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In!uence, inertia, and independence: a di"usion model for 
temporal social networks
Gordana Marmulla and Ulrik Brandes

Department of Humanities, Social and Political Sciences, Social Networks Lab, ETH Zürich, Zurich, 
Switzerland

ABSTRACT
In this work, we propose a di!usion model for temporal social 
networks and relate it to other well-known models of social 
in"uence by investigating its formal properties. The model 
establishes dyadic in"uence weights based on two antagonistic 
components: the susceptibility to be in"uenced (or, conversely, 
inertia with respect to the status quo) and becoming indepen-
dent of prior in"uence. The proposed model generalizes the 
Friedkin-Johnsen model by the inertia with respect to the cur-
rent in"uence relationships. We show that this generalization is 
an over-parameterization for static but not for dynamic in"u-
ence networks. These #ndings suggest that the model at hand 
expands the set of existing social in"uence models in a non- 
trivial way.
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1. Introduction

Social influence is the process through which individuals change their 
thoughts, feelings, attitudes, or behavior by interacting with other individuals 
or groups (Rashotte, 2007). Theories of social psychology explain why there is 
social influence through conformity (Asch, 1956), cohesion (Coleman et al.,  
1957), power (French & Raven, 1959), and leadership (Katz & Lazarsfeld,  
2017), among others. One way how influence can change attitudes, behavior, 
etc., is through assimilation: the target of influence becomes more similar to 
the source of influence. Assimilative change is supported by social psycholo-
gical theories such as cognitive dissonance theory (Festinger, 1957), the laws of 
imitation (Tarde, 1903), or social learning theory (Bandura, 1977).

Any observable behavior is not only a response to stimuli but also a stimulus 
perceived by others (Newcomb, 1951), such that each individual can act as both 
the source and target of influence. In an influence network, where nodes 
represent individuals and (directed) edges represent (directed) influence, this 
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dual function enables influence to propagate through the network. The influence 
network is the infrastructure for the dynamics (Holme, 2015) of the behavioral 
states, and it can be static or itself dynamic. Both the influence network and the 
behavioral states exhibit a characteristic timescale whose relationship to each 
other is decisive for modeling. When the behavioral states evolve sufficiently fast 
compared to the dynamics of the interactions, there is no need to model the 
network as dynamic (Holme & Saramäki, 2012), and it is acceptable to assume 
the network to be static (Porter & Gleeson, 2016). On the other hand, if both 
timescales are similar, it is necessary to model the network and the behavioral 
states as concurrent, where the behavioral states could also feed back the net-
work dynamics (so-called adaptive or coevolutionary networks (Gross & Blasius,  
2008)). Models of social influence processes where influence evolves over time 
are expected to yield important insights (Mason et al., 2007). We adopt the 
perspective of a dynamic influence process on a dynamic influence network, but 
without a feedback mechanism from the behavioral states back to the influence 
network, i.e., without a selection process.

In this paper, we propose a diffusion model for temporal social networks 
which generalizes the Friedkin-Johnsen model (Friedkin & Johnsen, 1990). 
The model was recently used in a pilot study to model influence propagation 
in a temporal network of coaching relationships in the Australian Football 
League to identify the most influential coaches in terms of their influence on 
other coaches (Marmulla et al., 2023). The proposed model consists of two 
antagonistic components: the susceptibility of a node to be influenced or, 
conversely, the inertia with respect to the status quo (as a player), and 
becoming independent from prior influences (as a coach). Given these two 
components, the process establishes influence relationships between any two 
nodes based on a given temporal influence network and independence rates.

While the pilot study in Marmulla et al. (2023) is focused on an application, 
this paper focuses on formal properties of the model and relates it to the 
literature on social influence models. In this way, the paper aims to avoid the 
addition of yet another influence model without investigating its relation to 
other models, which is a central problem in the literature on social influence 
(Flache et al., 2017). The investigation is based on the evolution of dyadic 
influence relationships. This perspective is different from the default focus in 
the existing literature, which is predominantly on the evolution of the indivi-
dual behaviors. For temporal networks in particular, the focus of the field has 
been more on what is diffusing through the network rather than the temporal 
networks themselves (Holme, 2015). However, as Friedkin himself noted after 
introducing the Friedkin-Johnsen model, it does not only describe a process of 
opinion formation but is actually an “elemental process model of social 
influence” (Friedkin, 1991, p. 1478).

Our main contributions are twofold. First, we propose a diffusion model 
that generalizes the model of Friedkin and Johnsen (1990) for opinion 
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pooling with stubborn actors. The generalization comes from the inertia with 
respect to the current influence relationships, which is not present in the 
Friedkin-Johnsen model. This inertia can be considered as an equivalent of 
the “status quo bias” from the field of decision-making (Samuelson & 
Zeckhauser, 1988): the tendency of individuals to stick with the status quo. 
Second, we show that the found generalization reduces to an over- 
parametrization at equilibrium on a static influence structure. This finding 
means that under a static influence network, for almost every instance of the 
Friedkin-Johnsen model, there is a corresponding instance of the proposed 
model such that both coincide in the limit. However, under a dynamic 
influence structure, it is in general not possible to capture the inertia by 
a suitable instance of the Friedkin-Johnsen model.

The remainder of the paper is organized as follows. In Section 2, the 
diffusion model is outlined. Relations to the existing literature on the influence 
relationships are presented in Section 3. We conclude that the proposed model 
expands the set of social influence models and gives suggestions for future 
work in Section 4.

