

Safe model-based multi-agent mean-field reinforcement learning

Conference Poster

Author(s): Jusup, Matej (b; Pásztor, Barna; Janik, Tadeusz; Zhang, Kenan; Corman, Francesco (b; Krause, Andreas; Bogunovic, Ilija

Publication date: 2024-05

Permanent link: https://doi.org/10.3929/ethz-b-000673391

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement: 181210 - DADA - Dynamic data driven Approaches for stochastic Delay propagation Avoidance in railways (SNF)

This page was generated automatically upon download from the <u>ETH Zurich Research Collection</u>. For more information, please consult the <u>Terms of use</u>.

Safe Model-Based Multi-Agent Mean-**Field Reinforcement Learning**

M. Jusup¹, B. Pasztor¹, T. Janik¹, K. Zhang², F. Corman¹, A. Krause¹, I. Bogunovic³ ¹ETH Zurich; ²EPFL Lausanne; ³UCL London

Motivation: Vehicle Repositioning

Why Safe Mean-Field Reinforcement Learning?

Objective Learning the optimal safe policy π^* under unknown transitions f given safety constraints $h_{\mathcal{C}}(\mu_{n,t}) \geq 0$ Individual interactions lead to the combinatorial state-action space Mean-field distribution μ of cooperative identical agents The representative agent (RA) interacts with the mean-field distribution μ RA policy π^* is used to control all the agents No individual interactions

Complex inputs $z = (s, \mu, a)$ and probabilistic transitions $U(\cdot)$

Calibrated Statistical Model of Unknown Transitions

Safe-M³-UCRL

$$\pi_n^* = \underset{\pi_n \in \Pi}{\operatorname{arg\,max}} \max_{\eta(\cdot) \in [-1,1]^p} \mathbb{E} \left[\sum_{t=0}^{T-1} r(\tilde{z}_{n,t}) \middle| \tilde{\mu}_{n,0} = \mu_0 \right]$$

subject to $\tilde{a}_{n,t} = \pi_{n,t}(\tilde{s}_{n,t}, \tilde{\mu}_{n,t})$
 $\tilde{f}_{n-1}(\tilde{z}_{n,t}) = \mathbf{m}_{n-1}(\tilde{z}_{n,t}) + \beta_{n-1} \mathbf{\Sigma}_{n-1}(\tilde{z}_{n,t}) \eta(\tilde{z}_{n,t})$
 $\tilde{s}_{n,t+1} = \tilde{f}_{n-1}(\tilde{z}_{n,t}) + \varepsilon_{n,t}$
 $\tilde{\mu}_{n,t+1} = U(\tilde{\mu}_{n,t}, \pi_{n,t}, \tilde{f}_{n-1})$
 $h_C(\tilde{\mu}_{n,t+1}) \ge L_h C_{n,t+1}$ Enables safe exploration!

Contributions of Safe-M³-UCRL

- > Safe exploration guided by budget $C_{n,t}$ induced by epistemic uncertainty $\sigma_{n-1}(z)$
- > Relationship between safety constraints under statistical and true environments $\left|h_{\mathcal{C}}(\tilde{\mu}_{n,t}) - h_{\mathcal{C}}(\mu_{n,t})\right| \le L_{h}C_{n,t}$
- > Algorithm that adheres to the safety constraints throughout the entire execution (with high probability)

Mean: $m_{n-1}(z)$ Covariance: $\Sigma_{n-1}(z)$ Confidence: $\sigma_{n-1}^2(z) = diag(\Sigma_{n-1}(z))$ Calibrated model: $|f(z) - m_{n-1}(z)| \le const * \sigma(z)$

Model-Based Learning Protocol in Safe-M³-UCRL

Input: Safety constraint $h_C(\cdot)$, initial mean-field distribution μ_0 , number of episodes N, number of steps T 1: **for** n = 1, ..., N **do**

- Compute $C_{n,t}$ for $t = 1, \ldots, T$ 2:
- Learn a policy π_n^* by optimizing the objective
- Execute the obtained policy π_n^* 4:
- Collect the trajectories from the representative agent 5
- Update the statistical model \tilde{f}_{n-1} 6:

7: end for

Return π_N^*

> Showcasing usefulness of Mean-Field RL in real-world applications!

Experimental Results

Dispersion: 67% of max entropy Dispersion: 83% of max entropy

Dispersion: 96% of max entropy

Dispersion: 96% of max entropy

of agents

SAFE-M³-UCRL under unknown dynamics for p = 0.8

B _4.5

-5.0

Observed demand ρ_0 used as a target distribution

Unconstrained M³-UCRL under known dynami

SAFE-M³-UCBL under known dynamics for p = 0.85