
ETH Library

Design of the processor-board for
the Ceres-2 workstation

Report

Author(s):
Heeb, Beat

Publication date:
1988-11

Permanent link:
https://doi.org/10.3929/ethz-a-000491598

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgenössische Technische Hochschule Zürich, Institut für Informatik, Fachgruppe Computer Systeme 93

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000491598
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

•• ,
Eidgenossische
Technische Hochschule
ZUrich

Beat Heeb

November 1988

lnstitut fUr lnformatik
Fachgruppe
Computer Systeme

Design of the
Processor-Board for the
Ceres-2 Woa·l<station

93

Author's address:

lnstitut fur lnformatik
ETH-Zentrum
CH-8092 Zurich I Switzerland

(C) 1988 lnstitut fur lnformatik, ETH Zurich

Design of the Processor-Board for the Ceres-2 Worl(station

Beat Heeb

Abstrad

Ceres is a single user workstation based on the NS32032 microprocessor. The NS32532, a new, more

powerful, but fully software compatible member of the NS32000 family made it possible to enhance the

performance of the machine without much effort. Because of the modular structure of Ceres, only the

processor board had to be changed, while the rest of the hardware and all software (except device

handlers) remained unchanged. This paper describes the differences between the new processor board
and the old one and presents the result of some performance measurements.

4

Contents

Introduction

2 Main Changes

2.1 The new Processor

2.2 The new Bus Arbiter

Miscellaneous Changes

3.1 The Mouse Interface

3.2 The Refresh- and I/O-Delay-Counter

3.3 The Address Decoder

3.4 The Boot ROM

4 Measurements

4.1 Performance

4.2 Bus Utilization

4.3 Influence of Memory Speed

Conclusions

Appendices

A Summary of User-Relevant Changes

B PAL and EPLD Listings

C Circuit Diagrams

5

5
6

11

11

12

13

14

15

15

17

18

19

20

22

27

1 Introduction

The Ceres workstation is a single user computer, designed by N. Wirth and H. Eberle between 1984 and 1986. Its

main parts are a NS32032 processor from National Semiconductor and the corresponding Floating-Point-Unit

(FPU) and Memory-Management-Unit (MMU). It includes a high-resolution display (1024 * 800 dots), a 40 MByte

Winchester disk, a floppy disk drive, keyboard, 3 button mouse and interfaces for V24 and a local network The main

properties of the machine are Its simple design and its open architecture. The latter made it possible to. add a

high-resolution color display and an interface for a laser-printer without any problems. A technical description of
the Ceres is given in [1], a more detailed analysis can be found in [2].

The modular structure of the machine makes it also possible to enhance its power without a complete redesign,

more precisely, only the processor board has to be changed. This is especially fruitful when more powerful

processors exist that retain most of the properties of the existing one. Until now, two such processors are available,

the NS32332 and the NS32532. Both have the same programming model and are fully software-compatible with the

NS32032 (on object code level). This Is essential because it hides the change from the programmer. Started in 1987 a

prototype board was built for each of these two processors. After successful completion only the superior one (that

with the NS32532) was considered further. This paper documents the differences between this new processor board

and the old one. It also Includes results of some measurements made to compare the three variants and to quantify
the reached progress.

2 Main Changes

2.1 The new Processor

The central part of the processor board is the processor itself, dictating most of the logic requirements. For the

description of a new processor board it is therefore necessary to present the important properties of the new
processor first

The following features of the NS32532 are noteworthy:

1) The clock rate is increased from 10 to 25 MHz

2) The processor includes the memory-management-unit (MMU) and the timing-control-unit (TCU)

3) There is a separate 32 bit address bus instead of a multiplexed 24 bit address bus

4) The minimal number of cycles per memory access is decreased from 5 to 2

5) A 512 byte instruction cache and a 1024 byte data cache are included in the CPU chip

6) The size of the data bus can be changed between 8, 16 and 32 bit for each memory reference

7) There is a special mode for reading multiple words from consecutive addresses (burst-mode)

8) The size of the MMU pages is increased from 512 to 4096 bytes (a consequence of the wider address bus)

9) There are some new instructions for cache control

Details on the NS32532 can be found in [3].

6

Points 2) and 3) have the positive effect that they simplify the processor cluster considerably:

D

D

A

A•

Figure 2.1 Processor clusters for the two processors

Beside the 32 drivers used for the connection from the local and the the global data bus, the old configuration needs

another 16 drivers connected between the lower half of the local and the upper half of the global data bus. This was

necessary because the MMU NS32082 was designed forthe N$32016 and supports only a 16 bit data bus, but must

be able to access the page tables in the main memory. With the integration of the MMU in the new CPU this

complication disappeared.

The only slave processor not included In the CPU is the floating-point-unit (I·PU). Corresponding to the processors,

the old unit (a N$32081) is replaced by a new faster one (a NS32381). Apart from speed the only difference between

the two versions is the data interface enhanced from 16 to 32 bit. Because the FPU connects directly to the CPU

without any discrete logic needed, this change causes no further problems. The FPU is documented in (3].

Random logic is needed, however, for the bus signals BE0 • .3 (byte enable), RIW (read/write), and /LO (interlocked

operation), for the ROY (ready) input, and for the enable input of the data drivers. All these signals are produced by a

single user-programmable logic device (PAL). This solution is not only fast and elegant but also flexible. The latter

became important when it was· discovered in first tests that the BE signals are invalidated too early by the processor

to meet the requirements of the RAM board on highest speed. This problem could be solved by latching the BE

signals until the end of the ROY signal. This change was done without modifying the hardware, just by

reprogramming the device.

2.2 The new Bus Arbiter

The central part of the processor board (and also of the whole computer) is the arbiter which manages the bus and

determines the actual bus master. The arbiter is conceptually independent of the CPU and all other bus masters, but,

because the CPU is the bus master most of the time, the performance of the whole system strongly depends on a

fast interaction between the CPU and the arbiter. It was therefore necessary to change the arbiter according to the

requirements of the new processor.

The arbiter consists of two loosely coupled parts which could be named as the master control unit and the bus

control unit. The former resolves bus request conflicts by a fixed priority scheme and determines the actual bus

master, the latter controls the general bus signals and fixes the bus timing.

The master control unit on the old processor board consists of an asynchronous latch and a (combinatorial)

priority-encoder. This asynchronous latch doesn't satisfy in two ways: first, it is difficult to generate a proper enable

signal, particularly when the clock rate is increased to 25 MHz, and second it is nearly impossible to reason formally

7

about such a design. A simple solution of this problem is to replace the latch and the priority-encoder by a single

synchronous state-machine. The corresponding state diagram looks as follows:

-CPUREQ * CPUREQ* REQ3 * REQ2* REQ1 * REQO* REFREQ * DSPREQ
-REQ3 * -REQ3 * -REQ2 * -REQ1 * -REQO* -REFREQ * -DSPREQ
-REQ2 * -REQ2 * -REQ1 * -REQO* -REFREQ * -DSPREQ
-REQ1 * -REQ1 * -REQO * -REFREQ * -DSPREQ
-REQO * -REQO* -REFREQ * -DSPREQ
-REFREQ * -REFREQ * -DSPREQ
-DSPREQ -DSPREQ

Figure 2.2 Simple master control logic state diagram

Each state means that the corresponding grant output is active, except in the idle state where no output is active. An

additional signal, active in each state except idle, is needed to start the bus timing. The ROY signal is activated by the

bus control unit during the last clock cycle of a memory access and is used as a start signal for the next access by the
master control unit

This solution, while being clean and elegant, doesn't solve the problem that motivated the asynchronous solution on

the old board: The request signal available from the processor is valid too late to be latched synchronously without

a wasted clock cycle. This fact can be seen as a mistake in the design of the NS32032, however on the NS32532 the

late availability of the request signal is unavoidable because preceding each memory access the cache must be

checked for a hit, in which case no request is to be activated. The NS32532 drives three signals at the beginning of a

memory access, namely the ADS (address strobe), BMT(begin memory transfer), and CONF (confirm).

