. (3.2)

We perform the same discretization in space on the pressure field p, but we
also need to have a time discretization. We follow the same approach: consider
the time domain [0, T ] and an equally spaced grid in time such that all points
are at distance ∆t (s) which we call the time step size. The time-discrete grid
points are defined as

tℓ = ℓ∆t,∀ℓ ∈ {0, . . . , Nt}, (3.3)

where Nt is the number of time discrete points such that Nt = T/∆t. Hence, the
fully discretized pressure field p can be represented by the values

pℓi = p(xi, tℓ) = p(i∆x, ℓ∆t), ∀i ∈ {0, . . . , N}, ∀ℓ ∈ {0, . . . , Nt}. (3.4)

Discretization of the source field s is done using the same procedure.
Now we need to discretize the second-order partial derivatives in time and

space contained in eq. (2.75). The finite differences (FD) method gives a formula
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for the second-order derivative of a function f that depends on x at a point xi
such that

∂2f

∂x2
(xi) =

f(xi −∆x)− 2f(xi) + f(xi +∆x)

∆x2
+O(∆x2), (3.5)

where O(∆x2) is the approximation error of the FD scheme. If we neglect this er-
ror, we can use the first part of the right-hand side of eq. (3.5) as an approximated
value for the second-order derivative. This FD scheme is called second-order cen-
tral finite difference approximation of the second-order derivative. One must be
careful not to confuse the order of accuracy of the scheme with the order of the
derivative it approximates. It turns out that this scheme is the lowest-order ac-
curate scheme for the approximation of the second-order derivative. The details
on how these schemes are produced are beyond the scope of this thesis, but we
will mention that FD schemes are derived based on the Taylor expansion of the
function for which we want to approximate the derivative and then by solving a
linear system of equations to find the coefficients of the scheme.

Since we now have both the discretization of the fields p and c as well as their
partial derivatives, we replace all fields and their partial derivatives in eq. (2.75)
with their discretizations, such that

1

c2i

pℓ−1
i − 2pℓi + pℓ+1

i

∆t2
=
pℓi−1 − 2pℓi + pℓi+1

∆x2
+ sℓi , (3.6)

which gives us an explicit update scheme for inner points of the pressure field at
time step ℓ+ 1 given the pressure fields at time step ℓ and ℓ− 1

pℓ+1
i = 2pℓi − pℓ−1

i + c2i∆t
2

(
pℓi−1 − 2pℓi + pℓi+1

∆x2
+ sℓi

)
. (3.7)

If we consider homogeneous Dirichlet BDCs and homogeneous zero initial condi-
tions on p such that

pℓ0 = pℓN = 0,∀ℓ ∈ {0, . . . , Nt}, (3.8)

p−1
i = p0i = 0,∀i ∈ {0, . . . , N}, (3.9)

we can use eq. (3.7) to iteratively compute the inner points (i.e. i ∈ {1, . . . , N−1})
of the pressure field at time step ℓ+1 using the pressure fields at time step ℓ and
ℓ− 1, effectively computing the pressure field at all time steps {1, . . . , Nt}. This
update scheme in time is usually referred to as the explicit Euler update scheme
and it is one of the most simple update schemes in time but it is very practical
because it allows us to treat the scheme as a simple stencil computation which
can be easily parallelized (more info on this later in section 3.2).

We can use the same discretization and update scheme to compute the adjoint
field λ by evolving it backward in time

λℓ−1
i = 2λℓi − λℓ+1

i + c2i∆t
2

(
λℓi−1 − 2λℓi + λℓi+1

∆x2
+ ŝℓi

)
, (3.10)
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where ŝℓi is the discretized adjoint source field. Recall that we impose the same
boundary conditions on λ as on p as well as homogeneous zero final conditions
for λ, which can be expressed as

λℓ0 = λℓN = 0, ∀ℓ ∈ {0, . . . , Nt}, (3.11)

λNt+1
i = λNt

i = 0,∀i ∈ {0, . . . , N}, (3.12)

We will consider a simple L2 misfit like eq. (2.9) where we have observed data
for the pressure field only at certain grid points positions xr1 , xr2 , . . . , xrn where
n is the number of receivers. Then the discrete adjoint source field ŝℓi at grid
point i and time step ℓ is defined as

ŝℓi =
∑

j∈{1,...,n}|rj=i

−(pℓi − p̂ℓrj ), (3.13)

where p̂ℓrj is the observed discretize pressure at time step ℓ of receiver at position
xrj . The expression (pℓi − p̂ℓrj ) comes from the derivative of the misfit functional
with respect to the pressure δpχp. The minus sign in the expression comes from
the definition of the adjoint equation (see eq. (2.42)).

Once we have both computed the pressure field and the adjoint field for all
time steps, we can recover the sensitivity kernel K(xi) in a grid point xi using the
derived expression (see eq. (2.94)) which, after discretization, can be expressed
as

K(xi) = − 2

c3i

Nt−1∑
ℓ=1

λℓi
pℓ−1
i − 2pℓi + pℓ+1

i

∆t2
, (3.14)

where we ignore the first and last time step since the initial and final conditions
make their contribution vanish.

Variable density formulation

For the variable density formulation, we consider the generalized acoustic wave
equation written as a first-order system of PDEs (see eq. (2.96)).

Let us consider the slightly more complex case of a two-dimensional model,
where we have a rectangular domain Ω = [0, Lx] × [0, Ly] where Lx and Ly (m)
are the sizes of the domain in the x-direction and the y-direction respectively.
Since we have a first-order system of PDEs to discretize, we define the so-called
staggered grid such that the pressure field ϕ = p and the model parameters
m0,m1 are collocated at the regular grid points, while the velocities ν = [vx, vy]
are collocated in between regular grid points. This is needed because the FD
formula for the first-order derivative of a function f at a point xi is

∂f

∂x
(xi) =

f(xi +
∆x
2 )− f(xi − ∆x

2 )

∆x
+O(∆x2), (3.15)
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x
y

Lx

Ly

∆x

∆y

p,m0,m1

vx
vy

Figure 3.1: Staggered grid visualization for 2D pressure-velocity formulation.

hence we need the values of the function f in the middle of the grid points. In
the 2D case, we will use the notation fi+ 1

2
,j or fi,j+ 1

2
to denote values in between

regular grid points. Figure 3.1 shows a visual representation of the staggered
grid for the 2D pressure-velocity formulation where the fields have been staggered
according to the spatial derivatives that are present in the system of equations.

Note that since the model parameter m1 is collocated, by definition, at the
regular grid points, we will need to interpolate it on the staggered points when
computing the FD approximation of the first order derivatives. We will use a
simple average interpolation of the model parameter m1 such that

m1
i+1

2 ,j
=
m1i,j +m1i+1,j

2
, (3.16)

m1
i,j+1

2

=
m1i,j +m1i,j+1

2
. (3.17)

Note that we now have two subscript indices: i and j which correspond to the x
and y grid points directions respectively.

We also need to treat the discretization in time of the pressure p and the
velocities vx, vy. We use a similar staggering technique where we collocate the
velocities at the regular time steps ℓ ∈ {0, . . . , Nt}, but we collocate the pressure
in the middle of the time steps ℓ + 1

2 , . . . , Nt − 1
2 , so the pressure field is now

discretized as

p
ℓ+ 1

2
i,j = p(i∆x, j∆y, (ℓ+ 1/2)∆t), (3.18)

∀i ∈ {0, . . . , N}, ∀j ∈ {0, . . . ,M}, ∀ℓ ∈ {0, . . . , Nt−1} where M+1 is the number
of grid points in the y-direction and ∆y is the grid step size in the y-direction.

We have now all the tools to discretize the system in eq. (2.96) in the following
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way

1

m1
i+1

2 ,j

vℓ+1
x
i+1

2 ,j
− vℓx

i+1
2 ,j

∆t
+
p
ℓ+ 1

2
i+1,j − p

ℓ+ 1
2

i,j

∆x
= 0 (3.19)

1

m1
i,j+1

2

vℓ+1
y
i,j+1

2

− vℓy
i,j+1

2

∆t
+
p
ℓ+ 1

2
i,j+1 − p

ℓ+ 1
2

i,j

∆y
= 0 (3.20)

m0i,j

p
ℓ+ 1

2
i,j − p

ℓ− 1
2

i,j

∆t
+

vℓxi+1
2 ,j

− vℓx
i− 1

2 ,j

∆x
+
vℓy

i,j+1
2

− vℓy
i,j− 1

2

∆y

 = f̃ ℓi,j (3.21)

hence by rearranging the terms, we get the following explicit update scheme for
pressure and velocities

p
ℓ+ 1

2
i,j = p

ℓ− 1
2

i,j − 1

m0i,j

∆t

vℓxi+1
2 ,j

− vℓx
i− 1

2 ,j

∆x
+
vℓy

i,j+1
2

− vℓy
i,j− 1

2

∆y

+ f̃ ℓi,j

vℓ+1
x
i+1

2 ,j
= vℓx

i+1
2 ,j

−m1
i+1

2 ,j
∆t

p
ℓ+ 1

2
i+1,j − p

ℓ+ 1
2

i,j

∆x

vℓ+1
y
i,j+1

2

= vℓy
i,j+1

2

−m1
i,j+1

2

∆t
p
ℓ+ 1

2
i,j+1 − p

ℓ+ 1
2

i,j

∆y

(3.22a)

(3.22b)

(3.22c)

We also need to specify homogeneous zero initial conditions on the pressure p
and the velocities vx, vy as well as homogeneous Dirichlet BDCs for the pressure,
hence

p
ℓ− 1

2
0,j = p

ℓ− 1
2

N,j = 0,∀j ∈ {0, . . . ,M}, ∀ℓ ∈ {0, . . . , Nt}, (3.23)

p
ℓ− 1

2
i,0 = p

ℓ− 1
2

i,M = 0,∀i ∈ {0, . . . , N},∀ℓ ∈ {0, . . . , Nt}, (3.24)

p
− 1

2
i,j = 0,∀i ∈ {0, . . . , N},∀j ∈ {0, . . . ,M}, (3.25)

v0x
i+1

2 ,j
= 0,∀i ∈ {0, . . . , N − 1},∀j ∈ {0, . . . ,M}, (3.26)

v0y
i,j+1

2

= 0,∀i ∈ {0, . . . , N},∀j ∈ {0, . . . ,M − 1}. (3.27)

We follow a similar approach for the discretization of the adjoint equation
where we keep the same discretization in space (i.e. collocating λ2 in the regular
grid points and λ1 = [λ1x, λ1y] in the respective staggered points), while we
change the time discretization by collocating λ1x, λ1y in the middle of the time
steps. The reason for this choice will soon become apparent. The explicit update
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scheme for the adjoint fields is given (without derivation) by

λ
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2
1x
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= λ
ℓ+ 1

2
1x

i+1
2 ,j

−m1
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(3.28)
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(3.29)
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+ f̂
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(3.30)

where f̂ ℓ+
1
2

i,j is the discretized adjoint source field. Again, we use the same bound-
ary conditions as for the forward scheme and homogeneous final initial conditions
for λ1x, λ1y, λ2.

We will consider a simple L2 misfit like eq. (2.9) where we
have observed data for the pressure field only at certain positions
(xrx1 , yry1), (xrx2 , yry2), . . . , (xrxn , yryn) where n is the number of receivers. Then

the discrete adjoint source field f̂
ℓ+ 1

2
i,j at grid point i, j and time step ℓ + 1

2 is
defined as

f̂
ℓ+ 1

2
i,j =

∑
k∈{1,...,n}|rxk=i,ryk=j

(p
ℓ+ 1

2
i,j − p̂

ℓ+ 1
2

rxk,ryk), (3.31)

where p̂ℓ+
1
2

rxk,ryk is the observed discretize pressure at time step ℓ+ 1
2 of receiver at

position (xrxk
, yryk). The expression (p

ℓ+ 1
2

i,j − p̂
ℓ+ 1

2
rxk,ryk) comes from the derivative

of the misfit functional with respect to the pressure δpχp. Note that there is no
minus sign like in the constant density case since the adjoint operator is equal
to the forward operator but negated. Here we also see the reason for the choice
of different discretization in time: since we previously computed the pressure in
the middle of the time steps we can only inject the adjoint source field at these
middle points which forces the above time discretization.

