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Abstract

The Adaptive Compute Acceleration Platform (ACAP) developed by AMD /Xil-
inx is a novel architecture which combines three parts: An ARM-based CPU,
an FPGA and a CGRA. The CGRA is implemented as a configurable grid
of powerful vector processors called AI Engines (AIEs), whose communication
patterns can be programmed using dataflow graphs.

Programming the Al Engines is difficult because it requires extensive knowl-
edge of the underlying hardware. To the best of our knowledge, there are
currently no open source libraries which add abstraction layers over the API
provided by the manufacturers. Collective operations known from the Message
Passing Interface (MPI) could simplify the programming experience, but only
point to point communication and broadcasting are supported out of the box.

Using the VCK190 Evaluation Kit, which is part of the Versal AI Core
Series, we build upon exploratory work done by [4] and extend it with a latency
benchmark of inter-AIE communication for various distances. In the main part
of the thesis, we adapt MPI’s Reduce function to this architecture as a particular
example of a collective operation, and we implement our design. We perform
various scientific benchmarks and develop a cost model to predict the cycle count
of our implementation. Furthermore, we analyse several limitations which arise
when scaling the implementation to larger data sizes and numbers of AIEs, which
limits the usability of our prototype in real applications. Finally, we present
theoretical considerations concerning the design of another collective operation
called Gather.

We provide our implementation of the Reduce function and the necessary
connection logic as a proof-of-concept on Gitlab [11].
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CHAPTER 1

Introduction

The field of high performance computing is changing more rapidly than ever
due to the end of Moore’s Law and Dennard Scaling. At first, the solution was
simply to add more cores to CPUs, but this is only feasible and sensible to
a certain degree. Adding more cores has diminishing returns, in particular if
programs are not highly parallelizable; also, cache coherency and other data
movement protocols exacerbate these diminishing returns. The industry moved
towards more and more highly specialised processors, such as GPUs and, recently,
TPUs. These are very efficient but due to their specificity cannot be used once
requirements change.

This has resulted in an interest in reconfigurable hardware such as FPGAs.
FPGAs offer fine-grained control over low-level hardware primitives such as
logic gates and look-up tables. If used correctly, they provide the specificity
and efficiency of more specialised processors while also being flexible enough to
adapt to different tasks. However, as FPGA programming is done very close
to the hardware, it is often difficult and requires a lot of time. Coarse-grained
reconfigurable arrays (CGRAs) have been proposed as a compromise between the
low-level control offered by FPGAs and the programmability of more traditional
devices. They consist of an interconnected grid of full-blown processors, but the
processors as well as the connections can be freely programmed.

AMD/Xilinx has released the Versal Adaptive Compute Acceleration Platform
(ACAP) which combines several different paradigms. It consists of a CPU part,
an FPGA part and a CGRA part, connected via a Network on Chip (NoC).
The CGRA is realized using a grid of Very Long Instruction Word (VLIW)
vector processors called AI Engines (AlEs). Each AI Engine contains local
data memory and is connected to the remaining engines and to the other parts
of the architecture in different ways. However, to the best of our knowledge,



CHAPTER 1. INTRODUCTION

there are as of yet no open source libraries apart from those distributed directly
by AMD/Xilinx to help with programming the AI Engines. Programmers
have to consider many low-level hardware details, in particular regarding the
communication between Al Engines.

In high performance multi-core environments, a common approach to com-
munication is to use the Message Passing Interface (MPI). Cores communicate
not by writing into shared memory, but by sending each other messages instead.
We wanted to explore whether it is possible to use a similar approach on the Al
Engine architecture. In particular, we wanted to find out whether it is possible
and efficient to implement collective operations on this hardware. With point to
point communication and broadcasting capabilities provided out of the box, we
focus on the Reduce collective operation for our implementation and analysis.

In chapter 2, we introduce the hardware and the programming model. Chapter
3 describes our first steps with the architecture, showcasing point to point
communication as we extend the work of [4] with a benchmark of inter-AIE
latency. The main part of the thesis is chapter 4, where we design the Reduce
function for this architecture. We provide the implementation of a prototype,
evaluate it using benchmarks and develop a cost model able to predict the
latency of the operation. A detailed analysis of limitations regarding how well
our implementation scales finishes this chapter off. In chapter 5, we briefly
touch on a second collective operation known from MPI which is called Gather
and provide certain design considerations. Finally, chapter 6 mentions some
implementation issues and gives an outlook on further work.

1.1 Related Work

Another bachelor thesis completed recently at ETH did much of the foundational
work on which our thesis builds [4]. Initially, we used their code to get used to
the programming model before adapting it to suit our own needs. The thesis
gives an excellent overview of the hardware specifications and the programming
model. It is mainly concerned with throughput benchmarks, concluding that
they mostly match the manufacturer’s claims. It suggests as further work that
latency benchmarks could be done or that one could attempt to implement
collective operations for the architecture, so it has significantly inspired our
thesis.

Other work published earlier this year has used the Versal VCK190 to
implement a kernel commonly used in deep learning for the AI Engine architecture
[1]. An evaluation of the Versal architecture for computing in space has likewise
been published this year, concluding that the heterogeneity of the device is a
good fit for the varying requirements in space [3]. It also highlights the energy
efficiency of the ATl Engines.
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Background

This chapter gives an overview of the hardware of the AMD /Xilinx Versal device
and introduces the programming model. The structure of the hardware overview
has been inspired by [4].

2.1 Hardware

We are using the VCK190 Evaluation Kit, which is the first board released as
part of the AMD/Xilinx AI Core series. The AI Core series is based on the
Adaptive Compute Acceleration Platform (ACAP). This is a heterogeneous
architecture, consisting of three main parts: Scalar Engines, Adaptable Engines
and Intelligent Engines.

Scalar Engines

The board contains two scalar engines, namely an ARM Dual-Core Cortex-A72
application processor and an ARM Dual-Core Cortex-R5 real-time processor.
The application processor runs Petalinux, which is used as a host and can, for
example, start programs which should run on the Intelligent Engines. We are
running Petalinux 2022.1. The real-time processor is not considered in our thesis.

Adaptable Engines

Adaptible engines are an umbrella term to refer to a set of different RAM blocks,
DSP engines and a traditional FPGA, which is also called programmable logic
(PL). In this thesis, none of the adaptible engines are used.
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CPU (Real-Time Processor)

Al Engine Grid

CPU (Application Processor)

Network On Chip

Figure 2.1: Abstracted architecture of AMD /Xilinx ACAP. Some details are omitted if they
are not necessary for this thesis.

Intelligent Engines

Intelligent engines, which are of most interest for our thesis, refer to a two-
dimensional array of so-called Al Engine tiles which we will call the AIF grid. In
the case of our board, the VCK190, the grid has a dimension of 8x50 AI Engine
tiles. Each AI Engine tile contains the AI Engine itself as well as its 32K B
local data memory, along with several different types of connections. The Al
Engine is a 7-way very long instruction word (VLIW), single instruction multiple
data (SIMD) vector processor. Per cycle, it can perform one scalar operation,
one vector operation, one vector store, two vector loads and two moves. In all
of our programs, the processor runs at a frequency of 1.25GH z, but for more
complicated programs it may run at 1GH z.

AT Engines are interconnected in various ways. Most important for our thesis
are two types of connections: Tile memory access and DMA.

e In addition to their own data memory, each Al Engine tile can access the
data memory of their north and south neighbouring tiles, as well as the
data memory of either their east or west neighbouring tile. As seen in
figure 2.3, in each row the tiles alternate between having the AI Engine on
the left or the right side. If the engine is on the right side of a tile, it can
access the data memory of its east neighbour — vice versa, if it is on the
left side of a tile, it can access that of its west neighbour.

e Connection between non-neighbouring tiles happens via a DMA (Direct
Memory Access) engine. The DMA engine internally uses the AXI4 stream
interconnects to reach any tile on the grid.

In addition, there is the possibility of using AXI4 streams regardless of whether
the communicating engines are neighbours and there are so-called cascade
streams, but these have not been investigated for our thesis.
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Figure 2.2: One AI Engine tile, containing the AI Engine, its local data memory and two
types of connections. Green connections are used for DM A-based communication, while blue
connections are used for Tile Memory Access.

2.2 Programming Model

The programming paradigm of the AI Engine grid follows that of a dataflow
graph. In a dataflow graph, kernels are connected with directed edges which
symbolise that one kernel produces some data, sends it along the edge to another
kernel which can then use the data for its computations. The sending kernel is
usually called a producer, the receiving one a consumer.

When programming the Al Engines, a programmer usually first defines the
computations a kernel performs by defining the kernel as a function in a particular
file. In a second step, the programmer can create an abstract dataflow graph.
To do so, the programmer instantiates kernels to create nodes of the graph. It is
worth pointing out that a single kernel function f can be instantiated multiple
times, that is, many graph nodes can execute the same logical function. These
nodes can then be connected. Finally, the abstract dataflow graph is mapped
onto the physical AIE grid. This can be left to the compiler which tries to find a
mapping such that resource utilization is minimized, or it can be done manually
by the programmer. Note that when the number of nodes becomes larger, the
compiler takes longer to find a a solution and may eventually fail to find one, in
which case the user is forced to manually create a mapping.
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Figure 2.3: The AI Engine Tile Array. Connections in blue symbolise access to local data
memory of neighbouring tiles (Tile Memory Access).

From a software perspective, the API offers two different ways of connecting
kernels: streams and windows. In streaming connections, a kernel has access to
input stream objects and/or an output stream objects. Within the kernel code,
the programmer is free to pop data from input streams and push data to output
streams arbitrarily often, element by element. All streaming connections are
mapped onto the hardware as AXI4 streams, regardless of the relative position
of the producer and consumer kernels. However, streaming connections will not
be considered for the remainder of this thesis.

In window connections, which we shall exclusively consider, a kernel has
access to input window and/or output window objects. Such a window has a
predetermined size (in bytes), which can be fixed individually for each window
connection. Within the kernel code, the programmer can assume that all input
windows are completely filled with data, and a programmer can randomly access
this data. Likewise, a programmer can fill each output window in a random-
access way. How window connections are mapped onto hardware depends on
the relative position of the producer and consumer kernels. If possible, the
connection makes use of tile memory access. Recall that tile memory access is
only possible if the kernels are mapped onto neighbouring Al Engine tiles. Recall
further that neighbours in north/south direction can always use tile memory
access, but whether a tile can access its east or its west neighbouring tile depends
on the row on the AIE grid. If it is not possible to use tile memory access (so
in particular, if the kernels are mapped onto non-neighbouring tiles), window
connections use the DMA engine which is present on all AIE tiles.

