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Abstract 

Critical Infrastructure Systems facilitate the functioning of urban communities. A 

prolonged lack of infrastructure services in an urban community is likely when 

infrastructure systems are exposed to an extreme event. The reasons for such a post-

disaster situation in urban communities are insufficient resilience of individual 

infrastructure systems and cascading failures resulting from increasing complexity and 

interdependent relations between critical infrastructure systems. Conducting the 

resilience analysis of interdependent critical infrastructure systems is to plan and 

implement practical and cost-efficient solutions to this urban community’s challenge.  

The purpose of this doctoral dissertation is to develop a framework that can evaluate 

the resilience of interdependent critical infrastructure systems in the face of potentially 

disruptive events by tracking post-disaster performance evolution. In addition to 

quantifying resilience, this framework can enhance the resilience of interdependent 

critical infrastructure systems by optimizing service distribution within infrastructure 

networks and resource allocation during the post-disaster recovery process. To this 

end, this doctoral dissertation includes the development of the ResQ-IOS framework 

for resilience analysis, its applications for community resilience enhancement, case 

studies for demonstration, and the ResQ-RDSS framework, a decision support system 

for implementing Community Resilience Enhancement Strategies (CRESs).  

The ResQ-IOS is an Iterative Optimization-based Simulation (IOS) Framework 

comprising five modules: Risk Assessment, Simulation, Database, Optimization, and 

Controller. Transferring data and interaction between those five modules enable 

ResQ-IOS to model, optimize, quantify, and analyze the resilience of interdependent 

critical infrastructure systems to disruptive events. The capabilities of the ResQ-IOS 

framework are demonstrated by quantifying the seismic resilience of the case study 

interdependent critical infrastructure systems individually and jointly to evaluate the 

earthquake disaster resilience of the urban community in Shelby County (TN), USA.  

The stakeholders can utilize the ResQ-IOS framework to plan, simulate, and appraise 

the impacts of implementing Community Resilience Enhancement Strategies (CRESs) 

on urban communities. Accordingly, the stakeholders will be able to identify the weak 

points of the urban community and choose the most effective CRES for improving the 

community’s disaster resilience. The ResQ-IOS framework, with the ability to perform 
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parametric analysis, enables the stakeholders to explore the parameters influencing 

the resilience of urban communities. Depending on the task requested from the 

framework, ResQ-IOS can provide seven optimized quantities, namely, minimum joint 

accumulated loss of resilience for the urban community (SoCIS-ALR metric), optimal 

daily dispatching of services within infrastructure networks, optimal recovery strategy 

with the minimum total recovery cost, optimal portfolio for repair packages, and three 

optimized quantities related to deploying backup systems (optimal number, location, 

and schedule). The ResQ-IOS framework, as a robust and versatile computational 

tool, can be incorporated into urban planning procedures to design resilience-oriented 

plans for future developments of urban regions.    

The ResQ-RDSS, the extension of ResQ-IOS with an application for rural areas, is a 

Resilience Quantification-based Regional Decision Support System. The objective of 

developing the ResQ-RDSS framework is to incorporate the resilience concept and 

resilience enhancement strategies in the long-term planning of rural electrification. The 

ResQ-RDSS framework consists of four modules: Spatial Techno-Economic 

Assessment (STEA), Earthquake-induced Risk Assessment (ERA), Flood-induced 

Risk Assessment (FRA), and Decision Maker (DM). These four modules work together 

to devise resilient electrification strategies (off-grid or on-grid) to mitigate the lack of 

electricity access problem globally. In other words, ResQ-RDSS, as a decision support 

system, helps stakeholders select the best CRES for rural communities. In addition to 

identifying the resilient electrification strategy for each village in the considered region, 

the ResQ-RDSS can be applied to rural areas in developed countries to identify more 

vulnerable rural settlements to diverse natural hazards and to plan various resilience 

enhancement strategies and implement them in a timely and cost-effective manner.  

The ResQ-IOS and ResQ-RDSS frameworks are widely applicable to other case 

studies worldwide because of their generalized methodologies. However, particular 

applications require data on local hazard scenarios, exposure (vulnerability) models, 

and recovery models specific to the community whose resilience is modeled, 

quantified, and investigated for improvements.  

 

 

 



3 
 

Zusammenfassung 

Kritische Infrastruktursysteme spielen eine entscheidende Rolle im reibungslosen 

Funktionieren städtischer Gemeinschaften. Wenn diese Systeme jedoch extremen 

Ereignissen ausgesetzt sind, besteht die Gefahr eines längeren Ausfalls von 

Infrastrukturdiensten in der Stadt. Dies kann auf verschiedene Faktoren 

zurückzuführen sein, darunter die unzureichende Resilienz einzelner 

Infrastruktursysteme sowie kaskadenartige Ausfälle, die sich aus der zunehmenden 

Komplexität und den Abhängigkeiten zwischen kritischen Infrastruktursystemen 

ergeben. Die Durchführung einer Resilienzanalyse dieser voneinander abhängigen 

Systeme ermöglicht es, praktische und kosteneffiziente Lösungen für 

Herausforderung in städtischen Gemeinschaften zu planen und umzusetzen. 

Das Hauptziel dieser Dissertation ist es, ein Framework zu entwickeln, das es 

ermöglicht, die Resilienz voneinander abhängiger kritischer Infrastruktursysteme 

gegenüber potenziell störenden Ereignissen zu bewerten, indem die 

Leistungsentwicklung nach einer Katastrophe verfolgt wird. Dieses Framework, 

genannt ResQ-IOS, zielt darauf ab, nicht nur Resilienz zu quantifizieren, sondern auch 

durch die Optimierung der Verteilung von Diensten innerhalb der Infrastrukturnetze 

und der Ressourcenzuweisung während des Wiederherstellungsprozesses nach einer 

Katastrophe die Resilienz dieser Systeme zu verbessern. Die Dissertation beinhaltet 

auch die Anwendung des ResQ-IOS-Frameworks zur Verbesserung der Resilienz von 

Gemeinschaften, Fallstudien zur Demonstration sowie das ResQ-RDSS-Framework, 

ein Entscheidungshilfesystem für die Umsetzung von Resilienzstrategien für die 

Gemeinschaft (Community Resilience Enhancement Strategies, CRES).  

Der ResQ-IOS ist ein Simulationsframework basierend auf iterativer Optimierung 

(Iterative Optimization-based Simulation, IOS), das fünf Module umfasst: 

Risikobewertung, Simulation, Datenbank, Optimierung und Controller. Durch den 

Austausch von Daten und die Interaktion zwischen diesen Modulen ermöglicht das 

ResQ-IOS die Modellierung, Optimierung, Quantifizierung und Analyse der Resilienz 

voneinander abhängiger kritischer Infrastruktursysteme gegenüber Störereignissen. 

Die Leistungsfähigkeit des ResQ-IOS wird durch die Quantifizierung der seismischen 

Resilienz einzelner und abhängiger kritischen Infrastruktursysteme in einer Fallstudie 
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demonstriert, in der die Resilienz der Gemeinschaft im Shelby County (TN), USA, 

gegenüber Erdbebenkatastrophen zu bewerten. 

Die Stakeholder können das ResQ-IOS-Framework nutzen, um die Auswirkungen der 

Umsetzung von Strategien zur Verbesserung der Resilienz der Gemeinschaft 

(Community Resilience Enhancement Strategies, CRES) auf städtische 

Gemeinschaften zu planen, zu simulieren und zu bewerten. Dadurch sind sie in der 

Lage, Schwachstellen der städtischen Gemeinschaft zu identifizieren und die 

effektivsten CRES auszuwählen, um die Katastrophenresilienz der Gemeinschaft zu 

verbessern. Das ResQ-IOS-Framework ermöglicht parametrische Analysen, wodurch 

die Stakeholder die Parameter untersuchen können, die die Resilienz städtischer 

Gemeinschaften beeinflussen. Je nach den Anforderungen können im ResQ-IOS 

sieben optimierte Größen bereitgestellt werden: die minimale kumulierte Verlustgröße 

für die Resilienz der städtischen Gemeinschaft (SoCIS-ALR-Metrik), die optimale 

tägliche Verteilung von Diensten innerhalb von Infrastrukturnetzen, die optimale 

Wiederherstellungsstrategie mit den geringsten Gesamtkosten, das optimale Portfolio 

für Instandsetzungspakete und drei optimierte Größen im Zusammenhang mit dem 

Einsatz von Sicherungssystemen (optimale Anzahl, Standort und Zeitplan). Der ResQ-

IOS-Rahmen kann als robustes und vielseitiges Berechnungsinstrument in städtische 

Planungsverfahren integriert werden, um resilienzorientierte Pläne für die zukünftige 

Entwicklung von Stadtregionen zu entwickeln. 

Das ResQ-RDSS, eine Erweiterung des ResQ-IOS mit einer speziellen Anwendung 

für ländliche Gebiete, ist ein regionales Entscheidungsunterstützungssystem, das auf 

der Quantifizierung von Resilienz basiert. Ziel der Entwicklung des ResQ-RDSS-

Frameworks ist es, das Konzept der Resilienz sowie Strategien zur Verbesserung der 

Resilienz in die langfristige Planung der ländlichen Elektrifizierung zu integrieren. Das 

ResQ-RDSS-Framework besteht aus vier Modulen: Räumliche Techno-Ökonomische 

Bewertung (Spatial Techno-Economic Assessment, STEA), Bewertung von 

Erdbebenrisiken (Earthquake-induced Risk Assessment, ERA), Bewertung von 

Hochwasserrisiken (Flood-induced Risk Assessment, FRA) und Entscheidungsträger 

(Decision Maker, DM). Diese Module arbeiten zusammen, um widerstandsfähige 

Elektrifizierungsstrategien zu entwickeln, sei es netzunabhängig oder netzgebunden, 

um das weltweite Problem des fehlenden Stromzugangs zu abzumildern. Mit anderen 

Worten: Das ResQ-RDSS dient als Entscheidungshilfesystem für Stakeholder, um die 
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besten CRES für ländliche Gemeinden auszuwählen. Es ermöglicht nicht nur die 

Bestimmung der geeigneten Elektrifizierungsstrategie für jedes Dorf in der 

betrachteten Region, sondern kann auch auf ländliche Gebiete in Industrieländern 

angewendet werden, um die Anfälligkeit ländlicher Gemeinschaften für diverse 

Naturgefahren zu ermitteln, verschiedene Strategien zur Verbesserung der Resilienz 

zu planen und sie zeitnah und kostengünstig umzusetzen.  

Die Frameworks ResQ-IOS und ResQ-RDSS sind aufgrund ihrer generalisierten 

Methodik weitgehend für weitere Fallstudien weltweit anwendbar. Allerdings erfordern 

bestimmte Anwendungen Daten zu lokalen Gefahrenszenarien, Expositions- 

(Vulnerabilitäts-) und Wiederherstellungsmodellen, die spezifisch für die jeweilige 

Gemeinschaft sind. Diese Daten werden benötigt, um die Resilienz der Gemeinschaft 

zu modellieren, zu quantifizieren und Verbesserungen zu untersuchen. 
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SoCIS-ALR Joint Accumulated Loss of Resilience (for a system of CISs) 

R&M Repair and Maintenance 

GTPP Gas Turbine Power Plant 

CCPP Combined-Cycle Power Plant 

PGS Power Gate Station 

LNGT Liquefied Natural Gas Terminal 

NGPP Natural Gas Processing Plant 

NGGS Natural Gas Gate Station 

ESS Electric Substation 

BSU Building Stock Unit 

NGCS Natural Gas Compressor Station 

WSF Water Supply Facility 
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WPS Water Pump Station 

WST Water Storage Tank 

CRES Community Resilience Enhancement Strategy 

RRE Resilient Rural Electrification  

RE Renewable Energy  

RESs Renewable Energy Sources  

GHG Greenhouse Gas  

GIS Geographic Information System  

MCDM Multi-Criteria Decision Making  

SE Solar Energy 

MHRA Multi-Hazard Risk Assessment  

STEA Spatial Techno-Economic Assessment  

ERA Earthquake-induced Risk Assessment 

FRA Flood-induced Risk Assessment  

DM Decision Maker  

PV Photovoltaic 

GHI Global Horizontal Irradiance  

HPTN Hypothetical Power Transmission Network      

LHS Latin Hypercube Sampling  

FGO Fuzzy Gamma Operator  

AAT Average Annual Temperature  

SI Solar Irradiance 

ARN Accessibility to the Road Network 

DUA Distance to Urban Areas 

SIS Slope of Installation Site 

PPTL Proximity to Power Transmission Lines  

CFG Combined Fuzzy Grade 
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Indices and sets 

𝑖 Index of critical infrastructure systems 

𝐶𝐼𝑆 Set of critical infrastructure systems 

𝑠 Index of nodes in the critical infrastructure system 

𝑆𝑁𝑖 Set of nodes in the critical infrastructure system 𝑖 

𝑓 Index of facilities in the critical infrastructure system 

𝑆𝐹𝑖 Set of facilities in the critical infrastructure system 𝑖 

𝑚 Index of nodes in the power network 

𝑛 Index of nodes in the natural gas network 

𝑗 Index of nodes in the water network 

𝑝 Index of powerlines in the power network 

𝑞 Index of pipelines in the natural gas network 

𝑙 Index of pipelines in the water network 

𝑁𝐸 Set of nodes in the power network 

𝑁𝐺 Set of nodes in the natural gas network 

𝑁𝑊 Set of nodes in the water network 

𝐿𝐸 Set of power lines in the power network 

𝐿𝐺 Set of pipelines in the natural gas network 

𝐿𝑊 Set of pipelines in the water network 

𝑡 Index of time steps 

𝑇 Set of total time steps between 𝑡𝐸 and 𝑡𝑅 

𝑓𝑒 Index of facilities in the power network 

𝐹𝐸 Set of facilities in the power network 

𝑓𝑔 Index of facilities in the natural gas network 

𝐹𝐺 Set of facilities in the natural gas network 

𝑓𝑤 Index of facilities in the water network 
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𝐹𝑊 Set of facilities in the water network 

𝐼𝐺𝑡𝐸 
Set of interdependent nodes coupled between the natural gas and power networks 

(Gas to Power) 

𝐼𝑊𝑡𝐸 
Set of interdependent nodes coupled between the water and power networks 

(Water to Power) 

𝐼𝐸𝑡𝐺 
Set of interdependent nodes coupled between the power and natural gas networks 

(Power to Gas) 

𝐼𝐸𝑡𝑊 
Set of interdependent nodes coupled between the power and water networks 

(Power to Water) 
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Variables 

𝑅𝑖 
Accumulated loss of resilience for an individual infrastructure system over the 

disruption period 

𝑅𝑆𝑜𝐶𝐼𝑆 
Joint accumulated loss of resilience for interdependent infrastructure systems 

over the disruption period 

𝑅𝑡
𝑆𝑜𝐶𝐼𝑆 

Joint accumulated loss of resilience for interdependent infrastructure systems 

at time 𝑡 

𝑃𝑝𝑟𝑒
𝑖  Pre-disruption performance of an individual infrastructure system 

𝑃𝑝𝑜𝑠𝑡
𝑖  Post-disruption performance of an individual infrastructure system 

𝐶𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖

 
Total consumption of the service in the infrastructure network 𝑖 before 

disruption 

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖

 Total demand for the service in the infrastructure network 𝑖 before disruption 

𝐶𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖

 Total consumption of the service in the infrastructure network 𝑖 after disruption 

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖

 Total demand for the service in the infrastructure network 𝑖 after disruption 

𝐸𝐺,𝑡
𝑚  Total electric power generation at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝑚  Total electric power consumption at electric node 𝑚 at time 𝑡 

𝑒𝑡
𝑝
 Electric power flow through the powerline 𝑝 at time 𝑡 

𝐸𝐺,𝑡
𝐺𝑇𝑃𝑃,𝑚

 Electric power generation of GTPP at electric node 𝑚 at time 𝑡 

𝐸𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑚

 Electric power generation of CCPP at electric node 𝑚 at time 𝑡 

𝐸𝐺,𝑡
𝑃𝐺𝑆,𝑚

 Electric power imported by PGS at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝐺𝑇𝑃𝑃,𝑚

 Electric power consumption for GTPP at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑚

 Electric power consumption for CCPP at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝐸𝑆𝑆.𝑚 Electric power consumption for ESS at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑚

 Electric power consumption for NGPP at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑚

 Electric power consumption for LNGT at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑚

 Electric power consumption for NGCS at electric node 𝑚 at time 𝑡 
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𝐸𝐶,𝑡
𝑊𝑆𝐹,𝑚

 Electric power consumption for WSF at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝑊𝑃𝑆,𝑚

 Electric power consumption for WPS at electric node 𝑚 at time 𝑡 

𝐸𝐶,𝑡
𝐻  

Electric power consumption for BSU 𝐻 located in the service area of electric 

node 𝑚 at time 𝑡 

𝑧𝐸,𝑡
𝑝

 Binary variable indicating the operating state of powerline 𝑝 at time 𝑡 

𝑥𝐸,𝑡
𝑚  Binary variable indicating the operating state of electric node 𝑚 at time 𝑡 

𝑔𝑡
𝑞
 Natural gas flow through the pipeline 𝑞 at time 𝑡 

𝐺𝐺,𝑡
𝑛  Total natural gas production at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝑛  Total natural gas consumption at gas node 𝑛 at time 𝑡 

𝐺𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛

 Natural gas production of LNGT at gas node 𝑛 at time 𝑡 

𝐺𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛

 Natural gas production of NGPP at gas node 𝑛 at time 𝑡 

𝐺𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛

 Natural gas imported by NGGS at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝐺𝑇𝑃𝑃,𝑛

 Natural gas consumption for GTPP at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑛

 Natural gas consumption for CCPP at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑛

 Natural gas consumption for NGPP at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑛

 Natural gas consumption for LNGT at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑛

 Natural gas consumption for NGCS at gas node 𝑛 at time 𝑡 

𝐺𝐶,𝑡
𝐻  

Natural gas consumption for BSU 𝐻 located in the service area of gas node 𝑛 at 

time 𝑡 

𝑧𝐺,𝑡
𝑞

 Binary variable indicating the operating state of gas pipeline 𝑞 at time 𝑡 

𝑥𝐺,𝑡
𝑛  Binary variable indicating the operating state of gas node 𝑛 at time 𝑡 

𝑤𝑡
𝑙 Water flow through the pipeline 𝑙 at time 𝑡 

𝑊𝐺,𝑡
𝑗

 Total water supply at water node 𝑗 at time 𝑡 

𝑊𝐶,𝑡
𝑗

 Total water consumption at water node 𝑗 at time 𝑡 
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𝑊𝐺,𝑡
𝑊𝑆𝐹,𝑗

 Water supply by WSF at water node 𝑗 at time 𝑡 

𝑊𝐺,𝑡
𝑊𝑆𝑇,𝑗

 Water supply by WST at water node 𝑗 at time 𝑡 

𝑊𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑗

 Water consumption for CCPP at water node 𝑗 at time 𝑡 

𝑊𝐶,𝑡
𝐻  

Water consumption for BSU 𝐻 located in the service area of water node 𝑗 at 

time 𝑡 

𝑧𝑊,𝑡
𝑙  Binary variable indicating the operating state of water pipeline 𝑙 at time 𝑡 

𝑥𝑊,𝑡
𝑗

 Binary variable indicating the operating state of water node 𝑗 at time 𝑡 

𝜑𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚

 
Binary variable indicating the operating state of GTPP at electric node 𝑚 at time 

𝑡 

𝜃𝑡
𝐺𝑇𝑃𝑃,𝑛

 
Binary variable indicating the operating state of the interdependency link from 

gas node 𝑛 to GTPP at electric node 𝑚 at time 𝑡 

𝛿𝑡
𝐺𝑇𝑃𝑃,𝑛

 
Binary variable indicating the operating state of gas supply system for GTPP at 

gas node 𝑛 at time 𝑡 

𝜑𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚

 
Binary variable indicating the operating state of CCPP at electric node 𝑚 at time 

𝑡 

𝜃𝑡
𝐶𝐶𝑃𝑃,𝑛

 
Binary variable indicating the operating state of the interdependency link from 

gas node 𝑛 to CCPP at electric node 𝑚 at time 𝑡 

𝛿𝑡
𝐶𝐶𝑃𝑃,𝑛

 
Binary variable indicating the operating state of gas supply system for CCPP at 

gas node 𝑛 at time 𝑡 

𝜎𝑡
𝐶𝐶𝑃𝑃,𝑗

 
Binary variable indicating the operating state of the interdependency link from 

water node 𝑗 to CCPP at electric node 𝑚 at time 𝑡 

𝛾𝑡
𝐶𝐶𝑃𝑃,𝑗

 
Binary variable indicating the operating state of water supply system for CCPP 

at water node 𝑗 at time 𝑡 

𝜑𝐸,𝑡
𝑃𝐺𝑆,𝑚

 Binary variable indicating the operating state of PGS at electric node 𝑚 at time 𝑡 

𝜑𝐸,𝑡
𝐸𝑆𝑆,𝑚

 Binary variable indicating the operating state of ESS at electric node 𝑚 at time 𝑡 

𝜑𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛

 Binary variable indicating the operating state of LNGT at gas node 𝑛 at time 𝑡 

𝛼𝑡
𝐿𝑁𝐺𝑇,𝑚

 
Binary variable indicating the operating state of the interdependency link from 

electric node 𝑚 to LNGT at gas node 𝑛 at time 𝑡 
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𝜋𝑡
𝐿𝑁𝐺𝑇,𝑚

 
Binary variable indicating the operating state of power supply system for LNGT 

at electric node 𝑚 at time 𝑡 

𝜑𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛

 Binary variable indicating the operating state of NGPP at gas node 𝑛 at time 𝑡 

𝛼𝑡
𝑁𝐺𝑃𝑃,𝑚

 
Binary variable indicating the operating state of the interdependency link from 

electric node 𝑚 to NGPP at gas node 𝑛 at time 𝑡 

𝜋𝑡
𝑁𝐺𝑃𝑃,𝑚

 
Binary variable indicating the operating state of power supply system for NGPP 

at electric node 𝑚 at time 𝑡 

𝜑𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛

 Binary variable indicating the operating state of NGGS at gas node 𝑛 at time 𝑡 

𝜑𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛

 Binary variable indicating the operating state of NGCS at gas node 𝑛 at time 𝑡 

𝛼𝑡
𝑁𝐺𝐶𝑆,𝑚

 
Binary variable indicating the operating state of the interdependency link from 

electric node 𝑚 to NGCS at gas node 𝑛 at time 𝑡 

𝜋𝑡
𝑁𝐺𝐶𝑆,𝑚

 
Binary variable indicating the operating state of power supply system for NGCS 

at electric node 𝑚 at time 𝑡 

𝜑𝑊,𝑡
𝑊𝑆𝐹,𝑗

 Binary variable indicating the operating state of WSF at water node 𝑗 at time 𝑡 

𝛽𝑡
𝑊𝑆𝐹,𝑚

 
Binary variable indicating the operating state of the interdependency link from 

electric node 𝑚 to WSF at water node 𝑗 at time 𝑡 

𝜋𝑡
𝑊𝑆𝐹,𝑚

 
Binary variable indicating the operating state of power supply system for WSF at 

electric node 𝑚 at time 𝑡 

𝜑𝑊,𝑡
𝑊𝑃𝑆,𝑗

 Binary variable indicating the operating state of WPS at water node 𝑗 at time 𝑡 

𝛽𝑡
𝑊𝑃𝑆,𝑚

 
Binary variable indicating the operating state of the interdependency link from 

electric node 𝑚 to WPS at water node 𝑗 at time 𝑡 

𝜋𝑡
𝑊𝑃𝑆,𝑚

 
Binary variable indicating the operating state of power supply system for WPS 

at electric node 𝑚 at time 𝑡 

𝜑𝑊,𝑡
𝑊𝑆𝑇,𝑗

 Binary variable indicating the operating state of WST at water node 𝑗 at time 𝑡 

𝑀𝐺𝑊,𝑡
𝐸,𝑗

 
Binary variable indicating whether a truck-mounted mobile generator is deployed 

at water node 𝑗 at time 𝑡 
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Parameters 

𝑡𝐸 Beginning time of system disruption 

𝑡𝑅 Ending time of the recovery process 

𝜔𝑖 
Pre-determined weights related to the relative importance of infrastructure 

systems  

𝑆(𝑙𝑖𝑛𝑘) Start node of the link 

𝑇(𝑙𝑖𝑛𝑘) Terminal node of the link 

𝑒𝑐𝑎𝑝
𝑝

 Flow capacity of the powerline 𝑝 

𝑔𝑐𝑎𝑝
𝑞

 Flow capacity of the gas pipeline 𝑞 

𝑤𝑐𝑎𝑝
𝑙  Flow capacity of the water pipeline 𝑙 

𝜏𝐸,𝑡
𝑚  

Binary parameter indicating whether the recovery process started at electric node 

𝑚 at time 𝑡  

𝜏𝐺,𝑡
𝑛  

Binary parameter indicating whether the recovery process started at gas node 𝑛 

at time 𝑡  

𝜏𝑊,𝑡
𝑗

 
Binary parameter indicating whether the recovery process started at water node 𝑗 

at time 𝑡  

𝑆𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚

 Electric power generation capacity of GTPP at electric node 𝑚 at time 𝑡 

𝐷𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚

 Electric power demand of GTPP at electric node 𝑚 at time 𝑡 

𝐷𝐺,𝑡
𝐺𝑇𝑃𝑃,𝑛

 Natural gas demand of GTPP at gas node 𝑛 at time 𝑡 

𝑆𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚

 Electric power generation capacity of CCPP at electric node 𝑚 at time 𝑡 

𝐷𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚

 Electric power demand of CCPP at electric node 𝑚 at time 𝑡 

𝐷𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑛

 Natural gas demand of CCPP at gas node 𝑛 at time 𝑡 

𝐷𝑊,𝑡
𝐶𝐶𝑃𝑃,𝑗

 Water demand of CCPP at water node 𝑗 at time 𝑡 

𝑆𝐸,𝑡
𝑃𝐺𝑆,𝑚

 Electric power import capacity of PGS at electric node 𝑚 at time 𝑡 

𝐷𝐸,𝑡
𝐸𝑆𝑆,𝑚

 Electric power demand of ESS at electric node 𝑚 at time 𝑡 

𝐷𝐸,𝑡
𝐻  

Electric power demand of BSU 𝐻 located in the service area of electric node 𝑚 at 

time 𝑡 

𝑆𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛

 Natural gas production capacity of LNGT at gas node 𝑛 at time 𝑡 

𝐷𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛

 Natural gas demand of LNGT at gas node 𝑛 at time 𝑡 
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𝐷𝐸,𝑡
𝐿𝑁𝐺𝑇,𝑚

 Electric power demand of LNGT at electric node 𝑚 at time 𝑡 

𝑆𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛

 Natural gas production capacity of NGPP at gas node 𝑛 at time 𝑡 

𝐷𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛

 Natural gas demand of NGPP at gas node 𝑛 at time 𝑡 

𝐷𝐸,𝑡
𝑁𝐺𝑃𝑃,𝑚

 Electric power demand of NGPP at electric node 𝑚 at time 𝑡 

𝑆𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛

 Natural gas import capacity of NGGS at gas node 𝑛 at time 𝑡 

𝐷𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛

 Natural gas demand of NGCS at gas node 𝑛 at time 𝑡 

𝐷𝐸,𝑡
𝑁𝐺𝐶𝑆,𝑚

 Electric power demand of NGCS at electric node 𝑚 at time 𝑡 

𝐷𝐺,𝑡
𝐻  Natural gas demand of BSU 𝐻 located in the service area of gas node 𝑛 at time 𝑡 

𝑆𝑊,𝑡
𝑊𝑆𝐹,𝑗

 Water supply capacity of WSF at water node 𝑗 at time 𝑡 

𝑆𝑊,𝑡
𝑊𝑆𝑇,𝑗

 Water supply capacity of WST at water node 𝑗 at time 𝑡 

𝐷𝐸,𝑡
𝑊𝑆𝐹,𝑚   Electric power demand of WSF at electric node 𝑚 at time 𝑡 

𝐷𝐸,𝑡
𝑊𝑃𝑆,𝑚

 Electric power demand of WPS at electric node 𝑚 at time 𝑡 

𝐷𝑊,𝑡
𝐻  Water demand of BSU 𝐻 located in the service area of water node 𝑗 at time 𝑡 

𝜇𝐸,𝑡
𝑝

 Binary parameter indicating whether the powerline 𝑝 is restored at time 𝑡 

𝜇𝐺,𝑡
𝑞

 Binary parameter indicating whether the gas pipeline 𝑞 is restored at time 𝑡 

𝜇𝑊,𝑡
𝑙  Binary parameter indicating whether the water pipeline 𝑙 is restored at time 𝑡 

𝑁𝑊,𝑎𝑣𝑎𝑖𝑙
𝐸  Number of available truck-mounted mobile generators in the water network 

𝑈𝐶𝑆𝑜𝐶𝐼𝑆 Unit cost of the SoCIS-ALR metric 

𝑈𝐶𝑅𝑃 Daily unit cost of the repair package 

𝑈𝐶𝐵𝑆 Daily unit cost of the backup system 

𝐿𝑖 Availability level of repair packages in the infrastructure network 𝑖 

𝑁𝑟𝑖
𝐵𝑆 Number of backup systems in the infrastructure network 𝑖 

 

 

 

 

 

 



25 
 

 

 

 

 

 

 

Chapter One 
 

Introduction 
 

 

 

 

The material of this chapter is directly or indirectly based on the following 

doctoral research plan and papers: 

• Hamed Hafeznia. Resilience Analysis of Interdependent Critical Infrastructure 

Systems. Doctoral Research Plan, ETH Zurich, 2021.   