2. Model

The proposed diffusion process models how influence relationships between 
individuals are evolving. In contrast to the common focus of diffusion models 
on changes in actual behaviors, opinions, etc. (commonly referred to as states), 
we rather model the change in influence weights between individuals. 
Specifically, we make two general assumptions: the influence of one individual 
on another is independent of their states, and the influence relationships 
determine the state of each individual. Given these assumptions, the beha-
vioral states can be neglected since their values do not affect the diffusion 
process itself, and it is sufficient to know the influence relationships. Having 
said this, the values of the states and their evolution are not the subject of this 
paper. However, the way the influence weights are modeled has consequences 
for the requirements regarding the specification of the states. These require-
ments are, in turn, relevant whenever the model is used to represent actual 
behavior, and are addressed at the end of the section.

In the model, the dyadic influence relationships evolve over discrete time 
steps through two antagonistic components: the individuals’ susceptibility to 
influence (or, conversely, inertia with respect to the status quo), and becoming 
independent of past influence of others. At any moment, every node in the 
network is subject to accumulated influence from others expressed as 
a distribution of influence weights. The distribution associated with a node 
describes the share of influence received from the respective others and the 
share of its own independence. The extent to which influence and indepen-
dence change the relationships of a node depends on the one hand on global 
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parameters at the macro level and on the other hand on dyadic and individual 
weights at the micro level.

2.1. In!uence and inertia

Influence is modeled as an assimilative influence. The influence relationships 
of an influenced node i become more similar to the influence relationships of 
an influencing node j. This means that node i is becoming more similar to j in 
terms of who it is influenced by. The assimilation is implemented as 
a weighted average of both distributions. The extent of assimilation is regu-
lated by the product of two values: the general susceptibility to influence γ and 
a time-dependent dyadic weight WÖtÜ

ij . The parameter γ can range from zero 
(i.e., not susceptible at all) to one (i.e., totally susceptible). The quantity 1� γ 
describes the general level of inertia to stick to the status quo, the current 
influence relationships.

2.2. Independence

Following the APA Dictionary of Psychology (American Psychological 
Association, 2023), we refer to independence as the freedom from the influ-
ence of other individuals. Becoming independent is modeled as decreasing the 
influence of others while increasing an individual’s own independence. The 
decay of the prior influence is implemented by downscaling the distribution of 
a node i, where the amount lost due to the scaling is then added to the share of 
i’s independence. The extent of independence is regulated by the product 
of two values: the general independence parameter 1� α and a time- 
dependent individual weight EÖtÜii . The parameter 1� α can range from zero 
(i.e., no independence) to one (i.e., total independence).

2.3. Formalization

The novel diffusion process can be expressed as a recursive formula of opera-
tions on a directed and weighted adjacency matrix I ÖtÜ, which represents the 
influence relationships at time t: 

with a row stochastic WÖtÜ; I Ö0Ü 2 â0; 1än⇥n, diagonal EÖtÜ 2 â0; 1än⇥n, para-
meters γ; α 2 â0; 1ä, and In as the identity matrix of size n, where n is the 
number of nodes. A single entry I ÖtÜij describes the share of influence node j has 
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on i at time t. The ith row I ÖtÜi? represents the influence distribution of i. As 
a result, I ÖtÜ is row stochastic.

The matrix WÖtÜ contains the time-dependent dyadic influence weights. An 
entry WÖtÜ

ij is larger than zero if j influences i at time t. The value WÖtÜ
ij 2 0; 1â ä

describes the relative weight with which j influences i. The matrix WÖtÜ is 
assumed to be row stochastic, i.e., the influence weights on an individual 
follow a convex combination. The matrix 

contains influence and the inertia toward that influence. As a weighted average 
of two row stochastic matrices (WÖtÜ and In), PÖtÜ is also row stochastic. There 
are three different kinds of non-zero entries in PÖtÜ: 

The entries are, first, the influence of others. Second, the node’s inertia toward 
this influence. Third, preservation entries ensuring that a node’s influence 
distribution does not change, if no influence has happened. The maximum 
extent of influence is bounded from above by γ, which is reached when the 
dyadic weight is WÖtÜ

ij à 1. A weight of WÖtÜ
ij à 1 also means j is the only source 

of influence on i at time t. The minimum extent of i’s inertia toward influence 
is bounded from below by 1� γ, which is reached when WÖtÜ

ii à 0.
The diagonal matrix EÖtÜ 2 0; 1â än⇥n contains the time-dependent individual 

independence rates. An entry EÖtÜii is larger than zero if i becomes independent 
at time t. Therefore, the matrix Ö1� αÜEÖtÜ has only two different kinds of 
entries on its diagonal: 

The entries are, first, preservation such that a node’s influence distribu-
tion does not change if the node has not become independent. Second, 
independence entries where a node i’s influence distribution (i.e., row i 
of PÖtÜI Öt�1Ü) is decayed with factor 1� Ö1� αÜEÖtÜii while Ö1� αÜEÖtÜii is 
added to i’s share of independence. The maximum growth of indepen-
dence is bounded above by 1� α, which is reached when EÖtÜii à 1. 
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A visualization of exemplary distribution changes when a node gets 
influenced (node i), becomes independent (node j), or both (node h) 
is illustrated in Figure 1.