Furthermore, window connections make use of so-called double buffering (also
called ping-pong buffering) to increase performance. Double buffering refers
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to the technique that each logical window object is mapped onto two physical
memory regions (called the ping buffer and the pong buffer), located on different
memory banks to avoid address conflicts. This is useful because producer kernels
can only write to output windows if any previously written data has already
been read by the consumer kernel. Consider the following thought experiment,
where we assume a producer and a consumer both take only a single cycle
to produce/consume some window data: If the consumer writes some data to
an output window during the first cycle, then the receiver can read this data
during the second cycle. But during that same second cycle, the producer cannot
produce another window of data because at that moment, its previous window
has not been consumed yet; it would overwrite the data as it is being consumed.
Only in the third cycle can it produce its next window; so in summary, every
second cycle is wasted. Double buffering solves this issue by alternating between
the ping and the pong buffer each time the kernel is invoked. Hence, the producer
kernel writes to the ping buffer in the first cycle and to the pong buffer in the
second; and in the third cycle, the ping buffer is available again as its data
has been consumed during the second one. Ping-pong buffers are invisible to
the kernel programmer — from a software perspective, all writes to the output
window happen to the same object.

As stated before, a programmer can assume in the kernel code that all input
windows are filled with data and all output windows are empty. This behaviour
is called synchronous window access. To guarantee this behaviour, the API needs
to ensure that a kernel function is only invoked once these conditions are fulfilled.
To this end, the API maintains window locks, either one or two per window
connection depending on whether or not the connection is double buffered. The
window locks of a connection are shared between its consumer and its receiver
— e.g., while the producer of a given connection holds the window lock on its
ping buffer, the consumer cannot acquire the window lock on its own ping buffer.
The API ensures that a kernel is only invoked after its has acquired the window
locks of all its connections — thus guaranteeing that data does not change in
the middle of the kernel’s execution.

There is one exception to this rule, namely if a window is marked as asyn-
chronous. To be more specific, for a given window connection, either the producer
or the consumer or both have the freedom to mark their end of the connection as
asynchronous. If a window connection is asynchronous for a kernel, it is ignored
in that kernel’s invocation conditions; in other words, the window lock for this
connection is not acquired behind the scenes before the kernel is invoked. This
has the result that inside the kernel code, the programmer can no longer assume
that data is available to read (if it is an input window) or that it is safe to write
(if it is an output window). The programmer is required to manually call a
method which acquires the window before they are allowed to perform any read
or write operation on it. This acquisition call blocks until the window becomes
available, i.e. until the other end of the connection releases their lock on it. The
programmer is further required to release the window lock manually inside the
kernel after they are done, with the effect that the other end of the connection is
then free to acquire the lock on that window again (potentially even before the
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kernel has finished the current invocation). Asynchronous windows are useful
in a situation where a kernel might have to perform a lot of compute-intensive
work before it requires the data from an input window; manually acquiring the
window lock later in the kernel allows it to perform that work at the same as the
producer is generating data instead of only starting with the intensive work after
the producer is done, leading to more parallelism. Furthermore, asynchronous
windows allow a kernel to read or write several windows of data to a connection
within a single kernel invocation. Usually, as window locks are only acquired
and released before a kernel starts and after it has finished, there can be only
one window read or written per invocation. This gives the programmer more
freedom in designing their programs. Finally, as we will see, there are situations
where it is necessary to use asynchronous windows to avoid cyclic dependencies.

To recap, the locks of synchronous windows are handled behind the scenes,
which is the default behaviour of window connections. The locks of asynchronous
windows must be handled manually by the programmer.

10



CHAPTER 3

Latency Benchmark

Previous work has already been done to benchmark the throughput of the
device for various communication patterns [4]. Their results on window-based
communication show that neighbouring Al Engines can achieve a throughput of
29 GB/s using tile memory access (page 45), while non-neighbouring AI Engines
only achieve a throughput of 4.4 GB/s (page 48). This section will discuss our
attempt at benchmarking the latency of window connections. This is interesting
as it can provide a more complete picture of the capabilities of the device —
in particular, as we will see, the latency is quite high even for tile memory
access. Furthermore, this chapter serves as an introduction to point to point
communication which is provided by the API out of the box. It also showcases
how asynchronous windows must be used in some situations to avoid deadlocks.
Finally, it shows how cycle counters can be used for performance measurements,
which will be reused later when we evaluate the performance of the Reduce
implementation.

3.1 Setup

We measure the latency of a window connection between two engines indirectly
by measuring the round-trip time. In particular, we transfer the smallest possible
unit of data from engine A to engine B, then B transfers the data back to A (we
will refer to one such sequence as a ping-pong). Since we use a window-based
approach to communication, the smallest possible unit of data we can send
corresponds to the smallest window allowed by the architecture, which has a size
of 16 bytes. Therefore, in all the following experiments, we will fill the window
with four 32-bit integers. We will consider the case where the kernels are placed
on non-neighbouring AI Engines (with varying distances) in section 3.3.3. For

11
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now, we consider the case where the kernels are placed on neighbouring engines
such that they can make use of tile memory access.

‘Window Buffer 0 Window Buffer 1

Figure 3.1: Vitis Analyzer allows us to inspect the abstract dataflow graph. This graph shows
the cyclic dependency between kernels A and B. Vitis Analyzer can generate a graph similar
to the one depicted here automatically.

Unfortunately, this design introduces a cyclic dependency which leads to a
deadlock at runtime if implemented using the default (synchronous) windows.
As explained in section 2.2, a kernel is only invoked after it has acquired the
window lock on all its window connections. In this design, A can acquire the
lock on its output window, but it cannot acquire the one on its input window.
This is because a consumer can only acquire the lock on an input window after
the producer has acquired and released the corresponding lock — that is, after
the producer has written something to the connection. Therefore, in this design,
kernel B has to finish before kernel A can be invoked.! But, likewise, kernel B
is not invoked because that would require kernel A to write something to its
output window first. Overall, both kernels stall.

This issue is resolved by using asynchronous windows. As asynchronous
window connections are ignored in the invocation conditions of a kernel, both A
and B start executing without waiting for each other. B tries to acquire the lock
on its input window but this call blocks until the window has been produced
by A and A releases the window lock. Meanwhile, A can acquire the lock on
its output window, fill the window and release the lock, at which point B can
acquire its input window lock. A blocks waiting for its own input window lock,
which it can only acquire once B releases the lock on its output window. See the
pseudocode in listing 3.1 for the code which is executed on engines A and B.

INote that in this chapter, A and B may sometimes refer to the kernel as a node in the
abstract dataflow graph and sometimes to the Al Engine running this kernel. It should be
clear from the context which meaning is intended.

12
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1 a(input window, output window):
2 acquire output window lock
write to output window
1 release output window lock

6 acquire input window 1lock
7 read from input window
8 release input window lock

10 b(input window, output window):
11 acquire output window
12 acquire input window

14 read from input window
15 write to output window
16

17 release input window
18 release output window

Listing 3.1: Pseudocode of the kernel code executed on engine A and B.

A different question is how we can get the kernels to perform several ping-
pongs. In the host code which is responsible for starting execution of the Al
Engine grid, an argument n can be passed to the method which runs the graph
(mygraph.run(n)), with the effect that the graph ends once each kernel has been
executed precisely n times (as opposed to running forever). Between invocations
of the kernel function, each engine runs the corresponding kernel’s main function,
which requires some time. To get rid of this overhead, we call mygraph.run(1),
create a loop inside each kernel and pass the number of loop iterations as a
runtime parameter to the kernel function.? This ensures the kernels are only
invoked once, thus avoiding the overhead of their main functions, while still
allowing us to perform several ping-pongs.

3.2 Timing Methods

In the following, we present two different approaches to benchmark the latency
in the order in which they were implemented. The first one, using a wall-clock
timer in the host code, has several drawbacks, which is why we finally discarded
it. For future reference it may still be worth describing. The second approach
makes use of cycle counters which are local to each Al Engine.

3.2.1 Wall-Clock Timer

This initial approach uses the chrono library to start and end a wall-clock timer
in the host code. This approach was chosen first because it has been used
previously in the work of [4] to obtain the bandwidth benchmarks. The following
listing provides an excerpt of our host code.

2Runtime parameters are kernel arguments the host can change between kernel invocations.
How they work precisely is not relevant to this thesis.

13
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long long round_trip_time = O0;
2 Timer timer;

ret = mygraph.run(1);
5 mygraph.wait () ;

7 round_trip_time = timer.stop();
s latency = static_cast<double>(round_trip_time)/(2*1i);

Listing 3.2: Excerpt of the host code starting the AIE graph execution. The variable 7 should

hold the number of iterations to perform.

The main idea is that starting the graph incurs some constant overhead, but
as we increase the number of iterations ¢, this overhead should become negligible.
Thus, by setting ¢ to a large number and then taking the average latency over
iterations, we should be able to cancel the constant overhead. Indeed, we have
seen that the latency converges to a value of 85.5 nanoseconds (for i = 10°),
which when multiplied with the constant processor frequency of 1.25G H z results
in an average latency of 107 cycles.

This method has the serious drawback that we do not have access to the
latency values of each individual data transfer, meaning we cannot compute
statistical properties apart from the average. In particular, it would be helpful to
know the standard deviation or the interquartile range. Furthermore, it remains
unclear how much the starting overhead influences the converged average latency.

3.2.2 Cycle Counter

A superior approach is to measure the number of passed cycles directly. Each
AT Engine contains a local cycle counter which can be inspected from within the
kernel code. As before, both kernels contain a loop which performs i iterations
of the ping-pong. In kernel A, we read the counter’s value at cycle ¢y, perform
one ping-pong and read the counter again at cycle c3. This method removes the
startup overhead that was measured in section 3.2.1 by design, as we start the
counter inside the kernel, i.e. on the AI Engine itself (as opposed to in the host).
We write the round-trip time ¢; — ¢; to an output window after each individual
ping-pong, which later allows us to compute the latency of each ping-pong and
deduce from this the interquartile range.

In the following, the final kernel code of both A and B is provided. Notice
that we use vectorization in the form of v4int32. This datatype can hold four
32-bit integers and it ensures that the addition in B (which is necessary to
check for correctness) and the window_readincr and window_writeincr calls
are executed as fast as possible.

14
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24

void a(input_window<int32>* in,
output_window<int64>% cycles
check_out, int32 iterations)
v4int32 rcv = null_v4int32();
aie::tile tile =
unsigned long long time_start;

unsigned long long time_end;

i < iterations
tile.cycles();

for (int i = 0;
time_start =

window_acquire (data_out) ;
window_writeincr (data_out,
window_release (data_out);

window_acquire (in) ;
window_readincr (in,
window_release (in) ;

rcv);

time_end = tile.cycles();
int64 cycle_dif =
window_writeincr (cycles_out,
}
window_writeincr (check_out,

}

void b(input_window<int32>* in,
iterations)

_out,

output_window<int32>* data_out,
output_window<int32>x*

aie::tile::current () ;

;oi++) |

rcv);

time_end-time_start;

cycle_dif);

rcv);

output_window<int32>* out, int32

{
v4int32 basisOne = null_v4int32();
for (int i = 0; i < 4; i++)
{
basisOne = upd_elem(basisOne, i, 1);
}
for(int i = 0; i < iteratiomns; i++){
v4int32 rcv;
window_acquire (out) ;
window_acquire (in);
window_readincr (in, rcv);
rcv += basisOne;
window_writeincr (out, rcv);
window_release (in);
window_release (out) ;
}
}

Listing 3.3: Final benchmark code of kernels A and B using a cycle counter.

