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The PASCAL 'P' Compiler: Implementation Notes

K.V. Nori*, U. Ammann, K. Jensen, H.H. N&geli

Abstract

The PASCAL 'P' compiler is a portable compiler for a subset
of 'Standard PASCAL'. This compiler is written using exactly
the subset it processes and it generates object code for a
hypothetical stack computer. This report is a documentation
of the stack computer and of the compiler. The latter part
of the documentation has proved to be very useful to one of

the authors (K.V. Nori) in informally verifying the compiler.

* United Nations TAO Fellow,

on leave from: Computer Group, TIFR, Homi Bhabha Road,
Bombay-400005, India.



performance of various kinds of optimization as well. As an experiment,
these steps were repeated for the CDC 6000 series and for a hypothetical
stack computer. For the CDC 6000 series, the refinements were embel-
lished to include all of 'Standard PASCAL' as well as optimization of
object code. The main purpose of the experiment was to indicate the
feasibility of the idea that object code for different machines could

be generated by versions of a compiler which had a great deal of sub-
structure in caommon {(and, no doubt, to obtain an efficient PASCAL

compiler for the CDC 6000 series too).

A very useful by-product of the above experiment was a basis for a
portable compiler. The stack caomputer, SC, was not specifically designed
for portability, as was the OCODE machine for the portable BCPL compiler
(Richards 71). Rather, it was evolved to conveniently couch code gener-
ation and address assignment in the parser delivered by step 3. Ex-
ploiting this by-product for the purposes of portability is the genesis
of the PASCAL 'P' compiler.

The Implementation Kit

An implementation kit was prepared, by two of the authors of this
report (U. Ammann and K. Jensen) in early 1973, by means of which the

PASCAL 'P' compiler could be ported. This kit consisted of:

a) The PASCAL 'P' compiler in source form (Ammann 73b);

b) The PASCAL 'P' compiler in the assembly language of SCj;

c) An assembler/interpreter for programs of SC (Jensen and Wirth 73);
d) PASCAL definition reports (densen and Wirth 74; Hoare and Wirth 72);
e) Documentation of SC.

One way of quickly acquiring the PASCAL 'P' compiler was to write an
interpreter for SCj; running part (b) of the kit on this interpreter
would then make PASCAL available on the system. This method could be
used to bootstrap the PASCAL 'P' compiler: one of the authors (U. Ammann)

has used such a bootstrap as a means for validating the compiler by



exploiting the fact that the initial object code file and the object
caode file resulting from the bootstrap must be identical. Another

method of implementing this compiler is to translate part (b) of the
kit to a machine language program of the implementation machine (Laws

and Wichman 73; Friesland et al 73).

Several factors have led to the current version of this compiler.

The most important ones are: a) Feedback from implementation efforts
such as those above; b) The need to restrict the compiler into using

a subset of the standard and extending the compiler so that it pro-
cesses exactly this subset; and c) Parameterizing SC so that it may

be more easily implemented on an actual implementation machine. One

of the authors (K.V. Nori) undertook to examine these issues, consider
the trade-offs involved and effect the necessary changes. It should be
noted however that, essentially, the implementation kit censists of the

same parts for the present version of the PASCAL 'P' compiler.

The Language Processed by the PASCAL 'P' Compiler

The language processed by the PASCAL 'P' compiler is 'Standard PASCAL'
with some omissions and one change. These are of no conserquence to the
bootstrap process; the omission can be filled in quite easaly as there
are indications in the compiler where the required extensions should

be filled in.

The features which are not processed are:

a) procedures/functions as parameters.

) goto's leading out of procedure/function bodies.

) a@ll kind of files except predefined character files (of type 'text').

) all features associated with 'packing'.

) characters not in the restricted IS0 set represented by the CDC
Display Code.
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Change:

f) the standard procedure 'dispose' is replaced by 'mark' and 'release'

For further details see Appendix IV.

Implementing Strategies

Assuming that an implementor of the 'P' compiler is already familiar
with PASCAL, the first thing he has to familiarize himself with is

the SC. The syntax of assembly programs for the 5C is given in
Appendix I. The semantics of 5C progréms can be easily deciphered

from part (c) of the implementation kit. This assembler/interpreter

is expressed in PASCAL. The implementor should take note that this
program is only a guideline to understanding the SC and not necessarily
the best way to implement it on any computer. The reason for such a
strong statement should by no means be taken to reflect upon the
quality of this program! We wish to emphatically bring to the reader's
notice that the data manipulated by the SC is parameterized according
to the storage space it requires: the assembler/interpreter is written
for the case where 1 storage unit is required to preserve any kind of

data. Additional explanatory notes are given in Appendix II.

Apart from several pragmatic issues, a compiler has to perform two
very important tasks. Firstly, it has to check whether the source
program is well formed. And secondly, if it is well formed, then the
compiler has to generate an object program which is semantically
equivalent to the source program. The design of PASCAL is such that
the first task is greatly simplified. The second task concerns a
relationship between the source and object languages. This relation-

ship is concisely presented in Appendix III.

Having digested the infarmation in these appendices, an implementor
has sufficient information to devise an implementatian strategy. Three
such strategies are presented here as examples; they are definitely

not an exhaustive coverage of the possibilities.



If the expected use of PASCAL is for teaching purposes and only

short programs are to be compiled and executed, then the simplest
method of implementing the 'P' compiler is by writing an efficient
assembler/interpreter for SC. The only logical hurdle that may confront
an implementor using such a strategy is the fetching and storing of
data from and to the memory of the stack computer. This problem needs
to be efficiently solved especially when different kinds of data, e.g.
integers, characters, sets, pointers, etc., require different units

of store for their representation. Once the assembler/interpreter is
implemented, part (b) of the implementation kit could be used in-
terpretively to compile short programs. The output of the compiler can
be then processed by the assembler/interpreter to obtain an interpretive
execution of these programs. It should be noted that despite interpret-
ation, the overall throughput will compare favourably with commercial
compilers for large languages. The resources required for such an
implementation will approximately be: (a) 54 K bytes for storing the
object code of the 'P' compiler in machine language form of the 5C;

(b) about 20-30 K for the data segment of the 'P' compiler to compile
programs usually given as student exercises; and (c) the store required
for the assembler/interpreter. Bootstrapping the PASCAL 'P' compiler

by this method can be very expensive and is not recommended.