2.4. Generalization

The proposed diffusion process can be generalized. So far, in the model, 
decreasing the influence of others on a node was synonymous with increasing 
the node’s own independence. We can generalize the model by allowing not 
only for an increase in the own independence but also for an increase in the 
influence from any other node. At the formal level, this generalization can be 
described by 

with a diagonal EÖtÜ 2 0; 1â än⇥n and a row stochastic, not necessarily diagonal 
DÖtÜ. If DÖtÜ à In, we get the proposed model (1). At the interpretative level, the 
generalization now reflects a process in which influence relationships that have 

Figure 1. Visualization of exemplary influence relationship changes. The nodes’ distributions are 
depicted by pie charts, i.e., one pie equals one row in I Ö✏Ü. Each node is associated with a unique 
color which is recognizable from the node’s label. A pie slice in a particular color then represents 
the share of influence from the node with this individual color on the node associated with that 
pie. The distribution changes are caused by node j influencing i, j becoming independent, and h 
being influenced by k while simultaneously becoming independent. In this example, the global 
susceptibility is set to γ à 0:5, and the independence rate to 1� α à 0:3.
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been developed by endogenous influence propagation within the network can 
be adjusted exogenously.

2.5. Behavioral state variable

Although we do not directly model the behavioral states, their values can be 
easily calculated under the assumptions we have made. The behavioral state 
variable represents, for example, the nodes’ opinions or behaviors. We assume 
that the influence relationships determine the nodes’ states. That is, the state of 
each node at time t equals the weighted average of the given initial states SÖ0Ü of 
its influencing nodes at time t: 

This assumption then requires the well definedness of convex combinations of 
the behavioral states, which are elements of a set C. In general, it is possible for 
C to be a special barycentric algebra that allows convex combinations without 
referring to a vector space (Romanowska & Smith, 1985). In practice, however, 
it is more common for C to be a convex set, a subset of a vector space. For 
example, C could be the real numbers, C à R .

3. Relationship to existing work

The proposed diffusion model shares aspects with several well-known and 
fundamental influence models. In this section, we construct the proposed 
model by adding these joint aspects one by one to variable I ÖtÜ, which 
describes the evolution of the influence relationships. The stepwise addition 
is done until we arrive at the model presented in Equation 7. While adding, we 
refer to the fundamental models sharing that aspect. In variable I ÖtÜXX, the 
evolution of the influence relationships is described for model XX (where 
XX is an abbreviation of the model’s name). Original notations of the refer-
enced models were adapted to allow for easier visibility of similarities and 
differences between the models – given the same influence structure W or WÖtÜ

for the static or dynamic structure, respectively.
By the end of this section, the following three findings are made. First, the 

proposed model includes the Friedkin-Johnsen model (Friedkin & Johnsen,  
1990) as a special case. Second, given a static influence structure, this seeming 
generalization reduces to an over-parametrization when the influence process 
is supposed to run forever. The long-term behavior of influence models is one 
of the most frequently raised questions: whether the process reaches an 
equilibrium, i.e., whether the limit 
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exists and under what conditions it is reached. The found over- 
parametrization implies that the model’s inertia with respect to the current 
influence relationships does not expand the outcomes of the Friedkin-Johnsen 
model in the limit. But, third, when having a dynamic influence structure, the 
inertia generally makes a difference. The difference we demonstrate does not 
relate to the equilibrium but to single-time steps. More broadly, we are not 
focused on or intend to tackle the question of equilibrium under a dynamic 
influence structure. We construct the model in seven steps as follows. 

Influence is a distributed force of a fixed and finite amount, which is 
implicitly assumed by all subsequent models. It is a result of using a non- 
negative stochastic matrix I ÖtÜ to represent the interpersonal influence rela-
tionships. By appropriate modifications on the matrix throughout the 
processes, the stochasticity and the constant total amount of influence equiva-
lent to the number of nodes are maintained. 

Influence is assumed to be assimilative, reducing differences and making 
the target of influence more similar to the source of influence (Flache et al.,  
2017). The assimilation is implemented by weighted averaging as given by 
a static influence network W 2 0; 1â än⇥n, which is row stochastic: 

with a given row stochastic initial I Ö0Ü 2 0; 1â än⇥n. The classical model of 
Degroot (1974), based on French (1956) and Harary (1959), uses the same 
implementation 

but with the specific initial I Ö0ÜDG à In. 

The initial influence relationships are freely selectable. An initial state 
must be assumed from which the influence relationships develop. All of the 
referenced models, either implicitly or explicitly, assume that the nodes start 
entirely independent, i.e., I Ö0Ü à In. This assumption is in contrast to the free 
choice of I Ö0Ü that we propose. 

Incorporating independence allows separating from received influence. 
This separation is implemented by relatively weighting the propagated influ-
ences against pure independence with factors α and 1� α, respectively: 
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The independence is also included in the model of Friedkin and Johnsen (1990). 
Therein, Friedkin and Johnsen proposed that opinions (the behavioral state) 
evolve as an average of one’s own opinion and the opinion of influencers, but 
with an anchorage on the initial opinion, reflecting some stubbornness. For the 
Friedkin-Johnsen model, the opinions’ evolution can be written in the form of 
Equation (6) meaning that the opinions are completely dependent on the 
evolution of the influence relationships. From that equation, it can be seen 
that the anchoring at the initial behavioral state (opinion) corresponds to the 
independence in the influence relationships. The influence relationships of the 
static Friedkin-Johnsen model evolve dependent on the parameter α, which they 
introduced to represent a homogeneous “susceptibility to interpersonal 
influence”: 

with I Ö0ÜFJ à In. 