15
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3.3 Results and Discussion

3.3.1 Latency

We use the method described in section 3.2.2 with 1024 iterations. We ensure
kernels A and B are placed on neighbouring engines. We visualize the result in
Python with a box plot provided by matplotlib. As shown in figure 3.2, the
median latency for neighbouring Al Engines is 98.5 cycles with an interquartile
range of 0.5 cycles, which means the measurement is highly consistent. It is also
worth noting that the difference to the measurement using chrono is almost 10
percent (there, we got 107 cycles). This suggests that using wall-clock time in
the host might not be an accurate way of benchmarking the Al Engines.

The cycle count of 98.5 is higher than we expected. We have reported this
finding to AMD/Xilinx engineers asking them whether this value meets their
expectations, but so far we have not received a response.

100.2

100.0 o

99.6
99.4
99.2

Latency (Cycles)

99.0
98.8
98.6

98.4

Figure 3.2: Latency when kernels are placed on neighbouring AI Engines and use tile memory
access. The median latency is highlighted in orange.

3.3.2 Simulator Trace

Using Vitis Analyzer, we can inspect a detailed trace view of a run of the ATE
simulator. The AIE simulator models timing and resources of the AIE grid and
provides cycle-approximate timing information [9]. For this run, both kernels A
and B run for two iterations, though only the first iteration is discussed. The goal
of this section is to investigate where the 98.5 cycles reported as median latency
in section 3.3 are spent. The trace view reports events based on nanoseconds,
which we have converted to cycles by multiplying with the constant processor
frequency of 1.25GH z.

We see that engine B starts the kernel function on cycle 706, slightly before
engine A starts its kernel on cycle 740. After 58 cycles, A writes (0,0,0,0) to its
output window. 38 cycles later, this data arrives as an input window at B, which
then needs only 4 cycles before it writes (1,1,1,1) to its own output window.
125.5 cycles later, this window arrives as an input window at A. This gives a
total of 225.5 cycles, which would result in a latency of 112.25 cycles, slightly
overestimating the latency measured in hardware. However, the cycle counter in
kernel A is started right before data is written to the output window, so it is
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likely that not all of the 58 cycles between A starting and A writing to its output
window are measured in the hardware measurement. If we remove the 58 cycles
A takes before writing its window, we get a corrected total of 167.5 cycles, thus
a latency of 82.75 cycles, now slightly underestimating the hardware latency.

This simulation shows that a significant proportion of the time is spent while
the data is ”in transit” i.e. written to A’s output window but not yet available
in B’s input window. Since these kernels transfer data simply by using a shared
memory buffer (tile memory access), this time is likely spent acquiring and
releasing window locks. If this is true, it is unclear why acquiring the window
locks takes only 38 cycles for the transfer from A to B but 125.5 cycles for the
transfer from B to A.

3.3.3 Latency versus Tile Distance

3500

3000

2500

1000 —_—

Figure 3.3: The x-axis represents the Manhattan distance between engines A and B. The
y-axis represents the latency in cycles. We report the median out of 1024 iterations.

In the previous sections, kernels A and B were mapped onto neighbouring
tiles in the AIE grid. If the kernels are placed further away from each other, the
latency is expected to increase. This is because the kernels can no longer use
tile memory access but have to use the DMA engine instead, which transfers the
window data using an AXI4 stream.

In a grid, one possible notion of distance is the L1 norm, also known as
Manhattan distance. As the AIE grid has a dimension of 8x50, the maximum
Manhattan distance is 56 if the kernels are placed in opposing corners. We
measure the latency for seven different Manhattan distances (1, 10, 19, 28, 37,
46, 56) and find that the median latency (N = 1024) depends linearly on the
distance between the engines. Linear regression gives the line y = 4.32z 4 110
(R? = 0.989), i.e. increasing the distance by one tile increases the median latency
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by 4.32 cycles. Note that this interpretation is not perfect because only in the
case where the distance is 1, tile memory access is used, while all other distances
use DMA. We expect tile memory access to have a lower latency than a linear
regression based on the distances which use DMA would predict for a distance
of 1. Therefore we perform another linear regression using only those distances
which are greater than 1. This gets us the line y = 3.97x + 125 (R? = 1),
suggesting that non-neighbour window connection latency scales linearly with
the distance between the engines. Plugging in x = 1, we get a predicted latency
for neighbours if they also used the DMA: 128.97 cycles.

We conclude that for neighbouring AI Engines, if they can use tile memory
access, their median window latency has been measured to be 98.5 cycles. Based
on linear regression, we expect that if neighbouring Al Engines instead used the
DMA engine, they would have a window latency of roughly 129 cycles.

Table 3.1: Window Latency Measurements

Distance Median Latency

1 98.5
10 164
19 200
28 236
37 272
46 308
56 346
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Reduce

This chapter describes our design of the Reduce collective function known
from MPI, adapted to fit the API provided by AMD/Xilinx for the AT Engine
architecture. It provides the implementation of a prototype, an evaluation with
cycle counter benchmarks and a cost model able to predict the performance of
the implementation. It also discusses some limitations of our design.

4.1 Motivation

As stated in the introduction, it seems currently hard to program the AI Engines.
It might be helpful if users could apply concepts already known from multicore
programming, such as message passing. For communication between kernels,
point to point communication (sending windows from one producer to one
consumer) as well as broadcasting (sending windows from one producer to
several consumers) operations are already provided by AMD/Xilinx. We choose
one operation defined in the MPI (Message Passing Interface) standard, called
Reduce, to test whether it is possible to implement such a collective function on
this hardware given the provided API.

The Reduce collective operation works as follows: Several cores each produce
some local data. Each core’s data gets combined ("reduced”) using a particular
function (the reduction function) to end up with a final result. One predetermined
core (called the root of the operation) should end up with the final result. The
reduction function must be associative and commutative. If, for example, each
core produces a single integer and the reduction function is addition, the root
should end up with the sum of each core’s integer.

We adapt this definition to the AI Engine architecture, where we work with
windows of data instead of single integers. Each kernel can provide an array of

19



CHAPTER 4. REDUCE

local data and the root kernel should end up with a result which is the element-
wise application of the reduction function to each core’s local data array. All
communication between kernels must happen using input and output windows.

4.2 Goals

The goal is to implement a prototype of the Reduce function, benchmark the
function and create a cost model for it. Internally, the Reduce function needs to
use window-based communication to transfer its data to other kernels. We assume
the user has n kernel functions (in the following called ”user kernels”) which
they wish to be part of the reduction and which might already. Theoretically,
the user kernels might already communicate with each other in some way — we
assume this is not the case, but the implementation could be adapted to take
preexisting connections into account rather easily. Each user kernel needs to
manually call Reduce and pass it some local data in the form of an array. In the
root, the call should block until the final result is available. It should be possible
to call Reduce several times within a single kernel.

Note that the most straight-forward approach to solve this issue is to use
point to point communications which are provided out of the box to connect n—1
producer kernels to a root kernel. The producer kernels would send their local
data arrays to the root as windows, and the consumer kernel could look at each
input window in turn and perform an element-wise reduction operation. This
does not work! The reason is that there is a limitation of 14 window connections
per kernel (input windows and output windows together), which means that
this design would only allow at most 15 kernels to participate in the reduction
operation. In the following, we propose a design which allows us to scale to more
kernels.

4.3 Design

Let us now discuss the design used to connect the AI engines containing the
user kernels. To this end, we ignore all connections the user kernels may already
have and focus only on additional connections necessary to enable the Reduce
function. We arrange the user kernels in a directed tree of arity M, where
each node corresponds to a user kernel and each edge from A to B is a window
connection, such that the window is an output window at kernel A and an input
window at kernel B. Note that due to the constraint that a kernel can have at
most 14 window connections, the arity of this tree can be at most 13 (so each
node has at most 13 input windows and 1 output window).

Functionally, leaves only forward their local data in the form of an output
window to an interior node. Interior nodes perform the bulk of the work: Given
m input windows (for m < M), inq, ..., in,,, as well as a local data array L and
a (commutative and associative) function f, an interior node computes

resli] = in1[i] f ingli] f ... iny[d] f L[d].
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In other words, the data of all its input windows and its own local data is reduced
element-wise according to the reduction function. This produces an array res of
the same length as the input windows and the local data. This array is forwarded
to the next level closer to the root in the tree. The root of the tree ends up with
the final result of the reduction, which can be returned to the user.

Note that going forward (for the implementation and evaluation), we consider
only a binary tree, i.e. a tree with an arity of M = 2, and more specifically only
perfect binary trees (i.e. those which contain 2% — 1 nodes). Our implementation
of the Reduce function allows the tree to have an arbitrary arity, but the
connection logic (see section 4.4.3) works only for perfect binary trees. It could
reasonably be expanded to work for higher arities.! Note that one consideration
is that when using higher arities of the tree, the window size would need to be
decreased. This is because all windows of a kernel must be stored in its local
data memory (which is limited to at most 128 K B). Previous benchmarks have
shown that smaller window sizes allow smaller throughputs of window-based
inter-AIE connections [4] (page 46), so it might make sense to reduce the arity
of the tree to allow larger window sizes. Furthermore, increasing the arity of the
tree means that fewer window connections are available for an end user (since
there are only 14 window connections per kernel available in total). So using a
binary tree allows us to use the highest possible window size and keeps as many
window connections as possible free for the end user’s own kernel connections.

4.4 Implementation

Now that we have defined the goals and high-level design choices of the Reduce
function, let us discuss some lower-level problems that arose during implementa-
tion.

4.4.1 Synchronous or Asynchronous

It was not initially clear whether the communication along the tree should
happen with synchronous or asynchronous windows. Usually, synchronous
windows should be the the first choice, since they are the default and much
better documented by AMD /Xilinx. However, there are at least two important
reasons why we ended up choosing asynchronous windows.

The first reason is a limitation which arises when using synchronous windows:
Reduce can only be called once per kernel. This is because after the first Reduce
consumes the input windows, they cannot be read again within the same kernel
invocation. Any attempt to do so will stall the user kernel. Asynchronous
windows solve this issue: Once Reduce is called, the input windows and the
output window are acquired (this blocks until all input windows have arrived
and any output windows from previous calls have been consumed by the next
kernel), then the result is produced, and finally the input windows and the

We would have liked to investigate the behaviour of trees with different arities, but
debugging and analysing the errors discussed in section 4.6 cost too much time.
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output window are released again (this instantly sends the output window to
the next kernel).