CLK

A0 .. 31

ADS'

BMr

CONF'

Figure 2.3 NS32532 memory access timing

ADS is active during the first clock cycle of each memory access, BMT is activated simultaneously with Aos· but is

dea~ivated immediately when a cache hit is detected, CONF is activated after the second half of the first clock cycle

and os guarantee~ ~o bec~me active only when the memory access is really needed. CONF has the other important

property of remaonong actove until the end of the access, which makes it an ideal request signal.

8

In order to use this late request signal without wasting the first dock cycle, the following changes are necessary: First

the bus must be dedicated to the processor by default whenever no request signal Is active. This was also done on

the old board and can easily be implemented by merging the states Idle and CPU. Bu~ although this was sufficient

on the old asynchronous approach it is not on the new one; In a synchronous system, a start signal depending on

the CPU request valid in the first cycle cannot be active before the second cycle. The only solution here is to make

that the normal case. This Is possible because the only bus signal activated during the second dock cycle is DBE

(data buffer enable) which can be merged with the start signal. In other words, the master control logic provides the

DBE signal in the second cycle Instead of a start signal in the first one. But then the state machine must be changed

such that the first cycle can be distinguished from the others. This requires doubling each state and gives the

following final state diagram:

NREQ3 *
NREQ2 *
NREQ1 *
NREQO*
NREFREQ *
NDSPREQ

.-----!cpu·

NCPUREQ+
REQ3 +
REQ2+
REQ1 +
REQO+
REFREQ +
DSPREQ

CPUREQ*
NREQ3 *
NREQ2 *
NREQ1 *
NREQO *
NREFREQ *
NDSPREQ

REQ3 * REQ2* REQ1 * REQO* REFREQ * DSPREQ
NREQ2 * NREQ1 * NREQO* NREFREQ * NDSPREQ
NREQ1 * NREQO* NREFREQ * NDSPREQ
NREQO * NREFREQ * NDSPREQ
NREFREQ * NDSPREQ
NDSPREQ

R3' R2' R1' RO' REF' DSP'

Figure 2.4 Final master control logic state diagram

The upper row of states corresponds to the first dock cycle, during the other states the DBE is active. The grant

outputs are active in either of the two corresponding states, implying that exactly one grant is active in each cycle.

The whole state machine is implemented in one PAl device .(16R8).

The other state machine needed is the bus control unit. To hold compatibility with existing memory boards, while

using the higher clock speed of the new processor, a memory access covers at least 6 cycles. Because the processor

can fetch or store an operand in two cycles, at least 4 wait states must be inserted. In the case of an 1/0 device 12

additional wait states are required to achieve the desired delays. Since the first cycle is handled by the master control

unit, the machine consists of 5 main and 12 wait states. Compared with the old board the total number of states Is

nearly the same; the reason lies in the fad that the clock speed and the number of states had to be doubled on the

old board to reach the granularity required by the bus signals.

Beside the 12 wait states inserted when IOEN (1/0 enable) is active, one or two walt states can be inserted by

activating the signals WAIT1 or WA/12. In contrast to the old board, a third wait state is Inserted when WAIT1 and

WA/12 are both active. This is necessary because one wait state on the new board is much less than one on the old.

As before, an unlimited number of extra wait states take place as long as CWAIT (continuous wait) is active.

Figure 2.5 shows the resulting state diagram:

NDBE+
IOEN * NloRdy

NIOEN *
NWAIT2*
(WAIT1 + CWAIT)

Figure 2.5 Bus control logic state diagram

9

The CLR.REQ signal, introduced as a reset signal for the request flip-flops of the various masters, is no longer needed,

because, as a consequence of the synchronous master control unit, these flip-flops can be reset directly by the

corresponding grant signal. For being compatible with existing boards, the signal is held active on the new processor

board.

The signals /oAcc and /oRdy are added for communication with the 1/0 delay counter described latter.

Thanks to the smaller number of output signals needed and with some effort in finding an efficient coding for the

states, it was possible to realize this state machine with another single PAl device (16R8). Because both parts of the

arbiter are synchronous machines operating with the same dock, they can be seen as one single state machine too.

However a description of this machine as a whole leads to an explosion of states and has no advantage over the

presented two-part specification.

10

The following timing diagram contains the specification of all relevant bus signals:

(timing inteiVals In ns)

T1 T1 T2 T3 T4 T5

CLK -,__ h-h-11_ 11_ !L-!L-
REQ' ~ I

~<12

GNT I
~<12

DBE' I I
~<12

DS' I I
~<12

RDY I I
1---1_<3

A,AV', R/W' 1---1
~<2

BEn' I I
>20~

j--
Din '--

<47 -
D out -

>15 _14-

WAIT I I

Figure 2.6 Bus signal timing

r--

rr-
rr-
rr-
~<12

1--

I

1--

1---

It is noteworthy that it was possible to reduce the time for a whole memory access from 500ns to 240ns using the

same memory board, because only two of the five bus cycles are used for memory access on the old processor. The

rest is wasted for transferring virtual and physical addresses over the data bus and for releasing the bus in the last

cycle.

Finally we can conclude that the new arbiter is not only better adapted to the new CPU, but that also its behaviour

can be described more precisely and its implementation is much simpler.

11

3 Miscellaneous Changes

3.1 The Mouse lntetface

The function of the mouse interface is to make the physical position of the mouse available to the programmer. To

do that, the mouse provides two pairs of phase coded signals, one for the horizontal and one for the vertical

movement The actual coordinates can be determined from these signals by a direction discriminator and an

up/down counter for each directio~. The values of these counters can be read by the processor through an I/O-port

On the old board the mouse interface was built with a PAL for the direction discriminators and standard chips for

the counters. With a total of more than seven chips, this interface consumes a considerable part of the total space

and power. Thanks to the availability of new, advanced programmable logic devices (EPLDs) the number of

components on the new board could be reduced drastically. Because the interface consists of two identical,

independent parts, tw~ PlDs can be used with the same contents. Figure 3.1 shows the logic needed:

Select * Write

Select* Read

12 Bit
Counter

Figure 3.1 Mouse logic for one dimension

DO .. D11

The mouse signals MA and MB are first synchronized and delayed by four D-flip-flops. By comparing the delayed

with the undelayed signal, the control logic then detects the rising and falling edges and enables the counter for

Incrementing or decrementing. A read from the attached address enables the outputs of the counter while a write to

the same address resets the counter to. zero. The logic equations for the control logic contain all relevant cases:

Up

Down

MA1 * MA2 * NMB1 * MB2 + MA1 * NMA2 * MB1 * MB2 +
NMA1 * MA2 * NMB1 * NMB2 + NMA1 * NMA2 * MB1 * NMB2;

MA1 * MA2 * MB1 * NMB2 + NMA1 * MA2 * MB1 * MB2 +
MA1 * NMA2 * NMB1 * NMB2 + NMA1 * NMA2 * NMB1 * MB2;

The chip chosen for the realization of this circuit is the EP600 from Altera Corporation [4]. This chip contains 16

independently configurable 1/0 macro cells, 4 additional inputs, and a logic array connecting all together. of the 16

macro cells, 4 are used as D-flip-flops and the remaining 12 are configured as toggle-flip-flops with tri~state

outputs for the counter. The control logic together with the logic needed to build the counter fit well into the logic
array. The formal description of the whole chip is contained in appendix B.