An inertia with respect to the current influence relationships is assumed. 
The extent of inertia is controlled by the size of Ö1� γÜ:

While we assume the inertia parameter to be static, Demarzo et al. (2003) 
included a time-dependent parameter γt 2 0; 1Ö ä that controls the weight with 
which agents “listen” to others relative to themselves by 

with I Ö0ÜDM à In. 

Remark 1. The Friedkin-Johnsen model (9) is included in model (10) as 
a special case: choosing γ à 1 and I Ö0Ü à In in I ÖtÜ given by (10) makes the 
dynamics of both models coincide, i.e., I ÖtÜ à I ÖtÜFJ for all t. When the 
dynamics coincide, the limits do so as well. However, as the subsequent 
Lemma 3.1 shows, I ÖtÜ at equilibrium is simply an over-parameterized version 
of I ÖtÜFJ under the same static influence structure.

Lemma 3.1. Let I ÖtÜ be as given by (10) with α 2 â0; 1Ü, γ 2 â0; 1ä, and a row 
stochastic W 2 â0; 1än⇥n. Then, I ÖtÜ converges, and there is an α0 2 â0; 1Ü such 
that lim

t!1
I ÖtÜ à lim

t!1
I ÖtÜFJ for I ÖtÜFJ as given by (9) under the same W, indepen-

dent on the chosen I Ö0Ü. The α0 is given by  
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The matrix series I ÖtÜFJ converges faster than I ÖtÜ to the joint limit. 

Remark 2. Lemma 3.1 cannot be extended for the entire parameter space. If 
α à 1, the model I ÖtÜ reduces to an instance of the Degroot model I ÖtÜDG, which is 
isomorphic to a finite time-homogeneous Markov chain. Consider the influence 
network of two nodes defined by an irreducible and periodic Markov chain 

Then, the model’s inertia makes I ÖtÜ an irreducible and aperiodic 
Markov chain for any γ 2 Ö0; 1Ü, which will converge to the stationary 
distribution π: 

with 1n as a vector of size n consisting of ones. The matrix 1nπT , as the product 
of a column and row vector, has rank one. However, there is no α0 for the 
Friedkin-Johnsen model I ÖtÜFJ which would result in the same limit: for α0 à 1, 
I ÖtÜFJ does not converge due to the periodicity of W; for α0 < 1, the limit 
I tÖ Ü

FJ à In � α0WÖ Ü�1 1� α0Ö Ü is a matrix of full rank and cannot be reduced 
to rank one by any choice of α0 2 0; 1â Ü. 

The extent of independence is assumed to consist of a homogeneous and 
a heterogeneous level. Additional to the homogeneous parameter α, 
a heterogeneous level that allows for individual differences is added by scaling 
with a diagonal matrix E 2 0; 1â än⇥n: 

For the Friedkin-Johnsen model, there is a (totally) heterogeneous version 
(Friedkin & Johnsen, 1999) given by 

with a diagonal A 2 0; 1â än⇥n and I Ö0ÜFJ à In. We refer here to the version 
without any coupling constraint between A and W. 
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Remark 3. As for the homogeneous case, choosing γ à 1, A à In � Ö1� αÜE, and 
I Ö0Ü à In makes the heterogeneous Friedkin-Johnsen model (14) a special case of 
(13). As we will see in Lemma 3.4, adding a heterogeneous level of independence 
does not change the fact that model I ÖtÜ as given by (13) at equilibrium is simply an 
over-parametrization of the Friedkin-Johnsen model I ÖtÜFJ as given by (14). But the 
heterogeneity sophisticates the conditions of equilibrium. Parsegov et al. (2017) 
provide a specific block form of a substochastic matrix M through a partition and 
permutation of the nodes, which allowed them to derive a necessary and sufficient 
convergence condition for I ÖtÜFJ . The partition is defined as follows.

Definition 3.2. Consider a substochastic matrix M à DR with 
D;R 2 â0; 1än⇥n, D diagonal, and R row stochastic. We define the S-partition 
of the set of nodes V à 1; . . . ; nf g into V à V1 [ V2 by 

Any substochastic M can be written as required from Definition 3.2 by setting 
Dii à

Pn
jà1 Mij; Rij :à Mij=Dii for Dii > 0 and Ri? as any stochastic vector if 

Dii à 0. The S-partition (15) splits the nodes into two sets. The set V1 contains 
“stubborn” (Dii < 1) nodes and nodes that are directly or indirectly influenced 
by a stubborn node (âRkäij > 0), while there is not a single stubborn node 
contained in V2. Besides potential influence between nodes of the same set, 
nodes in V2 can influence nodes in V1 but not the other way around. 
Therefore, permuting the nodes such that V1 precedes V2 results in an upper 
triangular block form M à DR 

with 0 representing zero matrices of appropriate sizes and n2 as the cardinality of 
set V2. By using this block form, Parsegov et al. were able to identify criteria for 
substochastic matrices M with spectral radius ρ MÖ Ü à 1 whose powers never-
theless converge (Parsegov et al., 2017, Lemma 1). In turn, they used this char-
acterization to prove the following theorem (the notation has been adapted).