The second reason has to do with performance: Asynchronous windows allow
computation before data arrives. Assume a user kernel (which is an interior
node in the binary tree) does some expensive work and at the end calls Reduce.
If the connection were synchronous, the kernel could only start executing once
both input windows are available. It would perform the expensive computation
and only send the output window once the user kernel returns. On the other
hand, if the connection were asynchronous, the kernel could start executing right
away, without waiting for the input windows. It could perform the expensive
operation, and once it gets to the Reduce call it is likely that the input windows
have arrived (otherwise, it would block here until they arrive). Looking at the
binary tree as a whole, this means that there is more parallelism across levels.

4.4.2 Code Details

Connections along the Reduce tree must be asynchronous. To make this easier to
work with, the implementation of Reduce is divided into two functions: We shall
refer to these as the inner Reduce function and the outer Reduce function for
the remainder of this thesis. The inner Reduce function (see listing 4.1) assumes
all windows are available and handles the main computation of the element-wise
reduction. The outer function (see listing 4.2) handles the acquisition and release
of all relevant window locks (because the window connections are asynchronous)
and then calls the inner function as a helper. It can also handle the case where
the user data size is bigger than the window size. The inner function should not
be called directly by the user — instead, the user should call the outer Reduce
function.
template <typename MPI_Op, typename T>
void const_reduce_elementwise_and_send(unsigned n,

T *local_data,

std::initializer_list<input_window<T> *> windows,
output_window<T> *out)

MPI_Op op;
auto it = aie::cbegin(local_data, n);
for (; it < local_data + n; it++)
chess_prepare_for_pipelining {
T acc = *xit;
for (auto window : windows)
chess_prepare_for_pipelining {
acc = op(acc, window_readincr (window));
}
window_writeincr (out, acc);
}
}

Listing 4.1: Inner Reduce function, which assumes all windows are available.
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Template Arguments

The function call to Reduce requires two template arguments, M PI_Op and T.
In general, template arguments should be used sparingly, since they can lead to
much bigger code sizes because the function is compiled to separate assembly
code for each template which is instantiated. The following should briefly justify
the use of these.

The argument T defines the type of each window element. This makes it
possible to call our implementation with any data type supported by the API.
In our analyses, we have only considered the 32-bit integer type int32.

M PI_Op defines which function is used to reduce the input windows and
the local data and can be either M PI_Sum or M PI_Max. These are structs
we have defined ourselves in a header file and can be included by the user,
which each define an operator() to either add their two inputs or take the their
maximum. Depending on the template argument, the variable op is an instance
of one of these two structs. Calling op(ace, window_readincr(window)) invokes
either the addition or the maximum function of the two inputs. The set of
possible functions can easily be extended, which is the reason why this template
parameter exists. In our analyses, we only consider M PI_Sum, so we only
perform element-wise addition.

Initializer List

An early implementation decision was how to pass the input windows. The
most straight-forward way is that Reduce accepts exactly two input windows.
However, what happens if we wanted to extend the design to 3-ary trees, or to
cases where the binary tree is not complete, i.e. there is some interior node with
only one child? That node could not call the Reduce function, which means the
function would need to be implemented twice: Once with two input windows
and once with a single one.

A simpler and more scalable approach seemed to pass a variable number of
input windows to Reduce. The obvious choice was to use a std :: vector, but this
led to a compiler error. A workaround is to use an initializer list, which can have
a variable length, as long as it is known at compile time. The user passes their
input windows inside curly braces. As stated before, as we only consider binary
trees, in retrospect it might have made more sense to reduce the flexibility and
complexity here.

Inner Function

The core part which performs the accumulation is located in the inner Reduce
function (see 4.1). The outer loop iterates over each element in local data.
For each local data element, the inner loop iterates over all input windows.
Each input window reads its next element e and calls the reduction function on
the partially reduced variable acc and on e. After iterating over all windows,
the resulting element is written to the output window. This implements an
element-wise reduction.
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Outer Function

The previously discussed inner Reduce function assumes all windows are available,
but as explained in section 4.4.1, the connections need to be asynchronous.
Therefore, an outer Reduce function (see 4.2) handles all necessary window locks,
calls the inner function once all windows are available, and releases all window
locks afterwards. To avoid deadlocks, all locks are released in the reverse order
of acquisition.

template <typename MPI_Op, typename T>

void async_const_reduce_elementwise_and_send(unsigned n, T *

local_data, std::initializer_list<input_window<T> *> windows,
output_window<T> *out)

unsigned n_connection = out->winsize / sizeof (T);
unsigned n_chunks = n / n_connection;

for (unsigned cur_chunk = 0; cur_chunk < n_chunks; cur_chunk++)
chess_prepare_for_pipelining {

for (auto window : windows)
chess_prepare_for_pipelining {
window_acquire (window) ;

}
window_acquire (out) ;

const_reduce_elementwise_and_send<MPI_Op, T>(n_connection,
local_data+cur_chunk*n_connection, windows, out);

window_release (out) ;
for (auto it = std::rbegin(windows); it != std::rend(windows);
++it)
chess_prepare_for_pipelining {
window_release (*it);

Listing 4.2: Outer Reduce function, which handles locks and splits user data into chunks.

For a node which calls Reduce, this means that the call blocks until all inputs
have arrived, the result has been computed and written to the output window,
and any previously written result has been processed by the parent.

One requirement was that it should be possible to call Reduce several times
inside a kernel. Assume that a child sends two consecutive windows to its parent
which belong to different operations. Does this outer function guarantee that
the operations are not mixed up?

To see that this is indeed guaranteed, consider two interior nodes A and B
and the root R. A calls Reduce to send its first window to R. If it now tries to
send its second window to R, the call window_acquire(out) blocks until the first
window is consumed by R - or more specifically, until R calls window_acquire
and window_release on the connection with A. But R only calls window_release
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on the connection with A at the end of the outer function, so in particular after
calling window_acquire on both its inputs. So R consumes the first output
window of both A and B before A can compute its second output window and
send it to R. This guarantees a consistent ordering even if Reduce is called
several times per kernel, as long as the number of calls is equal for all kernels.

Chunking User Data

We wanted to decouple the user’s data size from the window size. For example, it
should be possible to reduce 2K B of data over a 512B connection by sending four
separate windows (in the following called chunks), all of which are sequentially
reduced element-wise. To the end user, this should not change anything in the
function call.

The outer function achieves this by first computing the number of chunks
by dividing the total number of elements (to be provided by the user as an
argument n) by the number of elements which can be sent in one window,
n_connection. For each chunk, all locks are acquired, data is reduced and sent,
and all locks are released again. Chunking can therefore be viewed as ncpunks
separate Reduce calls in series, each of which reduces n_connection elements.
The ordering correctness proof sketched out in section 4.4.2 can be applied to
this series of Reduce calls, which shows that chunking preserves the correctness
of the final result.

In other words, this means that we always have pipelining across successive
calls to the Reduce function, but as long as the window size matches the data size
(so there is only one chunk), there is no pipelining within a single Reduce call.
If the data size is chosen larger than the window size, there is pipelining within
a single Reduce call due to our chunking mechanism: The outer function splits
the user data into smaller windows and calls the inner Reduce function on each
window separately — to the inner function, this looks like several independent
calls. Even though the chunking mechanism works, in the evaluation we will
not consider it due to time constraints. We will assume that the data size is
always equal to the window size. However, in the limitation analysis, we will
again assume that chunking is possible.

Vectorisation

The current implementation only uses the scalar part of the AI Engines to
compute the reduction. This is inefficient as each Al Engine contains a vector
processor. Chunking would allow us to use a window size which exactly corre-
sponds to a vector size (as specified by the AMD/Xilinx API), which means
the outer loop of the inner Reduce function (listing 4.1) can be removed if the
scalar addition operation is replaced by a vector addition. This has not been
implemented to keep the benchmarks consistent and the Reduce code simple.
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4.4.3 Automatic Tree Connection

Even though the Reduce function is only meant to be a proof-of-concept, we still
want to make it as simple as possible for a user to incorporate this functionality
into their code. As described in the current chapter up to this point, from the
perspective of a kernel programmer, this simplicity has been achieved: The
programmer only needs to add one function call to Reduce to each kernel which
participates in the reduction. However, this assumes that all relevant kernel
instances are already connected in an appropriate binary tree.

To connect kernel instances A and B, one needs to insert the following line
in the code of the graph constructor:

connect <window<WINSIZE>> con(async(A.out[i]), async(B.in[jl));

Here, con is an arbitrary name we give this connection and async is needed
to mark both ends of the connection as asynchronous window connections. If a
user had 63 kernel instances which they wished to participate in a Reduce, they
would need to write the above line 62 times (as in a binary tree there is one edge
per node, except for the root), keeping track of exactly which instances they
are connecting and which input and output ports have or have not been used
already. This quickly gets cumbersome and reduces the usability of the project.
Even for benchmarking and testing, this would be very error-prone.

For these reasons, we have implemented a function which accepts kernels and
connects them in a binary tree, which can be called in the graph constructor.

void connect_tree(kernel* root, unsigned n_interiors, kernelx
interiors, unsigned n_leaves, kernel* leaves){

unsigned n = n_interiors + n_leaves;

for (int i = 1; i <= n; i++){
printf ("Connecting element %d / %u\n", i, n);
kernel* cur = k(i, root, n_interiors, interiors, n_leaves,
leaves) ;
unsigned partner_index = static_cast<unsigned>(std::ceil(
static_cast<double>(i)/2) - 1);
kernel* partner = k(partner_index, root, n_interiors, interiors

, n_leaves, leaves);

connect <window<MPI_CON_SIZE>> temp(async(cur->out[0]), async(
partner->in[(i-1) % 21));
}
}

Listing 4.3: This function can connect kernels given to it as arguments in a binary tree for the
user.

Abstractly, this function uses a contiguous array of all nodes which contains
first the root, then all interior nodes, and finally all leaves. In this array, any
node at index 7 can find its parent at index {%] — 1. For reasons explained
in 4.6.5, the root, interior nodes and leaves must be passed to the function in
separate arrays. The helper function k returns a pointer to the appropriate

kernel instance, treating all kernels as a contiguous array as described above.
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What about ports? In this implementation, we assume the first output port
of each kernel is used to send the output window to a node’s parent, and the first
two input ports are used to receive input windows from a node’s children. These
ports cannot be used by the kernels for anything else. In particular, this leads
to compatibility issues if a programmer already has a graph and later decides to
use the Reduce function. They are forced to change their existing connections
in order to free up output port 0 and inputs ports 0 and 1 of all relevant kernels
to make use of this connection function. This issue could be solved by passing
a map to connect_tree, which maps kernel instances to port indices. This tells
the function which input and output ports it should use for particular kernel
instances. For simplicity, this has not been implemented.

