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Design of the Processor-Board for the Ceres-2 Worl(station 

Beat Heeb 

Abstrad 

Ceres is a single user workstation based on the NS32032 microprocessor. The NS32532, a new, more 

powerful, but fully software compatible member of the NS32000 family made it possible to enhance the 

performance of the machine without much effort. Because of the modular structure of Ceres, only the 

processor board had to be changed, while the rest of the hardware and all software (except device 

handlers) remained unchanged. This paper describes the differences between the new processor board 
and the old one and presents the result of some performance measurements. 
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1 Introduction 

The Ceres workstation is a single user computer, designed by N. Wirth and H. Eberle between 1984 and 1986. Its 

main parts are a NS32032 processor from National Semiconductor and the corresponding Floating-Point-Unit 

(FPU) and Memory-Management-Unit (MMU). It includes a high-resolution display (1024 * 800 dots), a 40 MByte 

Winchester disk, a floppy disk drive, keyboard, 3 button mouse and interfaces for V24 and a local network The main 

properties of the machine are Its simple design and its open architecture. The latter made it possible to. add a 

high-resolution color display and an interface for a laser-printer without any problems. A technical description of 
the Ceres is given in [1], a more detailed analysis can be found in [2]. 

The modular structure of the machine makes it also possible to enhance its power without a complete redesign, 

more precisely, only the processor board has to be changed. This is especially fruitful when more powerful 

processors exist that retain most of the properties of the existing one. Until now, two such processors are available, 

the NS32332 and the NS32532. Both have the same programming model and are fully software-compatible with the 

NS32032 (on object code level). This Is essential because it hides the change from the programmer. Started in 1987 a 

prototype board was built for each of these two processors. After successful completion only the superior one (that 

with the NS32532) was considered further. This paper documents the differences between this new processor board 

and the old one. It also Includes results of some measurements made to compare the three variants and to quantify 
the reached progress. 

2 Main Changes 

2.1 The new Processor 

The central part of the processor board is the processor itself, dictating most of the logic requirements. For the 

description of a new processor board it is therefore necessary to present the important properties of the new 
processor first 

The following features of the NS32532 are noteworthy: 

1) The clock rate is increased from 10 to 25 MHz 

2) The processor includes the memory-management-unit (MMU) and the timing-control-unit (TCU) 

3) There is a separate 32 bit address bus instead of a multiplexed 24 bit address bus 

4) The minimal number of cycles per memory access is decreased from 5 to 2 

5) A 512 byte instruction cache and a 1024 byte data cache are included in the CPU chip 

6) The size of the data bus can be changed between 8, 16 and 32 bit for each memory reference 

7) There is a special mode for reading multiple words from consecutive addresses (burst-mode) 

8) The size of the MMU pages is increased from 512 to 4096 bytes (a consequence of the wider address bus) 

9) There are some new instructions for cache control 

Details on the NS32532 can be found in [3]. 
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Points 2) and 3) have the positive effect that they simplify the processor cluster considerably: 

D 

D 

A 

A• 

Figure 2.1 Processor clusters for the two processors 

Beside the 32 drivers used for the connection from the local and the the global data bus, the old configuration needs 

another 16 drivers connected between the lower half of the local and the upper half of the global data bus. This was 

necessary because the MMU NS32082 was designed forthe N$32016 and supports only a 16 bit data bus, but must 

be able to access the page tables in the main memory. With the integration of the MMU in the new CPU this 

complication disappeared. 

The only slave processor not included In the CPU is the floating-point-unit (I·PU). Corresponding to the processors, 

the old unit (a N$32081) is replaced by a new faster one (a NS32381). Apart from speed the only difference between 

the two versions is the data interface enhanced from 16 to 32 bit. Because the FPU connects directly to the CPU 

without any discrete logic needed, this change causes no further problems. The FPU is documented in (3]. 

Random logic is needed, however, for the bus signals BE0 • .3 (byte enable), RIW (read/write), and /LO (interlocked 

operation), for the ROY (ready) input, and for the enable input of the data drivers. All these signals are produced by a 

single user-programmable logic device (PAL). This solution is not only fast and elegant but also flexible. The latter 

became important when it was· discovered in first tests that the BE signals are invalidated too early by the processor 

to meet the requirements of the RAM board on highest speed. This problem could be solved by latching the BE 

signals until the end of the ROY signal. This change was done without modifying the hardware, just by 

reprogramming the device. 

2.2 The new Bus Arbiter 

The central part of the processor board (and also of the whole computer) is the arbiter which manages the bus and 

determines the actual bus master. The arbiter is conceptually independent of the CPU and all other bus masters, but, 

because the CPU is the bus master most of the time, the performance of the whole system strongly depends on a 

fast interaction between the CPU and the arbiter. It was therefore necessary to change the arbiter according to the 

requirements of the new processor. 

The arbiter consists of two loosely coupled parts which could be named as the master control unit and the bus 

control unit. The former resolves bus request conflicts by a fixed priority scheme and determines the actual bus 

master, the latter controls the general bus signals and fixes the bus timing. 

The master control unit on the old processor board consists of an asynchronous latch and a (combinatorial) 

priority-encoder. This asynchronous latch doesn't satisfy in two ways: first, it is difficult to generate a proper enable 

signal, particularly when the clock rate is increased to 25 MHz, and second it is nearly impossible to reason formally 
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about such a design. A simple solution of this problem is to replace the latch and the priority-encoder by a single 

synchronous state-machine. The corresponding state diagram looks as follows: 

-CPUREQ * CPUREQ* REQ3 * REQ2* REQ1 * REQO* REFREQ * DSPREQ 
-REQ3 * -REQ3 * -REQ2 * -REQ1 * -REQO* -REFREQ * -DSPREQ 
-REQ2 * -REQ2 * -REQ1 * -REQO* -REFREQ * -DSPREQ 
-REQ1 * -REQ1 * -REQO * -REFREQ * -DSPREQ 
-REQO * -REQO* -REFREQ * -DSPREQ 
-REFREQ * -REFREQ * -DSPREQ 
-DSPREQ -DSPREQ 

Figure 2.2 Simple master control logic state diagram 

Each state means that the corresponding grant output is active, except in the idle state where no output is active. An 

additional signal, active in each state except idle, is needed to start the bus timing. The ROY signal is activated by the 

bus control unit during the last clock cycle of a memory access and is used as a start signal for the next access by the 
master control unit 

This solution, while being clean and elegant, doesn't solve the problem that motivated the asynchronous solution on 

the old board: The request signal available from the processor is valid too late to be latched synchronously without 

a wasted clock cycle. This fact can be seen as a mistake in the design of the NS32032, however on the NS32532 the 

late availability of the request signal is unavoidable because preceding each memory access the cache must be 

checked for a hit, in which case no request is to be activated. The NS32532 drives three signals at the beginning of a 

memory access, namely the ADS (address strobe), BMT(begin memory transfer), and CONF (confirm). 