Once we have both computed the pressure field and the adjoint field for all
time steps, we can recover the sensitivity kernels Km0(xi, yj),Km1(xi, yj) in a
grid point (xi, yj) using the derived expression (see eq. (2.105) and eq. (2.106)).
The easiest one to recover is Km0 which, after discretization, can be expressed as

Km0(xi, yj) =

Nt−1∑
ℓ=0

λℓ2i,j
p
ℓ− 1

2
i,j − p

ℓ+ 1
2

i,j

∆t
, (3.32)

where we ignore the last time step since the final conditions make its contribution
vanish. Notice that the discretization of the partial time derivative ∂p/∂t is taken
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in the opposite direction since we are integrating backward in time (we did not
notice this in the constant density case since the FD approximation for second-
order derivatives is symmetric).

To recover Km1 at the regular grid points we need to first compute its contri-
butions in the staggered points and interpolate back to the regular grid points,
so we have

Km1(xi+ 1
2
, yj) =

1

m1
i+1

2 ,j

Nt−1∑
ℓ=0

λ
ℓ+ 1

2
1x

i+1
2 ,j

p
ℓ+ 1

2
i+1,j − p

ℓ+ 1
2

i,j

∆x
, (3.33)
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2
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∆y
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and after using the same average interpolation as we used for the model parameter
m1 we get

Km1(xi, yi) =
Km1(xi+ 1

2
, yj) +Km1(xi− 1

2
, yj)

2
+
Km1(xi, yj+ 1

2
) +Km1(xi, yj− 1

2
)

2
.

(3.35)
The last step of the discretization is to recover the sensitivity kernels with

respect to wave speed and density Kρ,Kc using the chain rule as in eq. (2.109)
and eq. (2.110), such that

Kρ(xi, yj) = − 1

ρ2c2
Km0(xi, yj)−

1

ρ2
Km1(xi, yj)

Kc(xi, yj) = − 2

ρc3
Km0(xi, yj)

(3.36a)

(3.36b)

Numerical stability

The simple explicit Euler scheme is only conditionally stable, i.e. the pressure
field does not suffer from numerical instability and does not blow-up only if a
certain condition is met that relates the grid step size ∆x, the time step size
∆t and the maximum value of the wave speed cmax = max(ci),∀i ∈ {0, . . . , N}
(m/s). This condition is called the Courant-Friedrichs-Lewy (CFL) condition
and it defines the Courant number C and a condition on it such that,

C =
cmax∆t

∆h
≤ Cmax, (3.37)

where ∆h = ∆x is the grid step size (that is assumed to be the same in each
dimension) and Cmax depends on the accuracy order of the spatial FD approx-
imation and the dimensionality of the problem. For second-order accurate FD
approximations Cmax = 1/

√
D in the D-dimensional case. For fourth-order accu-

rate FD approximations using the staggered pressure-velocity scheme, an extra
factor of 6/7 should be multiplied to Cmax.
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Numerical dispersion

The scheme also suffers from numerical dispersion, meaning that the simulated
waves show some undesired numerical artifacts similar to physical dispersion.
To reduce this undesired effect, we need to consider the spatial discretization
in relation to the minimum wavelength of the waves we want to model in our
simulation. The minimum wavelength λmin (m) is defined as

λmin =
cmin

fmax
, (3.38)

where cmin = min(c2i ),∀i ∈ {0, . . . , N} (m/s) is the minimum value of the wave
speed and fmax (Hz) is the maximum wave frequency we want to model. We
can then define the number of points per wavelength Pw = λmin/∆x as the ratio
between the minimum wavelength and the grid step size. Bigger values for Pw

lead to better accurate simulations. We can get more points per wavelength by
reducing the grid step size ∆x or by increasing the minimum wavelength that we
can model. A useful rule of thumb is to have at least 10 points per wavelength,
although the error given by numerical dispersion depends also on the amount
of time steps the simulation performs, so a more detailed analysis of numerical
dispersion is needed for long simulations (see Igel [24] for more information).

Extension to higher-order stencils

It is often useful to consider spatial FD approximations which are more accurate
than lowest-order ones, especially since they usually lead to less numerical dis-
persion. This means that we can define different FD approximations for first and
second-order derivatives and exchange those definitions with the ones we have
used in the previous section to obtain more accurate solutions. For example, a
fourth-order accurate FD approximation of the first-order derivative of a function
f at xi is given by

∂f

∂x
(xi) =

−f(xi+ 3
2
) + 27f(xi+ 1

2
)− 27f(xi− 1

2
) + f(xi− 3

2
)

24∆x
+O(∆x4). (3.39)

Higher-order FD stencils, however, require more function evaluations and
more computations. Fortunately, as we will discuss in more detail in chapter 5,
FD-based methods are memory-bound so having to perform more computations
is generally not an issue. However, higher-order FD stencils do not come for free:
we still need to perform more function evaluations which means reading more
memory. Using the cache efficiently can expedite reads from memory, but it is
not a trivial task since memory access becomes increasingly sparse as we go to
higher-order stencils.

Also from a more practical point of view, higher order FDs require proper
treatment of points on the boundaries since the stencils used are now wider and
we may not have enough points to compute the derivatives on the boundaries.
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The simplest solution is to compute the derivative approximations only on the
positions for which we have sufficient points to compute it, hence effectively
reducing the size of the domain by the extra width of the stencil used. This
is what we have used in practice when implementing the fourth-order accurate
FD solver for the variable density acoustic wave equation. Other approaches are
based on using higher order stencils only for inner points and resort to lower
order stencils as approaching the boundary. This means that the computations
on the boundaries are less accurate, which can lead to errors propagating in the
inner part of the domain as a result. More commonly, the so-called fixture points
are added to the domain boundaries creating an extension of the boundaries such
that a sufficient number of points is now available to compute the wider stencils.

3.1.2 C-PML boundary conditions implementation

We will now describe the implementation of absorbing C-PML boundary con-
ditions in more detail. As introduced in section 2.4.2, C-PML BDCs are used
to dampen the waves that reach the boundary of our domain of interest by in-
troducing a memory variable per spatial derivative order, so in the case of the
acoustic wave equation we will need two memory variables that we will name ψ
and ξ.

Let us consider the 1D acoustic wave equation with constant density. We
augment the second-order partial derivative in space with two more terms

∂2p

∂x̃2
=
∂2p

∂x2
+
∂ψ

∂x
+ ξ, (3.40)

for all points in the C-PML region. Since the discretization of the ψ and ξ
memory variables needs to be chosen according to their spatial derivatives in the
equation, we conclude that the ψ variable needs to be collocated in between the
grid points (i.e. staggered) while the ξ variable needs to be collocated on the grid
points.

The evolution of the memory variables is described by the following recursive
equations

ψℓ = bψℓ−1 + a

(
∂p

∂x

)ℓ

, (3.41)

ξℓ = bξℓ−1 + a

[(
∂2p

∂x2

)ℓ

+

(
∂ψ

∂x

)ℓ
]
, (3.42)

where ℓ indicates the time step at which the variables or the partial derivatives
need to be taken and a, b are two coefficients that change based on the position
in the C-PML region. The coefficients a, b are computed in the following way:

b(x) = exp(−∆t(D(x) + α(x))),

a(x) = D(x)
b(x)− 1

(D(x) + α(x))
,
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and

D(x) =
−(N + 1)cmax log(R)

2h
dN (x),

α(x) = πf0(1− d(x)),

where h (m) is the thickness of the C-PML boundary, N is a power coefficient,
f0 (hertz) is the dominating frequency of waves in the simulation, cmax (m/s) is
the maximum wave speed in the model, R is a reflection coefficient and d(x) is
the normalized distance (between 0 and 1) from the interior part of the domain
Ω to the boundary of the domain. We picked some experimentally determined
coefficients from reference studies of C-PML BDCs on the acoustic wave equa-
tion (see [21] and [22]). These are the following: power coefficient N = 2 and
R = [0.01, 0.001, 0.0001] for [5, 10, 20] number of C-PML grid points respectively.
Note that the coefficients can be computed once we know the following: the
time step size ∆t, the grid step size ∆x and the number of C-PML grid points
that determines the reflection coefficient R and the thickness of the C-PML re-
gion, as well as the dominating frequency of the waves in the simulations f0
which can be chosen as the dominating frequency of the source time function s.
This means that we need to recompute these coefficients when the dominating
frequency changes, otherwise the waves will not be properly absorbed by the
C-PML region.

The coefficients a, b also need to be discretized in order to be used in the FD
stencils. Since they are both used in the recursive equations for ψ and ξ, they
need to be discretized both in between the grid points and on the grid points.
We use a similar staggered grid technique as we did for the generalized variable
density acoustic wave equation, hence the FD stencil update schemes for the C-
PML memory variables are as follows using the lowest-order FD approximations
for first and second-order derivatives are as follows

ψℓ
i+ 1

2

= bi+ 1
2
ψℓ−1
i+ 1

2

+ ai+ 1
2

pℓi+1 − pℓi
∆x

, (3.43)

ξℓi = biξ
ℓ−1
i + ai

pℓi−1 − 2pℓi + pℓi+1

∆x2
+
ψℓ
i+ 1

2

− ψℓ
i− 1

2

∆x

 . (3.44)

while the modified update scheme for the pressure in the C-PML region becomes

pℓ+1
i = 2pℓi − pℓ−1

i + c2i∆t
2

pℓi−1 − 2pℓi + pℓi+1

∆x2
+
ψℓ
i+ 1

2

− ψℓ
i− 1

2

∆x
+ ξℓi + sℓi

 .

(3.45)
We can use the same modified update scheme for the adjoint field λ in the C-PML
region to solve the adjoint equation with C-PML boundary conditions.

Extension to higher dimensions is straightforward: a new set of C-PML mem-
ory variables is needed for each dimension, such that we will have, in the 2D case
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for example, four memory variables ψx, ψy, ξx, ξy. Memory variables for the i-
dimension are defined only on the boundaries incident to that dimension’s direc-
tion, hence in the 2D case only the corners of the domain need C-PML memory
variables updates in both dimensions.

As a last note, we mention the implementation for the variable density
velocity-pressure formulation of the acoustic wave equation. In this case, only
first-order spatial derivatives are present, so the definition of the C-PML mem-
ory variables is the same but ψ is going to be used on the pressure derivative,
while ξ is going to be used on the velocity derivative, following the same concepts
introduced above.

3.1.3 How to model point sources and source scaling

Modeling physical sources for the wave equation is generally a hard task since,
in real-case scenarios, we do not know precisely the source time functions, i.e.
the functions that model the source terms in the equation. Moreover, numerical
approximations of these functions need to be carefully performed in order to
produce correct wave amplitudes.

For the context of this thesis, we are mostly using point sources, meaning
sources that are localized in an infinitesimally small point in space. These types
of sources can be represented mathematically by δ-functions activated at some
point (x0, t0) in space and time.

Recall the definition of δ-functions (taken by [24]) as

δ(x) =

{
∞ x = 0

0 x ̸= 0
(3.46)

and such that ∫ ∞

−∞
δ(x)dx = 1,

∫ ∞

−∞
f(x)δ(x)dx = f(0), (3.47)

where f(x) is a general function.
Physically, it is obviously impossible to have δ-functions as point sources, but

it is nevertheless a reasonable approximation of a source located in the proximity
of the modeled point source position.