4.5 Evaluation

4.5.1 Cost Model

It can be useful to be able to roughly predict how many cycles our implementation
of Reduce takes for a particular configuration of window sizes, data sizes and tree
depths. We have therefore developed a simple cost model. We denote by n.yindow
the number of elements per window and by ng44t, the number of elements in each
node’s local data array. Note that we always send 4-byte integers, so we have
the relations

wSs

Nwindow = T
DS

Ndata = 77

where W S is the window size and DS the data size. We will assume for simplicity
that W.S = DS, so we do not take the chunking mechanism into account, since
it would introduce pipelining within a single Reduce operation, making it more
difficult to model accurately.

Our model makes several more assumptions:

1. We consider a perfect binary tree, that is, it contains exactly n = 2 — 1
nodes for some L > 3. L is the depth of the tree, or in other words, the
number of levels.

2. Each level of the tree executes completely in parallel. Therefore, the cost
of one level is equal to the cost of one node.

3. Leaves do not process data, they only send all of their local data elements.

4. A node can only start executing once both of its children are done. In
other words, levels of the tree are executed sequentially.

5. All non-leaf nodes iterate over nqyindow €lements. For each element, they
perform one accumulation operation per input window.
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6. Each node performs some additional operations, such as acquiring and
releasing locks, which do not depend on the number of elements.

To deduce a cost model from these assumptions, we have relied on the AIE
compiler report which, for some loops, reports the latency of the loop body as
well as the initiation interval (II). The latency of the loop body tells us how
many cycles a single iteration takes to execute. The II, on the other hand, is a
measure of pipeline parallelism, as it tells us after how many cycles of a certain
iteration the next iteration can start executing. Unfortunately, these numbers
are only reported for certain loops and not all of them, and we have been unable
to ascertain which conditions a loop must fulfill to be reported. Furthermore,
for all loops the compiler has reported on, the latency of the loop body equals
the II, so these loops cannot be pipelined.

Note that in the cost model as well as in the evaluation, we will use the
terms Leaf Time, Level Time and Tree Time. We define the leaf time to be the
number of cycles required by each leaf node to execute one call of the Reduce
function, by level time the number of cycles required by any non-leaf node to
execute one call of the Reduce function assuming all inputs are available, and by
tree time the number of cycles required by the root to execute one call of the
Reduce function assuming the whole tree has to be executed.

Let us proceed in the following way: We first take note of all the IIs we get
from the compiler report. We use these to estimate the cycle count of the leaves
and the non-leaves separately. Then we combine them to estimate the cycle
count of the whole Reduce tree. As we will see, using only the data provided by
the compiler report results in a crude underestimate because for many operations,
there are no cycles reported — in particular for all operations which are not
part of a loop. Therefore we introduce various correction parameters. After
measuring the real cycle count of several configurations, we are able to fit these
parameters such that the final cost model becomes quite accurate.

Initiation Intervals

The first II we consider is that of the inner loop of the inner Reduce function
(shown in listing 4.4), which is reported to be 30 cycles. This is surprising
because op is a scalar addition, which should take one cycle, and the remaining
operations are reads and writes from and to local data memory?. In particular,
all of the input windows must already be in local data memory by the time this
loop is executed because window synchronization happens in the outer Reduce
function. We would have expected an II of approximately 3 cycles: 1 to read
both acc and the next window element, 1 to add them and 1 to write the result
to acc. As for the cost model, we now know that in assumption 5, the cycle
count per window element per input window is (at least) 30.

for (auto window : windows)
chess_prepare_for_pipelining {
acc = op(acc, window_readincr (window));

2window_readincr is a read from a window buffer and acc is stored on the kernel’s stack.
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Listing 4.4: The inner loop of the inner Reduce function has an II of 30 cycles.

From the compiler report, we further know that the II (and the loop body
latency) of the loop which acquires windows in the outer Reduce function is 48
cycles, while the IT (and the loop body latency) of that which releases them is
45 cycles. All other loops do not have a reported IT — in particular, the outer
loop of the inner Reduce function (which iterates over the elements of local data)
and the main loop of the outer Reduce function (which iterates over chunks).

Leaf Time

Now we try to model the cycle count required by each leaf. Leaves do not have
input windows, so the inner loop of the inner Reduce function is not executed.
The outer loop, for which the compiler does not report the II, iterates over
all elements of local data, loading them and then writing them to the output
window unmodified. The cycle count required to do so is clearly proportional to
the number of window elements, but the proportionality parameter is not known
to us because we do not know for sure how many cycles the operations take. Let
us introduce a parameter Tjeq ¢, ciement here to account for the per-element cycle
count of a leaf.

Considering now the outer Reduce function, we see that leaves do not need
to acquire and release any input windows because there are none. They must
only acquire one output window and release it. Acquiring the window takes 48
cycles and releasing it takes 45 cycles, which sums to 93 cycles.?

Taken together, we expect the leaves to take 93 cycles to deal with window
locks, and then Tjeq ¢, ciement cycles per window element:

CZ—‘leaf = Nwindow * CZ—‘leaf,element +93 (41)

Level Time

Predicting the level time, i.e. the time of a non-leaf node, is quite similar to the
prediction of leaf time, with the difference that now there are two input windows.
In the inner Reduce function, the II of the inner loop is 30 and there are two
input windows, so the inner loop should in total take 60 cycles. The outer loop,
iterating over all of the window elements, executes some additional instructions
(loading, storing) apart from the inner loop. As in the leaf time, we capture this
with the parameter Tjcyel,element Which we expect to be similar to Tieqt,clement-

In the outer Reduce function, there are three windows in total, all of which
must be acquired and released. The cycle count required for this is 3-48+3-45 =
279.

Together, we expect a single level of non-leaves to take 279 cycles for locks
and 60 + Tjeyel,etement cycles to reduce each window element:

T’level = Nwindow * (60 + T’level,element) + 279 (42)

3This is based on the loop body latency of the acquisition loop (48) and the release loop
(45). We assume acquisition/release as independent operations take the same number of cycles.
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Tree Time

For the tree time, we make use of our assumptions 2, 3 and 4. The leaves are
executed first and the whole level takes time Tj.qs because we assume all leaves
can be executed in parallel. After they are done, all levels of non-leaves are
executed sequentially, each level taking time Tjeye;. If the depth of our tree is L,
we have one level of leaves and L — 1 levels of non-leaves. Therefore, we estimate
the total tree time as

T;Eree - T’leaf + (L - ]-) . zjlevel (43)

As we will see, all of these are underestimates because we are neglecting the
cycle counts of several instructions. Let us now collect measurements and return
to the cost model afterwards to revise it. In order to do so, we first need to
clarify how the measurements have been obtained.

4.5.2 Methods

This section discusses the methods used to obtain benchmarks of the Reduce
implementation. The approach based on measuring the wall-clock time using
chrono was already unreliable when we used only two kernels (see section 3.3.1),
so it was clear that cycle counters should be used. Cycle counters are local
to an Al Engine, so the question became which engine we should use for the
measurement. Under the assumption that all kernels start simultaneously, it
makes most sense to measure the cycle count on the root. Since the Reduce call
must first wait for all data from the children to arrive, the counter in the root
measures the cycles between the moment when the leaves start and the moment
Reduce returns the final result in the root.

This is only accurate if all involved kernels are invoked at the same time. Luck-
ily, there is a compiler flag to ensure this which is called -~-broadcast-enable-core.
To quote from the user manual: ”Enable all AI Engines associated with a graph
using broadcast. This option reserves one broadcast channel in the array for core
enabling purpose. The default is true.” [8]. As far as we know, there is no better
guarantee to ensure the kernels are synchronized, so for our purposes, we shall
assume the kernel functions are invoked simultaneously.

Each kernel starts by initializing an array of local data with numbers from 1
t0 Ngata, allocated on the stack. After this, each kernel enters a loop which calls
Reduce several times (so there is pipelining across the several Reduce calls). The
root measures the start cycle and end cycle inside this loop, right before and
after the Reduce call. We are most interested in the cycle count required for the
first iteration (recall that we call this tree time, denoted by Te.). However, the
subsequent iterations may provide useful evidence that our measurements are
reasonable and that the cost model is sensible. Recall that in the first iteration,
the Reduce call in the root has to wait for all other levels of the tree to produce
their results and forward them until they arrive at the root, before it can start
executing. Due to pipeline parallelism, we expect that in subsequent iterations,
data from the root’s children should already be available once the root calls
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Reduce again. What we measure in the root in subsequent iterations is therefore
only the cycle count required by the root to compute the result, which we have
called level time. Note further that the initialization of local data (which is
necessary for the correctness check) should not influence the result because the
same initialization code is executed on all kernels and thus should take the same
number of cycles (or differ negligibly compared to the cycle count of the Reduce
operation). The root starts the cycle counter only after its initialization has
been done, and at that moment all remaining kernels should also have finished
initialization.

We expect the following: For fixed nyindow and ngqtae, the level time should
stay constant when we scale the depth of the tree. This would match the cost
model prediction of the level time, which assumes it to be independent of the
depth.

The benchmarks have been obtained by choosing different (L, nyindow, Ndata)
configurations. Each configuration had to be compiled individually. Unfortu-
nately, we could not scale L as much as we would have liked (for details see
section 4.6).

The level time plot of a configuration is computed by running the AIE graph
with that configuration once, with 1024 iterations, and discarding the first cycle
count, leaving 1023 values. The tree time plot of a configuration is computed by
running the AIE graph 10 times (by completely restarting the host program to
ensure there is no pipelining), each time considering only the first cycle count,
giving 10 values. All box plots have been created in Python 3 with matplotlib.
In tables, we will report the median values (of 1023 level time values and 10 tree
time values, respectively).