Another strategy, more suited to the bootstrapping of the compiler, is

to convert part (b) of the implementation kit to an assembly language
program, by using a conventional macro-processor or some such scheme.

This will no doubt increase the storage requirements initially. But

as the implementor is forearmed with the code generation patterns of

the 'P' compiler (Appendix III) and also the exact scheme of converting
part (b) of the kit to assembly code, an effective 'peephole optimization'
(McKeeman 65) could be planned. Once this has been accomplished, part

(a) of the kit, 'P' compiler in PASCAL, can be directly modified to

generate code for the implementation machine.

In case storage is the main constraint, a judicious mixture between

interpretation and machine execution can be used. A paossible technique
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is that of 'threaded code' (Bell 73). A considerable gain in speed
with marginal increase in storage requirements, in comparison with
the first strategy above, could result. This technique therefore
seems viable for attempting a bootstrap. The plan of action is very
much like that of the second strategy above. An intermediate language
suited to the implementation machine architecture can be designed
(under the constraint of the ease of mapping the code generation
pattern of the 'P' compiler to code in this language) along with a
run time package to support this language. Then part (b) of the kit
could be transformed to this code in this language. The result is that
PASCAL is now available on the implementation machine. The bootstrap

can now be effected by modifying part (a) of the kit and using it.

In our experience neither portability nor bootatrapping can be obtained
at very little expense (as one is sometimes led to believe from papers
on this topic). In the absence of 'heavy artillery' like sohpisticated
macro-processors (Waite 70, 73) or very high-level machine languages
(Poole 74) or a host machine (Wirth 7ic; Welsh and Quinn 72), the

work required to move an especially machine and system dependent
software - like a compiler - is not negligible. However, if the work
required is approximately an order of magnitude less than that for
writing the whole software from 'scratch', we would consider the
method as viable for purposes of portability. Within such a constraint,

we feel that the solution we offer is a feasible one.

Portability and adaptability considerations demand a generality in

the solution of problems which could prove to be redundant in most

of the specific cases of their use. More often than not, this aspect

is looked upon as a deterrent to general solutions because severe
constraints arise due to the limited resources (or their poor management)
of the implementation machine. Something akin to 'conditional assembly'
is required to prevent loss of efficiency. For PASCAL, a separate
project is currently in progress at ETH, which tries to get around

this issue (Wirth 74).



The PASCAL 'P' Compiler Options

The PASCAL 'P' compiler uses 3 external files: they are labelled

INPUT, BUTPUT and PRR respectively and are all of type 'text'. The

file INPUT contains the source program; the file OUTPUT contains the
source program listing (optionally), the symbol tables (cptionally)

and compiler messages; and the file PRR optionally contains the object
program, for 5C, in its assembly language form. In the preceding
sentence, by 'optionally' we mean that these components may or may not
be included in the respective files depending on the user's discretion.
These user-options can be set at any point in the user program by means
of a pseudo-comment. A pseudo-comment is one in which the first symbol
within the comment is a '$' symbol. Following the ’$' symbol are

option settings separated by ',' symbols. An option setting starts

with the letter 'L', to indicate 'listing', or 'T', to indicate 'tables',
or 'C', to indicate 'code'; this letter is followed by either a '+'
symbol or a '-' symbol, the former indicating that the option is to be
turned on and the latter indicating that the option should be turned
off. Default setting for these options are: L is on; T is off; and C

is off.

So much for user options; we now turn to implementor-options and

restrictions.

A compiler by its very nature cannot be machine-independent: after all
the compiler has to be expressed in gome language, generate code for
gome machine and run in some operating system. Be that as it may, in
the interest of portability the commitments arising from the above
aspects should be minimal. The design of PASCAL is such that it needs
a very simple run-time support and hence is largely independent of

the environment provided by an operating system. The only commitment
we make is that of the character set. It is possible to be independent
of the character set too, but the expense is unwarranted compared to
the gain in conciseness of the program (mainly, the lexical analyzer).

The character set used is a subset of the IS0 code as implemented by
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the CDC Display code. It is imperative, therefore, that the implementor
does code conversion in the early phases of his bootstrap process.
Since the PASCAL 'P' compiler is expressed in PASCAL, no further
linguistic or representational commitments are necessary. The rest

of the considerations arise from the nature of the SC.

It is guite possible to design a very clean machine, one in which no
commitment is made at all with regard to representation of basic units
and structures of both data and operations; in fact, the design can be
predicated purely upon logical considerations stemming from PASCAL,
e.g., JANUS (Coleman et al 74). The hitch is that the interpreter for
such a language is quite complex and is bound to be slow. Even if
interpretation is never intended as the mode of usage of code of such
a machine, the description or definition of this machine is complex
enough to impair perfect communication between its designer and
implementor. Another solution is to make a complete commitment with
regard to data and operation representations, e.g. OCODE for BCPL
(Richards 71). The rigidity of this solution with respect to efficient
adaptation to different systems along with the inherent problem with
BCPL, that programs in it may not be truly machine-independent because
of the word-length problem, makes us discard this approach too. Our
solution lies between these two: all basic operations of the SC arise
out of logical requirements due to PASCAL, though some extra operations
come in because programs are 'linearized' and data are accessed within
a 'tree'; all basic data types of PASCAL have attributes for both
representation as well as size - furthermore, sets appear as basic
units in this machine. This specific choice is dictated by reasons

of simplicity and efficiency of the compiler as well as the interpreter.

Having explained our motivation, we give below the specific constants
which can be set by an implementor, in order to obtain a part (b) of
the implementation kit which is most suited to his implementatiaon

machine:

a) MAXINT: The value of this constant is implementation dependent;



b)

c)

d)

assignment

CHARSIZE,

DIGMAX:

STRGLGTH:

it indicates the largest integer which the compiler will

process.