• Hamed Hafeznia and Božidar Stojadinović. “ResQ-IOS: An iterative 

optimization-based simulation framework for quantifying the resilience of 

interdependent critical infrastructure systems to natural hazards,” Applied 

Energy, vol. 349, p. 121558, Nov. 2023, doi: 10.1016/j.apenergy.2023.121558. 

• Hamed Hafeznia and Božidar Stojadinović, “Resilience-based decision support 

system for installing standalone solar energy systems to improve disaster 

resilience of rural communities,” submitted to Energy Strategy Reviews.    

 



26 
 

1.1. Problem statement and motivation 

Countries’ socio-economic development relies extensively on well-functioning 

Critical Infrastructure Systems (CISs) that provide essential resources and vital 

services, such as different types of energy, water, communication, and transportation 

[1], [2], [3]. In today’s world, Critical Infrastructure Systems (CISs) such as power, 

natural gas, and water networks are becoming increasingly complex and, at the same 

time, highly interdependent, integrated, and interconnected with each other [4], [5], [6]. 

In light of the growing interdependencies between the CISs and other civil 

infrastructure networks, it is expected that a malfunction in a critical infrastructure 

system, such as the electrical power system, will lead to the inability to operate other 

interdependent civil infrastructure networks, like transportation and communication 

systems. Hence, the inoperability of critical infrastructure systems that serve as the 

backbone of a community may adversely affect the society's economic sectors [6], [7], 

[8], [9], [10], [11].  

On the other hand, extreme events such as human-made threats and natural 

disasters, including earthquakes, floods, windstorms, etc., often disrupt the 

performance of CISs [8], [12], [13], [14]. Due to the many components in the structure 

of CISs, disruptions and shocks arising from the events mentioned earlier may cause 

temporary or permanent damage to technical equipment and, eventually, result in 

cascading failures. Considering that modern communities' functioning is dependent on 

the continuous services provided by interdependent infrastructure systems, 

policymakers, as well as community stakeholders, are concerned about the stability, 

reliability, and sustainability of supplying energy resources to support the economic 

and social growth in their communities [15], [16].  

As part of their efforts to reduce damage costs and economic losses after 

disruptions in the performance of interdependent CISs, government agencies, 

policymakers, stakeholders, and infrastructure managers have adopted resilience 

enhancement strategies for critical infrastructure systems against extreme events [3], 

[6], [17], [18], [19], [20], [21], [22], [23], [24]. Community Resilience Enhancement 

Strategies (CRESs) aim to reduce vulnerability and damage costs, boost infrastructure 

networks’ flexibility and tolerance to disruptive events, improve adaptability to the 
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changing environment, and expedite post-disruption recovery [3], [6], [17], [18], [19], 

[20], [22], [23], [24]. 

 

1.2. Research Questions  

Considering the importance of maintaining and improving the resilience of urban 

and rural communities to natural hazards, the following research questions guided this 

doctoral dissertation: 

1- How can we build the resilience assessment framework using a system-of-

systems approach to track the post-disruption performance evolution of critical 

infrastructure systems while considering the interdependency relations 

between them? 

2- How to mathematically model infrastructure systems’ components to represent 

their real-world conditions during the recovery process? 

3- How can we develop the framework to simultaneously quantify and enhance 

resilience over the recovery period? 

4- How to conceptualize, model, and simulate the implementation of Community 

Resilience Enhancement Strategies (CRESs)?  

5- How can the multi-hazard resilience assessment framework be applied to 

regional development planning?      

 

1.3. Research Objectives 

The purpose of this doctoral dissertation is to develop a framework that can 

evaluate the resilience of interdependent critical infrastructure systems in the face of 

potentially disruptive events by tracking post-disaster performance evolution. In 

addition to the ability of resilience quantification, this framework can enhance the 

resilience of interdependent critical infrastructure systems by optimizing service 

distribution within infrastructure networks and resource allocation during the post-

disaster recovery process. To answer the research questions, the following research 

objectives are defined for this doctoral dissertation:  
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1- Create a framework to quantify the resilience of interdependent critical 

infrastructure systems against natural hazards using a system-of-systems 

approach. 

2- Develop a detailed modeling approach to better represent the status of 

infrastructure systems’ components during recovery.  

3- Integrate optimization into the simulation-based methodology of the resilience 

assessment framework to benefit from simultaneous resilience quantification 

and improvement.   

4- Model and conduct the feasibility study of implementing Community Resilience 

Enhancement Strategies (CRESs). 

5- Incorporate a multi-hazard resilience assessment framework into the regional 

development planning.  

1.4. State-of-the-art review 

To better understand the literature review on the resilience assessment of 

interdependent infrastructure systems conducted for the doctoral dissertation, this 

section represents the state-of-the-art review of the resilience analysis of the CISs in 

four subsections, namely, Definition of Resilience, Modeling Approach, Performance 

Modeling, and Assessment Methods, as shown in Figure 1.1.  

 

Fig. 1.1. Structure and four subsections of the state-of-the-art review section. 
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1.4.1. Definition of Resilience 

Although understanding the definition of resilience is essential, conducting the 

literature review demonstrates flexibility in defining the concept of resilience, especially 

when research objectives, methodology, and case studies vary widely, from purely 

technical systems to purely societal aspects of a community exposed to disruption. In 

other words, there is no general agreement on the resilience definition, indicators, and 

quantitative metrics for critical infrastructure systems, including energy systems [3]. In 

this doctoral dissertation, an infrastructure system’s resilience is defined as the ability 

of that system to minimize the consequences of the disturbance by anticipating, 

absorbing, adapting to, and recovering from the disruption.  

1.4.2. Modeling Approach  

One of the key steps in infrastructure resilience assessment is selecting a modeling 

approach. Various approaches can be applied to model the post-disaster performance 

and components’ status of infrastructure systems. Ahmadi et al. [3] have conducted a 

literature review on approaches to modeling the resilience of energy systems. Based 

on their findings, the resilience modeling approaches can be categorized into three 

main groups: optimization, stochastic, and agent-based modeling. Other modeling 

approaches, including purely simulation-based, system dynamic, and indicator-based 

modeling, are less frequent. The classification of modeling approaches for resilience 

evaluation of infrastructure systems is shown in Figure 1.2.  

 In optimization-based models, the process of resilience quantification for 

infrastructure systems is modeled as an optimization problem whose objective 

function(s) may address the various aspects of system performance after disruption, 

such as recovery duration, potential costs and losses, and restoration sequence. In 

general, the optimization problem aims to improve the system’s post-disaster 

performance by shortening the recovery process and reducing potential economic 

losses and system component damage.  

Kong et al. [6] developed an optimization framework to improve the resilience of 

interdependent infrastructure systems to natural disasters. The objective of this 

framework was to find the optimal set of strategies to maximize the disaster resilience 

of infrastructure systems. Sang et al. [25] proposed an optimization model comprising 

a mixed-integer linear programming problem to find the optimal restoration sequence 
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of damaged components in interdependent gas and electricity infrastructure systems. 

Zhou et al. [26] provided a resilience enhancement framework to mitigate the impact 

of cascading failures by minimizing the costs of restoring failed components, 

hardening the system, and damages imposed by cascading failures. To solve the 

optimization model, they proposed mixed-integer genetic algorithms.  

Liu et al. [27] provided a multi-objective optimization problem in a hierarchical 

framework to specify the optimal strategies for the resilience enhancement of 

interdependent power and natural gas infrastructure systems. Their optimization 

model aims to maximize infrastructure resilience while minimizing the cost of resilience 

improvement strategies. A multi-objective optimization model was developed by 

Almoghathawi et al. [28] to maximize the resilience of interdependent power and water 

networks while minimizing recovery costs. This model consists of a mixed-integer 

programming problem to determine the restoration priority of damaged components. 

In another research study, Almoghathawi et al. [29] presented an optimization model 

to boost the resilience of physically interdependent infrastructure systems by 

specifying the priority order of restoration tasks. They implemented the optimization 

model, which is a mixed-integer programming problem, for interdependent 

infrastructure systems located in Shelby County (TN), USA.     

 

Fig. 1.2. Modeling approaches for infrastructure resilience assessment.  
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As part of stochastic modeling, Monte Carlo simulation methods are widely utilized 

to quantify the uncertainties in assessing the resilience of infrastructure systems. 

Research studies [30], [31], [32] proposed applying simulation-based methods to 

analyze the resilience of electricity networks against extreme weather events like 

hurricanes. Panteli and Mancarella [30] presented a time-series simulation model that 

was combined with the Monte Carlo method to evaluate the resilience of power 

infrastructure systems under intense climatic conditions. Balakrishnan and Cassottana 

[33] developed an open-source simulation package called InfraRisk for evaluating the 

resilience of interconnected infrastructure systems, focusing on power, water, and 

transportation networks.   

Younesi et al. [13] proposed a quantitative framework for the resilience assessment 

of power networks against wide-area natural hazards. Applying Monte Carlo 

simulations, this framework accounts for the uncertainties involved in some 

characteristics of natural hazards, such as location, type, and severity level. Blagojevic 

et al. [34] developed a probability-based resilience assessment model for a virtual 

community. To carry out the stochastic modeling, many scenarios were simulated to 

quantify the virtual community’s resilience against earthquakes. In a different study, 

Blagojevic et al. [35] presented a Monte Carlo-based simulation method to measure 

the importance of interdependent infrastructure systems’ components for community 

resilience. The components of infrastructure systems were ranked based on the 

results of Sobol’ indices.  

As examples of agent-based modeling, the research studies [36] and [37] applied 

this type of modeling approach to the resilience analysis of infrastructure networks. 

For modeling the interdependencies between the infrastructure networks and the 

community, including the households and businesses, Dubaniowski and Heinimann 

[38] developed an agent-based Input-Output (IO) framework. They implemented the 

developed IO framework for assessing the resilience of an urban community in 

Singapore [39]. Sun et al. [40] proposed an agent-based recovery model for appraising 

the seismic resilience of communities. Furthermore, they presented a framework for 

quantifying the resilience of integrated civil infrastructure systems [41]. 

The application of indicator-based modeling for the resilience analysis of technical 

systems has lower frequency in resilience-related literature. For instance, Yazdi et al. 
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[42] provided a qualitative resilience evaluation framework for hydrogen-based energy 

infrastructure systems by jointly considering resilience and sustainability indicators. 

Gasser et al. [43] assessed the resilience of electricity supply in 140 countries using 

Multi-Criteria Decision Analysis (MCDA). They developed a metric for quantifying 

electricity supply resilience at the national level with an indicator-based approach. 

Arvin et al. [44] developed an infrastructure resilience assessment framework 

integrating the Geographic Information System (GIS) data and Multi-Criteria Decision 

Making (MCDM) techniques. The MCDM techniques consider 25 indicators to rank the 

case study counties based on resilience to three types of hazards: earthquake, flood, 

and landslide.   

 

1.4.3. Performance Modeling  

In modeling critical energy systems for resilience assessment, the system’s 

performance is often considered a continuous variable. However, some research 

studies have applied discrete multistate models to evaluate the resilience of critical 

systems (Fig. 1.3). As an example of the application of multistate models, Zeng et al. 

[8] proposed a Markov reward process-based framework to quantify the resilience of 

nuclear power plants. They applied a multistate performance model for the nuclear 

power plant and analyzed the recovery process of the power plant by using a 

continuous time discrete state Markov chain. The capability of controlling the 

complexity of the modeling process is the advantage of using discrete multistate 

models. However, multistate models may not be applicable to interdependent critical 

infrastructure systems with numerous components. After disruption, components can 

be fully functional, partially functional, or completely failed. Contrary to this, some 

studies [6], [28], [45] relying on optimization models for resilience quantification 

assume a post-disruption binary state for components (failed or functional). That is to 

say, those research studies did not consider continuous functionality recovery for 

components.  
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Fig. 1.3. Performance models for infrastructure resilience assessment.  

 

1.4.4. Assessment Methods 

Hosseini et al. [46] classified the system resilience assessment methods into two 

groups, namely, general measure-based and structure-based methods (Fig. 1.4). The 

general measure-based methods are developed based on empirically observable 

quantities [8], [46]. In other words, these methods quantify resilience regardless of the 

system-specific characteristics, such as system structure and the type of relationship 

between the components of the system [8], [46]. The resilience triangle model 

developed by Bruneau et al. [47] is a general measure-based method that quantifies 

resilience.  
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Fig. 1.4. Assessment methods for infrastructure resilience.  

Structure-based methods consider system-specific characteristics, like structural 

topology. In topology-based methods, as a subset of structure-based methods, the 

resilience is quantified by applying network models that follow the topological structure 

of the concerned system [46], [48]. Chen et al. [49] studied the vulnerability of power 

transmission systems by integrating topological models with some characteristics of 

power grids. Liu et al. [50] assessed the resilience of interconnected power and gas 

networks by combining the topological model with a dynamic one. Wang et al. [51] 

proposed a three-stage framework for the modeling and resilience analysis of power 

grids using network theory.    

 

1.4.5. Resilience Metrics 

There are a few candidates for a metric to quantify the joint disruption resilience of 

interdependent CISs. In some research studies [3], [6], [52], [53], [54], [55], the 

resilience of an individual infrastructure system is calculated by the ratio of the area 

under the curve representing the time evolution of the actual performance of the 

infrastructure system with respect to the target performance of the system over the 

period starting from the occurrence of a disruptive event and ending when the recovery 

process is completed. 
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Some researchers [47], [56] quantified the resilience of an infrastructure system as 

the instantaneous difference between the actual and target system performance at 

certain time points during the recovery process. Another example of an instantaneous 

measure is the resilience metric proposed in the NIST SP-1190 report [57]. However, 

both groups of researchers use different indicators for infrastructure system 

performance.  

 

1.4.6. Community Resilience Enhancement Strategy (CRES)  

This section aims to illustrate how implementing Community Resilience 

Enhancement Strategies (CRESs) can improve community resilience against extreme 

events. The resilience of interdependent infrastructure systems of an urban community 

to disruptive events such as earthquakes, floods, windstorms, etc., can be evaluated 

by four indicators, namely, redundancy, robustness, resourcefulness, and rapidity [6]. 

They are illustrated in Fig. 1.5, displaying an infrastructure system’s typical 

performance evolution curve after an extreme event. As shown in Fig. 1.5, the 

redundancy indicator measures the descending rate of the post-disruption 

performance of the infrastructure system. The robustness indicator is the minimum 

level of infrastructure performance after an extreme event occurrence. The 

resourcefulness indicator measures the ascending rate of the infrastructure system’s 

performance after the recovery process starts. The rapidity indicator considers the 

time required for full functional recovery of the infrastructure system [6].  

The objective of implementing CRESs is to improve the resilience indicators for 

infrastructure systems after a disaster [58], [59], [60], [61]. To investigate the impacts 

of CRESs on improving the disaster resilience of a community, these four indicators 

are employed to conceptualize CRESs and model their implementations. Such 

strategies are followed before the extreme events, representing a class of pre-

disruption CRESs, or during the long-term recovery after the extreme event, 

representing a class of post-disruption CRESs. In addition, peri-disruption CRESs 

aimed at resolving the interdependencies among the CISs are followed during the 

short-term emergency interventions after the extreme event.   
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Fig. 1.5. The performance evolution of an infrastructure system after an extreme event 

and four respective resilience evaluation indices. 

 

1.5. Research gaps in the resilience analysis of interdependent 

infrastructure systems 

This section addresses existing research gaps identified through the critical 

literature review on the resilience analysis of interdependent infrastructure systems. 

The ResQ-IOS framework takes advantage of both simulation-based and 

optimization-based approaches to address existing research gaps.  The research gaps 

in quantifying infrastructure resilience and the contributions of the ResQ-IOS 

framework to fill the gaps are as follows: 

1- The simulation-based and agent-based methods employed for resilience 

quantification do not necessarily guarantee the optimal distribution of resources 

and services throughout infrastructure networks. The ResQ-IOS resilience 

quantification framework can determine the optimal flow of resources and 

services from and to each node in the network to maximize the resilience of 
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interdependent infrastructure systems at each time step of the simulation and 

thus deliver a realistic resilience assessment.   

2- To reduce the computational burden, some papers consider a specific group of 

infrastructure systems’ components for the resilience assessment, even though 

all components are subject to damage by natural hazards. The proposed ResQ-

IOS framework assumes that all components of the considered systems may 

be damaged during the disaster.  

3- Some research studies applying optimization models for resilience 

quantification consider a binary state for the operating condition of components 

after the disruption (failed or fully functional). In the ResQ-IOS framework, the 

initial operating state of components after disruption can be completely failed, 

partially functional, or fully functional.    

4- Some reviewed research assumes that the demands posed by the components 

are constant and equal to their pre-disruption demands during the entire 

resilience assessment process, whereas it is an unrealistic assumption. For 

example, demands for electric power, natural gas, and potable water in the 

network may decrease after a disaster that damages residential buildings since 

the residents of damaged buildings have to move to safe locations outside the 

network. In the proposed ResQ-IOS framework, the demand for resources and 

services evolves in time after a disruptive event occurs. Thus, the demand for 

resources and services is a time-dependent function during the resilience 

assessment period. The ResQ-IOS framework makes it possible to consider 

the temporary loads that may be imposed on infrastructure networks during the 

recovery process.  

5- To the best of our knowledge, it is necessary to develop a regional decision-

making support system that simultaneously considers multi-hazard risk and 

resilience evaluation and techno-economic assessment to improve electricity 

access in rural areas. The ResQ-RDSS framework was designed to fill this gap.  
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1.6. Main contributions  

This doctoral dissertation aims to develop a powerful and versatile computational 

tool called ResQ-IOS for modeling, quantifying, optimizing, and analyzing the 

resilience of interdependent critical infrastructure systems against potentially 

disruptive events. This framework applies a bottom-up approach to assessing an 

urban community’s resilience, from estimating the damage level of infrastructure 

components to evaluating the infrastructure systems’ performance and quantifying the 

urban community’s disaster resilience. Considering the state-of-the-art in resilience 

analysis of interdependent infrastructure systems, the ResQ-IOS framework aims to 

minimize post-disaster disruption in an urban community by determining the optimal 

dispatching of infrastructure services during the recovery process. In this doctoral 

dissertation, the following items are the main contributions: 

1- The ResQ-IOS framework can provide the stakeholders with seven optimal 

quantities related to the post-disaster recovery of urban communities:  

- Optimal daily dispatching of infrastructure services 

- Minimum loss of resilience (i.e., SoCIS-ALR metric) 

- Minimum total recovery cost 

- Optimal number of backup systems 

- Optimal portfolio for repair packages 

- Optimal locations of backup systems 

- Optimal schedule for deploying backup systems. 

2- The ResQ-IOS framework enables the stakeholders to conduct feasibility 

studies on implementing Community Resilience Enhancement Strategies 

(CRESs). This ability enables the stakeholders to plan, simulate, and assess 

the impact of pre-disruption, peri-disruption, and post-disruption CRESs on 

improving community resilience.   

3- The ResQ-IOS framework enables stakeholders to perform parametric 

analyses of community resilience against disasters to gain insight into the 

parameters influencing the recovery of urban and rural communities. 

4- ResQ-RDSS, as a regional decision support system for analyzing various 

CRESs, is among only a few research studies that quantify the resilience of 

rural communities, moving from qualitative and conceptual studies toward 

implementation.  
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5- The ResQ-RDSS framework integrates multi-hazard risk assessment, 

optimization, and resilience quantification into Multi-Criteria Decision 

Making (MCDM). 

 

1.7. Structure of the Dissertation  

This dissertation is divided into five chapters. Chapter 1 discusses the problem 

statement and motivation, introduces the research questions and objectives of this 

doctoral dissertation, and surveys the current state-of-the-art concerning infrastructure 

resilience assessment. This chapter identifies the research gaps and describes the 

dissertation’s main contributions to the state-of-the-art related to the resilience 

analysis of interdependent infrastructure systems.  

Chapter 2 introduces the Iterative Optimization-based Simulation (IOS) methodology 

and explains the importance of developing such a computational framework to achieve 

the dissertation’s research objectives. Then, this chapter outlines the structure of the 

ResQ-IOS, the Resilience Quantification Iterative Optimization-based Simulation 

framework developed in this doctoral research for evaluating the resilience of 

interdependent Critical Infrastructure Systems (CISs). Finally, Chapter 2 presents the 

mathematical model of interdependent CISs’ performance and formulates a Mixed-

Integer Linear Programming (MILP) problem for optimizing the resilience of 

interdependent CISs. 

Chapter 3 aims to demonstrate the capabilities of the ResQ-IOS in evaluating the 

resilience of interdependent CISs. To this end, a realistic example of Shelby County 

(TN), USA, as a relatively dense urban community is introduced, followed by 

assessing the seismic resilience of Shelby County. This chapter also investigates the 

impacts of implementing three CRESs on the disaster resilience of Shelby County and 

carries out the parametric analysis of urban disaster resilience by taking Shelby 

County as an example. Finally, Chapter 3 identifies the optimal recovery strategies for 

minimizing the total recovery cost. 

Chapter 4 explains the problem statement and motivation for developing the ResQ-

RDSS, the extension of the ResQ-IOS, a resilience-based regional decision support 

system for installing off-grid solar power systems to improve disaster resilience of rural 

communities. This chapter describes the structure of the ResQ-RDSS. In order to 
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demonstrate the capabilities of the ResQ-RDSS, the rural settlements of Birjand 

County, Iran, are introduced as a low-density region case study. At the end of this 

chapter, the result of implementing the ResQ-RDSS for the resilient rural electrification 

of the case study is analyzed.  

Chapter 5 comprises a summary of conclusions and suggestions for the potential 

extension of the research conducted in this doctoral dissertation. 
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Chapter Two 
 

ResQ-IOS: An Iterative Optimization-based 

Simulation Framework for the Resilience 

Quantification of Interdependent Critical 

Infrastructure Systems 
 

 

 

This chapter introduces the Iterative Optimization-based Simulation (IOS) 

framework of the ResQ-IOS and its structure, which comprises five modules for 

the resilience analysis of interdependent infrastructure systems. This chapter 

also provides the mathematical model of interdependent critical infrastructure 

systems for optimizing the disaster resilience of urban communities. The 

material of this chapter is published in the following paper: 

• Hamed Hafeznia and Božidar Stojadinović. “ResQ-IOS: An iterative optimization-

based simulation framework for quantifying the resilience of interdependent 

critical infrastructure systems to natural hazards,” Applied Energy, vol. 349, p. 

121558, Nov. 2023, doi: 10.1016/j.apenergy.2023.121558. 
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2.1. Introduction to Iterative Optimization-based Simulation 

The capabilities of modern simulation tools to analyze complex systems’ behavior 

by assessing their performance through creating ‘what-if’ scenarios make simulation 

a robust methodology for solving real-world problems [62], [63], [64]. The simulation 

process computes system's performance measures for different model alternatives to 

evaluate the effects of model parameters on systems’ behavior. However, an 

optimization process is needed to find the best configuration of the systems by 

exploring the systems’ performance measures space generated by simulation. 

Integration of simulation and optimization is, therefore, a promising methodology for 

solving large and complex problems in the real-world environment [65].  

Optimization approaches utilizing traditional mathematical optimization are readily 

applicable to small, deterministic, and less complex systems. As the system's size, 

uncertainty, and complexity increase, mathematical modeling may fail to find an 

optimal solution [66], [67], [68], [69], [70]. In contrast, hybrid Optimization-Simulation 

(OS) approaches can deal with the uncertainty and complexity of large-scale systems. 

Accordingly, OS models are more suitable for real-world stochastic and complex 

systems with sizable details and intricate relationships between their components [67], 

[71], [72]. Models using OS approaches can also consider the system's non-linear 

relationships, dynamic features, and qualitative aspects [70]. Significant progress in 

computational capacities has led to meaningful growth in applying OS models to 

various research fields, such as risk management, healthcare, and industrial 

engineering [65], [73], [74], [75], [76]. In the field of disaster resilience modeling, 

assessment, and quantification of interacting civil infrastructures system, 

Optimization-Simulation (OS) is particularly useful. This is particularly important when 

the involved systems have different disruption reaction times. For example, depending 

on the source of electric power (nuclear, natural gas, oil, coal, wind, water, solar), the 

time to stabilize the system after a disruption and restore its function may be very 

different.  

Considering the advantages of the hybrid Optimization-Simulation (OS) approach 

discussed above, it is essential to develop an Iterative Optimization-based Simulation 

(IOS) computational framework for modeling, quantifying, optimizing, and analyzing 

the resilience of interdependent CISs to achieve this doctoral dissertation’s objectives. 
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The dissertation’s objectives, addressed in this Chapter and stated earlier in Chapter 

1 (Objectives No. 1, 2, and 3), are as follows: 

- Create a framework to quantify the resilience of interdependent critical 

infrastructure systems against natural hazards using a system-of-systems 

approach.  

- Develop a detailed modeling approach to better represent the status of 

infrastructure systems’ components during recovery.  

- Integrate optimization into the simulation-based methodology of the resilience 

assessment framework to benefit from simultaneous resilience quantification 

and improvement.   

 The general structure of an Iterative Optimization-based Simulation (IOS) 

framework is illustrated in Figure 2.1. According to this figure, an optimization solver 

is embedded into a simulation model in the structure of the proposed Iterative 

Optimization-based Simulation (IOS) framework. As shown in Fig. 2.1, the optimization 

solver is called repeatedly at each operational step of the IOS framework to optimize 

the simulated systems’ state variables. Specifically, the simulation run is temporarily 

paused, and the state variables of the simulated system are transferred to the 

optimization solver as input to the analytical modeling of the system that is formulated 

as an optimization problem according to the current state of the simulated system. 

After the optimizer solves the mathematical model of the system and finds the solution, 

the framework updates the system's configuration according to the optimal solution 

and resumes the simulation run. This process is iterated between the optimization and 

simulation frequently until a pre-set stopping criterion is satisfied. 
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Fig. 2.1. An illustrative structure of the Iterative Optimization-based Simulation (IOS) 

framework. 

 

2.2. Structure of the ResQ-IOS 

This section introduces resilience quantification into an IOS framework by 

combining simulation and optimization. As shown in Fig. 2.2, the proposed Resilience 

Quantification Iterative Optimization-based Simulation (ResQ-IOS) framework for 

quantifying the resilience of interdependent CISs benefits from a modular workflow to 

establish logical relationships between the different sections of the framework. This 

IOS framework consists of five modules: risk assessment, simulation, optimization, 

database, and controller. They are described subsequently.  
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Fig. 2.2. The proposed ResQ-IOS framework for quantifying and optimizing the resilience 

of interdependent CISs. 

The block diagram of the process by which the ResQ-IOS models and quantifies 

the resilience of interdependent CISs is given in Fig. 2.3. The diagram comprises five 

major modules: Risk Assessment, Simulation, Optimization, Database and Controller. 

These five modules work together to evaluate the resilience of interdependent 

infrastructure systems. As depicted in Fig. 2.3, the first module that triggers the ResQ-

IOS framework to operate is the risk assessment module. This module simulates the 

hazard and, accordingly, evaluates the vulnerability of the components of the 

infrastructure networks. Then, data related to the post-disaster status of the 

infrastructure networks as the output of the risk assessment module is conveyed to 

the database module. In the next step, the simulation module uses this data to simulate 

the functional recovery evolution of infrastructure networks’ performance by tracing the 

functionality of components on both supply and demand sides according to their 

damage level and repair progress. This simulated data is populated to the database 

module and is utilized by the optimization module to maximize the post-disruption 

performance of the considered interdependent CISs. The optimization module solves 

a Mixed-Integer Linear Programming (MILP) problem to determine the optimal 
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distribution of services and resources in the infrastructure networks with the objective 

of minimizing unmet demands. Then, the optimal configuration for supply and demand 

is transferred to the database module. Concerning the infrastructure systems’ optimal 

performance configuration stored in the database, the simulation module reconfigures 

the supply and demand patterns in infrastructure networks. It then simulates the 

performance evolution of infrastructure networks for the next time step in the recovery 

process. This time-stepping Optimization-Simulation (OS) procedure is iterated 

between the simulation, database, and optimization modules. The controller module 

computes the loss of resilience for the infrastructure networks at each time step using 

the data of the supply and demand whose distribution is optimized. The controller 

module ends the OS process when a set of pre-defined simulation stopping criteria is 

met.  