12

Beside the two chips for the x and y coordinates, a single driver chip is necessary for the mouse button signals. An

additional decoder present on the old board is avoided by presenting the three values (x, y, and buttons) in one

double-word instead of assigning a separate 1/0 address to each of them. Figure 32 shows the location of the

values in this double-word:

31 23 0

0 y X

Figure 3.2 Mouse 1/0 port

Note that the x and y coordinates can still be read Independently by using word-wide read operations.

3.2 The Refresh- and I/O-Delay-Counter

To refresh the dynamic RAM chips used in the Ceres periodically, a refresh-counter Is used that requests the bus

every 16~s. Instead of a data transfer, a refresh cycle is started by the RFSH signal which Is simply the grant

corresponding to the refresh request. On the old board the refresh-counter consists of a counter driven by the

processor clock (10MHz) and a flip-flop which is set when the counter value reaches 160 and Is cleared by the RFSH

signal.

The delay-counter Is not present on the old board; its introduction was motivated by the following problem: Some

of the 1/0 devices (disk controller, sec, and RTC) not only need a longer access tune, which is guaranteed by the 1/0

cycle of the arbiter, but also a minimal time of about 1 ~s between two accesses. On the old board this delay had to

be achieved by proper measures in software. With the new, considerably faster processor this is no longer feasible,

because, on the one hand the violations are more frequent and less obvious, on the other hand the cache makes it

nearly impossible to guarantee a delay by software. The only proper way is to guarantee the delay by hardware. This

is done by a circuit consisting of a counter and a flip-flop, a circuit similar to the refresh counter.

To minimize the expense for the two counters, another EP600 is used for both circuits. A block diagram of the two

parts is contained in Figure 3.3 and 3.4:

PCik PCik

Figure 3.3 Refresh counter Figure 3.4 1/0 delay counter

PC/k is a 6MHz clock signal used by the. sec chip (serial communications controller). It was chosen instead of the

processor clock because that simplifies the design and, more important, makes the design independent of the actual

processor clock frequency. The only drawback is that the resulting signals have no relationship to the processor clock

13

and must be synchronized by a flip-flop. This is not hard, because these flip-flops fit into the chip already needed

for synchronizing the master reset and interrupt request signals which are asynchronous anyway.

RefReq and RFSH are connections to the master control logic, which starts the refresh cycles. JoAcc is a signal

generated by the bus control logic during each 1/0 cycle. JoRdy. which is fed back to the bus control logic, prevents

the start of a new 1/0 cycle when it is inactive.

3.3 The Address Decoder

The main function of the address decoder is to deliver some bus signals like the /OEN, which is active wheneve~:!!_Je

address lies within the 1/0 domain, as well as the select signals for the individual 1/0 devices on the processor

board. Because the wider address bus of the NS32532 leads to new 1/0 addresses anyway, the addresses are

changed such that each of the major devices ·lies in a separate MMU page, which allows to protect devices

individually against illegal accesses. Figure 3.5 shows the resulting memory map:

.------.,FFFFFFFF -

p::...::.==; FFFCOOOO

ROM
1----JFEFSOOOO

1----;FEFOOOOO
Color
VRAM

1----JFEESOOOO

1----1 FEE40000
1--'-V'-"RA:..::M.!.!.--l FEEOOOOO

sec

UART

Mouse

RTC

ICU

Disk
Controller

FFFFFFFF -

FFFFEOOO

FFFFDOOO

FFFFCOOO

FFFFBOOO

FFFFAOOO

FFFF9000

FFFF8000

Figure 3.5 Memory Map

NMI Ack

INT Ack

Clr Parity

DIP Switch

Clr Boot

Disp. Cont.

Printer
Interface

Color Disp.
Control

Color Disp.
Palette

Color Disp.
Cursor

FFFFFFFF

FFFFFFOO

FFFFFEOO

FFFFFDOO

FFFFFCOO

FFFFFBOO

FFFFFAOO

FFFFF800

FFFFF600

FFFFF400

FFFFF200

FFFFFOOO

Like on the old board, the address decoder consists of a PAL device (16L8) for the coarse decoding and two decoders

for the individual select signals. In contrast to the old solution, only a minimum of the address signals is directly

connected to the PAL, the remaining signals (A19 .. A23, A25 .. A31), which must be high in all considered cases, are

combined with a single AND-gate. This not only solves the problem of the increased number of address lines, but

also leaves a part of the PAL unused, giving room for some random logic needed for the CLR.PAR signal on the bus

and the JoOec signal used by the processor to handle 1/0 accesses correctly.

Another part related to the address decoder is the boot logic. During the boot phase (after CPU reset) the ROM

space must start at address zero because the program counter is cleared by a system reset and the initial program

must therefore start at address zero. The boot phase is identified by a special flip-flop, set by the RESET signal and

cleared by an access of the 'Clear Boot' 1/0 address under software control.

14

on the old board the special address mapping is achieved by manipulating the processor address bus in a way such

that the RAM space starting at zero is mapped to the ROM space. On the new board a simpler solution is used:

Instead of manipulating the address bus, the behaviour of the RomEn (ROM enable) signal is changed during the

boot phase in a way that every read cycle not belonging to an 1/0 device accesses the ROM. To prevent other devices

like the RAM from beeing accessed simultaneously, the AV signal (address valid) is held inactive during these special

ROM accesses. The additional logic needed for these signals as well as the boot flip-flop itself could be placed in the

address decoder PAL

3.4 The Boot ROM

The boot ROM holds the initial program which typically loads the final system programs from the disk. The usual 28

pin ROM chips are accessed byte by byte. To support a 32 bit data bus, four such chips are needed. This is very

inefficient because even one chip is far too big for a typical boot program. To avoid this problem, the dynamic bus

sizing feature of the new processor is used. Through an input signal of the processor, which is made available on the

bus as the BYTE signal, it is possible to switch to an 8 bit wide data bus for each memory access. By activating this

signal for ROM accesses, a single ROM chio suffices. The only drawback, the reduction of execution speed, Is

insignificant, because the ROM is used during system startup only and has no influence afterwards.

The ROM devices normally used are EPROMs (erasable, programmable read only memory) which can be

programmed and erased by the user with a special hardware unit This way of programming Is well suited for the

manufacture of small series, but is a time consuming task during the development of the boot program. A better way

is to use an EEPROM (electrically erasable, programmable read only memory) which can be programmed without

being removed from the machine. Because the used EEPROM (2864) is pin compatible to the corresponding EPROM

(2764), the ROM logic could easily be extended to support both types. The only changes are the use of a

bidirectional data driver and an additional logic for the write signal. To prevent the ROM from being overwritten

accidentally, the write signal is protected by a switch on the backRiane of the processor board. The same switch can

be read by software as bit 8 of the dip-switch and it is used to select an alternate boot file source.