PTRSIZE, INTSIZE, BOOLSIZE, REALSIZE, SETSIZE:

These constants indicate the number of storage units
required to preserve values of type character, pointer,
integer, boolean, real and set. All storage allocation

is dane in terms of these constants. Also, storage
allocation of data is according to the simple rule that
consecutively declared entities are allocated the requisite
number of consecutive storage units. Note that sets have
to be able to hold at least 59 elements: this restriction
arises from the fact that the compiler itself uses large
sets. Implementors wishing to perform the full bootstrap
should pay particular attention to the address alignment

problem when all these constants are not equal to one

another.

This constant represents the maximum length of a string
of characters which may be used to represent unsigned
numeric constants. At present its value is 15. This
restriction is not a machine-dependent feature but a
pragmatic one. Note that real numbers are not converted
into an internal form but preserved as character strings.

Consequently, the compiler itself uses no real numbers.

At present, this constant has the value 16. It represents
the maximum length of strings processed by this compiler.
That STRGLGTH is greater than DIGMAX is not coincidental:
An implementor desiring to change one of them should also

change the other in accordance with the above relationship.

We now turn to the commitments and restrictions imposed by the address

(for data) and code generation patterns of the 'P' compiler,

and the requirement of simplicity of the assembler/interpreter for the

sC.
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a) Drganization of programs as generated by the compiler:

abspolute address

0
1
2

instruction

MST 0

CUP label for main program

STP

ENT name indicating a constant which is

the size of data segment of procedure

whose body is encountered first.

The reader is referred to the assembler/interpreter for SC and

to Appendix II for further explanation about the inmstructians.

Organization of data segments of procedures (they all start at

relative address 0) according to the address assignment done by

the compiler:

tyvpe of data

mark stack information

parameters

local variables

remarks
space for value returned by function +

3 pointers (see Appendix II);

call by reference parameters: address

call by value parameters:
if size of value parameter is one
storage unit, then the value, else
the address; for all value parameters
whose size is not equal to 1 storage
unit, requisite local storage is
allocated so that the value may be
copied at procedure entry at run-
time (see Appendix III on code

generation for procedure bodies);

allocation according to the simple
rule: consecutively declared entities
are allocated consecutive storage

units.
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Note that in the outermost block, after the mark stack information,
space is pre-allocated for files INPUT, OUTPUT, pRD(second input
file) and PRR (second output file) respectively.

c) Due to the nature of the mark-stack information, function return
has an additional parameter, viz. the type of value returned by
the function. This information allows a proper adjustment of the

top of the stack when the return is effected.

With this, we hope to have covered what every implementor should
definitely make a note of. The various details are reserved for the

appendices which follow.
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APPENDIX I: The Syntax of Stack Computer Assembly Language

The syntax of Stack Computer Assembly lLanguage is given in the form

of Syntax Diagrams.

assembly assembly

Assembly program — EE——

record record

Note: The first assembly record consists of the whole program and
should be loaded from absolute location 3 of the SC. The secand
record, to be loaded from absolute address 0 of the SC, consists
of a call to the outermost block (please see the subsection
"Organisation of programs as generated by the compiler" in the
section "The PASCAL 'P' Compiler Options").

assembly . -
Assembly record M. iotement L——|i|er\d—cf—llr\e end-of-line g
Assembly statement I integer
L integer = integer
assembly
- instruction
Notes: 1) The top part of the above diagram indicates the value of the

location counter at which the next instruction should be
assembled; its purpose is only to allow the reader of this
code to relate to the source listing produced by the compiler

and is generated for every tenth instruction.

2) The middle part allows the definition of symbolic names;
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these names are very simple - an L followed by an integer
which uniquely identifies the name; names are used either
as labels or as constants; the former allow all control
transfers to be symbolic and hence allow the code to be
automatically manipulated - such names are defined by the
point of their occurence, i.e., the value of the location
counter at the time when such a statement is encountered;
the use of names as constants is in defining the data
segment length for a procedure or function or the outermost
block - in such a case, the value of this constant follows

a '=' symbol.

3) An assembly instruction is always preceded by a blank.
Instruction for loading constants

LCA string

—i@ i‘real

( character

©

Return instruction

RET




Relational instruction

opcode

class 5 char 1 T
M linteger |

Procedure call instruction
CSP standard procedure mnemanij
CUP integer L linteger

Assembly instruction

opcode
class 1

opcode lint l
®lelass 2| °9er q
opcode . .
—— 1ass 3 1nteger‘ integer p— p

__’EEZZ:BA @ integer — 4
—® relational instruction 1
"———4procedure call instruction |
L——Ptreturn instruction P

—— instruction for loading canstants}———“'"——’

opcode class 1 = {ABI, ABR, ADI, ADR, AND, DIF, DVI, DVR, EOF, FLT,
FLO, INN, IOR, INT, MOD, MPI, MPR, NGI, NGR, NOT,
0oDD, SBI, SBR, SGS, SQI, SQR, STO, STP, TRC, UNT}

opcode class 2 = |CHK, DEC, INC, IND, IXA, LAD, LDO, MOV, MST, SRO|




opcode class 3 =

opcode class 4

opcode class 5

char 1

- 18 -

{LDA, LOD, STR}
{ENT, UJP, XJP,
{EQU, NEQ, GEQ,

{A, I, R, B, s}

standard procedure mnemonic

integer,

string,

{GET, PUT, ELN,
RDR, RDC, RST,

real as defined

Fup}

LEQ, GRT, LES}

NEW, WRS, WLN, WRI, WRR, WRC, RDI,
SAV, SIN, CO0S, EXP, LODG, SQT, ATN, RLN}

in PASCAL syntax.
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APPENDIX II: Explanatory Notes on the Stack Computer

This appendix consists of two parts: the first part gives an informal
description of the Stack Computer, SC; and the second part gives the
list of opcodes and standard procedure mnemonics with brief comments
to indicate their meanings. For a more precise definition of the Stack
Computer, the reader is referred to the assembler/interpreter of the

SC which is included in the implementation kit.