Since we are modeling infinitesimally small point sources but we clearly do
not have an infinitesimally small grid step size ∆x after discretization, we need to
deal with proper source time function rescaling based on the area of the element
in which we are injecting the point source. This is commonly done my employing
the so-called boxcar function, which is defined (in 1D) as

δbc(x) =

{
1/∆x |x| ≤ ∆x/2

0 otherwise
, (3.48)

which fulfills the properties of a δ-function for ∆x → 0. In the n-dimensional
case, we can generalize the definition of the boxcar function by introducing the
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step size vector ∆ = [∆x1, . . . ,∆xn]
T and the generalized cube Cn(x0, l) centered

in x0 and with sides lengths equal to l, which can be defined as a set of points
using the following definition

Cn(x0, l) = {x ∈ Rn | |xi| ≤ x0i + li/2,∀i ∈ {1, . . . , n}}. (3.49)

The generalized boxcar function in n-dimensions is then defined as

δbc(x) =

{
1/V (Cn(0,∆)) x ∈ Cn(0,∆)

0 otherwise
, (3.50)

where V is the volume function, which for the n-dimensional cube Cn(x0, l) is
just V (Cn(x0, l)) =

∏n
i=1 li.

In practice, we use the generalized boxcar function to rescale the source terms
in the equations such that

sbc(x, t) = s(x, t)δbc(x), (3.51)

where sbc(x, t) is the rescaled source term that we use in the numerical simula-
tions.

The procedure above ensures that the injected source terms behave like δ-
functions (in the limit case of ∆x → 0) in the spatial domain, but we also have
to make sure that the source time function behaves like a δ-function in the time
domain. Unfortunately, we cannot directly use δ-functions in time since these
functions have a white spectrum, i.e. they contain all frequencies and so they
cannot be accurately modeled by the numerical discretization. Another function
that has the same properties is the Gaussian function with standard deviation σ
(s) which, in 1D, has the following form

δt0,σ(t) =
1

σ
√
2π
e−

1
2

t2

σ2 (3.52)

and fulfills the properties of a δ-function for σ → 0. We can formulate the Gaus-
sian function above with a different parametrization by substituting σ = 1√

2πf0
hence obtaining

δt0,f0(t) = f0
√
πe−π2f2

0 (t−t0)2 , (3.53)

where t0 (s) is the activation time and f0 (Hz) is the dominating frequency.
We can use δt0,f0(t) (or its derivatives in time) to model a source that is

activated a time t0 and has a dominating frequency of f0. This function has
the same properties of a δ-function δ(t − t0) for f0 → ∞. The most common
derivatives used are the first and the second derivatives, the latter also known as
Ricker wavelet.

Depending on the dimensionality of the problem, one should choose different
Gaussian derivatives depending on the shape of the resulting waveform one wants
to obtain. For example, in the 1D case where we want the simulated waves to
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have a Gaussian shape, we use the first derivative of the Gaussian since, in 1D,
the resulting signal will be an integral of the source time function.

To test the correctness of numerical solutions for various problem dimension-
alities, we can use analytical solutions in the form of Green’s functions which can
be computed for a single point source in the case of constant wave speed and
density of the model. For more details on how to compute Green’s functions in
various dimensions for a generalized Gaussian-like source time function, we refer
to Igel [24].

3.2 Technical details and implementation

In this section, we will discuss some technical details on the FD solvers we have
implemented using the Julia [13] programming language. We developed a Ju-
lia package called SeismicWaves.jl1 which is part of a larger set of packages
(HMCLab.jl2) to perform forward and inverse calculations for geophysical prob-
lems focusing on the Hamiltonian Monte Carlo method. Although the main
intended application for the package suite is that of geophysical problems, as
explained in chapter 1, for the context of this thesis we have focused on the
application for ultrasound medical tomography.

Most of the technicalities regarding efficient usage of computational resources
are hardly ever discussed in detail in the literature, but are very important in
practice since, without them, FWI approaches would take too much computation
time and/or resources to be feasible.

3.2.1 Checkpointing for storage of the forward wave field

As we have seen in the previous sections, in order to compute sensitivity kernels
for the material properties we want to reconstruct using FWI we need to perform
3 main steps: (1) solve a forward problem, (2) solve an adjoint problem, (3)
integrate forward and adjoint wavefields in time to compute sensitivity kernels.
Problems (1) and (2) are relatively easy to solve by using the FD methods as
introduced in the previous sections.

Problem (3), however, has some technical intricacies because we need to in-
tegrate in time both forward and adjoint wavefields. Usually, when we solve the
forward (or the adjoint) problem, we update the wave fields by keeping stored in
memory only the most recent time step(s), hence performing a sort of in-place
update on the wave field. This is fine when we are solving the two problems one
after the other, but for computing the sensitivity kernels we somehow have to
access both wave fields at the same time for the same time steps. Naively, this
can be done by storing the forward wave field for all time steps while solving
the forward problem and then computing the sensitivity kernels on-the-fly with

1https://gitlab.com/JuliaGeoph/SeismicWaves.jl
2juliageoph.gitlab.io/HMCLab.jl
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p0 pNtpk p2k p3k

checkpoints

λ0 λNt

buffer

Figure 3.2: Linear and equally-spaced checkpointing scheme for the second order
constant density acoustic wave equation solver.

the current time step adjoint wave field values. However, this approach quickly
reaches unfeasible memory requirements for some realistic number of time steps
used in practice and for simulations using 2D or 3D models. We could potentially
store the wave field values not on the main memory of the device (which for the
CPUs is the RAM), but on the disk, which would be feasible but doing this will
greatly increase the computation time because of the I/O bottleneck of reading
and writing to the disk.

What is usually done in practice is to save the state of the solver at some pre-
determined time steps, called checkpoints. We can then later use the information
stored in the checkpoints to recompute the values of the forward wave field for a
contiguous interval of time steps, which we will refer to as buffer, and use them
when needed in the adjoint solver to compute on-the-fly the sensitivity kernels.
Various checkpointing techniques can be used for this (see [26]) and we chose to
implement the most simple form of checkpointing, namely linear equally-spaced
checkpointing.

Figure 3.2 illustrates the checkpointing scheme for the second-order constant
density acoustic wave equation solver. A checkpointing frequency of k time steps
is set such that each checkpoint has the same distance, in number of time steps,
from each other. When we compute the forward solver, we store the values of
the pressure field (and, for simulations with C-PML BDCs the values of the
memory variables) at the checkpoint time steps 0, k, 2k, . . .. Starting from the
last checkpoint, which is always less than k time steps away from the last time
step Nt, we save all the pressure fields up to the last time step in the buffer,
which stores at most k+ 2 pressure fields. After the forward solver, we start the
computation of the adjoint solver from the last time step and we use the stored
pressure fields in the buffer for the integration in time of the sensitivity kernel.
We continue until we run out of saved pressure fields in the buffer. At that point,
we recompute all the pressure field values for the time steps between the second-
last checkpoint and the last checkpoint time step starting a new partial forward
solver by using the information stored at the second-last checkpoint. We shift
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the buffer by repopulating it with the recomputed pressure fields and start using
them in the time integration. We repeat this process until we reach the first time
step and the integration in time for the sensitivity kernel is completed.

Using this technique, we have ⌈Nt/k⌉ checkpoints and the length of the buffer
is k + 2 such that we need to store ⌈Nt/k⌉+ k + 3 pressure fields instead of the
Nt we would have to store without checkpointing. If we choose k = ⌈

√
Nt⌉, we

find the optimal checkpoints-buffer ratio such that the number of wave fields we
need to store is in the order of O(

√
Nt), or more precisely is 2⌈

√
Nt⌉+ 2.

Generalization of this checkpointing scheme to the variable density pressure-
velocity formulation is straightforward: we now need to store in the checkpoints
the pressure field as well as the velocity fields, making the number of fields to
store dimension-dependent. In 2D, for example, we will have to store 3⌈Nt/k⌉
fields for the checkpoints and only k + 1 pressure fields for the buffer since we
need first-order derivatives in time on the pressure field for the computation of
sensitivity kernels.

3.2.2 Device-agnostic (xPU) solvers

The high computational cost of FWI-based inversions requires efficient and scal-
able usage of computational resources to make the method effective in practice.
For this reason, most modern FWI implementations and code bases have some
sort of parallelization features or can run on massively parallel architectures like
GPUs (Graphics Processing Units), possibly also distributing the computations
on multiple devices.

The explicit FD schemes introduced in this chapter have the nice feature of
being easily parallelizable by using the famous stencil parallelization pattern. A
stencil computation is, loosely speaking, a type of computation pattern where
several time-step iterations on a given array are performed. During a time step,
all elements in the array are updated using a fixed pattern that involves neigh-
boring elements only. Stencils computations are usually memory-bound (more in-
formation on this in chapter 5) and GPGPUs (General-Purpose computations on
Graphics Processing Units) approaches have been found to be most efficient [27].

Implementing and maintaining code for GPUs can be quite a challenge, espe-
cially for researchers who have no extensive skills in programming and computer
science. Moreover, correctly using all the GPU capabilities and implementing
optimized code with a high degree of efficiency is no easy task even for expert
programmers.

Motivated by the choice of the Julia programming language, we based our
implementation on the ParallelStencil.jl3 package [14], which allows writ-
ing easy-to-read but efficient parallel stencil implementations that can run on
both multi-threaded CPUs and GPUs. ParallelStencil.jl relies on the na-
tive kernel programming capabilities of CUDA.jl and AMDGPU.jl and on the Julia

3https://github.com/omlins/ParallelStencil.jl
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Base.Threads for high-performance computations on both NVIDIA and AMD
GPUs as well as CPUs. The package is particularly useful for non-computer sci-
entists because it abstracts the different programming paradigms for CPUs and
GPUs under a unified interface, resulting in implementing the code only once
and then being able to run it seamlessly on both CPUs and GPUs, thus enabling
true xPU computing. Moreover, ParallelStencil.jl automatically chooses the
best way to launch kernel computations on CPUs and GPUs based on the device
architecture and the problem dimensionality, which is very important to achieve
high performance.

1 @parallel_indices (i, j) function update_p!(
2 pold, pcur, pnew, c, dt, dx, dy
3 )
4 # Pressure derivatives in space
5 d2p_dx2 = (pcur[i+1, j] - 2.0 * pcur[i, j] + pcur[i-1, j]) / (dx^2)
6 d2p_dy2 = (pcur[i, j+1] - 2.0 * pcur[i, j] + pcur[i, j-1]) / (dy^2)
7 # Update pressure using explicit Euler scheme
8 pnew[i, j] = 2.0 * pcur[i, j] - pold[i, j] + c[i, j]^2 * dt^2 *

(d2p_dx2 + d2p_dy2)↪→

9

10 return nothing
11 end

Listing 1: Example of an xPU kernel function definition using
ParallelStencil.jl’s @parallel_indices macro for 2D constant density
acoustic pressure update scheme.

The usage of ParallelStencil.jl functionalities is best shown with an ex-
ample. Listing 1 shows an example of a ParallelStencil.jl kernel function
implemented using the @parallel_indices macro. This macro is used to de-
fine a kernel function that computes a single stencil update for an element of
the stencil computation by defining the indices variables (i, j) in a way simi-
lar to a simple nested loop iterating over indices of the array. In this case, the
kernel function update for the 2D constant density acoustic wave equation for
the new time step pressure pnew at index (i, j) using the value of the current
time step pressure pcur at the same index and its neighboring values to compute
the derivatives using the second-order accurate FD approximation of the second
order derivative. The values of the previous time step pressure pold and the
wave speed c at index (i, j) are then used to perform the explicit Euler update
scheme.

We note that the code is all written in basic Julia syntax and the kernel
function only needs to be annotated with the macro @parallel_indices and the
name of the indices to use in the computation. This is possible because of the
Julia meta-programming capabilities which make ParallelStencil.jl generate
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the appropriate code for CPUs and GPUs based on kernel function definition.