To meet the timing specifications of the EEPROM during programming, writes to the ROM area are treated as 1/0
accesses by the address decoder. Beside that, the programmer must ensure that the EEPROM is untouched for at

least 10ms after each write to give the device time for the final programming of the memory cells.

15

4 Measurements

4.1 Performance

The main motivation for the design of a new processor board was an expected gain in performance. For a

quantification of the gain, the execution times of some test programs were measured. To get a complete view over­

the available parts of the NS32000 series, the following Ceres configurations were compared:

-The old processor board with the NS32032 operating at 10M Hz

- A prototype board with the NS32332 operating at 15MHz

-The new processor board with the NS32532 operating at 25M Hz but without caches

- The new processor board with enabled data- and instruction caches

It is noteworthy that the measurements were made on the same physical machine with only the processor board

changed. This ensures that the rest of the hardware, in particular the memory, as well as the programs are exactly

identical and results in a fair comparison of the processors and their bus interface.

The benchmark programs used for performance comparison in [2] are not useful here because they execute a small

loop with only a few instructions in it The instructions as well as the variables of such a loop would fit entirely in

the caches, resulting in a very fast execution, but the execution times are no longer related to those of real programs.

To bypass this problem the following programs are chosen for comparison:

Quid<sort
A program which sorts an array of 1024, 16 bytes long records with the quicksort algorithm. initially the

keys are distributed randomly over the array. Note that the total size of the array (16 kbyte) is far more

than the size of the data cache.

Dhrystone
The Dhrystone benchmark defined in [5]. ,

Bit Blod< Transfer
Bit Block Transfer moves a square of 512 by 512 pixels on the screen. The distance is chosen in a way that
each word must be shifted during the transfer_

Display Character
A program which displays a 12 pixel high character on the screen. The average over all characters of the

alphabet is chosen and the font patterns are already contained in memory.

Layout Ched<
This program is part of a layout editor for printed circuit boards. It verifies the final layout against a

formally defined netlist. The program contains complex algorithms as well as large data structures

holding both the layout and the netlist in the main memory.

Compile
The Modula 2 compiler_ Because this program frequently accesses the winchester disk, its performance is

more influenced by the disk controllerthan by the processor. It is included in this list for completeness.

16

A comparison of the execution times of these programs running on the different processors Is shown in Flgur,e 4.1:

Quicksort

Dhrystone

Bit Block
Transfer

Display

Character

layout

Check

Compile

0 2

-A 1.0

B 1.9 I
c 3.9

D 7.3

roo--
A 1.0

B 1.9

c 2.9

D 4.6

-A 1.0

B 2.0

c .3.4

D 8.2

-A 1.0

B 2.0

c 3.5

D 6.8

A
r--

1.0

B 1.9

c 2.5 I
D 6.2

-A

B
~ !1 1.4

c 1.8 I
D 2.2 I

A: NS32032, 10MHz

B: NS32332, 15MHz

3 4

I

I

C: NS32532, 25MHz, no caches

I

D: NS32532, 25MHz, caches enabled

Figure 4.1 Relative performance

6 7 8

I

II

I

I

As expected the performance increases for each new processor. The gain is higher than the difference in clock speed,

showing that the efficiency of the micro-code of the new processors is also improved. The most important increase,

however, comes from the caches, which almost double performance.

17

4.2 Bus Utilization

Using a faster processor with equally rapid memory forces an increase of bus utilization. When this comes close to

100%, the memory Interface becomes a serious bottleneck for the system. To see whether that happens, the bus

utilization was measured for the same system configurations and programs as above. The measuring was done by

counting the memory references with a simple frequency counter. The expected utilization can be calculated as the

product of the access frequency and the memory cycle time. The results are shown in Figure 4.2:

Quicksort

Dhrystone

Bit Block

Transfer

Display

Character

layout

Check

0 10 20

A 36

B 48

c 75

D 24 I

A 49

B 69

c 77

D 61

A 45

B 60

c 73

D 33

A 44
B 62

c 78

D 51

A 58

B "83

c 87

D 35

A: NS32032, 10MHz

B: NS32332, 15MHz

30 40

I

I

I

C: NS32532, 25MHz, no caches

50

I

I

I

I

il

D: NS32532, 25MHz, caches enabled

60

I

I

I

Figure 4.2 Bus utilization

70 80 90 100 %

I

I
I

I

I

I
I

Bus utilization of the NS32532 approaches 90%, which is considerably high. Enabling the caches, however, results in

values mostly below that of the NS32032, which is surprisingly low. The conclusion is that. thanks to the caches, even

an additional increase in the speed of the processor would be possible without a serious problem with the memory

bandwidth.

18

4.3 Influence of Memory Speed

To analyse the interaction of the memory and the processor further, the influence of the memory speed on the

system performance was examined directly. This was done by comparing the NS32532 board with a special version

providing a memory cycle time of 5 instead of 6 dock cycles. To use this special board with the normal memory, the

CPU dock frequency was lowerd from 25 to 20MHz. The measured performance was then corrected with a constant

factor. Figure 4.3 shows the results:

1.0 1.1 12

Quicksort
A
B

1.11 I
1.02 I

Dhrystone
A
B

1.12 I
1.07 I

Bit Block A 1.14 I
Transfer B 1.03 I

Display A 1.14 I
Character B 1.06 I
layout A 1.16 I
Check B 1.04 I

A: NS32532, 25MHz, no caches
B: NS32532, 25MHz, caches enabled

Figure 4.3 Performance win due to the elimination of a wait state

Without caches the reduction of the memory cycle from 6 to 5 dock cycles results in a performance improvement of

11 - 16%, which is near the theoretical limit of 1/6. With enabled caches the win decreases to a few percent Each

further eliminated wait state brings a still worse result because the internal execution times of the processor become

more dominant In contrast, the cost of faster memory increases more than linearly with the number of saved wait

states.

The results of this and the above measurements show that the comparatively slow memory board built for the

NS32032 is still a good solution for the NS32532, although the four wait states look poor at first sight Any effort for

speeding up memory would not be jusified by the expected gain.

19

5 Conclusions

A new processor board was built for the Ceres workstation. The major changes are the replacement of the NS32032

CPU by a more powerful member of the software compatible NS32000 family and the adaptation of the bus arbiter

which is the heart of the system. Some minor changes were done to make the design simpler and cleaner. Some

parts were replaced by modem, flexible programmable logic devices (EPlDs).

The result is a board with a chip count decreased from 64 to 45, a current consumption reduced from 2.7 to 1.5

Ampere, but with a performance Increased by a factor of 5 to 8. The board is compatible with all existing Ceres

boards on the hardware side and needs only a few changes in system programs (1/0 addresses) on the software

side.

Measurements were made to examine the properties of the system. Beside the mentioned performance win, the

results suggest that the existing memory board, although designed for a much slower processor, is still a good

choice, because the effect of the higher frequency on the memory bandwidth is neutralized by the caches included in

the processor.