4.5.3 Results and Cost Model Evaluation

In the following, we present the Reduce benchmarks and compare them to the
estimates given by the cost model. Table 4.1 presents all tested configurations of
tree depth and window size (L, WS). Tree time is always denoted as TT, level
time as LT. The columns report the following values:

e TT Prediction and LT Prediction report the tree time and the level time
estimated by the cost model.

e TT Measurement and LT Measurement report the tree time and the level
time which have been measured by running the design on hardware.

e Leaves reports the leaf time estimated by the cost model.

e TT Error and LT Error report the percentage error of the model estimates
rounded to three decimal points, computed as

jlneasured“'jkredhied

jlneasured
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Table 4.1: Reduce Measurements with Initial Cost Model Predictions

L WS TT Prediction TT Measurement TT Error LT Prediction LT Measurement LT Error Leaves
3 16 1155 1246.5 0.073 527 729 0.277 101
4 16 1682 1783.5 0.057 527 729 0.277 101
5 16 2209 2247.5 0.017 527 729 0.277 101
6 16 2736 2780 0.016 527 729 0.277 101
3 8192 258699 379373 0.318 127255 170384 0.253 4189
4 8192 385954 551618.5 0.3 127255 170384 0.253 4189
3 4096 129675 189946.5 0.317 63767 85391 0.253 2141
4 4096 193442 276165.5 0.3 63767 85404 0.253 2141
5 4096 257209 362667.5 0.291 63767 85392 0.253 2141
6 4096 320976 449123 0.285 63767 85391 0.253 2141
3 2048 65163 94189 0.308 32023 42895 0.253 1117
3 1024 32907 47343 0.305 16151 21647 0.254 605
3 512 16779 23907 0.298 8215 11023 0.255 349
3 256 8715 12208 0.286 4247 5709 0.256 221
3 128 4683 6344 0.262 2263 3053 0.259 157
3 64 2667 3408 0.217 1271 1725 0.263 125
3 32 1659 1949 0.149 775 1061 0.27 109

Before we compare the measurements to the cost model, let us consider some
figures which visualise the measurements reported in table 4.1. Figures 4.4, 4.5
and 4.6 show the level time as a function of the depth L, for three different
window sizes (WS = 16,4096,8192). As we can see, regardless of the window
size, the level time stays constant as we increase the depth of the tree. Figures
4.1, 4.2 and 4.3 show the tree time as a function of the depth L, again for the
three window sizes (WS = 16,4096, 8192). The plots strongly suggest a linear
relationship between the tree time and the depth of the tree. Finally, figures 4.7
and 4.8 show the level time and the tree time as functions of the window size,
for a fixed depth of 3. Note that the x-axis in the last two figures is logarithmic,
so the plots suggest that both the tree time and the level time depend linearly
on the window size, assuming the depth is fixed.

Even though all of these observations support the general structure of our
cost model, it is evident from table 4.1 that the model severely underestimates
both the tree time and the level time. The reason for this is that our current
model ignores the cycle counts of those instructions which are not in a loop for

which the compiler reports the II. Most importantly, operations such as loading

and storing in our estimation of the level time (see equation 4.2) might take more
than our arbitrary 2 cycles, or there might be instructions or NOPs inserted
by the compiler. If the cycle count we estimate for the outer loop of the inner
Reduce function is wrong, this error scales linearly with both the window size
and the depth of the tree. To give us the highest possible degree of freedom to
correct errors such as these, we introduce several new parameters into our cost
model. The corrected estimation equations are as follows:

Eeaf = Nwindow * Eeaf,element +93 + Eeaf,constant (44)

nevel = Nwindow * (60 + nevel,element) + 279 + ﬂevel,constant (45)

Ttree = T’leaf + (L - 1) : 71level + (L - 1) . (nwindow : Ttree,element + Ttree,constant)
(4.6)

These correction parameters are expected to capture the following missing
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cycle counts in our model:

® Ticafelement ad Tieypel clement capture cycles spent in the outer loop of the
inner Reduce function, except for those spent in the inner loop.

® Ticaf constant a0 Tiepel constant Capture cycles spent outside of the outer
loop of the inner Reduce function, except for those spent acquiring and
releasing locks.

e The correction term of the tree time lets us decouple our prediction of the
tree time from that of the level time. This compensates for the fact that
as the depth increases, the tree time might not grow exactly linearly with
the level time but instead with a slight variation of it. T3 cc eiement and
Tiree,constant are the offset per element per level and the offset per level,
respectively. Without this correction, we have not managed to fit the tree
time accurately.

We fit the correction parameters by hand by trying to minimize the average
of the percentage errors of first the level time and then the tree time. This was
done using only the first 10 rows shown in table 4.2. As we can see in that table,
using these correction parameters we can perfectly predict the level time. As for
the tree time, even though we cannot predict it as well as the level time, all of
the errors are below 4% and usually even below 1%.

The parameters we have found are as follows:

L4 neaf,elcment =17

L4 neaf,constant =0

L4 nevel,element =23

L4 nevel,constant =120
L4 Ttree,element =1

L4 Ttree,constant =214

Using these corrections, we get the final closed form solutions of the cost
model:

Tleaf =17 nwindow + 93
T'level = 83 * Nwindow + 399
/Ttree =17 Nwindow T 93 + (L - ]-) . (84 * Napindow T 185)
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Table 4.2: Reduce Measurements with Final Cost Model Predictions

L WS TT Prediction TT Measurement TT Error LT Prediction LT Measurement LT Error Leaves
3 16 1203 1246.5 0.035 731 729 -0.003 161
4 16 1724 1783.5 0.033 731 729 -0.003 161
5 16 2245 2247.5 0.001 731 729 -0.003 161
6 16 2766 2780 0.005 731 729 -0.003 161
3 8192 379343 379373 0 170383 170384 0 34909
4 8192 551560 551618.5 0 170383 170384 0 34909
3 4096 189903 189946.5 0 85391 85391 0 17501
4 4096 276104 276165.5 0 85391 85404 0 17501
5 4096 362305 362667.5 0.001 85391 85392 0 17501
6 4096 448506 449123 0.001 85391 85391 0 17501
3 2048 95183 94189 -0.011 42895 42895 0 8797
3 1024 47823 47343 -0.01 21647 21647 0 4445
3 512 24143 23907 -0.01 11023 11023 0 2269
3 256 12303 12208 -0.008 5711 5709 0 1181
3 128 6383 6344 -0.006 3055 3053 -0.001 637
3 64 3423 3408 -0.004 1727 1725 -0.001 365
3 32 1943 1949 0.003 1063 1061 -0.002 229

4.6 Limitations

This section discusses problems that arise when compiling the benchmark code
for hardware. In particular, we have encountered difficulties when scaling the
number of kernels participating in the Reduce operation, scaling the size of the
arrays to be reduced, and scaling the window size of the connections between
the kernels. Optimally, we would like to be able to scale the number of kernels
to 400, which is the total number of engines in the AIE grid. Regarding the data
size and the window size, it is not initially clear what the theoretical maximum
is, but intuitively, we want to scale the data size to a value as large as possible
and we want the window size to freely scale anywhere between 16 bytes (which
is the minimum) and the data size. All of these scaling issues arise only when
compiling for hardware. The z86simulator, which is used to verify the logical
correctness of a design, has no problems when scaling these values. Rather, the
issues are related to memory limits of the AT Engines, placement of the kernels
and routing between them.

4.6.1 Placer Timeout

We first notice that as n increases, the compiler spends much more time in
the placement stage. It is not fully clear what happens during this stage, but
it appears that the compiler tries to find hardware locations for all buffers,
connections, kernels etc. such that all constraints imposed by the user and the
graph layout are fulfilled. Such user constraints can be that a kernel should be
placed on a specific engine, or that the stack of an engine should be placed in a
particular buffer, and so on. Initially, we only provide the constraint that each
kernel should be placed on a separate engine, in which case the placement stage
successfully finishes for n < 63 (considering only perfect binary trees, that is,
n = 2L —1). However, with n = 127, the placement stage of the compiler times
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out with the following error message:
WARNING: [aiecompiler 47-1001] Placer has timed out.
The problem space is likely too large to solve.

We need to help the placer to find a solution before timing out, so we must
reduce the problem space. To this end, we introduce artificial location constraints
for each kernel. For lack of a better strategy, these constraints are chosen in
the following way: We fill the AIE grid column-wise, starting in the bottom left
corner, with all leaves, then all interior nodes and finally the root. We only place
a kernel on every second engine, leaving every other engine empty. Intuitively,
we expect this to help the placer and the router to find space for connections
and buffers. This is the setup which has been used for all Reduce benchmarks
for consistency.

4.6.2 Memory Background

The scaling issues we will describe are mostly manifestations of memory con-
straints, hence this section addresses some background knowledge. Most impor-
tantly, each physical Al Engine contains 32K B of local data memory. Each Al
Engine can also access the local memory of at most three neighbouring engines.
This means that an AI Engine has an absolute limit of 4 - 32K B = 128 KB of
local memory it can use. Trying to exceed this limit leads to a compilation
error.*

The local data memory of an engine must provide enough space for all of the
input/output windows of the corresponding kernel, its stack and its heap. Note
that by default, all input/output windows are double-buffered. This means that
each logical connection with a window size of W bytes requires 2- W bytes of data
memory. The stack is ”[u/sed as a standard compiler calling convention including
stack-allocated local variables and register spilling.” [8], while the heap is ”fu/sed
for allocating any remaining file-scoped data that is not explicitly connected in
the user graph.” [8]. The stack and the heap both have a default size of 1K B,
respectively, but these sizes can be modified using compiler flags. The user guide
states the following important constraint on the size of the heap and the stack:
"The stack, heap, and sync buffer (32 bytes, includes the graph run iteration
number information) are allocated up to 32768 bytes of data memory.” [8]. For
simplicity, we shall refer to the total memory required by the stack, heap, and
sync buffer as SHS memory.®

4.6.3 Limitations due to Memory Constraints

Now we present three distinct limitations which cause the memory-related errors
we have encountered when compiling the benchmark code for hardware.

4The error message is: ERROR: [aiecompiler 77-5387] The total memory used by node
mygraph.ROOT (i14) exceeds the per-core memory limit of 131072 KB. We strongly sus-
pect this to be a spelling mistake, instead referring to 1310728, which equals 128 K B and
matches all the descriptions in the documentation.

5This is our own terminology, but we find it helpful to avoid cluttering the text with
repetitions of its definition.
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Window Size

In the graph used for the Reduce benchmark, the root is the node with the
largest number of input/output windows, so we will focus on the root. It has
four windows in total, namely two input windows to receive the partially reduced
arrays from its children, one output window to send the final result of the
reduction to the Linux host, and one output window to send the cycle count of
each iteration to the host. Each window connection is double-buffered. With a
window size of 8K B, this means the root uses 4-2-8K B = 64K B just to buffer
windows. Additionally, it needs some non-zero amount of SHS memory, made
up primarily of stack memory to store local variables. As elaborated in section
4.6.2, each kernel has a hard limit of 128 KB of data memory it can use. As SHS
memory is limited to 32K B, we expect compilation to succeed with a window
size of 8K B, since the kernel uses at most 64K B + 32K B = 96K B of data
memory, which is below the hard limit — and it indeed compiles successfully.
Once we increase the window size to 16K B, the root requires 128 K B just to
buffer windows, which leaves no space for SHS memory. Because a kernel always
requires some non-zero amount of SHS memory, this should not be able to
compile. Trying to do so indeed raises the error described in section 4.6.2.

This means there is an upper bound of 8 K B on the window size. This bound
could be improved by enforcing single buffering instead of double buffering or by
decreasing the number of windows in the root. The first option is not optimal
because double buffers ensure that a window can be continually written to
(compare section 2.2). In other words, enforcing single buffering would free up
space allowing us to increase the window size, but in turn it could decrease the
throughput due to wasted cycles. The second option is infeasible for benchmarks
as we would have to give up either the correctness check or the cycle count
information.