 

Fig. 2.3. The block diagram of the process used in the ResQ-IOS for modeling and 

quantifying the resilience of interdependent CISs. 
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2.2.1. Risk Assessment Module 

The ResQ-IOS framework incorporates the risk assessment module to model how 

a hazard-induced disruption affects the functioning of a community and its 

interdependent infrastructure systems. The role of this module is to estimate the 

impact of the hazard on the performance of infrastructure systems’ components. This 

module is the starter of workflow in the ResQ-IOS framework for the resilience 

assessment of interdependent CISs.  

After the hazard-related disruption information is received, the risk assessment 

module begins to simulate the regional-scale impacts of the hazard on the 

infrastructure networks, considering the type and magnitude of the hazard. In this 

doctoral dissertation, the interdependent CISs’ loss of functionality due to natural 

hazards is classified into two groups: direct and indirect functionality loss. Direct 

functionality loss is referred to the physical damage to the components of infrastructure 

networks. The physical damage includes structural and non-structural damage. For 

instance, the structural damage of a water pump station can be a partial collapse of 

the pump station building, and non-structural damage can be referred to as the 

equipment failure of the electrical power supply system in the pump station. Indirect 

functionality loss is referred to the inoperability of a component in the infrastructure 

system due to the malfunction in the performance of another infrastructure system that 

supplies the demand of that component in the dependent infrastructure system setting. 

For example, the water pump station, which remains intact after a natural hazard, may 

cease to operate if the electrical power network is damaged and not able to supply the 

pump station’s demand. This type of functionality loss results from the 

interdependency between different infrastructure systems. 

Taking an earthquake as an example of the hazard, the risk assessment module 

simulates the impact of the earthquake on the infrastructure network by estimating 

intensity measures at the geographical location of the infrastructure networks’ 

components. The earthquake intensity measures such as PGD, PGV, and PGA are 

calculated from the ground motion characteristics. To estimate the intensity measures 

at the locations of the systems’ components, attenuation models that are the function 

of the earthquake magnitude and epicenter location are used. Then, the risk 

assessment module utilizes the seismic fragility curves of the infrastructure networks’ 

components provided within component specification data. Considering the fragility 
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curves and earthquake intensity measures at their location, the module assesses the 

components' vulnerability against the hazard and sets their initial post-disruption 

damage state. After producing the fragility curve for each component, based on the 

earthquake intensity measures like PGA at the location of the component, the damage 

state of the component is estimated. To this end, five damage states similar to the 

methodology of the FEMA-HAZUS Earthquake Model Technical Manual [77] are 

considered, namely, None, Slight, Moderate, Extensive, and Complete. The workflow 

of the risk assessment module is consistent with the Performance-Based Earthquake 

Engineering (PBEE) methodology developed by the Pacific Earthquake Engineering 

Research Center (PEER) [78]. Lastly, the risk assessment module sends information 

about the damage state of the components to the database module. 

One of the strengths of the ResQ-IOS framework is that the resilience assessment 

process is formulated and implemented based on the time-dependent damage state 

of the components. Hence, this framework can evaluate the resilience of 

interdependent CISs under the impact of multiple natural hazards (e.g., floods or high 

winds) as well as triggered natural hazard cascades.  

 

2.2.2. Simulation Module 

  The function of this module is to simulate the post-disruption performance of the 

interdependent CISs with a system-of-systems approach during the recovery process. 

This module models the interactions between different infrastructure networks during 

the post-disaster recovery process by tracking the CIS components’ initial damage 

and function recovery to capture the interdependency between the infrastructure 

networks. Additionally, the simulation module of the ResQ-IOS framework employs a 

fuzzy logic model to continuously assess components' functionality.  

According to the components’ damage level data, which is stored in the first layer 

of the ResQ-IOS database, the simulation modules appraise the functionality level of 

the infrastructure networks. The operational state of the components is evaluated by 

fuzzy membership functions. Therefore, the operating state of a component after a 

disaster can be rated as fully functional, partially functional, or completely failed. The 

amount of time needed to restore a damaged component is a function of its immediate 
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post-disaster damage state and, thus, a function of the hazard’s intensity at the 

location of the component and its vulnerability.  

 

2.2.3. Optimization Module  

An optimization solver is embedded into the ResQ-IOS framework to determine the 

optimal flow of resources and services from and to each node in the considered 

infrastructure networks to minimize the loss of resilience of interdependent CISs at 

each step of the recovery process. Section 2.3 introduces a resilience metric that 

computes the joint loss of resilience for interdependent infrastructure systems. 

Minimizing that resilience metric is the objective function of the optimization module. 

Thus, the optimization solver is called in each iteration of the ResQ-IOS framework. 

The optimization module calls for information about the current infrastructure network 

status stored in the second layer of the ResQ-IOS database. Then, the optimization 

module updates the mathematical model of the interdependent CISs according to the 

networks’ status parameters. The main parts of the mathematical model, including the 

objective function and the constraints, stay unchanged; however, the model 

parameters and some decision variable coefficients may change in an optimization 

cycle.    

 

2.2.4. Controller Module 

The tasks of the controller module are to monitor the functionality evolution of 

critical infrastructure systems during the post-disruption recovery process, and to stop 

the time-stepping OS process once the stopping criteria are met. For these purposes, 

an integral resilience metric is defined in Section 2.3 to evaluate the joint recovery 

process of the interdependent CISs. The controller module computes this resilience 

metric in each of the ResQ-IOS framework cycle. The module stops the resilience 

quantification framework when the resilience metric exceeds the pre-set threshold. 

 

2.2.5. Database Module 

In the ResQ-IOS framework, the role of the database module is to store the output 

data from the risk assessment, simulation, and optimization modules and provide the 



50 
 

required data to those modules during iterative resilience quantification (Fig. 2.2). In 

other words, the database module fulfills the module interface and data exchange 

roles. The database module consists of three layers. The first layer is allocated to store 

the output data sent by the risk assessment module. This data includes the damage 

state of the infrastructure networks’ components caused by the hazard. The simulation 

module uses the data in this layer to trace the performance evolution of the CISs after 

the occurrence of the hazard.  

The second layer of the database is dedicated to the output data of the simulation 

module, comprising the current functionality level of the CIS components and the 

current demand recovery of the consumers. The data of the second layer is fed to the 

optimization module. This data, which are the state variables of the community, is 

utilized to re-formulate the MILP optimization problem that is representative of the 

community’s mathematical model. As shown in Fig. 2.2, the optimal solution 

discovered by the optimization module is populated to the third layer of the database. 

The data stored in the third layer is then transferred to the simulation module to 

reconfigure the infrastructure networks and update the supply and demand patterns in 

the CISs and the community. The exchange of data between the ResQ-IOS 

framework's modules, as stated above, occurs until the controller module stops the 

time-stepping recovery OS process. The controller module takes the data from the 

second and third layers of the database to check whether the resilience quantification 

stopping criterion is satisfied. In other words, the controller module monitors changes 

in the value of the resilience metric defined for interdependent infrastructure systems.  

 

2.3. Resilience metric for interdependent critical infrastructure 

systems 

In this doctoral dissertation, a resilience metric was defined to measure the 

resilience of an individual infrastructure system with respect to its pre-and post-

disruption performance. The resilience of the infrastructure system following a 

disruptive event is quantified by tracking the evolution path of system performance 

after the disruption through time. The resilience metric adopted in this dissertation is 

based on the Loss of Resilience metric proposed by Didier et. al [79]. An infrastructure 
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system encounters a loss of resilience when it is not able to supply the amount of 

demand for its service. The resilience metric 𝑅𝑖 used in this doctoral dissertation is: 

𝑅𝑖 =  ∫  (𝑃𝑝𝑟𝑒
𝑖 (𝑡) − 𝑃𝑝𝑜𝑠𝑡

𝑖 (𝑡)) 𝑑𝑡                                                                                  (𝐸. 1)
𝑡𝑅

𝑡𝐸

 

where 𝑃𝑝𝑟𝑒
𝑖  and 𝑃𝑝𝑜𝑠𝑡

𝑖  denote the infrastructure system’s 𝑖 pre- and post-disruption 

performance, and 𝑡𝐸 and 𝑡𝑅 denote the times when the disruption occurs and the time 

when the recovery process ends, respectively. The instantaneous performance of the 

system 𝑃𝑖(𝑡) is the ratio of the instantaneous total consumption of its service (e.g., 

electrical power, water, etc.) 𝐶𝑠𝑦𝑠
𝑖 (𝑡) and the instantaneous total demand for its service 

𝐷𝑠𝑦𝑠
𝑖 (𝑡) and measures its instantaneous Loss of Resilience (LR). By this definition, the 

performance of the system 𝑃𝑖(𝑡) is normalized and unitless, following [80], and takes 

values between 0 and 1. The resilience metric is then:   

𝑅𝑖 =  ∫  (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

) 𝑑𝑡                                                                           (𝐸. 2)
𝑡𝑅

𝑡𝐸

 

In this dissertation, pre-disruption performance is assumed to have no Loss of 

Resilience, thus  𝑃𝑝𝑟𝑒
𝑖 = 1, and the target post-disruption performance is assumed to 

be equal to the pre-disruption performance. Figure 2.4 graphically demonstrates that 

the resilience metric 𝑅𝑖 is equal to the area between the target and the actual 

performance curves of the infrastructure system, computed by integrating the 

consumption/demand ratio difference in each time step. Thus, the resilience metric 𝑅𝑖 

for a CIS is called the Accumulated Loss of Resilience (ALR) in this doctoral 

dissertation. 
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 Fig. 2.4. Illustration of the Accumulated Loss of Resilience (ALR) for a CIS (𝑅𝑖 metric). 

Due to connections, dependencies, and interactions between different 

infrastructure networks in a community, interdependent CISs are modeled as a 

“system-of-systems” [48]. As explained in the next section, a resilient behavior of 

interdependent system of CISs relies on the functioning of all individual infrastructure 

networks in the community. Conversely, the non-resilient behavior of the system of 

CISs may be induced by interdependencies and cascading failures, where non-

performance of one CIS disables otherwise undamaged components of other CISs. 

To capture this system-of-CISs behavior in a single resilience metric, according to [80], 

a linear combination (i.e., weighted sum) of the performance of each infrastructure 

system, called the joint Accumulated Loss of Resilience (SoCIS-ALR) metric, is 

proposed as: 

𝑅𝑆𝑜𝐶𝐼𝑆 = ∑ 𝜔𝑖𝑅𝑖

𝑖∈𝐶𝐼𝑆

= ∑ 𝜔𝑖  .

𝑖∈𝐶𝐼𝑆

 ∫  (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

) 𝑑𝑡                            (𝐸. 3)
𝑡𝑅

𝑡𝐸
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                                   𝑠. 𝑡.       ∑ 𝜔𝑖

𝑖∈𝐶𝐼𝑆

= 1                                                                           (𝐸. 4) 

where 𝜔𝑖 denotes the predetermined weights assigned to individual CISs, for example, 

according to the relative importance of each network in the community. In this doctoral 

dissertation, the relative importance of infrastructure networks in the community is 

considered equal for power, natural gas, and water networks. Since the SoCIS-ALR 

metric (𝑅𝑆𝑜𝐶𝐼𝑆 ) is normalized and unitless, it can evaluate the performance of 

interdependent CISs jointly regardless of the type of service provided by the 

infrastructure system. Moreover, using 𝑅𝑆𝑜𝐶𝐼𝑆 metric facilitates computing the 

community resilience performance goals proposed in NIST SP-1190 [57].   

 

2.4. Modeling of Interdependent Critical Infrastructure Systems 

Different types of interdependencies exist between the infrastructure systems, 

such as physical, cyber, geographical, and logical [4]. According to the relevant studies 

on resilience quantification, a multi-layer network model can be used to represent 

interdependent CISs [6], [80], [81]. In this model, different CISs can operate and 

interact through the interdependency links connecting nodes from different CISs. An 

illustrative example of a multi-layer network with interdependency links is provided in 

Fig. 2.5. As depicted in this figure, the service inputs necessary for continuing the 

functionality of an infrastructure network are transferred from other infrastructure 

networks through such interdependency links. These interdependency links represent 

the physical interdependencies between various infrastructure networks. The principal 

interdependencies between power, natural gas, and water networks are physical [28], 

[80]. In addition to physical, the simulation module in the Res-IOS framework 

considers the geographical interdependencies between the infrastructure networks. 

Geographical interdependencies between CISs occur when their components are in 

proximity to one another so that those components may be simultaneously affected by 

the same natural hazard [6]. Cyber and logical interdependencies are not modeled in 

this research.      
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Fig. 2.5. An illustrative example of a multilayer network with interdependency links. 

 

2.5. Network flow-based model of an infrastructure system 

There are different CIS operation models for analyzing the performance of 

infrastructure systems and its evaluation through the post-disaster recovery process 

[82], [83], [84], [85]. Considering the characteristics of the CISs addressed in this 

doctoral dissertation, power, natural gas, and water, a network flow-based operation 

model is selected to capture the evolution of infrastructure systems’ performance 

according to [6], [25], [86], [87], [88]. In this operation model, the function of each 

infrastructure system is to generate and convey a specific type of service throughout 

its network.  
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To represent an infrastructure system as a network, it is crucial to map the physical 

facilities in the infrastructure system to the set of nodes and links describing the actual 

functional role of those facilities. The network flow-based model has three types of 

nodes to differentiate the physical facilities in the infrastructure system by their function 

type: supply, demand, and transmission. The supply nodes are the facilities in the 

infrastructure network that generate a service. The demand nodes are the locations in 

the infrastructure network where the services are delivered to the end users. The 

transmission nodes are the facilities in the infrastructure network that facilitate service 

transfer between supply and demand nodes. Another flow-based network component 

is the links, which connect two nodes to transfer services.         

 

2.6. Modeling the recovery process 

The recovery process in the simulation module is modeled for three types of 

interdependent infrastructure systems: electrical power, water, and natural gas. Since 

the risk assessment module estimates the impact of the disaster on the components 

of both the demand and supply sides, not only the restoration of infrastructure 

networks’ components but also the demand evolution of consumers is considered in 

the modeling of the recovery process. In addition to considering time-dependent 

demands for resources and services during the recovery process, the recovery model 

of the ResQ-IOS framework can deal with temporary fluctuations of the demands for 

services in the course of the restoration of the damaged components.   

According to the components’ damage level data, which is stored in the first layer 

of the ResQ-IOS database, the simulation modules appraise the functionality level of 

the infrastructure networks. The operational state of the components is evaluated by 

fuzzy membership functions. Therefore, the operating state of a component after a 

disaster can be rated as fully functional, partially functional, or completely failed. The 

amount of time needed to restore a damaged component is a function of its immediate 

post-disaster damage state and, thus, a function of the hazard’s intensity at the 

location of the component and its vulnerability.  

The recovery model developed for the ResQ-IOS framework can apply different 

restoration functions to the damaged CIS components. Besides binary and linear 

restoration functions, the recovery model implements nonlinear restoration functions. 
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A nonlinear restoration model considers different repair rates throughout the recovery 

process, made possible by the Iterative Optimization-based Simulation framework of 

the ResQ-IOS.      

 

2.7. Mathematical formulation of the optimization model 

In the optimization module, the performance of interdependent infrastructure 

systems is formulated as a Mixed-Integer Linear Programming (MILP) problem. The 

resilience of these interdependent infrastructure systems is then quantified by solving 

the optimization problem. In this doctoral dissertation, the resilience of an 

infrastructure system is quantified using the resilience metric defined by Equation 

(E.3). Measuring the best performance of considered interdependent CISs in each 

recovery process step is essential. An infrastructure system with optimal service 

distribution throughout its network may cope with the aftermaths of a natural disaster 

better than an infrastructure system with random service dispatching. The optimal 

service dispatch within a network usually reduces the unmet demand and results in a 

higher resilience value for that network. The objective of the optimization module is to 

minimize the SoCIS-ALR metric, which measures the loss of resilience for a system 

of interdependent CISs after a disruption, and it is expressible as follows: 

min
𝐷𝑉

𝑅𝑡
𝑆𝑜𝐶𝐼𝑆 = min

𝐷𝑉
∑ 𝜔𝑖𝑅𝑡

𝑖

𝑖∈𝐶𝐼𝑆

= min
𝐷𝑉

∑ 𝜔𝑖  .

𝑖∈𝐶𝐼𝑆

 (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

)                (𝐸. 5) 

where 𝑅𝑡
𝑆𝑜𝐶𝐼𝑆 is the joint accumulated loss of resilience for the system of 

interdependent infrastructure systems at time 𝑡 and 𝜔𝑖 and 𝑅𝑡
𝑖 denote the 

predetermined weights assigned to individual CISs and the accumulated loss of 

resilience for an individual CIS at time 𝑡, respectively. In the objective function 

(Equation E.5), 𝑅𝑡
𝑖 , the accumulated loss of resilience for an individual CIS, is the 

difference between the instantaneous target (i.e., pre-disruption) and the 

instantaneous actual (i.e., post-disruption) performance of the concerned CIS. The 

performance of the concerned CIS at time 𝑡 is the ratio of the instantaneous total 

consumption of its service 𝐶𝑠𝑦𝑠
𝑖 (𝑡) and the instantaneous total demand for its service 

𝐷𝑠𝑦𝑠
𝑖 (𝑡). The pre-disruption and post-disruption performances of the concerned CIS 𝑖 

at time step 𝑡 are the following ratios: 
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 (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖
(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖

(𝑡)
) : pre-disruption performance    

 (
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖
(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖

(𝑡)
) : post-disruption performance 

Then, to minimize the loss of resilience at each time step of the resilience 

assessment period, the optimal post-disruption performance of the interdependent 

infrastructure systems is calculated by considering the constraints related to the 

network topology, the operating state of facilities and components, and 

interdependencies between the infrastructure systems. The objective function of the 

optimization model considering the SoCIS-ALR metric for the three interdependent 

CISs (power, natural gas, and water) is formulated as follows: 

min
𝐷𝑉

𝑅𝑡
𝑆𝑜𝐶𝐼𝑆 = min

𝐷𝑉
∑ 𝜔𝑖  .

𝑖∈𝐶𝐼𝑆

 (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

)

= min
𝐷𝑉

∑ 𝜔𝑖  .

𝑖∈𝐶𝐼𝑆

 (
∑ ∑ 𝐶𝑓,𝑠,𝑡

𝑝𝑟𝑒,𝑖
𝑓∈𝑆𝐹𝑖𝑠∈𝑆𝑁𝑖

∑ ∑ 𝐷𝑓,𝑠,𝑡
𝑝𝑟𝑒,𝑖

𝑓∈𝑆𝐹𝑖𝑠∈𝑆𝑁𝑖

−
∑ ∑ 𝐶𝑓,𝑠,𝑡

𝑝𝑜𝑠𝑡,𝑖
𝑓∈𝑆𝐹𝑖𝑠∈𝑆𝑁𝑖

∑ ∑ 𝐷𝑓,𝑠,𝑡
𝑝𝑜𝑠𝑡,𝑖

𝑓∈𝑆𝐹𝑖𝑠∈𝑆𝑁𝑖

)

= min
𝐷𝑉

[ 𝜔𝐸  . (
∑ ∑ 𝐸𝐶,𝑡

𝑓𝑒,𝑚,𝑝𝑟𝑒
𝑓𝑒∈𝐹𝐸𝑚∈𝑁𝐸

∑ ∑ 𝐷𝐸,𝑡
𝑓𝑒,𝑚,𝑝𝑟𝑒

𝑓𝑒∈𝐹𝐸𝑚∈𝑁𝐸

−
∑ ∑ 𝐸𝐶,𝑡

𝑓𝑒,𝑚,𝑝𝑜𝑠𝑡
𝑓𝑒∈𝐹𝐸𝑚∈𝑁𝐸

∑ ∑ 𝐷𝐸,𝑡
𝑓𝑒,𝑚,𝑝𝑜𝑠𝑡

𝑓𝑒∈𝐹𝐸𝑚∈𝑁𝐸

)

+ 𝜔𝐺  . (
∑ ∑ 𝐺𝐶,𝑡

𝑓𝑔,𝑛,𝑝𝑟𝑒
𝑓𝑔∈𝐹𝐺𝑛∈𝑁𝐺

∑ ∑ 𝐷𝐺,𝑡

𝑓𝑔,𝑛,𝑝𝑟𝑒
𝑓𝑔∈𝐹𝐺𝑛∈𝑁𝐺

−
∑ ∑ 𝐺𝐶,𝑡

𝑓𝑔,𝑛,𝑝𝑜𝑠𝑡
𝑓𝑔∈𝐹𝐺𝑛∈𝑁𝐺

∑ ∑ 𝐷𝐺,𝑡

𝑓𝑔,𝑛,𝑝𝑜𝑠𝑡
𝑓𝑔∈𝐹𝐺𝑛∈𝑁𝐺

)

+ 𝜔𝑊 . (
∑ ∑ 𝑊𝐶,𝑡

𝑓𝑤,𝑗,𝑝𝑟𝑒
𝑓𝑤∈𝐹𝑊𝑗∈𝑁𝑊

∑ ∑ 𝐷𝑊,𝑡
𝑓𝑤,𝑗,𝑝𝑟𝑒

𝑓𝑤∈𝐹𝑊𝑗∈𝑁𝑊

−
∑ ∑ 𝑊𝐶,𝑡

𝑓𝑤,𝑗,𝑝𝑜𝑠𝑡
𝑓𝑤∈𝐹𝑊𝑗∈𝑁𝑊

∑ ∑ 𝐷𝑊,𝑡
𝑓𝑤,𝑗,𝑝𝑜𝑠𝑡

𝑓𝑤∈𝐹𝑊𝑗∈𝑁𝑊

)]   (𝐸. 6) 

                        𝑠. 𝑡.    𝑠𝑒𝑡𝑠 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 [𝐸𝑞𝑠. (𝐸. 7) − (𝐸. 92)]                               

 

where 𝑅𝑡
𝑆𝑜𝐶𝐼𝑆 denotes the instantaneous joint accumulated loss of resilience for 

interdependent CISs. 𝜔𝑖 is assigned weights to each infrastructure system. 𝜔𝐸, 𝜔𝐺, 

and 𝜔𝑊 represent the predetermined weights of the power, natural gas, and water 

networks. As explained earlier for Eq. (E.5), 𝐶𝑠𝑦𝑠
𝑖 (𝑡) and 𝐷𝑠𝑦𝑠

𝑖 (𝑡) are the total 

consumption and demand for the service provided by the concerned CIS 𝑖 at time 𝑡. 

The variable 𝐶𝑓,𝑠,𝑡
𝑝𝑜𝑠𝑡,𝑖

 denotes that the total consumption of the service in CIS 𝑖 at time 𝑡 

after the disruption equals the total service consumption by facilities 𝑓 belonging to the 
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CIS 𝑖 (𝑆𝐹𝑖) and located at the node 𝑠 in the network of the CIS 𝑖 (𝑆𝑁𝑖). The variable 

𝐷𝑓,𝑠,𝑡
𝑝𝑜𝑠𝑡,𝑖

 denotes that the total demand for the service provided by the CIS 𝑖 at time 𝑡 

equals the total post-disruption demands for the service requested by facilities 𝑓 

belonging to the CIS 𝑖 (𝑆𝐹𝑖) and located at the node 𝑠 in the network of the CIS 𝑖 (𝑆𝑁𝑖). 

The same definitions apply to pre-disruption situations. Symbols 𝐸𝐶,𝑡 , 𝐺𝐶,𝑡, and 𝑊𝐶,𝑡 

denote the instantaneous consumption of electric power, natural gas, and water, 

respectively. 𝐷𝐸,𝑡 , 𝐷𝐺,𝑡 , and 𝐷𝑊,𝑡 are the instantaneous demand for electric power, 

natural gas, and water, respectively. The information about other indices and variables 

in Eq. (E.6) is given in the nomenclature table of this doctoral dissertation. 

To construct the optimization model for resilience assessment, it is necessary to 

develop the constraints according to the network flow-based model of infrastructure 

systems. The constraints of the MILP problem for the power, natural gas, and water 

CISs used for the optimization model of this doctoral dissertation are presented in the 

following sub-sections. 

 

2.7.1. Power network operating constraints     

In the network flow-based model of the power system, the supply nodes are the 

electrical power generation sites and the gate stations for electricity import. This 

doctoral dissertation considers two types of power plants: Gas Turbine Power Plants 

(GTPPs) and Combined-Cycle Power Plants (CCPPs).  A Power Gate Station (PGS) 

used for electricity import is considered a supply node in this doctoral dissertation. The 

transmission nodes are the electric substations. The demand nodes are the locations 

where the power is delivered to the end users, such as building stock units, water 

pump stations, etc. The links represent power transmission lines installed between 

various parts of the power network. 

The constraints of the power network are represented by Equations (E.7)-(E.12). 

Equation (E.7) guarantees the flow conservation at each power network node. 

Equation (E.8) states that the power flow injected to each node at each time step 

comprises the electricity imported by the PGSs and the electrical power output of 

GTPP and CCPP units. Equation (E.9) describes that the power flow out of each node 

at each time step is equal to the accumulated electrical power consumed by the GTPP, 
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CCPP, and ESS units in the power network, NGPP, LNG terminals, and NGCS units 

from the natural gas network, WSF, and WPS units in the water network and building 

stock units including different types of buildings. Equation (E.10) ensures that the 

power flow through each power transmission line at each time step cannot exceed the 

power line’s capacity if the power line is operational. The logical relationships between 

the operating state of the power line and the operating state of its start and terminal 

nodes are represented by Equations (E.11)-(E.12). 

∑ 𝑒𝑡
𝑝

(𝑝∈𝐿𝐸 | 𝑇(𝑝)=𝑚)

 − ∑ 𝑒𝑡
𝑝

(𝑝∈𝐿𝐸 |𝑆(𝑝)=𝑚)

 + 𝐸𝐺,𝑡
𝑚  −  𝐸𝐶,𝑡

𝑚 = 0           ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇            (𝐸. 7) 

 

𝐸𝐺,𝑡
𝑚 =  𝐸𝐺,𝑡

𝐺𝑇𝑃𝑃,𝑚 +  𝐸𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑚 + 𝐸𝐺,𝑡

𝑃𝐺𝑆,𝑚                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇           (𝐸. 8) 

 

𝐸𝐶,𝑡
𝑚 =  𝐸𝐶,𝑡

𝐺𝑇𝑃𝑃,𝑚 + 𝐸𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑚 + 𝐸𝐶,𝑡

𝐸𝑆𝑆,𝑚 + 𝐸𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑚 + 𝐸𝐶,𝑡

𝐿𝑁𝐺𝑇,𝑚 + 𝐸𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑚 + 𝐸𝐶,𝑡

𝑊𝑆𝐹,𝑚

+  𝐸𝐶,𝑡
𝑊𝑃𝑆,𝑚  + ∑ 𝐸𝐶,𝑡

𝐻

(𝐻∈𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻)=𝑚)

                        ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇           (𝐸. 9) 

 

0 ≤ 𝑒𝑡
𝑝 ≤  𝑧𝐸,𝑡

𝑝  . 𝑒𝑐𝑎𝑝
𝑝                                                                               ∀𝑝 ∈ 𝐿𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 10) 

𝑧𝐸,𝑡
𝑝 ≤  𝑥𝐸,𝑡

𝑆(𝑝)
                                                                                             ∀𝑝 ∈ 𝐿𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 11) 

𝑧𝐸,𝑡
𝑝 ≤  𝑥𝐸,𝑡

𝑇(𝑝)
                                                                                              ∀𝑝 ∈ 𝐿𝐸, ∀𝑡 ∈ 𝑇         (𝐸. 12) 

 

2.7.2. Natural gas network operating constraints 

Regarding the natural gas system's network flow-based model, the supply nodes 

represent the facilities where natural gas is prepared for sending out into the 

transmission grid, such as LNG terminals, Natural Gas Processing Plants (NGPP), 

and Natural Gas Gate Stations (NGGS) employed for natural gas imports. 

Transmission nodes are representative of the natural gas compressor stations. The 

demand nodes provide natural gas to consumers, such as power plants, building stock 

units, etc. The links are the natural gas pipelines connecting the gas network nodes.   
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Equations (E.13)-(E.18) represent the constraints of the natural gas network. The 

conservation of flow at each node of the natural gas network is represented by 

Equation (E.13). Equation (E.14) states that the inflow of natural gas at each node at 

each time step includes the natural gas imported by NGGS and the natural gas 

processed by the NGPP unit and LNG terminal. Equation (E.15) describes that the 

natural gas outflow at each node at each time step is the accumulated natural gas 

consumed by the GTPP and CCPP units in the power network, NGPP unit, LNG 

terminal, and NGCS units in the natural gas network, and building stock units. 