PART A: Description of the Stack Computer

The stack computer, SC, consists of 4 registers and a memoxry. The

registers are:

1) PC the program counter;
2) SP the 'stack' pointer;
3) MP the 'mark' pointer;
4)

NP the 'new' pointer.

The meaning of SP, MP and NP will become apparent when we consider

the organisation of the memaory. The memory can be thought of as linear
arrays of storage units (words): one of the parts of the memory is
referred to as the code store, labelled CODE and the other part is
referred to as the data store, labelled STORE. Their functions are
obvious. Note that PC is always an index into CODE and 5P, MP and NP

are indices into STORE.

Each element of CODE has three fields: the OP field, the P field and
the Q field. The actual length of these fields is implementation
dependent with the restriction that the OP field should be at least
6 bits long and the P field at least 4 bits long respectively.

For STORE, each element has two fields: the tag field and the value
field. The interpretation of the value field is dependent on the
contents of the tag field. Furthermore, STORE is subdiveded into two
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parts: one part contains constants of various kinds whereas the
other caters to the varying demands of data store, as required by

the execution of PASCAL programs. This is depicted below.

The stack grows from 0 upwards and

’ consists of all directly addressable
stack data according to the data declarations.
l 5P Storage overflow aoccurs if SP and NP

? meet. The heap grows downwards from the

NP point where the constants begin: its

heap growth is dictated by use of the standard

procedure NEW.

large integers

reals At present, the areas for each of the

sets types of constants is fixed. Hence

boundary-pairs provision for checking table overflow is

made. The use of boundary-pairs is not
strings . . )
yet implemented in the current version

L— CONSTANTS —b'

of the P-compiler.

The following points are worth noting regarding the dynamic use of
elements of STORE: the compiler's use of the heap resembles a second
stack and so a very simple heap mechanism suffices. However, a user
of the implementation kit desiring more flexibility should implement
a more complex free-storage handling mechanism. Though it should be
clear from the above picture, please note that SP points to the top

of the stack and NP points to the top of the heap.

The stack has further internal structure; this structure allows a
correspondence between the dynamic evaluation of a PASCAL program and
its static text in that necessary links are maintained, dynamically,

so that the accessable objects are those dictated by static program

text (except for parameters - of course). To amplify, the stack consists

of a sequence of 'data-segments', each of them 'belonging' to an acti-
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vation of some procedure or function (except the first data segment,
which starts at location 0, and which belongs to the outermost block,

viz., the program block).

A data-segment consists of the following sequence of information: a
'"mark-stack' part; a 'parameter' section if there are any parameters
to the procedure or function to which the data segment belongs; a
'local-data' section if there are any local variables declared within
the procedure or function to which the data-segment belongs; and

finally, any temporary elements which may be required in the program

evaluation process.¥

In turn, the 'mark-stack' part consists of 4 consecutive fields: the
first field is space for preserving the value returned by a function -

it is not used by procedures, but included in their 'mark-stacks' too

for the sake of uniformity and ease of implementation; the second

field consists a pointer called the static link; the third field consists
also of a pointer called the dynamic link; and finally, the fourth

field consists of a pointer called the return address. Note that the
static and dynamic link are indices into STORE whereas the 'return-

address' is an index into CODE.

The parameter section consists of two parts, both of which may be

empty. The first part consists of elements which are either: (a) pointers
(indices into STORE) in case the corresponding parameters are of type
'call-by-reference' or of type 'call-by-value' but the size of the
parameter is larger than the PTRSIZE; or (b) the parameter is
'call-by-value' and the value itself is passed as it requires only
PTRSIZE or less. The second part pertains only to call-by-value
parameters whose size is larger than PTRSIZE. In such a case, for each

of such parameters, space is allocated as required by their respective

sizes.

In order to effect a procedure/function call, a mark-stack instruction

(MST) is executed with a parameter which allows the links to be filled.

¥ In this connection, the register MP points to the mark stack part

of the most recently allocated data segment in the stack.

7
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Then follows a series of expression evaluations to fill in the first
part of the parameter section. After this a call-user-procedure
instruction (CUP) or a call-standard-procedure instruction (CSP) is
executed with appropriate parameters. The reserving of space for the
second part of the parameter section as well as the local data is

done by the ENT instruction, the first to be executed in the procedure
body. The copying of large call-by-value parameters into the second
part of the parameter section is done by instructions immediately after
the ENT instruction (see Wirth 71c, 72 for information on the main-

tenance of the mark stack information).

It was mentioned earlier that the mark-stack information has space for
preserving the value of functions, i.e. of type integer, real, character,
boolean, any scalar or subrange, and pointer. Because in general values
of the above types could require different amounts of storage units

for their representations, the space reserved equals the largest number
of storage units required (usually for type reel). This is done purely
for standardizing the mark-stack information and simplifying its
maintenance. It follows that the return instruction for functions should
take heed of the type of function being computed and thereby adjust

the top of the stack, i.e. SP, accordingly.

The relational instructions, the load constant instruction and the
return instruction are parameterized by type information as specified
in the syntax in Appendix I. We trust that the reader will have no
trouble in deciphering the correspondence between the characters and

the types they signify.
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PART B:Symbolic Instructions of PASCAL-CODE

Each instruction is packed into a 30-bit field.