Data Size

We have already established that a kernel’s SHS memory is limited to 32K B.
This clearly implies that a kernel’s stack space is limited to 32K B. Each kernel
which is part of the Reduce operation has to allocate an array of local memory
on its stack in order to pass the array to the Reduce function. Since this array
is allocated on the kernel’s stack, we have a theoretical upper bound on the size
of the array (which we call data size) of 32K B. As a reminder, the window size
and the data size do not necessarily have to be equal in our implementation due
to the chunking mechanism. As long as the data size is a multiple of the window
size, the Reduce function automatically splits the local data arrays into several
chunks (each of size equal to the window size).

This bound cannot be improved because the limit of 32K B is imposed by
the hardware. If a user requires to reduce data of a size larger than this, our
recommendation would be to generate the local data sequentially in blocks of
less than 32K B, each time reducing the current block before generating the next
one.
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Number of Kernels

We have seen that a kernel might need more memory than a single engine can
provide. We can use this knowledge to estimate an upper bound on the number
of kernels we can place on the AIE grid, depending on the memory requirements
of the kernels. Let WS be the window size and DS the data size.

Let us assume that the total memory requirement of kernel k is M) =
WINy + SHSj, where WIN is the memory needed for all window buffers and
SHSj, is the SHS memory. Further, assume that SHSy = DS + ¢, where DS is
the data size — this states that a kernel’s SHS memory is mainly comprised of
the local data array®. Leaves have one output window, interior nodes have two
input windows and one output window and the root has four windows in total.
Therefore, due to double buffering, WINjeqr = 2-W.S, WIN;pterior = 3-2-W.S,
and WIN,.,ot = 4-2-WS. We assume that the parameters (WS, DS, ¢€) are
chosen in such a way that the memory requirement of each kernel is below
the per-kernel memory limitation of 128 K B. Then we can compute the total
memory requirement of the whole graph, assuming a perfect binary tree of depth
L >3, as

Mtotul = Mroot + (2L71 - 2) . Mintem’or + 2L71 : Mleaf (47)

Since each engine provides 32K B of local data memory, we can compute a lower
bound on the required number of engines as

Mtotal -|
32K B

The lower bound is only met if the total memory can be appropriately distributed
on the available engines and the kernels can be placed in such a way that they
have access to all their required memory. More engines might be needed because
of the spatial nature of the device. As the AIE grid contains 400 engines, solving
this inequality for L provides a limit on the depth of the tree and therefore on
the number of kernels, for given window size and data size. We start by noting
that equation 4.8 implies

Nengines > |— (48)

Mtotal

32KB

Plugging in the definition of M;,tq;, it is straight-forward to find that

12832K B — Mraot +2- Minterior
Minterior + Mleaf

400 >

L < logy(

)+ 1

Using the definitions of the different kernel memories, we finally get a limit on
the depth of the tree, depending on the window size, the data size and the SHS
remainder term e:

12832KB+4- WS+ DS +¢
8 WS+2-DS+2-¢
e compensates for the facts that the stack contains other local variables apart from the

local data array, and that the SHS memory also contains the sync buffer. We assume the heap
is not used.

L < log,( )+1 (4.9)

6
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For example, plugging in (WS =8KB,DS = 24K B, e = 1K B) yields a limit of
L < 7.8, which (since we are dealing with perfect binary trees) implies L < 7.
To use a configuration which was part of the benchmarks, (WS =8KB,DS =
8K B,e = 1K B) yields a limit of L < 8.

It is worth reiterating that even below this theoretical limit, it is possible
(and, in fact, likely) that the compiler does not find a way to place the kernels
in such a way that all of them can satisfy their memory requirement within
neighbouring tiles, even though the AIE grid as a whole would provide enough
memory for the configuration. These computations only take into account the
pure memory requirements, without regards for the locality requirements.

Conclusion to Memory-Related Limitations
In summary, these are the limitations which are related to memory:

1. As the root has many window connections, increasing the window size
quickly leads to the root exceeding the maximum per-kernel memory limit
of 128 K B just to buffer the windows. This limits the window size to 8 K B.

2. Each kernel’s local data must be allocated on the stack. Since the SHS
memory of each kernel is limited to 32K B and the stack is part of SHS
memory, the data size is limited to 32K B — ¢ for some small but non-zero
€.

3. If the window size and data size are chosen large enough, each kernel needs
more memory than a single engine can provide. Even if locality constraints
are ignored, i.e. all memory is assumed to be freely divisible and accessible
from everywhere, this limits the number of kernels as a function of window
size and data size.

4. Each engine can only access the local data memory of itself and at most
three of its neighbouring engines. This locality constraint can imply that
even if there is enough total memory for a certain number of kernels
according to limitation 3, the kernels cannot be placed in such a way that
the memory a kernel requires is close enough.

Limitation 4 is particularly difficult as we increase the number of kernels,
because as explained in section 4.6.1, we cannot rely on the compiler to find a
placement even if one exists as the problem space is too large — instead, we
have to provide location constraints ourselves. But constraining the locations of
kernels without an elaborate system makes it highly unlikely that each kernel
has enough memory within three neighbouring engines to satisfy its resource
requirements. As mentioned in section 4.6.1, we fixed the locations of the kernels
in such a way that in each column on the AIE grid, only every second engine
contains a kernel, leaving every other engine empty to provide memory for
neighbouring kernels. This is clearly a crude approach, which can help explain
the discrepancy between the limitations on the window size, data size and in
particular the number of kernels which we predict in theory and the ones we
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measure when really compiling. It would be an interesting direction for future
work to find location constraints which better take the spatial topology into
account.

4.6.4 Limitations due to Routing Constraints

As we have seen, increasing the window size or the data size leads to memory
constraints, limiting the depth of the Reduce tree. Now we go in the other
direction. If both the window size and the data size are set to the minimum
of 16 bytes, we would expect that each engine on which a kernel is placed
provides enough space to store all of the kernel’s data. Therefore, it should be
possible to compile the program with a tree containing up to 400 kernels. As
our implementation uses a perfect binary tree, we would expect compilation to
succeed for a tree of depth 8, i.e. containing 255 kernels. In reality, however,
we have only been able to scale the depth to 6 (63 kernels). Trying to compile
a configuration with a depth of 7 (127 kernels), WS = 16B, and DS = 16B,
yields the following error:

ERROR: [aiecompiler 35-3253] AIE Router found too many nets on
Column: 8 going EAST, 37/36.

We do not have a definitive answer why this error occurs, but we have a
hypothesis (whose correctness we cannot guarantee). To understand it, it is
necessary to recall how the Al Engines are connected in hardware. We have
already seen several times that each engine can directly access the local data
memory of up to three neighbouring engines (tile memory access). To be more
specific, each engine can always access the local data memory of the engine
above and below it. Additionally, each engine can access the local data memory
of the engine to its right or its left, but not both. Recall the reason for this is
that within a tile, if the AT Engine is placed on the left side and the memory
module on the right side, only the data memory of the left neighbouring engine
can be accessed directly (and vice versa if the directions are reversed). Each
row alternates between placing the AI Engine on the left or right side of a tile.
Hence, in each column there can be at most four instances of tile memory access
to the east direction (we will see why this is important).

Window communication between non-neighbouring Al Engines always hap-
pens using the DMA engine [6]. The DMA has a S2MM module to store stream
data to memory and an MM2S module to write memory contents to a stream
and if we understand the source correctly, these streams also use the AXI4 inter-
connects [7]. Each engine’s AXT4 interconnect can establish up to six connections
from south to north, and up to four connections in each of the three remaining
directions [5]. In particular, for each engine there can be at most four AXI4
streams in the east direction. Hence, assuming our understanding is correct,
there can be at most four window connections with DMA in the east direction
per Al Engine tile (this might include window connections between distant tiles
which are routed across this tile’s AXI4 interconnect).”

"The author freely admits this paragraph should be taken with a grain of salt as he cannot
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To get back to the error message: As there can be at most four instances
of tile memory access in the east direction per column and four instances of
DMA-based window access in east direction per engine (and there are eight
engines per column), there can be at most 36 connections of either kind in
the east direction per column. This would match the report we get from the
error message. It is trying to convey that the way we have placed the kernels
leads to some column which has to send more different streams of data to the
east than available. Solving this error for one particular configuration might be
feasible by trial and error, but solving it in general would require us to develop
an algorithm which keeps track of all AXI4 streams and tile memory access
instances of each engine and then places the kernels in such a way that the
maximum number of connections for either type of connection is never exceeded.
But even computing how many AXI4 streams in a given direction a particular
interconnect has or how many tile memory access instances a certain engine
has, would require us to know many of the low-level placement and routing
choices the AIE compiler internally makes, before it makes them. It is possible
to influence these choices by passing user constraints, but at the point of writing
it is not clear to what extent. In conclusion, this seems like a very difficult issue
to solve, in particular if the placement algorithm should simultaneously take
into account the neighbour constraints mentioned in section 4.6.3. Developing
such a placement algorithm could be a direction for future work, though the
work would likely be considerable if at all feasible.

4.6.5 Kernel Signatures

It would be desirable if the tree structure could be completely hidden from an
end user. After all, to them, Reduce is simply an operation to be called in several
kernels, such that a specific one - the root - ends up with the result. There
should be no reason for them to know how data flows internally.

Unfortunately, with the presented design this is not possible as far as we have
found. The fundamental reason is that a kernel’s signature needs to contain all
input and output windows. We have three different types of nodes in a binary
tree: Leaves which have zero inputs and one output, interior nodes which have
two inputs and one output, and the root which has two inputs and zero outputs.
Thus, a kernel which has no input windows according to its signature, cannot be
used as an interior node. A kernel’s signature decides where in the tree it can
be used. This couples the tree structure we wish to hide from the user to the
kernel signature they explicitly have to write. So, even though we can hide the
process of connecting the kernels from the user (see section 4.4.3), it is up to
them to decide the node type of each kernel.

guarantee its correctness.
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Figure 4.7: Level time for different window sizes, for a constant depth of L = 3.
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CHAPTER D

Gather

The focus of this thesis is the Reduce function, which has been designed, im-
plemented and analysed in detail. Many of the design choices and limitations,
such as the use of a tree to forward intermediate results and the considerations
regarding memory limitations, can be expected to also apply to other collective
operations. Nonetheless, we would like to briefly address some design consid-
erations for a collective called Gather. Note that this collective has not been
implemented, so these considerations are purely theoretical.

The Gather collective is described by the MPI standard as a function which
"gathers together values from a group of processes” [2]. As in the Reduce collective,
there is one process dedicated to be the root which is supposed to hold the result
of the collective operation once it returns. Each process can provide several
values, the count of which can be specified upon calling the function.