Equation (E.16) ensures that the natural gas flow through each pipeline at each time 

step does not exceed the pipeline’s capacity, provided that the pipeline is operational. 

Equations (E.17)-(E.18) describe the logical relationships between the operating state 

of the pipeline and the nodes connected to the pipeline. 

∑ 𝑔𝑡
𝑞

(𝑞∈𝐿𝐺 | 𝑇(𝑞)=𝑛)

 − ∑ 𝑔𝑡
𝑞

(𝑞∈𝐿𝐺 |𝑆(𝑞)=𝑛)

 + 𝐺𝐺,𝑡
𝑛  −  𝐺𝐶,𝑡

𝑛 = 0             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇          (𝐸. 13) 

 

𝐺𝐺,𝑡
𝑛 =  𝐺𝐺,𝑡

𝐿𝑁𝐺𝑇,𝑛 +  𝐺𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛 +  𝐺𝐺,𝑡

𝑁𝐺𝐺𝑆,𝑛                                         ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇             (𝐸. 14) 

 

𝐺𝐶,𝑡
𝑛 = 𝐺𝐶,𝑡

𝐺𝑇𝑃𝑃,𝑛 + 𝐺𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑛 + 𝐺𝐶,𝑡

𝑁𝐺𝑃𝑃,𝑛 + 𝐺𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑛 + 𝐺𝐶,𝑡

𝑁𝐺𝐶𝑆,𝑛

+ ∑ 𝐺𝐶,𝑡
𝐻

(𝐻∈𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻)=𝑛)

                                            ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇            (𝐸. 15) 

 

0 ≤ 𝑔𝑡
𝑞 ≤  𝑧𝐺,𝑡

𝑞  . 𝑔𝑐𝑎𝑝
𝑞                                                                          ∀𝑞 ∈ 𝐿𝐺, ∀𝑡 ∈ 𝑇              (𝐸. 16) 

𝑧𝐺,𝑡
𝑞 ≤  𝑥𝐺,𝑡

𝑆(𝑞)
                                                                                         ∀𝑞 ∈ 𝐿𝐺, ∀𝑡 ∈ 𝑇              (𝐸. 17) 

𝑧𝐺,𝑡
𝑞

≤  𝑥𝐺,𝑡
𝑇(𝑞)

                                                                                          ∀𝑞 ∈ 𝐿𝐺, ∀𝑡 ∈ 𝑇             (𝐸. 18) 

 

2.7.3. Water network operating constraints  

The supply and transmission nodes represent the water supply facilities, water 

storage tanks, and pump stations in the water system’s network flow-based model. 
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Demand nodes are where water is provided to the consumers, like building stock units. 

Links are representative of the water pipelines located between different parts of the 

water network. 

Equations (E.19)-(E.24) constitute the constraints of the water network. Equation 

(E.19) displays the water flow balance equation at each water network node at each 

time step. Equation (E.20) declares that the inflow of water at each node at each time 

step equals the amount of water supplied by the WSF and WST units. Equation (E.21) 

states that the water flow out of each node at each time step consists of the water 

consumed by the CCPP and building stock units. Equation (E.22) demonstrates that 

if the pipeline is operational, the water flow at each time step does not exceed the 

pipeline’s capacity. A water pipeline's operating state relies on the nodes' operating 

state at the end of that pipeline, as shown in Equations (E.23)-(E.24).  

∑ 𝑤𝑡
𝑙

(𝑙∈𝐿𝑊 | 𝑇(𝑙)=𝑗)

 − ∑ 𝑤𝑡
𝑙

(𝑙∈𝐿𝑊 |𝑆(𝑙)=𝑗)

 + 𝑊𝐺,𝑡
𝑗

 −  𝑊𝐶,𝑡
𝑗

= 0           ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇            (𝐸. 19) 

 

𝑊𝐺,𝑡
𝑗

=  𝑊𝐺,𝑡
𝑊𝑆𝐹,𝑗

 +  𝑊𝐺,𝑡
𝑊𝑆𝑇,𝑗

                                                               ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇           (𝐸. 20) 

 

𝑊𝐶,𝑡
𝑗

=  𝑊𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑗

+ ∑ 𝑊𝐶,𝑡
𝐻

(𝐻∈𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻)=𝑗)

                                        ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇           (𝐸. 21) 

0 ≤ 𝑤𝑡
𝑙 ≤  𝑧𝑊,𝑡

𝑙  . 𝑤𝑐𝑎𝑝
𝑙                                                                          ∀𝑙 ∈ 𝐿𝑊, ∀𝑡 ∈ 𝑇            (𝐸. 22) 

𝑧𝑊,𝑡
𝑙 ≤  𝑥𝑊,𝑡

𝑆(𝑙)
                                                                                           ∀𝑙 ∈ 𝐿𝑊, ∀𝑡 ∈ 𝑇           (𝐸. 23) 

𝑧𝑊,𝑡
𝑙 ≤  𝑥𝑊,𝑡

𝑇(𝑙)
                                                                                            ∀𝑙 ∈ 𝐿𝑊, ∀𝑡 ∈ 𝑇          (𝐸. 24) 

 

2.7.4. Modeling the interdependencies between the infrastructure 

systems 

In this doctoral research, interdependency between two infrastructure systems 

refers to two aspects of the relationship between the infrastructure systems. The first 

aspect is the reliance of an infrastructure system’s performance on the service delivery 
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of another infrastructure system. Taking a water pump station as an example, the 

functionality of the pump station is dependent on the electric power supplied by the 

power network. This aspect is modeled by interdependency links coupling two nodes 

from two infrastructure networks interacting with one another. This interdependency 

link transfers the service from a node in the supplier infrastructure network to another 

node in the consumer infrastructure network. In the case of a pump station, the electric 

power needed for the pump station's functionality is transferred by the 

interdependency link from the supplier node in the power network to the consumer 

node in the water network. The supplier node, which delivers service to consumer 

nodes in other infrastructure networks, often acts as a demand node in its network 

[80], [86]. The operating state of the interdependency link is considered a binary (0-1) 

variable [87], [89]. If the supplier node meets the required demand of the consumer 

node in another network, then the interdependency link will be operational. Otherwise, 

the service transfer between supplier and consumer nodes through the 

interdependency link will cease. The inoperability of the interdependency link may lead 

to the loss of operation in the consumer node’s network. 

The second aspect of interdependency considered in this doctoral research is that 

the recovery process of an infrastructure system may adversely affect the restoration 

of the facilities in another infrastructure network. For instance, the structural damage 

to the pump station may be fully restored after an earthquake, but the station is still 

not functional due to the lack of power supply. Hence, the power network's recovery 

process can delay the restoration of the pump station in the water network. The 

constraints described in the following section represent both aspects of the considered 

interdependency. 

 

2.7.5. Interdependency constraints 

This section presents the interdependency constraints of facilities belonging to 

three types of infrastructure networks: power, natural gas, and water. As for the power 

network, the interdependency constraints of GTPP, CCPP, PGS, ESS, and BSU are 

provided. Interdependency constraints are developed for LNGT, NGPP, NGGS, 

NGCS, and BSU in the natural gas network. Regarding the water network, WSF, WPS, 

WST, and BSU are considered for interdependency constraints. Equations (E.25)-
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(E.27) represent the time delay in starting the recovery process at each node, including 

the response time needed for the decision-making on the recovery of damaged nodes. 

For instance, if a node in the power network faces a 5-day delay in providing the 

prerequisites of the recovery process because of the road closure, this delay may 

postpone the beginning of the restoration of facilities located at the respective node.   

Equations (E.28)-(E.34) state that the performance of a GTPP depends on the 

availability of the coupled gas node with the electric node where the facility is located, 

as well as the operation state of the interdependency link between those nodes. 

Equations (E.35)-(E.45) declare that the operation of a CCPP is dependent on the 

availability of the coupled gas and water nodes with the electric node where the CCPP 

is located and the functionality of two interdependency links originating from the 

connected gas and water nodes. Equations (E.46) and (E.47) represent the 

constraints concerning the restoration of a PGS. Equations (E.48)-(E.50) represent 

the interdependency constraints regarding the restoration of an ESS. Equation (E.51) 

describes that electric power consumed by BSUs located in the service area of an 

electric node will not exceed their time-dependent demand if the respective electric 

node is operational.   

𝑥𝐸,𝑡
𝑚 ≤ 𝜏𝐸,𝑡

𝑚                                                                                     ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇         (𝐸. 25)            

𝑥𝐺,𝑡
𝑛 ≤ 𝜏𝐺,𝑡

𝑛                                                                                      ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇         (𝐸. 26)            

𝑥𝑊,𝑡
𝑗

≤ 𝜏𝑊,𝑡
𝑗

                                                                                   ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 27)            

0 ≤ 𝐸𝐺,𝑡
𝐺𝑇𝑃𝑃,𝑚 ≤ 𝜑𝐸,𝑡

𝐺𝑇𝑃𝑃,𝑚 . 𝑆𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚                                         ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 28)            

0 ≤ 𝐸𝐶,𝑡
𝐺𝑇𝑃𝑃,𝑚 ≤ 𝜑𝐸,𝑡

𝐺𝑇𝑃𝑃,𝑚 . 𝐷𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚                                          ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 29)            

0 ≤ 𝐺𝐶,𝑡
𝐺𝑇𝑃𝑃,𝑛 ≤ 𝛿𝑡

𝐺𝑇𝑃𝑃,𝑛 . 𝐷𝐺,𝑡
𝐺𝑇𝑃𝑃,𝑛                                              ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 30)            

𝜑𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 31)            

𝛿𝑡
𝐺𝑇𝑃𝑃,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                                ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 32)            

𝐺𝐶,𝑡
𝐺𝑇𝑃𝑃,𝑛 − 𝜃𝑡

𝐺𝑇𝑃𝑃,𝑛 . 𝐷𝐺,𝑡
𝐺𝑇𝑃𝑃,𝑛 ≥ 0                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇         (𝐸. 33)            

𝜑𝐸,𝑡
𝐺𝑇𝑃𝑃,𝑚 ≤ 𝜃𝑡

𝐺𝑇𝑃𝑃,𝑛                                                         ∀(𝑛, 𝑚) ∈ 𝐼𝐺𝑡𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 34)           
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0 ≤ 𝐸𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑚 ≤ 𝜑𝐸,𝑡

𝐶𝐶𝑃𝑃,𝑚 . 𝑆𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚                                          ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 35)            

0 ≤ 𝐸𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑚 ≤ 𝜑𝐸,𝑡

𝐶𝐶𝑃𝑃,𝑚 . 𝐷𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚                                          ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 36)            

0 ≤ 𝐺𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑛 ≤ 𝛿𝑡

𝐶𝐶𝑃𝑃,𝑛 . 𝐷𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑛                                              ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 37)            

𝜑𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 38)            

𝛿𝑡
𝐶𝐶𝑃𝑃,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                              ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇          (𝐸. 39)            

𝐺𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑛 − 𝜃𝑡

𝐶𝐶𝑃𝑃,𝑛 . 𝐷𝐺,𝑡
𝐶𝐶𝑃𝑃,𝑛 ≥ 0                                              ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇         (𝐸. 40)            

𝜑𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚 ≤ 𝜃𝑡

𝐶𝐶𝑃𝑃,𝑛                                                         ∀(𝑛, 𝑚) ∈ 𝐼𝐺𝑡𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 41)           

0 ≤ 𝑊𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑗

≤ 𝛾𝑡
𝐶𝐶𝑃𝑃,𝑗

 . 𝐷𝑊,𝑡
𝐶𝐶𝑃𝑃,𝑗

                                             ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 42)            

𝛾𝑡
𝐶𝐶𝑃𝑃,𝑗

≤ 𝑥𝑊,𝑡
𝑗

                                                                            ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇          (𝐸. 43)            

𝑊𝐶,𝑡
𝐶𝐶𝑃𝑃,𝑗

− 𝜎𝑡
𝐶𝐶𝑃𝑃,𝑗

 . 𝐷𝑊,𝑡
𝐶𝐶𝑃𝑃,𝑗

≥ 0                                             ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 44)            

𝜑𝐸,𝑡
𝐶𝐶𝑃𝑃,𝑚 ≤ 𝜎𝑡

𝐶𝐶𝑃𝑃,𝑗
                                                         ∀(𝑗, 𝑚) ∈ 𝐼𝑊𝑡𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 45)           

0 ≤ 𝐸𝐺,𝑡
𝑃𝐺𝑆,𝑚 ≤ 𝜑𝐸,𝑡

𝑃𝐺𝑆,𝑚 . 𝑆𝐸,𝑡
𝑃𝐺𝑆,𝑚                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 46)            

𝜑𝐸,𝑡
𝑃𝐺𝑆,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 47)            

0 ≤ 𝐸𝐶,𝑡
𝐸𝑆𝑆,𝑚 ≤ 𝜑𝐸,𝑡

𝐸𝑆𝑆,𝑚 . 𝐷𝐸,𝑡
𝐸𝑆𝑆,𝑚                                                 ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 48)            

𝜑𝐸,𝑡
𝐸𝑆𝑆,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇          (𝐸. 49)           

𝐸𝐶,𝑡
𝐸𝑆𝑆,𝑚 − 𝑥𝐸,𝑡

𝑚  . 𝐷𝐸,𝑡
𝐸𝑆𝑆,𝑚 ≥ 0                                                       ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇         (𝐸. 50)            

0 ≤ ∑ 𝐸𝐶,𝑡
𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑚)

 ≤ 𝑥𝐸,𝑡
𝑚   . ∑ 𝐷𝐸,𝑡

𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑚)

             ∀𝑚 ∈ 𝑁𝐸,

∀𝑡 ∈ 𝑇                                                                                                          (𝐸. 51)            

 

Equations (E.52)-(E.58) describe that the operating state of a LNGT relies on the 

availability of the coupled electric node with the gas node where the LNGT is located 

and the functionality of the interdependency link between those gas and electric 
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nodes. Equations (E.59)-(E.65) mean that a NGPP’s performance is dependent on the 

availability of the coupled electric node with the gas node where the NGPP is located 

and the operation state of the interdependency link between those nodes. Equations 

(E.66) and (E.67) represent the constraints regarding the restoration of a NGGS. The 

interdependency constraints related to the NGCS are constituted by Equations (E.68)-

(E.74). Equation (E.75) ensures that the amount of natural gas consumed by BSUs 

located in the service area of a gas node cannot exceed their demand if the respective 

gas node is operational.   

0 ≤ 𝐺𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛 ≤ 𝜑𝐺,𝑡

𝐿𝑁𝐺𝑇,𝑛 . 𝑆𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 52)            

0 ≤ 𝐺𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑛 ≤ 𝜑𝐺,𝑡

𝐿𝑁𝐺𝑇,𝑛 . 𝐷𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 53)            

0 ≤ 𝐸𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑚 ≤ 𝜋𝑡

𝐿𝑁𝐺𝑇,𝑚 . 𝐷𝐸,𝑡
𝐿𝑁𝐺𝑇,𝑚                                           ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 54)            

𝜑𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                                ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 55)            

𝜋𝑡
𝐿𝑁𝐺𝑇,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 56)            

𝐸𝐶,𝑡
𝐿𝑁𝐺𝑇,𝑚 − 𝛼𝑡

𝐿𝑁𝐺𝑇,𝑚 . 𝐷𝐸,𝑡
𝐿𝑁𝐺𝑇,𝑚 ≥ 0                                           ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 57)            

𝜑𝐺,𝑡
𝐿𝑁𝐺𝑇,𝑛 ≤ 𝛼𝑡

𝐿𝑁𝐺𝑇,𝑚                                                          ∀(𝑚, 𝑛) ∈ 𝐼𝐸𝑡𝐺, ∀𝑡 ∈ 𝑇         (𝐸. 58)           

0 ≤ 𝐺𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛 ≤ 𝜑𝐺,𝑡

𝑁𝐺𝑃𝑃,𝑛 . 𝑆𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 59)            

0 ≤ 𝐺𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑛 ≤ 𝜑𝐺,𝑡

𝑁𝐺𝑃𝑃,𝑛 . 𝐷𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 60)            

0 ≤ 𝐸𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑚 ≤ 𝜋𝑡

𝑁𝐺𝑃𝑃,𝑚 . 𝐷𝐸,𝑡
𝑁𝐺𝑃𝑃,𝑚                                          ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇      (𝐸. 61)            

𝜑𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                                ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 62)            

𝜋𝑡
𝑁𝐺𝑃𝑃,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 63)            

𝐸𝐶,𝑡
𝑁𝐺𝑃𝑃,𝑚 − 𝛼𝑡

𝑁𝐺𝑃𝑃,𝑚 . 𝐷𝐸,𝑡
𝑁𝐺𝑃𝑃,𝑚 ≥ 0                                         ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 64)            

𝜑𝐺,𝑡
𝑁𝐺𝑃𝑃,𝑛 ≤ 𝛼𝑡

𝑁𝐺𝑃𝑃,𝑚                                                         ∀(𝑚, 𝑛) ∈ 𝐼𝐸𝑡𝐺, ∀𝑡 ∈ 𝑇         (𝐸. 65)           

0 ≤ 𝐺𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛 ≤ 𝜑𝐺,𝑡

𝑁𝐺𝐺𝑆,𝑛 . 𝑆𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛                                              ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇      (𝐸. 66)            

𝜑𝐺,𝑡
𝑁𝐺𝐺𝑆,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                                ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇       (𝐸. 67)            
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0 ≤ 𝐺𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑛 ≤ 𝜑𝐺,𝑡

𝑁𝐺𝐶𝑆,𝑛 . 𝐷𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛                                             ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 68)            

𝜑𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛 ≤ 𝑥𝐺,𝑡

𝑛                                                                                ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 69)           

𝐺𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑛 − 𝑥𝐺,𝑡

𝑛  . 𝐷𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛 ≥ 0                                                     ∀𝑛 ∈ 𝑁𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 70)            

0 ≤ 𝐸𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑚 ≤ 𝜋𝑡

𝑁𝐺𝐶𝑆,𝑚 . 𝐷𝐸,𝑡
𝑁𝐺𝐶𝑆,𝑚                                           ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 71)            

𝜋𝑡
𝑁𝐺𝐶𝑆,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 72)            

𝐸𝐶,𝑡
𝑁𝐺𝐶𝑆,𝑚 − 𝛼𝑡

𝑁𝐺𝐶𝑆,𝑚 . 𝐷𝐸,𝑡
𝑁𝐺𝐶𝑆,𝑚 ≥ 0                                           ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 73)            

𝜑𝐺,𝑡
𝑁𝐺𝐶𝑆,𝑛 ≤ 𝛼𝑡

𝑁𝐺𝐶𝑆,𝑚                                                           ∀(𝑚, 𝑛) ∈ 𝐼𝐸𝑡𝐺, ∀𝑡 ∈ 𝑇        (𝐸. 74)           

0 ≤ ∑ 𝐺𝐶,𝑡
𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑛)

 ≤ 𝑥𝐺,𝑡
𝑛   . ∑ 𝐷𝐺,𝑡

𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑛)

                 ∀𝑛 ∈ 𝑁𝐺,

∀𝑡 ∈ 𝑇                                                                                                          (𝐸. 75)            

 

Equations (E.76)-(E.81) represent that the restoration of a WSF depends on 

the availability of the coupled electric node with the water node where the facility is 

located and the operating state of the interdependency link between those water and 

electric nodes. Equations (E.82)-(E.86) display that the recovery of a WPS relies on 

the availability of the coupled electric node with the water node where the WPS is 

located and the operation state of the interdependency link between those nodes. 

Equations (E.87) and (E.88) represent the constraints concerning the restoration of a 

WST. Equation (E.89) reveals that if a water node is operational, the amount of water 

consumed by BSUs in that water node's service area cannot exceed their demand. 

0 ≤ 𝑊𝐺,𝑡
𝑊𝑆𝐹,𝑗

≤ 𝜑𝑊,𝑡
𝑊𝑆𝐹,𝑗

 . 𝑆𝑊,𝑡
𝑊𝑆𝐹,𝑗

                                                ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇        (𝐸. 76)            

0 ≤ 𝐸𝐶,𝑡
𝑊𝑆𝐹,𝑚 ≤ 𝜋𝑡

𝑊𝑆𝐹,𝑚 . 𝐷𝐸,𝑡
𝑊𝑆𝐹,𝑚                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 77)            

𝜑𝑊,𝑡
𝑊𝑆𝐹,𝑗

≤ 𝑥𝑊,𝑡
𝑗

                                                                              ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 78)            

𝜋𝑡
𝑊𝑆𝐹,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 79)            

𝐸𝐶,𝑡
𝑊𝑆𝐹,𝑚 − 𝛽𝑡

𝑊𝑆𝐹,𝑚 . 𝐷𝐸,𝑡
𝑊𝑆𝐹,𝑚 ≥ 0                                              ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇        (𝐸. 80)            
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𝜑𝑊,𝑡
𝑊𝑆𝐹,𝑗

≤ 𝛽𝑡
𝑊𝑆𝐹,𝑚                                                             ∀(𝑚, 𝑗) ∈ 𝐼𝐸𝑡𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 81)           

𝜑𝑊,𝑡
𝑊𝑃𝑆,𝑗

≤ 𝑥𝑊,𝑡
𝑗

                                                                                ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇        (𝐸. 82)           

0 ≤ 𝐸𝐶,𝑡
𝑊𝑃𝑆,𝑚 ≤ 𝜋𝑡

𝑊𝑃𝑆,𝑚 . 𝐷𝐸,𝑡
𝑊𝑃𝑆,𝑚                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 83)            

𝜋𝑡
𝑊𝑃𝑆,𝑚 ≤ 𝑥𝐸,𝑡

𝑚                                                                                ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 84)            

𝐸𝐶,𝑡
𝑊𝑃𝑆,𝑚 − 𝛽𝑡

𝑊𝑃𝑆,𝑚 . 𝐷𝐸,𝑡
𝑊𝑃𝑆,𝑚 ≥ 0                                               ∀𝑚 ∈ 𝑁𝐸, ∀𝑡 ∈ 𝑇       (𝐸. 85)            

𝜑𝑊,𝑡
𝑊𝑃𝑆,𝑗

≤ 𝛽𝑡
𝑊𝑃𝑆,𝑚                                                              ∀(𝑚, 𝑗) ∈ 𝐼𝐸𝑡𝑊, ∀𝑡 ∈ 𝑇        (𝐸. 86)           

0 ≤ 𝑊𝐺,𝑡
𝑊𝑆𝑇,𝑗

≤ 𝜑𝑊,𝑡
𝑊𝑆𝑇,𝑗

 . 𝑆𝑊,𝑡
𝑊𝑆𝑇,𝑗

                                                  ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇       (𝐸. 87)            

𝜑𝑊,𝑡
𝑊𝑆𝑇,𝑗

≤ 𝑥𝑊,𝑡
𝑗

                                                                                ∀𝑗 ∈ 𝑁𝑊, ∀𝑡 ∈ 𝑇       (𝐸. 88)            

0 ≤ ∑ 𝑊𝐶,𝑡
𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑗)

 ≤ 𝑥𝑊,𝑡
𝑗

  . ∑ 𝐷𝑊,𝑡
𝐻

(𝐻 ∈ 𝐵𝑆𝑈|𝑙𝑜𝑐(𝐻) = 𝑗)

               ∀𝑗 ∈ 𝑁𝑊,

∀𝑡 ∈ 𝑇                                                                                                          (𝐸. 89)            

 

Equations (E.90)-(E.92) state that the links in different infrastructure networks (i.e., 

power lines, pipelines) can convey flow if they are not damaged. In other words, full 

recovery is a necessary condition for links to be operational in the network. 

𝑧𝐸,𝑡
𝑝 ≤  𝜇𝐸,𝑡

𝑝                                                                                             ∀𝑝 ∈ 𝐿𝐸, ∀𝑡 ∈ 𝑇             (𝐸. 90) 

𝑧𝐺,𝑡
𝑞 ≤  𝜇𝐺,𝑡

𝑞                                                                                             ∀𝑞 ∈ 𝐿𝐺, ∀𝑡 ∈ 𝑇             (𝐸. 91) 

𝑧𝑊,𝑡
𝑙 ≤  𝜇𝑊,𝑡

𝑙                                                                                            ∀𝑙 ∈ 𝐿𝑊, ∀𝑡 ∈ 𝑇            (𝐸. 92) 

 

2.8. Implementation of the ResQ-IOS framework 

This section aims to explain how the ResQ-IOS framework implements the 

resilience assessment of interdependent infrastructure systems. Since many 

parameters and factors influence an urban community’s recovery after the occurrence 

of extreme events, the resilience analysis of interdependent infrastructure systems is 

a complex issue. For this reason, considering assumptions and simplifications in 
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resilience quantification is inevitable to reduce the complexity of the problem. The 

existence of uncertainties in evaluating the disaster resilience of an urban community 

is the main challenge. The uncertainties in the process of resilience assessment can 

be grouped into the following categories: 

- uncertainties in the characteristics of the extreme event 

- uncertainties in the damage functions  

- uncertainties in the restoration functions 

- uncertainties in the available budget and recovery resources      

The flowchart, shown in Fig. 2.6, describes the process by which the ResQ-IOS 

framework evaluates the resilience of an urban community after a disaster. To capture 

the uncertainties in the characteristics of the natural hazard, ResQ-IOS allows the user 

to implement the resilience assessment process for either one scenario or many 

natural hazard scenarios. For instance, to take into account the uncertainties in the 

occurrence of the earthquake hazard, the resilience assessment can be performed for 

several seismic hazard scenarios with varying return periods and epicenters in the 

case study. According to Fig. 2.6, to carry out a probabilistic resilience analysis for an 

urban community with many disruption scenarios, ResQ-IOS follows the route from A 

to B in the flowchart. Fig. 2.7 displays the flowchart of the route from A to B. In this 

part, the user can specify the characteristics of the natural hazard, such as type, 

severity, damage, and proximity. Based on these characteristics of the natural hazard, 

a disruption scenario is generated. This procedure can be repeated for the desired 

number of disruption scenarios.   

The ResQ-IOS framework assumes that all components of the considered 

infrastructure systems may be damaged during the disaster. This framework can apply 

both deterministic and probabilistic approaches to estimating the damage state of the 

infrastructure systems’ components and produce different damage states for the same 

disruption scenario. This ability allows ResQ-IOS to capture the uncertainties in the 

damage functions of components. In the ResQ-IOS framework, the required time for 

restoring the failed components depends on the failed component's damage state, 

which is a function of the characteristics of the hazard. Therefore, restoring damaged 

components may take several time steps in the resilience assessment period. 
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To consider the uncertainties in restoring failed components, ResQ-IOS follows the 

route from C to D in the flowchart (Fig. 2.8). The recovery model developed for the 

ResQ-IOS framework can apply different restoration functions to the damaged 

infrastructure components. Besides binary and linear restoration functions, the 

recovery model can implement nonlinear restoration functions. A nonlinear restoration 

model considers different repair rates throughout the recovery process, which is made 

possible by the Iterative Optimization-based Simulation framework of the ResQ-IOS. 

Therefore, the user can select the proper recovery model for each type of 

infrastructure component in the resilience assessment process. Also, the ResQ-IOS 

framework can rate the functionality level of the components continuously by using a 

fuzzy logic-based model. 

Both deterministic and probabilistic approaches can be applied to the repair rates 

for restoring the damaged components to capture the uncertainties in the restoration 

of infrastructure components. The last category of uncertainties in the resilience 

assessment is related to the available budget and recovery resources like repair 

teams. To quantify this type of uncertainty, the ResQ-IOS framework can be 

implemented at different levels of recovery resource availability. It is noteworthy that 

considering many hazard scenarios and availability levels of recovery resources 

simultaneously for the resilience analysis of an urban community leads to a substantial 

computational burden.     

 



70 
 

 

Fig. 2.6. The implementation flowchart of the ResQ-IOS framework.  
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Fig. 2.7. The flowchart of hazard scenario generation in the ResQ-IOS framework. 
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Fig. 2.8. The flowchart of restoration process in the ResQ-IOS framework.  
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2.9. Conclusion  

In this chapter, the advantages of using the hybrid Optimization-Simulation (OS) 

approach for modeling complex and stochastic large-scale systems such as 

interdependent infrastructure networks were discussed. Due to the benefits of the OS 

approach, ResQ-IOS, an Iterative Optimization-based Simulation framework, was 

developed for quantifying and optimizing the disaster resilience of interdependent 

CISs. After outlining the ResQ-IOS’s structure, a resilience metric was formulated to 

measure the joint accumulated loss of resilience for a system of interdependent critical 

infrastructure systems. This chapter provided the mathematical model of 

interdependent CISs’ performance and formulated the Mixed-Integer Linear 

Programming (MILP) problem of the optimization model. Also, the constraints of the 

MILP problem for the power, natural gas, and water networks, including 

interdependencies between those networks, were presented in detail. To demonstrate 

the capabilities of the developed ResQ-IOS framework, the disaster resilience of an 

urban community in the USA will be quantified and analyzed in the next chapter.     
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Chapter Three 
 

Application of the ResQ-IOS: Urban 

Community Resilience Assessment 
 

 

 

 

This chapter evaluates the seismic resilience of a realistic example of Shelby 

County (TN), USA, to demonstrate the capabilities of the ResQ-IOS, the 

Resilience Quantification Iterative Optimization-based Simulation Framework 

developed in Chapter 2. In addition to performing the parametric analysis of 

urban disaster resilience in this chapter, implementing different Community 

Resilience Enhancement Strategies (CRESs) is investigated, and accordingly, 

the optimal recovery strategies for minimizing total recovery cost are identified. 