A prototype on a wire wrap board was operating 4 month after the start of the project The final version, built on a

printed circuit board, took another 3 month. A series of 30 computers containing the new board is currently being

completed.

The only substantial problem encountered during the design was an elect~ical interference between some wires on

the prototype, which disappeared entirely on the final board. it seems that a processor operating at 25MHz reaches

the limits beyond which a wire wrap prototype is no longer feasible.

Aclcnowledgements

I wish to thank N. Wirth for the suggestion and guidance of the project. I also wish to thank H. Eberle for the

development and documentation of the Ceres, without which my work had never been possible. Finally 1 wish to

thank I. Noack and A. Weiss for their untiring help in solving practical problems.

References

[1) H. Eberle: Hardware Description of the Workstation Ceres,

lnstitut fUr lnformatik, ETH Zurich, report no. 70, January 1987

[2) H. Eberle: Development and Analysis of a Workstation Computer,

Ph. D. thesis no. 8431, ETH Zi.irich, 1987

[3) Series 32000 Microprocessors Databook,

National Semiconductor, 1988

[4) ALTERA Data Book,

Altera Corporation, January 1988

[5) R. P. Weicker: Dhrystone: A Synthetic Systems Programming Benchmark,

Comm. of the ACM, Vol. 27, No. 10, October 1984, pp. 1013-1030.

20

Appendix A: Summary of User-Relevant Changes

Software Differences

<old values >

Addresses

- 32 bit addresses < 24 bit>

- Disk controller: $FFFF8000 .. $FFFF801C < $FFFCOO .. $FFFC1C >

- ICU: $FFFF9000/$FFFF9004 < $FFFE08..$FFFEOC >

- RTC: $FFFFAOOO < $FFFC80 >

- Mouse: $FFFFBOOO < $FFFDOO .. $FFFD08 >

- UART: $FFFFCOOO .. $FFFFC03C < $FFFD40 .. $FFFD7C >

- SCC: $FFFFDOOO .. $FFFFDOOC < $FFFD80 .. $FFFD8C >

- INT acknowledge: $FFFFFEOO < $FFFFEOO >

- DIP-switch: $FFFFFCOO < $FFFDCO >

- Clear boot: read from $FFFFFBOO < write to $FFFDCO >

-Clear parity: read from $FFFFFDOO <access of $FFFC40 >

- ROM: $FEF80000 .. $FEF81 FFF < $F80000 .. $F87FFF >

- Display RAM: $FEEOOOOO .. $FEE3FFFF < $EOOOOO .. $E3FFFF >

- Color display RAM: $FEE80000 .. $FEEFFFFF < $E80000 .. $EFFFFF >

-other 1/0: $FFxxxxxx < xxxxxx >

CPU

- new configuration register

- new debug registers

- V bit in the PSR for automatic overflow trap

- new instructions:

CINV cache invalidate

LPR CFG, x load configuration register

SPR CFG, x store configuration register

MMU

-4 kB pages

- new registers

FPU

- 8 LONGREAL-registers < 8 REAL or4 LONG REAL> (F1 is still part of LO!)

- new bits in the status register

- new instructions:

SCALB x, y y := y * 2~TRUNC(x)

LOGB x, y y := TRUNC(Iog2(x))

DOT X, y LO := LO + x * y

POLYx,y LO:=y+x*LO

sec
Receiver driver enabled via DTR output (independant of transmitter driver)

Mouse

- X counter: bits 0 .. 11

- Y counter: bits 16 .. 23 (bits 0 .. 11 of high word)

-buttons: ML: bit 14, MM: bit 13, MR: bit 12 (0 =pressed, 1 = released)

- A write to the mouse port resets both counters to zero

DIP-Switch

Bit 8: Boot switch (1: normal I 0: special)

Peripheral Cycles

A delay of 1 us between two peripheral cycles is guaranteed by hardware

Hardware Differences

The following bus signals are changed:

BUS.ERR' pin Aa13

New signal, Raises a bus-error exception on the processor.

CLR.REQ' pin Aa15

No longer needed. Held active on the processos board for compatibility.

WAIT1'
WAIT2'

pin Ba9
pin Ba10

and

A third walt state Is inserted when both are active.

IO.EN' pin Ba11

Active when the address lies In the new 1/0 domain: $FFFCOOOO .. $FFFFFFFF.

BYTE' pin Ba16

New signal. Tells the processor to use a byte-wide bus for the actual memory access:

CLI< pin Ba25

Processor clock increased from 10 to 25MHz.

FCLI< pin Ba27

No longer supported.

A24
A31

pin Bc25
pin Bc32

to

New signals. Most significant byte of the 32 bit address bus.

21

22

Appendix B: PAL- and EPLD Listings

Master Control PAL

PAL prio: 16R8;

(* NS32532 Priority Encoder B. Heeb, 8.3.88 *)

PIN 2: -DSPREQ; 19: -DSPGNT;
3: -RefReq; 18: -RFSH;
4: -REQO; 17: -GNTO;
5: -REQ1; 16: -GNT1;
6: -REQ2; 15: -GNT2;
7: -REQ3; 14: -GNT3;
8: -CpuReq; 13: -CpuGnt;
9: ROY; 12: -DBE;

EQUATIONS

DSPGNT

RFSH

GNTO

GNT1

GNT2

GNT3

CpuGnt

DBE

ROY * DSPREQ
+ -DBE * CpuGnt * DSPREQ
+ DSPGNT * -ROY;

:= ROY * RefReq * -DSPREQ
! R~~~ : :~g~n; ~D~~~~~f * -DSPREQ

:= ROY * REQO * -RefReq * -DSPREQ
+ -DBE * CpuGnt * REQO * -RefReq * -DSPREQ
+ GNTO * -ROY * -RFSH * -DSPGNT;

ROY * REQ1 * -REQO * -RefReq * -DSPREQ
+ -DBE * CpuGnt * REQ1 * -REQO * -RefReq * -DSPREQ
+ GNT1 * -ROY * -GNTO * -RFSH * -DSPGNT;

:= ROY * REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ
+ -DBE * CpuGnt * REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ
+ GNT2 * -ROY * -GNT1 * -GNTO * -RFSH * -DSPGNT;

:= ROY* REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ
+ -DBE * CpuGnt * REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ
+ GNT3 * -ROY * -GNT2 * -GNT1 * -GNTO * -RFSH * -DSPGNT;

:= ROY * -REQ3 * -REQ2 * -REQ1 * -REQO * -RefRea * -DSPREQ
! =~~: ~~~G~t-~NT~E~3-~NT~E~2-~NT~E~1-~NT~E~ -~s~e;R:gs~GN~SPREQ
+ -ROY * -CpuGnt * -GNT3 * -GNT2 * -GNT1 * -GNTO * -RFSH * -DSPGNT;

: = -ROY * DSPGNT
+ -ROY * RFSH
+ -ROY * GNTO
+ -ROY * GNT1
+ -ROY * GNT2
+ -ROY * GNT3 ! =~i : 8E~~eq * -REQ3 * -REQ2 * -REQ1 * -REQO * -RefReq * -DSPREQ

END prio.