The op-code occupies

a 6-bit field, parameter a 4-bit field, and parameter § a 20-bit
(address) field. Sometimes, the § field may be symbolic. This is
indicated by an asterisk (*) in the description below.
Alphabetic List of Instructions:
code | mnemonic | parameters description
40 ABI absolute value of integer
41 ABR absolute value of real number
28 ADI integer addition
29 ADR real addition
43 AND Boolean "and"
26 CHK Q check against upper and lower bounds
15 CSP Q call standard procedure
12 Cur P Q call user procedure ¥
57 DEC Q decrement address
45 DIF set difference
53 DvI integer division
54 DVR real division
13 ENT Q enter block *
27 EOQF test on end of file
17 EQU P (Q) compare on egual
24 FJP Q false jump¥*
34 FLD float next to the top
33 FLT float taop of the stack
19 GEQ P (Q) greater or equal
20 GRT P (Q) greater than
10 INC increment address
9 IND Q indexed fetch
48 INN test set membership (in)
46 INT set intersection
44 I0R Boolean "imclusive or”
16 IXA Q compute indexed address
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code | mnemonic | parameters description
5 LAD Q load base-level address
56 LCA Q load address of constant
4 LDA P Q load address
7 L.DC P Q load constant
1 LDO Q load contents of base-level address
21 LEQ P (Q) less than or equal
22 LES P (Q) less than
D LOD P Q load contents of address
49 MOD modulus
55 MoV Q move
51 MP1I integer multiplication
52 MPR real multiplication
11 MST P mark stack
18 NEQ P (Q) not equal
36 NGI integer sign inversion
37 NGR real sign inversian
42 NOT Boolean "not"
50 0DD test on odd
14 RET P return from block
30 SBI integer subtraction
31 SBR real subtraction
32 SGS generate singleton set
38 SQI square integer
39 SQR square real
3 SRO Q store
6 STO store at base-level address
58 STP stop
2 STR P Q store at address
a5 TRE truncation
23 ude Q unconditional jump*
47 UNI set union
25 XJP Q indexed jump*
8 P Q load constant indirect, an assembler-
generated instruction




Type of the operands on the top of the stack for the instructions
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(the first element corresponds to the top of the stack)

Before after the instruction
int int ABI, NGI, SQI
real real ABR, NGR, SQR
bool bool NOT
adr adr DEC, INC
int real FLT
int bool 0DD
int set 5GS
real int TRC
adr bool EOF
int i
int int ADI, DVI, MOD, MPI, SBI
real )
real real ADR, DVR, MPR, SBR
bool i
bool bool AND, IOR
int !
adr adr IXA
set I
set set DIF, INT, UNI

1 any LOD
t adr LAD, LCA, LDA
i int,bool,adr LDC, LDO
(depending on P parameter)
any ! 5SRO, STR
bool | FJP
int,real,bool,set,adr ! EQU, GEQ, GRT, LEQ, LES, NEQ
int,real,bool,set,adr bool
(depending on P parameter)
set !
int bool INN
any any
int real FLO
adr }
adr } MOV
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Before after the instruction
any |
adr ! ST0

no action on top of stack
special

adr any

CHK, WP, STP, UJP
CSP, ENT, MST, RET
IND



PART C: Mnemonics of Standard Procedures/Functions of the Hypothetical

Stack Computer

The only argument of the CSP (Lall Standard Procedure) instruction is

of mnemanic representing a Standard Procedure/function. The integer

representation or code of this mnemonic is put into the address part

of an instruction by the assembler.

Alphabetic List of Standard Procedures/Functions:

Computes the arctan function for the value on the
top of the stack and leaves the value of the result
on the top of the stack.

Computes the cosine function for the value on the
top of the stack and leaves the value of the result
on the top of the stack.

Checks the EOLN condition for the file specified on
the top of the stack; the result of this check 1is
left on the top of the stack.

Computes the function ey where y 1s the value on

the top of the stackj the result is left on the top

Performs get on the file specified by the top of the
stack and appropriately fills the buffer associated

The natural logarithm is computed for the value on
the top of the stacks the computed value is left on
the top of the stack.

Mnemonic Code Description
ATN 19
CosS 15
ELN 2
EXP 16
of the stack.
GET 0
with it.
LOG 17
NEW 4

The top of the stack specifies the size of element
to be allocated from the free staorage; the address
of the element is to be stored in the pointer
variable whose address is to be found below the top

of the stack.
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Performs the put operation on the file specified by

the top of the stacks; the buffer is now initialized

Reads a character from the file specified on the top
of the stack and assigns it to the variable whose
address is below the top of the stack; note the

automatic updating of the buffer associated with

Reads an integer from the file specified on the top
of the stack and assigns it to a variable whose
address is below the top of the stack; note the

automatic updating of the buffer associated with

Reads a real number from the file specified on the
top of the stack and assigns it to a variable whose
address is below the top of the stack; note the

automatic updating of the buffer asscciated with

The top of the stack specifies a file on which a
READLN is performed; note the automatic updating of
the buffer associated with the file.

Sets the 'new' pointer (heap pointer) to the pointer

value on the top of the stack.

Saves the current value of the 'new' pointer (heap

pointer) at the address specified on the top of the

Computes the gine function for the value on the top

of the stack; the result is left on the top of the

Mnemaonic Code Description

PUT 1

to 'undefined’.
RDC 13

the file.
RDI 11

the file.
RDR 12

the file.
RLN 20
RST 2
SAV 20

stack.
SIN 14

stack.
5QT 18

The sguare root of the value on the top of the stack

is computed and the result is left on the top of the

stack.
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Performs WRITELN on the file specified on the top

Writes on the file specified on the top of the stack
a character whose ordinal value is found immediately
below the element below the top of the stack. Just

below the top is the number of characters to be written

Writes on the file specified by the top of the stack
an integer whose value is given immediately below the
element below the top of the stack. Just below the top

is the number of characters to be written out.¥*

Writes on the file specified by the top of the stack
a real number whose value is given immediately below
the element below the top of the stack. Just below the

top is the number of characters to be written out.*

Mnemonic Code Description
WLN 7
of the stack.
WRC 10
out.*
WRI 8
WRR 9
WRS 6

Writes on the file specified by the top of the stack
a string of characters; immediately below the top of
the stack is the value of the actual length of the
string; below this is specified the actual length to
be written out - if the actual length is less than
the number of characters to be written out, then
sufficient number of initial blank characters are
written out; below the number of characters to be
written out is an address where the actual string

can be found.

As is standard with all stack machines, the use of operands by the

above standard procedures/functions causes them to be removed from

the top of the stack. In the use of functions, the result is pushed
on to the stack.