CLK 

A0 .. 31 

ADS' 

BMr 

CONF' 

Figure 2.3 NS32532 memory access timing 

ADS is active during the first clock cycle of each memory access, BMT is activated simultaneously with Aos· but is 

dea~ivated immediately when a cache hit is detected, CONF is activated after the second half of the first clock cycle 

and os guarantee~ ~o bec~me active only when the memory access is really needed. CONF has the other important 

property of remaonong actove until the end of the access, which makes it an ideal request signal. 
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In order to use this late request signal without wasting the first dock cycle, the following changes are necessary: First 

the bus must be dedicated to the processor by default whenever no request signal Is active. This was also done on 

the old board and can easily be implemented by merging the states Idle and CPU. Bu~ although this was sufficient 

on the old asynchronous approach it is not on the new one; In a synchronous system, a start signal depending on 

the CPU request valid in the first cycle cannot be active before the second cycle. The only solution here is to make 

that the normal case. This Is possible because the only bus signal activated during the second dock cycle is DBE 

(data buffer enable) which can be merged with the start signal. In other words, the master control logic provides the 

DBE signal in the second cycle Instead of a start signal in the first one. But then the state machine must be changed 

such that the first cycle can be distinguished from the others. This requires doubling each state and gives the 

following final state diagram: 

NREQ3 * 
NREQ2 * 
NREQ1 * 
NREQO* 
NREFREQ * 
NDSPREQ 

.-----!cpu· 

NCPUREQ+ 
REQ3 + 
REQ2+ 
REQ1 + 
REQO+ 
REFREQ + 
DSPREQ 

CPUREQ* 
NREQ3 * 
NREQ2 * 
NREQ1 * 
NREQO * 
NREFREQ * 
NDSPREQ 

REQ3 * REQ2* REQ1 * REQO* REFREQ * DSPREQ 
NREQ2 * NREQ1 * NREQO* NREFREQ * NDSPREQ 
NREQ1 * NREQO* NREFREQ * NDSPREQ 
NREQO * NREFREQ * NDSPREQ 
NREFREQ * NDSPREQ 
NDSPREQ 

R3' R2' R1' RO' REF' DSP' 

Figure 2.4 Final master control logic state diagram 

The upper row of states corresponds to the first dock cycle, during the other states the DBE is active. The grant 

outputs are active in either of the two corresponding states, implying that exactly one grant is active in each cycle. 

The whole state machine is implemented in one PAl device .(16R8). 

The other state machine needed is the bus control unit. To hold compatibility with existing memory boards, while 

using the higher clock speed of the new processor, a memory access covers at least 6 cycles. Because the processor 

can fetch or store an operand in two cycles, at least 4 wait states must be inserted. In the case of an 1/0 device 12 

additional wait states are required to achieve the desired delays. Since the first cycle is handled by the master control 

unit, the machine consists of 5 main and 12 wait states. Compared with the old board the total number of states Is 

nearly the same; the reason lies in the fad that the clock speed and the number of states had to be doubled on the 

old board to reach the granularity required by the bus signals. 

Beside the 12 wait states inserted when IOEN (1/0 enable) is active, one or two walt states can be inserted by 

activating the signals WAIT1 or WA/12. In contrast to the old board, a third wait state is Inserted when WAIT1 and 

WA/12 are both active. This is necessary because one wait state on the new board is much less than one on the old. 

As before, an unlimited number of extra wait states take place as long as CWAIT (continuous wait) is active. 

Figure 2.5 shows the resulting state diagram: 

NDBE+ 
IOEN * NloRdy 

NIOEN * 
NWAIT2* 
(WAIT1 + CWAIT) 

Figure 2.5 Bus control logic state diagram 
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The CLR.REQ signal, introduced as a reset signal for the request flip-flops of the various masters, is no longer needed, 

because, as a consequence of the synchronous master control unit, these flip-flops can be reset directly by the 

corresponding grant signal. For being compatible with existing boards, the signal is held active on the new processor 

board. 

The signals /oAcc and /oRdy are added for communication with the 1/0 delay counter described latter. 

Thanks to the smaller number of output signals needed and with some effort in finding an efficient coding for the 

states, it was possible to realize this state machine with another single PAl device (16R8). Because both parts of the 

arbiter are synchronous machines operating with the same dock, they can be seen as one single state machine too. 

However a description of this machine as a whole leads to an explosion of states and has no advantage over the 

presented two-part specification. 
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The following timing diagram contains the specification of all relevant bus signals: 

(timing inteiVals In ns) 

T1 T1 T2 T3 T4 T5 

CLK -,__ h-h-11_ 11_ !L-!L-
REQ' ~ I 

~<12 

GNT I 
~<12 

DBE' I I 
~<12 

DS' I I 
~<12 

RDY I I 
1---1_<3 

A,AV', R/W' 1---1 
~<2 

BEn' I I 
>20~ 

j--
Din '--

<47 -
D out -

>15 _14-

WAIT I I 

Figure 2.6 Bus signal timing 

r--

rr-
rr-
rr-
~<12 

1--

I 

1--

1---

It is noteworthy that it was possible to reduce the time for a whole memory access from 500ns to 240ns using the 

same memory board, because only two of the five bus cycles are used for memory access on the old processor. The 

rest is wasted for transferring virtual and physical addresses over the data bus and for releasing the bus in the last 

cycle. 

Finally we can conclude that the new arbiter is not only better adapted to the new CPU, but that also its behaviour 

can be described more precisely and its implementation is much simpler. 
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3 Miscellaneous Changes 

3.1 The Mouse lntetface 

The function of the mouse interface is to make the physical position of the mouse available to the programmer. To 

do that, the mouse provides two pairs of phase coded signals, one for the horizontal and one for the vertical 

movement The actual coordinates can be determined from these signals by a direction discriminator and an 

up/down counter for each directio~. The values of these counters can be read by the processor through an I/O-port 

On the old board the mouse interface was built with a PAL for the direction discriminators and standard chips for 

the counters. With a total of more than seven chips, this interface consumes a considerable part of the total space 

and power. Thanks to the availability of new, advanced programmable logic devices (EPLDs) the number of 

components on the new board could be reduced drastically. Because the interface consists of two identical, 

independent parts, tw~ PlDs can be used with the same contents. Figure 3.1 shows the logic needed: 

Select * Write 

Select* Read 

12 Bit 
Counter 

Figure 3.1 Mouse logic for one dimension 

DO .. D11 

The mouse signals MA and MB are first synchronized and delayed by four D-flip-flops. By comparing the delayed 

with the undelayed signal, the control logic then detects the rising and falling edges and enables the counter for 

Incrementing or decrementing. A read from the attached address enables the outputs of the counter while a write to 

the same address resets the counter to. zero. The logic equations for the control logic contain all relevant cases: 

Up 

Down 

MA1 * MA2 * NMB1 * MB2 + MA1 * NMA2 * MB1 * MB2 + 
NMA1 * MA2 * NMB1 * NMB2 + NMA1 * NMA2 * MB1 * NMB2; 

MA1 * MA2 * MB1 * NMB2 + NMA1 * MA2 * MB1 * MB2 + 
MA1 * NMA2 * NMB1 * NMB2 + NMA1 * NMA2 * NMB1 * MB2; 

The chip chosen for the realization of this circuit is the EP600 from Altera Corporation [4]. This chip contains 16 

independently configurable 1/0 macro cells, 4 additional inputs, and a logic array connecting all together. of the 16 

macro cells, 4 are used as D-flip-flops and the remaining 12 are configured as toggle-flip-flops with tri~state 

outputs for the counter. The control logic together with the logic needed to build the counter fit well into the logic 
array. The formal description of the whole chip is contained in appendix B. 
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Beside the two chips for the x and y coordinates, a single driver chip is necessary for the mouse button signals. An 

additional decoder present on the old board is avoided by presenting the three values (x, y, and buttons) in one 

double-word instead of assigning a separate 1/0 address to each of them. Figure 32 shows the location of the 

values in this double-word: 

31 23 0 

0 y X 

Figure 3.2 Mouse 1/0 port 

Note that the x and y coordinates can still be read Independently by using word-wide read operations. 