Some material from this chapter is published in the following paper: 

• Hamed Hafeznia and Božidar Stojadinović. “ResQ-IOS: An iterative 

optimization-based simulation framework for quantifying the resilience of 

interdependent critical infrastructure systems to natural hazards,” Applied 

Energy, vol. 349, p. 121558, Nov. 2023, doi: 10.1016/j.apenergy.2023.121558. 
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3.1. Case Study: A realistic example of Shelby County, USA 

To conduct the resilience analysis of urban communities against natural hazards, 

ResQ-IOS was coded in the MATLAB [90] software environment using the YALMIP 

toolbox [91]. The IBM CPLEX solver [92] is utilized to solve the MILP problem of the 

optimization model. The dissertation’s objectives, addressed in this Chapter and 

stated earlier in Chapter 1 (Objectives No. 3 and 4), are as follows: 

- Integrate optimization into the simulation-based methodology of the resilience 

assessment framework to benefit from simultaneous resilience quantification 

and improvement.   

- Model and conduct the feasibility study of implementing Community Resilience 

Enhancement Strategies (CRESs). 

As discussed in Section 2.8, the ResQ-IOS can conduct the resilience assessment 

process for either one natural hazard scenario or multiple hazard scenarios to capture 

the uncertainties in quantifying the resilience of an urban community. For example, the 

resilience of an urban community to earthquakes can be evaluated by considering 

multiple seismic events with varying return periods and epicenters. This ability of the 

ResQ-IOS enables the stakeholders to consider the uncertainties of the seismic 

hazards in the decision-making process to enhance the resilience of their urban 

community. The initial sections of this chapter appraise the seismic resilience of a case 

study against one seismic hazard scenario. Then, in the parametric analyses section 

of this chapter, multiple earthquake intensities are considered to highlight the 

uncertainties in the resilience assessment process for decision-making to improve 

urban disaster resilience. In this research, the probabilistic implications of seismic 

hazard scenarios on decision-making were not considered.      

Shelby County, located in Tennessee (TN), USA, is selected to demonstrate the 

ResQ-IOS framework proposed in this doctoral dissertation. The power, natural gas, 

and water networks of Shelby County can be considered realistic examples for the 

resilience assessment of interdependent infrastructure networks. The data on Shelby 

County’s power, natural gas, and water networks, including the topology, demand, 

supply capacity, and interdependencies between the infrastructure networks, is 

obtained from [93], [94]. However, some missing data, particularly for the natural gas 

network, was reasonably assumed. For better understanding, the nodal demands are 



76 
 

normalized to the total demand of the respective infrastructure network. This 

normalization applies to the nodal supply capacities as well.   

In this doctoral dissertation, a slightly modified version of Shelby County's 

infrastructure networks is employed to demonstrate the capabilities of the ResQ-IOS 

framework for quantifying the resilience of interdependent CISs. For instance, there is 

no power plant in Shelby County. To resolve such a problem, a node in the power 

network containing a Power Gate Station (PGS) is replaced with a Combined-Cycle 

Power Plant (CCPP) such that the power generation capacity of the CCPP is equal to 

the amount of electrical power imported into Shelby County by the PGS. This 

assumption is made to avoid changing the actual flow pattern in the network. 

Subsequently, this modification creates more interdependencies between the gas, 

power, and water networks.  

The interdependency relations between infrastructure networks in Shelby County 

are illustrated in Fig. 3.1. This figure demonstrates how different sectors of the power, 

gas, and water networks are interconnected. Two bi-directional interdependency 

relations exist: one between the power generation and natural gas production sectors 

and another between the power generation and water supply sectors. Also, this figure 

shows that the operability of the water and natural gas transmission sectors relies on 

the proper functioning of the power transmission grid. For instance, the production 

capacity of the natural gas network can be affected adversely by natural hazards like 

an earthquake. This reduction in natural gas supply capacity can curtail the electricity 

generation capacity and, subsequently, influence the power supply to the transmission 

and supply components of the water network. Thus, a disruption in the natural gas 

network can reduce water service delivery to consumers, whereas there is no direct 

interdependency relation between the natural gas and water networks, according to 

Fig. 3.1.    
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Fig. 3.1. The interdependency relations between infrastructure networks in the case 

study.  

Figure 3.2 displays the topologies of Shelby County’s infrastructure networks at the 

transmission level. The power, natural gas, and water networks are depicted in red, 

green, and blue colors, respectively. The modified power network comprises 73 

powerlines and 59 electric nodes: one Combined-Cycle Power Plant (CCPP), two Gas 

Turbine Power Plants (GTPPs), 5 Power Gate Stations (PGSs), seventeen 23-kV 

Electric Substations (ESSs), twenty 12-kV ESSs, and 14 power intersections. The 

modified natural gas network contains 17 pipelines and 16 gas nodes: one Liquefied 

Natural Gas Terminal (LNGT), one Natural Gas Processing Plant (NGPP), two Natural 

Gas Compressor Stations (NGCSs), one Natural Gas Gate Station (NGGS), and 11 

regular distribution stations. The modified water infrastructure network consists of 49 

water nodes and 71 pipelines. There are 6 Water Storage Tanks (WSTs), 4 Water 

Pump Stations (WPSs), and 5 Water Supply Facilities (WSFs). The remaining nodes 

are water intersections that deliver water to the end users. In this dissertation, it is 

assumed that all nodes and links within Shelby County’s infrastructure networks are 

subject to the destructive impacts of the considered natural hazard.  
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Fig. 3.2. Topologies of the (A) power, (B) natural gas, (C) water infrastructure networks in 

Shelby County (TN), USA (Map tiles by CARTO, under CC-BY 4.0), and (D) epicenter locations 

of earthquake scenarios defined in this dissertation (background: water network).  

 

3.2. Urban Community Resilience Analysis of Shelby County   

To demonstrate the capabilities of the ResQ-IOS framework to model the 

interdependency between the infrastructure systems and evaluate the resilience of 

those interdependent systems against disasters, the seismic resilience of the 

interdependent CISs located in Shelby County (TN), USA is quantified. The data 

relating to damage functions, functionality levels, and the details of the recovery 

process for the CISs’ components (e.g., the required time for restoring a component) 

is obtained from Section 8.1 for potable water systems, Section 8.4 for natural gas 

systems, and Section 8.5 for electric power systems of the HAZUS Earthquake Model 

Technical Manual (HAZUS 5.1) published by the Federal Emergency Management 

Agency (FEMA) in July 2022 [77].  
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To show the performance evolution of infrastructure networks (power, natural gas, 

and water) after a disaster, a hazard scenario is defined similarly to the realistic 

earthquake scenario in Shelby County provided by [95]. The hazard scenario 

simulates an earthquake with a magnitude of Mw = 7.7 and an epicenter located at 

35.3 N and 90.3 W (situated in the northwest of Shelby County – the epicenter location 

labeled as Reference, shown in Fig. 3.2). Ground motion intensity measures at the 

infrastructure components’ location are estimated using attenuation models that are 

the function of the earthquake magnitude and the epicenter location. The performance 

evolution of the Shelby County infrastructure networks after this earthquake scenario 

is shown in Fig. 3.3. This figure displays the changes in the actual performance of 

power, natural gas, and water networks considering the hazard occurs on day 0, and 

the recovery process starts on day 1. 

To calculate the resilience metric defined by Equation (E.2) (i.e., accumulated loss 

of resilience), the area between the target and the actual performance of each network 

is computed according to Fig. 2.4. The Accumulated Loss of Resilience (ALR) metrics 

for the power, natural gas, and water CISs are 9.47, 12.32, and 15.37 days, 

respectively. For a better understanding of ALR, we can interpret the ALR of an 

infrastructure network as the equivalent number of days that the infrastructure network 

of interest is completely shut down (i.e., the met demand is zero). For instance, the 

ALR of the power network is 9.47 days, meaning total unmet demand during the 

recovery process that takes 54 days to complete equals 9.47 days with zero power 

supply. The minimum instantaneous performance of the power system 𝑃𝑖(𝑡) (the ratio 

of consumption to demand) was 17.3 percent of the daily demand in this earthquake 

scenario.   
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Fig. 3.3. The normalized performance evolution of the Shelby County CISs in the 

investigated earthquake scenario (Mw=7.7). 

It is noteworthy that the ALR determines the amount of unmet demand during the 

recovery process of an infrastructure network after the disaster. Still, this ALR 

resilience metric does not specify the speed of the recovery process. In other words, 

an infrastructure network with a lower ALR value may have a more extended recovery 

period; for example, the case study (Fig. 3.3) reveals that the ALR for the natural gas 

network (12.32) is higher than power network (9.47), while the function recovery of the 

natural gas network is completed in 18 days, 36 days sooner than the power network’s 

recovery period (54 days). Although the natural gas network holds the fastest rate in 

the recovery process, this network is the only infrastructure network in the case study 

that totally failed for a short period (one day), as shown in Fig. 3.3.  

According to the results of resilience quantification, the water network has the 

highest ALR among the three Shelby County CISs; however, the water network is not 

the last infrastructure system recovered from earthquake-induced failures. Figure 3.4 

indicates the daily percentage of partially and fully damaged nodes in the CISs’ 

networks in Shelby County during the recovery process after the earthquake. 

According to Fig. 3.4, the restoration of the water network’s components has been 

completed in 12 days, almost 4.5 times faster than that of the power network. Despite 

the relatively fast restoration of the damaged components in the water network, the 
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resilience indicator for the water network cannot approach value of one earlier than 

the 54th day of the recovery process. The main reason for such post-disaster recovery 

of the water network is the interdependency between the power and water networks. 

Due to the slower recovery rate of the power network, the operability of some 

components in the water network, such as water pump stations, is conditioned on the 

functionality level of the power network’s elements, like substations and power lines. 

Namely, the constant part of the water network’s resilience curve between the 23rd day 

and 52nd day of the recovery process in Fig. 3.3 (the recovery process starts on day 

1) is due to the water pump station located at node 11 being out of service during the 

period mentioned above even though its earthquake-induced damage is fully restored 

and the water pipelines connected to the pump station are ready to operate. The 

reason for the inoperability of this water pump station is the lack of power supply 

delivered by the connected 12-kV electric substation due to ongoing components' 

restoration in the power network. 

 

Fig. 3.4. The daily percentage of partially and fully damaged nodes in the Shelby County 

CISs during the recovery process after the investigated earthquake scenario (Mw=7.7).  

It is important to note that the damage recovery of the natural gas network (i.e., the 

restoration of direct earthquake-induced damage to the natural gas network) is 

completed in 12 days, according to Fig. 3.4, whereas the function recovery of the 

natural gas network is completed in 18 days according to Fig. 3.3. The main reason 
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for this 6-day delay in the function recovery of the gas network is the interdependency 

between the power and natural gas networks. In other words, the natural gas network 

cannot reach full production capacity after the 12th day because of insufficient power 

supply by the electricity grid. 

Figure 3.4 also provides some information concerning the robustness of the 

individual CISs in the case study. According to this figure, the power network has the 

lowest robustness to the earthquake scenario since 96.6 percent of its nodes are 

partially or fully damaged on the first day after the occurrence of the earthquake. In 

contrast, the water network is the most robust infrastructure network in Shelby County 

after the earthquake. In Fig. 3.4, the slope of the curve indicates the instantaneous 

(daily) rate of damage recovery (i.e., the restoration of direct earthquake-induced 

damage) for the concerned infrastructure network in Shelby County. It is noteworthy 

that changes in some parameters, such as the characteristics of the earthquake 

scenario, the restoration sequence of failed components, and the availability of repair 

teams, can affect the results of the resilience analysis presented above. If the 

restoration functions other than those in Sections 8.1, 8.4, and 8.5 of the HAZUS 

Earthquake Model Technical Manual (HAZUS 5.1) [77] are considered, the outcome 

may change. For instance, a reduction in the number of repair teams in the water 

network may cause a delay in the restoration of water pipelines, or a change in the 

magnitude and epicenter of the earthquake may increase the number of damaged 

water pipelines. Therefore, the faster recovery of the water network compared to the 

power network in this example should not be concluded as a general feature of the 

water network in Shelby County.     

The ResQ-IOS framework enables the evaluation of the functional recovery metrics 

proposed in the NIST SP-1190 report [57] to quantify the function restoration time 

aspect of the recovery process. Table 3.1 shows the required time to restore the 

different percentages of interdependent CISs’ services in the case study. 
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Table 3.1. The required time to restore the different percentages of the Shelby County 

interdependent CISs’ services. 

Required time (days) 
Percentage of service recovery 

30% 60% 90% 100% 

Network 

Power 7 13 19 54 

Natural gas 13 13 18 18 

Water 7 16 54 54 

 

To evaluate the resilience of an urban community against natural hazards, it is 

essential to jointly quantify the resilience of the community’s interdependent CISs. The 

SoCIS-ALR metric for the system-of-CISs in this Shelby Count case study is calculated 

using Equation (E.3). Figure 3.5 depicts the evolution of the SoCIS resilience metric 

for three earthquake scenarios with magnitudes 6.8, 7.7, and 8.2 and the same 

epicenter. The computed SoCIS-ALR values for the three earthquakes are 4.40, 12.36, 

and 18.53, while the recovery period for the community, starting from day 1, lasts 20, 

54, and 62 days, respectively, as shown in Fig. 3.5.  

This figure demonstrates the capability of the ResQ-IOS to consider all 

components of interdependent CISs for community resilience assessment. The 

capability to carry out individual resilience assessments for each infrastructure system 

and joint assessments for the urban community using instantaneous and cumulative 

resilience metrics reflects other contributions of this doctoral dissertation.   



84 
 

 

Fig. 3.5. The evolution of the SoCIS resilience metric of the Shelby County CISs for three 

earthquake scenarios. 

 

3.3. Improving Urban Disaster Resilience of Shelby County 

This section examines three Community Resilience Enhancement Strategies 

(CRESs). The aim of each CRES is to improve one resilience evaluation indicator or 

two for the urban community of Shelby County as the case study of this dissertation. 

The first, pre-disaster, CRES aims to address robustness and redundancy indicators 

through actions taken before an extreme event. The second, post-disaster, CRE 

strategy addresses the recovery process after the extreme event to increase its 

resourcefulness and rapidity and provide better allocation of constrained resources. 

The third, peri-disaster, CRE strategy indirectly addresses the rapidity indicator by 

aiming to mitigate the interdependencies among the CISs through emergency 

interventions during the recovery.  
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Fig. 3.6. The performance evolution of an infrastructure system after an extreme event 

and four respective resilience evaluation indices. 

 

3.3.1. Enhancing Robustness and Redundancy 

The first, pre-disaster, CRES aims to improve the redundancy and robustness 

indicators of the individual CIS. In the Shelby County case study, this CRES provides 

extra supply capacity margins for the interdependent CISs. The effect of this CRES is 

two-fold: primarily, it increases the robustness of each CIS, while secondarily, it 

increases the redundancy of the linkages among the interdependent CISs. Three 

scenarios are devised to determine whether adding extra supply capacity to the 

infrastructure networks significantly impacts the seismic resilience of the Shelby 

County system-of-CISs. Those three scenarios consider a 10% increment in the 

supply capacity of each of the power, natural gas, and water networks, respectively, 

while keeping the supply capacity of the other two networks unchanged. The results 

of the resilience analyses for these scenarios are given in Table 3.2.  

 

 



86 
 

Table 3.2. The fully functional recovery duration and SoCIS-ALR metric values for the Shelby 

County interdependent CISs after the earthquake with Mw= 7.7 with varying supply margins.  

Scenario SoCIS-ALR 

% Changes 

wrt. the initial 

case 

Recovery 

duration 

(days) 

% Changes 

wrt. the initial 

case 

Initial case 12.36 --- 54 --- 

+10% in the supply capacity 

of the power network 
12.22 1.133 % 54 0 % 

+10% in the supply capacity 

of the natural gas network 
12.20 1.295 % 54 0 % 

+10% in the supply capacity 

of the water network 
10.92 11.65 % 24 55.5 % 

 

While the 10% increase in the supply capacity of the power grid and natural gas 

network improves the Shelby County SoCIS-ALR metric slightly, a 10% percent 

increment in the water network's supply capacity significantly shortens the time to fully 

recover the function of all three Shelby County CISs. It is important to note that after 

the community returns to normal conditions on the 24th day of the recovery process, 

restoring the failed components in the power network will continue until the 54th day. 

Also, the water pump station at node 11 is still out of service after the 24th day due to 

the lack of power supply. Nevertheless, the water network provides water to meet the 

nodal demands previously supplied by the water pump station located at node 11 

because of the increased capacity of other water supply facilities that can compensate 

for the inoperability of the pump station at node 11. The network distributes the water 

flow by optimally mapping new routes from the supply nodes to the demand nodes, 

dependent on the pump station at node 11.  

Concerning the performance of the power network, since the power supply of the 

pump station at node 11 is no longer a top priority demand, the ResQ-IOS optimization 

module re-dispatches the power supply to other nodes with higher priority. On the 24th 

day, the power network can supply the total demand, except for the pump station at 

node 11. This reflects that the ResQ-IOS can rebalance the components’ time-

dependent demands and temporary loads that may be imposed on infrastructure 
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networks during the recovery process and adjust the operation of the CISs to maximize 

the resilience of the combined system-of-systems. Hence, all infrastructure networks 

in the case study can meet the daily demands after the day 24th, which means the 

function of the Shelby County CISs is fully restored after the case study earthquake 

scenario. On the 54th day, the power network’s recovery is completed, and the 

aforementioned water pump station can start supplying water to the connected nodes. 

Notably, after the 54th day, the water network utilizes about 91% of its supply capacity. 

 

3.3.2. Enhancing Resourcefulness and Rapidity 

For improved infrastructure resilience to natural hazards, modifying the Repair and 

Maintenance (R&M) teams’ allocation may be an effective and practical Community 

Resilience Enhancement Strategy (CRES) owing to post-disaster recovery budget 

constraints. The second, post-disaster, CRES aims to strengthen the resourcefulness 

indicator of the Shelby County urban community. To illustrate the usefulness of altering 

the allocation of R&M teams in the recovery process, the seismic resilience of the 

interdependent CISs for two cases of R&M teams’ allocation after an earthquake with 

a magnitude of 7.7 is quantified. In addition to the case with the initial number of R&M 

teams, a modified case evaluates the resilience of Shelby County CISs, considering a 

50% increase in the number of the power network’s R&M teams and a simultaneous 

50% decrease in the number of the water network’s R&M teams. 

Figure 3.7 displays the evolution of the SoCIS resilience metric to compare the 

initial and rebalanced R&M team assignment. The results of this figure point out that 

rebalancing the assignment of R&M teams (i.e., new allocation) improves the SoCIS-

ALR measure by 30.8 percent. Also, the rebalancing of R&M team assignments leads 

to the recovery of the Shelby County CISs in 36 days, 18 days sooner than with the 

initial R&M team assignment. As discussed earlier, the reason for this resilience 

improvement is that the power network is the controlling infrastructure in the recovery 

of the Shelby County CISs after the case study earthquake. It means the power-

dependent infrastructure systems like the water network and, accordingly, the 

community cannot return to their normal conditions before the power network’s 

recovery process is completed. 
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Fig. 3.7. The evolution of the SoCIS resilience metric of the Shelby County 

interdependent CISs comparing the initial and the re-balanced R&M team 

assignments in the magnitude 7.7 earthquake scenario. 

 

3.3.3. Mitigating Interdependencies 

The third, peri-disaster, CRES aims to improve the rapidity indicator of Shelby 

County urban resilience by deploying truck-mounted mobile power generators during 

the recovery process of the water network. As discussed earlier in section 3.2, the 

main reason for the prolonged function recovery of the water network despite the 

relatively fast restoration of damaged components is the interdependency relations 

between the water and power networks in Shelby County. The purpose of 

implementing the third CRES is to mitigate the adverse effect of interdependencies 

between the components of these two networks (power and water). In other words, 

the electric power demand of water facilities and pump stations can be supplied by 

truck-mounted mobile generators. The advantage of following this resilience 

enhancement strategy is that truck-mounted mobile generators act as portable power 

backup systems for the facilities in the water network. Since the objective of the ResQ-

IOS is to maximize the resilience of urban communities after the occurrence of the 

disruption, the main question raised here is how to optimize the schedule and site 

selection for deploying the available truck-mounted mobile generators in the water 
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network. To this end, Equations (E.81) and (E.86) are modified and the new version of 

those Equations, (E.93) and (E.94), are added to the main body of the optimization 

model embedded in the structure of the ResQ-IOS:             

𝜑𝑊,𝑡
𝑊𝑆𝐹,𝑗

≤ 𝛽𝑡
𝑊𝑆𝐹,𝑚 + 𝑀𝐺𝑊,𝑡

𝐸,𝑗
                                           ∀(𝑚, 𝑗) ∈ 𝐼𝐸𝑡𝑊, ∀𝑡 ∈ 𝑇         (𝐸. 93)           

𝜑𝑊,𝑡
𝑊𝑃𝑆,𝑗

≤ 𝛽𝑡
𝑊𝑃𝑆,𝑚 + 𝑀𝐺𝑊,𝑡

𝐸,𝑗
                                            ∀(𝑚, 𝑗) ∈ 𝐼𝐸𝑡𝑊, ∀𝑡 ∈ 𝑇        (𝐸. 94)           

Since the number of truck-mounted mobile generators that are available for 

deploying in the water network is limited, the following constraint is added to the 

optimization model as Equation (E.95): 

 

∑ 𝑀𝐺𝑊,𝑡
𝐸,𝑗

𝑗

≤ 𝑁𝑊,𝑎𝑣𝑎𝑖𝑙
𝐸                                                    ∀(𝑚, 𝑗) ∈ 𝐼𝐸𝑡𝑊, ∀𝑡 ∈ 𝑇        (𝐸. 95)           

A numerical experiment is designed to investigate the impact of deploying mobile 

generators on the resilience enhancement of the Shelby County urban community. 

Since nine water facilities and pump stations exist in Shelby County’s water network, 

the experiment comprises ten cases for the seismic resilience assessment of Shelby 

County after an earthquake with a magnitude of 7.7. In the first case, it is assumed 

that there is no truck-mounted mobile power generator for deploying in the water 

network during the recovery process. From the second case onwards, the available 

number of mobile generators increases one by one. In the last case (the 10th case), 

all water facilities and pump stations are equipped with a truck-mounted mobile 

generator.  

The results of this numerical experiment, considering the low availability of R&M 

teams, indicate that the CRES mentioned above can improve the rapidity indicator 

significantly. According to Fig. 3.8, deploying only one mobile generator can reduce 

the recovery duration of the urban community from 111 days to 46 days (about a 58.6% 

improvement in the value of the rapidity indicator). As shown in Fig. 3.8, it is important 

to note that deploying more than three mobile generators simultaneously no longer 

shortens the duration of the community recovery. In other words, 38 days is the 

minimum recovery duration that can be reached by implementing this resilience 

enhancement strategy for the case study of this numerical experiment. Hence, it can 

be concluded that three truck-mounted mobile generators are the optimal number of 
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this type of portable backup system to reach the minimum duration for the post-

earthquake recovery process. 

 

  Fig. 3.8. The community recovery duration for different numbers of truck-mounted 

mobile generators deployed in the water network in the magnitude 7.7 earthquake 

scenario. 

In terms of the SoCIS-ALR resilience metric, the strategy of deploying mobile 

generators results in lower values of loss of resilience. Fig. 3.9 displays the evolution 

of the SoCIS-ALR resilience metric for the case study of this numerical experiment. 

However, the SoCIS-ALR metric curve still decreases when more than three mobile 

generators are deployed during the recovery process. The reason for such behavior 

can be that water facilities and pump stations utilize mobile generators for power 

supply instead of consuming electricity from the power grid. This action lets the power 

grid manage its capacity for supplying less important nodal demands like residential 

buildings, which leads to reduced loss of resilience and a lower SoCIS-ALR resilience 

metric value as well.           
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  Fig. 3.9. The evolution of the SoCIS-ALR resilience metric for different numbers of 

truck-mounted mobile generators deployed in the water network in the magnitude 7.7 

earthquake scenario. 

Although deploying truck-mounted mobile generators improves the urban 

community’s resilience against disruptive events, the objective of ResQ-IOS is to 

maximize this resilience improvement. For this purpose, the ResQ-IOS framework 

aims to optimize the implementation of this resilience enhancement strategy by 

determining the optimal schedule and locations for truck-mounted mobile generators 

during the recovery of the water network. As an example, the optimization results of 

the ResQ-IOS, including the optimal schedule and optimal locations for deploying 

three mobile generators in Shelby County’s water network, are given in Table 3.3. For 

better illustration, the optimal locations for three truck-mounted mobile generators in 

the case study water network on the 6th and 33rd days are displayed in Figs. 3.10 and 

3.11.   
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Table 3.3. Optimal schedule and locations for deploying three truck-mounted mobile generators 

in Shelby County’s water network under the low availability of R&M teams after an earthquake 

with Mw=7.7 (MG: Mobile Generator, N: Node).  

Optimal Location 

O
p
ti
m

al
 S

ch
ed

u
le

  

Day 1 2 3 4 5 6 7 8 9 10 

MG1 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 

MG2 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 

MG3 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 2 N 6 

Day 11 12 13 14 15 16 17 18 19 20 

MG1 N 2 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 

MG2 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 

MG3 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 3 N 3 

Day 21 22 23 24 25 26 27 28 29 30 

MG1 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 

MG2 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 

MG3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 

Day 31 32 33 34 35 36 37 38 39 40 

MG1 N 11 N 11 N 11 N 11 N 11 N 11 N 11 N 11 - - 

MG2 N 5 N 8 N 8 N 8 Dismissed Dismissed Dismissed Dismissed - - 

MG3 N 3 N 3 N 3 N 3 N 3 Dismissed Dismissed Dismissed - - 
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  Fig. 3.10. The optimal locations (nodes 4, 5, and 6) for three truck-mounted mobile 

generators in the case study water network on day 6 in the magnitude 7.7 earthquake 

scenario. 

 

  Fig. 3.11. The optimal locations (nodes 3, 8, and 11) for three truck-mounted mobile 

generators in the case study water network on day 33 in the magnitude 7.7 

earthquake scenario. 
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3.4. Parametric analysis of urban disaster resilience 

This section aims to investigate the role of some parameters in urban communities’ 

disaster resilience by carrying out six parametric analyses. The considered 

parameters can be categorized into two groups: Internal and External. In this doctoral 

dissertation, internal parameters refer to factors that are manageable during post-

disaster recovery. The term external parameter refers to factors that are not 

controllable or that require long-term CRE actions to bring under control. The six 

parameters whose impacts on the urban disaster resilience are analyzed are as 

follows: 

Internal parameters 

- Configuration of R&M teams 

- Number of available R&M teams 

- Restoration sequence of failed components 

External parameters 

- Housing vulnerability and housing recovery models  

- Seismic hazard (Earthquake magnitude and epicenter location) 

The purpose of this section is to demonstrate the capability of the ResQ-IOS 

framework for performing the parametric analysis of urban resilience to disruptive 

events. Firstly, the effect of changes in internal parameters on the Shelby County 

urban community resilience is explored. Then, the disaster resilience of the case study 

is examined in relation to the external parameters that are not directly administrable.  

 

 3.4.1. Configuration of R&M teams 

To investigate the effect of R&M team configuration on the post-earthquake 

resilience of the Shelby County interdependent CISs, the R&M teams for repairing the 

water pipelines are reconfigured. The default configuration of the water pipeline R&M 

teams is four persons with a 16-hour workday. The water pipeline R&M teams’ 

configuration is changed to three people with an 8-hour workday, while keeping the 

number for water pipeline R&M teams the same. Figure 3.12 illustrates that different 

R&M team configurations change the required time for repairing the damaged water 



95 
 

pipelines. In the default case, all damaged pipelines are repaired at an almost constant 

repair rate after 11 days. However, repairing the damaged pipelines with smaller R&M 

teams who work shorter shifts takes 19 days, as shown in Fig. 3.12. Also, this figure 

indicates that the required time for restoring the damaged components can take 

several time steps in the resilience assessment period. Although the recovery process 

of damaged water pipelines is affected by changing the R&M teams’ configuration, the 

effect on the Shelby County SoCIS-ALR is negligible. As discussed earlier, due to the 

interdependency between water and power infrastructure systems, the full recovery of 

the water network is conditioned on the rate of the power network’s recovery process. 