Bus Control PAL

PAL time25: 16R8;
(* NS32532 25MHz Bus Timing State

PIN 2: -DBE; 19 -IoAcc;

(*

3: -WRITE; 18 ROY;
4: -IOEN; 17 -OS;
5: -WAIT2; 16 -lORD;
6: -WAIT1; 15 -IOWR;
7: -CWAIT; 14 -dO;
8: -IoRdy; 13 -d1;

12 -d2;

Tl:
T2:
T3:
T4:
W12:
W11:
W10:
W9:
W8:
W7:
W6:
W5:
W4:
W3:
W2:
Wl:
T5:

ROY
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

dO d1 d2 IoAcc
0 0 0 0
1 1 1 0
0 1 1 0
1 0 1 0
0 0 1 0
1 1 1 1
0 1 1 1
1 0 1 1
0 0 1 1
1 1 0 1
0 1 0 1
1 0 0 1
0 0 0 1
1 1 0 0
0 1 0 0
1 0 0 0
0 0 0 0 *)

EQUATIONS

-ROY := -dO
+ dl
+ IoAcc
+ CWAIT
+ d2 * -IoAcc * IOEN
+ d2 * -IoAcc * WAIT!
+ d2 * -IoAcc * WAIT2;

Machine B. Heeb, 26.5.88 *)

dO := -dO * -dl * -d2 * -IoAcc * -ROY * DBE * -IOEN
! =~8: d~l•*-~i * -IoAcc *-ROY* DBE * IoRdy
+ -dO * d2 * -ROY
+ -dO * IoAcc * -ROY
+ dO * -dl * d2 * -IoAcc * WAIT! * -IOEN * -ROY
+ dO * -dl * -IoAcc * CWAIT * -IOEN * -ROY;

d1 := -dO * -dl * -d2 * -IoAcc * -ROY * DBE * -IOEN : =~8: =~1 : d~2•*-~~Acc *-ROY* DBE * IoRdy
+ -dO * -dl * IoAcc * -ROY
+ dO * dl * -ROY
+ dO * -dl * d2 * -IoAcc * WAIT2 * -IOEN * -ROY;

d2 := -dO * -d1 * -d2 * -IoAcc * -ROY * DBE * -IOEN ! d~O•*d2dl :RD~2 * -IoAcc *-ROY* DBE * IoRdy

+ -dO * -d1 * d2 * -IoAcc * -ROY
+ dO * -d1 * d2 * -IoAcc * IOEN * -ROY
+ dO * -d1 * d2 * IoAcc * -ROY;

IoAcc := -dO * -d1 * d2 * -IoAcc * -ROY
+ dO * loAcc * -ROY
+ dl * IoAcc * -ROY
+ d2 * IoAcc * ~ROY;

OS := -dO * -d1 * -d2 * -IoAcc * -ROY * DBE * -IOEN ! 0go.•_Rg}: :i6w; -IoAcc *-ROY* DBE * IoRdy

+ OS * -ROY * -dO
+ DS * -ROY * dl
+ OS * -ROY * d2
+ DS * -ROY * IoAcc
+ OS * -ROY * CWAIT;

lORD dO * d1 * d2 * IoAcc * -WRITE
+ lORD * -ROY;

IOWR := dO * d1 * d2 * IoAcc * WRITE
+ IOWR * -ROY * -dO
+ IOWR * -ROY * dl
+ IOWR * -ROY* d2
+ IOWR * -ROY * IoAcc
+ IOWR * -ROY * CWAIT;

END time25.

23

24

Processor Control PAL

PAL proc: 1 6L8;
(* NS32532 Processor Control Logic B. Heeb 9.6.88 *)

PIN 1: -CpuGnt;
2: -be3;
3: -be2;
4: -bel;
5: -beO;
6: -ddin;
7: -ilo;
8: RDY;
9: -DBE;

EQUATIONS

19:
18:
17:
16:
15:
14:
13:
12:
11:

-ILO;
-BE3;
-BE2;
-BEl;
-BEO;
-WRITE;
-cpuRdy;
-BuffEn;
Slave;

IF CpuGnt THEN BEO := beO * DBE * -RDY
+ ddin * DBE * -RDY
+ BEO * RDY;

IF CpuGnt THEN BEl bel * DBE * -RDY
+ ddin * DBE * -RDY
+ BEl * RDY;

IF CpuGnt THEN BE2 := be2 * DBE * -RDY
+ ddin * DBE * -RDY
+ BE2 * RDY;

IF CpuGnt THEN BE3 := be3 * DBE * -RDY
+ ddin * DBE * -RDY
+ BE3 * RDY;

IF CpuGnt THEN WRITE := -ddin * -DBE
+ WRITE * DBE;

IF CpuGnt THEN ILO := ilo;
IF TRUE THEN CpuRdy := RDY * CpuGnt + Slave;

IF TRUE THEN BuffEn := CpuGnt * DBE;
END proc.

Address Control PAL

PAL Addr: 16L8;

(* NS32532 Address

PIN 1: -CpuGnt;
2: A16;
3: A17;

~: ~~~i.d;
6: A24;
7: -RESET;
8: -clrPar;
9: -ClrBoot;

EQUATIONS

Control Logic

19: -IoSel;
18: -boot;
17: -AV;
16: -WRITE;
15: -IOEN;
14: -CLRPAR;
13: -IoDec;
12: RamEn;
11: -Ioinh;

B. Heeb 10.6.88 *)

IF TRUE THEN IoSel := A16 * A17 * A18 * A24 * HiAd * AV * -Ioinh;
IF TRUE THEN boot RESET

+ boot * -ClrBoot; (* RS Latch *)
:= -boot

+ WRITE
IF CpuGnt THEN AV

+ A24;

IF TRUE THEN IOEN := A18 * A24 * HiAd * AV * -Ioinh
+ -A16 * -A17 * -A18 * -A24 * HiAd * AV * WRITE * -Ioinh;

IF TRUE THEN CLRPAR := ClrPar + RESET;

IF TRUE THEN IoDec A18 * A24 * HiAd * AV
+ -A16 * -A17 * -A18 * -A24 * HiAd * AV * WRITE;

IF TRUE THEN RornEn -A16 * -A17 * -A18 * -A24 * HiAd * AV * -RESET
+ CpuGnt * boot * -A24 * -WRITE;

END Addr.

MouseEPLD

B Heeb
ETH Zuerich
8/6/88
1.0
A
EP600
Ceres2 Mouse Counter

OPTIONS: TURBO = OFF

PART: EP600

INPUTS: Clk1@1, Clk2@13, MA@2, MB@11, Write'@14, Sel'@23

OUTPUTS: D0@3, D1@4, D2@5, D3@6, D4@7, D5@8, D6@9,
D7@10, D8@15, D9@16, D10@17, D11@18

NETWORK:
Clkl = INP(Clk1)
Clk2 = INP(Clk2)
MA = INP(MA)
MB = INP(MB)
nWrite = INP(Write') Write= NOT(nWrite)
nSel INP(Sel') Sel = NOT(nSel)
DO,DO = TOTF(DOt, Clk1, Clr, , OutEn)
D1,D1 = TOTF(D1t, Clk1, Clr, OutEn)
D2,D2 TOTF(D2t, Clk1, Clr, OutEn)
D3,D3 TOTF(D3t, Clk1, Clr, OutEn)
D4,D4 = TOTF(D4t, Clk1, Clr, , OutEn)
DS,DS TOTF(DSt, Clk1, Clr, OutEn)
D6,D6 TOTF(D6t, Clk1, Clr, OutEn)
D7,D7 = TOTF(D7t, Clk1, Clr, , OutEn)
D8,D8 TOTF(D8t, Clk2, Clr, OutEn)
D9,D9 TOTF(D9t, Clk2, Clr, , OutEn)
D10,D10 = TOTF(D10t, Clk2, Clr, , OutEn)
D11,D11 = TOTF(D11t, Clk2, Clr, , OutEn)
MA1 = NORF(MA1d, Clk2, ,)
MB1 NORF(MB1d, Clk2,)
MA2 = NORF(MA2d, Clk2, ,)
MB2 = NORF(MB2d, Clk2, ,)