3.2 The Refresh- and I/O-Delay-Counter 

To refresh the dynamic RAM chips used in the Ceres periodically, a refresh-counter Is used that requests the bus 

every 16~s. Instead of a data transfer, a refresh cycle is started by the RFSH signal which Is simply the grant 

corresponding to the refresh request. On the old board the refresh-counter consists of a counter driven by the 

processor clock (10MHz) and a flip-flop which is set when the counter value reaches 160 and Is cleared by the RFSH 

signal. 

The delay-counter Is not present on the old board; its introduction was motivated by the following problem: Some 

of the 1/0 devices (disk controller, sec, and RTC) not only need a longer access tune, which is guaranteed by the 1/0 

cycle of the arbiter, but also a minimal time of about 1 ~s between two accesses. On the old board this delay had to 

be achieved by proper measures in software. With the new, considerably faster processor this is no longer feasible, 

because, on the one hand the violations are more frequent and less obvious, on the other hand the cache makes it 

nearly impossible to guarantee a delay by software. The only proper way is to guarantee the delay by hardware. This 

is done by a circuit consisting of a counter and a flip-flop, a circuit similar to the refresh counter. 

To minimize the expense for the two counters, another EP600 is used for both circuits. A block diagram of the two 

parts is contained in Figure 3.3 and 3.4: 

PCik PCik 

Figure 3.3 Refresh counter Figure 3.4 1/0 delay counter 

PC/k is a 6MHz clock signal used by the. sec chip (serial communications controller). It was chosen instead of the 

processor clock because that simplifies the design and, more important, makes the design independent of the actual 

processor clock frequency. The only drawback is that the resulting signals have no relationship to the processor clock 

13 

and must be synchronized by a flip-flop. This is not hard, because these flip-flops fit into the chip already needed 

for synchronizing the master reset and interrupt request signals which are asynchronous anyway. 

RefReq and RFSH are connections to the master control logic, which starts the refresh cycles. JoAcc is a signal 

generated by the bus control logic during each 1/0 cycle. JoRdy. which is fed back to the bus control logic, prevents 

the start of a new 1/0 cycle when it is inactive. 

3.3 The Address Decoder 

The main function of the address decoder is to deliver some bus signals like the /OEN, which is active wheneve~:!!_Je 

address lies within the 1/0 domain, as well as the select signals for the individual 1/0 devices on the processor 

board. Because the wider address bus of the NS32532 leads to new 1/0 addresses anyway, the addresses are 

changed such that each of the major devices ·lies in a separate MMU page, which allows to protect devices 

individually against illegal accesses. Figure 3.5 shows the resulting memory map: 

.------.,FFFFFFFF -

p::...::.==; FFFCOOOO 

ROM 
1----JFEFSOOOO 

1----;FEFOOOOO 
Color 
VRAM 

1----JFEESOOOO 

1----1 FEE40000 
1--'-V'-"RA:..::M.!.!.--l FEEOOOOO 

sec 

UART 

Mouse 

RTC 

ICU 

Disk 
Controller 

FFFFFFFF -

FFFFEOOO 

FFFFDOOO 

FFFFCOOO 

FFFFBOOO 

FFFFAOOO 

FFFF9000 

FFFF8000 

Figure 3.5 Memory Map 

NMI Ack 

INT Ack 

Clr Parity 

DIP Switch 

Clr Boot 

Disp. Cont. 

Printer 
Interface 

Color Disp. 
Control 

Color Disp. 
Palette 

Color Disp. 
Cursor 

FFFFFFFF 

FFFFFFOO 

FFFFFEOO 

FFFFFDOO 

FFFFFCOO 

FFFFFBOO 

FFFFFAOO 

FFFFF800 

FFFFF600 

FFFFF400 

FFFFF200 

FFFFFOOO 

Like on the old board, the address decoder consists of a PAL device (16L8) for the coarse decoding and two decoders 

for the individual select signals. In contrast to the old solution, only a minimum of the address signals is directly 

connected to the PAL, the remaining signals (A19 .. A23, A25 .. A31), which must be high in all considered cases, are 

combined with a single AND-gate. This not only solves the problem of the increased number of address lines, but 

also leaves a part of the PAL unused, giving room for some random logic needed for the CLR.PAR signal on the bus 

and the JoOec signal used by the processor to handle 1/0 accesses correctly. 

Another part related to the address decoder is the boot logic. During the boot phase (after CPU reset) the ROM 

space must start at address zero because the program counter is cleared by a system reset and the initial program 

must therefore start at address zero. The boot phase is identified by a special flip-flop, set by the RESET signal and 

cleared by an access of the 'Clear Boot' 1/0 address under software control. 
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on the old board the special address mapping is achieved by manipulating the processor address bus in a way such 

that the RAM space starting at zero is mapped to the ROM space. On the new board a simpler solution is used: 

Instead of manipulating the address bus, the behaviour of the RomEn (ROM enable) signal is changed during the 

boot phase in a way that every read cycle not belonging to an 1/0 device accesses the ROM. To prevent other devices 

like the RAM from beeing accessed simultaneously, the AV signal (address valid) is held inactive during these special 

ROM accesses. The additional logic needed for these signals as well as the boot flip-flop itself could be placed in the 

address decoder PAL 

3.4 The Boot ROM 

The boot ROM holds the initial program which typically loads the final system programs from the disk. The usual 28 

pin ROM chips are accessed byte by byte. To support a 32 bit data bus, four such chips are needed. This is very 

inefficient because even one chip is far too big for a typical boot program. To avoid this problem, the dynamic bus 

sizing feature of the new processor is used. Through an input signal of the processor, which is made available on the 

bus as the BYTE signal, it is possible to switch to an 8 bit wide data bus for each memory access. By activating this 

signal for ROM accesses, a single ROM chio suffices. The only drawback, the reduction of execution speed, Is 

insignificant, because the ROM is used during system startup only and has no influence afterwards. 