Theorem 3.3 (Theorem 1, Corollary 2, Parsegov et al. (2017)). Let DR be 
a substochastic matrix with D;R 2 â0; 1än⇥n, D diagonal, and R row stochastic. 
Assume DR of the block form (16) and let V1;V2 denote the S-partition defined by 
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(15) with n1, n2 as their respective cardinality. Then, ρ D11R11Ö Ü< 1. It holds 
ρ DRÖ Ü< 1 if and only if V2 à ;. If V2fi;, the limit lim

t!1
DRÖ Üt exists if and only 

if lim
t!1

R22Ö Üt à R122 also exists. If existent, the limit of powers is given by  

and the series converges  

Theorem 3.3 states that the influence relationships of all nodes converge if and 
only if those of V2 do so. We use the S -partition and the resulting block form 
to derive whether models I ÖtÜ and I ÖtÜFJ can coincide in converged equilibrium 
and, if so, what conditions are required for this to occur. We find in the 
following Lemma that the over-parametrization, as found in Lemma (3.1) for 
homogeneous independence, also applies to the more general case with an 
additional level of heterogeneous independence.

Lemma 3.4. Let I ÖtÜ be as given by (13) with γ 2 0; 1Ö ä, α 2 0; 1â Ü, a row 
stochastic W 2 â0; 1än⇥n, and a diagonal E 2 0; 1â än⇥n. Let V1;V2 denote the S- 
partition induced by (15) for D à In � 1� αÖ ÜE and R à γW á Ö1� γÜIn. Let 
n1, n2 denote the respective cardinality of V1;V2. If either V2 à ;, or if 
γW22 á Ö1� γÜIn2 is irreducible and aperiodic when V2fi;, then I ÖtÜ converges. 
Let A 2 0; 1â än⇥n be the diagonal matrix defined by  

for I ÖtÜFJ as given by (14). Then, if W22 is aperiodic and I Ö0Ü22 à In2 when V2fi;, 
equality applies for the limits lim

t!1
I ÖtÜ à lim

t!1
I ÖtÜFJ under the same W and inde-

pendent of I Ö0Ü11 , I Ö0Ü12 .

Remark 4. The mapping M in (19) maintains the S-partition of V: nodes in 
V2 w.r.t. ÖIn � Ö1� αÜEÜÖγW á Ö1� γÜInÜ will be in V2 w.r.t. AW after apply-
ing M. For specific cases, there can be alternative possibilities to define an 

THE JOURNAL OF MATHEMATICAL SOCIOLOGY 351



appropriate A such that I Ö1Ü à I Ö1ÜFJ , which are not covered by Lemma 3.4. 
However, we do not elaborate on these specific cases here.

Remark 5. From both mappings, m and M, it can be concluded that with 
matching limits emerging from a static influence structure, a larger inertia 
1� γ in I ÖtÜ reduces the “susceptibility to interpersonal influence” α0 and A in 
I ÖtÜFJ , or conversely a reinforcement of independence 1� α0 and In � A.

Influence and independence are assumed to change over time. 
Incorporating the dynamic perspective as the final step, we arrive at the 
model that has been proposed in the previous section: 

Taking time into account is an intuitive choice for generalizing models and 
making them more realistic. Chatterjee and Seneta (1977) proposed a time- 
dependent variant for the DeGroot model in which the influence network WÖtÜ

varies over time. Friedkin and Johnsen already presented a relaxed version of 
their model in their original paper (Friedkin & Johnsen, 1990), where all con-
structs may vary over time. The temporal Friedkin-Johnsen model is described by 

with AÖtÜ;WÖtÜ 2 0; 1â än⇥n, whereby AÖtÜ is diagonal and WÖtÜ is row stochastic, 
and I Ö0ÜFJ à In. In particular, the temporal models (20) and (21) allow nodes to 
be only influenced (no independence) at one time and become exclusively 
independent (receiving no influence) at another time.

The transition from static to dynamic influence and independence changes 
the associated timescales: from two separate timescales in the static case, where 
the behavioral states’ dynamics are faster than influence and independence 
dynamics, to a single timescale in the dynamic case, where the behavioral states’ 
dynamics take place on the same timescale as the influence and independence 
dynamics. We do not impose any restrictions on how much WÖtÜ and EÖtÜ can 
change in one single time step t. Between the two extremes of no change and any 
change, there can be intermediary stages. For example, changes are only per-
mitted in the influence weights that are not zero and at a point in time that is 
either after the convergence of the behavioral dynamics under the previous 
influence network (Friedkin, 2011; Jia et al., 2015; Tian et al., 2022), or that is 
already after each update of the behavioral state (Jia et al., 2020; Tian et al., 2022).