EQUATIONS:
MA1d MA;
MB1d MB;
MA2d MA1;
MB2d MB1;

Down

Up MA1 & MA2 & /MB1 & MB2 +
/MA1 & MA2 & /MB1 & /MB2
MA1 & MA2 & MB1 & /MB2 +
MA1 & /MA2 & /MB1 & /MB2
/Write & Sel;
Write & Sel;
Up + Down;

MAl & /MA2 & MB1 & MB2 +
+ /MAl & /MA2 & MB1 & /MB2;
/MAl & MA2 & MB1 & MB2 +
+ /MAl & /MA2 & /MB1 & MB2;

Up & DO + Down & /DO;
Up & DO & D1 +Down & /DO & /D1;

OutEn
Clr
DOt
Dlt
D2t
D3t
D4t
DSt
D6t

Up & DO & D1 & D2 + Down & /DO & /D1 & /D2;
Up & DO & D1 & D2 & D3 + Down & /DO & /D1 & /D2 & /D3;
Up & DO & D1 & D2 & D3 & D4 + Down & /DO & /D1 & /D2 &
Up & DO & D1 & D2 & D3 & D4 & DS +
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS;

/D3 & /D4;

D7t

D8t

D9t

D10t

D11t

END$

Up & DO & D1 & D2 & D3 & D4 & DS & D6 +
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS &
Up & DO & D1 & D2 & D3 & D4 & DS & D6 & D7
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS &
Up & DO & D1 & D2 & D3 & D4 & DS & D6 & D7
Down & /DO & /Dl & /D2 & /D3 & /D4 & /D5 &
Up & DO & Dl & D2 & D3 & D4 & D5 & D6 & D7
Down & /DO & /Dl & /D2 & /D3'& /D4 & /D5 &
Up & DO & Dl & D2 & D3 & D4 & D5 & D6 & D7
Down & /DO & /D1 & /D2 & /D3 & /D4 & /DS &

/D6;
+
/D6 & /D7;
& D8 +
fD6 & /D7
& D8 & D9
/D6 & /D7
& D8 & D9
/D6 & /D7

& /D8;
+
& /D8 & /D9;
& D10 +
& /D8 & /D9 & /D10;

25

26

TimerEPLD

B Heeb
ETH Zuerich
8/6/88
1.0
A
EP600
Ceres2 IO & Refresh Timer

OPTIONS: TURBO = OFF

PART: EPGOO

INPUTS: RFSH'@2, IoAcc'@11, Clk

OUTPUTS: RefReq@3, IoRdy@4

NETWORK:
Clk = INP(Clk)
nRFSH INP(RFSH') RFSH = NOT(nRFSH)
nioAcc = INP(IoAcc') IoAcc = NOT(nioAcc)
RefReq = SONF(RefReqs, Clk, RefReqr, ClrRef, ,
IoRdy = SONF('IoRdys, Clk, IoRdyr, Clrio, ,)
rO NOTF(rOt, Clk,)
r1 NOTF(rlt, Clk,)
r2 NOTF(r2t, Clk,)
r3 NOTF(r3t, Clk,)
r4 NOTF(r4t, Clk,)
rS NOTF(rSt, Clk,)
r6 NOTF(r6t, Clk, ,)
10 NOTF(iOt, Clk, Clrio,
11 NOTF(ilt, Clk, Clrlo,
i2 NOTF(i2t, Clk, Clrio,

EQUATIONS:

ClrRef = RFSH; % Refresh Timer %
Clrio = IoAcc;
rOt VCC;
rlt rO;
r2t rO & r1;
r3t rO & r1 & r2;
r4t rO & r1 & r2 & r3;
rSt rO & r1 & r2 & r3 & r4 & jr6;
r6t rO & r1 & r2 & r3 & r4 & (rS + r6);
RefReqs = rO & r1 & r2 & r3 & r4 & /rS & r6;
RefReqr = GND;

iOt = VCC;
ilt = iO;
i2t = iO & i 1;
IoRdys i1 & i2;
IoRdyr = GND;

END$

% I/0 Timer %

Appendix C: Circuit Diagrams

dO .. d31 a0 .. a31

u2 u!
R1 NS32532 CPU

C!O m 031
D10 8T4 030 f11 C14 029 FlO 815

028 G11 Cl5
027 K4 816 026 B C16 025 12 £14 024 12 016 023 HZ El5 022 G2 F14
021

El £16
020 D1 Fl5
019 C! F16
018 83 G15 017 84 GT6 016

811 HI
015 (11 HI 014 E10 116 013 G!O K16 012 HIO K!5 011 15 !16 010 t4 !15 09 K2 !14
08 11 M15 07 H1 NT 06 f2 M14 05 E! NT
04 C2 PI
03 82 R16
02 ., 516
01 Pl5
DO

s /10 SPC'
St4 19 m St2 18 ST2 St1 K9 ST1 StQ K8 STO Odin' 16 ODIN' ••r A9 RSr Clk A8 CU<

Vee 87 NOE A5 PS1 85 PSO

i:~~~~:iliTF~==.=~C
6

9 SON'
86 FSSR'

...!!!'-""'-"!.Lj IOOEC'

Vee

R10 .. 12
1k

Aa13 BUS.ERR' /1

Ba16 BYTE'

Aa7 PAR.ERR' 12

ETH ZOrich

...l!!:£...~~ INVIC'
I NV DC'
lNVSET'
CIA6
CIA5
CIM
CIAJ
CIA2
CIA1
CIAO
Cll

BER'
BRr
8W1
BWO
READY'
BIN'

C ulnt' 87 RSr
Al INT' l~·~·~r~~Ai6~ Vee 06 ~~6'·

Vee N12 HOlD'

Vee no SYNC'
Dto CLK

ns532.cpu1.Sil

Processor Cluster

27

Date: 10.6.88

28

Ba23

-r-
~

Ac32
Ac31
Ac30
Ac29
Ac28
Ac27
Ac26
Ac25

Ac24
A<23
Ac22
Ac21
Ac20
A<19
A<18
A<17

A<16
Ac15
A<14
A<13
A<12
A<11
Ac10
Ac9

Ac8
Ac7
Ac6
Ac5
Ac4
Ad
Ac2
A<1

ETH Zurich

031
030
029
028
027
026
025
024

023
on
021
020
019
018
017
016

015
014
013
012
011
010
09
DB

07
06
05
04
03
02
m
DO

r/w'
BuffEn'

2
3
4
5
6
7
8

2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
9

V<e u5

Vref SENSE

RSTO

RSTO'

u1o
AlS645
AO BO 18 d31

A1 81 17 d30

A2 B2 16 d29

A3 83 15 d28

A4 84 14 d27
d26 A5 85 13
d25 A6 66 12

A7 87 11 d24

DIR G'