The ROM devices normally used are EPROMs (erasable, programmable read only memory) which can be 

programmed and erased by the user with a special hardware unit This way of programming Is well suited for the 

manufacture of small series, but is a time consuming task during the development of the boot program. A better way 

is to use an EEPROM (electrically erasable, programmable read only memory) which can be programmed without 

being removed from the machine. Because the used EEPROM (2864) is pin compatible to the corresponding EPROM 

(2764), the ROM logic could easily be extended to support both types. The only changes are the use of a 

bidirectional data driver and an additional logic for the write signal. To prevent the ROM from being overwritten 

accidentally, the write signal is protected by a switch on the backRiane of the processor board. The same switch can 

be read by software as bit 8 of the dip-switch and it is used to select an alternate boot file source. 

To meet the timing specifications of the EEPROM during programming, writes to the ROM area are treated as 1/0 
accesses by the address decoder. Beside that, the programmer must ensure that the EEPROM is untouched for at 

least 10ms after each write to give the device time for the final programming of the memory cells. 
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4 Measurements 

4.1 Performance 

The main motivation for the design of a new processor board was an expected gain in performance. For a 

quantification of the gain, the execution times of some test programs were measured. To get a complete view over­

the available parts of the NS32000 series, the following Ceres configurations were compared: 

-The old processor board with the NS32032 operating at 10M Hz 

- A prototype board with the NS32332 operating at 15MHz 

-The new processor board with the NS32532 operating at 25M Hz but without caches 

- The new processor board with enabled data- and instruction caches 

It is noteworthy that the measurements were made on the same physical machine with only the processor board 

changed. This ensures that the rest of the hardware, in particular the memory, as well as the programs are exactly 

identical and results in a fair comparison of the processors and their bus interface. 

The benchmark programs used for performance comparison in [2] are not useful here because they execute a small 

loop with only a few instructions in it The instructions as well as the variables of such a loop would fit entirely in 

the caches, resulting in a very fast execution, but the execution times are no longer related to those of real programs. 

To bypass this problem the following programs are chosen for comparison: 

Quid<sort 
A program which sorts an array of 1024, 16 bytes long records with the quicksort algorithm. initially the 

keys are distributed randomly over the array. Note that the total size of the array (16 kbyte) is far more 

than the size of the data cache. 

Dhrystone 
The Dhrystone benchmark defined in [5]. , 

Bit Blod< Transfer 
Bit Block Transfer moves a square of 512 by 512 pixels on the screen. The distance is chosen in a way that 
each word must be shifted during the transfer_ 

Display Character 
A program which displays a 12 pixel high character on the screen. The average over all characters of the 

alphabet is chosen and the font patterns are already contained in memory. 

Layout Ched< 
This program is part of a layout editor for printed circuit boards. It verifies the final layout against a 

formally defined netlist. The program contains complex algorithms as well as large data structures 

holding both the layout and the netlist in the main memory. 

Compile 
The Modula 2 compiler_ Because this program frequently accesses the winchester disk, its performance is 

more influenced by the disk controllerthan by the processor. It is included in this list for completeness. 
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A comparison of the execution times of these programs running on the different processors Is shown in Flgur,e 4.1: 

Quicksort 

Dhrystone 

Bit Block 
Transfer 

Display 

Character 

layout 

Check 

Compile 

0 2 

-A 1.0 

B 1.9 I 
c 3.9 

D 7.3 

roo--
A 1.0 

B 1.9 

c 2.9 

D 4.6 

-A 1.0 

B 2.0 

c .3.4 

D 8.2 

-A 1.0 

B 2.0 

c 3.5 

D 6.8 

A 
r--

1.0 

B 1.9 

c 2.5 I 
D 6.2 

-A 

B 
~ !1 1.4 

c 1.8 I 
D 2.2 I 

A: NS32032, 10MHz 

B: NS32332, 15MHz 

3 4 

I 

I 

C: NS32532, 25MHz, no caches 

I 

D: NS32532, 25MHz, caches enabled 

Figure 4.1 Relative performance 

6 7 8 

I 

II 

I 

I 

As expected the performance increases for each new processor. The gain is higher than the difference in clock speed, 

showing that the efficiency of the micro-code of the new processors is also improved. The most important increase, 

however, comes from the caches, which almost double performance. 
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4.2 Bus Utilization 

Using a faster processor with equally rapid memory forces an increase of bus utilization. When this comes close to 

100%, the memory Interface becomes a serious bottleneck for the system. To see whether that happens, the bus 

utilization was measured for the same system configurations and programs as above. The measuring was done by 

counting the memory references with a simple frequency counter. The expected utilization can be calculated as the 

product of the access frequency and the memory cycle time. The results are shown in Figure 4.2: 

Quicksort 

Dhrystone 

Bit Block 

Transfer 

Display 

Character 

layout 

Check 

0 10 20 

A 36 

B 48 

c 75 

D 24 I 

A 49 

B 69 

c 77 

D 61 

A 45 

B 60 

c 73 

D 33 

A 44 
B 62 

c 78 

D 51 

A 58 

B "83 

c 87 

D 35 

A: NS32032, 10MHz 

B: NS32332, 15MHz 

30 40 

I 

I 

I 

C: NS32532, 25MHz, no caches 

50 

I 

I 

I 

I 

il 

D: NS32532, 25MHz, caches enabled 

60 

I 

I 

I 

Figure 4.2 Bus utilization 

70 80 90 100 % 

I 

I 
I 

I 

I 

I 
I 

Bus utilization of the NS32532 approaches 90%, which is considerably high. Enabling the caches, however, results in 

values mostly below that of the NS32032, which is surprisingly low. The conclusion is that. thanks to the caches, even 

an additional increase in the speed of the processor would be possible without a serious problem with the memory 

bandwidth. 
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4.3 Influence of Memory Speed 

To analyse the interaction of the memory and the processor further, the influence of the memory speed on the 

system performance was examined directly. This was done by comparing the NS32532 board with a special version 

providing a memory cycle time of 5 instead of 6 dock cycles. To use this special board with the normal memory, the 

CPU dock frequency was lowerd from 25 to 20MHz. The measured performance was then corrected with a constant 

factor. Figure 4.3 shows the results: 

1.0 1.1 12 

Quicksort 
A 
B 

1.11 I 
1.02 I 

Dhrystone 
A 
B 

1.12 I 
1.07 I 

Bit Block A 1.14 I 
Transfer B 1.03 I 

Display A 1.14 I 
Character B 1.06 I 
layout A 1.16 I 
Check B 1.04 I 

A: NS32532, 25MHz, no caches 
B: NS32532, 25MHz, caches enabled 

Figure 4.3 Performance win due to the elimination of a wait state 

Without caches the reduction of the memory cycle from 6 to 5 dock cycles results in a performance improvement of 

11 - 16%, which is near the theoretical limit of 1/6. With enabled caches the win decreases to a few percent Each 

further eliminated wait state brings a still worse result because the internal execution times of the processor become 

more dominant In contrast, the cost of faster memory increases more than linearly with the number of saved wait 

states. 

The results of this and the above measurements show that the comparatively slow memory board built for the 

NS32032 is still a good solution for the NS32532, although the four wait states look poor at first sight Any effort for 

speeding up memory would not be jusified by the expected gain. 
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5 Conclusions 

A new processor board was built for the Ceres workstation. The major changes are the replacement of the NS32032 

CPU by a more powerful member of the software compatible NS32000 family and the adaptation of the bus arbiter 

which is the heart of the system. Some minor changes were done to make the design simpler and cleaner. Some 

parts were replaced by modem, flexible programmable logic devices (EPlDs). 