For the time-dependent influence structure as well, one might ask for conditions 
under which the influence process converges and, more importantly, whether the 
proposed model is an over-parametrization of the temporal Friedkin-Johnsen 
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model, as found in the static case. Even for the time-varying DeGroot model, which 
is a special case of both models I ÖtÜ; I ÖtÜFJ , the convergence conditions remain 
a challenge, of which only sufficient ones have been found so far (Proskurnikov 
& Tempo, 2018). For the temporal Friedkin-Johnsen model (21), Proskurnikov 
et al. (2017) provide sufficient conditions for its asymptotic stability, i.e., sufficient 
conditions such that 

vanishes as part of I ÖtÜFJ . They use asymptotic stability to show that in the very 
special case where all nodes are anchored at the same value, the opinions then 
converge to a consensus (the anchored value). However, our focus is on the dyadic 
influence relationships and not on the individual opinions, and unlike in the static 
case, asymptotic stability does not imply the convergence of the influence relation-
ships I ÖtÜFJ (for an example see (Proskurnikov et al., 2017, p. 11899)). Therefore, 
instead of investigating whether I ÖtÜ and I ÖtÜFJ might be congruent in the limit, we 
show in the following Lemma that equality cannot be maintained for a single-time 
step in general. The proposed model’s inertia causes this lack of maintenance.

Lemma 3.5. Let I Öt�1Ü and I Öt�1Ü
FJ be as given by (20) and (21), respectively. Let 

γ < 1; α> 0 and I Öt�1Ü à I Öt�1Ü
FJ . If there is an i with WÖtÜ

ii ; I
Öt�1Ü
ii fi1, then there is 

no diagonal AÖtÜ 2 â0; 1än⇥n such that I ÖtÜ à I ÖtÜFJ .

Remark 6. For the Friedkin-Johnsen model, in the extreme case where a node k 
exhibits the entry WÖtÜ

kk à 0, k’s current influence distribution I Öt�1Ü
k? is entirely 

overwritten and replaced by a weighted average of the distribution(s) of k’s 
influencing node(s) and, potentially, the point distribution due to independence. 
If there are nodes that have had influence on k but not on any of k’s influencing 
nodes, they will completely lose their influence, regardless of what is in AÖtÜkk . This 
loss is prevented by the inertia in the proposed model. An exemplary visualization 
of this extreme case is shown in the following example.

Example 3.6. Assume the following influence distributions I Öt�1Ü à I Öt�1Ü
FJ 

as represented by pie charts from the exemplary distribution changes in 
Figure 1:
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Let k be influenced by h with weight WÖtÜ
kh à 1, i.e., WÖtÜ

kk à 0 in particular, 
while becoming independent with weight EÖtÜkk à 1. Then, the updated influ-
ence relationships of k consist of a parametrically weighted average of three 
different distributions for the proposed model (as long as the inertia to change 
the current relationships is present, 1� γ> 0, and independence is not totali-
tarian, 1� α < 1). Whereas for the temporal Friedkin-Johnsen model, the 
average is taken over one distribution less, i.e., excluding âI Öt�1Ü

FJ äk?:

Remark 7. In the dynamic case, the inertia acquires its raison d’être since the 
outcome of the proposed model cannot be achieved by simply adjusting the 
independence in the Friedkin-Johnsen model. Inertia enables an impact of 
past influence, which is obsolete in the static case because the same influence 
dynamics are repeated over and over again.

4. Conclusion

This paper proposes a diffusion model for temporal social networks that 
generalizes the Friedkin-Johnsen model. Influence relationships between 
every two nodes are established based on becoming influenced but sticking 
to the status quo due to inertia, and becoming independent from previously 
received influence. Relating to existing models, we find that the proposed 
model is an over-parametrization of the well-known Friedkin-Johnsen model 
on the same static influence structure. On a dynamic influence structure, 
however, the model cannot be substituted by an appropriate choice of the 
Friedkin-Johnsen model, because of interaction effects between inertia and 
network dynamics. This finding suggests that the proposed model non- 
trivially contributes to the set of social influence models currently present. 
In addition to comparing different models with the same timescale, a future 
step could be to compare different time scales for the proposed model. For 
example, whether there are instances of the dynamic model that can be 
approximated by an instance of the static model. We believe the model 
exhibits the potential to reflect various influence processes of dynamic social 
relationships, and its scope needs to be further examined. The model is 
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deterministic but parametric, so a direction for future work might consider 
how much the given temporal network already determines the influence 
relationships. In other words, how much do the influence relationships vary 
depending on the chosen parameters? Ideally, an answer to that question is 
also valuable for developing a method for estimating the model’s parameters 
when the most influential nodes are known.
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Appendix

Proof of Lemma 3.1. First, it is shown that (i) under the given assumptions, I ÖtÜ

does converge. Then, (ii) I ÖtÜFJ is proved to be equal to I Ö1Ü in the limit for the stated 
α0. Finally, it is shown that (iii) I ÖtÜFJ converges faster than I ÖtÜ to the joint limit.

(i) The non-recursive influence relationships of I ÖtÜ equals

I tÖ Ü à âαÖγW á 1� γÖ ÜInätI 0Ö Ü á 1� αÖ Ü
Xt�1

kà0
âα γW á 1� γÖ ÜInÖ Üäk:

The first part converges to zero since α < 1. Because α < 1, the matrix âαÖγW á Ö1� γÜInÜä is 
strictly substochastic, so its spectral radius is strictly smaller than one. For a matrix M with 
spectral radius ρ MÖ Ü< 1, the Neumann series gives 

X1

kà0
Mk à ÖIn �MÜ�1: Ö23Ü

With (23), the limit constitutes as 

I Ö1Ü à lim
t!1
I ÖtÜ à Ö1� αÜÖIn � αâγW á Ö1� γÜInäÜ�1: (24) 

(ii) Let α0 be as defined by (12). Since α0 < 1, the series I ÖtÜFJ converges for the same reasons as 
outlined above, and its limit is 