1 # Time loop
2 for it = 1:nt
3 # Update pressure
4 @parallel (2:(nx-1), 2:(ny-1)) update_p!(pold, pcur, pnew, c, dt,

dx, dy)↪→

5 # Inject sources
6 @parallel (1:nsrcs) inject_sources!(pnew, srctf, possrcs, it)
7 # Record receivers
8 @parallel (1:nrecs) record_receivers!(pnew, traces, posrecs, it)
9 # Swap refereces for next time step

10 pold, pcur, pnew = pcur, pnew, pold
11 end

Listing 2: Example of a time loop implementation for single-xPU 2D con-
stant density acoustic pressure forward solver using using ParallelStencil.jl’s
@parallel macro for kernel calls and the definition of the update_p! xPU ker-
nel from listing 1. The functions inject_sources! and record_receivers! are
similarly defined xPU kernels for source time function injection and recording of
receivers (definitions not shown).

The kernel function can be called in a time loop update iteration using the
@parallel macro as shown in listing 2. When called, the kernel needs to know
the range of indices on which the stencil is applied. In this case, we only need to
specify the range of inner points (2:(nx-1), 2:(ny-1)) where nx and ny is the
number of grid points in the x and y-direction respectively.

These examples showcase the ease of use of ParallelStencil.jl in the
context of finite difference computations. In chapter 5 we show the results of
benchmarks conducted to assess the efficiency of the solvers implemented using
ParallelStencil.jl functionalities.

3.2.3 From single xPU to multi-xPUs

In the previous section, we have seen an example of ParallelStencil.jl and
how it can be used to write xPU kernels on a single device. However, if we
want to achieve very high-resolution model reconstructions using FWI-based
methods, the problem becomes prohibitively large to be handled by a single
device. This motivates the usage of the ImplicitGlobalGrid.jl4 package which
allows a seamless extension of ParallelStencil.jl to multi-xPU computing.
The ImplicitGlobalGrid.jl package introduces the possibility of splitting the
domain into different sub-domains and distributing them onto different devices

4https://github.com/eth-cscs/ImplicitGlobalGrid.jl
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1 # Time loop
2 for it = 1:nt
3 # Hide communication block
4 @hide_communication b_width begin
5 # Update pressure
6 @parallel (2:(nx-1), 2:(ny-1)) update_p!(pold, pcur, pnew, c,

dt, dx, dy)↪→

7 # Inject sources
8 @parallel (1:nsrcs) inject_sources!(pnew, srctf, possrcs, it)
9 # Record receivers

10 @parallel (1:nrecs) record_receivers!(pnew, traces, posrecs, it)
11 # Exchange halo of new pressure with other processes/devices
12 update_halo!(pnew)
13 end
14 # Swap refereces for next time step
15 pold, pcur, pnew = pcur, pnew, pold
16 end

Listing 3: Example of a time loop implementation for multi-xPU 2D con-
stant density acoustic forward solver using using ImplicitGlobalGrid.jl’s
@hide_communication macro to hide computation behind communication and
update_halo! function to perform the communication between neighbouring
xPU devices.

using the capabilities of MPI-based communication offered by the MPI.jl pack-
age. Each device computes a single time loop iteration by performing a stencil
computation on its sub-domain and then exchanges the boundary values of its
sub-domain to each neighboring device. This is repeated for each time step,
allowing a very simple but efficient parallelization on multiple devices.

The package ImplicitGlobalGrid.jl has a lot of interesting features like the
automatic implicit creation of the global computational grid based on the number
of devices the solver is run with and based on the network topology, which can be
explicitly chosen by the user or automatically defined. Another important feature
is the possibility of hiding communication behind computation by leveraging the
fact that we can first compute the update on the boundary points and start
the communication of those values while updating the rest of the inner points.
This allows for maximal usage of computational resources and close to zero idle
time due to communication. Moreover, ImplicitGlobalGrid.jl uses the highly
optimized CUDA-aware or ROCm-aware MPI for GPGPUs to perform updates
of the boundary values close to the hardware limit.

An example of the modified time loop for the 2D constant density acoustic
forward solver using ImplicitGlobalGrid.jl and ParallelStencil.jl is shown
in listing 3. We can see that only two modifications were added to the code,
namely the @hide_communication macro and the update_halo! function. The
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former specifies that the communication of boundary values should be hidden
behind the computation of the inner values. The variable b_width is a tuple
specifying the size of the boundary in number of grid points for each dimension
for which computation should be done immediately and then communication of
boundary values using update_halo! function can begin while updating the inner
points.

Apart from a simple initialization procedure of the implicit global grid
(not shown) and a different way of launching the solver using Julia and the
MPI launcher, we see that the code is basically the same as before. We
only need to take care of the correct initialization of the sub-domain sizes
for each device, which can be done using other utility functions exposed by
ImplicitGlobalGrid.jl.

In chapter 5 we show that good weak scaling on multiple GPUs can
be achieved using ImplicitGlobalGrid.jl features in combination with
ParallelStencil.jl for a relatively large problem size in 2D and 3D.
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Inversion results

In solving a problem of this sort, the grand thing is to be able to reason backwards. That is a
very useful accomplishment, and a very easy one, but people do not practise it much. In the

every-day affairs of life it is more useful to reason forwards, and so the other comes to be
neglected.

There are fifty who can reason synthetically for one who can reason analytically.
Let me see if I can make it clearer. Most people, if you describe a train of events to them, will
tell you what the result would be. They can put those events together in their minds, and argue

from them that something will come to pass.
There are few people, however, who, if you told them a result, would be able to evolve from

their own inner consciousness what the steps were which led up to that result.
This power is what I mean when I talk of reasoning backwards, or analytically.

Sherlock Holmes, by Sir Arthur Conan Doyle

In this chapter, we will show the results of various synthetic inversion experiments
using the implemented solvers for both constant and variable density acoustic
wave equation formulations. We will also show a real inversion scenario example
using the publicly available data set coming with the pyruct [28] Python package.

We start by checking the implementation of constant and variable density gra-
dient solvers by computing hockey stick plots and comparing the gradients from
the adjoint method with the expensive finite difference approximation gradients.

We then move on to synthetic inversions, i.e. using as observed data dobs the
seismograms computed by solving the forward problem using the same forward
solver used to compute the gradients. We test both constant and variable density
inversions in two different setups: ultrasound medical imaging and exploration
seismic tomography. We also consider adding correlated noise to the ‘observed’
seismograms computed from the true model to mimic a noisy, real data scenario.

Finally, we show inversion results from real data gathered in an ultrasound
medical imaging setup.

4.1 Adjoint and gradient checking

Before jumping into synthetic inversion, we need to check that the implementa-
tion of the adjoint solvers and the gradients computed from the sensitivity kernels
are correct. There are multiple ways to test the correct implementation of adjoint
solvers, the most common one being comparison with finite differences gradient
approximations.

As introduced in section 2.3, we can compute gradients with respect to model
parameters using a finite difference approximation like eq. (2.19), but this ap-
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proach scales very poorly when increasing the number of model parameters. For
1D and relatively small 2D problems this approach is still feasible and can be
used to compute gradients in a reasonable amount of time. These gradients can
be then compared to the gradients computed with the adjoint method to test the
correct implementation of the adjoint solvers.

4.1.1 Hockey stick plots

The first setup we used for gradient checking is a 1D model of length 1000 m
initialized with a constant wave speed c = c0 = 1500 m/s and constant density
ρ = ρ0 = 1000 kg/m3. We then perturbed this model by adding a Gaussian
perturbation to it of the form

g(a, x) = a exp

(
−(x− 500)2

500

)
. (4.1)

The parameter a is chosen differently for the wave speed perturbation and
the density perturbation. For the wave speed, we chose a = −100 while for
the density we chose a = 1000. Applying only one perturbation at a time we
get two perturbed models: one in which the wave speed is perturbed such that
c(x) = c0 + g(−100, x) and the density is kept constant to ρ0; the other in which
the density is perturbed such that ρ(x) = ρ0 + g(1000, x) and the wave speed is
kept constant to c0.

In both models, we placed a source at x = 400 m and 10 receivers equally
spaced between 300 and 600 m. The source time function used is the first deriva-
tive of a Gaussian with central frequency f0 = 50 Hz and activation time t0 = 0.03
s. The model is discretized using a uniform grid with 2001 grid points, hence the
grid step size is ∆x = 0.5 m. Both simulations with both models are run for a
total time of T = 0.3 s with a time step size of ∆t = 3e−4 s. The two described
models were used to compute observed data dobs while the constant velocity and
density models were used to compute synthetic data d. We used a simple L2
misfit with no regularization for this test.

We then computed gradients with respect to wave speed for the observed
data computed from the model with perturbed wave speed and with respect to
density for the observed data computed from the model with perturbed density
using both the finite difference approach and the adjoint method approach. We
used a first-order finite difference approximation for the gradients computed with
the finite difference approach.

Figure 4.1 shows the so-called hockey stick plots for both perturbed models.
These plots show the relative derivative error (i.e. the relative error between the
adjoint method’s gradients and the finite difference gradients) as a function of
the finite difference increment ∆mi. The ‘handle’ of the stick (i.e. the right side
of the plots) shows the finite difference approximation error, while the ‘head’
for the stick (i.e. the left side of the plots) shows the floating points precision

60



4.1. Adjoint and gradient checking
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(b) Density ρ
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Figure 4.1: Hockey stick plots for 1D variable density solvers on two perturbed
models. Panels 4.1a and 4.1b show the relative error for wave speed and density
model parameters respectively located at position xi = 500 m.

errors because the increment becomes so small that machine precision errors are
predominant.

The expected behavior of the hockey sticks indicates that the adjoint solvers
have a good chance of being implemented correctly, but it is not a 100% fault-
proof test. To gather more insight into the correctness of our implementation
we can compare visually the finite difference gradient approximation against the
one computed with the adjoint method. This can be done in 1D using the same
setup, but we were more interested in 2D setups because those are the ones that
we will then use to perform inversions, so we need to check their implementation
as well.

4.1.2 Finite differences gradient comparison in 2D

We move to a 2D setup much similar to what we used in the previous section,
but now all the model perturbations are Gaussians in 2D. The 2D model size
is now 1000 × 1000 m. Here we perturbed both wave speed and density models
simultaneously, thus creating a single perturbed model. We again computed
observed data using the perturbed model while a constant wave speed and density
model at c0 = 1000 m/s and ρ0 = 1500 kg/m3 is used to compute synthetic data.

Each of the 10 sources is activated separately while all 10 receivers are mea-
suring seismograms for each source activation, thus creating 10 shots hence 10
different shot gathers. The source time function for each source is again the first
derivative of a Gaussian with central frequency f0 = 10 Hz in this case and ac-
tivation time t0 = 0.4 s. The model is discretized using a uniform grid with 201
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grid points per spatial dimension (i.e. the grid has size 201 × 201 grid points),
hence the grid step size is ∆x = ∆y = 5 m. Simulations are run for 1000 time
steps with a time step size of ∆t = ∆x/

√
2/1300 ∗ 6/7 ≈ 2.3e−3 s. We used 4 C-

PML layers of 20 grid points on every boundary side with a reflection coefficient
R = 1e−4. We used a simple L2 misfit with no regularization for this test.

Figure 4.2 shows the perturbed model setup with sources-receivers configura-
tion as well as gradients with respect to wave speed and density computed with
the adjoint method. We note that the gradients with respect to wave speed are
larger in absolute values compared to the density ones, even though the density
perturbation is bigger compared to the wave speed one. This is because the L2
misfit is much more sensitive to wave speed perturbations than density ones. This
behavior results from the chosen parametrization of eq. (2.95) with m0 = 1/(ρc2

and m1 = 1/ρ where we can see that the impact of the density term is only
through its gradient (or more precisely through the gradient of the inverse of the
density). In fact, if the density is constant (i.e. its gradient is zero), it can be
simplified in the equation. Since we have a rather smooth Gaussian perturbation
on the density, its gradient will be rather small.

We also note that the gradients near the sources and receivers are quite large
in absolute values compared to the ones in the middle where the perturbation is
located. This is because sensitivity near the sources or receivers is higher. After
all, perturbations in those regions will have a bigger effect on the L2 misfit that
we are currently using for in this test.