The result is a board with a chip count decreased from 64 to 45, a current consumption reduced from 2.7 to 1.5 

Ampere, but with a performance Increased by a factor of 5 to 8. The board is compatible with all existing Ceres 

boards on the hardware side and needs only a few changes in system programs (1/0 addresses) on the software 

side. 

Measurements were made to examine the properties of the system. Beside the mentioned performance win, the 

results suggest that the existing memory board, although designed for a much slower processor, is still a good 

choice, because the effect of the higher frequency on the memory bandwidth is neutralized by the caches included in 

the processor. 

A prototype on a wire wrap board was operating 4 month after the start of the project The final version, built on a 

printed circuit board, took another 3 month. A series of 30 computers containing the new board is currently being 

completed. 

The only substantial problem encountered during the design was an elect~ical interference between some wires on 

the prototype, which disappeared entirely on the final board. it seems that a processor operating at 25MHz reaches 

the limits beyond which a wire wrap prototype is no longer feasible. 
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Appendix A: Summary of User-Relevant Changes 

Software Differences 

<old values > 

Addresses 

- 32 bit addresses < 24 bit> 

- Disk controller: $FFFF8000 .. $FFFF801C < $FFFCOO .. $FFFC1C > 

- ICU: $FFFF9000/$FFFF9004 < $FFFE08..$FFFEOC > 

- RTC: $FFFFAOOO < $FFFC80 > 

- Mouse: $FFFFBOOO < $FFFDOO .. $FFFD08 > 

- UART: $FFFFCOOO .. $FFFFC03C < $FFFD40 .. $FFFD7C > 

- SCC: $FFFFDOOO .. $FFFFDOOC < $FFFD80 .. $FFFD8C > 

- INT acknowledge: $FFFFFEOO < $FFFFEOO > 

- DIP-switch: $FFFFFCOO < $FFFDCO > 

- Clear boot: read from $FFFFFBOO < write to $FFFDCO > 

-Clear parity: read from $FFFFFDOO <access of $FFFC40 > 

- ROM: $FEF80000 .. $FEF81 FFF < $F80000 .. $F87FFF > 

- Display RAM: $FEEOOOOO .. $FEE3FFFF < $EOOOOO .. $E3FFFF > 

- Color display RAM: $FEE80000 .. $FEEFFFFF < $E80000 .. $EFFFFF > 

-other 1/0: $FFxxxxxx < xxxxxx > 

CPU 

- new configuration register 

- new debug registers 

- V bit in the PSR for automatic overflow trap 

- new instructions: 

CINV cache invalidate 

LPR CFG, x load configuration register 

SPR CFG, x store configuration register 

MMU 

-4 kB pages 

- new registers 

FPU 

- 8 LONGREAL-registers < 8 REAL or4 LONG REAL> ( F1 is still part of LO!) 

- new bits in the status register 

- new instructions: 

SCALB x, y y := y * 2~TRUNC(x) 

LOGB x, y y := TRUNC(Iog2(x)) 

DOT X, y LO := LO + x * y 

POLYx,y LO:=y+x*LO 

sec 
Receiver driver enabled via DTR output (independant of transmitter driver) 

Mouse 

- X counter: bits 0 .. 11 

- Y counter: bits 16 .. 23 (bits 0 .. 11 of high word) 

-buttons: ML: bit 14, MM: bit 13, MR: bit 12 (0 =pressed, 1 = released) 

- A write to the mouse port resets both counters to zero 

DIP-Switch 

Bit 8: Boot switch (1: normal I 0: special) 

Peripheral Cycles 

A delay of 1 us between two peripheral cycles is guaranteed by hardware 

Hardware Differences 

The following bus signals are changed: 

BUS.ERR' pin Aa13 

New signal, Raises a bus-error exception on the processor. 

CLR.REQ' pin Aa15 

No longer needed. Held active on the processos board for compatibility. 

WAIT1' 
WAIT2' 

pin Ba9 
pin Ba10 

and 

A third walt state Is inserted when both are active. 

IO.EN' pin Ba11 

Active when the address lies In the new 1/0 domain: $FFFCOOOO .. $FFFFFFFF. 

BYTE' pin Ba16 

New signal. Tells the processor to use a byte-wide bus for the actual memory access: 

CLI< pin Ba25 

Processor clock increased from 10 to 25MHz. 

FCLI< pin Ba27 

No longer supported. 

A24 
A31 

pin Bc25 
pin Bc32 

to 

New signals. Most significant byte of the 32 bit address bus. 

21 
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Appendix B: PAL- and EPLD Listings 

Master Control PAL 

PAL prio: 16R8; 

(* NS32532 Priority Encoder B. Heeb, 8.3.88 *) 

PIN 2: -DSPREQ; 19: -DSPGNT; 
3: -RefReq; 18: -RFSH; 
4: -REQO; 17: -GNTO; 
5: -REQ1; 16: -GNT1; 
6: -REQ2; 15: -GNT2; 
7: -REQ3; 14: -GNT3; 
8: -CpuReq; 13: -CpuGnt; 
9: ROY; 12: -DBE; 

EQUATIONS 

DSPGNT 

RFSH 

GNTO 

GNT1 

GNT2 

GNT3 

CpuGnt 

DBE 

ROY * DSPREQ 
+ -DBE * CpuGnt * DSPREQ 
+ DSPGNT * -ROY; 

:= ROY * RefReq * -DSPREQ 
! R~~~ : :~g~n; ~D~~~~~f * -DSPREQ 

:= ROY * REQO * -RefReq * -DSPREQ 
+ -DBE * CpuGnt * REQO * -RefReq * -DSPREQ 
+ GNTO * -ROY * -RFSH * -DSPGNT; 

ROY * REQ1 * -REQO * -RefReq * -DSPREQ 
+ -DBE * CpuGnt * REQ1 * -REQO * -RefReq * -DSPREQ 
+ GNT1 * -ROY * -GNTO * -RFSH * -DSPGNT; 

:= ROY * REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ 
+ -DBE * CpuGnt * REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ 
+ GNT2 * -ROY * -GNT1 * -GNTO * -RFSH * -DSPGNT; 

:= ROY* REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ 
+ -DBE * CpuGnt * REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ 
+ GNT3 * -ROY * -GNT2 * -GNT1 * -GNTO * -RFSH * -DSPGNT; 

:= ROY * -REQ3 * -REQ2 * -REQ1 * -REQO * -RefRea * -DSPREQ 
! =~~: ~~~G~t-~NT~E~3-~NT~E~2-~NT~E~1-~NT~E~ -~s~e;R:gs~GN~SPREQ 
+ -ROY * -CpuGnt * -GNT3 * -GNT2 * -GNT1 * -GNTO * -RFSH * -DSPGNT; 

: = -ROY * DSPGNT 
+ -ROY * RFSH 
+ -ROY * GNTO 
+ -ROY * GNT1 
+ -ROY * GNT2 
+ -ROY * GNT3 ! =~i : 8E~~eq * -REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ 

END prio. 