I Ö1ÜFJ à lim
t!1
I ÖtÜFJ à Ö1� α0ÜÖIn � α0WÜ�1: (25) 

Plugging in α0 à αγ
αγáÖ1�αÜ into I Ö1ÜFJ yields equality of both limits: 

I Ö1ÜFJ à 1� αγ
αγá Ö1� αÜ

✓ ◆

|ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ}
à 1�α

αγá1�α

In �
αγ

αγá Ö1� αÜW
 ��1 

à Ö1� αÜ αγá Ö1� αÜ
αγá Ö1� αÜ ÖÖαγá 1� αÜIn � αγWÜ
 ��1 

à Ö1� αÜ In � αÖγW á Ö1� γÜInÜâ ä�1 à I Ö1Ü:

(iii) The speed of convergence of the matrix series I ÖtÜFJ and I ÖtÜ depends on how fast the terms 
α0WÖ Üt and âαÖγW á Ö1� γÜInÜät , respectively, converge to zero. This, in turn, depends on the 

spectral radius of these matrices. The bounds on the spectral radius of a nonnegative matrix 
A (see Lemma 3.1.1., Bapat and Raghavan (1997)) 

min
1in

Xn

jà1
Aij  ρ AÖ Ü  max

1in

Xn

jà1
Aij (26) 

gives in our specific case 
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ρ α0WÖ Ü à α0 and ρ αâγW á Ö1� γÜInäÖ Ü à α:

With α 2 â0; 1Ü and γ 2 â0; 1ä, it is then

0  αÖ1� γÜÖ1� αÜ ,

ρ α0WÖ Ü à α0 à αγ
αγá Ö1� αÜ  α à ρ αâγW á Ö1� γÜInäÖ Ü

which proves the claim.

Proof of Lemma 3.4. First, it is shown that (i) under the given assumptions, 
I ÖtÜ does converge, and an expression for I Ö1Ü is provided. Then, (ii) I ÖtÜFJ is 
proved to coincide with I Ö1Ü in the limit for the stated A. 

(i) The convergence of I ÖtÜ directly follows from Theorem 3.3 given the irreducibility and 
aperiodicity of γW22 á Ö1� γÜIn2 . The limit I Ö1Ü constitutes as the sum of (17) and (18) but 
requires an adaption for the initial influence relationships: 

lim
t!1

DRÖ ÜtIÖ0Ü á
Xt�1

kà0
DRÖ Ük In � DÖ Ü

" #

(27) 

à 0 In1 � D11R11Ö Ü�1D11R12R122
0 R122

✓ ◆
IÖ0Ü á In1 � D11R11Ö Ü�1 In1 � D11Ö Ü 0

0 0

✓ ◆

à
In1 � D11R11Ö Ü�1 D11R12R122IÖ0Ü21 á In1 � D11

h i
In1 � D11R11Ö Ü�1D11R12R122IÖ0Ü22

R122IÖ0Ü21 R122IÖ0Ü22

 !

with a row stochastic IÖ0Ü 2 â0; 1än⇥n. Then, both limits I Ö1Ü and I Ö1ÜFJ can be obtained by (28) 
inserting D, R, and IÖ0Ü accordingly.

(ii) Let A be as defined by (19). Then, V1 and V2 are closed under M such that it is also 
a partition w.r.t. D à A;R àW. This follows from M α; 0; γÖ Ü à 1, M α; 1; γÖ Ü à 0, and the 
fact that loops do not alter reachability properties. Because V1;V2 are closed under M, we have 
the same block structure. Given that W22 is aperiodic, I ÖtÜFJ is also converging. The limits for 
I Ö1Ü and I Ö1ÜFJ are obtained by setting D à In � Ö1� αÜE;R à γW á Ö1� γÜIn; IÖ0Ü à I Ö0Ü and 
D à A;R àW; IÖ0Ü à In, respectively, in (27). The limits coincide if each of the blocks does so. 
Given I Ö0Ü22 à In2 , the equality of the limits applies if the four equations are fulfilled 
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I In1 � A11W11Ö Ü�1 In1 � A11Ö Ü à
âIn1 � ÖIn1 � Ö1� αÜE11ÜÖγW11 á Ö1� γÜIn1Üä

�1Ö1� αÜE11;

II In1 � A11W11Ö Ü�1A11W12W1
22 à

âIn1 � ÖIn1 � Ö1� αÜE11ÜÖγW11 á Ö1� γÜIn1Üä
�1

ÖIn1 � Ö1� αÜE11ÜγW12ÖγW22 á Ö1� γÜIn2Ü
1;

III 0 à 0;

IV W1
22 à ÖγW22 á Ö1� γÜIn2Ü

1:

Equation III trivially applies. The rows of W1
22 consist of the stationary distribution π, which is 

the left stochastic eigenvector of W22 for eigenvalue one. Then, 

π γW22 á Ö1� γÜIn2Ö Ü à γπ á Ö1� γÜπ à π;

i.e., row vector π is also a left eigenvector of γW22 á Ö1� γÜIn2 for eigenvalue one. Thus, π is 
also the stationary distribution of the Markov chain described by matrix γW22 á Ö1� γÜIn2 . 
Therefore, the rows of ÖγW22 á Ö1� γÜIn2Ü

1 consist of π, and equation IV holds. It remains to 
show that the defined A solves I and II. Since IV holds, equation II holds if 