*

if necessary leading blanks are filled in.
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Type of operands on the top of the stack

for the standard procedures and functions

(the first element corresponds to the top of the stack)

real real ATN, CDS, EXP, LOG, SIN, SQT
adr bool ELN
adr ! GET, PUT, RLN, SAV, RST, WLN
adr ! RDC, RDI, RDR
adr i
int ! NEW
adr !
adr } WRC, WRI
int {
int 1
adr !
int 1 WRR
real !
adr )
int ! WRS
int )
!

adr




APPENDIX III: Code Generation Pattern of the P-compiler

A compilers job is to produce a syntactic transformatiaon under the
constrain of semantics equivalence of socurce and object programs.
This syntactic transformation is certainly a context sensitive one.
In this sense, the ensuring description of code generation pattern
of the P-compiler for the hypothetical stack computer is inadequate.
However, as the reader is assumed to be familiar with PASCAL, it is
hoped that he will fill in the context conditions under which the

generation pattern is valid.

To simplify the description, syntax diagrams, like those used in the
definition of PASCAL syntax, will be used here. The conventions

followed with regard to the 'boxes' in the diagrams are:

box

syntactic unit meaning

indicates the genmeration of code for the
syntactic unit enclosed in the box at the

point where such a box is encountered.

t . . c o
;Z;:i:tgil indicates the use of a specified contextual

code generator by the compiler; e.g. LOAD,
LOADADDRESS and STORE: the context is

usually represented by compiler variables
LATTR and GATTR which preserve local and
global attributes of expressions, variables,

etc.

’[E::>*A > indicates that the path will be followed

only if the predicate p is true: these

predicates, represented by letters in the
diagrams,are informally explained in the

footnotes that follow every diagram.
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bject %anguage the enclosed information is immediately
terminals

1)

2)

3)
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program

block

body

put out on the object code file 'LGO!
and i1s considered to be a terminal

symbol of the object language.

—#block [

declarations body —8

label 1 {this label corresponds to the

procedure name to which this body
belongs and is used for making

calls tg this procedurel

v

LDA @ address

v LOD ¥ address of
parameter value

mav size of value
parameter

< RET PrOCEqUIE7j> {procedure or function is denoted
function b
l y a character]

label 2 = segsif}) isegsize is the size aof the local
data segment this block requires
at runtime‘

A 4

(" end of record i\

MST P

CUP @ label marking
outermaost block

STP

\‘end of record 4}




Predicates

X3 when the body being caonsidered is that of a procedure/function
and this procedure/function has value parameters which are of
size greater than the PTRSIZE; this could happen for arrays/
records passed as value parameters and also for some scalars (say

reals and integers) and sets.

v when the body being compiled is that of the main program (i.e., the
outermost block); the code generated makes a call to this block

and stops on return.

4) unlabelled statement

4—4Jassignment statement F————————

procedure calllgf

—___—JEEto statement L*

: |
if statemengj

____—40858 statement;

while statement}'

repeat statement}~f

—_-—“4for statement

‘4with statement

*;Dmpound statement

5) statement label unlabelled statement}———i




6) compound statement statement —5
7) assignment statement l
variable
P

N

CLuADADDRESS )

v

expressien
A 4 H
h
oA {LOADADDRESS )
{STORE ) <FDV element siz%)
1

Predicates L

pt where <{variable> is of type scalar, subrange, pointer or set and
is directly accessable.

q: where <variable> is of type scalar, subrange, pointer or set and
computation is required to access the demand, e.g., subscript
evaluation, or indirection due to use of pointers.

I: where <{variable> is of type record or array.

s where<expression>is of type integer and <variable> is of type real.

Note: In case all paths are blocked because none of the correpsonding
entry predicates is true, a definite contextual semantic error

is detected.
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8) procedure call

standard procedure call

P >

'—————-———4non—standard procedure call

Predicate
p: where the 'procedure identifier' is one of the standard names.
9) non-standard procedure call l
MST difference in calling procedure
and called procedure +1
expression
¥
r v
LGOAD |
(LOADADDRESS )
S
FLT
< STR ¢ temporary:>
K 2
<EDA Jui temporary:>
| # AJTE

n

'3

CUP 1 procedure body labéb ‘CSP standard procedure na%})

| ]

-

{l is the number of locations units required by the parameters
(machine dependent)i




Predicates

p:

when the corresponding formal parameter is a var parameter and

{expression> is a <variable).

when the corresponding formal parameter is a value parameter and
<expression> is a <variasble> and size of variable >PTRSIZE and type of

{variable> and the formal parameter are compatible.

when the corresponding formal parameter is a value parameter and
{expression> results in a computed value or a constant or if it
is a <variable> then either size LPTRSIZE and its type is integer
whereas the formal parameter is of type real or its size is

£ PTRSIZE .

when <expression> results in an integer value and the corresponding

formal parameter is of type real.

when size of formal parameter is >PTRSIZE and its value is available
on the stack and should be passed; the value is stored in a tem-
porary location in the current data segment (of the calling
procedure) and the address of this temporary location is passed

on; {note implicit declaration of pointer type variablel

when the procedure is external and is one of SIN, €05, ATAN, LN,
EXP and SQRT.
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10) standard procedure call

get/put

—————{;Ead/readln }

write/writeln

mark/release

; ¥
{|Those not mentioned in the above list are not implemented by the

P-compiler|

11) get/put

————4 variable

LOADADDRESS

Predicates

p: where <variable> has the type attribute 'file'
g: The standard name used is GET.

r: The standard name used is PUT.

12) abs P ABI
[ }—
b ABR \
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Predicates

p: {expression> is of type integer.

q: {expression> is of type real.