1 19

u11
Al5645

d23 AO 80 18

A1 81
17 d22

A2 82
16 d21

A3 83
15 d20
14 d19

A4 84 13 d18 A5 85 12 d17 A6 86 11 d16 A7 87

DIR G'

1 19

u12
Al5645

AO 80
18 d15
17 d14 A1 81 16 d13 A2 82

A3 83
15 12
14 d11 A4 84
13 d10 A5 85
12 d9 A6 86 11 dB A7 87

OIR G'

1 19

u13
Al5645

d7 AO 80
18

A1 B1 17 d6

A2 82
16 d5

A3 B3 15 d4
14 d3 A4 84 13 d2 A5 B5

A6 86
12 d1

A7 87 11 dO

9 Jt
ns532.cpu2.Sil

Reset-logic, Buffers

u14
Al5541

9 DO YO 11
8

01 Y1 12
7

02 Y2 13
6

03 Y3 14
5 D4 Y4 15
4

05 Y5 16
3 D6 Y6 17
2 07 Y7 18

GO' G1'

1 19

u15
Al5541

'" 9 DO YO 11
•22 8 01 Y1

12

'" 7
02 Y2

13
a20 6 03 Y3 14
a19 5

04 Y4
15

•18 4
05 Y5

16
a17 3

06 Y6
17

a16 2
07 Y7 18

GO' G1'

1 19

u16

Al554t
9 '" DO YO 11

•14 8
01 Y1

12
•13 7

02 Y2 13
a12 6

03 Y3 14
a11 5

04 Y4 15
a10 4

05 Y5 16
a9 3

06 Y6
17

a8 2 07 Y7 18

GO' G1'

1 19

u11
ALS541

•7 9 DO YO 11
a6 ,.

1>1 Y1
12

a5 13
a4 .. 02 Y2

14
•3 .. D3 Y3 15
a2 '

D4 Y4 16
a1 '

05 Y5
17

ao) 06 Y6
18 07 Y7

CpuGnt' ff

Author: B. Heeb

A31
A30
A29
A28
A27
A26
A25
A24

A23
A22
A21

· A20
A19
A18
A17
A16

A15
A14
A13
A12
A11
A10
A9
AS

A7
A6
A5
A4
A3
A2
A1
AO

Date: 10.6.88 ETH Zurich
ns532.cpu3.Sil

Arbiter, Ref. Counter
Addr. Decoder

29

Aa21
Aa5
Aan
Aa23
Aa24
Aa25

8a30

Date: 10.6.88

30 31

RAl u31
Am9519A-1

4 07 A<8 Aa12 INT7' 2S IR7 07 Aa11 INT6' 24 s 06 A<l
u35c Aa10 INT5' I RTCint' 23 IR6 06 6 DS A<6

Aa9 INT4' I KBlnt' 22 IRS OS
7 04 A6 IR4 04 Ba15 DK.INT 21

IR3 03
8 03 A<4

Uartlnt' 20 9 02 Ad
SCCint' 19

IR2 02
10 Dl A<2 IR1 01 1K

R19
Timerlnt' 18

IRO DO 11 00 A<l

~41 -- -- - - - -- - - - Ds3695-.
I I

r----!.4-j.l---j I 1

Vco R20 4K7

ICUSel'
EO 16

Ba13 IO.RD'
Ba12 IO.WR' D+ NA.418
Bd A2 lnr 0-

NA519

In tAck'

4K7

52
07 A<8

~~
06 Ac7
OS Ac6
04 AcS
03 A<4
02 Ad
01 A<2
00 A<l DB Adl

~K8.5

~KB.4

K8.2 C>-"'KB,.Rx,.o.,_ _____ --'-l KB.TxO K8.3

+12V +12V
R23 .. 2'5

IOK

V243 RxD 6 TxO V14.2

V24.6 DSR

RTS V24.4
V24.5 CTS

V24.8 DCD 11 OTR V24.20

u16

-12V

07 A<8
06 A<7
OS A<6
04 A<S
03 A<4
02 Ad
01 A<l
00 A<1

BaH
Ba12

V24.1~ V24.74
V24.13 c::>---YfL

R28 . .31 1K fAlS645
2 AO BO

18 07

.!. 3 AI 81
17 6

ul8 4 A2 82
16 s

81 3V M3002 s
A3 Bl 15 04

Vco 1~ VBB 03
12 6 A4 84

14 03
11 7 13 02 5 . .40pf C5 + 02 10 8

AS BS 12 01 ~ 2 Xln 01 9 9
A6 86 11 00

32.768kH• X2 ~ Xout 00 A7 87

Hi- jG' RTCSel' -j SYNC' PULSE'
cs· BUSY ~ 9

IO.RD' 6 OE' . IO.WR' 5 13 RTCint'
R/W' IRQ'

ns532.cpu4.Sil

ETH ZOrich Author: B. Heeb Date: ICU I DSW I UART 10.6.88
ns532.cpt6.Sil

ETH ZOrich Author: B. Heeb Date: 10.6.88 sec, RTC

32

n.tJo onE'

MS..?
MS3

M5.1

MS6

t\158
MS.J
M5.9

Romfn'

rclk

MoU\eS£'1'

r/w'

MYA
MYB

~

~

MP.O'
Mf:1'
Mf:.2'

IO.RO'

ETH Zurich

u43
Er600

3 016
4 017

.1 ClKl 5 018
6 019

Mouse
7 020

• 021
2

PAL
9 022

11 10 023

f-4 INP 110 15 024

i-lL 16 025
17 026 ,. 027

__.!1_ Hl-
CU<2 ~ eo

~
2 00 YO 18 011
3 01 Yl 17 DH
4

02 Yl 16 014

=t 15 [)15
03 Y3 14 [))R
04 Y4

--+ 05 ¥5
13 029
12 mo ::f 06 ¥6
11 1>11

07 Y7

GO' G1'

1 19

m532.cpu6.SII.

Boot- ROM
Mouse - Decoder

00 Ac1
01 Ac2
Dl AcJ
OJ Ar.f
04 k5
1)5 A<6
D6 1.<7
07 Ac8

u25d

"" Ef'600
Ac17
ArT8
1.<19 f--1- Cl~1
Ac20
1.<21 .Y.ouse 1.<12
Ac23 M5.4 MXA 2 PAL

Acl.f M5.5 MXB 11
1.<25 ~ INP 110
1.<26 r-ll-1.<27
1.<28

__.!1_ ClK2

ArB
A< I<
A<15
Ac16
Ac29
AcJO
1.<31
1.<37

Author: B. Heeb

1117~8a9

8 18~8.!10

3
4
5
6
7

• 9
10
15
16
17
18

!-!?.
~ f-?;
fL2

Date:

DO
01
02
OJ
04
05
D6
07
[>8
09
010
011

"'' Ac2
Ac3 ..,.
Ac5
Ac6
Ac7
Ac8
Ac9
AdO
1.<11
1.<12

10.6.88

•• ,
Eidgenossische
Technische Hochschule
ZUrich

Markus Grieder

November 1988

lnstitut fUr lnformatik
Fachgruppe
Computer Systeme

Eleldronische Post
im Netz der Ceres
Arbeitsplatzrechner

94