II0 In1 � A11W11Ö Ü�1A11 à
âIn1 � ÖIn1 � Ö1� αÜE11ÜÖγW11 á Ö1� γÜIn1Üä

�1ÖIn1 � Ö1� αÜE11Üγ:

We can write matrix A, given by (19), as 

A11 à γÖIn1 � Ö1� αÜE11ÜâγÖIn1 � Ö1� αÜE11Ü á Ö1� αÜE11ä�1: Ö28Ü

The inverse, which is part of A11, is a diagonal matrix and is well-defined: this matrix would not 
have full rank if there is a single i with

0 à γÖ1� Ö1� αÜEiiÜ á Ö1� αÜEii ,

1 à Ö1� γÜ|ÇÇÇ{zÇÇÇ}
< 1

Ö1� Ö1� αÜEiiÜ|ÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇ}
1 

which can never happen as γ> 0. From (28), 

In1 � Ö1� αÜE11 à âγIn1 � Öγ� 1ÜA11ä�1A11 (29) 

is derived and inserted in II’. Using M�1
2 M�1

1 à ÖM1M2Ü�1 it can be verified that II’ and, 
therefore, also II holds. The verification of I is achieved by inserting 

In1 � A11 à Ö1� αÜE11âγÖIn1 � Ö1� αÜE11Ü á Ö1� αÜE11ä�1 (30) 

and A11 from (28) into its left-hand side, from which then the right-hand side can be derived 
using the commutativity of diagonal matrices, adding and subtracting âIn1 � Ö1� αÜE11äÖ1� γÜ
inside the inverse, and, again, using M�1

2 M�1
1 à ÖM1M2Ü�1.
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Proof of Lemma 3.5. The entries of the matrix describing the difference 
I ÖtÜ � I ÖtÜFJ vary between the on- and off-diagonal elements. Given 
I Öt�1Ü à I Öt�1Ü

FJ , the difference of the updated entries amount to 

I ÖtÜii � I
ÖtÜ
FJ

h i

ii
à γ 1� Ö1� αÜEÖtÜii

⇣ ⌘
� AÖtÜii

h iXn

kà1
WÖtÜ

ik I
Öt�1Ü
ki (31) 

á 1� Ö1� αÜEÖtÜii

⇣ ⌘
Ö1� γÜI Öt�1Ü

ii á Ö1� αÜEÖtÜii � 1� AÖtÜii

⇣ ⌘
;

I ÖtÜij � I
ÖtÜ
FJ

h i

ij
à γ 1� Ö1� αÜEÖtÜii

⇣ ⌘
� AÖtÜii

h iXn

kà1
WÖtÜ

ik I
Öt�1Ü
kj (32) 

We consider the nodes that influence i at time t, serving thus as ’brokers’ for propagating 
influence, and partition them according to i’s accumulated influence on them: 

B< :à k 2 V : WÖtÜ
ik > 0 ^ I Öt�1Ü

ki < 1
n o

;

Bà :à k 2 V : WÖtÜ
ik > 0 ^ I Öt�1Ü

ki à 1
n o

:

Because WÖtÜ is row stochastic, the union B< [ Bà is not empty. Note that i itself can be an 
element in B< [ Bà. We distinguish two cases and show that in neither of them an appropriate 
AÖtÜii can be defined such that I ÖtÜ à I ÖtÜFJ holds.

(i) B < à ;: In this case, all nodes influencing i at time t are themselves completely influenced 
by i regarding the accumulated influence. Together with the row stochasticity of WÖtÜ, it follows 

for the sum 
Pn

kà1
WÖtÜ

ik I
Öt�1Ü
ki à 1. Then, in the difference of the diagonal entries (31), the two 

occurrences of AÖtÜii cancel each other out such that under the given assumptions α> 0; γ < 1;
and I Öt�1Ü

ii fi1 it is 

I tÖ Ü
ii � I

tÖ Ü
FJ

h i

ii
à 1� 1� αÖ Ü|ÇÇÇ{zÇÇÇ}

< 1

E tÖ Ü
ii

0

@

1

A 1� γÖ Ü|ÇÇÇ{zÇÇÇ}
> 0

I t�1Ö Ü
ii � 1

⇣ ⌘

|ÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇ}
< 0

fi0 

independent of the choice of AÖtÜii .

(ii) B< fi;: There is a node k 2 B< with WÖtÜ
ik > 0 and I Öt�1Ü

ki < 1. Because I ÖtÜ is row stochastic, 
there is another node jfii with I Öt�1Ü

kj > 0. Then, it is WÖtÜ
ik I

Öt�1Ü
kj > 0, such that the difference of 

the off-diagonal entry (32) is zero if and only if 
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AÖtÜii à γ 1� Ö1� αÜEÖtÜii

h i
:

However, with this AÖtÜii , the on-diagonal difference (31) equals 

I tÖ Ü
ii � I

tÖ Ü
FJ

h i

ii
à 1� 1� αÖ Ü|ÇÇÇ{zÇÇÇ}

< 1

E tÖ Ü
ii

0

@

1

A 1� γÖ Ü|ÇÇÇ{zÇÇÇ}
> 0

I t�1Ö Ü
ii � 1

⇣ ⌘

|ÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇ}
< 0

fi0 

and is never equal to zero under the given assumptions of α > 0; γ < 1; and I Öt�1Ü
ii fi1.
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