Bus Control PAL 

PAL time25: 16R8; 
(* NS32532 25MHz Bus Timing State 

PIN 2: -DBE; 19 -IoAcc; 

(* 

3: -WRITE; 18 ROY; 
4: -IOEN; 17 -OS; 
5: -WAIT2; 16 -lORD; 
6: -WAIT1; 15 -IOWR; 
7: -CWAIT; 14 -dO; 
8: -IoRdy; 13 -d1; 

12 -d2; 

Tl: 
T2: 
T3: 
T4: 
W12: 
W11: 
W10: 
W9: 
W8: 
W7: 
W6: 
W5: 
W4: 
W3: 
W2: 
Wl: 
T5: 

ROY 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

dO d1 d2 IoAcc 
0 0 0 0 
1 1 1 0 
0 1 1 0 
1 0 1 0 
0 0 1 0 
1 1 1 1 
0 1 1 1 
1 0 1 1 
0 0 1 1 
1 1 0 1 
0 1 0 1 
1 0 0 1 
0 0 0 1 
1 1 0 0 
0 1 0 0 
1 0 0 0 
0 0 0 0 *) 

EQUATIONS 

-ROY := -dO 
+ dl 
+ IoAcc 
+ CWAIT 
+ d2 * -IoAcc * IOEN 
+ d2 * -IoAcc * WAIT! 
+ d2 * -IoAcc * WAIT2; 

Machine B. Heeb, 26.5.88 *) 

dO := -dO * -dl * -d2 * -IoAcc * -ROY * DBE * -IOEN 
! =~8: d~l•*-~i * -IoAcc *-ROY* DBE * IoRdy 
+ -dO * d2 * -ROY 
+ -dO * IoAcc * -ROY 
+ dO * -dl * d2 * -IoAcc * WAIT! * -IOEN * -ROY 
+ dO * -dl * -IoAcc * CWAIT * -IOEN * -ROY; 

d1 := -dO * -dl * -d2 * -IoAcc * -ROY * DBE * -IOEN : =~8: =~1 : d~2•*-~~Acc *-ROY* DBE * IoRdy 
+ -dO * -dl * IoAcc * -ROY 
+ dO * dl * -ROY 
+ dO * -dl * d2 * -IoAcc * WAIT2 * -IOEN * -ROY; 

d2 := -dO * -d1 * -d2 * -IoAcc * -ROY * DBE * -IOEN ! d~O•*d2dl :RD~2 * -IoAcc *-ROY* DBE * IoRdy 

+ -dO * -d1 * d2 * -IoAcc * -ROY 
+ dO * -d1 * d2 * -IoAcc * IOEN * -ROY 
+ dO * -d1 * d2 * IoAcc * -ROY; 

IoAcc := -dO * -d1 * d2 * -IoAcc * -ROY 
+ dO * loAcc * -ROY 
+ dl * IoAcc * -ROY 
+ d2 * IoAcc * ~ROY; 

OS := -dO * -d1 * -d2 * -IoAcc * -ROY * DBE * -IOEN ! 0go.•_Rg}: :i6w; -IoAcc *-ROY* DBE * IoRdy 

+ OS * -ROY * -dO 
+ DS * -ROY * dl 
+ OS * -ROY * d2 
+ DS * -ROY * IoAcc 
+ OS * -ROY * CWAIT; 

lORD dO * d1 * d2 * IoAcc * -WRITE 
+ lORD * -ROY; 

IOWR := dO * d1 * d2 * IoAcc * WRITE 
+ IOWR * -ROY * -dO 
+ IOWR * -ROY * dl 
+ IOWR * -ROY* d2 
+ IOWR * -ROY * IoAcc 
+ IOWR * -ROY * CWAIT; 

END time25. 
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Processor Control PAL 

PAL proc: 1 6L8; 
(* NS32532 Processor Control Logic B. Heeb 9.6.88 *) 

PIN 1: -CpuGnt; 
2: -be3; 
3: -be2; 
4: -bel; 
5: -beO; 
6: -ddin; 
7: -ilo; 
8: RDY; 
9: -DBE; 

EQUATIONS 

19: 
18: 
17: 
16: 
15: 
14: 
13: 
12: 
11: 

-ILO; 
-BE3; 
-BE2; 
-BEl; 
-BEO; 
-WRITE; 
-cpuRdy; 
-BuffEn; 
Slave; 

IF CpuGnt THEN BEO := beO * DBE * -RDY 
+ ddin * DBE * -RDY 
+ BEO * RDY; 

IF CpuGnt THEN BEl bel * DBE * -RDY 
+ ddin * DBE * -RDY 
+ BEl * RDY; 

IF CpuGnt THEN BE2 := be2 * DBE * -RDY 
+ ddin * DBE * -RDY 
+ BE2 * RDY; 

IF CpuGnt THEN BE3 := be3 * DBE * -RDY 
+ ddin * DBE * -RDY 
+ BE3 * RDY; 

IF CpuGnt THEN WRITE := -ddin * -DBE 
+ WRITE * DBE; 

IF CpuGnt THEN ILO := ilo; 
IF TRUE THEN CpuRdy := RDY * CpuGnt + Slave; 

IF TRUE THEN BuffEn := CpuGnt * DBE; 
END proc. 

Address Control PAL 

PAL Addr: 16L8; 

(* NS32532 Address 

PIN 1: -CpuGnt; 
2: A16; 
3: A17; 

~: ~~~i.d; 
6: A24; 
7: -RESET; 
8: -clrPar; 
9: -ClrBoot; 

EQUATIONS 

Control Logic 

19: -IoSel; 
18: -boot; 
17: -AV; 
16: -WRITE; 
15: -IOEN; 
14: -CLRPAR; 
13: -IoDec; 
12: ...... RamEn; 
11: -Ioinh; 

B. Heeb 10.6.88 *) 

IF TRUE THEN IoSel := A16 * A17 * A18 * A24 * HiAd * AV * -Ioinh; 
IF TRUE THEN boot RESET 

+ boot * -ClrBoot; (* RS Latch *) 
:= -boot 

+ WRITE 
IF CpuGnt THEN AV 

+ A24; 

IF TRUE THEN IOEN := A18 * A24 * HiAd * AV * -Ioinh 
+ -A16 * -A17 * -A18 * -A24 * HiAd * AV * WRITE * -Ioinh; 

IF TRUE THEN CLRPAR := ClrPar + RESET; 

IF TRUE THEN IoDec A18 * A24 * HiAd * AV 
+ -A16 * -A17 * -A18 * -A24 * HiAd * AV * WRITE; 

IF TRUE THEN RornEn -A16 * -A17 * -A18 * -A24 * HiAd * AV * -RESET 
+ CpuGnt * boot * -A24 * -WRITE; 

END Addr. 

