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Ø Safe exploration guided by budget 𝐶!,# induced by epistemic uncertainty 𝜎!$%(𝑧)

Ø Relationship between safety constraints under statistical and true environments
ℎ& '𝜇!,# − ℎ& 𝜇!,# ≤ 𝐿'𝐶!,#

Ø Algorithm that adheres to the safety constraints throughout the entire execution 
(with high probability)

Ø Showcasing usefulness of Mean-Field RL in real-world applications!

Learning the optimal safe policy 𝝅∗ under unknown transitions 𝑓 given safety 
constraints ℎ& µ!,# ≥ 0

Motivation: Vehicle Repositioning

Repositiong to the 
high-demand areas

Ø Fair service accessibility
Ø Limit on number of vehicles 

per district

Safety constraints!

Why Safe Mean-Field Reinforcement Learning?

Mean-field distribution 𝜇 of cooperative identical agents 

Individual interactions lead to the combinatorial state-action space

The representative agent (RA) interacts with the mean-field distribution 𝜇

RA policy 𝝅∗ is used to control all the agents

ContactarXiv

No individual interactions

Complex inputs z = (s, 𝜇, a) and probabilistic transitions 𝑈(7)

Ø True mean-field distribution: µ!,#
Ø True safety constraints: ℎ& µ!,# ≥ 0

Ø Statistical model: 8𝑓!$% 𝑧 ≈ 𝑚!$% 𝑧 + Σ!$%(𝑧)
Ø Statistical mean-field distribution: '𝜇!,#
Ø Statistical safety constraints: ℎ& '𝜇!,# ≥ 0
Ø Policy: 𝝅!

𝒉𝑪 "𝝁𝒏,𝒕 ≥ 𝟎 ⟹ 𝒉𝑪 𝝁𝒏,𝒕 ≥ 𝟎?

RA collects trajectories 𝑧!,# , 𝑠!,#)%

Controller sends updated policy 𝝅𝒏∗ to RA

Safe Model-Based Mean-Field RL

Calibrated Statistical Model of Unknown Transitions

Source: Curi (2022) 

Mean: 𝑚!$% 𝑧
Covariance: Σ!$% 𝑧
Confidence: 𝜎!$%+ 𝑧 = 𝑑𝑖𝑎𝑔(Σ!$% 𝑧 )
Calibrated model: 

|𝑓 𝑧 − 𝑚!$% 𝑧 | ≤ 𝑐𝑜𝑛𝑠𝑡 ∗ 𝜎 𝑧

Contributions of Safe-𝐌𝟑-UCRL

Safe-𝐌𝟑-UCRL
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ãn,t = πn,t(s̃n,t, µ̃n,t)

f̃n−1(z̃n,t) = mn−1(z̃n,t) + βn−1Σn−1(z̃n,t)η(z̃n,t)

s̃n,t+1 = f̃n−1(z̃n,t) + εn,t

µ̃n,t+1 = U(µ̃n,t,πn,t, f̃n−1)

hC(µ̃n,t+1) ≥ LhCn,t+1

Model-Based Learning Protocol in Safe-𝐌𝟑-UCRL ρ0

p = 0.85 p = 0.85

Experimental Results

Objective
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Enables safe exploration!