13) sqr ‘ p SO
expression [ - —>
[exozeseion] >

Predicates

p: {expression> is of type integer
q: {expression> is aof type real
14) trunc

—®expressian
Predicate
p: <expiession> is of type real.
15) odd

—Plexpression p 0DD
Predicate
p: {expression> is of type integexr
16) ord

chr .
expr8531on'——+: >t

Predicate
p: {expression> is of type scalar or subrange for ord and is of

type integer for chr {note: type pointer is non standard}

17) eof/eoln

———4expression
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Predicates

p: <expression> is of type file
q: the standard name used is EOF
r: the standard name used is EOLN

18) New/mark/release

LDADADDRESS)

Predicates

p,q,r the standard name used is NEW/MARK/RELEASE

19) read/readln

S

.

variable

LOADADDRESS

@ f‘ilename)

\ \/ V4 N/

I

q \/
\V

LDA filename
CSP RLN /
,f |




Predicates

p: the standard name used was READLN
q: the first parameter is a file name; {the other path makes the

assumption that the file is INPUT}

S no further arguments?

t: {variable> is of type integer
us {variable> is of type real

K {variable> is of type character

&

20) write/writeln

-—. -
LOAD <LDADADDRESS>

expression

LDCI size

LDA filename

(LA filename)

(csp WRI)

{ DA filename LDCI size

(Loa filename)

-

LDA filename
CSP WLN

-
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Predicates
p: the first parameter is a file name; {the other path makes the

assumption that the file is QUTPUT

q: {expression> is of type integer, real or character
r: there is no field length specification
st the parameter to be printed out is of type integer

t: the parameter to be printed out is of type real
u: the parameter to be printed out is of type character
K the parameter to be printed out is of type string

W the standard name used was WRITE.

UJP label

21) goto statement

Predicate
p: the integer following the reserved word goto has been declared

in the label declarations of the block in which the goto occurs.

22) if statement i

expression {expression is of type boolean}

FJP label 1

statement

(1label 1)

UJP label 2
label 1

‘statement

Predicate

T

p: there is an else clause.



23) case statement

expression

UJP label 1

case label list

K 2

statement

UJP label 2

\.

label 1

STR @ temporary
LOD @ temporary
LDCI min

LESI

FJP label 2

LOD @ temporary
LDCI max

GRTI

FJP label 2

LOD ¢ temporary
LDCI min
5BI

XJP label 3
label 3

<UJP label a

Predicate

{notatian

min: minimum value of case
label found in the
processing above.

max: maximum value of case
label found in the
processing above.

temporary: a location within
the current data
segment which preserves
the value of the
<expression>; this
location is assumed tao
be implicitly declared

—

Py
L

UJP label

and it corresponds to
each of the case labels

and is of type integer|

{note that label is a
context sensitive feature

found in the corresponding

{(1abel ?2)

case label list]

D has the label {which is between min and max} occcured in any of

the case label lists processed in the case body?
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24) case label list

Predicate
p: do types of all the case labels found in the list agree with
the type of <expression> 7

25) while statement

expressiaon {<expression must be of type
boolean}

‘_

FJP label 2

statement

UJP label 1

26) repeat statement

expression {<expression> must be of type
boolean}

(LOAD)
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27) for statement

expression

{the attributes are those of
the index variablel

expressian

{a temporary location of type
G%ﬂ i tempora%b integer is allocated in the

current data segment}

label 1

ithe attributes are those of
the index variablel

<EDD Joi temporari)

FJP label 2

statement

{the attributes are those of
the index variablel

g

DEC

UJP label 1

{the attributes are those of
the index variablel

Predicates

p: 70 symbol was used in this for statement

q: DOWNTO symbol was used in this for statement.
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28) with statement

LLOADADDRESS

R Jul temporar%j)

lstatement

Label >

Predicate
the integer used as a label has been declared in the label

declarations of the block in which this integer label occurs.



- 43 -

30) expressions I

simple expressionJ

INN
Gy G
E C
@S type siz@ @U type 51@ (‘"RT type 51a *
(LEQ type Sii%) (NEQ type 512t) (@EQ type sizé)

!tyge is one of I, R, A, B, M indicating the relational operation sought
is for values of type integer, real, pointers (addresses), boolean

and multiple (for records and arrays) respectively§

{size is meaningfull only in the case when type is Mi
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Predicates

p:

a:

a relational operation is used
the type of <simple expression> is scalar, pointer or set
the type of <simple expression> is arrays or records

the relatioral operator used was IN and the first <simple
expression> yields a possible element of the type of set yielded

by the second <simple expression>
the types of the two <simple expressions> are not the same

the first <simple expression> is of type integer whereas the

second <simple expression> is of type real

the first <simple expression> is of type real whereas the second

{simple expression> is of type integer

the types of the two <{simple expressions> are compatible
the relational operator was '<'

the relational operator was '<='

the relational operator was '='

the relational operator was '<>!

the relational operator was '>!

the relational operator was '>='



31)

simple expression

Y




- 46 -

Predicates
p: there is an unary minus
q: {term> is of type integer

r: <term> is of type real

s there is an adding operator; i.e., one of '+', -ty
t the operator is '+'

U the operat0r>is -1

v the operator is 'V' and both <term>'s are boolean

W both <term> s are of type integer

Xt the first term is of type integer

vy the second term is of type integer

a: both <term> s are of type set

b: both <term> s are of type real
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32) term

\/
(Cos)

factor
AND
MPI DVI
) | GO
X
DVR
Predicates 41
p: there is a multiplying operator (i.e., one of '*', t/1r ~1Av)
q: the operator is a '«%'
T: the operater is a '/!
s: the operator is a 'A' and both the <factor>'s are boolean
t: both <factor> s are of type integer

u: the first <factor> is of type integer
v the second <factor> is of type integer
K both {factor> s are of type set -

X1 both {factor> s are of type real.



33) factor

%7 %7 J\Z W/
‘variablil I;xpressiDrLl expression
factor

%
()

UNT
w
@ﬁt(elementsn
UNI
R J o >t Ve
Predicates
p: the <factor> happens to be a constant (either an integer constant

or a real constant or a string constant or an identifier which
represents a constant

the <factor> is a <variable>

T the <{factor> is an <expression> enclosed in paranthesis

s the <factor> is the logical inverse of the <factor> that follows
(which must be of type boolean)

t: the <factor> is a set expression

u: the set expression consists of set variables or set expressions

(Y a constant set has been found in the set expression

w: there are more elements of a set to be computed.