MouseEPLD 

B Heeb 
ETH Zuerich 
8/6/88 
1.0 
A 
EP600 
Ceres2 Mouse Counter 

OPTIONS: TURBO = OFF 

PART: EP600 

INPUTS: Clk1@1, Clk2@13, MA@2, MB@11, Write'@14, Sel'@23 

OUTPUTS: D0@3, D1@4, D2@5, D3@6, D4@7, D5@8, D6@9, 
D7@10, D8@15, D9@16, D10@17, D11@18 

NETWORK: 
Clkl = INP(Clk1) 
Clk2 = INP(Clk2) 
MA = INP(MA) 
MB = INP(MB) 
nWrite = INP(Write') Write= NOT(nWrite) 
nSel INP(Sel') Sel = NOT(nSel) 
DO,DO = TOTF(DOt, Clk1, Clr, , OutEn) 
D1,D1 = TOTF(D1t, Clk1, Clr, OutEn) 
D2,D2 TOTF(D2t, Clk1, Clr, OutEn) 
D3,D3 TOTF(D3t, Clk1, Clr, OutEn) 
D4,D4 = TOTF(D4t, Clk1, Clr, , OutEn) 
DS,DS TOTF(DSt, Clk1, Clr, OutEn) 
D6,D6 TOTF(D6t, Clk1, Clr, OutEn) 
D7,D7 = TOTF(D7t, Clk1, Clr, , OutEn) 
D8,D8 TOTF(D8t, Clk2, Clr, OutEn) 
D9,D9 TOTF(D9t, Clk2, Clr, , OutEn) 
D10,D10 = TOTF(D10t, Clk2, Clr, , OutEn) 
D11,D11 = TOTF(D11t, Clk2, Clr, , OutEn) 
MA1 = NORF(MA1d, Clk2, , ) 
MB1 NORF(MB1d, Clk2, ) 
MA2 = NORF(MA2d, Clk2, , ) 
MB2 = NORF(MB2d, Clk2, , ) 

EQUATIONS: 
MA1d MA; 
MB1d MB; 
MA2d MA1; 
MB2d MB1; 

Down 

Up MA1 & MA2 & /MB1 & MB2 + 
/MA1 & MA2 & /MB1 & /MB2 
MA1 & MA2 & MB1 & /MB2 + 
MA1 & /MA2 & /MB1 & /MB2 
/Write & Sel; 
Write & Sel; 
Up + Down; 

MAl & /MA2 & MB1 & MB2 + 
+ /MAl & /MA2 & MB1 & /MB2; 
/MAl & MA2 & MB1 & MB2 + 
+ /MAl & /MA2 & /MB1 & MB2; 

Up & DO + Down & /DO; 
Up & DO & D1 +Down & /DO & /D1; 

OutEn 
Clr 
DOt 
Dlt 
D2t 
D3t 
D4t 
DSt 
D6t 

Up & DO & D1 & D2 + Down & /DO & /D1 & /D2; 
Up & DO & D1 & D2 & D3 + Down & /DO & /D1 & /D2 & /D3; 
Up & DO & D1 & D2 & D3 & D4 + Down & /DO & /D1 & /D2 & 
Up & DO & D1 & D2 & D3 & D4 & DS + 
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS; 

/D3 & /D4; 

D7t 

D8t 

D9t 

D10t 

D11t 

END$ 

Up & DO & D1 & D2 & D3 & D4 & DS & D6 + 
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS & 
Up & DO & D1 & D2 & D3 & D4 & DS & D6 & D7 
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS & 
Up & DO & D1 & D2 & D3 & D4 & DS & D6 & D7 
Down & /DO & /Dl & /D2 & /D3 & /D4 & /D5 & 
Up & DO & Dl & D2 & D3 & D4 & D5 & D6 & D7 
Down & /DO & /Dl & /D2 & /D3'& /D4 & /D5 & 
Up & DO & Dl & D2 & D3 & D4 & D5 & D6 & D7 
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS & 

/D6; 
+ 
/D6 & /D7; 
& D8 + 
fD6 & /D7 
& D8 & D9 
/D6 & /D7 
& D8 & D9 
/D6 & /D7 

& /D8; 
+ 
& /D8 & /D9; 
& D10 + 
& /D8 & /D9 & /D10; 
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TimerEPLD 

B Heeb 
ETH Zuerich 
8/6/88 
1.0 
A 
EP600 
Ceres2 IO & Refresh Timer 

OPTIONS: TURBO = OFF 

PART: EPGOO 

INPUTS: RFSH'@2, IoAcc'@11, Clk 

OUTPUTS: RefReq@3, IoRdy@4 

NETWORK: 
Clk = INP(Clk) 
nRFSH INP(RFSH') RFSH = NOT(nRFSH) 
nioAcc = INP(IoAcc') IoAcc = NOT(nioAcc) 
RefReq = SONF(RefReqs, Clk, RefReqr, ClrRef, , 
IoRdy = SONF('IoRdys, Clk, IoRdyr, Clrio, , ) 
rO NOTF(rOt, Clk, ) 
r1 NOTF(rlt, Clk, ) 
r2 NOTF(r2t, Clk, ) 
r3 NOTF(r3t, Clk, ) 
r4 NOTF(r4t, Clk, ) 
rS NOTF(rSt, Clk, ) 
r6 NOTF(r6t, Clk, , ) 
10 NOTF(iOt, Clk, Clrio, 
11 NOTF(ilt, Clk, Clrlo, 
i2 NOTF(i2t, Clk, Clrio, 

EQUATIONS: 

ClrRef = RFSH; % Refresh Timer % 
Clrio = IoAcc; 
rOt VCC; 
rlt rO; 
r2t rO & r1; 
r3t rO & r1 & r2; 
r4t rO & r1 & r2 & r3; 
rSt rO & r1 & r2 & r3 & r4 & jr6; 
r6t rO & r1 & r2 & r3 & r4 & (rS + r6); 
RefReqs = rO & r1 & r2 & r3 & r4 & /rS & r6; 
RefReqr = GND; 

iOt = VCC; 
ilt = iO; 
i2t = iO & i 1; 
IoRdys i1 & i2; 
IoRdyr = GND; 

END$ 

% I/0 Timer % 

Appendix C: Circuit Diagrams 
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A3 83 15 d28 

A4 84 14 d27 
d26 A5 85 13 
d25 A6 66 12 

A7 87 11 d24 

DIR G' 

1 19 

u11 
Al5645 

d23 AO 80 18 

A1 81 
17 d22 

A2 82 
16 d21 

A3 83 
15 d20 
14 d19 

A4 84 13 d18 A5 85 12 d17 A6 86 11 d16 A7 87 

DIR G' 

1 19 

u12 
Al5645 

AO 80 
18 d15 
17 d14 A1 81 16 d13 A2 82 

A3 83 
15 12 
14 d11 A4 84 
13 d10 A5 85 
12 d9 A6 86 11 dB A7 87 

OIR G' 