Reducing the effectiveness of the water pipeline R&M teams frees up the resources 

to strengthen the electric power R&M teams, the effect of which was illustrated in 

Section 3.3.2. 

 

Fig. 3.12. The daily number of damaged water pipelines during the recovery of the 

Shelby County water network in the magnitude 8.5 earthquake scenario for two 

configurations of R&M teams.  
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3.4.2. Number of available R&M teams 

The resilience of the interdependent CISs in the ResQ-IOS framework is quantified 

by considering constraints on the resources for the recovery process, such as limits 

on the number of Repair and Maintenance (R&M) teams for each type of component 

within the infrastructure networks. For this purpose, the ResQ-IOS framework can 

import the number of available R&M teams for 13 types of components belonging to 

three interdependent CISs in the Shelby County case study and then simulate 

restoring the failed components based on the restoration sequence that is determined 

according to the limits on the number of R&M teams and the strategy adopted for the 

recovery process of the Shelby County infrastructure networks.  

To demonstrate the effect of the number of available R&M teams on the recovery 

process, a numerical experiment is designed to assess the seismic resilience of the 

Shelby County interdependent CISs for 540 cases. The numerical experiment 

considers 20 earthquake scenarios with magnitudes from 6 to 9 and 27 portfolios for 

various levels of repair team package availability. Firstly, it is necessary to define the 

term “repair package.” Each repair package comprises the R&M teams’ staff and the 

required machinery and resources. A portfolio consists of three elements representing 

the availability level of repair packages in the Shelby County interdependent CISs. For 

instance, the portfolio of No.12 in this numerical experiment is expressed as “12-

PM,GL,WH,” which states the availability of repair packages in the power, natural gas, 

and water networks is medium, low, and high, respectively. The main reason for 

creating the repair package and 3-level availability concepts is to reduce the 

computational cost of carrying out the parametric analysis concerning the number of 

R&M teams. Each availability level (low, medium, and high) suggests that the available 

number of repair packages for a specific component is a percentage of the total 

number of that component in the infrastructure network.     

The parametric analysis results for exploring how the number of available R&M 

teams affects the seismic resilience of the Shelby County urban community are 

analyzed from the SoCIS-ALR metric and recovery duration aspects. Figs. 3.13 and 

3.14 represent the changes in the SoCIS-ALR metric and recovery duration for 540 

resilience assessment cases, respectively. Each resilience assessment case 

simulates an earthquake scenario with a magnitude between 6 and 9 and considers a 

repair package portfolio for the recovery of interdependent CISs in Shelby County. 
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Those two figures (3.13 and 3.14) demonstrate that significant improvements in the 

value of the SoCIS-ALR metric and the duration of the case study recovery occur when 

more repair packages (i.e., R&M teams) are available for restoring damaged 

components in the power network. The parametric analysis for the number of R&M 

teams suggests that in the case of a fixed budget, it will be an effective and lucrative 

strategy if the greater part of the budget is allocated to deploying a more significant 

number of R&M teams in the power network. In other words, the power network has 

top priority for receiving repair packages. There are two reasons for this situation. First, 

the case study power network has a larger number of components than two other 

infrastructure networks. Second, the power network is more vulnerable to seismic 

hazards compared to water and natural gas networks in this case study.  

 

Fig. 3.13. The value of the SoCIS-ALR metric for 540 resilience assessment cases 

(Networks, P: Power, G: Gas, W: Water – Availability levels of repair packages, L: Low, 

M: Medium, H: High).  
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Fig. 3.14. The recovery duration of the urban community for 540 resilience 

assessment cases (Networks, P: Power, G: Gas, W: Water – Availability levels of repair 

packages, L: Low, M: Medium, H: High).  

 

3.4.3. Restoration sequence of failed components 

Due to budget constraints and the limited number of crew teams and resources, it 

is only feasible for a few failed components to be restored simultaneously. Hence, the 

availability of resources and maintenance crew teams influences the component repair 

start time. There are different strategies for sequencing the repairs of the damaged 

components. Some researchers developed optimization models to determine the 

optimal restoration sequence of failed components [96], [97], [98]. The main challenge 

of using such optimization models is the huge computational burden required for 

solving the optimal restoration sequence problem, particularly when the optimization 
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model is solved repeatedly for a set of interdependent infrastructure systems having 

many damaged components after the occurrence of the natural hazard [99].  

The ResQ-IOS framework recovery model can adopt various restoration sequence 

strategies for repairing the damaged components in the network. In this doctoral 

dissertation, the ResQ-IOS framework utilizes a criticality-based strategy applying a 

performance-based (i.e., supply capacity and demand-based) importance approach 

to specifying the restoration sequence of damaged components located at nodes of 

the interdependent CISs (i.e., nodes with the greatest demand and supply capacities 

are repaired first), and a capacity-based method to determine the sequence of links 

(e.g., pipelines) to be repaired (i.e., links with the largest capacity are repaired first). 

Following the criticality-based strategy for restoring the damaged components does 

not lead to remarkable variations in the recovery of infrastructure systems compared 

to the optimal strategy [99].   

The seismic resilience of the case study after an earthquake with a magnitude of 

7.9 is quantified for two cases. In the first case, it is assumed that there is no constraint 

on the number of R&M teams and repair resources. Implementing the first case results 

in the shortest recovery duration of the case study community. The results show the 

SoCIS-ALR metric value is 6.94, and the urban community recovery takes 16 days. 

Although a 16-day period is the shortest recovery possible after the earthquake 

scenario, it may not be feasible due to limited recovery resources. In the second case, 

considering constraints on recovery resources, the damaged components in three 

infrastructure networks are restored according to the criticality-based repair sequence. 

In this case, the value of the SoCIS-ALR metric is 11.53, and the recovery duration is 

31 days. The evolution of the SoCIS metric for the two cases mentioned above is 

shown in Fig. 3.15.         

 To demonstrate the criticality-based strategy is a near-optimal strategy for the 

restoration sequence of damaged components, 50 scenarios are defined in which the 

damaged components are randomly selected for restoration during the recovery 

process. Then, the seismic resilience of the case study is assessed for the 50 

scenarios with a random selection strategy. For better illustration, the evolution of the 

SoCIS metric for the 50 scenarios is displayed in Fig. 3.15.    
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Fig. 3.15. The evolution of the SoCIS metric for different restoration sequence 

strategies of damaged components in the magnitude 7.9 earthquake scenario.   

The minimum SoCIS-ALR metric value of the 50 scenarios with a random selection 

strategy is 14.12, which is still greater than 11.53, the SoCIS-ALR metric value of the 

criticality-based strategy. In terms of the SoCIS-ALR metric value, the criticality-based 

restoration sequence strategy has a better performance than all 50 realizations of the 

random selection strategy. Concerning the recovery duration, the minimum duration 

among 50 realizations is 30 days, one day shorter than the criticality-based strategy. 

However, the SoCIS-ALR metric related to the respective realization of the random 

selection strategy is 19.68, which is 70.7% greater than the criticality-based SoCIS-

ALR metric value. Considering the SoCIS-ALR metric and recovery duration as two 

objectives simultaneously, the criticality-based strategy can serve as a near-optimal 

strategy for sequencing the repairs of damaged components. Nevertheless, the no-

constraint case, as well as a few randomly generated scenarios, may be used to 

improve the start of the recovery process. A summary of the results is given in Table 

3.4.   

 

 

 



101 
 

Table 3.4. The summary of results for different restoration sequence strategies of failed 

components in the Shelby County interdependent CISs.   

Restoration sequence strategy 

Constraints on 

recovery 

resources 

SoCIS-

ALR 

metric 

Recovery 

duration 

(days) 

Possibility Feasibility 

Relaxed on recovery constraints No 6.94 16 Yes No 

Criticality-based selection Yes 11.53 31 Yes Yes 

Random selection 

(Minimum SoCIS-ALR metric) 
Yes 14.12 35 Yes Yes 

Random selection 

(Minimum recovery duration) 
Yes 19.68 30 Yes Yes 

 

3.4.4. Housing vulnerability and housing recovery models 

Since the Shelby County case study of this doctoral dissertation is located in the 

USA, the vulnerability models for the damage estimation of infrastructure components 

are obtained from the HAZUS Earthquake Model Technical Manual (HAZUS 5.1) 

published by the Federal Emergency Management Agency (FEMA) in July 2022 [77]. 

In the case of applying ResQ-IOS to other case studies around the world, the localized 

vulnerability models (i.e., damage functions) can be used in the structure of the ResQ-

IOS framework.   

Modeling the recovery of housing after the occurrence of a disaster is a topic of 

interest for researchers in the fields of urban planning, social and financial resilience, 

construction, infrastructure management, etc. Applying accurate housing recovery 

models can provide stakeholders with valuable information about how pre-disruption 

demands for services in the housing sector revive after an extreme event, as well as 

how to develop long-term CRES aimed at reducing the vulnerability and speeding up 

the recovery of housing. Although studying housing vulnerability and recovery models 

is not the objective of this doctoral dissertation, this section aims to represent the 

ResQ-IOS framework’s ability to consider sophisticated housing and infrastructure 

systems demand evolution models and their effect on the community recovery 

process.  
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To this end, the resilience of the Shelby County urban community after an 

earthquake with a magnitude of 7.2 is quantified for two types of demand evolution 

models of the housing sector in Shelby County. Each model considers mathematical 

expressions for relating the damage level of residential buildings and demands for the 

services provided by the infrastructure systems. Since the damage level of residential 

buildings evolves during the recovery, the Shelby County residents’ demands for 

infrastructure services evolve in time, too. The first model considers a simple linear 

relation between the damage level and the recovered demands for power, natural gas, 

and water services in the housing sector. The second model combines three types of 

mathematical functions: polynomial for electricity, trigonometric for natural gas, and 

exponential for water service. The various relations between the normalized damage 

level and normalized demand are shown in Fig. 3.16.         

 

Fig. 3.16. The various relations between the normalized damage level and normalized 

demand for modeling demand evolution during the housing sector’s recovery.   

Although the relation between damage level and demand is often inverse, the 

mathematical expressions of the second model are defined to contain both increasing 

and decreasing variations of demands for infrastructure services in the housing sector. 

Some services, like communication, may face increased demand after an extreme 

event [100].  
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The results of the seismic resilience assessment for the case study with two 

different demand evolution models (linear and non-linear) are displayed in Fig. 3.17. 

The non-linear demand evolution model considers a polynomial function for electricity, 

a trigonometric function for natural gas, and an exponential function for water service 

demand evolution. The SoCIS-ALR metric values for linear and nonlinear models are 

6.96 and 2.74, respectively. The full recovery of the Shelby County urban community 

for linear and nonlinear models takes 16 and 13 days, respectively. As shown in Fig. 

3.17, applying two different demand evolution models for the housing sector leads to 

considerable changes in the recovery curve of the case study urban community while 

other parts of the resilience assessment model in the ResQ-IOS framework remained 

unchanged. After the same earthquake scenario, having two different community 

recovery curves indicates the importance of using accurate housing recovery models. 

The results of this section also reflect ResQ-IOS’s capability to consider the demand 

evolution of various housing recovery models, including the daily basis data of housing 

recovery progress simulated by an external software package or derived from the 

usage data collected by the CIS operator during the recovery process.   

 

Fig. 3.17. The changes in the SoCIS metric after an earthquake with Mw=7.2 for two 

different demand evolution models considered for the housing sector’s recovery.   
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3.4.5. Earthquake magnitude 

To gain an insight into the relation between the seismic hazard and the seismic 

resilience of the Shelby County interdependent CISs, case study resilience analyses 

were done for earthquakes with the magnitude varying between Mw=6 and Mw=9 and 

the same epicenter location. In addition to SoCIS-ALR, the required time for a full 

recovery of all Shelby County CISs is calculated. Figure 3.18 demonstrates the relation 

between the magnitude of the seismic hazard and the seismic resilience of the 

interdependent CISs in Shelby County. As shown in Fig. 3.18, the SoCIS-ALR metric 

values increase monotonically from 0.279 for the Mw=6 earthquake to 23.22 for the 

Mw=9 earthquake, an increase of 83-fold, but not at the same rate. Furthermore, the 

SoCIS-ALR metric saturates at earthquake Mw=8.5. The time to fully recover the joint 

function of the Shelby County interdependent CISs varies from six to 62 days. Notably, 

the full functional recovery time saturates at Mw=8.0. The cause of such saturation is 

that the power network that controls the community’s recovery duration reaches the 

maximum level of function degradation during the Mw=8.0 earthquake scenario, with 

the number of damaged nodes (including both total and partial damage) is 57 and 58 

(out of 59 nodes) after the Mw=8.0 and Mw=8.2 earthquakes, respectively. The SoCIS-

ALR metric is still sensitive to the number of damaged power CIS nodes, saturating 

after the Mw=8.5 earthquake.   

 

Fig. 3.18. The time to full recovery (100%) and the SoCIS-ALR metric values for the 

Shelby County interdependent CISs as a function of the case study earthquake magnitude. 
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3.4.6. Earthquake epicenter location 

This section investigates the impact of the location of the earthquake epicenter on 

urban seismic resilience. The vulnerability of the infrastructure components is very 

sensitive to the distance between the earthquake epicenter and the location of the 

components. For this purpose, a numerical experiment is designed to quantify the 

resilience of the case study urban community against ten earthquake scenarios with 

ten different epicenter locations and the same magnitude. The locations of epicenters 

are selected to perform the topological vulnerability analysis of the case study 

interdependent infrastructure systems. The details of ten selected epicenters are given 

in Table 3.5 and shown in Fig. 3.2. The magnitude of all earthquake scenarios is 7.7, 

and it is assumed the availability of repair packages is low for the restoration of the 

damaged components of three interdependent networks in Shelby County. Scenario 

No.10 is the realistic earthquake scenario introduced in Section 3.2, called the 

reference scenario in this section.  

Table 3.5. The geographical coordinates of selected earthquake epicenters.   

Scenario No. Location Longitude Latitude 

1 Northwest -90.2 35.4 

2 West -90.2 35.2 

3 Southwest -90.2 35 

4 North -89.85 35.5 

5 Center  -89.85 35.2 

6 South  -89.85 34.9 

7 Northeast  -89.5 35.4 

8 East -89.5 35.2 

9 Southeast -89.5 35 

10 Reference -90.3 35.3 

 

For a better understanding, the SoCIS-ALR metric values and recovery duration of 

the urban community for the ten earthquake epicenter location scenarios of the 

numerical experiment are illustrated in Figs. 3.19 and 3.20, respectively. The analysis 

of the results indicates that the location of the earthquake epicenter is an influential 

parameter in urban seismic resilience. According to Fig. 3.19, the worst scenario for 
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the case study occurs when the epicenter of the earthquake is in the center of Shelby 

County. In that case, the joint accumulated loss of resilience is about ten times that of 

the reference scenario. Also, the recovery of the urban community takes about six 

times that of the reference scenario.  

Although it is expected that the earthquake with an epicenter in the center of Shelby 

County will have the most destructive impact on the urban community, it is noteworthy 

that the resilience of the case study differs substantially when the location of the 

earthquake epicenter changes. The second worst scenario for the urban community 

is an earthquake with an epicenter located in the southwest of Shelby County. In this 

scenario, the SoCIS-ALR metric value and the recovery duration are about 4.5 and 

3.5 times those of the reference scenario, respectively. The epicenter of the third worst 

scenario is in the south of Shelby County. It can be concluded that the CIS components 

in the southwest and south parts of the case study area are less resilient to seismic 

hazards.  

 

 

Fig. 3.19. The SoCIS-ALR metric value of the Shelby County urban community for 

different locations of the earthquake epicenter. 
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Fig. 3.20. The recovery duration of the Shelby County urban community for different 

locations of the earthquake epicenter. 

 

The lowest SoCIS-ALR metric value among the numerical experiment results is 

related to the earthquake scenario with an epicenter in the northeast of Shelby County. 

This northeast earthquake scenario has the shortest duration of the urban community 

recovery, which is about one-fourth that of the reference scenario. It suggests that the 

CIS components located in the northeast part of Shelby County are the most resilient 

against earthquakes. As depicted in Fig. 3.21, the variations of the interdependent 

CISs’ loss of resilience follow a similar pattern concerning the locations of the 

earthquake epicenter. For instance, the largest and smallest amounts of the CISs’ loss 

of resilience are pertaining to the earthquake epicenters located in the center and 

northeast of Shelby County, respectively.   
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Fig. 3.21. The Shelby County CISs’ loss of resilience for different locations of the 

earthquake epicenter. 

The numerical experiment results indicate that some areas in the case study, like 

the south and southwest, are more vulnerable to seismic hazards compared to the 

northeast part of the case study. It is likely that the disparity in the geographical 

distribution of important components within the infrastructure networks is the reason 

for the discrepancies between the scenarios. Therefore, it would be a recommended 

policy to prioritize the areas that are less resilient to natural hazards over other parts 

of the Shelby County case study for implementing pre-disruption CRESs, such as 

increasing redundancy, improving the robustness of infrastructure components, 

retrofitting critical components in the infrastructure networks, or planning the peri-

disruption CRES using emergency generators and water-supply trucks. 
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3.5. Identifying the Optimal Community Recovery Strategy 

In previous sections of this chapter, the capabilities of the ResQ-IOS framework in 

modeling, optimizing, quantifying, and analyzing the resilience of interdependent 

critical infrastructure systems were demonstrated. The feasibility study of 

implementing several pre-disruption, peri-disruption, and post-disruption CRESs was 

conducted. The implementation of one of the post-disruption CRESs focusing on 

deploying backup systems in the water network was optimized by determining the 

optimal schedule and locations of backup systems.  Therefore, four optimized 

quantities provided by ResQ-IOS were introduced. Those four quantities are as 

follows:  

1- SoCIS-ALR resilience metric: considering the available recovery resources, the 

SoCIS-ALR metric value is the minimum loss of resilience that an urban 

community comprising interdependent CISs can reach after a disruptive event.  

2- Optimal daily dispatching of services within infrastructure networks: to minimize 

the urban community’s loss of resilience, the ResQ-IOS framework determines 

the optimal service dispatching (i.e., distribution) within infrastructure networks 

daily. In other words, the objective of optimal dispatching is to minimize the daily 

unmet demands for services (power, natural gas, and water) in the urban 

community during the recovery.    

3- Optimal locations of backup systems: in the case of using backup systems to 

improve the disaster resilience of interdependent CISs, the ResQ-IOS 

framework can specify the optimal locations for deploying the backup systems 

to maximize resilience improvement.  

4- Optimal schedule for deploying backup systems: the ResQ-IOS framework is 

able to determine the optimal timetable for moving and deploying backup 

systems within infrastructure networks during the post-disruption recovery.   

This section aims to demonstrate how the ResQ-IOS framework can be utilized to 

identify the optimal recovery strategy, minimizing the total recovery cost. To identify 

the optimal recovery strategy, a numerical experiment is designed and conducted for 

the seismic resilience assessment of Shelby County after an earthquake with a 

magnitude of 7.7 and an epicenter that was introduced in Section 3.2 (reference 

scenario in Table 3.5). This experiment considers 27 portfolios for the availability of 
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repair packages and 10 cases for the availability of truck-mounted mobile generators 

in the water network introduced in Section 3.3.3. In order to perform the cost analysis, 

a function calculating the total cost of the post-disaster recovery for an urban 

community is defined. The total cost function comprises the community disruption cost, 

restoration cost of failed components, and implementation cost of CRESs. This cost 

function can be expressed as follows:    

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 + 𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 +  𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡   (𝐸. 96) 

𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑈𝐶𝑆𝑜𝐶𝐼𝑆. ∑ 𝜔𝑖 .
𝑖∈𝐶𝐼𝑆

 ∫  (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

) 𝑑𝑡                     (𝐸. 97)
𝑡𝑅

𝑡𝐸

 

𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑈𝐶𝑅𝑃. ∑ 𝐿𝑖 .
𝑖∈𝐶𝐼𝑆

 ∫  𝑑𝑡                                                                   (𝐸. 98)
𝑡𝑅

𝑡𝐸

 

𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑈𝐶𝐵𝑆. ∑ 𝑁𝑟𝑖
𝐵𝑆 .

𝑖∈𝐶𝐼𝑆

 ∫  𝑑𝑡                                                      (𝐸. 99)
𝑡𝑅

𝑡𝐸

 

The total recovery cost is formulated to consider the recovery duration and joint 

accumulated loss of resilience simultaneously as two parameters influencing the 

minimum total recovery cost. These two parameters prevent finding trivial solutions for 

minimum recovery cost. Therefore, the total recovery cost can be computed as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝐶𝑜𝑠𝑡 (𝑇𝑅𝐶)

= 𝑈𝐶𝑆𝑜𝐶𝐼𝑆. ∑ 𝜔𝑖 .
𝑖∈𝐶𝐼𝑆

 ∫  (
𝐶𝑠𝑦𝑠

𝑝𝑟𝑒,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑟𝑒,𝑖(𝑡)

−
𝐶𝑠𝑦𝑠

𝑝𝑜𝑠𝑡,𝑖(𝑡)

𝐷𝑠𝑦𝑠
𝑝𝑜𝑠𝑡,𝑖(𝑡)

) 𝑑𝑡
𝑡𝑅

𝑡𝐸

+ 𝑈𝐶𝑅𝑃. ∑ 𝐿𝑖 .
𝑖∈𝐶𝐼𝑆

 ∫  𝑑𝑡 + 𝑈𝐶𝐵𝑆. ∑ 𝑁𝑟𝑖
𝐵𝑆 .

𝑖∈𝐶𝐼𝑆

 ∫  𝑑𝑡
𝑡𝑅

𝑡𝐸

𝑡𝑅

𝑡𝐸

                    (𝐸. 100) 

 

where 𝑈𝐶𝑆𝑜𝐶𝐼𝑆 denotes the unit cost of the SoCIS-ALR metric. 𝑈𝐶𝑅𝑃 and 𝑈𝐶𝐵𝑆 are the 

daily unit cost of the repair package and backup system, respectively. 𝐿𝑖  represents 

the availability level of repair packages in the respective infrastructure network. 𝑁𝑟𝑖
𝐵𝑆 

denotes the number of backup systems in the respective infrastructure network. The 

information related to other variables and indices is given in the nomenclature section.   
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The cost analysis of the numerical experiment is carried out for three levels of 

urban density. To this end, three cost profiles are considered for low-, medium-, and 

high-density urban communities. The details of the cost profiles are given in Table 3.6. 

The unit costs for the profile of the low-, medium-, high- density urban infrastructure 

systems are not realistic values for the case study. They are assumed for 

demonstration purposes, assuming that denser urban systems are going to be costlier 

to recover. 

Table 3.6. The cost profiles of the low-, medium-, and high-density urban communities.   

Urban Community 

 Unit cost of the 

SoCIS-ALR metric 

𝑈𝐶𝑆𝑜𝐶𝐼𝑆 

Daily unit cost of the 

repair package 

𝑈𝐶𝑅𝑃 

Daily unit cost of the 

backup system 

𝑈𝐶𝐵𝑆 

Low-density USD 150,000 USD 30,000 USD 8,000 

Medium-density USD 400,000 USD 30,000 USD 8,000 

High-density USD 1,250,000 USD 30,000 USD 8,000 

       

The results of this numerical experiment discover three optimal quantities. These 

three quantities are as follows: 

1- Optimal portfolio for repair packages: the cost analysis of post-disruption 

recovery scenarios identifies the optimal repair package portfolio for minimizing the 

total cost of the community recovery. Consequently, the optimal portfolio 

determines the optimal availability level of repair packages in infrastructure 

systems for restoring the damaged components (e.g., the optimal number of repair 

teams).      

2- Optimal number of backup systems: in the case of deploying backup systems, 

the cost analysis of recovery scenarios specifies the optimal number of backup 

systems (e.g., mobile generators) that can be utilized to minimize the total recovery 

cost.   

3- Optimal total recovery cost: the value of this quantity is the minimum total cost 

for the full recovery of an urban community after an extreme event. The total 

recovery cost consists of the community disruption cost, restoration cost of 
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damaged infrastructure components (e.g., cost of providing repair packages), and 

implementation cost of CRESs (e.g., deploying backup systems). 

According to the results of the numerical experiment considering the cost profile of 

low-density urban communities (Fig. 3.22), the optimal recovery strategy is to deploy 

three truck-mounted mobile generators in the water network and simultaneously follow 

the repair package portfolio No.14. The optimal portfolio (i.e., No.14) states the optimal 

availability level of repair packages in all power, natural gas, and water networks is 

medium.  

 

Fig. 3.22. The optimal recovery strategy in case of applying the low-density urban 

community cost profile to the Shelby County case study. 

As shown in Fig. 3.23, performing the numerical experiment with the cost profile of 

medium-density urban communities indicates that the optimal strategy for the recovery 

of the Shelby County urban community is to employ two truck-mounted mobile 

generators and implement the repair package portfolio No.23, stating the optimal 

availability levels of repair packages in power, natural gas, and water networks are 

high, medium, and medium, respectively.  
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Fig. 3.23. The optimal recovery strategy in case of applying the medium-density urban 

community cost profile to the Shelby County case study. 

The numerical experiment results for a high-density urban community are 

illustrated in Fig. 3.24. The recovery strategy minimizing the total cost is to deploy six 

truck-mounted mobile generators for water facilities and pump stations and adopt 

portfolio No.24, indicating the optimal availability levels of repair packages in power, 

natural gas, and water networks are high, medium, and high, respectively. The 

summary of the numerical experiment results conducted for different urban density 

levels is given in Table 3.7.  
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Fig. 3.24. The optimal recovery strategy in case of applying the high-density urban 

community cost profile to the Shelby County case study. 

 

Table 3.7. The summary of the numerical experiment results conducted for low-, medium-, and 

high-density urban communities.   

Urban 

community 
Optimal portfolio 

Optimal No. of 

mobile generators 

Optimal total 

recovery cost 

(Minimum) 

Recovery 

duration (days) 

Low-density 14-PM,GM,WM 3 USD 3,305,510 12 

Medium-density 23-PH,GM,WM 2 USD 4,507,410 12 

High-density 24-PH,GM,WH 6 USD 7,840,160 11 
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The findings of this numerical experiment indicate that the density of urban 

communities can influence the selection of the optimal recovery strategy with the 

minimum total cost. Based on the experiment results, the high cost of disruption by 

extreme events in high-density urban communities economically justifies deploying a 

large number of R&M teams and implementing the CRES by using more backup 

systems to accelerate the post-disruption recovery of the urban community. A low-

density community like a rural area can follow a less-costly CRES and deploy fewer 

R&M teams and backup systems for recovery after the extreme event.     

 

3.6. Conclusion 

In this chapter, the application of the ResQ-IOS framework for modeling, 

optimizing, and quantifying the resilience of urban communities was discussed. After 

introducing the Shelby County case study, the seismic resilience of the urban 

community in the case study was assessed and analyzed. In the next step, 

implementing three pre-disruption, peri-disruption, and post-disruption CRESs was 

investigated, and the impacts of those CRE strategies in improving the urban disaster 

resilience of Shelby County were appraised. The parametric analysis of Shelby 

County’s resilience to seismic hazards was conducted to examine the role of six 

parameters in urban disaster resilience. In the final section of this chapter, a cost 

analysis was carried out for three levels of urban density to identify the optimal 

recovery strategy with minimum total cost. The next chapter will discuss the application 

of the ResQ-RDSS, the extension of the ResQ-IOS framework, for the resilience 

assessment of rural communities.  

 

 

 

 

 

 

 



116 
 

 

 

 

 

 

Chapter Four 
 

 

ResQ-RDSS: An Extension of the ResQ-IOS 

For Rural Community Resilience Assessment 
 

 

 

This chapter introduces the ResQ-RDSS, a Resilience Quantification-based 

Regional Decision Support System for formulating off-grid electrification 

strategies as Community Resilience Enhancement Strategies (CRESs) to 

enhance the availability and resilience of electricity access for rural 

communities. In this chapter, the structure of the ResQ-RDSS comprising four 

modules is described. To demonstrate the ResQ-RDSS's ability to help devise 

resilient regional electrification strategies, the rural settlements in Birjand 

County, Iran, exposed to earthquake and flood risks are selected as the case 

study. The material of this chapter is directly or indirectly based on the following 

paper: 

• Hamed Hafeznia and Božidar Stojadinović, “Resilience-based decision support 

system for installing standalone solar energy systems to improve disaster 

resilience of rural communities,” submitted to Energy Strategy Reviews.    
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4.1. Problem statement and motivation  

A considerable percentage of the world's population (about 754 million people in 

2021 [101]) suffers from the lack of access to electricity, known as energy poverty 

[102], [103]. Most of the affected people live in rural areas of emerging economies. 