By observing the zoomed-in panels fig. 4.2e and fig. 4.2f we can see the shape
of the gradients (or sensitivity kernels) near the perturbation. The sign of the
wave speed gradient is negative, meaning a positive perturbation is correctly de-
tected. For the density gradient, we can see that it is both positive and negative,
although it is mainly positive at the center of the density perturbation. The
‘double banana’ shape of the gradients is due to the perturbations but also to
the positions of the sources and receivers, which in this example are at the top
and the bottom of the domain respectively.

The comparison between adjoint gradients and finite difference approximation
gradients is shown in fig. 4.3. The finite difference approximation of the gradients
is computed by perturbing each model parameter by the increments ∆c = −1e−3
m/s and ∆ρ = −1e−3 kg/m3 for wave speed and density respectively. In these
figures, it is shown the base 10 logarithm of the relative error between adjoint
and finite difference gradients.

We can see that the relative error is quite small in the inner region but gets
bigger in the C-PML region. This is because the adjoint equations and sensitivity
kernels we derived in section 2.4 are based on the assumption of homogeneous
Dirichlet BDCs and not on C-PML BDCs. Since we generally do not want to
update the model using the gradients in the C-PML region, we can ignore this
error if we only use the gradients in the inner region when we update models
using, for example, a general descent method.

If we look at the zoomed-in plots, we can see that the errors on the density
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(a) Wave speed c model setup (b) Density ρ model setup

(c) Wave speed c gradient (d) Density ρ gradient

(e) Wave speed c gradient (zoomed in) (f) Density ρ gradient (zoomed in)

Figure 4.2: Adjoint gradients in 2D for gradient check setup. Panels 4.2a and
4.2b show the perturbed model setup for both wave speed and density as well
as sources-receivers configuration. Panels 4.2c and 4.2d show the gradients com-
puted with the adjoint methods. Panels 4.2e and 4.2f show a zoom-in of the
gradients which correspond to the square black box of panels 4.2c and 4.2d re-
spectively. Unit of measure for the gradients are s/m and m3/kg for wave speed
and density gradients respectively.
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(a) Wave speed c (b) Density ρ

(c) Wave speed c (zoomed in) (d) Density ρ (zoomed in)

Figure 4.3: Relative error between adjoint and finite difference gradients. Panels
4.3a and 4.3b show the log10 relative error between the adjoint and finite dif-
ference gradients for both wave speed and density. Panels 4.3c and 4.3d show a
zoom-in of both gradients.
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gradients are higher than the ones for wave speed and regions with a sharper
discontinuity in the density gradient have higher errors than the gradients in
smoother regions. This is probably due to the interpolation needed to compute
m1 in between grid points and the interpolation needed to compute the sensitivity
kernel with respect to density back onto the grid points.

We can conclude that, apart from the C-PML region, the adjoint gradients
match quite accurately the finite difference approximations, hence the implemen-
tation seems to be correct. On a side note, we mention that it took 22 hours
on a single GPU to compute all finite difference gradients for both wave speed
and density, while with the adjoint method, all gradients were computed in just
a couple of seconds.

4.2 Synthetic inversions

We now move to synthetic inversions, where the observed data is computed by
solving the forward problem on the true model that needs to be reconstructed.
This is a so-called inverse crime because the same solver that is used to generate
the observed data is also used to perform the inversion. Although this procedure
can lead to optimistic results, it is a common approach to benchmark the accuracy
of a synthetic inversion before moving to real data inversions.

We will consider noiseless and noisy synthetic inversions: in the first case
the generated data is used as is, while in the second case noise is added to the
observed data to mimic measurement uncertainties. It is important to add some
noise to the data in order to test the robustness of the inversion procedure to
noise that will for sure be present in real data inversions.

4.2.1 Noiseless synthetic inversions

In this section we will take a look at two synthetic inversions in a variable density
setting similar to ultrasound medical imaging ones, meaning that we will use wave
speed and densities close to the ones of fluids or soft tissues in the human body,
frequencies greater than 20 kHz1 and model sizes in the order of 10s of cm.

The first model we will try to reconstruct is a phantom2 composed of three
circles: two smaller circles with different perturbations inside a bigger one. The
diameter of the big circle is 10 cm while the diameter of the two smaller ones is
3 cm. The center of the big circle is located at the middle of the model, which
has a size of 20×20 cm, and has a wave speed of 1480 m/s and a density of 1000
kg/m3. The two smaller circles’ centers are located at the same x-coordinate
x = 10 cm while y = 7.5 cm for the top small circle and y = 12.5 cm for the

1In reality the frequency range used for medical purposes is usually much higher (between
2 and 18 MHz). We will use lower frequencies because higher frequencies alone cannot resolve
sharp discontinuities. More on this in the section on real data inversions.

2The term phantom is frequently used in the medical imaging context to indicate a body
with known material properties that is used to test imaging equipment.
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bottom small circle. The top small circle has a wave speed of 1460 m/s and a
density of 1010 kg/m3. The bottom small circle has a wave speed of 1550 m/s
and a density of 1040 kg/m3. The background model has a wave speed of 1500
m/s and a density of 980 kg/m3.

We have placed 16 sources and 32 receivers around the phantom in an equally
spaced circular configuration of radius 7.5 cm. Each of the 16 sources is activated
separately while all 32 receivers are measuring seismograms for each source ac-
tivation, thus creating 16 shots. The source time function for each source is the
first derivative of a Gaussian with central frequency f0 = 50 kHz and activation
time t0 = 2.4e−5 s.

The model is discretized using a uniform grid with 200 grid points per spatial
dimension, hence the grid step size is ∆x = ∆y ≈ 0.1 cm. Simulations are run
for 1500 time steps with a time step size of such that the Courant number of
the forward simulation with the true model is 0.5. We used 4 C-PML layers of
20 grid points on every boundary side with a reflection coefficient R = 1e−4.
We used a simple L2 misfit with no regularization for this inversion. We also
applied gradient smoothing for each shot at the source location with a radius of
10 grid points. Figure 4.4a and fig. 4.4b show the true model setup as well as the
sources-receivers configuration.

We performed 200 iterations of the L-BFGS algorithm filtering the gradients
computed by the solver such that grid points inside the C-PML region would have
zero gradient. The reconstructions for both wave speed and density at iteration
10 and 200 of L-BFGS are shown in fig. 4.4. We can see that the wave speed
is reconstructed quickly while the density takes longer to be resolved. This is
expected due to the same reasons we introduced in the previous section when
we looked at the sensitivity kernels for both wave speed and density. The final
reconstruction is quite similar to the true model, although discontinuities are not
as sharp. We can also see that the sources-receivers configuration is somehow
affecting the reconstruction by polluting the image with something that seems to
resemble noise. In reality, this is due to the fact that, as we have seen previously,
the gradient near the sources and receivers is generally larger (in absolute values)
than the one where the perturbations are located.

The second synthetic inversion we performed is almost identical to the previ-
ous one, except that the density of the true model is rotated 90 degrees counter-
clockwise with the center of rotation equal to the center of the model. This setup
is a bit non-physical since real materials will hardly be able to match these model
parameters. Nevertheless, it gives great insight into the coupling of wave speed
and density gradients. Indeed, wave speed and density are related to each other
via the Newton-Laplace equation eq. (2.77) so a perturbation on one will reflect
on the other. This means that the two gradients are not independent from each
other, so by testing this setup we try to see if this coupling is correctly modeled
by our solvers.

Figure 4.5 shows the setup and reconstructed models for the rotated three
circles phantom inversion. As in the previous inversion, the wave speed gets
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(a) Wave speed c true model + setup (b) Density ρ true model + setup

(c) Wave speed c model at iteration 10 (d) Density ρ model at iteration 10

(e) Wave speed c model at iteration 200 (f) Density ρ model at iteration 200

Figure 4.4: Three circles phantom inversion. Panels fig. 4.4a and fig. 4.4b show
the true model setup as well as the sources-receivers configuration. Panels fig. 4.4c
and fig. 4.4d and panels fig. 4.4e and fig. 4.4f show the reconstructed model
parameters at iteration 10 and 200 of L-BFGS respectively.
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(a) Wave speed c true model + setup (b) Density ρ true model + setup

(c) Wave speed c model at iteration 10 (d) Density ρ model at iteration 10

(e) Wave speed c model at iteration 200 (f) Density ρ model at iteration 200

Figure 4.5: Rotated three circles phantom inversion. Panels fig. 4.5a and fig. 4.5b
show the true model setup as well as the sources-receivers configuration. Panels
fig. 4.5c and fig. 4.5d and panels fig. 4.5e and fig. 4.5f show the reconstructed
model parameters at iteration 10 and 200 of L-BFGS respectively.
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(a) Three circles phantom

(b) Rotated three circles phantom

Figure 4.6: Misfit and relative error evolutions for circles phantom inversions.
Panel 4.6a and 4.6b show the evolutions of the misfit functional and the relative
error between the reconstructed model and the true model for the three circle
phantom and its rotated variant. The misfit evolution y-axis is in log scale while
the relative error y-axis is in linear scale.
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resolved much faster than the density, although this time we can clearly see
the effect of the coupling between wave speed and density. In the wave speed
reconstruction at iteration 10 fig. 4.5c we see the circle with a higher density
interfering, while in the density reconstruction fig. 4.5d we see the circle with a
higher wave speed interfering. After the wave speed model is somewhat resolved
both interferences start to even out, although never quite disappear as we can see
in the reconstructions after 200 iterations in fig. 4.5e and especially in fig. 4.5f
where we can see that the high wave speed circle is misinterpreted as a density
perturbation.

We can get a better idea of what is happening if we observe the misfit evolution
and the relative error Er,i of the reconstructed model at iteration i with respect
to the true model computed as

Er,i =
∥mest

i −mtrue∥2
∥mtrue∥2

, (4.2)

where mtrue is the true model, mest
i is the reconstructed model at iteration i.

This is shown for both inversions in fig. 4.6. We see that both the misfit and
the relative error of the wave speed reconstruction rapidly decay in the first 10
iterations and flatten out, while the density error decays more slowly and picks
up after roughly 100 iterations before flattening. This clearly shows that the
density model is much harder to reconstruct than the wave speed model and also
that a good wave speed reconstruction is crucial to correctly resolve density.

4.2.2 Noisy synthetic inversions

In this section, we will investigate the effect of noise added to the generated
observed data to ensure the robustness of the inversion method. For this syn-
thetic inversion, we will focus on a different model setup that is more similar to
exploration seismic tomography, namely using the well-known SEG/EAGE Salt
and Overthrust Models [29]. These models are commonly used in literature to
benchmark inversion methods for exploration seismic tomography. We did this
to show that our solvers can be used to invert models at different scales. Fig-
ure 4.8a shows the overthrust wave speed true model and the sources-receivers
setup. Note that in this case, we assumed a constant density model, so we used
the constant density solvers for this inversion. This is not true for real exploration
seismic tomography settings, but we adopted it to facilitate a bit of the inversion
and focus only on the problem of reconstructing a model using noisy data.

Regarding the noise, we injected correlated noise into our generated data using
the FFT Moving Average (FFT-MA) method [30]. This means that the noise
added to our data will not just be uncorrelated Gaussian noise, but instead, the
noise will depend on the adjacent noise in time. The parameters of the correlated
noise we injected are the following: Gaussian noise with mean 0 and standard
deviation of 0.05, correlation length of 30 time steps. The effect of the noise in
the data is shown in fig. 4.7, where we compare clean and noisy seismograms for
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Figure 4.7: Comparison of clean and noisy seismograms for shot 6 receiver 6 of
overthrust inversion.

a specific source-receiver pair. We can see that this type of additive noise mostly
‘corrupts’ the parts of the signal with lower amplitude, but also some effect is
seen in the higher amplitude parts with a small amplitude perturbation on the
peaks.