34) variable

% q 3

CLDD displacement)
|

B el

%

A
LOADADDRESS

expression

v

{varname refers to the addressing of a variable by <level difference,

displacement>;

min is the minimum value of the corresponding index;

size is the size of an element of the array}

Predicates

p: the variable starts with a variable name

q: the variable starts with field name
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r: the variable is a function name (the function is a declared one

and is not a formal function)

St the variable is not a local variable

t: the field name is a field of an indirectly accessed variable ’
(e.g., via pointers or subscripts or formal parameter etc.)

us: the indirectly accessed element has its base in the outermost block :

v the indirectly accessed element has its base in a block other

than the outermost one

w: the variable is of type array and subscripts follow.

X3 the variable is of type record and a field follows

K the variable is of type pointer or file

a: the variable is of pointer type

b: the minimum value of the corresponding index is greater than #
c: the minimum value of the corresponding index is less than {@

d: more subscripts remain te be evaluated.

Contextual generators

1) STORE l
g
5TO
(SRO_displacement)
T ‘
{varname refers to the addressing of a variable by
{level difference,displacement>}
Predicates
p: the variable is directly accessable
g the variable is accessable only after having computed its address

(so the address is already on the stack)
haH] the variable is not in the outermost block

S: the variable is in the cutermost block.
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2) LDAD
LDCI const
S

LDCB const.

LDCN

LDCR

?
? ? (IND displacement)

(ij dlsplacEEZ)(EDD varname

const.

v

r

%

Ye

GEC(elementQD
1

{varname refers to the addressing of a variable by

<level difference,displacement>}

Predicates

p: the element to be loaded is a constant

q: the element to be loaded is a variable

r: the constant to be loaded is an integer

s the constant to be loaded is a boolean value

t: the constant to be loaded is NIL

us the constant to be loaded is a real number

Vi the constant to be loaded is a set

W the variable to be loaded is directly accessable

X the variable to be loaded is in the outermost block
H the variable to be loaded is not in the outermost block

z: the variable is indirectly accessable

a: the element is already on the stack

{note: loaded means loaded on the top of the stack]
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3) LOADADDRESS

V4

LCA string v

@AD displacemer@

I >
T

{varname refers to the addressing of a variable by

<level difference,displacement>}

Predicates

p: the address to be loaded is that of a string constant
q: the address to be loaded is that of a variable
r: the variable is in the outermost block

=K the variable is not in the outermost block
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APPENDIX IV: Comments on the Difference between the Lanquage processed
by the PASCAL 'P' Compiler and the 'Standard PASCAL'

1) Predefined files: the predefined standard text files (i.e. of type

file of char) are:

INPUT,PRD (input files)
DUTPUT,PRR (output files)

Every standard procedure/function inveolving files must specify the

file concerned: the usual default interpretaticns

READLN = READLN(INPUT)
EOLN = EQLN(INPUT) do not hold.
etc.

2) The standard procedure DISPOSE is not part of the language processed
by the 'P' compiler. It is replaced by MARK and RELEASE.

MARK (P) where P is of any pointer type: marks the heap in the

current state.
The variable P should not be altered until the corresponding RELEASE.
RELEASE(P) releases all items created by a NEW instruction since

the corresponding MARK(P)

The use of MARK and RELEASE is much more suited to the bootstrap
process than DISPOSE.
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APPENDIX V: Description of the Tapes containing the PASCAL 'P!

Code System

1) Format of the tape

No. of tracks

Density

Parity

Physical record length

Code:
second octal

7
800 bpi

odd

5120 frames

the last physical record of a file

may be shorter than 5120 frames.

first digij

octal digit o 1 2 3 4 5 6 1
0 A B C D E F &
TR 1 U0 K L M N 0D
2|lP o R S T U V u
3lx Y z g 1 2 3 4
405 6 7T 8 9 + - 9«
s/ )y $ = o , .
e [ ]
7|1 < > $

The gnd of line is represented as a series of two to eleven 008

frames.

The last eight frames of a files have no meaning (the last B8 frames

of the trailing short record of a file).

Interrecord gap : 3/4M
End of file gap : 6"

End of information = 2 end of file gaps
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2) Cantent of the tapes

1st
2nd
3rd
4th
5th
6th

file : interpreter (source)
file : compiler (source)
file : compiler (P code)
file = 1st file

file = 2nd file

file = Jrd file

- interpreter: 9 physical records

It starts with:

a

-1 (*ASSEMBLER AND INTERPRETER ...

PROGRAM PCODE(...

nd ends with:

1
END.

- compiler (source): 34 physical records

It starts with:

-

(*$T_’L'1C+*)

(%xxnx,

and ends with:

PROGRAMME ( BLOCKBEGSYS+. ..

END.
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compiler (P code): 60 physical records
It starts with:

‘L 3

| ENT L 4

| LDO 520

and ends with:

|1 o

of MST 0
| CUP 0 L 1519
+| STP
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Niklaus Wirth:

Niklaus Wirth:

Peter Lauchli:

Walter Gander,

Andrea Mazzario:

Niklaus Wirth:

C.A.R.
Niklaus Wirth:

Hoare,

Andrea Mazzario,

Luciano Molinari:

E. Engeler,
£E. Wiedmer,

E. Zachos:

Hans-Peter Frei:

K.V. Nori,

U. Ammann,

K. Jensen, H.H.

The Programming Language Pascal.(out of print).

Program development by step-wise refinement

(out of print).

Reduktion elektrischer Netzwerke und

Gauss'sche Elimination.

Numerische Prozeduren I.

The Programming Language Pascal (Revised

Report).

An Axiomatic Definition of the Language

Pascal (out of print).

Numerische Prozeduren I1I.

Ein Einblick in die Theorie der Berechnungen.

Computer Aided Imstruction: The Author
Language and the System THALES.

The PASCAL 'P' Compiler: Implementation Notes.

Nageli:



