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ABSTRACT: Simulation of surface processes is a key part of computational chemistry
that offers atomic-scale insights into mechanisms of heterogeneous catalysis, diffusion
dynamics, and quantum tunneling phenomena. The most common theoretical approaches
involve optimization of reaction pathways, including semiclassical tunneling pathways
(called instantons). The computational effort can be demanding, especially for instanton
optimizations with an ab initio electronic structure. Recently, machine learning has been
applied to accelerate reaction-pathway optimization, showing great potential for a wide
range of applications. However, previous methods still suffer from numerical and
efficiency issues and were not designed for condensed-phase reactions. We propose an
improved framework based on Gaussian process regression for general transformed
coordinates, which has improved efficiency and numerical stability, and we propose a
descriptor that combines internal and Cartesian coordinates suitable for modeling surface
processes. We demonstrate with 11 instanton optimizations in three representative
systems that the improved approach makes ab initio instanton optimization significantly cheaper, such that it becomes not much
more expensive than a classical transition-state theory rate calculation.

1. INTRODUCTION
Surface processes and reactions are at the core of many
important phenomena, such as heterogeneous catalysis, ice
nucleation, and corrosion, to name just a few. Computer
simulations have been essential for understanding surface
structure, reactions and dynamics on surfaces, as well as
quantum tunneling phenomena in these systems, achieving
tremendous success.1−3 Locating reaction pathways (typically
minimum-energy pathways) is one of the most crucial parts of
modern computational research, offering insights into the
mechanism of surface processes and reactions.4

As the demand for higher accuracy modeling increases,
incorporation of nuclear quantum effects, in particular,
quantum tunneling, in simulations is becoming the new
standard. Ring-polymer instanton theory is a robust method
for rigorously including tunneling effects into the simulation of
reaction rates and mechanisms5−10 as well as for computing
tunneling splittings,10,11 with a good balance between accuracy
and efficiency. It employs a semiclassical approximation to
define a dominant tunneling pathway called an instanton,
which can be located via a first-order saddle-point optimization
on the ring-polymer potential-energy surface. It is important to
note that this pathway is not, in general, equivalent to the
minimum-energy pathway. The instanton rate only requires
local properties (i.e., potentials, gradients, and Hessians) along
the tunneling pathway (instanton), due to the semiclassical
approximation. Thus, ring-polymer instanton theory can be
viewed as a quantum-mechanical extension of the well-known

classical transition state theory (TST). Using instanton theory,
recent studies have unveiled several interesting phenomena on
different surfaces related to quantum tunneling,12−18 demon-
strating the importance of modeling quantum tunneling in the
simulation of surface processes. Although instanton theory is
much more efficient than a full quantum calculation, it is still
more demanding than classical TST, especially when
combined with ab initio electronic-structure calculations,
which has so far impeded the wide application of rigorous
tunneling calculations. Therefore, reducing the cost of the
optimization of tunneling pathways (instantons) is important
to the advance of this field.
Earlier works on improving optimization schemes were

mostly dedicated to finding better coordinate systems in which
to perform the optimization,19−24 or on improving the
approximate Hessian of the system to accelerate conver-
gence.25,26 Yet, the past decade has witnessed a remarkable
emergence of machine-learning techniques in computational
chemistry, unveiling a vast realm of new possibilities. In recent
years, machine learning methods have been applied to
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geometry optimizations,27−33 challenging the conventional
algorithms that have stood for decades. These methods use
machine learning to fit the local potential-energy surface (PES)
around a local minimum geometry or the dominant reaction/
tunneling pathway and perform optimizations on the fitted
PES. By iterating this procedure, they can be converged to give
the same pathway as for the true PES at a fraction of the cost.
Note that this application is very different from fitting a global
PES with machine learning;34−36 it requires very high accuracy
learning in a small local region of the phase space, with a very
small training data set in the region. For instanton
optimization, in addition to the learning and prediction of
energies and gradients that are commonly done with machine
learning, Hessian training and prediction is also practically
crucial.31 Methods based on both neural networks (NN) and
Gaussian process regression (GPR) have been explored. The
predictive performance of GPR has been shown to be very
competitive,31,37 especially with limited training data;38

therefore, it is preferred for this application.
Despite the great success of GPR-assisted optimization

methods demonstrated in previous work, there are still several
issues that limit their feasibility, especially for application to
surface systems. A major issue is that since they were mostly
designed for reactions in the gas phase (which requires
translational and rotational invariance), the descriptors used
are not applicable to surface systems. In addition, there are a
few practical issues. First, the previous GPR method suffers
from numerical stability problems for planar and linear
molecules when using bond-based internal coordinate
descriptors. Second, memory and efficiency issues caused by
Hessian training or the use of long descriptors (such as
redundant internals) can plague the performance in relatively
large systems. Therefore, further methodological improve-
ments of GPR optimization schemes are urgently needed.
In this work, we develop an improved GPR method for

geometry optimization that (i) is suitable for modeling surface
reactions and processes; (ii) can be applied to instanton
optimization (i.e., it includes Hessian training); and (iii)
addresses the previous practical issues. We test the perform-
ance of our method on three systems each covering a different
type of surface process: (a) H2O dissociation on Cu(111), a
representative surface catalysis reaction; (b) CH2O rotation on
Ag(110), a dynamical process on the surface that can be
observed in STM experiments; (c) double proton transfer
(DPT) in the formic acid dimer (FAD) on NaCl(001), a
reaction between adsorbates on the surface. Good performance
is observed for GPR-assisted instanton optimization in these
test systems, showing fast convergence of ab initio gradients
with just a few iterations. Our approach also alleviates some of
the previous practical issues, making GPR optimizations more
robust. In particular, we show that “selective Hessian training”
(available within the method introduced in this work) provides
a computational advantage for the application to larger
systems. The improved approach retains the accuracy of the
original instanton method as the results are formally identical
once the algorithm is converged, while requires far less
computational effort than an instanton optimization carried
out with conventional methods.

2. THEORY
2.1. Ring-Polymer Instanton Theory. Quantum mechan-

ical reaction rates can be rigorously defined using the flux
correlation function.39 Instanton theory can be derived by

taking semiclassical approximations to the flux correlation
function.10 Here, we skip over the derivation and present the
final instanton rate expression

= [ ]k A( ) ( )e S x
inst inst

/ (1)

in which =
k T

1

B
is the inverse temperature, x is the minimum-

action tunneling pathway with imaginary time βℏ called an
instanton, S is its Euclidean action, and Ainst is a prefactor term
that mainly characterizes the fluctuations around the instanton.
The instanton can be represented by a N bead ring polymer, x
= {x1, ..., xN}, and its Euclidean action is given by the ring-
polymer potential
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where βN ≡ β/N and x0 ≡ xN. The ring-polymer instanton x
can be calculated via first-order saddle-point optimization of
UN(x). Finally, to compute the rate, one also needs to perform
Hessian calculations on the optimized instanton x, which is
needed for computing Ainst.
In addition to computing reaction rates, instanton theory

can also be applied to efficiently compute tunneling splittings
for molecules with permutationally degenerate wells.10,11 The
procedure is very similar to that of instanton rate calculations,
which also requires optimization of minimum-action tunneling
pathways (instantons). Therefore, the development of efficient
methods for optimizing tunneling pathways is crucial and holds
tremendous potential for various applications.
2.2. Gaussian Process Regression. GPR is a machine-

learning algorithm which can be used to efficiently generate
complex hypersurfaces with limited data.40 In recent years, this
method has been applied for constructing global PESs from
data generated from ab initio calculations,34,37 and for
geometry and reaction pathway optimizations.30−33 For
geometry, reaction pathway, or tunneling pathway optimiza-
tions, one constructs a high accuracy local PES around the
minimum, nudged elastic band, or instanton pathway using
GPR from a small training set generated from ab initio
calculations performed on the initial guess. The optimization is
performed via an iterative process that mainly includes two
steps: performing optimization on the GPR PES and adding ab
initio data to the GPR PES, which we describe in detail in
Section 4.2. Here, we give a brief introduction to GPR.
Given a training set of M geometries {xm} and potential

energies {V(xm)} ({Vm} for short), the GPR prediction of the
potential energy for a new geometry x* is

* = *
=

V V k wx x x( ) ( , ; )
m

M

m m
1 (3)

where V̅ is the average potential of the training set, k is the
kernel function, θ is a vector of hyperparameters, and

= w ww ( ... )M
T

1 are the weights. There are many possible
choices for the kernel function;40 in this work, we use the
Gaussian kernel k(xi, xj) = θ1 exp(−θ2∥xi − xj∥2). The weights
are determined by solving a set of linear equations

+ = V VK I w( ) ( ... )M M
T2

1 , where K is the covariance matrix
with element k(xi, xj) in the i-th row and j-th column, IM is the
identity matrix of rank M, and σ is the noise hyperparameter.
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2.3. Gradient and Hessian Learning with GPR. For
geometry optimization, learning and predicting gradients are
important, while for instanton optimizations, Hessian learning
and prediction also become necessary in practice. This can be
achieved with an extension30 to eq 3

*
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For the sake of clarity and convenience, we will define a set
of conventions here.

• bold lower case: column vector.

• bold upper case: matrix.

• V
x

d
d
: column vector of length f x ( f denotes the length of

the vector noted in the subscript).

• V
x

d
d

2

2 : column vector of length f Hx = f x( f x + 1)/2. This is
the upper triangle of the Hessian matrix, flattened into
an array in the row-major ordering.

• ···( )k kk
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2 2 : matrix with f Hx rows and f k

columns.

Also, we order the training data such that the first Mg entries
have gradient data, and the first MH ≤ Mg entries additionally
have Hessian data. Within this notation the terms in eq 4 can
be written as
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(the subscript x denotes that the kernel derivatives are taken
with respect to Cartesian coordinates). wext are the extended
weights, obtained by solving the following set of linear
equations

+ =K w y( )xx xx xext (6)
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is a symmetric extended covariance matrix
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is the extended noise matrix, and
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is the training data.
2.4. GPR with General Descriptors. Constructing GPR

potentials using the Cartesian coordinate is the simplest and
most straightforward way. However, it has some drawbacks; for
example, when describing gas-phase molecules, the Cartesian
coordinates are not translationally or rotationally invariant.
Moreover, it is not a natural way to describe bonding in
molecules. Since the descriptors are arguably the most
important part of building a good machine-learning poten-
tial,35,41 it is desirable to design a GPR method for general
descriptors q. This idea has been probed for certain coordinate
systems, such as the redundant and delocalized internal
coordinates.19 The GPR method designed in previous
works31,33 functions in the following manner: all observables
(gradients and Hessians) are transformed from Cartesian
coordinates into internal coordinates in the training process. In
the prediction process, it first predicts gradients and Hessians
in internal coordinates, then transforms them back into
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Cartesian gradients and Hessians, and finally rotates them to
match the orientation of the input geometry. This approach
has some drawbacks; e.g., it breaks down for planar and linear
molecules if bond-based internal coordinate descriptors are
used. Also, the back and forth transformations from x to q for
the forces and Hessians are nontrivial and may encounter
numerical issues. A second approach, inspired by the work of
Bartoḱ et al.,37 has been explored recently,32 which avoids the
transformation of the forces and instead applies the trans-
formation to the covariance matrix. However, the second
approach has only been developed for gradient training, which
is applicable to geometry optimization but is inadequate for
instanton optimizations. Here, we extend the second approach
to Hessian training and prediction, and furthermore, we show
that the two approaches can in fact be unified (or
reformulated) into one framework.
We define a general (nonlinear) descriptor q as

=q Jx (10)

where J is the Jacobian matrix

=

q
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We use the Gaussian kernel in the q coordinate
representation

=k q q q q( , ; ) exp( )1 2 1 2 1 2
2

(12)

When the kernel is defined in the transformed coordinates q,
the extended covariance matrix Kxx can be constructed by
applying a transformation matrix L, where Kxx = LKqqLT. Kqq is
defined similarly as Kxx, but with the kernel derivatives taken
with respect to q instead of x, which follows directly from
differentiating eq 12. L is derived using the chain rule, and it
can be formally written as

=L
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in which the elements in C are given by
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Finally, the training process of the transformed GPR
proceeds via solving

+ =LK L w y( )qq
T

xx xext (15)

and computing =w L wT
ext ext. The prediction step thus

becomes
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in which kext,q is defined similarly as kext,x (eq 5), but with the
kernel derivatives taken with respect to q instead of x.
Hyperparameter optimization for the coordinate transformed
GPR can be done via maximizing the log marginal likelihood,40

which is the same as that for GPR without coordinate
transformation.
The coordinate transformed GPR inherits desirable proper-

ties of the descriptor q. For example, if q are the internal
coordinates,19 then one can see that the energy predictions of
the GPR model (eq 16) are translationally and rotationally
invariant, and that the predicted Cartesian gradients and
Hessians are rotated correctly. Compared to the previous GPR
method for instanton optimization,31 the GPR framework
developed here possesses several desirable features. It does not
suffer from numerical instabilities for planar molecules.
Equation 16 avoids the back and forth transformation of the
gradients and Hessians from Cartesian coordinates to q
coordinates, reducing complexity and improving the numerical
stability. Equation 15 allows training with Hessian data of
selected degrees of freedom (selective Hessian training),
instead of using the full Hessian, which can be very practical
since Hessian training is the most expensive and memory
demanding part of GPR. Selective Hessian training can be
implemented by simply eliminating rows from L (eq 13) that
correspond to the elements discarded from the full Hessian.
Another feature is that the memory cost and computational
cost now scales with the length of yx instead of yq, i.e., O f( )y

2

x

and O f( )y
3

x
, respectively, which can make the use of longer

descriptors more feasible. The scaling of the computational
cost is determined by solving the linear equations in eq 15 (in
the case f y dq

> f y dx

3/2, the scaling becomes O f( )y
2

q
, which is the

cost of constructing Kqq), while the cost of coordinate
transformation should not become the bottleneck since L is
sparse.
Furthermore, we show that the previous approach31 can be

unified into the GPR framework presented in this work.
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Instead of solving eq 15 in the training process, one can
alternatively solve the following linear equations

+ =L L K w L y( )T
qq qq

T
xext (17)

The prediction step is the same as that in eq 16. This is
equivalent to the previously proposed GPR method,31 while
also avoiding the transformation of the physical quantities (i.e.,
forces and Hessians). However, this formulation does not
resolve the numerical instability issue of the previous GPR
method for planar molecules. Comparing eqs 15 and 17, the
main difference lies in the noise matrix Λ. We infer that adding
the noise matrix to Kxx instead of Kqq is key to resolving the
numerical instability issue for planar molecules, while that
where the coordinate transformation is applied might not be so
crucial. We believe that this unification advances our
understanding of coordinate transformation in GPR, and
creates possibilities for future improvements, e.g., via
modifying eqs 15 or 17.
2.5. Descriptors for GPR Learning of Surface Systems.

We consider systems with an adsorbed molecule (or a cluster)
on a given surface. Using Cartesian coordinates as the
descriptor is a viable option; however, it is not an intrinsic
descriptor for describing covalent bonds in the adsorbate.
Meanwhile, internal coordinates can describe the adsorbate
well but are not suitable as this type of system is neither
translationally nor rotationally invariant. To describe the
translation and the rotation of the adsorbate, one requires at
least 6 variables, i.e., the coordinates of the centroid (xc) and 3
rotation angles. Intuitively, one would consider using the Euler
angles; however, we found that this can be problematic. One
can imagine a simple case, a small rotation α about the y axis,
the Euler angles (using the standard “ZXZ” convention) for
this rotation is (π/2, α, − π/2). Under the metric of distance
in the kernel (eq 12), the Euler angles would suggest that the
rotated structure is far from the initial structure, which is
unfaithful. This means that, at the very least, the kernel needs
to be redefined to resolve this issue. Moreover, since the
adsorbate molecule is not rigid and may even dissociate in
surface processes that we intend to model, Euler angles might
not even be well-defined and might be sensitive to the choice
of the reference structure.
Instead of trying to come up with a good descriptor for

rotations, we worked around this issue. We propose an idea
that combines the internal coordinates and Cartesian
coordinates in order to “gain the best of both worlds”. Here,
we use a specific definition of internal coordinates (which are
the pairwise atomic distances) instead of the general definition
(which includes angles and dihedrals) such that the internal
coordinates have the same units as Cartesian coordinates. First,
we divide the system into two parts: the adsorbates (with a
total of Na atoms) and the flexible substrate atoms (Ns atoms).
We also make sure that all of the atoms are not wrapped by
periodic boundary conditions. Combining the Cartesian
coordinates and the internals of the adsorbate gives the
following descriptor

= ··· ··· ···x x y y z zq x r x d( ; ; ; ; ; ; ; ; ; ; ) ( ; )N N N
s

1 1 1
s

a a a

(18)

where xs are the Cartesian coordinates of all the flexible
substrate atoms, d are the coordinates representing the
adsorbate and its relation with the substrate, and

= { } = { } <r r i j N i jr x x, , , 1, ..., ( )ij ij i j a (19)

q̃ is obviously redundant, and it is necessary to trim out the
redundancy. We use a method similar to the method for
constructing the delocalized internals from redundant
internals.19 One can perform singular value decomposition
on the Jacobian matrix from x to d (Jdx). Since Jdx is x
dependent, previous works selected a reference geometry from
the training set. Alternatively, we can average Jdx over all of the
geometries in the training set

=
=

MUSV J x( )/T

m

M

dx m
1 (20)

The delocalization matrix Bqd is constructed by taking the
row vectors in UT that correspond to the nonzero singular
values in S. Therefore, the nonredundant descriptor is given by

=q x B d( ; )qd
s

(21)

We refer to q as a mixed internals and Cartesian (MIC)
descriptor. q reduces to Cartesian coordinates when the
adsorbate is a single atom. Our GPR PES for surface systems is
built using eqs 21, 15, and 16.
It is useful to discuss some of the other descriptor options

that we have considered and the reason why they were not
chosen. First, we note that internal coordinates often use the
1/rij instead of rij. It is also feasible to construct q (eq 21) using
1/rij; however, mixing 1/rij with Cartesian coordinates will
result in inconsistent units in the descriptor. Another idea is to
select reference points on (or near) the surface and
characterize the translations and rotations using the distances
of the adsorbate atoms from the reference points. We found
that the performance of this approach is sensitive to the choice
of the reference points, and arbitrary reference usually leads to
mediocre performance; therefore, we do not recommend it
despite it being feasible.
We note that q is similar to the hybrid delocalized internal

coordinates (HDLC) proposed in the 2000s for reducing the
computational scaling of constructing delocalized internal
coordinates (DLC) for large molecules.22 HDLC uses a
divide-and-conquer approach that breaks a large molecule into
fragments to achieve linear scaling with respect to the molecule
size. For each fragment, the internal coordinates are
supplemented with Cartesian coordinates and then delocalized
to generate HDLC. The step in HDLC that mixes internal
coordinates and Cartesian coordinates is indeed the same as
what we do to describe the adsorbent molecules on a surface.
Since MIC certainly belongs to the HDLC family of
descriptors, we use the name HDLC (in a broad sense)
instead of MIC in the manuscript.
The HDLC descriptor is not limited to describing surface

systems; for example, it can also be directly applied to describe
reactions/processes in solids. In this case, xs would represent
flexible atoms in the surroundings of the core reaction region,
instead of the substrate atoms. Further, HDLC-like descriptors
are not limited to mixing internal coordinates and Cartesian
coordinates. One can view that the Cartesian coordinates in d
(eq 18) alternatively as coordinates describing the connection
between the adsorbate and the substrate. Thus, one can replace
them with other coordinates designed to describe the
connection between the core region and environment and
construct q (eq 21) from that. These extensions can make
HDLC-like descriptors useful for a wide range of systems, such
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as general systems that can be divided into a core region plus
an environment.

3. COMPUTATIONAL SETUP
Electronic structures for the three test systems, namely, H2O
on Cu(111), CH2O on Ag(110), and FAD on NaCl(001), are
described with density-functional theory (DFT). Our DFT
calculations were carried out using the Vienna ab initio
simulation package (VASP).42,43 The optB86b-vdW ex-
change−correlation functional,44,45 which accounts for van
der Waals interactions, was used. A plane-wave cut off of 400
eV was used (550 eV was used for the FAD system). The
Cu(111) substrate was modeled using a four-layer slab in a 3 ×
3 supercell. The Ag(110) substrate was modeled using a 4-
layer slab in a 3 × 4 supercell. The NaCl(001) substrate was
modeled using 2-layer slab in a 2 × 2 supercell. We used a 3 ×
3 × 1 k-point mesh for all the systems. A vacuum of at least 12
Å was placed above each slab, and a dipole correction was
applied along the z axis. The substrates were prepared with the
top two layers relaxed (top one layer relaxed for NaCl). The
climbing image nudged elastic band (CI-NEB) method4 was
used to compute the minimum-energy pathways (MEP).
During the geometry optimization, including CI-NEB and
instanton calculations, four (two) substrate atoms closest to
H2O (CH2O) were also optimized, while the other substrate
atoms are kept frozen. For FAD, the substrate was kept frozen.
The convergence criterion for geometry optimizations and CI-
NEB calculations was to converge the maximum force
component to below 0.02 eV·Å−1. For our instanton
optimizations, the convergence criterion was to converge the
total gradient to below 0.05 eV·Å−1.

4. RESULTS
4.1. Analysis of the Descriptors. First, we examine the

HDLC descriptors for the three test systems via a
decomposition of the adsorbate-related elements in the
descriptor (Figure 1). For H2O on Cu(111), it has 3

nonredundant internal coordinates and 6 translational and
rotational coordinates. In the HDLC descriptor, the first 3
elements (which has the highest 3 singular values) have a
significant portion of bond components, meaning that they
correspond to the internals of the molecule. The remaining 6
elements are purely linear combinations of Cartesian
coordinates, with 3 corresponding to the centroid of the
molecule representing translation and the other 3 representing
rotations. For CH2O on Ag(110), since the molecule is planar,
5 of its 6 internal coordinates are nonredundant. Correspond-
ingly, the first 5 elements of the HDLC descriptor have
significant bond components. The sixth element consists of z
coordinates, representing the out-of-plane mode of the
adsorbate. The final 6 elements represent the translation and
rotation of the adsorbate. FAD is also a planar adsorbate, so
while it has Na(Na − 1)/2 = 45 redundant internal
coordinates, only 2Na − 3 = 17 are nonredundant. Its
HDLC descriptor fully covers all the nonredundant internal
coordinates, having 17 elements that mainly consist of bond
components. HDLC descriptor also has 7 elements that consist
of majorly z coordinates, representing out-of-plane modes of
the adsorbate. These elements together with the 17 “bond”
elements make up the 3Na − 6 = 24 modes representing the
adsorbate, and the remainder 6 elements are the translational
and rotational coordinates. The above analysis shows that the
HDLC descriptor not only mixed the bond and Cartesian
coordinates but also mixed them in an appropriate manner that
gives a faithful description of the system. We show later in this
article that it is indeed advantageous over Cartesian
coordinates for GPR modeling of surface systems.
4.2. General Workflow. In this section, we describe the

workflow for geometry optimization with GPR. The whole
procedure is divided into two parts, “preparation” and
“iteration” (Figure 2). For all geometry optimizations, one
needs to prepare an initial guess geometry, and with the GPR
approach, the initial data set is generated on the initial guess
geometry. Then, we optimize the hyperparameters of GPR.
This step is optional, as there are methods for obtaining a good

Figure 1. Bond and Cartesian components of HDLC descriptors for the three systems. The transformation matrix (eq 20) is computed using
geometries on the CI-NEB path. The bars show the unitary singular vectors (rows in Bqd) arranged according to their singular values in descending
order. The bond component is the sum of the square of the first Na(Na − 1)/2 terms in a singular vector, and the Cartesian component is the sum
of the square of the remainder terms. The top panels show the classical TS for the three systems.
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set of hyperparameters without optimization, and that it has
been shown that the log marginal likelihood is not very
sensitive to the hyperparameters as long as they are in a
reasonable range.33 Since hyperparameter optimization can be
computationally inefficient, we recommend to optimize it once
for the initial data set and check the performance of GPR on
the training data set every time new data is added to determine
whether the hyperparameters need to be reoptimized.
With the initial data set and a good set of hyperparameters

ready, we can iteratively build the GPR PES and perform
optimizations on it. A quasi-Newton optimization algorithm
adapted for instanton optimizations is used, which has been
shown to be arguably the most stable optimization method for
instantons.46,47 Optimization proceeds until either the total
force on the GPR PES reaches the convergence threshold or an
early stop condition is met. Different early stop conditions
could be defined for different applications;30 in this work, an
early stop is triggered if the total force increases for more than
three consecutive steps. When an early stop is triggered for the
first time, we attempt the GPR optimization a second time
from where it stopped. Once the early stop is triggered again,
we take the geometry at the step before the consecutive force
increase occurred as the final geometry of the optimization
step. After optimization on the GPR PES, we compute the true
ab initio energy and forces on the final geometry to check
whether the forces have reached our convergence criteria. If
not, we add the newly computed ab initio data to the training
set and repeat the iteration steps (Figure 2). Note that one
could also perform a data refinement, which removes some of
the data (e.g., data added in early iterations) to improve
efficiency.
4.3. Instanton Optimization. For instanton optimization,

the methods proposed in this work for generating initial guess
geometry and an initial data set are shown in Figure 3.
Conventionally, the initial guess for instanton optimization is
generated via “spreading” the beads along the imaginary mode
of the TS46 or via interpolation of CI-NEB images (i.e., the
climbing image and a few adjacent images). If an optimized
instanton configuration is available at a temperature not too far
from the target temperature, then conventionally, it is a good
choice to start the instanton optimization from that

configuration. Therefore, if the goal is to obtain instantons at
different temperatures, one would optimize them in a
“sequential cooling” manner,46 i.e., start with instanton
optimization at the highest target temperature and perform
instanton optimizations in a descending order according to
temperature. We propose a GPR based approach for
generating an initial instanton guess when there is instanton
data at another temperature available. We train a GPR PES
using the previous instanton data and perform instanton
optimizations on the GPR PES at the target temperature.
Typically, this GPR optimization could not reach the target
force convergence and ended via an early stop with the criteria
described in the previous section. We show later in this section
that this is a good approach with the HDLC descriptor but not
with the Cartesian descriptor.
After obtaining the initial instanton guess, we generated our

initial data set for GPR training based on a simple protocol (as
described in Figure 3b). The initial data set is composed of
three parts: data of the beads of the initial guess, data from a
previously optimized instanton at an adjacent temperature (if
available), and (optionally) selected stationary point (e.g.,
reactant, TS, product) data. All data points have ab initio
energy and gradient data, while ab initio Hessian data are
added for selected geometries. Specifically, the geometries with
Hessian data include the first, final, and the highest energy
beads from the initial instanton guess, and the first and final
beads from the previous instanton (if available). Hessian data
of the reactant, TS, and product geometries can also be
included, depending on whether they are close to the
instanton.
We give the detailed settings for our GPR assisted instanton

optimizations in Table 1. The aim of this work is to
demonstrate the performance of our method for different
types of systems, meanwhile covering the shallow tunneling to
deep tunneling regimes. Therefore, three temperatures are
chosen for each system (two for FAD) such that at the highest
temperature, thermally activated tunneling near the barrier top
occurs; at the middle temperature, tunneling through the
middle of the barrier occurs; and at the lowest temperature,
deep tunneling occurs. At each temperature, we used the

Figure 2. Workflow chart for GPR assisted geometry optimization.
The dotted arrows show the flow of data (i.e., geometries and ab initio
data).

Figure 3. (a) Conventional methods vs the GPR method proposed in
this work for generation initial guesses for instanton optimization. (b)
Components of the initial data set for instanton optimization used in
this work.
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minimal number of beads that can reasonably represent the
tunneling pathway. In a later section, we show how GPR can
be used to extrapolate instantons from a small number of beads
to a large number of beads. The sizes of the initial data sets
generated with the protocol in Figure 3b are given in Table 1,
which are modest and do not vary much for different systems.
Using the procedures described above, we performed ab

initio instanton optimizations for the example systems at
different temperatures in a “sequential cooling” manner. Note
that the temperature gap between adjacent instanton
optimizations is large, corresponding to a β increase of
∼50%. Encouragingly, all the GPR-assisted instanton opti-
mizations successfully converged with ease, demonstrating that

our GPR method is able to model all three types of processes:
dissociation on the surface, rotation on the surface involving
heavy-atom tunneling, and proton transfer between adsorbates.
Examples of the optimized instantons are shown in Figure 4.
Noticeably, even when the instanton displays significant
corner-cutting effects (Figure 4b, indicated by the change in
the position of the two instantons), our GPR method still
performs well. To gain a straightforward view of the GPR-
assisted optimization process, we show in Figure 4a the
geometry and total ab initio gradient after each GPR iteration.
The total gradient decreases exponentially after each GPR
iteration, which is a sign of efficient and stable optimization.
In contrast, we performed ab initio instanton optimizations

for these systems using conventional methods. There are a few
conventional optimization algorithms that have been adapted
for ab initio instanton optimization, belonging to two
categories: mode-following methods (i.e., dimer methods)48,49

and Hessian-based methods (i.e., quasi-Newton meth-
ods).26,47,50 The performance of these instanton optimization
algorithms have been discussed in detail in previous works.46,47

In short, Hessian-based methods are more stable and converge
faster than mode-following methods but require calculation of
the Hessians for the starting configuration, as they tend to fail
for instanton optimization without a good estimate of the
initial Hessian. This means that for systems with a relatively
small number of flexible atoms, Hessian-based methods are
overall more efficient, while for systems with many flexible
atoms, the mode-following methods can be advantageous.
Therefore, we use the quasi-Newton method described in ref
47 as the conventional instanton optimization method.

Table 1. Settings and Initial Data Set Components, i.e., the
Number of Energy and Gradient Data Points (nener,grad) and
the Number of Hessian Data (nhess), for Each GPR-Assisted
Instanton Optimizationa

system T (K) N beads nener,grad nhess

H2O−Cu(111) 200 14 16 3
(Tc ∼ 281 K) 130 30 31 6

80 50 49 6
CH2O−Ag(110) 18 14 14 5
(Tc ∼ 22 K) 12 30 29 8

8 50 47 8
FAD−NaCl(001) 150 14 14 5
(Tc ∼ 223 K) 100 30 29 8

aThe crossover temperature to quantum tunneling, estimated by
| |‡

T
kc 2 B
, where ω⧧ is the imaginary frequency at the TS, is also

given for each system.

Figure 4. (a) Instanton geometries for dissociation on Cu(111) at 200 K at the 0th (initial guess), first, and final iteration during the GPR-assisted
optimization. Norm of the ab initio total gradient during the optimization process is shown, and the dash-dotted line marks the convergence
criteria. Optimized instanton geometries for H2O dissociation on Cu(111) (b) at 200 K (left) and 80 K (right), CH2O rotation on Ag(111) at 12 K
(c), and DPT in FAD on NaCl(001) at 100 K (c). The flexible surface atoms in (b,c) are rendered in a different texture than the other substrate
atoms. The dotted lines are guides for the eye, and the blue arrows show the movement of H atoms along the instanton.
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A full comparison of the convergence of ab initio instanton
optimization with GPR and with the conventional method for
all the 8 instanton optimizations is presented in Table 2. The
results show that in all the cases tested, our GPR method
clearly outperforms the conventional method for instanton
optimization in surface reactions. With our GPR method, all
these instantons appear to be easy to optimize, while for the
conventional method, the opposite is true, as the majority of
the optimizations takes many iterations. In several cases, the
conventional optimization method becomes unstable after a
number of iterations and requires a restart from a selected
intermediate configuration (as well as recomputing the initial
Hessian) in order to converge the optimization. This means
that the actual number of ab initio energy and force evaluations
on the instanton in these cases is even larger than the niter given
in the table. Overall, one can see that our GPR method makes
difficult optimizations feasible by reducing the number of ab
initio calculations needed to converge the optimization by a
factor of 5 or more.
To understand why GPR drastically outperforms the

conventional method, we compare the change in the total
gradient during the entire optimization process for the two
methods (Figure 5). In the conventional instanton optimiza-
tion for H2O dissociation and FAD DPT, during the first few
iterations, the total gradient on the instanton decreases quite
rapidly. However, afterward, the approximate Hessian becomes
poor due to accumulation of errors from the updates. As a
result, the optimization fails to further minimize the total
gradient and a restart with a re-evaluation of the instanton
Hessian (which is computationally demanding) is needed. At
the core of this issue is that conventional methods barely
utilize the ab initio data computed in previous iterations,
wasting a lot of useful information and resulting in taking
misguided steps. GPR exploits the data from previous
iterations in-depth, learning information about the shape of
the PES that provides guidance for the next optimization
iteration, which can greatly accelerate the convergence without
resorting to performing expensive Hessian calculations. A
second advantage of GPR optimization is that it allows
relatively major changes in the geometry after one iteration,

such as in the first GPR iteration, as shown in Figure 4a,
without encountering stability issues. Whereas with conven-
tional optimization methods, taking small optimization steps
means slow convergence, yet taking large steps can lead to
instabilities. Thanks to the low computational cost of GPR PES
compared to ab initio calculations, one can fully explore the
GPR PES before needing to perform another expensive ab
initio calculation.
The in-depth learning power of our GPR method gives it a

third key advantage over conventional methods: the ability to
generate a good initial guess that is very close to the optimized
instanton, using only data accumulated in the previous
instanton optimization. This is indicated in Figure 5, where
the GPR initial guesses have a significantly smaller ab initio
gradient compared to the conventionally used initial guesses,
which is another important reason why GPR-assisted
optimization converged very fast. Here, we demonstrate that
the in-depth learning is achieved by the use of the HDLC
descriptor, while using Cartesian descriptor produces much
worse results. We found that the HDLC-GPR initial guesses
are almost identical to the optimized instanton (green vs gray
lines in Figure 6), even when significant “corner-cutting
effects” exist in the system. Corner cutting refers to when the
optimal tunneling pathway (instanton) deviates from the MEP.
Typically, corner cutting is more pronounced in the deep
tunneling regime at low temperatures, while as the temperature
increases, corner cutting becomes less significant and the
instanton becomes closer to the MEP. This indicates that when
strong corner cutting occurs, the instanton pathway at a lower
temperature does not follow the instanton pathway at a higher
temperature. It is particularly exciting that HDLC-GPR is able
to capture corner-cutting effects quite well, given that machine-
learning methods are generally not good at “extrapolation”.
In contrast, GPR with the Cartesian descriptor does not

work well when corner-cutting effects exist in the system,
failing to predict a good guess for the new instanton based on
previous data. Generally speaking, when the low temperature
instanton pathway does not follow the high temperature
instanton pathway, it is difficult to correctly characterize the
similarities and the differences between the two instantons
from a Cartesian-coordinate perspective. Consequently, using
data from one instanton may fail to predict the other. For

Table 2. Comparison of the Convergence Speed (i.e., the
Number of Iterations niter) and Computational Cost
between ab initio Instanton Optimization with GPR
Assistance and That with Conventional Quasi-Newton
Algorithma

GPR-
assisted conventional

system T (K) N beads niter nhess niter nhess

H2O−Cu(111) 200 14 4 2 18 7
130 30 4 5 15* 22
80 50 6 5 18* 40

CH2O−Ag(110) 18 14 2 2 19* 14
12 30 1 5 29* 22
8 50 1 5 27 15

FAD−NaCl(001) 150 14 2 2 7 7
100 30 1 5 not converged

anhess is the number of ab initio Hessian evaluations performed. The
superscript “*” means that the ab initio optimization required
restarting from a selected intermediate geometry in the optimization
process, and re-computing the Hessian on this geometry. In this case,
the number of iterations actually performed is larger than niter.

Figure 5. Norm of the total gradient at each iteration for selected ab
initio instanton optimization with GPR assistance (red) and with the
conventional algorithm (gray). The circled points mark the restart
points of the ab initio instanton optimization.
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FAD, the main difference between the instanton path and the
MEP is that the in the MEP, the two monomers would first
come closer together and then proton transfer (PT) occurs,
whereas in the instanton path, at low temperatures, proton
transfer occurs directly to avoid heavy-atom tunneling.51 At
150 K, the instanton pathway shows a thermally activated
tunneling mechanism, where PT occurs when the two
monomers are 3.64 Å apart, similar to the MEP. However, at
100 K, the instanton pathway features a deep tunneling
mechanism, where PT occurs when the two monomers are
3.68 Å apart. With the Cartesian coordinate as the descriptor,
it is evident that all coordinates differ between the two
pathways, whereas in the case of HDLC, the intramolecular
bond components in the descriptor remain the same.
Therefore, HDLC can describe this system better than
Cartesian coordinates. For H2O dissociation on Cu, the
corner-cutting effect is less pronounced, hence the perform-
ance of Cartesian-GPR is not as poor. By examining the
geometries, we find that HDLC-GPR predicts an initial guess
that is closer to the true instanton, while the Cartesian-GPR
initial guess basically followed the previous instanton, only
extending the path length.
In general, the more “molecule-like” the surface reaction is,

the more advantageous the HDLC descriptor is over
Cartesians. On the other hand, we would not expect HDLC
to outperform Cartesian coordinates for, e.g., H2 dissociation.
At the very least, HDLC can serve as an alternative to the
Cartesian descriptor in case the latter under-performs.
4.4. Selective Hessian Training. Finally, as a proof of

concept, we demonstrate the performance of selective Hessian
training on two systems: H2O dissociation and DPT in FAD. A
straightforward way to select Hessian elements for surface
systems is to divide them into three parts, i.e., the adsorbate
part, the substrate part, and the adsorbate−substrate part, and
select the desired parts. For the H2O dissociation instanton
optimization at 130 K, the initial data set has 6 Hessians, which
(as described previously) correspond to the classical TS, the
end beads of the instanton at 200 K, and the first, middle
(highest energy), and final beads of the initial instanton guess.
We select only the adsorbate part for the first three Hessians
and discard the substrate part of the Hessian on the middle
bead. This reduces the size of the Hessian data by 46%. Using
this reduced training set, we reperformed GPR-assisted

instanton optimization and compared the performance to the
previous results without selective Hessian training. Encourag-
ingly, we find that the optimization also converges rapidly
(Table 3), performing as well as GPR optimization with full
Hessians.
For the FAD on NaCl(001) system, we reperformed the

instanton optimization with 7 flexible surface atoms (closest to
the adsorbate). This is very expensive to perform with
conventional methods. With the GPR + selective Hessian
approach, we are able to converge the instanton with minimal
computational effort, i.e., 1 or 2 iterations and only a few
Hessian calculations (Table 3). These systems tested pose no
challenge for selective Hessian training, showing that this
approach does not compromise performance; meanwhile, it
reduces the size of the training set considerably, revealing the
promising application potential of our GPR optimization
approach in larger systems.
4.5. Converging Instanton Rates. In the previous

section, we demonstrated instanton optimization with GPR,
and next we discuss using GPR to obtain converged instanton
rates. Equation 1 needs to be converged with respect to the
number of beads (N), and at low temperatures, a large number
of beads is often required. The “rigorous” approach is to only
use GPR for instanton optimization and then perform ab initio
calculations on all of the beads to obtain the rate. Despite the
assistance of GPR optimization, computing instanton rates
rigorously can still be computationally expensive, especially at
low temperatures, due to the ab initio Hessian calculations on
a large number of beads. Alternatively, one can use a more
“approximate” approach, which is to train GPR using the data

Figure 6. Comparison of the initial instanton guess predicted by HDLC-GPR PES and that predicted by Cartesian GPR PES for (a) H2O
dissociation on Cu(111) at 130 K and (b) DPT in FAD on NaCl(001) at 100 K. The ring-polymer beads are plotted as a function of their potential
energy and the path length l. For reference, the previous instanton (gray dotted line) from which the GPR PESs are trained and the final optimized
instanton (gray solid line) are shown.

Table 3. Convergence Speed (i.e., the Number of Iterations
niter) and Computational Cost of the Selective Hessian
Training Approacha

system T (K) N beads niter nhess reduction

H2O−Cu(111) 130 30 4 5 46%
FAD−NaCl(001) 150 14 2 2 26%
(flexible substrate) 100 30 1 5 41%

anhess is the same as in Table 2. “Reduction” shows the percentage
reduction in the size of the Hessian data in the training set with this
approach.
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of the instanton with a small number of beads and compute
instanton rates with a large number of beads on the GPR
PES.31 We benchmark the approximate approach against the
rigorous instanton rate for H2O dissociation on Cu(111) at 80
K as an example.
Using the rigorous approach described above, we obtained

ab initio instanton rates at 80 K with 50 and 130 beads. Here,
we explore the accuracy of instanton rates computed with the
computationally inexpensive approximate approach, with
respect to the training set size. The training data set contains
the energy and gradient data for all the beads in the optimized
instanton at this temperature with 50 beads (which has 25
geometries as the instanton folds on itself). Hessian data on
selected geometries (ensuring that these geometries are
roughly evenly spaced along the instanton path) are also
added.
The results are compared in Table 4. We find that the

accuracy of the approximate approach can depend on the
number of Hessian data in the training set, as one can see,
using 7 Hessians results in large errors of over 100%, whereas
using 10 Hessians, the error decreases to ∼15%. The instanton
rate computed on the GPR PES with 130 beads has an error of
∼20% compared to the benchmark, which is acceptable, as this
is comparable to the error of instanton theory itself. In
principle, adding more ab initio data to the training set can
further reduce the error (to only ∼1% in this example), but
might not be necessary. One thing to note that for this
reaction, at 80 K, using 50 beads results in a factor of ∼4 error
in the rate and ∼70% error in the tunneling factor compared to
the result with 130 beads, indicating that converging instanton
rates may require many beads at low temperatures. GPR is a
very efficient method for converging ab initio instanton rates,
especially when many beads are required.
The good performance of the “approximate” approach

clearly implies that the computational cost of instanton rate
calculations can be significantly reduced with GPR assistance
without sacrificing much accuracy, making the cost comparable
to that of a classical TST rate calculation. If we assume that the
Hessian calculation is the bottleneck, the TST calculation
requires 2 to 3 Hessians. With the help of GPR, an instanton
calculation takes 3−8 Hessians for the optimization and ∼10
Hessians (depending on the temperature, the higher the fewer)
for obtaining the rate. In contrast, instanton calculation carried
out conventionally would be ∼2 orders of magnitude more
expensive than TST, e.g., for the system demonstrated, it
would need over 100 Hessian calculations. This means that
performing a GPR instanton calculation is less than an order of
magnitude more expensive than TST, while being orders of
magnitude closer to the correct result for reactions where
quantum tunneling plays an important role.

5. CONCLUSIONS
We have proposed a robust method for GPR-assisted geometry
optimization with general descriptors and an improved
descriptor (HDLC) over Cartesians for surface systems. The
improved GPR method has several advantages over the
previous method, including the fact that it no longer performs
transformations of physical observables, which avoids
associated numerical issues. The HDLC descriptor provides
a more intrinsic and faithful description of surface systems,
thus improving the performance of GPR. Ab initio instanton
optimizations for surface reactions can be made efficient using
HDLC-GPR to fit the PES locally around the tunneling path
even for cases where significant corner-cutting occurs. This is
demonstrated using three example systems representing
different type of surface reactions and processes. GPR-assisted
instanton optimization can obtain converged instantons with
just a few iterations, truly a significant speed up from
conventional optimization methods. This method brings
down the cost for performing an instanton calculation to
within an order of magnitude of the cost of a classical TST
calculation, meaning that if TST is affordable, there is no
reason not to perform an instanton calculation if there might
be tunneling effects. We attribute the good performance to the
HDLC-GPR method achieving in-depth learning of the data
generated in the optimization process.
We postulate that the method proposed in this work has

extensive application potential beyond what we have explored
here. The HDLC descriptor is obviously applicable beyond
surface systems, e.g., it can be used to describe processes in
condensed-phase systems, offering a better alternative to the
Cartesian descriptor. Our improved GPR framework for
general coordinates can also alleviate some of the issues that
GPR optimization faces. Most noticeably, selective Hessian
training under the improved framework can allow GPR
optimization to be applied to larger systems, and we have
demonstrated that it reduces the cost while preserving good
performance. We expect that GPR-based optimization schemes
will replace conventional methods for the more difficult
optimization calculations in the future. We are optimistic that
the developments in this work bring us toward easy
computation of reaction and tunneling pathways.
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