Access to electricity has an essential role in the socioeconomic development of rural 

communities and can reduce poverty locally and nationally in developing countries 

[104], [105], [106], [107]. The efficacy and environmental footprint of the traditional 

energy provision methods often used by people living in distant rural areas for activities 

such as cooking, heating, and illumination of their houses are not satisfactory. The 

primary reason is fossil fuels: they cause environmental degradation and pollution, 

and their prices fluctuate unpredictably [108], [109].    

Electrifying rural communities is the principal policy adopted by many governments 

to provide a stable and reliable supply of electric energy to the people living in villages. 

Considering that resilience has a pivotal role in the future planning and development 

of Critical Infrastructure Systems (CISs), Resilient Rural Electrification (RRE) is 

imperative. There are two main rural electrification strategies: the first is to expand the 

power grid throughout the rural areas, and the second is to set up stand-alone power 

supply systems in the villages. In addition to the power grid’s stability problems, 

extending the power network to rural areas often confronts financial and technical 

constraints [110], [111]. Considering the high costs of the power grid’s extension to 

such distant areas, the second strategy, deploying stand-alone power systems, is 

often the better choice to speed up the rural electrification programs [112], [113], [114], 

[115]. However, utilizing fossil fuel-based stand-alone power systems may not be a 

resilient rural electrification strategy alternative: the operation of such autonomous 

power systems requires a secure and stable supply of fossil fuel, as well as continuous 

technical maintenance. These are subject to unpredictable price fluctuations, 

geopolitical tensions, natural hazards, technical issues related to the supply chain 

sector, as well as failures in the transmission network or road closure due to natural 

disasters such as extreme weather events and earthquakes. The most recent such 

examples (at the time of writing this doctoral dissertation) are the October 4, 2023, 

glacial lake outburst flood in Sikkim and West Bengal, India [116], and the October 7, 

11, and 15, 2023 earthquake sequence in Herat, Afghanistan [117]. In addition to the 
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lack of disaster resilience, fossil fuel stand-alone power systems pollute the often-

pristine rural environment. 

 Raising public awareness of climate change and natural disaster resilience issues 

gives Renewable Energy Sources (RESs) a significant role in acting as a sustainable 

Community Resilience Enhancement Strategy (CRES) in plans for rural energy supply 

in many countries. RES-based stand-alone electric power systems are an 

environmentally friendly option to mitigate the impact of Greenhouse Gas (GHG) 

emissions by the power generation sector. Renewable Energy (RE)-based 

autonomous power systems are more reliable and effective for electrifying regions with 

dispersed populations where providing fossil fuels is demanding [118], [119]. 

 Since considering resilience in rural electrification planning can bring about longer 

techno-economic viability of rural power supply projects, the motivation for the work 

done in this chapter is to specify a resilient electrification solution most suitable for 

each village: installing stand-alone systems or connecting to the power grid, whichever 

is more resilient over the planned use period. To this end, the disaster resilience of 

rural areas should be quantified in the first instance. Then, the implementation of 

different electrification strategies is evaluated as CRESs to appraise the improvement 

in the resilience of rural communities. Considering the capabilities of the ResQ-IOS 

framework demonstrated in Chapter 3 and based on the experiences from the 

parametric analysis of Shelby County’s urban disaster resilience, the ResQ-IOS 

framework, developed in Chapter 2, can be employed to quantify the resilience of rural 

communities against natural hazards and carry out the feasibility study of 

implementing CRESs. In other words, the purpose of this chapter is to develop a 

resilience-based framework as a regional decision support system to advise resilient 

electrification planning for improving electricity access in rural areas. This framework 

is designed based on the capabilities of the ResQ-IOS framework to conduct feasibility 

studies on implementing pre-disruption resilience enhancement strategies with an 

application to rural communities. Similar to the feasibility studies carried out by ResQ-

IOS for Shelby County’s urban community at the city level, the new framework aims to 

enhance robustness and rapidity indicators for rural communities against multi-

hazards. It can be concluded that the framework of this chapter is an extension of the 

ResQ-IOS framework with a broader scope of application to rural settlements at the 
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county level. Hence, both frameworks address the dissertation’s objectives that are as 

follows:  

- Integrate optimization into the simulation-based methodology of the resilience 

assessment framework to benefit from simultaneous resilience quantification 

and improvement.   

- Model and conduct the feasibility study of implementing Community Resilience 

Enhancement Strategies (CRESs). 

- Incorporate a multi-hazard resilience assessment framework into the regional 

development planning.  

 

4.2. State-of-the-art review 

The number of studies about stand-alone renewable energy systems indicates the 

high suitability of this type of power system for scattered rural communities. After a 

systematic review of the literature on RE-based stand-alone systems, the published 

research studies can be classified into three groups as follows: 

1- The first group of studies addressed the assessment of RESs for installing 

power systems in different countries. These studies evaluated the technical 

potential of utilizing RE-based power systems and, in case studies, produced 

maps showing the regions with higher suitability for installing such power 

systems. Principally, the research was carried out in Geographic Information 

System (GIS) environments, and in some cases, the Multi-Criteria Decision 

Making (MCDM) methods were used. This group of studies considered two 

types of RE-based power systems based on the connectivity to the power grid: 

stand-alone (off-grid) and utility-scale (on-grid). The representative papers in 

this group are [120], [121], [122], [123], [124], [125], [126], [127], [128], [129].  

2- The second group includes studies that investigated national energy policies 

worldwide, typically in regional case studies, to identify the barriers to achieving 

the goals of sustainable development programs. Considering socioeconomic, 

technical, and cultural conditions, these studies propose strategies to enhance 

the utilization of RE-based power systems. Papers [130], [131], [132], [133], 

[134], [135], [136], [137], [138] are classified in this group. 
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3- The third group comprises research studies focused on the techno-economic 

analysis and performance optimization of RE-based stand-alone power 

systems. The primary purpose of these studies is to find the optimal size of the 

components of RE-based power systems. Aspects of the employed objective 

functions include maximizing system reliability, minimizing total costs, and 

minimizing GHG emissions. Some of the papers in this group include [139], 

[140], [141], [142], [143], [144], [145], [146], [147], [148].   

Even though many studies investigated the deployment and use of hybrid RE-

based power systems from technical, socio-economical, and environmental 

standpoints, the implementation of stand-alone electrification projects has not been 

successful in a remarkable number of cases [149]. A systematic survey of the literature 

indicates that such implementations did not consider the resilience of the deployed 

RE-based power systems, a key part of the long-term planning of infrastructure 

systems. 

This chapter of the doctoral dissertation attempts to fill this implementation gap by 

presenting a Resilience Quantification-based Regional Decision Support System 

(ResQ-RDSS) for the electrification of rural communities. The ResQ-RDSS considers 

connecting to the power grid or installing off-grid Solar Energy (SE) power systems as 

the two main strategies for electrifying remote villages.  

 

4.3. Structure of the ResQ-RDSS  

The ResQ-RDSS consists of four modules, namely: Spatial Techno-Economic 

Assessment (STEA), Earthquake-induced Risk Assessment (ERA), Flood-induced 

Risk Assessment (FRA), and Decision Maker (DM). The task of the STEA, ERA, and 

FRA modules in the ResQ-RDSS is to classify the villages in a rural region into two 

sets with respect to two different electrification strategies, on-grid or off-grid. The ERA 

and FRA modules utilize ResQ-IOS to quantify the resilience of rural communities to 

natural hazards. The resilient electrification strategy for the first set of villages is 

installing stand-alone solar photovoltaic (PV) power systems, while connecting 

villages to the regional power grid is the better strategy for the second set. Each 

module carries out the village classification process according to its own criterion for 

selecting the resilient electrification strategy. As a result, these three modules generate 
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six different, possibly overlapping, sets of villages. The role of the DM module is to 

determine the electrification strategy for each village in the region with respect to the 

classification results produced by STEA, ERA, and FRA modules using set theory. In 

fact, the selected electrification strategy is the most suitable pre-disruption CRES to 

enhance the rural community’s resilience against earthquake and flood hazards. The 

workflow of the proposed ResQ-RDSS for improving the electricity access of rural 

communities is shown in Fig. 4.1. The modules of ResQ-RDSS are described next.  

 

Fig. 4.1. The workflow of the ResQ-RDSS.  
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4.3.1. Spatial Techno-Economic Assessment (STEA) 

Since the technical performance and economic viability of solar PV power systems 

are affected by geospatial factors, the STEA module aims to consider these factors 

and identify villages in rural areas suitable for installing stand-alone PV power systems 

by quantifying several geospatial suitability aspects. The purpose of the STEA module 

is to perform the techno-economic assessment of implementing two types of pre-

disruption CRESs in rural settlements, aiming to improve the robustness and 

redundancy indicators of rural power supply (connection to the regional grid or 

installing stand-alone solar PV systems). 

To create an accurate set of geospatial factors influencing the performance of 

stand-alone PV power systems, the literature on the site selection of solar power 

systems was surveyed. For this purpose, six criteria (i.e., geospatial factors) were 

selected to specify suitable villages for the deployment of autonomous solar power 

systems. The criteria considered for the spatial techno-economic assessment are 

examined next. 

 

4.3.1.1. Average Annual Temperature (AAT) 

Increased operating temperature of PV modules adversely affects the performance 

of photovoltaic power systems and results in lower power generation efficiency. 

Considering the Average Annual Temperature (AAT) as a criterion for evaluating the 

suitability of villages can enhance the performance efficiency of stand-alone PV 

systems and mitigate the investment risks of solar PV installation projects [150]. In the 

STEA module, villages with lower average annual temperatures are considered to be 

more suitable for installing solar PV systems. A decreasing linear fuzzy membership 

function is defined to rate the case study’s areas regarding the average annual 

temperature. A fuzzy value of one is considered for areas with AAT less than 20 

degrees Celsius. Areas with AAT above 25 degrees Celsius are given a fuzzy value of 

zero. The fuzzy value for other areas is linearly mapped between one and zero (Fig. 

4.2-A).        
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4.3.1.2. Solar Irradiance (SI) 

The amount of solar irradiance received by PV modules is an essential factor in 

the design process of photovoltaic power systems. This factor (i.e., received solar 

irradiance) can be influenced by parameters such as dust, humidity, cloudiness, sun 

angle, and geographical coordinates of the PV installation site [151], [152], [153]. 

Global Horizontal Irradiance (GHI) is the quantity applied to measure the solar 

irradiance for installing PV systems. GHI measures the total amount of shortwave 

radiation received from above by a horizontal surface on the ground [123]. Since the 

power generation of photovoltaic systems highly relies on the amount of received solar 

irradiance, it is more productive and reliable to set up stand-alone PV systems in rural 

areas with higher received GHI. To rate the rural areas regarding received GHI using 

a fuzzy logic-based method, an increasing linear membership function is defined, 

which starts at 4.9 kWh/m2/day [154] and flattens at 6 kWh/m2/day [123]. The areas 

with GHI values less than 4.9 and greater than 6 kWh/m2/day are assigned fuzzy 

values of zero and one, respectively. Other GHI values between 4.9 and 6 will linearly 

be transformed to a value between zero and one (Fig. 4.2-B).   

 

4.3.1.3. Accessibility to the Road Network (ARN) 

In general, the proximity of villages to the road network can accelerate the 

implementation of on-grid rural electrification programs due to the lower transportation 

cost of technical equipment and staff. Installing stand-alone solar PV power systems 

in villages situated in impassable locations with no or inadequate access to the 

regional road network is a more economical electrification strategy since expanding 

the power grid to such villages is costly and time-consuming. The STEA module 

considers the villages’ distance from the road network as a criterion for spatial 

planning: villages farther from a road are more suitable for using off-grid PV power 

systems. To this end, a sigmoid function is defined to assign the degree of fuzzy 

membership to villages. This function gives values greater than zero to villages whose 

distance from the road equals or exceeds 2 km. If the distance of the village from the 

nearest road is 15 km or more, it will be assigned the value of one [141] (Fig. 4.2-C). 
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4.3.1.4. Distance to Urban Areas (DUA) 

The proximity of villages to urban areas is another determining factor in rural 

electrification programs. Connection to the regional power grid is a more probable 

electrification strategy for villages near the urban areas. In fact, most cities in emerging 

economies have future development plans that include providing access to essential 

services such as electricity, clean water, and natural gas to near-by villages, while the 

remote villages are given lower priorities. In the STEA module, the villages that are 

more distant from urban areas are deemed more suitable for establishing stand-alone 

PV power systems. To perform the fuzzy evaluation of regions surrounding cities, an 

increasing sigmoid function is defined with a fuzzy value of zero for locations closer 

than 1 km from the boundary of the city and a fuzzy value of one for locations more 

than 25 km away [141] (Fig. 4.2-D). 

 

4.3.1.5. Slope of Installation Site (SIS) 

The slope of the PV system site is an economic factor considered by the STEA 

module. The total cost of establishing a solar power system highly depends on the 

slope of the installation site. A steep site increases the construction costs, including 

land levelling and installation costs of the solar system’s structures and equipment. 

Moreover, steep slopes are more prone to landslides. Flat and low-slope lands are, 

therefore, considered as desirable locations for installing PV power systems in the 

STEA module to reduce construction costs, secure the site of the solar PV system, 

and maintain the safety of its equipment against landslide hazards. Then, a linear 

function is used to evaluate the slope of the installation site such that the locations 

with a slope higher than 36.4%, entirely unsuitable for PV system installation, receive 

a fuzzy value of zero. Locations with a slope of up to 7% get a fuzzy value of one [141]. 

Others are linearly mapped to a value from one to zero (Fig. 4.2-E). 

 

4.3.1.6. Proximity to Power Transmission Lines (PPTL)  

Proximity to power transmission lines is another economic factor in rural 

communities' electrification planning. Installing stand-alone solar power systems in 

villages close to power transmission lines is not economically justified. Thus, installing 

stand-alone solar systems is the more economical strategy for supplying the power 
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demand of rural communities far away from the transmission network. The STEA 

module considers villages distant from power lines as more suitable locations for 

deploying off-grid solar PV systems. A sigmoid function is applied to evaluate the fuzzy 

membership degree of the villages with respect to this criterion. The villages located 

at a distance less than 800 m from the power transmission lines have a fuzzy value of 

zero, while 5 km or further from a power transmission line are given a value of one 

[141] (Fig. 4.2-F).  

 

Fig. 4.2. Fuzzy membership functions used for six geospatial factors of the STEA module.  

 

4.3.1.7. Implementing the STEA module 

The first step of implementing the STEA module is to prepare the required spatial 

data and digital maps of rural areas considered for evaluation using the ResQ-RDSS. 

The second step is to produce the rasterized maps by converting the vector layers of 

the maps into raster data layers. The third step is to generate the fuzzy data set for 
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each of the six criteria considered in the STEA module, resulting in six fuzzy data sets. 

To create the fuzzy sets, the fuzzy membership functions defined for each criterion of 

the STEA are evaluated in each pixel of the rasterized map of the region. The assigned 

fuzzy value indicates the membership degree (or fuzzy grade) of the pixel in the fuzzy 

set for the concerned criterion, with zero being the lowest and one the highest 

membership degree. The last step of the STEA is to combine the fuzzy sets for the six 

criteria using the Fuzzy Gamma Operator (FGO) comprising fuzzy product and sum 

operators as follows: 

𝜑𝑠𝑢𝑚 = 1 − (∏(1 − 𝜑𝑛)

6

𝑛=1

)                                                                                                   (𝐸. 101) 

𝜑𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∏ 𝜑𝑛

6

𝑛=1

                                                                                                                    (𝐸. 102) 

𝜑𝐹𝐺𝑂 =  (𝜑𝑠𝑢𝑚)𝜏 ×  (𝜑𝑝𝑟𝑜𝑑𝑢𝑐𝑡)1−𝜏                                                                                         (𝐸. 103) 

 

where 𝜑𝑛 is the pixel’s fuzzy grade (membership degree) in the fuzzy data set of the 

𝑛𝑡ℎ criterion. The constant parameter 𝜏 has a value between zero and one. A 𝜏 value 

closer to one results in a higher combined suitability level for utilizing stand-alone solar 

PV systems as the electrification strategy. In other words, increasing the constant 

parameter 𝜏 value leads to a less conservative, more lenient, spatial techno-economic 

assessment of villages. Ultimately, the STEA module classifies the considered villages 

into two groups with different electrification strategies based on a threshold level of 

their Combined Fuzzy Grade (CFG) (a value between 0 and 1) and the associated 

value of the constant parameter 𝜏. 

 

4.3.2. Earthquake-induced Risk Assessment (ERA) 

The occurrence of an earthquake may disrupt the well-functioning of human 

settlements by destroying structures and damaging the components of infrastructure 

systems. The purpose of the Earthquake-induced Risk Assessment (ERA) module is 

to evaluate the seismic resilience of the power transmission network. The ERA module 

considers a Hypothetical Power Transmission Network (HPTN) extended to all villages 
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in the case study; thus, all villages are assumed to be electrified by connecting to the 

regional power grid, i.e., no village is assumed to utilize an off-grid photovoltaic system 

for power supply.  

To implement the probabilistic resilience analysis of the hypothetical power network 

against the earthquake hazard, the ERA module defines a set of earthquake scenarios 

with a varying return period between 475 and 2475 years (i.e., the scenario earthquake 

has an intensity with a probability of exceedance between 10% and 2% in any 50-year 

period) and with epicenters on various earthquake faults pertinent to the case study 

region. The ERA module applies the Latin Hypercube Sampling (LHS) method to 

reduce the computational burden of the probabilistic HPTN resilience analysis. As the 

ResQ-IOS’s capabilities demonstrated in Chapters Two and Three, the ResQ-IOS 

[155] framework is utilized to model and evaluate the resilience of the regional HPTN 

in the selected earthquake scenarios. ResQ-IOS is a powerful and versatile 

computational tool for modeling, quantifying, and analyzing the resilience of 

interdependent critical infrastructure systems against natural disasters [155].  

The output of the ERA module is the classification of villages into two groups with 

respect to the HPTN resilience metric. The selected resilience metric considers the 

required time for restoring the power supply of villages that experience a lack of access 

to electricity after the earthquake and is consistent with the functional recovery metrics 

recommended by the NIST SP-1190 report [57]. This resilience metric is computed 

using ResQ-IOS as explained in Chapter 2 and also shown in Chapter 3, Section 3.2. 

Since the ERA module conducts the probabilistic assessment of the HPTN’s seismic 

resilience, classifying the villages considers the uncertainties in the resilience 

assessment process. Accordingly, if it takes 𝑁𝐸 days since the occurrence of the 

earthquake to restore the power supply to a village, and this situation (lack of electricity 

access for at least 𝑁𝐸 days) occurs in 𝐿𝐸 percentage of the total number of examined 

earthquake scenarios, then this village is classified to be suitable for electrification by 

installing off-grid solar PV systems. Otherwise, connection to the regional power grid 

is the resilient electrification strategy for that village. Parameters 𝑁𝐸 and 𝐿𝐸 are 

determined by the earthquake vulnerability of the rural areas, characteristics of the 

power grid, the economic and societal conditions of the region, and stakeholders’ 

priorities.  
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4.3.3. Flood-induced Risk Assessment (FRA) 

Flood is a type of natural hazard that frequently occurs in rural areas. Damage to 

power lines and potable water pipelines and the destruction of buildings and roads, 

such as bridge collapses, are examples of the floods’ aftermath. To mitigate the 

negative impacts of floods on human settlements, it is essential to improve the 

resilience of civil infrastructure systems against flood hazards. The task of the Flood-

induced Risk Assessment (FRA) module is to assess the resilience of the Hypothetical 

Power Transmission Network (HPTN) to floods. The HPTN in the FRA module is the 

same as in the ERA module.    

The FRA module creates a set of flood scenarios to carry out the probabilistic 

resilience analysis of the hypothetical transmission network against the flood. In each 

flood scenario, some watercourses are assumed to overflow and disconnect the power 

lines that intersect them. To reduce the computational cost of the probabilistic 

resilience analysis of the HPTN, the Latin Hypercube Sampling (LHS) method is used 

to define various flood scenarios. Modeling and resilience assessment of the 

hypothetical power transmission network to flood scenarios are conducted by the 

ResQ-IOS, developed in Chapter 2 [155].   

The FRA module aims to classify the villages into two groups. The resilience metric 

of the FRA module is the restoration time for the power supply of the villages suffering 

from the lack of electricity access after the flood. This resilience metric is similar to the 

ERA module’s metric. The details of the resilience metric are described in Chapter 2.  

Accordingly, if the power supply of a village has not been restored 𝑁𝐹 days after the 

flood occurrence, and this situation (lack of access to electricity for at least 𝑁𝐹 days) 

occurred in 𝐿𝐹 percentage of the examined flood scenarios, then establishing an off-

grid PV power system is the resilient strategy for electrifying this village. Otherwise, it 

is more resilient to electrify that village by connecting it to the power grid. Parameters 

𝑁𝐹 and 𝐿𝐹 are determined by the flood vulnerability of the rural areas, characteristics 

of the power grid, the economic and societal conditions of the region, and 

stakeholders’ priorities.   
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4.3.4. Decision Maker (DM) 

The aim of the Decision Maker (DM) module is to finalize the electrification strategy 

decision for each village in the region of interest, considering the classification results 

produced by the STEA, ERA, and FRA modules. To recapitulate, the STEA module 

assigns a suitable electrification strategy to each village based on its fuzzy value of 

the combined spatial techno-economic criteria. In other words, the STEA module 

specifies the most effective pre-disruption CRES for each village from technical and 

economic aspects. In contrast, the ERA and FRA modules, applying ResQ-IOS and 

using its capability for computing instantaneous and cumulative resilience metrics, 

classify the villages into two groups based on their earthquake and flood resilience, 

respectively, considering the statistics of the electric power restoration time for a 

village in the examined earthquake and flood scenarios.   

The output of the STEA, ERA, and FRA modules are three pairs of complementary 

sets of villages. These sets are typically different and may be overlapping because the 

classification in these modules is conducted independently. Hence, to choose the 

resilient electrification strategy for an individual village, set theory is applied to create 

a decision space containing all combinations of the classification decisions. Based on 

the union and intersection of sets, 17 possible decision sets exist for the final 

classification of the villages in the region of interest. The decision space of the DM 

module is shown in Fig. 4.3, with the convention that the STEA, ERA, and FRA sets 

contain the villages whose suitable and resilient electrification strategy is the off-grid 

installation of a solar PV system.  

Although the Decision Maker module can take various approaches for choosing 

the resilient electrification strategy, the most stringent approach is that a village is 

electrified by installing an off-grid solar PV system if it has been classified as suitable 

and resilient for such electrification by the STEA, ERA, and FRA modules 

simultaneously (i.e., it is in the intersection decision set 𝐷(𝑆𝑇𝐸𝐴 ∩ 𝐸𝑅𝐴 ∩ 𝐹𝑅𝐴) for the 

three-modules strategy in Fig. 4.3). In contrast, the most lenient decision is 𝐷(𝑆𝑇𝐸𝐴 ∪

𝐸𝑅𝐴 ∪ 𝐹𝑅𝐴) in Fig. 4.3, where a village is electrified using an off-grid solar PV system 

if it is classified as either suitable or resilient by any of the STEA, ERA or FRA modules.  
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Fig. 4.3. The decision space for the Decision Maker (DM) module. 

 

 

4.4. Case Study: Rural settlements in Birjand County 

The rural areas of Birjand County in South Khorasan Province, located in the east 

of Iran (Fig. 4.4), are selected to demonstrate the ResQ-RDSS in a case study. 

Notably, the epicenters of the October 2023 Herat sequence earthquakes are about 

300 km away, a reminder that Birjand County is in a high seismic hazard zone [156]. 

The residents of Birjand County’s villages are also exposed to flood hazards [157], 

[158].   
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Fig. 4.4. The Birjand County case study region (the 158 villages are marked with red 

points). 

The geographical position of Birjand County’s capital is 32.9 N and 59.2 E. Because 

of its cold arid climate, this county often has hot summers and cool winters. The total 

area of the county is about 4320 square kilometers. Birjand City, the capital of the 

county, is situated 1491 meters above sea level [123]. As Birjand County is located in 

the world’s Sun Belt [159], this county enjoys abundant sunshine. Its annual sunshine 

duration is estimated at around 3200 hours (8.8 hours per day) [123]. This makes solar 

power an efficient and reliable renewable energy source that can be harnessed for 

electricity supply in the county's rural areas. This case study considers 158 villages in 

Birjand County to exemplify how different ResQ-RDSS modules are used to evaluate 

and plan resilient rural electrification. The information about the case study data 

sources is provided in Table 4.1. For a better understanding of the ResQ-RDSS 

procedure, five villages, namely villages B1, B2, B3, B4, and B5, are selected for 

illustration (Fig. 4.5). 
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Table 4.1. The sources of the case study data used in this doctoral dissertation.  

Data set Scale (Resolution) Final projection of the data Source Reference 

Temperature --- UTM Zone 40N IRIMO [160] 

Solar irradiance GHI Solar Map © 2017 Solargis UTM Zone 40N Solargis [161] 

Slope GDEM - 30 m UTM Zone 40N USGS [162] 

Road network 1:25000 UTM Zone 40N INCC [163] 

Urban areas 1:25000 UTM Zone 40N INCC [163] 

Rural areas 1:25000 UTM Zone 40N INCC [163] 

Power lines 1:25000 UTM Zone 40N INCC [163] 

Faults 1:25000 UTM Zone 40N INCC [163] 

Floodways 1:25000 UTM Zone 40N INCC [163] 

 

 

 

Fig. 4.5. Five selected example villages in Birjand County. 
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4.5. Results analysis of implementing the ResQ-RDSS 

The purpose of developing the ResQ-RDSS is to enable resilient rural settlement 

electrification planning. To demonstrate this capability, the ResQ-RDSS is utilized to 

determine the resilient electrification strategy for each village in Birjand County. The 

STEA module spatially evaluates the techno-economic suitability of villages for 

installing off-grid solar PV systems. To this end, the spatial data of the case study is 

prepared, and then the rasterized maps are produced. In the next step, the fuzzy data 

set for each STEA module criterion is generated by using the respective fuzzy 

membership function. The output of the STEA module is the combined fuzzy data set 

created by the Fuzzy Gamma Operator, integrating the six fuzzy data sets of the 

STEA’s criteria. To better understand the results of the STEA module, the combined 

fuzzy data set is displayed as a map, which is called the suitability map.    

The suitability map for implementing the CRES, that is, the deployment of solar 

power systems, resulting from the spatial techno-economic assessment of the rural 

settlements in Birjand County, is shown in Fig. 4.6. This suitability map displays the 

villages that are desirable sites for establishing off-grid solar PV systems based on 

classification results by the STEA module. The villages identified as suitable locations 

for deploying stand-alone solar systems are marked with yellow points. In this map, 

villages have been classified according to their Combined Fuzzy Grade (CFG), 

computed by combining six fuzzy datasets using the Fuzzy Gamma Operator (FGO) 

with a constant parameter 𝜏 value of 0.8. The villages whose combined fuzzy grades 

are higher than 0.4 are classified to be electrified by installing off-grid solar PV 

systems. In contrast, connecting to the regional power grid is the resilient electrification 

strategy for villages with a combined fuzzy grade equal to or less than 0.4. These 

villages are marked with grey points on the suitability map (Fig. 4.6).  

The classification by the STEA identifies 38 villages (out of 158) as suitable for 

installing off-grid solar PV systems to supply rural electrical demands. The combined 

fuzzy grade for these villages is larger than 0.4 (CFG > 0.4), indicating good 

geolocation suitability as well as technical and economic performance. If the constant 

parameter 𝜏 value is set to 0.6, a smaller number of villages would be classified as 

suitable for installing off-grid solar PV systems, leading to stricter decision-making. 

Among the five sample villages, solar PV systems installed in villages B1, B3, and B5 
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would have higher technical efficiency than those installed in villages B2 and B4. 

Higher efficiency in generating electricity from the received solar irradiance, long 

distances to power transmission lines, and inadequate access to the regional road 

network are the common characteristics of the villages B1, B3, and B5.  

 

 

Fig. 4.6. Villages marked with yellow points are identified as suitable locations for 

installing off-grid Photovoltaic (PV) systems based on the classification results 

conducted by the Spatial Techno-Economic Assessment (STEA) module. 

The second module of the ResQ-RDSS is the Earthquake-induced Risk 

Assessment (ERA). This module carries out the probabilistic seismic resilience 

analysis of the Hypothetical Power Transmission Network (HPTN), which is assumed 

to be extended to all 158 case study villages. In other words, the ERA module 

considers the scenario in which the case study villages are connected to the power 

grid, and no stand-alone PV system is deployed for power supply in the rural 
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settlements. To conduct the probabilistic seismic resilience of HPTN, the ERA module 

simulates 50 earthquake scenarios with a magnitude varying between 6 and 9, roughly 

corresponding to 475- and 2475-year return periods. The epicenters of earthquake 

scenarios are either within the territory of Birjand County or close to the county’s 

borders. The procedure of simulating earthquake scenarios defined in the ERA module 

is the same procedure used by ResQ-IOS for quantifying the seismic resilience of the 

Shelby County case study in different sections of Chapter 3.    