Adapting the standard to the AIE architecture implies the following:

e Each kernel provides a window of data. As there is a minimum window size
(16 bytes), it is not possible for a kernel to provide a single value (unless
the window is padded with zeroes, which could not be distinguished from
a window where the zeroes were actually significant).

e The window size must be fixed at compile time, so it is neither possible
nor necessary to specify the count of values when calling Gather.

e The root cannot be specified when calling the function. Rather, the
connections decide which kernel acts as the root. The connection logic
must be defined separately and connections are fixed at compile time.
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5.1 Design

The most straight-forward approach to designing this collective is to decide one
kernel which acts as the root and directly connect all other kernels to the root.
The Gather call in the root could then simply wait for data from all senders to
arrive and return once they have. Unfortunately, this does not work for the same
reason as in the Reduce collective: There can be at most 14 window connections
per kernel. Therefore, we adapt the approach from our Reduce design and use a
tree. It is theoretically possible to use a tree with any arity up to 13 (since 13
input windows and one output window per kernel is the upper bound of window
connections per kernel). However, precaution must be taken to ensure that the
per-kernel memory limitation of 128 K'B is never exceeded (see section 4.6). This
means that higher arities force us to use smaller window sizes, such that all of
the window buffers fit into the kernel’s local data memory. Also, one should
keep in mind that the more windows our collective function uses per kernel, the
fewer windows an end user has left available. In a realistic setting, it might make
sense to use the smallest possible arity such that the user is as unconstrained
as possible in the number of windows they can use for their own purposes per
kernel. Let us assume the design makes use of a tree with arity n. The tree does
not need to be perfect, we only require that all nodes have at most n children
and all nodes except for the root have exactly one parent.

As in the Reduce design, each user kernel acts as one node of the tree. As
a first approach, let us assume that leaves simply send their data window to
their parents. The reason why this does not fully work becomes evident once
we consider what happens at an interior node, i.e. one with at least one input
window. Interior nodes need to somehow combine the data they receive from
all input windows as well as the data they provide themselves and send the
combination on to their parents. In comparison to the Reduce design, where an
interior node performs an element-wise operation on all input windows and its
own data to produce an output window of the same size as each input window,
we are now in a situation where the interior node’s output is (potentially much)
larger than the individual input windows. Let us consider an interior node which
has m input windows (m < n) and it provides its own window of data which has
a size of WS. We see two possible ways how it could combine all of this data
and send it on to its parent:

1. We assume each of its input windows has a size of WS; for ¢ € {1,...,m}
and fix the size of its output window to be WS + 1", WS,;. Then it
can send its own data and all of the data contained in the various input
windows as part of a single output window.

2. We keep the window size constant across all connections in the tree. The
node forwards all of the input windows it receives on to its parent and
sends its own data as a separate window as well.

Both solutions can be implemented, but both have drawbacks. We argue that
the drawback of the first solution is so severe that it should not be considered
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and recommend to implement the second solution instead. The reason for this is
that solution 1 requires the window size to grow exponentially with the depth of
the tree, resulting in huge window connections close to the root even for trees of
small depth. Since all of a kernel’s windows have to be stored in its local data
memory, these large window sizes could force nodes which are close to the root
to exceed their per-kernel memory limits (see section 4.6 for a detailed discussion
of memory issues).

We now specify how solution 2 works in detail. The difficulty of this approach
becomes evident as we turn to interior nodes deeper in the tree. Assume for
example a perfect binary tree with a depth of 3 and a constant window size
WS. The leaves send exactly one window, containing their local data. FEach
interior node behaves as explained in the bullet point, i.e. it sends three different
output windows each of size W.S, containing the data sent to it by its first child,
its second child and its own data, respectively. But now consider the root —
it sequentially receives three windows from each of its two children. How is
it supposed to know how many windows it receives from each child without
knowing the graph topology?! In particular, it would need to know how many
tree levels are above it in order to compute the number of windows it receives
from each child, and this is only valid assuming a perfect tree. If it is not perfect,
knowledge of the whole graph topology would be required. This seems hardly
feasible.

Our alternative approach is inspired by networking, where it is common
to send header packets which provide information about the content which is
about to arrive. In our situation, such a header packet is a window which we
require each node to send before sending any actual data (we call this the header
window). The first element of the header window is the number of data windows
this node is about to send. For leaves, the number of data windows is clearly
1. Each interior node can compute the number of data windows by waiting
for the header window of all its children, adding the first element of each one
and finally adding 1 (because it sends an additional window with its own data).
After that, it can send the header window containing this result and follow it
up directly with a first data window containing this node’s data. Finally, the
node can iterate over all input windows and wait for the specified number of
data windows to arrive from each connection. As soon as an input window is
available, the node can forward it to its parent. For clarification, we provide a
pseudocode for this procedure in listing 5.1.

A disadvantage of this design is that the number of windows which have to
be sent between two levels in the tree grows exponentially with the distance to
the leaves. We know that acquiring and releasing asynchronous windows takes
a lot of cycles, so this method is potentially very slow for deep trees. It seems
like this is a classic space-time tradeoff — either the window size (and thus
the memory requirements) or the number of messages (and thus the runtime)

IThis problem becomes even more significant if we want to be able to call the Gather
function several times per kernel. Each kernel needs to know how many incoming windows
from a given child belong to the first Gather call in order to determine which window is the
first belonging to the second call.
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increase exponentially.

If one were to implement this function for the AIE architecture, it would
be absolutely necessary to use asynchronous windows because a single kernel
invocation needs to read and write multiple windows per window connection.
One implementation choice we leave open is the order in which data windows
are forwarded. The pseudocode in listing 5.1 forwards all windows arriving from
the first child before moving on to the second child. It would also be possible to
forward the first window arriving from each child, then forwarding the second
window from each child etc. The impact this ordering has on the performance
could be interesting to investigate.

function Gather (input_windows[m], output_window):
n_data_windows [m] //empty array of integers

for i = 0; i < m; i++:
w = input_windows[il]
acquire (w)
d <- read first element of w
release (w)

n_data_windows[i] = d
header_value = 1 + sum of all entries of n_data_windows
send (output_window, {header_value, ...})

send (local_data)

for i = 0; i1 < m; i++:
repeat n_data_windows[i] times:
acquire (w)
send (output_window, w)
release (w)

Listing 5.1: Pseudocode of the Gather collective operation.
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Discussion

6.1 Lessons Learned

This section mentions some of the bugs we have encountered while working on
the thesis.

6.1.1 GMIO Transactions

There has been great confusion concerning one line in the host code which is
relevant for both the latency benchmark and the Reduce implementation. In
the host code, to access the data a kernel produces we have to explicitly send it
from the kernel to GMIO. From the kernel’s perspective, this appears to be a
normal write to an output window. In the host, after allocating enough memory
to store the kernel’s data once it arrives, we have to call a specific function
GMIO::aie2gm nb to “initiate memory-mapped AXILj transactions for the Al
Engine to write to DDR memory spaces” [10]. After running the graph, we call
GMIO: :wait, which supposedly waits for the AXI4 transaction to finish. The
documentation claims that after this function call has returned, we should be
able to access the data in the host: ”gr.gmioOut.wait() is to ensure that data has
been migrated to DDR memory. After it is done, the PS can access output data
for post-processing.” [10]. However, we have found that this does not work: For
some executions of a single compiled program, the data is available as expected;
for other executions, it is not available and we read arbitrary initialization
values; and for some executions, we even get data which has partially arrived,
i.e. the first few entries match what we expect to receive from the kernel and
the remaining entries are still the initialization values. The workaround we
have found is to call the wait method on our graph instance, in addition to the
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GMIO: :wait call (see listing 6.1). We do not have a justification for why this
should fix the bug, nor why the bug appears in the first place.
simpleGraph mygraph;
int main(int argc, char xargv[]) {
mygraph.init ();
int32* block = (int32*)GMIO::malloc(block_size);
mygraph.gmioOut.aie2gm_nb(block, block_size);
mygraph.run (1) ;
mygraph.wait(); //<-- This should not be necessary!
mygraph.gmioOut.wait(); //<-- This should be sufficient.
// ... can access data in ’block’.

}

Listing 6.1: Slightly simplified host code showcasing that we need the line mygraph.wait () to
successfully access the transferred data.

6.1.2 Using std::vector

When defining the graph, it is necessary to store all kernels as private members
of the graph class. One solution would be to use a std: :vector of kernels as
shown in listing 6.2. However, this has led to inexplicable compilation errors
when used in the context of the full Reduce code. The solution was to use
fixed-size C-style arrays instead. We do not know why using std: :vector does
not work as there are examples provided by AMD /Xilinx which make use of
them, but we have not investigated this error further since we have found a
workaround. We would generally recommend to use C-style arrays instead of
std: :vector in order to avoid this error.

class simpleGraph : public graph {

private:

//std::vector<kernel> kernels;
kernel kernels[n];

public:
simpleGraph () {
for (int i = 0; i < n; i++) {
//kernels.push_back(kernel::create(k));
kernels[i] = kernel::create(k);
}
//
}

3}

Listing 6.2: Comparison of the usage of std::vector (commented out) and C-style arrays.

6.1.3 Conclusion

Working on this device has been interesting, but often frustrating. The guides
provided by AMD/Xilinx are relatively well written and answer most questions,
but information is scattered rather unpredictably across several guides. The
support forum is not very active and is the only online resource apart from the
official guides. We have encountered inexplicable bugs which seem to contradict
statements in the guides, and this has cost us valuable time.
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The AIE architecture is promising, but only if it is used in a very particular
way which makes use of all its intricate hardware details.

6.2 Further Work

This thesis has hopefully shown that it is possible to implement collective
operations for the AIE architecture, using the example of the Reduce function.
There are many opportunities for further work in this direction.

Comparison of Arities

The Reduce design we have implemented makes use of a binary tree to forward
partially reduced intermediate results. It would be interesting to see how trees
of different arities influence the performance and the scaling behaviour of the
implementation. The same could be done for the Gather collective once it is
implemented.

Placement and Routing Problems

We have extensively discussed the limitations due to limited per-kernel memory
and a limited number of inter-AIE connections. As we have seen, the practical
upper bound we could achieve on the depth of the tree is significantly below
the theoretical upper bound. This is not surprising because we did not model
spatial constraints:

e Each kernel can access the local data memory of at most three neighbouring
engines.

e Only a limited number of AXI4 streams per direction are available at each
engine.

It would be interesting to see if one can model the upper bound on the window
size, data size and tree depth more accurately, taking into account these two
constraints. Optimally, one could even implement a proper placement algorithm.
However, this seems like a hard problem given that the AIE compiler internally
attempts to solve essentially the same problem (using an ILP solver), but it
either times out due to the size of the problem space or it does not find a solution
because it is over-constrained.

Remaining Collectives

It should be relatively simple to implement the Gather collective based on the
implementation of Reduce and the design considerations done in chapter 5. One
could try to improve on the design such that the number of windows does not
grow exponentially with the tree depth.

The MPI standard defines more collective operations, such as Scatter and
Allreduce, which could also be designed and implemented. For Scatter, it might
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be possible to use a similar approach as Gather, just inverted. Allreduce could
be implemented by performing Reduce and then broadcasting the result to
all senders using the built-in broadcast capabilities. Alternatively, one could
experiment with more advanced designs such as butterfly networks.
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