1 19 

u13 
Al5645 

d7 AO 80 
18 

A1 B1 17 d6 

A2 82 
16 d5 

A3 B3 15 d4 
14 d3 A4 84 13 d2 A5 B5 

A6 86 
12 d1 

A7 87 11 dO 

9 Jt 
ns532.cpu2.Sil 

Reset-logic, Buffers 

u14 
Al5541 

9 DO YO 11 
8 

01 Y1 12 
7 

02 Y2 13 
6 

03 Y3 14 
5 D4 Y4 15 
4 

05 Y5 16 
3 D6 Y6 17 
2 07 Y7 18 

GO' G1' 

1 19 

u15 
Al5541 

'" 9 DO YO 11 
•22 8 01 Y1 

12 

'" 7 
02 Y2 

13 
a20 6 03 Y3 14 
a19 5 

04 Y4 
15 

•18 4 
05 Y5 

16 
a17 3 

06 Y6 
17 

a16 2 
07 Y7 18 

GO' G1' 

1 19 

u16 

Al554t 
9 '" DO YO 11 

•14 8 
01 Y1 

12 
•13 7 

02 Y2 13 
a12 6 

03 Y3 14 
a11 5 

04 Y4 15 
a10 4 

05 Y5 16 
a9 3 

06 Y6 
17 

a8 2 07 Y7 18 

GO' G1' 

1 19 

u11 
ALS541 

•7 9 DO YO 11 
a6 ,. 

1>1 Y1 
12 

a5 13 
a4 .. 02 Y2 

14 
•3 .. D3 Y3 15 
a2 ' 

D4 Y4 16 
a1 ' 

05 Y5 
17 

ao ) 06 Y6 
18 07 Y7 

CpuGnt' ff 

Author: B. Heeb 

A31 
A30 
A29 
A28 
A27 
A26 
A25 
A24 

A23 
A22 
A21 

· A20 
A19 
A18 
A17 
A16 

A15 
A14 
A13 
A12 
A11 
A10 
A9 
AS 

A7 
A6 
A5 
A4 
A3 
A2 
A1 
AO 

Date: 10.6.88 ETH Zurich 
ns532.cpu3.Sil 

Arbiter, Ref. Counter 
Addr. Decoder 

29 

Aa21 
Aa5 
Aan 
Aa23 
Aa24 
Aa25 

8a30 

Date: 10.6.88 



30 31 

RAl u31 
Am9519A-1 

4 07 A<8 Aa12 INT7' 2S IR7 07 Aa11 INT6' 24 s 06 A<l 
u35c Aa10 INT5' I RTCint' 23 IR6 06 6 DS A<6 

Aa9 INT4' I KBlnt' 22 IRS OS 
7 04 A6 IR4 04 Ba15 DK.INT 21 

IR3 03 
8 03 A<4 

Uartlnt' 20 9 02 Ad 
SCCint' 19 

IR2 02 
10 Dl A<2 IR1 01 1K 

R19 
Timerlnt' 18 

IRO DO 11 00 A<l 

~41 -- -- - - - -- - - - Ds3695-. 
I I 

r----!.4-j.l---j I 1 

Vco R20 4K7 

ICUSel' 
EO 16 

Ba13 IO.RD' 
Ba12 IO.WR' D+ NA.418 
Bd A2 lnr 0-

NA519 

In tAck' 

4K7 

52 
07 A<8 

~~ 
06 Ac7 
OS Ac6 
04 AcS 
03 A<4 
02 Ad 
01 A<2 
00 A<l DB Adl 

~K8.5 

~KB.4 

K8.2 C>-"'KB,.Rx,.o.,_ _____ --'-l KB.TxO K8.3 

+12V +12V 
R23 .. 2'5 

IOK 

V243 RxD 6 TxO V14.2 

V24.6 DSR 

RTS V24.4 
V24.5 CTS 

V24.8 DCD 11 OTR V24.20 

u16 

-12V 

07 A<8 
06 A<7 
OS A<6 
04 A<S 
03 A<4 
02 Ad 
01 A<l 
00 A<1 

BaH 
Ba12 

V24.1~ V24.74 
V24.13 c::>---YfL 

R28 . .31 1K fAlS645 
2 AO BO 

18 07 

.!. 3 AI 81 
17 6 

ul8 4 A2 82 
16 s 

81 3V M3002 s 
A3 Bl 15 04 

Vco 1~ VBB 03 
12 6 A4 84 

14 03 
11 7 13 02 5 . .40pf C5 + 02 10 8 

AS BS 12 01 ~ 2 Xln 01 9 9 
A6 86 11 00 

32.768kH• X2 ~ Xout 00 A7 87 

Hi- jG' RTCSel' -j SYNC' PULSE' 
cs· BUSY ~ 9 

IO.RD' 6 OE' . IO.WR' 5 13 RTCint' 
R/W' IRQ' 

ns532.cpu4.Sil 

ETH ZOrich Author: B. Heeb Date: ICU I DSW I UART 10.6.88 
ns532.cpt6.Sil 

ETH ZOrich Author: B. Heeb Date: 10.6.88 sec, RTC 



32 

n.tJo onE' 

MS..? 
MS3 

M5.1 

MS6 

t\158 
MS.J 
M5.9 

Romfn' 

rclk 

MoU\eS£'1' 

r/w' 

MYA 
MYB 

~ 

~ 

MP.O' 
Mf:1' 
Mf:.2' 

IO.RO' 

ETH Zurich 

u43 
Er600 

3 016 
4 017 

_.1_ ClKl 5 018 
6 019 

Mouse 
7 020 

• 021 
2 

PAL 
9 022 

11 10 023 

f-4 INP 110 15 024 

i-lL 16 025 
17 026 ,. 027 

__.!1_ Hl-
CU<2 ~ eo 

~ 
2 00 YO 18 011 
3 01 Yl 17 DH 
4 

02 Yl 16 014 

=t 15 [)15 
03 Y3 14 [))R 
04 Y4 

--+ 05 ¥5 
13 029 
12 mo ::f 06 ¥6 
11 1>11 

07 Y7 

GO' G1' 

1 19 

m532.cpu6.SII. 

Boot- ROM 
Mouse - Decoder 

00 Ac1 
01 Ac2 
Dl AcJ 
OJ Ar.f 
04 k5 
1)5 A<6 
D6 1.<7 
07 Ac8 

u25d 

"" Ef'600 
Ac17 
ArT8 
1.<19 f--1- Cl~1 
Ac20 
1.<21 .Y.ouse 1.<12 
Ac23 M5.4 MXA 2 PAL 

Acl.f M5.5 MXB 11 
1.<25 ~ INP 110 
1.<26 r-ll-1.<27 
1.<28 

__.!1_ ClK2 

ArB 
A< I< 
A<15 
Ac16 
Ac29 
AcJO 
1.<31 
1.<37 

Author: B. Heeb 

1117~8a9 

8 18~8.!10 

3 
4 
5 
6 
7 

• 9 
10 
15 
16 
17 
18 

!-!?. 
~ f-?; 
fL2 

Date: 

DO 
01 
02 
OJ 
04 
05 
D6 
07 
[>8 
09 
010 
011 

"'' Ac2 
Ac3 ..,. 
Ac5 
Ac6 
Ac7 
Ac8 
Ac9 
AdO 
1.<11 
1.<12 

10.6.88 
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