The analysis of the results of the ERA’s probabilistic seismic resilience assessment 

considering 50 earthquake scenarios, such as the mean, standard deviation, and 

maximum number of villages that experience the lack of access to electricity for 

different time intervals after the earthquake occurrence, is given in Table 4.2. These 

results were obtained using ResQ-IOS [155].  

Table 4.2. The results of the probabilistic seismic resilience assessment of the rural 

settlements in Birjand County (based on 50 earthquake scenarios).   

Time interval after the 

earthquake occurrence 

Number of villages experiencing the lack of electricity access 

Mean Standard deviation Max 

1 day 85.50 56.41 157 

15 days 49.54 52.44 151 

30 days 32.54 43.78 143 

45 days 21.76 35.22 130 

60 days 16.20 30.47 115 

75 days 10.90 23.97 102 

90 days 5.64 17.49 81 

120 days 2.08 10.55 65 

 

The ERA’s resilience-based threshold for classifying the case study villages as 

suitable for off-grid electrification using solar PV systems is that if the power supply of 

the village is not restored after 45 days since the earthquake occurrence, and this 

situation (i.e., lack of access to electricity for 45 days) occurs in more than 20 percent 

of the simulated earthquake scenarios (i.e., 𝑁𝐸 = 45 days and 𝐿𝐸 = 20%). Using this 

threshold, the ERA module identifies 53 villages in Birjand County (out of 158) where 

an off-grid solar PV system is the resilient electrification strategy with respect to 
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earthquake hazard. These villages are shown in Fig. 4.7 with red points. These villages 

are often the last villages whose power supply is restored after the earthquake 

occurrence. The ERA module classified villages B2, B3, and B5 into the off-grid 

electrification strategy set. Villages B1 and B4 were categorized for connecting to the 

power grid.  

The number of villages identified by the ERA module to deploy off-grid solar PV 

systems for different values of 𝑁𝐸 and 𝐿𝐸 thresholds is given in Table 4.3. Setting 

higher 𝑁𝐸 thresholds means that longer electric power restoration times are 

acceptable. Similarly, a higher 𝐿𝐸 threshold means that more villages in the region will 

be without power. Combined high 𝑁𝐸 and 𝐿𝐸 thresholds indicate that a regional HPTN 

is not seismically resilient, as a large number of villages will be without electric power 

for a long time: if such a situation is acceptable, then no off-grid electrification strategy 

will be deemed as justified. The opposite, a highly seismically resilient electric power 

supply in the region, would require that practically all (146 out of 158) villages be 

electrified using off-grid solar PV systems. A practical decision for implementing the 

CRES of deploying off-grid solar PV systems is somewhere in between these two 

extremes. The ResQ-RDSS enables considering a variety of such practical options.  

Table 4.3. The number of villages identified by the ERA module for utilizing off-grid solar 

PV systems as the seismically more resilient electrification strategy.  

Number of villages 
𝑁𝐸 (days) 

15 30 45 60 

𝐿𝐸 (%) 

10 146 117 95 75 

20 130 78 53 6 

30 95 32 1 0 

40 31 0 0 0 
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Fig. 4.7. Villages marked with red points are identified as suitable locations for installing 

off-grid Photovoltaic (PV) systems based on the classification results conducted by the 

Earthquake-induced Risk Assessment (ERA) module. 

Flood-induced Risk Assessment (FRA) is the third module of the ResQ-RDSS. The 

FRA module implements the probabilistic resilience analysis of the HPTN against flood 

hazards in a manner similar to the ERA module, also using ResQ-IOS [155]. Since 

floods are usually pluvial in the case study (i.e., caused by localized intensive rainfall), 

each flood scenario randomly considers the overflow in a number of the case study 

watercourses and then simulates disconnects of the power lines intersecting these 

watercourses. Considering flood return periods (e.g., 100 or 500 years) can lead to a 

more accurate risk assessment. The analysis of the results of the FRA’s probabilistic 

resilience assessment considering 50 flood scenarios is given in Table 4.4. 
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Table 4.4. The results of the probabilistic resilience assessment of rural settlements in the 

case study against 50 flood scenarios.   

Time interval after the 

flood occurrence 

Number of villages experiencing the lack of electricity access 

Mean Standard deviation Max 

1 day 108.52 34.92 139 

15 days 52.78 35.38 96 

30 days 20.58 26.20 68 

45 days 3.30 8.99 31 

60 days 0 0 0 

 

The FRA module classifies a village into the off-grid PV power systems set if the 

power supply of the village is not restored after 30 days since the flood occurrence 

and the situation of lack of electricity access (for 30 days) occurs in more than 20 

percent of the simulated flood scenarios (i.e., 𝑁𝐹 = 30 days and 𝐿𝐹 = 20%). The FRA 

module identifies 55 villages in Birjand County (out of 158) that will be more flood-

resilient if an off-grid PV power system is installed. These villages are marked with 

blue points in Fig. 4.8. Based on the FRA module’s results, villages B2 and B5 would 

be more flood-resilient if off-grid solar PV systems are installed, while connecting to 

the regional power grid is a more flood-resilient strategy for villages B1, B3, and B4. 
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Fig. 4.8. Villages marked with blue points are identified as suitable locations for installing 

off-grid Photovoltaic (PV) systems based on the classification results conducted by the 

Flood-induced Risk Assessment (FRA) module. 

 

The number of villages identified by the FRA module to utilize off-grid solar PV 

systems for different values of 𝑁𝐹 and 𝐿𝐹 is given in Table 4.5. As in the seismic 

resilience case, high 𝑁𝐹 and 𝐿𝐹 values indicate a region that is not very resilient to 

floods. Improving flood resilience by installing off-grid solar PV systems is possible. 

The range of practical, economic, and societally acceptable solutions is uncovered by 

ResQ-RDSS and shown in Table 4.5.  
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Table 4.5. The number of villages identified by the FRA module for deploying off-grid solar 

PV systems as the more resilient electrification strategy with respect to the flood hazard. 

Number of villages 
𝑁𝐹 (days) 

15 30 45 

𝐿𝐹 (%) 

10 94 67 10 

20 93 55 0 

30 84 22 0 

40 81 4 0 

 

As shown in Figures 4.5, 4.6, and 4.7, different sets of villages have been identified 

by the STEA, ERA, and FRA modules. Hence, it is possible that a village is classified 

into different electrification strategy sets by different ResQ-RDSS modules. For 

instance, the ERA and FRA modules classified village B2 into the set with the off-grid 

electrification strategy, whereas the STEA module selected village B2 for on-grid 

electrification because this village has a low combined fuzzy grade (CFG) with respect 

to the six STEA module criteria. Another example is village B3, where the STEA and 

ERA modules recommended using off-grid solar systems in that village. However, the 

FRA module suggested connecting to the power grid would be a more resilient strategy 

for village B3.     

The role of the Decision Maker (DM) module is to resolve the probable 

disagreement between the results of three ResQ-RDSS modules. The DM module 

aims to finalize the resilient electrification strategy, the pre-disruption CRES, for the 

case study villages by combining the classification results carried out by three ResQ-

RDSS modules. As stated earlier, the DM module constructs the entire decision space 

by firming all possible unions and intersections of the STEA, ERA, and FRA village 

sets. The results of different decisions made by the DM module for finalizing the 

resilient electrification strategy (CRES) are given in Table 4.6.  
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Table 4.6. The results of different decisions made by the DM module for finalizing the 

resilient electrification strategy for CFG = 0.4, 𝜏 = 0.8,  𝑁𝐸 = 45 days, 𝐿𝐸 = 20%, 𝑁𝐹 = 30 

days, and 𝐿𝐹 = 20%. 

Decision [D] 

Number of the case study villages with 

Off-grid solar PV 

electrification 
On-grid electrification 

1 
𝐷[𝑆𝑇𝐸𝐴 ∩ 𝐸𝑅𝐴 ∩ 𝐹𝑅𝐴] 

(Most stringent) 
21 137 

2 𝐷[𝑆𝑇𝐸𝐴] 38 120 

3 𝐷[𝐸𝑅𝐴] 53 105 

4 𝐷[𝐹𝑅𝐴] 55 103 

5 𝐷[𝑆𝑇𝐸𝐴 ∩ 𝐸𝑅𝐴] 24 134 

6 𝐷[𝑆𝑇𝐸𝐴 ∩ 𝐹𝑅𝐴] 21 137 

7 𝐷[𝐸𝑅𝐴 ∩ 𝐹𝑅𝐴] 46 112 

8 𝐷[𝑆𝑇𝐸𝐴 ∪ 𝐸𝑅𝐴] 67 91 

9 𝐷[𝑆𝑇𝐸𝐴 ∪ 𝐹𝑅𝐴] 72 86 

10 𝐷[𝐸𝑅𝐴 ∪ 𝐹𝑅𝐴] 62 96 

11 𝐷[𝑆𝑇𝐸𝐴 ∩ (𝐸𝑅𝐴 ∪ 𝐹𝑅𝐴)] 24 134 

12 𝐷[𝐸𝑅𝐴 ∩ (𝑆𝑇𝐸𝐴 ∪ 𝐹𝑅𝐴)] 49 109 

13 𝐷[𝐹𝑅𝐴 ∩ (𝑆𝑇𝐸𝐴 ∪ 𝐸𝑅𝐴)] 46 112 

14 𝐷[𝑆𝑇𝐸𝐴 ∪ (𝐸𝑅𝐴 ∩ 𝐹𝑅𝐴)] 63 95 

15 𝐷[𝐸𝑅𝐴 ∪ (𝑆𝑇𝐸𝐴 ∩ 𝐹𝑅𝐴)] 53 105 

16 𝐷[𝐹𝑅𝐴 ∪ (𝑆𝑇𝐸𝐴 ∩ 𝐸𝑅𝐴)] 58 100 

17 
𝐷[𝑆𝑇𝐸𝐴 ∪ 𝐸𝑅𝐴 ∪ 𝐹𝑅𝐴] 

(Most lenient) 
76 82 
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The STEA module appraised the techno-economic suitability level of the case 

study villages for installing stand-alone PV systems. The STEA module identified 

about 24% of the villages as desirable sites for establishing off-grid solar PV systems. 

The results of the ERA and FRA modules suggest deploying off-grid power systems is 

the resilient electrification strategy for about 34% of the case study villages. However, 

the ERA and FRA modules rendered different geographical distributions of suitable 

villages for utilizing the off-grid power systems. The remaining case study villages 

(66%) would have a more resilient power supply if connected to the regional power 

grid.  

Various approaches can be taken to finalize each village's resilient electrification 

strategy in the case study based on the classification results of the STEA, ERA, and 

FRA modules. The most stringent (i.e., most conservative) approach that can be 

pursued to select a village as suitable for installing off-grid solar PV systems is that 

none of the STEA, ERA, and FRA modules has recommended the strategy of 

connecting to the regional power grid for that village. In other words, all three ResQ-

RDSS modules have classified 21 villages into the group with the off-grid electrification 

strategy. Following this approach, ResQ-RDSS identifies these 21 villages (13.3%) in 

Birjand County for deploying off-grid solar PV systems. The identified case study 

villages (21 out of 158) marked with green points are displayed in Fig. 4.9.  

In contrast, the most lenient approach that can be followed to identify a village as 

desirable for off-grid PV systems is that at least one of the STEA, ERA, and FRA 

modules has recommended the off-grid electrification strategy for that village. Applying 

the least conservative (i.e., most lenient) approach identifies 76 villages (48.1%) in 

Birjand County as suitable for off-grid solar PV systems.  

The DM module of ResQ-RDSS provides 17 possible decisions for improving the 

disaster resilience of rural communities in Birjand County by either connecting them 

to a regional power grid or electrifying them using off-grid solar PV systems. Each 

possible decision in Table 4.6 specifies a particular set of desirable villages for utilizing 

off-grid solar energy systems to improve the resilience of rural settlements against 

multi-hazard risks. Local governments can make the final decision for implementing 

the resilient electrification strategy by considering many criteria such as the local 

conditions of rural areas, characteristics of the regional power grid, policymakers’ 
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opinions, future development plans of the region of interest, budget constraints, 

stakeholders’ interests, regional hazard risk assessments reports, etc.  

In the DM module’s decision space, the most stringent and the most lenient 

approaches (decisions No.1 and 17, respectively) are the marginal decisions in that 

decision space. To illustrate that the ResQ-RDSS can improve the multi-hazard 

resilience of rural settlements, the resilience of rural power supply is quantified against 

an earthquake with a magnitude of Mw = 7.2 for four cases. In the first case, it is 

assumed that all villages in Birjand County are connected to the power grid, and no 

village is equipped with an off-grid solar system (the HPTN case). The second and 

third cases consider that villages in Birjand County are electrified using off-grid solar 

PV systems according to the ResQ-RDSS decisions No. 1 and No. 17, respectively. 

 

Fig. 4.9. Villages marked with green points are identified as suitable locations for installing 

off-grid Photovoltaic (PV) systems based on the most stringent combination of 

classification results conducted by the STEA, ERA, and FRA modules. 
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The metric for assessing the rural power supply resilience is the ratio of the 

consumption to the demand for electric power in the rural settlements of the case study 

tracked over time from the occurrence of the disaster to the end of the recovery 

process. More information on this metric for the resilience assessment of infrastructure 

systems can be found in Chapter 2 and in [155]. The results of ResQ-IOS [155] 

resilience quantification for rural power supply in Birjand County are depicted in Fig. 

4.10. This figure indicates the evolution of rural power supply after an earthquake 

scenario for different CRES implementations to illustrate how various CRESs improve 

the rural communities’ resilience indicators described in Sections 1.4.6 and 3.3.        

       

Fig. 4.10. The seismic resilience assessment of the case study rural power supply after 

an earthquake with Mw =7.2 for four cases. 

The most lenient approach (decision No. 17, with 76 villages equipped with 

standalone PV systems) is the most costly decision for enhancing the resilience of 

rural power supply in Birjand County. However, taking this most lenient approach leads 

to the maximum improvement of multi-hazard resilience of Birjand County, as shown 

in Fig. 4.10. On the contrary, the most stringent approach (decision No. 1, with 21 

villages equipped with standalone PV systems) requires the lowest budget for 

implementing resilient rural electrification. As expected, following this most stringent 

approach results in the minimum improvement of disaster resilience in the rural 

districts of the case study. The recovery durations for the two extreme approaches are 

56 and 71 days. Notably, opting to connect all villages to the power grid (no off-grid 
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solar PV systems installed) leads to the least resilient solution (Fig. 4.10). Thus, even 

the most stringent and the least costly deployment of off-grid solar PV systems 

improves the electric power system resilience in Birjand County.  

To demonstrate that the ResQ-RDSS can be used to find an optimal resilient 

electrification strategy for rural communities, the seismic resilience of rural power 

supply for the third and fourth cases is evaluated considering the Mw = 7.2 scenario. 

The third case follows the most lenient approach suggested by the ResQ-RDSS. This 

case assumes that 76 villages selected earlier by the DM module’s decision No.17 are 

equipped with off-grid solar PV systems. In the fourth case, 76 villages are selected 

randomly to be equipped with off-grid solar PV systems. To minimize bias, ten 

realizations of the 76-village set are created, and an average of ten ResQ-IOS 

resilience quantifications is computed. As indicated in Fig. 4.10, the ResQ-RDSS’s 

most lenient approach made it possible to enhance the rural power supply resilience 

more than the random scenario did. Notably, both selections are better than the on-

grid scenario, in which no village is equipped with standalone PV systems.  

 

4.6. Conclusion  

After describing the problem statement and motivation for improving electricity 

access in rural areas, a systematic review of the literature on rural electrification was 

conducted. The identified research gap was the lack of resilience in electrification 

planning. To this end, ResQ-RDSS, a resilience-based regional decision support 

system, was introduced for resilient rural electrification. 

The ResQ-RDSS was developed based on the capabilities of the ResQ-IOS 

framework demonstrated in Chapter 3 by conducting the resilience analysis of Shelby 

County. The experiences from the parametric analysis of seismic urban resilience of 

Shelby County and, subsequently, the feasibility study of implementing various CRESs 

to improve the resilience of Shelby County to earthquake hazards in Chapter 3 

illuminated the necessity of developing a decision support system to select the most 

effective CRES among many options for implementation. 

The structure of ResQ-RDSS is composed of four modules: Spatial Techno-

Economic Assessment (STEA), Earthquake-induced Risk Assessment (ERA), Flood-
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induced Risk Assessment (FRA), and Decision Maker (DM). The ResQ-RDSS can 

specify the resilient electrification strategy as a pre-disruption CRES for each village 

in rural areas. The ResQ-RDSS framework advises each village to either install stand-

alone solar PV systems or connect to the power network to improve the disaster 

resilience of rural communities. The ResQ-RDSS achieved the objectives of this 

doctoral dissertation by incorporating multi-hazard resilience assessment into regional 

development planning. The rural settlements of Birjand County were selected as the 

case study to demonstrate the ResQ-RDSS’s capability of devising resilient 

electrification strategies for rural areas.    
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system for installing standalone solar energy systems to improve disaster 
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5.1. Conclusions 

Interdependent and complex relations between critical infrastructure systems, 

along with inevitable exposure to disruptive events, have increased the risk of 

cascading failures, resulting in a prolonged lack of service delivery in urban 

communities. The resilience analysis of interdependent critical infrastructure systems 

can be an efficient and practicable solution to mitigate the adverse impacts of extreme 

events on urban communities. For this purpose, this doctoral dissertation presented 

the ResQ-IOS framework, an Iterative Optimization-based Simulation (IOS) 

framework to analyze the resilience of interdependent CISs against natural hazards. 

This framework consists of five modules: Risk Assessment, Simulation, Database, 

Optimization, and Controller. Those five modules work together to model and simulate 

critical infrastructure systems and their interdependencies, optimize the post-

disruption performance of interdependent CISs during the recovery process, quantify 

individually the resilience of infrastructure systems, and jointly assess the disaster 

resilience of the urban community.  

Conducting the resilience analysis of the Shelby County case study demonstrated 

the capabilities of the ResQ-IOS framework to allow for real-world conditions of 

infrastructure components in quantifying the disaster resilience of interdependent 

CISs. Based on the results from the resilience assessment of the Shelby County case 

study, the time required for the full recovery of an urban community depends on how 

fast the functioning of interdependent CISs evolves. Due to interdependencies 

between the infrastructure systems, the urban community recovery may be 

conditioned on the performance evolution of one infrastructure system. For instance, 

the recovery rate of damaged components in the power network controls the recovery 

duration of the Shelby County case study.  

Utilizing the ResQ-IOS framework enables stakeholders to conduct the feasibility 

study of implementing Community Resilience Enhancement Strategies (CRESs) for 

urban and rural communities. This doctoral dissertation investigated the impacts of 

implementing three strategies to improve the urban community’s resilience evaluation 

indicators. The pre-disruption CRES considers the enhancement of redundancy and 

robustness indicators of the urban community, the post-disruption CRES aims to 

improve the rapidity and resourcefulness, and the peri-disruption CRES mitigates the 
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adverse effects of interdependencies during the urban community’s recovery. This 

capability of the ResQ-IOS framework assists policymakers, local governments, urban 

planners, and infrastructure managers in efficiently implementing the resilience 

enhancement strategy, for instance, by determining the optimal schedule and locations 

for deploying truck-mounted mobile generators in the water network. For instance, the 

case study results indicated that among the Shelby County interdependent CISs, 

implementing the strategy of increasing the infrastructure networks’ supply capacity 

for the water network has the best resilience improvement. This finding was not evident 

since the recovery of the Shelby County urban community is controlled by the power 

network.  

Performing the parametric analysis of urban disaster resilience using ResQ-IOS 

provides stakeholders with an insight into the parameters influencing the recovery of 

urban communities. This doctoral dissertation explored the impacts of six parameters 

on the urban resilience of the case study to extreme events, such as the number and 

configuration of R&M teams, the restoration sequence of damaged components, 

housing recovery models, earthquake magnitude, and earthquake epicenter location. 

For example, the parametric analysis of the number of available R&M teams 

suggested that in case of a constraint on the budget, the local government can 

remarkably shorten the recovery duration of the urban community in the case study by 

allocating the greater part of the budget for employing a larger number of R&M teams 

in the power network. The parametric analysis of earthquake epicenters revealed that 

some areas of the Shelby County case study are more vulnerable to seismic hazards, 

like the south and southwest parts of the case study. In light of this finding, the local 

government and infrastructure managers can prioritize the urban areas that are less 

resilient to disruptions over other parts of the case study for the implementation of 

CRESs, such as pre-disruption retrofitting important components in the infrastructure 

networks, increasing redundancy, and improving the robustness of infrastructure 

components, or peri-disruption optimal dispatch and structure of repair crews, or post-

disruption planning of the recovery process.  

In addition to optimizing the service dispatching during the post-disaster recovery 

of the community to minimize the interdependent CISs’ joint accumulated loss of 

resilience, the ResQ-IOS framework can be utilized to identify the optimal recovery 

strategy with the minimum total recovery cost. Accordingly, ResQ-IOS determines the 
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optimal number of backup systems and the optimal portfolio for the availability levels 

of repair teams and resources in each infrastructure network. Since the SoCIS 

resilience metric of the ResQ-IOS framework is normalized and unitless, it would be 

possible to apply economic models to the resilience assessment results carried out by 

ResQ-IOS. As an example, this doctoral dissertation investigated the effect of the 

urban density parameter on the optimal recovery strategy by considering three cost 

profiles for low-, medium-, and high-density urban communities. The capabilities of the 

ResQ-IOS framework reflect the contributions of this doctoral dissertation mentioned 

earlier in Chapter 1. The ResQ-IOS framework is developed to be compatible with 

various types of case studies, from high-density cities like Singapore, New York, 

Tehran, and Tokyo to medium-density cities like Zurich, Geneva, and Basel in 

Switzerland and low-density regions like the Birjand County of Iran.  

People who live in rural settlements and have no access to electricity constitute a 

considerable percentage of the world's population. Considering the importance of 

access to electricity for the socioeconomic development of rural communities, many 

research studies have been conducted to investigate the feasibility of electrifying rural 

areas by utilizing renewable energy-based stand-alone power systems. The 

systematic review of respective research studies indicated that although those studies 

have considered the social, techno-economic, and environmental aspects of 

renewable energy-based rural electrification, the resilience concept has rarely been 

considered as an essential factor in the long-term planning and development of rural 

electrification. That was the strong motivation for developing ResQ-RDSS, the 

extension of the ResQ-IOS framework, to incorporate the resilience concept and 

enable resilience enhancement by deploying off-grid solar power systems (as a pre-

disruption CRES) in the strategic planning of rural electrification. The objective of the 

ResQ-RDSS framework in this doctoral dissertation is to devise resilient electrification 

strategies to improve electricity access in rural communities.     

The ResQ-RDSS is a Resilience Quantification-based Regional Decision Support 

System. The structure of ResQ-RDSS comprises four modules: Spatial Techno-

Economic Assessment (STEA), Earthquake-induced Risk Assessment (ERA), Flood-

induced Risk Assessment (FRA), and Decision Maker (DM). The task of the STEA, 

ERA, and FRA modules is to classify the villages in the region of interest into two sets 

based on their specific classification methods and thresholds. The STEA module aims 
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to investigate the suitability of implementing two types of pre-disruption CRESs (on-

grid and off-grid electrification) in rural areas by performing a techno-economic 

assessment. The ERA and FRA modules employ ResQ-IOS to quantify the resilience 

of rural power supply against earthquake and flood hazards, respectively. Due to 

probable discrepancy between the classification results, the role of the DM module is 

to create the entire decision space by applying set theory to the classification results 

carried out by the STEA, ERA, and FRA modules. The DM module contains 17 

possible decisions for selecting the electrification strategy. The decision-maker can 

use MCDM techniques to opt for the resilient electrification strategy for 

implementation. The final decision, made based on the ResQ-RDSS results, classifies 

the villages in the region of interest into two sets, one for connection to the regional 

power network (on-grid) and the other for installing solar PV systems (off-grid).     

Although the ResQ-RDSS framework is developed to devise strategies for resilient 

rural electrification with the purpose of enhancing electricity access, this framework 

can also be employed to improve the resilience of the rural power network against 

disruptive events. For instance, if all rural settlements in the case study region are 

currently connected to the power network, the ERA and FRA modules can be 

implemented to determine which areas in the current rural power network are less 

resilient to seismic and flood hazards. Accordingly, power infrastructure managers can 

adopt resilience enhancement strategies for implementation in the villages that are 

more vulnerable to earthquakes and floods. Also, the STEA module of the ResQ-

RDSS can be applied to specify the villages that are more desirable locations for 

installing solar PV systems in terms of higher techno-economic viability and lower 

investment risks.     

 The workflow of the ResQ-RDSS can be utilized by stakeholders, such as local 

governments, infrastructure managers, hazard risk management agencies, etc., for 

devising resilient rural electrification strategies in developing countries around the 

world like Cambodia, Laos, India, Afghanistan, countries in Africa, and countries with 

numerous islands like Indonesia, Philippines, etc. as well as for improving the multi-

hazard resilience of rural power networks in developed countries. 

There are two recommendations to plan resilient rural electrification precisely and 

successfully implement strategies. First, it is imperative to have accurate and detailed 
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data regarding the local conditions of rural settlements, technical characteristics of the 

rural power network, development plans of rural districts, etc. In this doctoral 

dissertation, the need for such data concerning the case study was challenging for 

implementing the ResQ-RDSS framework. Second, the ResQ-RDSS framework can 

be combined with MCDM methods and project economic analysis models to build an 

all-in-one tool for evaluating the resilience of rural communities to multi-hazard 

scenarios. 

The ResQ-RDSS is built on the capabilities of the ResQ-IOS framework 

(methodology and code). The experiences from the parametric analysis of seismic 

urban resilience of Shelby County and, subsequently, the feasibility study of 

implementing various CRESs to enhance the resilience of Shelby County to 

earthquake hazards illuminated the necessity of developing a decision support system 

to select the most effective pre-disruption, peri-disruption or post-disruption CRES 

among many options for implementation. The resulting tools, ResQ-IOS and ResQ-

RDSS, are versatile, and their capabilities are demonstrated in very different case 

studies, from prosperous, advanced, and dense urban communities to less developed 

and sparse rural communities.    

 

5.2. Potential extensions of the present research 

This doctoral dissertation developed the ResQ-IOS framework to function as a 

robust and versatile tool for modeling, quantifying, optimizing, and analyzing the 

disaster resilience of urban communities by considering interdependencies between 

critical urban infrastructure systems. Since critical infrastructure systems act as the 

backbone of urban communities and resilience has a fundamental role in planning for 

the future development of infrastructure systems, the ResQ-IOS computational tool 

can be utilized for the resilience-oriented planning of developments in urban areas. 

Investigating the impacts of implementing different Community Resilience 

Enhancement Strategies (CRESs) on improving the resilience of urban and rural 

communities suggests that ResQ-IOS can be utilized to conceptualize, plan, and 

implement resilience enhancement actions in communities. Hence, ResQ-IOS can be 

incorporated into urban planning procedures to evaluate the disaster resilience of 

urban regions for various future development plans. Accordingly, the resilience 
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assessment results of different urban development plans can serve as a decision-

making criterion for selecting the resilient-oriented development plan for the urban 

community. The application of the ResQ-IOS framework can be extended to social and 

financial resilience assessments. The economic and social models can be integrated 

into the ResQ-IOS framework to fill the gap between technical and social resilience 

models. Establishing relations between these two fields of resilience can provide more 

precise forecasting of service demand evolution during the housing recovery and 

population movements in urban areas. Optimizing the restoration sequence of failed 

components to achieve a shorter recovery duration can be an interesting topic for the 

future extension of the ResQ-IOS framework.             

The current version of the ResQ-RDSS framework developed in this doctoral 

dissertation considers earthquake and flood hazards for the risk assessment of rural 

areas. The extension of the ResQ-RDSS framework can be developed to include other 

types of natural hazards like landslides, windstorms, typhoons, etc. In addition to solar 

PV systems as an off-grid power supply option for rural electrification, the procedure 

of the STEA module for desirability-based site selection can be extended for other 

renewable energy-based power supply systems, such as mini hydroelectric 

generators, wind turbines, and biomass installations. The ResQ-RDSS framework has 

been developed with a focus on the power infrastructure system. This framework can 

be expanded to consider other types of critical infrastructure systems in rural districts, 

like the potable water supply network and cellular communication and internet 

connectivity systems.     
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