More details on the numerical setup are as follows. The model has a size of
1200 m in the x-direction and 800 m in the z-direction and has been discretized
using 856×574 grid points, hence the resulting grid step sizes are ∆x ≈ ∆z ≈ 1.4
m. C-PML layers of 20 grid points and reflection coefficient R = 1e−4 have been
added to the model at the right and left boundaries as well as at the bottom
boundary. For the top boundary, we used free surface BDCs (i.e. homogeneous
Dirichlet BDCs in this case).

The initial model (fig. 4.8b) is set as a vertical gradient from top to bottom
with minimum wave speed (at the top) of 2200 m/s and maximum wave speed
(at the bottom) of 3200.0 m/s.

A total of 10 sources and 30 receivers are located at the top of the model at
a depth of 10 m. The sources are equally spaced with a distance of 100 m from
each other, while the receivers are also equally spaced but with a distance of 39
m from each other. The source time function used for each source is a Ricker
function (second derivative of a Gaussian) with a central frequency of 12.0 Hz
and scaled amplitude of 1000 Pa. Each of the 10 sources is activated separately
while all 30 receivers are measuring seismograms for each source activation, thus
creating 10 shots.

Simulations are run for 10000 time steps with a time step size of such that
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(a) Wave speed c true model + setup

(b) Wave speed c initial model
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(c) Wave speed c model at iteration 10

(d) Wave speed c model at iteration 50

Figure 4.8: Noisy overthrust inversion. Panel fig. 4.8a shows the true model
setup and sources-receivers configuration. Panel fig. 4.8b shows the initial model
at iteration 0 we used for the inversion. Panels fig. 4.8c and fig. 4.8d show the
reconstructed wave speed model at L-BFGS iteration 10 and 50 respectively.
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Figure 4.9: Misfit and relative error evolutions for noisy overthrust inversion.

the Courant number of the forward simulation with the true model is 0.5. We
also applied gradient smoothing for each shot at the source location with a radius
of 5 grid points. We performed 50 iterations of the L-BFGS algorithm using the
whole gradient.

For the misfit, we used an L2 misfit like eq. (2.12) with a diagonal covariance
matrix and the same standard deviation as we used for the correlated noise. We
could have used a covariance matrix that perfectly modeled the correlated noise
(in that case it would have not been diagonal anymore), but since we usually do
not know exactly the amount of correlation in the noise in real case scenarios, we
decided to be conservative about the correlated noise and only know its standard
deviation correctly for the inversion.

Reconstructed models for iterations 10 and 50 are shown in fig. 4.8c and
fig. 4.8d. We can see that most of the characteristics of the true model are
resolved, at least for the upper half and center of the model. In the lower half
and on the model sides the reconstruction is less accurate and smoothing of
detailed structures is present. This is partially due to the noise but mostly due
to the model geometry that forces the energy to be quickly dissipated to the
boundary. In fact, waves that propagate from the sources at the top will, for the
most part, travel along the discontinuities in the upper half of the model and
reach the boundary where they will be dissipated. The few reflections and waves
that go through the upper half discontinuities will be the ones that permit the
reconstruction of the lower part of the model.

In fig. 4.9 we see the misfit evolution and the relative error of the reconstruc-
tion with respect to the true model. In contrast to what we have seen for the
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noiseless inversions, we note that smoother evolutions of misfit and relative error
appear, which is a consequence of the noise in our data as well as the choice of a
smoother initial model to start the inversion with.

4.3 Real data inversions

In this section, we will show a case study inversion performed on a real data set in
the context of ultrasound medical imaging. We used the public data set coming
with the pyruct [28] Python package that was developed by researchers from the
University of Zürich and ETH to reconstruct images using Reflection Ultrasound
Computed Tomography (RUCT) Delay And Sum (DAS) Beamforming [31, 32].

The data provided with the package contained various data sets with observed
data measured using different source-receivers configurations and different phan-
tom models. We picked the ‘test’ data set which was obtained by submerging a
hexagonal key in water surrounded by ultrasound transducers which could act as
sources or receivers at the same time. For detailed information about the data set,
the measurement methods, and the configuration of the sources and receivers, we
refer to the original paper by Lafci et al. [28]. Nevertheless, we will briefly men-
tion some relevant information about the inversion setup and the post-processing
of the data we needed to perform to get a reasonable reconstruction.

First of all, we have filtered the raw data set using a band-pass filter in the
frequency range of 1 to 2 MHz. Since the central frequency of the transducers
in the experiment was set to 5 MHz, we decided to use lower frequencies in our
inversion because of various numerical (e.g. points per wavelength requirement)
and physical (e.g. high contrast between water and hexagonal key speed of sound)
reasons. We also had to up-sample the data going from a sampling frequency
of 24 MHz to 48 MHz, still because of numerical reasons on the time step ∆t
requirement for accurate and stable numerical simulations. The time step ∆t of
the numerical simulations is fully determined by the sampling frequency of the
data, such that the smallest possible ∆t we can use is ∆t = 1/fs with fs (Hz)
being the sampling frequency.

Secondly, it is important to explain the transducer geometry setup. The
transducers were positioned around the phantom (i.e. the hexagonal key in our
case) in a double semi-circle geometry (one semi-circle at the top and one semi-
circle at the bottom) forming an almost complete circle around the phantom with
a radius of 40 mm. The number of transducers in the array is 512 which can be
activated independently, hence the data set consists of 512 shots each of them
containing 512 recorded seismograms. We did not use all of the shots, but we
picked a subset of 26 equally spaced shot sources and, for each shot, we only
used the furthermost 150 receivers from the shot’s source. This was done for
two different reasons. First, using all 512 shots would have been computationally
expensive as we need to compute a forward and adjoint simulation for each shot.
Of course, reducing the number of shots used also reduces the amount of spatial
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ray coverage for the phantom reconstruction. Secondly, we used only the furthest
receivers since, by observing the shot gather, we noticed that those were the ones
containing most of the information regarding the phantom perturbation. Also,
we saw some noise contamination (probably due to electrical interference) in
the shot gathers that prohibited the use of all the data set. For this reason,
we had to apply windowing on the observed data to filter out all noise coming
from the contaminated region of the shot gather. In practice, this resulted in a
modified misfit functional where the integral in time is split into different windows
such that the synthetic and observed data outside of the chosen windows is not
considered in the misfit computation.

We also had to estimate the source time functions for the transducers. This
is a somewhat complicated step that is needed when dealing with real data since
we do not know the source time functions of each source. Fortunately, we can
recover a somewhat good approximation of the source time function by looking
at the first arrivals of receivers adequately close the the source. The procedure
we adopted to retrieve the source time function of a single source is explained as
follows. After up-sampling and frequency filtering of the data, we computed an
estimate of the first arrival travel times for receivers close to the source (i.e. with
a distance between 10 and 20 mm from the source) using the water speed of sound
given in the data set, which is 1490 m/s in our case. This assumes that we know
the activation time of the sources, which we computed manually by looking at the
seismograms of the same transducer that acted as a source and receiver for that
shot. Using the information of the estimated first arrivals, we picked a window of
200 samples centered at the estimated arrival time for each receiver and summed
all the windowed seismograms for all receivers, effectively computing a stacked
source time function. We took the average over all receivers and smoothed the
tails using a hamming window. This is the resulting source time function we
used for the source. Of course, we needed to also know the central frequency
of this source time function which we computed by taking the frequency value
associated with the maximum magnitude in the frequency spectrum of the signal.
The resulting source time function central frequencies, using the band-pass filter
with the cutoffs as above, were all roughly around 1.3 MHz.

Finally, we need to spend a few words on the misfit functional we used for the
inversion. As usually is the case for real data inversions, regularization is needed
in order to not fit the uncertainties in the observed data, as well as a reasonable
choice for the covariance matrix of the data noise. We used a misfit similar to
the one in eq. (2.15). We assumed Gaussian noise in the observed data with
a standard deviation of 0.2 that was computed by looking at the seismograms
at the times when no wave field should be present, e.g. at the relaxed state.
For regularization we used a simple zeroth order Tikhonov regularization with
a constant prior model mprior for both the wave speed and the density equal to
the initial water model (i.e. with c = 1490 m/s and ρ = 1000 kg/m3), covariance
matrix in model space equal to the identity matrix and a regularization coefficient
α = 1e−4. We tested different regularization coefficients and managed to get the
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(a) Wave speed c model at iteration 1 (b) Wave speed c model at iteration 2

(c) Wave speed c model at iteration 3 (d) Wave speed c model at iteration 10

Figure 4.10: Hexagonal key inversion results. Panels fig. 4.10a, fig. 4.10b,
fig. 4.10c and fig. 4.10d show the reconstructions for the wave speed at L-BFGS
iterations 1, 2, 3 and 10.

best results with the one above.
We needed to translate all of this information into a numerical setup, so we

chose to make a model of size 9× 9 cm such that the center of the model would
be equal to the center of the circular geometry setup of the transducer array.
We discretized both wave speed and density model parameters using a uniform
regular grid with a grid step size of ∆x = ∆y = 8e−5 m, resulting in a grid with
1126×1126 grid points. C-PML layers of 20 grid points and reflection coefficient
R = 1e−5 on all boundaries have been used for the inversion. We ran the solver
for 3800 time step iterations which was enough to cover all the useful samples
of the observed data seismograms. We also applied gradient smoothing for each
shot at the source location with a radius of 10 grid points and used only the
gradients for model parameters with a distance less than 2 cm from the center of
the model.
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A total of 10 L-BFGS iterations have been performed for the inversion, which
took around 15 minutes on a single NVIDIA A100 GPU. The reconstructed im-
ages are shown in fig. 4.10. We only show the wave speed reconstructions since
the density ones just show noise. This is expected since, as we discussed in the
previous section, we can only resolve density after wave speed gets resolved.

Looking at the reconstructed images, we can see the shape of the hexagonal
key being reconstructed even at the first iteration. After a few iterations, the
shape is clearer, but the inner part of the key is not correctly resolved. If we look
closely, we can see that another smaller hexagonal shape is visible inside of the
black outer hexagonal shape. We know that the size of the hexagonal key used
as a phantom is 12 mm which is consistent with the size of the smaller key we
see in the reconstruction. The wave speed inside the hexagonal key should be
much higher since the speed of the sound in steel is in the order of 5000 m/s, but
we highest wave speed we get is just 2100 m/s. Unfortunately, after 10 L-BFGS
iterations we start to fit the noise and the image reconstruction does not improve.

It seems that using this frequency range of the data we can only resolve the
hexagonal key shape but the size and specifically the wave speed magnitude are
far from the true model. We think that because of the very high contrast (in
the wave speed) at the boundary of the hex key, the inversion fails to accurately
reconstruct the wave speed in the inner part of the phantom.

A better accurate boundary and estimate of the key size can possibly be done
by better ‘massaging’ of the raw data set and, perhaps, using a lower frequency
range to invert for. Unfortunately, this was not possible in our case since we
observed that if we used lower frequencies (e.g. by using a lower-frequency band-
pass filter) the noise in the data set started to dominate.

4.4 Summary

We have performed several experiments to check for the correctness of our solvers’
implementation involving comparisons with finite difference gradient approxima-
tions in 1D and 2D. These comparisons showed a good match between the gra-
dients computed with the adjoint method and the finite difference ones. This
comparison was possible because of the low dimensionality of the models which
let us compute the finite difference gradients in a reasonable amount of time.

Moving to synthetic inversions, we assessed the ability of our solvers to be
used on inversions in constant and variable density cases as well as on different
scales (ultrasound medical imaging and exploration seismic tomography). A noisy
data inversion was performed to test the robustness of the inversion method to
noise.

Finally, real data inversions showed the possibility for our solvers to be used
in real ultrasound medical imaging settings, although with the need for data
manipulation (frequency filtering, windowing, and source time function retrieval)
and correct tuning of regularization parameters.
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Benchmarks

Report if the measurement values are deterministic.
For nondeterministic data, report confidence intervals of the measurement.

Rule 5 of ‘Scientific Benchmarking of Parallel Computing Systems’
from Torsten Hoefler and Roberto Belli.

In this chapter, we will evaluate the efficiency and scalability of the solvers we
have implemented. We will focus on the constant density kernels and solvers
which are of easier interpretability because no interpolation nor staggering of
fields is needed, but we note that similar results have been obtained for the
variable density solvers as well.

We will first introduce the performance metrics used to assess the efficiency
of our solvers as well as discuss the benchmarking setup in detail with a compre-
hensive description of the devices used and timing methods to ensure robust and
reproducible benchmarks.

After this brief introduction, we will look at the results for both CPUs and
GPUs benchmarks on the kernel functions, i.e. the functions that compute a
single time step update using the explicit Euler scheme introduced in chapter 3.
We will then move on to more complex benchmarks of the full forward solvers
and talk about the overhead time of setting up the simulation. In the end, we
will give a preview of the scalability of the proposed solvers by showing a weak
scaling multi-GPU benchmark.

5.1 Benchmark metrics, setup, and statistical analysis
of run time measurements

Choosing the right metrics to evaluate numerical code is a critical step to as-
sess its efficiency and performance and it is a difficult task because the code
usually involves different algorithms and numerical methods that interact differ-
ently with the hardware on which they are executed. Generally speaking, we
can divide algorithms into two categories, namely compute-bound and memory-
bound algorithms. Compute-bound algorithms have the property of doing much
more computations than memory operations, hence their computation time is
bounded by the speed at which the computations are performed. On the other
hand, memory-bound algorithms perform a lot of memory operations and not so
many computations, so their computation time is bounded by how fast memory
operations are executed.
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These definitions of compute-bound and memory-bound algorithms are a bit
loose: what does it mean that an algorithm performs ‘a lot of memory opera-
tions’, ‘not so many computations’, or ‘much more computations than memory
operations’? To be more precise on the above definitions we need to introduce
the concept of operational intensity of an algorithm. The operational intensity
of an algorithm I =W/Q (flop/byte) is defined as the number of (floating point)
operations W (flop) performed by the algorithm divided by its transferred bytes
Q (byte) from main memory to the execution unit. To be a bit more general, the
operational intensity can be expressed as a function of the input size n such that
I(n) = W (n)/Q(n) where the number of operations and the transferred bytes
are now also functions of the input size.

In practice, W and Q can be computed by counting the number of opera-
tions and the amount of memory transfer performed by the execution unit. This
counting task can be hard if the algorithm’s number of operations or the memory
access pattern does not depend only on the size of the input but also on the
input data itself. If an algorithm’s memory access pattern does not depend on
the input data but only on its size, then the algorithm is called data-oblivious.
Data-oblivious algorithms are especially nice to deal with because W and Q can
be usually computed analytically for a specific input size n. Fortunately, all
numerical methods based on finite differences introduced in chapter 3 are data-
oblivious, hence we can write analytical formulas for the number of operations
and the memory transfer.

Returning to the computational intensity I, how can this ‘ratio’ be used to
assess whether an algorithm is compute- or memory-bound? If the algorithm’s
operational intensity I is bigger than the ratio between the peak performance π
(flop/s) and the memory bandwidth β (byte/s) of the execution unit, we say that
the algorithm is compute-bound on the execution unit. On the other hand, if it is
smaller then the algorithm is memory-bound on the execution unit. This means
that an algorithm can be compute-bound on some execution units and memory-
bound on others. Also, an algorithm can be compute-bound or memory-bound
based on different input sizes n.

In the context of this thesis, we deal with finite difference methods which
are inherently memory-bound on most architectures. In fact, more and more
algorithms are destined to become memory-bound in the future because of the
increasing gap between peak performance and memory bandwidth [33]. Table 5.1
shows the vendor peak performance π for double precision floating points (FP 64),
memory bandwidth β, and their ratios π/β for two different state-of-the-art CPU
and GPU. We can see that, in the optimal case, many floating point operations
can be executed per transferred byte before reaching the compute-bound regime.
In particular, the last row of table 5.1 shows the number of double precision
floating points operations that can be executed per operand, e.g. per floating
point. This number is way bigger than any reasonable number of floating points
operation per operand we would ever need to reach the compute-bound regime,
even for very high order spacial derivative stencils.
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Device AMD EPYC 7282 NVIDIA A100 40GB SXM

π (FP 64) 700 Gflop/s 9.7 Tflop/s

β 85.3 Gbyte/s 1.55 Tflop/s

π/β ≈ 8.2 flop/byte ≈ 6.2 flop/byte

π/β ∗ sizeof(double) ≈ 65.5 flop ≈ 50 flop

Table 5.1: Peak performance, memory bandwidth, and their ratios for an AMD
EPYC 7282 CPU and an NVIDIA A100 40GB SXM GPU.

This reasoning motivates the adoption of a metric that can be used to evalu-
ate the performance of memory-bound algorithms. In contrast to what we would
use if we were in a compute-bound regime, namely the algorithm’s performance
(flop/s), we are interested in the algorithm’s memory throughput (byte/s) instead,
which measures the amount of memory transferred per unit of time. Monitoring
the ‘raw’ memory throughput alone is, however, not an indication that our imple-
mentation performs well. Having a close-to-peak memory throughput just means
that most of the device’s memory bandwidth is used, but it does not necessarily
mean that it is used efficiently. We need to find a way to express the useful
memory transfers of our algorithm, meaning the ones that actually contribute to
progress in the algorithm execution.

Effective memory access. One possible measure used to express the concept
of useful memory transfers is the effective memory access Aeff (byte) of an al-
gorithm. This metric represents the strictly needed memory transfers that an
algorithm must perform for its execution. Since when we talk about memory
transfers we usually mean transfers from main memory to the lowest-level cache
(LLC), a few things should be noted regarding its computation. We must not
consider memory transfers from LLC to the execution unit as those are much
faster than transfers from main memory to LLC. This can be ensured by consid-
ering the start of the algorithm execution to be in a cold cache scenario, meaning
that the cache is not yet populated or it has been invalidated by the previous
algorithm’s execution in the case of repeated execution.

For the context of this thesis, we consider the computation of Aeff for one
iteration of a general iterative stencil-based finite difference solver, which is

Aeff = 2U +K, (5.1)

where U (byte) represents all the fields that are updated, hence loaded and
stored from memory, while K (byte) represents the fields that are only read
from memory but not updated. The above assumption of cold cache at the start
of each iteration for the FD solver is motivated if we assume that the problem
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size is much bigger than the size of the cache and that usage of time-blocking
techniques is not feasible or advantageous for real-world applications.

As an example, we can compute the effective memory access of an iteration of
the 1D pressure update for the scalar second-order acoustic wave equation with
constant density using the finite difference stencil introduced in chapter 3. The
field that gets updated is the pressure field p which is loaded at the current time
step and stored for the next time step, so U = n ∗ 8 byte if n is the number of
grid points in the discretization and we consider double precision floating points
that have size of 8 bytes each. The fields that are only read are the pressure field
p at the previous time step and the speed of propagation field c, so K = 2n ∗ 8
byte. Putting all together, we obtain Aeff = 2U+K = 4n∗8 byte which of course
depends on the number of grid points in the discretization. Similar results can
be computed for the 2D and 3D cases, as well as in the case of different update
schemes like the first-order variable density staggered scheme we use to solve the
variable density wave equation. The contributions of the C-PML auxiliary fields
can be added as well using the same principles, although it is negligible for very
large numbers of grid points since the size of the C-PML region scales in the
order of O(nd−1) instead of O(nd) where d is the number of spatial dimensions.

Effective memory throughput. We can use the effective memory access to
compute the effective memory throughput Teff (byte/s) which is defined as

Teff =
Aeff

t
, (5.2)

where t (s) is the execution time of the algorithm. This metric measures the
number of effective memory transfers per unit of time, hence it can be used as
a measure for the performance of a memory-bound algorithm. The higher the
effective memory throughput the higher the algorithm’s performance.

Percentage of peak memory bandwidth. The effective memory throughput
of an algorithm can then be compared to the memory bandwidth of the device β,
to produce the relative metric called percentage of peak memory bandwidth Ppeak

(%) achieved by the algorithm which is defined as

Ppeak =
Teff
β

∗ 100. (5.3)

In the above definition, β must be chosen carefully based on the device used to
perform the benchmark. In most scenarios, using the theoretical maximum mem-
ory bandwidth of the device (usually specified by the vendor) is not realistic, since
these values can only obtained by performing ad-hoc computations and are (plau-
sibly) never obtained in real-world applications. The ‘real’ memory bandwidth
of the device must almost always be computed using a benchmarking software
like STREAM [33] (for CPUs) or GPU-STREAM [34] (for GPUs), which perform
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various simple computations like memory copy or the famous triad c = α ∗ a+ b
where a, b, c are vectors and α is a scalar value. This will give us a more realistic
value for the memory bandwidth of the device which can be obtained in practice.
We will distinguish the vendor’s memory bandwidth of the device β from the
benchmarked peak memory bandwidth by calling the latter one the peak memory
throughput Tpeak (byte/s) of the device. For all practical purposes, we can re-
place β with the benchmarked Tpeak to compute the percentage of peak memory
bandwidth Ppeak which will then become

Ppeak =
Teff
Tpeak

∗ 100. (5.4)

Benchmarking setup

We benchmarked our finite difference solvers implementations on both multi-core
CPUs and GPUs. For single node benchmarks, we had access to a workstation
from the Seismology and Wave Physics group at ETH equipped with an AMD
Ryzen Threadripper PRO 5995WX and an NVIDIA RTX 4070 GPU, and another
workstation, courtesy of the Laboratory of Hydraulics, Hydrology and Glaciology
at ETH, equipped with an AMD EPYC 7282 @ 2.8GHz CPU and a total of 8
NVIDIA Ampere A100 40GB SXM GPUs. For multi-node benchmarks, we had
access to the CSCS Piz Daint XC50 compute nodes1 which are equipped with
Intel Xeon E5-2690 v3 @ 2.60GHz CPU and an NVIDIA Tesla P100 16GB GPU
on each node.

We used Julia 1.8.3 for all the single-node benchmarks, while for multi-
node benchmarks we used Julia 1.7.2 which was available on Piz Daint at the
time of benchmarks. We used the following flags for the Julia runtime: -O3
–check-bounds=no2. These flags ensure a high degree of code optimizations, as
well as disabling bounds checking to speed up indexed array access. For multiple
time-step benchmarks, we disabled the Julia garbage collector (GC) for the du-
ration of the time loop to not interfere with the measurement times. The CUDA
version used for GPU benchmarks is 12.1 for all nodes except for the Piz Daint
node where we had CUDA 11.0.2 available. Since we also wanted to test the
efficiency of the C-PML region computations, we fixed the number of C-PML
layers to 20 for all models used for benchmarking. This is usually a reasonable
amount of layers used in real applications.

Statistical analysis of run times

To compute the effective memory throughput of an algorithm (or more specifically
of a function in the implemented code) we need to measure run times. This
procedure can be very complex for a variety of reasons. The most predominant

1https://www.cscs.ch/computers/piz-daint
2From Julia 1.9 onward, the –check-bounds=no flag is not supported and usage of @inbounds

macro is preferred.
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one is for sure the non-deterministic behaviour of the operating system scheduler
which leads to different run times every time we execute the piece of code we
are measuring. For this reason, statistical analysis of run times is crucial to
ensure fair, robust, and reproducible measurements. We followed some of the
guidelines from Hoefler and Belli [35] to analyze and report our measurements.
In particular, we adopted two different strategies to measure run time for single-
node and multi-node measurements.

For single node measurements (either multi-core CPU or single GPU), we
wanted to make sure we could gather consistent runtime measurements for ker-
nels, i.e. the computation of a single time step iteration. For this reason, we used
the BenchmarkTools package to execute multiple runs of the kernel we wanted
to benchmark. We decided to let the package decide how many runs would be
needed to get a big enough set of run times for statistical analysis, although the
main reasoning behind choosing how many runs to sample was to get as many of
them to reach at least a few seconds of computation. This usually ensures that
the device is properly warmed up.

After gathering a set of measurements, we need to apply some statistical
checking procedures and summarize them. We computed the 95% non-parametric
confidence interval for the median run time of the set and checked that it was
within 5% of the median itself. This ensures that the median run time is a
robust and reproducible indicator of the average run time, so we chose this value
to summarize the set of measurements. This is the reason why we do not show
confidence intervals on the reported mean run times or derived metrics such as
effective memory throughput because they are guaranteed to be within 5% of the
median run time.

For multi-node measurements, we could not benchmark a single time step
iteration, because communication between nodes could be captured only for mul-
tiple time steps. For this reason, we chose a different approach to compute run
times for our multi-xPUs implementations. We chose the best-performing model
size from single xPU benchmarks and measured enough time steps to reach at
least a few seconds of runtime while discarding the first few iterations to have
warmed-up measurements only. We divide the measured runtime by the num-
ber of time steps and get a ‘per time step’ runtime. We could, in principle,
have adopted a similar strategy as the single node measurements (i.e. multiple
runs, statistical checking, etc), but we did not have enough node hours available
on Piz Daint to get the samples needed, so we decided to stick with single run
measurements.

5.2 Single node xPU kernel microbenchmarks

In this section, we will focus on the performance of the various kernel functions
that compute one-time step iteration using the explicit Euler scheme introduced
in chapter 3. This type of benchmark is usually referred to as microbenchmark
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Figure 5.1: Effective memory throughput of CPU kernels for different model sizes
for serial and multi-threaded parallel implementations measured on the AMD
EPYC 7282 CPU. The dashed lines represent the serial and the parallel peak
memory throughput of the AMD EPYC 7282 CPU benchmarked with STREAM.
The parallel version was measured with 8 active threads, which was the number
of active threads giving the best performance on the AMD EPYC 7282 CPU.

since we are benchmarking relatively low run-time functions (in the order of micro
or milliseconds). In order to ensure a precise microbenchmark, many measure-
ments need to be performed to compute a reasonable and stable median run time
to then use for the assessment of the performance.

We reported benchmarks for both multi-core CPUs and GPUs implementa-
tions of 2D and 3D kernels. We do not have reported results for 1D kernels since
they are of little relevant use in real applications. However, we noted that 1D
kernels perform usually better than 2D kernels. This is most likely because of
better cache usage since spatial derivatives are computed mostly using elements
from the same cache line. In the 2D and 3D cases, this is not true since spatial
derivatives in the second and third dimensions require elements on cache lines far
away from the one of the element that gets updated.

In fig. 5.1 is shown the effective memory throughput of the serial and parallel
CPU implementations versus the model size, with a reference to the serial and
parallel peak memory throughput of the CPU used which, in this case, is the
AMD EPYC 7282 CPU. This CPU has 16 cores, but in the figure, a run using
only 8 cores is reported for the parallel version. This is because we observe the
best run times for this specific number of active threads, which is a known effect
of multi-threading applications that rarely benefit from using a number of active
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Figure 5.2: Effective memory throughput of single GPU kernels for different
model sizes measured on both the NVIDIA RTX 4070 and the A100 GPUs. The
dashed lines represent the peak memory throughput of both GPUs benchmarked
with GPU-STREAM.

threads equal to the number of all available cores of the CPU. The serial run
times have been measured by benchmarking a simple serial implementation not
using ParallelStencil.jl, which performs better than the ParallelStencil.jl version
using only one active thread.

We can see that the parallel versions start to surpass the serial version only
for large enough model sizes for the 2D kernels, while in 3D kernels the parallel
version always performs better. For the 2D kernels, we get quite close to peak
performance (almost 80% for the largest model size benchmarked) in the parallel
version, while for the 3D kernels, we are far away from the peak. This is again
due to the memory access pattern that, in the 3D case, leads to more cache misses
and increases the amount of memory transferred from the main memory to LLC.
The simple serial version is quite far from the peak serial performance for both
2D and 3D kernels.

In fig. 5.2 a similar benchmark is shown but for single GPU kernels. We
observe that the performance for small sizes in 2D is very low compared to peak
performance. The behavior for both 2D and 3D GPU kernels as model size grows
is similar to the parallel CPU kernel in fig. 5.1, although GPU kernels reach closer
to to peak performance for certain sizes. Low performance on small model sizes
is due to the fact that the overhead of launching the GPU kernel dominates the
run time instead of the actual computation. The same can be said in the case of
multi-threaded CPU kernels where spawning and synchronizing the threads has

86



5.3. Single node GPU forward solver macrobenchmarks

129 257 513 1025 2049 4097 8193 16385
Model size (nx = ny)

0

10

20

30

40

50

60

70

80

90

100

P p
ea

k 
[%

]

2D kernel

GPU
RTX 4070
A100

65 129 257 321 401 501
Model size (nx = ny = nz)

3D kernel

Percentage of peak memory bandwidth vs. model size
for GPU kernels

Figure 5.3: Percentage of peak memory bandwidth of single GPU kernels for
different model sizes measured on both the NVIDIA RTX 4070 and the A100
GPUs.

a fixed cost that dominates the run time for small model sizes.
In fig. 5.3 we show the percentage of peak performance of the GPU kernels.

We can see that we obtain close to peak performance, namely around 90% for the
2D kernel and around 85% for the 3D kernel on the RTX 4070 when considering
large enough model sizes. The percentage of peak performance is a bit worse
for the 3D kernel on the A100, although this is expected since the A100 has a
higher peak performance which is harder to leverage if the cache is invalidated
frequently like in the case of 3D kernels.

5.3 Single node GPU forward solver macrobench-
marks

In this section we will focus on benchmarking the single GPU forward solver in its
entirety, hence performing what is usually called a macrobenchmark. In contrast
to the microbenchmarks of the kernels we showed in the previous section, we
are now interested in measuring the solver run time including parts that are not
critical. In this way, we can get a measure of how much overhead is introduced
to set up the simulation and perform the relevant checks. We will focus on the
single GPU forward solver because arrays need to be allocated on the device and
communications from CPU main memory (RAM) to GPU main memory (device
memory) need to be performed before the start of the computation. This usually
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figure with annotations on the bars.

leads to a higher overhead than the CPU implementations.
In fig. 5.4 we show the percentage of the forward solver run time (as well

as absolute run time values) for both kernel and overhead times on the NVIDIA
RTX 4070. The run times have been measured by running the solver for 1000 time
step iterations after a proper warm-up to ensure accurate run times. Multiple
measurements are performed and statistical checking is conducted as in the case
of microbenchmarks, median run times are reported. We chose to run 1000 time
step iterations because this is usually the number of time step iterations needed
to complete a simulation with a realistic size.

We can see that the overhead times are very small compared to the time
spent in the computation kernels: almost always below 10% of the run time is
due to overhead. This is a good property to have which makes strong scaling
theoretically possible since the kernel part of the code can be fully parallelized.

5.4 Multi-node GPU weak scaling benchmarks

In this last section of the benchmarks chapter, we will show the results for multi-
node / multi-GPUs simulations on Piz Daint using MPI and ImplicitGlobal-
Grid.jl. In fig. 5.5 is shown the percentage of peak memory bandwidth versus
the number of nodes / GPUs on Piz Daint for 2D and 3D multi-GPUs kernels
performed on a weak scaling experiment. This means that the number of grid
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points per node was kept constant (16385 in each spatial dimension), hence the
total number of grid points grows linearly with the number of nodes used. The
number of time step iterations performed in the experiment was calibrated such
that at least 10 seconds of run time was measured for the single node GPU kernel.
This ensures that the run time is big enough to be measured in a consistent and
repeatable way. The peak memory bandwidth for multiple nodes was computed
simply as the product between the single node peak memory bandwidth (which
was benchmarked with GPU-STREAM for the P100 GPU as 559 Gbyte/s) and
the number of nodes, meaning that the peak memory bandwidth is supposed to
be the combined peak memory bandwidth of all the single nodes. This makes
sense if we consider the communication costs to be negligible, which is the case
because, as explained in chapter 3, we hide communication behind computations
so that communications are performed at the same time as computations are.
Note that the dashed lines in the figure are to be interpreted only as ‘trends’ for
the percentage of peak memory bandwidth where data points are not available.

We note that the 2D multi-GPUs kernels scale quite well with only a loss
of about 4% of peak memory bandwidth from 1 to 36 nodes. The 3D kernels
scale a bit worse with roughly a 10% drop in peak memory bandwidth from 1 to
64 nodes. This weak scaling trend is quite good considering that we made very
small changes in the code from single to multiple GPUs.
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Chapter 6

Conclusions

In this thesis, we have explored various theoretical and practical aspects of acous-
tic FWI, to bridge the gap between theory and practice by providing the scien-
tific community with the tools to, hopefully, iterate faster on the research in
this field. We have shown, by developing the SeismicWaves.jl Julia package,
that it is possible to write high-performance code using a high-level language,
which is much more readable than traditional HPC code. This empowers the
users with the possibility to understand and extend it, making the development
of custom functionalities possible. We think this is very important for expediting
research and letting more people know and use acoustic FWI in various applica-
tions. All of this was possible mostly because of the recent advances in scientific
software and the development of the Julia packages ParallelStencil.jl and
ImplicitGlobalGrid.jl, which have been the building blocks in the develop-
ment of SeismicWaves.jl.

The gradient check and synthetic inversion results confirmed the correctness
of the solvers. Real data inversions showcased the possibility of using our package
for ultrasound medical tomography applications. However, they were not fully
satisfactory and improvements are needed in this direction. The benchmarks
showed a close-to-peak memory throughput performance of our solvers, at least
for 2D applications, and a promising weak scaling for multi-xPUs.

Wrapping up this thesis, I would like to express some final thoughts and
insights on the encountered difficulties and talk about future work regarding this
project.

6.1 Retrospective thoughts

First of all, I would like to say that I am personally very happy with how this
thesis developed. This work made me grow a lot as a person, for I am just a
young student who is peeking for the first time into the vast world of research.

Many difficulties were encountered in the development of this thesis. First
of all, the focus Andrea (my supervisor) and I had in mind when we discussed
the project together shifted towards a more theoretical analysis of acoustic FWI
in general, rather than focused on the context of ultrasound medical imaging.
Nevertheless, we were able to perform a great number of synthetic inversions,
most of them not showcased in this thesis for a lack of relevance or time, on
both constant and variable density acoustic FWI, even in 3D dimensions which
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is impressive in my opinion. We developed SeismicWaves.jl basically from
scratch, using some code previously written for my semester project on a similar
topic, but most of the work for the inversions and the adjoint solvers was done
in more or less 6 months by the two of us. This meant that we also needed to set
up a testing infrastructure and be sure that our code worked and produced the
expected results. I have to say that this was probably the hardest part of this
thesis work since we encountered some unexpected numerical issues and had to
work our way through them.

Another difficult part was when I had to perform inversions using real ultra-
sound data. This was a completely new challenge for me and, as I was told by
many in the group, a very time-consuming task. Fortunately, I had the help of
my colleagues from the SWP group who guided me through it, and, even though
the results are not very satisfactory, I will take them as a success since this was
my very first time dealing with real data.

6.2 Future work

Regarding future work, we recently released SeismicWaves.jl as an open-source
Julia package with the aim of extending it to elastic FWI. This will be a hard
challenge since elastic wave propagation is generally much more involved with
regard to the implementation.

We also look forward to using our package for probabilistic full waveform
inversions using the Hamiltonian Monte Carlo method, much in the spirit
of the suite of packages HMCLab.jl developed by the SWP group for which
SeismicWaves.jl is a part of. Since the computational costs of performing
probabilistic inversions are generally much higher than deterministic ones, having
efficient and easily parallelizable solvers will be even more important for these
applications.
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