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Abstract

The behavior of a software system can be modelled in terms
of sequences of events, flows, or operations that may occur during
execution. To support this approach, a number of non-procedural
description languages based on regular expressions have been
proposed. These include event expressions, flow expressions, and
the many variations of path expressions. The purpose of this

paper is to survey and assess these notations, including some

of my work in the area, and to suggest some future directions.
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1. Introduction

1.1 Regular expressions (RE's) have been used as a design and

modelling tool for a broad variety of computer system elements,
including sequential circuits, lexical analyzers, communication
system protocols, command languages, and programs. Since the
early 1970's, the RE notation has been adapted, embedded, and/or
extended to describe some of the more difficult aspects of
sequential and concurrent software, especially the latter. The
result is a new set of software specification languages. The
purpose of this paper is to survey and assess the developments
in RE-based description schemes, including some of my

work in the area, and to suggest some future directions.

1.2 Historically and logically, the expression notations can be
divided into two classes. One class originated in the research
of Riddle, first reported in 1972 [39]1, in defining and applying

message transfer expressions (MTE's), later called event expressions

(EE's) [47]. The EE notation is a pure extension of RE's with
interleaving operators to model concurrency and with synchroniz-
ation symbols; the language denoted by an EE is interpreted as
a set of event sequences characterizing the behavior of some part

of a system. Flow expressions (FE's), the language I devised

starting in 1975 [54,55], is similar to EE's but with a different

synchronization method. The other class is the path expression

(PE) notations introduced by Campbell and Habermann in 1974 [13]
and further developed by them, Lauer, and others. Most of the
work in this class is aimed specifically at specifying constraints,
given by PE's, on the order of execution of operations in
encapsulated data or resource objects. While PE's also consist
primarily of RE's, they have more of a programming "flavor" than
the EE and FE schemes, and do not use explicit synchronization

symbols.

Despite differences in motivation, syntax, and interpretation
of symbols in expressions, both classes of description methods

have many similarities. For example, any of the notations could



be viewed as representing flows, paths, or events, and some formal
relations between the schemes have been established. Most, but
not all, of the applications may be described with any of the

methods, the choice being a matter of taste and convenience.

1.3 In the next three sections, I review the RE formalism and its
applications in software description; present and compare EE's,

FE's, the various reported forms of PE's, and some related proposals;
and describe applications of each. The final section contains a
general assessment and some ideas for future work. A bibliography
and index of symbols and abbreviations are included at the end of
the paper. The presentation is informal and the reader is referred

to the literature for more precise definitionsand formal results.

There is a natural connection and overlap between non-procedural
description techniques, such as the ones discussed here, on the
one hand, and procedural methods, analysis and verification tools,
and implementation methods, on the other side. Thus, one will
find RE ideas being used in all of these areas. I will emphasize
the purely descriptive aspect of the notations, but will also on
occasion mention these other applications since they follow directly
from the former.

2. Regular Expressions and Languages

The underlying idea behind the use of RE's is that the permissible
behavior or the constraints of a system can be described by a
language, each sentence of which is interpreted as a permissible
"trace", "path", "flow", or sequence of "events". The basic
symbols or atoms of the language are viewed as indivisible or
atomic behavioral descriptors.

2.1 RE's are formed from the basic symbols and operators for

1) concatenation, indicated by juxtaposition of expressions,

2) union or selection, denoted by u, and

3) indefinite repetition, represented by the Kleene star * (e.g.[351).
Thus a b means a followed by b, a u b means either a or b, and

a* means zero or more repetitions of a.




Example 1:
Let Insert and Remove be atoms. Then the RE's
Insert , Insert Remove , Insert u Remove , and Insert*
describe the languages (sets of strings)
{Insert},{Insert Remove?l,{Insert,Remove},and{},Insert,
Insert Insert,Insert Insert Insert,...}, respectively,

where X is the symbol for the null or empty string.

Parenthesis are used for grouping, so that guite elaborate

expressions may be constructed.

Example 2:

The permissible operations on a particular data base may be

described by the RE

Open ( Read ( ( Update Write) u Print ) )* Close
which represents the sequences (using O for Open, R for Read,
U for Update, W for Write, P for Print, and C for Close):

{OCLORUWC,ORPC,ORUWRPC,ORUWRUW C,...}.
The intended interpretation is that an Open operation (command,
message,...) is followed by zero or more (Read Update Write)'s

and/or (Read Print)'s, and finally terminated by a Close.

2.2 In addition to being a simple and convenient notation, RE's

have a well-developed theory and their languages can be implemented,
i.e. recognized, by relatively simple machines - finite automata

or finite state machines. Figure 1 presents a state diagram for
recognizing the language of the RE given in Example 2; the circles
represent machine states and a labelled edge is a path to the next
state that is entered if the next input symbol is equal to the
label. The significance for software design is that RE descriptions

can be readily used for simulation, analysis, and implementation.



Close Write

Figure 1

State Diagram For: Open ( Read ( ( Update Write)u Print ) )* Close

2.3 The basic symbols used in the RE's may stand for a variety of
entities, depending on the particular aspect being modelled. For
example, the symbols of the RE ( a ( bu ¢ ) )* may denote any
of the following:

1) message transmissions. a, b, and ¢ are types of messages,
such as an end-of-file message, a resource request or release
message, or a job log-in message. The RE states that a message
of type a must or may be followed by either one of type b or
one of type ¢, and that transmissions of a must occur between
b and c.

2) procedure or operation executions. a, b, and c are procedures.
The RE expresses the constraints that the execution of a must
precede that of b or ¢ and that b and ¢ cannot be executed in
sequence without an intervening a.

3) control points. The symbols identify program control locations,
such as statement or module labels. In this context, the RE
says that control passes from point a to either b or c¢
repeatedly.

4) input language symbols. The RE may describe some part of the
user (interactive) input that drives the software. Here a, b,
and ¢ could be input lexical items; for example, the RE could
be ( MOVE ( BOX u TEXT ) )*.

5) resource flows. The symbols name the particular system component,

such as a process or a user,that has been allocated a specific




resource, for example, a processor, tape unit, file, or table.
The RE states that either component b or c may have the resource
after it passes through a, and that a must have it between
allocations to b and c.

The above list is not exhaustive but it covers most of the

reported software description applications where RE's are used in

their pure form. Hierarchical or structured descriptions are

easily produced by assigning names to expressions.

3. Event and Flow Expressions

3.1 The Shuffle Operators

Both the EE and FE works rely on an interleaved model to
describe concurrencies in systems. The intuitive idea is that
the effect of the concurrent execution of two components, say Py
and Py is the same as that obtained by interleaving or shuffling
the execution history of = with that of Py- To describe this
interleaving, the RE notation was extended with a shuffle operator

and its closure, here denoted ©® and ®, respectively.

3.1.1 The expression ( sl ® 82 ) represents the shuffle of all

elements of Sl with those of 82.*) S® means zero or more shuffles
of S; it can be used to specify an unbounded or variable degree of

concurrency.

Example 3:

1) Read © Write describes the language {Read Write, Write Read}.

2) (a b) ® (c d) produces the set of strings {a b c d, a ¢ b d,
acdb,cadb, cdab, cabdl.

3) (abc)® stands for A ula b clu ((abc) @ (abe))u ((abc)

©@ (abec) e (abc))u...

*) Precise, formal definitions of these operators appear, for
example, in [47] and [55]). It is hoped that the examples will

clarify any problems related to my deliberately informal
definitions.
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T will use the term shuffle expression (SE) to mean an RE
extended with the @ and @ operators. (Aside on history and

notation. A shuffle operator similar to @ was earlier defined \
in [17] and also appeared in [18]. Riddle uses t and A, instead

of my © and ®, in his EE work which precedes mine. The main

argument for ® and ® is that because they are meant to be interleaved/
concurrent analogs of the sequential concatenation and * operators,

respectively, it is convenient to have them similar in appearance.)

Example 4:

Let Read(rl,...,rn) denote an SE describing the elementary
activities involved in reading a data base, where Yyree.,x, are
the atomic operations of the read. Similarly, let Write(wl,...,wm)
stand for an SE for the flows through the data base write operations,
where Wypees W, oare the elementary write activities. Then, the
standard reader-writer problem constraints, stating that Read's
may proceed concurrently, Write's must proceed sequentially, and
a Write may not overlap a Read, can be expressed by the SE:

( Read(rl,...,rn)@ u Write(wl,...,wm) ) *

Example 5:

Consider the SE: (Put Get)®

The language described is
L = {A, Put Get, Put Get Put Get, Put Put Get Get, Put Get Put Get
Put Get, Put Put Get Get Put Get, Put Put Get Put Get Get,.. I
L has the interesting property that for any string o = 0,0, in L,
where oy is any initial substring of a , the number of Put's in
oy is always greater or equal to the number of Get's in Oy This
SE can model the operation constraints on a data type where
retrieval of a data element (Get) is only possible if it can be
matched with a preceding insertion (Put), such as an unbounded
queue (Put = Insert, Get = Remove), an unbounded stack (Put = Push,

Get = Pop), or a general semaphore initialized to zero(Put = V, Get = P}.

3.1.2 Theoretically, RE's augmented by only the @ operator are no
more powerful - than RE's [17,47]; i.e. the resulting languages can

still be described by RE's. However, from a practical viewpoint,



the recognizing automata are much more complex [36]. The further
addition of ® does increase the expressive power beyond that of RE's
though [55]; for example, the language of Example 5 cannot be
described by an RE. The exponential parsing algorithm in [56]
provides some insight into the practical complexity of parsing

general SE's.

3.1.3 The interleaved model of concurrency has attracted some
criticism because the "events" comprising concurrent activities
become ordered under the shuffling operations whereas they may
be truly parallel and asynchronous if, for example, there is no
global clock in a system; it has also been argued that shuffling
introduces unnecessary details into descriptions compared with a
notation based on partial orders (e.g. [19]1). I discuss this
point further in Section 5. It should be noted, however, that
true simultaneity can be handled in SE's by bracketting the
relevant entities with start and finish symbols and omitting
the rest of the activities [47]; for example, if starti and
finishi denote the beginning and end of activity i, the SE
(startl finishl)* @ (start2 finishz)*
indicates that activity 1 is sequenced, activity 2 is sequenced,

and activities 1 and 2 may proceed in parallel.

3.1.4 One unanticipated product of the interleaving research was
the discovery of some new and interesting applications in command
language description. While a language design tool is not the

same as a software design tool, it is nevertheless the case that
the design of language processors is strongly influenced by the
language specification technique used. Welter first suggested

that the shuffle @ may be useful as an extension to BNF for command
languages [61]. Applications of FE's in textual and graphics command
language specification were demonstrated in [55,56] ; some required
the full power of SE's (® and ®), as well as the synchronization
facility of FE's.

RE's and finite state machines are the most commonly used formal

schemes for defining command languages and their parsers. However,
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RE's are not convenient and/or adequate for some of the desired

properties of interactive textual and graphics languages. Some

of these properties that can be handled by SE's and FE's are

discussed below:

1) It is often immaterial in which order a command and its para-
meters are entered, and at different times during an interactive

session, different orderings may be convenient.

Example 6:

To take a simple case, computing the sum of two numbers x
and y could be specified in at least 3 ways:
xX+y , +xy , and xy +
Depending on the ways in which x, y, and + can be designated
(e.g. pointing on a display, rotating a dial, typing, ...),
all three may be desired. These options are described by an SE:

<+> @ <number> @ <pumber>

2) Several different command languages may be active at the same
time, especially in graphics applications. At the extreme,
each textual or graphical object may have its own language
(e.g. [23]).

Example 7:
A text editing and placement language T is often used in
conjunction with a drawing language D. (Let D define the

operations for drawing and manipulating a box, and T be the

means for specifying the text inside a box.) If Tl’ TZ’ ceey Tn
are the possible commands of T and Dl' D2, ceay Dm are those
of D, then the FE:
® * = * @ * ) *
(T D) ( ( Tl U T2 vee U Tn ) ( D1 u D2 cee U Dm Y* )

is a reasonable description that maintains the separation of

the languages yet indicates that the commands may be interleaved.

3) In a manner similar to 2), it is occasionally convenient to inter-—
leave several commands or sequences of commands from the same
language. Several jinstantiations of the same command sequence may
also be desirable.
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Example 8:
Consider the file processing FE of Example 2 as a command
language:
Open {( Read ( ( Update Write ) v Print ) )* Close .

If one wishes to view and manipulate several files concurrently,
the command language would be

( Open ( Read ( ( Update Write ) u Print) )* Close )®
This FE reflects, for example, part of a program design system,
where each procedure or module is a separate file and several
partially defined procedures may be displayed and edited at the
same time. Of course, each instantiation <resulting from @

must be uniquely identified at some point.

An application related to the above that I am developing
is the description of interactive document generation systems.
Here, the "abstract syntax" of a document - its structure and
components - has been defined as a combination of ordered and
unordered sets of document objects, each of which can be similarly
decomposed. I am using SE's and FE's to describe this abstract
syntax.

3.2 Event Expressions

EE's were originally invented to specify the message transmission

behavior ameong a set of interacting processes; for this application,
the notation was called message transfer expressions (MTE's) and
the basic symbols denote message types [39]. However, the ‘scheme
is completely general and can be used in other areas. The name
"event expression" reflects this broader view. The basic symbols
of EE's denote events - a general term for entities that may be
partially or totally ordered by time (e.g. [19,29,38]). Thus, any
of the symbol interpretations mentioned at the end of Section 2

are "events".

3.2.1 EE's are SE's with the additionof a synchronization mechanism.
The idea is to impose some restrictions on shuffling so that in an
interleave such as (Sl@sz) only a subset of the possible shuffles

are in the language; the objective is to describe critical sections,
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message passing, and other synchronization constraints.

A point "in time" is marked in an EE with one of the special

synchronization symbol pairs @,@,@1,@1,...

e.g. 5§, = (P @)* sz=(Ec)*
The symbols are interpreted so that each @ must be matched with
its "inverse" @ and that the time points marked by each @ @

pair are forced to be identical. Taking the shuffle of Sl and S

2
above, SlG’s2 gives

P @ P @ P @ P @
%/// ® %/// ® 3/// ® %///
@ c @ o @ c

@ o

The matched pairs at points 1,2,3,... cause the shuffling to be
restricted to P (P @ C )* C .

Critical section locking is specified by surrounding an expression

with synchronization symbols for entry and exit.

Example 9:
® - =
(a @1 bc @2 ) ( @l d e @2 ) @ | @1 @2 )*
produces matching @ symbols in two possible ways (solid and dotted
lines).

)]
S]]
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The EE describes the strings
fabcde,adebec,daebcec,deabck. ,

bc and de are thus indivisible with respect to one another, and

only 4 of the possible 10 shuffles of (abc ) and ( d e ) are

in the language.

Example 10:

Let the events comprising a data base read, update, write,
and print be defined by the EE's:
Read = startread doread endread
Update = startupdate doupdate endupdate
Write = startwrite dowrite endwrite
Print = startprint doprint endprint
The EE:
(@, Read @, ( ( Update @, Write @, ) u Print ) )® o (Gl @2 yx o
describes the behaviors or constraints:
1) Any number of (Read Update Write)'s and (Read Print)'s may be
in execution concurrently ().
2) Read's and Write's are mutually exclusive; neither can overlap
other Read's or Write's (@1'@2’@1'@2)'

3.2.2 The synchronization method is quite elegant and its meaning
can be expressed concisely: Treat the EE first as an ordinary SE
and generate the language. Apply the transformations

@, @ » 1 and @i @i + A
for all synchronization symbols to each sentence repeatedly;
this cancels out matched pairs. The language described by the
EE is just those resulting sentences that have no remaining

(uncancelled) synchronization symbols.

Example 11:

Treated as an SE, the expression ( a @ )® ( @ b ) ® describes

the language:

{\, 2@ @b, a@g@b,aCalaaC @bEb 885bb,
a@@b@b,...,aa@@@Ebb...,.aaal@@E8CCbbb,..
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The matched pairs that may be cancelled in the next step are
underlined. After cancelling symbols, the resulting set is

{(r,a@ @b, ab, aCal,aal,@b8b, @€ bb,ablnp,
...,aabb,...,2a2aabbb,...}.

The elements with synchronization symbols still remaining are
removed to give the final language, the one described by the EE:

2% % ¢ n > o).

Example 12:

Consider a producer-consumer problem where a cyclic producer
process fills a single slot buffer and a consumer process empties
the buffer.

ProducerProcess = (Produce Put)?*

ConsumerProcess = (Get Consume)*
We would like an EE,that on the one hand, describes the possible
concurrencies among the events comprising Produce, Consume, Get,
and Put, and that, at the same time, restricts the Put/Get's to
the behavior ( Put Get )* defining the allowable operation

sequences on a one slot buffer. This behavior is specified by
the EE

( Produce @1 Put @2 ) e ( @3 Get @4 Consume )* @ ( @l @2 @3 @4 ) *

The interactions among the three subexpressions are illustrated
below:

Produce @1 Put @2 Produce 91 Put ?2 Produce @1 Put
®
Get

Consume Get

25
-
s

@

N

4

[ PR———

@
i
1
1

L

@

O e v ~
[ R

|- -~ >
=

|- mm—— -
>

[ R

2

i
- - -
[

3 4

The synchronizing expression ( @

S]]

3 @4 )* ensures the
( Put Get )* constraint.
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3.2.3 The EE scheme is deceptively powerful. In fact, it is
descriptively universal; any language that can be recognized by

a Turing machine or a computer with unbounded storage or that can

be generated by an unrestricted (type 0) grammar can be described
by an EE [36,47]. However, if the @ operator is eliminated from
EE's, the resulting notation is equivalent only to RE's [47]. While
theoretically sufficient for any descriptive task, EE's are some-
times inconvenient when compared with other methods (and vice versa)
on particular problems; specific comparisons are made in subsequent

sections.

An elaborate set of axioms and rules of inference for manipulating
EE's have been devised [39,47]. These are of potential value in
proving equivalence of descriptions and deriving performance measures

from EE's.

3.2.4 One major application of EE's has been in Riddle's software
design methodology where EE's are the medium for behavioral
specification and analysis. As outlined in [47], a software system
with concurrently operating subsystems is modelled by a "Program
Process Modelling Scheme" (PPMS) resembling a programming language
but concerned only with message generation and transmission activities.
There is a procedure for translating a set of programs (processes)

given in the PPMS modelling language into an MTE that specifies the
message paths in the system. Related work is reported in [62] where

a variant called constrained expressions can be derived from a

dynamic process modelling scheme (DPMS).

Another application is the design notation DDN that is part of
an interactive software design system under development [46,48,49,50,51].
In DDN, internal system events are defined in terms of systems

state transitions, and the desired behavior is specified by EE's.

The PPMS model and derived MTE's have also been studied for
performance prediction and analysis [53]. Message generation times
and conditional branching probabilities associated with PPMS state-

ments are mapped into time parameters and selection probabilities
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in the associated MTE's. In principle, the MTE's are then
"eyvaluated" to produce performance measures such as the distribution,
expected value, and variance of completion times. As in many of

the RE-based applications presented in the paper, this approach
appears promising but requires more development and experiences

before it can be used as a practical tool.

3.3 Flow Expressions

FE's were developed to describe the flows of computer system
entities, such as resources, messages, jobs, commands, and control,
through sequential and concurrent software components such as
programs, procedures, processes, monitors, data types, and modules.
The basic symbols of FE's are interpreted as atomic activities
rather than events as in EE's, but this distinction may be academnmic
since either notation may, in principle, be used for the same
description task. However, the extensions to SE's are different

and result in differences in specification convenience.

3.3.1 While the * operator is retained in FE's to express indefinite
and usually finite repetition, a new gyclic operator « is used to
characterize the infinite repetitions that appear in cyclic

processes and languages with non-terminating sentences [55,56].

Example 13:

The producer-consumer example given in the last section might
be more accurately described (excluding synchronization):

( Produce Put )= © ( Get Consume )«

The » operator is primarily of descriptive value and appears to be
difficult to handle analytically.

3.3.2 The synchronization scheme in FE's has a more direct pro-
gramming connection than that in EE's, and is the major distin-
guishing difference between the notations. An FE can be locked
for shuffling by bracketing it with lock symbols [ , 1 , l[ ’ ]l ’
2[ ’ ]2 ; ... . Flows inside the brackets are then treated as indi-
visible when interleaving other flows with the same lock brackets;

e.g. ([ a] e[ bc ]) describes the language {a b c , b ¢ al.
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Example 14:

1) The EE of Example 9 has the equivalent FE:
e ([ de })

(a [ bcl
"critical sections".

b ¢ and d e are
may be rewritten as an FE:

( Update [ Write ] ) v Print ) )@

2) Example 10
([ Read ] (

Example 15:
A high level (gross) description of user job flows in an

operating system may be:
( l[ InputSpoolJob ]l RunJob 2[ OutputSpoolJdob ]2 )@

Any number of jobs may be executing concurrently, only one

InputSpooldob and one OutputSpoolJob may proceed at a time but
they may overlap each other, and RunJob's can proceed in parallel.

The second and more complex FE synchronization mechanism is a
wait and signal facility similar to binary semaphores. The symbols

O/l 0y Wyree. are introduced into FE's, where o; is the analog
of a "send signal i" (Dijkstra V) and Wy corresponds approximately
A string is in the language

to a "wait for signal i"
described by an FE only if every w,
For example, treating (aw b ) ® (d o)

(Dijkstra P).
can be matched (cancelled) with

a preceding closest o4

as an SE, yields the strings:
awbdo awdbo adwbo dawbo dawob
daocwb doawb adouwb awdob adwob
3

1 2

Only the underlined strings have w matched with a preceding o.
The

The FE then just describes the language {d a b , a d b}.
synchronization defined by this example is informally given by

the following diagram:
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Locks are definable using the ¢/w facility; for example
(L alelbcl) is equivalent to ¢ ((wao)® (wbco) ).
However, the locking appears soO often in descriptions that it is
convenient to have the separate [,] notation, both for brevity and
to specifically distinguish this use. Locks are also useful in
the command languagé application (Section 3.1.4), when one wants

to selectively prohibit shuffling.

3.3.3 In EE's, the paired symbols are symmetric - both @Cand @ @
are legitimate, and the synchronization symbols must be adjacent
(or eventually adjacent after cancellation of intervening symbols) .
By contrast, the FE scheme is unsymmetric - an w preceding a o

does not lead to a legitimate sentence, and the symbols need not be

adjacent; a ¢ is capable of "action at a distance" so that a ¢ b cuw 4

yields the string a bcd. In addition, unconsumed o's are lost
but do not effect the resulting sentence while unmatched w's, like

uncancelled @'s or @'s, do not result in sentences.

In the critical section (locking) case, these differences lead
to easier FE descriptions, that is, fewer symbols are used. The
opposite is true for describing some other strings as shown by the

next example.

Example 16:

An FE for the language {anbn : n>0} (Example 11) is

* @
((clawz) (oBbw4)*?®(w102w304)
The equivalent EE (a@)®(€b)® is much simpler. The following

diagram shows how aabb is generated from the FE:

o

[
N

—
Q- —-—E
N
w

Ee---Q
€ enmmnQ

o

e LT T ep—

—
[N

Eeremcme---=Q
w

—
[ 8]
Eemmrrem=nn=-Q

—&

Q=== = =m—

o
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Example 17:

The producer-consumer example (Example 12) with cyclic processes

and synchronization is given by the relatively simple FE:

g, ( ( Produce w

1 Put ?

)o ® ( w, Get o, Consume )« )

1 2 2 1

Example 18:

A reader-writer problem (Example 4) is treated in more detail,
Let a read operation be decomposed into two FE's, one designating
a read request and the second denoting the actual read:

Read = ReadRequest ActualRead.

Similarly, let Write = WriteRequest ActualWrite.

Example 4 can then be restated as:
( ( ReadRequest ActualRead )® y ( WriteRequest ActualWrite ) )*

In these terms, the FE may be overly restrictive in that it does

not provide for either

1) the overlap of WriteRequest's with ActualRead's and ActualWrite's,
or

2) the overlap of ReadRequest's with ActualWrite's.

It may not be restrictive enough in that it permits the overlapping

of ReadRequest's with each other. To satisfy 1) and 2) and, at

the same time, make the request's mutually exclusive, synchronization

symbols and locks are added as follows:

([ ReadRequest ] w

R ActualRead UR )e

1 2
o
( [ WriteRequest ] w ActualWrite o ye
\ W
1 2
®
( (o w Y2y (o, w ) )
Ry} Ry W, W,

3.3.4 Some formal properties of FE's are given in [55]. FE's

that do not contain either @ or = are equivalent to RE's. It

was conjectured in [55] that EE's were more powerful than FE's
but that apparently is false since proofs are being circulated
that FE's are indeed universal also, e.g. [4].
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The analysis and verification possibilities appear to be identical
to those of EE's [47,55]. Some of these can be stated as general
questions such as:

Does a system exhibit a given behavior?

What are the deadlock and starvation possibilities?

Can a resource request or request sequence be serviced without
violating any systems constraints?

In the FE context, these guestions become:

Membership problems: Is some string in the language described by
an FE, or is it a prefix of some sentence in the language?
Equivalence and inclusion problems: Are the languages described
by two FE's identical, or is one language included in the other?
Emptiness problem: Is the language given by an FE empty?

These questions are either undecidable or unacceptably complex
to answer (compute) for the general FE or EE case; instead one
is forced to deal with restricted subsets or specific applications,

much the same way as is done in the PE work.

3.3.5 In [55], small examples illustrating a large number of
software description applications were presented. These included
modelling of sequential and parallel program control constructs,
mappings between programs and FE's, descriptions of multiprogramming
systems with centralized and distributed control, and specification
of synchronization constraints in reader-writer, bounded and unbounded
buffer, and resource priority scheduling systems; in addition, the
application to command language definition was first developed. My
most recent FE work has been concerned mainly with the new appli-
cations of interleaving discussed in Section 3.1.4. FE's are also
being used to describe and verify some design and research ideas

for single-user, single language distributed systems.

4. Path Expressions and Related Schemes

The term "path expressions" denotes many path notations that are
based on the scheme introduced by Campbell and Habermann [13]. PE's
were designed to describe execution sequences of operations or

procedures, and the notational variations are meant to either simplify
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or handle some aspects of the description, analysis, and/or
implementation of the constraints on operation executions. The

PE orientation can be contrasted with that of EE's and FE's which
are proposed as more general notational tools. PE's have been
embedded directly in data typgdefinitions and have also been

used as an abstract "programming"™ language for systems of processes
and resources. After presenting most of the PE notations, I will
discuss these two applications in some detail and mention some
other PE related work in protection and graphics.

4.1 Path Notations

I first discuss PE's that use RE's only. Then several parallel
operators are introduced. Finally, schemes for conditional paths,
priorities, and counting are described.

A PE is given by the syntax
path expr end
where expr describes execution sequences that may be indefinitely

repeated. The path end is thus interpreted as * bracketting the
expr.

4.1.1 Reqular PE's (RPE's) are those that consist only of RE's.

Example 19:

path ( Insert Look* Remove ) ¢ Look end
This RPE may specify the restrictions of the operations Insert,
Remove, and Look of a particular one slot data type. The constraints
are that all operations are seéuential (mutually exclusive), two
Inserts cannot occur without an intervening Remove, each Remove

must be preceded by an Insert, and Look's can proceed at any time.

The PE literature employs the symbols ";" and either "+" or ","
for concatenation and selection, respectively, but I will stay
with the RE symbols of the earlier sections. Restrictions on the
RPE's, such as no repeated procedure names, or limited or no use
of the interior *, have been proposed to simplify implementation or
analysis, e.g. [11,13,32].



- 20 -

4.1.2 when more then one PE is permitted for a description of

the same set of operations, the notation becomes more powerful,
e.g. [11,21,32 ]. The interpretation is that operation histories
must be compatible with all of the PE's in the multiple path
specification. Multiple pathsimplicitly provide for some
parallelism; if a relative ordering between two operations cannot
be derived from the description, then the operations may proceed

in parallel.

Example 20:

Con§ider the two RPE's

path Fetch Print end and path Fetch Store end
The first expression states that Fetch's and Print's must alternate
while the second one specifies alternating Fetch's and Store's.
This is interpreted to mean that between two successive Fetch's
there must be both a Store and a Print, between two successive
Store's there must be a Fetch, and between two successive Print's
there must be a Fetch. These constraints are roughly equivalent
to those in the single SE

{ Fetch ( Print © Store ) )*
The difference is that Print and Store could be executed truly in
parallel according to the RPE's. Because the RPE's give no
constraints on the relative orderings of Print and Store, any

or no ordering is permissible.

4.1.3 Possible parallel instantiations are specified with brackets
{ }. Thus {expr} describes zero or more parallel instantiationg

of expr; {expr}! is approximately equivalent to the SE expr®, except
that non-interleaved parallelism is also included in the former.

Example 21:
The reader-writer constraints presented in Example 4 are
re-expressed as a RPE with { }:
path { Read }u Write end

4.1.4 The { lconstruct, RE's without *, and a mechanism for

describing finite parallel execution are the components of

w——
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Open Path Expressions (OPE's)[11,14l; OPE's use a different

semantics than the other RE-based schemes. Finite bounded parallelism

is specified by the notation:
n : ( expr )
where n is an integer and expr is an OPE. The meaning is that up
to n simultaneous executions of the procedures specified by expr
are possible, provided that any surrounding constraints are also
satisfied. The semantics are such that, for example, the simple OPE's
path p end  and path a u b end
each specify no restrictions whatever on the execution of p, a, or
b; they essentially just declare the existence of p, and a and b.
However, the OPE
path a b end
states that each b must be preceded by a matching a and contains
no constraints on how many a's might be executed; it is then
equivalent to {a b} .

Example 22:
1) The OPE
path 1: ( Insert Remove ) end
is equivalent to the RPE
path Insert Remove end
because it states that only 1 simultaneous execution of the
sequences in brackets is possible.
2) The OPE
path 1: ( {ReadluWrite ) end
gives the same permissible executions as the RPE in Example 21;
"1:" distributes through to {Read} and Write.
3) path 3: ( 1: ( Insert ) l: ( Remove ) ) end
This OPE permits up to 3 parallel instantiations of Insert Remove
sequences, but Insert's are mutually exclusive and Remove's
are mutually exclusive.

OPE's are also of interest because there exists an implementation
[12,14] (see next Section). The range of describable behaviors
is however not evident.
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4.1.5 An explicit parallel operator has been defined for PE's
[2,1,21. A form of interleaving, called a "connected path" has
also been proposed [21]. Neither of these operators seem to be
used to any extent in the published PE examples but they could be
employed for some of the same tasks as the SE ©.

4.1.6 Conditional paths [11,21] and predicate paths [2] offer a
still finer control over the selection of path elements. As an
alternative to the PE selection a u b u ... v C ., conditional
paths permit a Boolean expression Bi (with no side effects) to be
attached to each element i of the selection [19]:

if Ba then a else if Bb then b ... else if Bc then c

or

if Ba then a else if Bb then b ... else ¢ *)
In [11], the semantics of the conditional elements is similar to

Dijkstra's guarded commands.

Example 23:

Consider a bounded stack of maximum size bound, with operations
Push, Pop, and Top, and a data element count that contains the
current number of elements in the stack. The operation constraints
are given by the PE with conditional elements:

path if count = 0 then Push
else if count = bound then ( Pop u Top )
else ( Push v Pop u Top ) end

In Andler's proposal for predicate paths [2], the Boolean
expression (predicates) may be attached to any path element, and
may use only constants and event counters that are associated with
path elements; the predicate PE's also follow a guarded command

semantics.

*) I am again talking liberties with the syntax of the published
notations, as is done throughout the paper.
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4.1.7 Priorities may be specified in the selection part of a PE

using > and < instead of v [11,21].

Example 24:

Suppose the three operations on a memory resource are GetSpace,
FreeSpace,and GarbageCollect. Then the PE with priorities
path FreeSpace > GarbageCollect > GetSpace end
reflects the scheduling policy that FreeSpace requests have
priority over GarbageCollect's, and GarbageCollect's have priority
over GetSpace requests.

4.1.8 A counting facility, called a numeric path element, is used
in [16] with the general form (a -b - ... ~c¢ )n. This has
the meaning ( a u bu ... u c ) with the constraint that the
relation #(a) > #(b) > ... > #(c) > #(a) - n remains invariant,
where #(x) means the number of executions of x.

Example 25:

path ( Insert - Remove )'° end
This describes the selection ( Insert u Remove )* with the
restrictions that 0 < #(Insert) - #(Remove) < 15 , thus modelling,
for example, operations on a bounded buffer with 15 slots. An

equivalent SE is quite lenthy:
15 .
( u ( Insert Remove )®1 )=*
i=0

where a®? = A, and a®i*tl! = (aei e a ) for i >0 .

4.1.9 Several other variations and additions have been suggested.
By selecting "options" appropriately, one can easily produce many
hundreds of different path notations.

The most "popular" path notations appear to be the following:
1) the original PE's introduced in [33]
These consist of RE's without the internal * and the parallel
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{ } without nesting. A procedure name (basic symbol) can only
appear once in an expression.

RPE's and their restrictions (4.1.1)

multiple PE's (4.1.2)

Each individual PE is an RPE or a restricted RPE.

OPE's (4.1.4)

4.1.10 The semantics of some of the notations have been defined

more precisely so that implementations, analysis, or verification

are possible. The definitional methods include:

1)

2)

3)

relatively informal implementation-oriented descriptions.

It is shown how the procedure constraints contained in a PE

can be directly mapped either into Dijkstra P and V operations
that are inserted before (prologue) and after (epilogue) the
procedure or into more complex prologues and epilogues involving
path "state" testing. The former techniques are used in defining
the original notation [13] and for OPE's [11,14] while the more
complex scheme appears necessary for RPE's [24].

Petri net transformations.

RPE's and their restrictions, and multiple PE's, have all been
defined by exhibiting transformations that map the expressions into
corresponding Petri nets [11,32,34]. The Petri nets define the
PE's in the sense that the set of procedure execution sequences
accepted or described by a PE is the set of event sequences
generated by the corresponding net.

otherssuch as axioms or invariants for program execution
sequences constrained by PE's [16], partial ordering of events
generated by program computations [2], and formal denotational
and axiomatic techniques [7].

The descriptive power of PE's is difficult to establish once

one goes beyond RE's. The principal technique has been to relate
PE classes to different classes of Petri nets [32,34]. This has

also permitted the use of net theory to investigate properties

such as deadlock and starvation, e.g. [33,34].
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4.2 Object Definitions

4.2.1 The intended application of PE's is in data type specifications.
Instead of distributing synchronization primitives throughout the
operations of software objects, it is proposed that each object
centrally contain PE's that declare the required synchronization
constraints on its use. This kind of data object has the form:
type <object name>
<data declarations>
path <expr> end
operations
procedure <procedure name and definition>
procedure <procedure name and definition>

.
.

procedure <procedure name and definition>
end type

The <expr> in the PE specifies the restrictions on the executions
of the procedures declared in the object.

Example 26:
type OneSlotBuffer;

frame: message ; /* frame is a variable of type message.*/
EEEE Put Get ggg;
operations
procedure Put(x: message) ; /* Insert message into buffer. */
begin frame := x end ;
procedure Get(x: message) ; /* Remove message from buffer. */
begin x := frame end ;
end type
The PE describes the standard restrictions; that is, Get and Put
are critical sections and must follow in sequence. It is not
necessary to either surround calls of Get and Put by synchronization

operations or to distribute those operations through Get and Put.

4.2.2 The idea of removing synchronization specifications from

operations and user programs, and inserting them as PE's in object
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declarations is extremely attractive. This approach is
contrasted with the use of monitors where each procedure is
implicitly a critical section and synchronization primitives
(wait and signal) are distributed through the procedures.
However, while PE's embedded in data types provide elegant
solutions to many synchronization problems, it is not evident
that they are powerful enough to handle all such problems; it
appears that one may eventually be forced to extend PE's to a
universal programming or description language OX provide some
"escape" to express synchronization outside the PE mechanism.
These remarks apply primarily to systems where the PE is part of

the programming language as opposed to the specification language.

The literature contains many examples of object (type) definitions
with PE's used as above, including ring buffers (bounded buffers),
Dijkstra P and V, stack, alarm clock service, disk scheduler,
message passing, and various other resocurce allocators, e.g.
{3,11,12,13,21]. PE's in abstract data types also appear to
simplify verification, primarily because (when) the invariants
derived from the PE may be almost identical to the invariant to

be proven [1,16].

4.2.3 There exist two programming implementations of data types
with PE's. OPE's have been included in the Path Pascal system
recently described in {12,14]1. This system extends Pascal with
processes, OPE's, and encapsulated data objects. There is also an
implementation reported in {2] which introduces types into Algol 68
[3]. RPE's plus predicates (Section 4.1.6), called predicate path
expressions (PPE's), are used. The implementations are important

tc test the practicality of the PE ideas for a systems programming

language; they are also of great potential value in design
simulation and for determining the benefits and limitations of PE's

in larger systems contexts.

4.3 Some PE Related Work

4.3.1 Some other recent related proposals are also of interest.

In the PE work, the operations of the data type may be
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executed by any process provided the PE is not violated. It is
often the case, however, that some selectivity is desirable to
ensure that users employ the type properly.

Example 27:

Suppose a data object has operations startread and endread
constrained to execute in sequence by the PE

path startread endread end
A startread might be executed by a user U1 followed by the execution
of endread by a different user U,. While this sequence may be
acceptable in some applications, there are manv where it would be
incorrect; only the user that executes startread should be able
to subsequently execute endread.

RE's called access right expressions (ARE's) are suggested in

[27] to handle the above kind of situation. A set of ARE's is

given in the definition of an object. When a user program U declares
an instance of the type, it also specifies a subset of the object's
ARE's. U can then only execute operations according to the sequencing
declared in its instance. Thus, in the example above, each user

could get an instance of the ARE ( startread endread )*.

4.3.2 A variation of PE's has also been suggested in a completely
different domain - the specification of logical graphics input devices
[8,9,101. The sequences of input events comprising a logical
device are described by a PE-like notation, an input expression

(IE), that appears as part of the device definition. The device
definition, a data object, contains code that is invoked whenever

an input sequence satisfies the expression in the IE. These ideas have
recently been implemented as an extension of the C language under

the UNIX system [37].
Example 28:

input { Key("+") Key(CR) ) u Button(6) u Pick({("menu",5) end
The above IE describes three simple input event sequence
alternatives:

1) a '+' followed by a carriage return (CR) entered through a keyboard,
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2) the single event corresponding to depressing button number &,
and

3) the single event corresponding to pointing (on a display screen)
at item number 5 of the segment named "menu".

The IE is satisfied if any of these sequences occur; the code

associated with the IE would then be executed.

The IE's are regular expressions plus priorities, a parallel operator,
and conditional elements. The basic symbols denote either input
primitives with parameters, or higher level logical devices defined
previously. This approach has some similarities with my work on

command languages mentioned in Section 3.1.4.

4,4 gystem Descriptions: Path and Process Expressions

4.4.1 Another major class of applications employs PE ideas to
describe both the flow through the procedures of each process in a
(sub)system and the constraints on the procedure executions [1l,
32,33,34,60]. The latter PE's are essentially abstractions of
data type definitions, i.e. resource objects, and may consist of
multiple PE's; the process paths approximate the control flow of

processes.

Example 29:

begin path lock unlock end
p,: process computel lock CS1 unlock end
p,: process compute2 lock CS2 unlock end
end
The path specifies a locking mechanism (binary semaphores),
restricting the lock and unlock calls to the sequences described
by (lock unlock )*. Py and p, are cyclic processes with cyclic
executicn sequences given, for example, by the FE's
( computel lock CS1 unlock)« and (compute2 lock CS2 unlock )=
The process flows are constrained by the path declarations so
that CS1 and CS2 are mutually exclusive (critical sections);
computel may proceed in parallel with any of the operations of =2
and analogously for compute2.
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A program in the basic path/process notation is then a collection
of paths followed by a collection of processes. The multiple paths
are interpreted as in Section 4.1.2, and the processes are indepen-
dent entities with execution sequences subject to the constraints
of the paths. RE's and restricted RE's are used for the path and
process notations. The semantics of the path/process languages
are described by Petri nets and are related to various classes of
nets. One aim of this work is to use net theory as a basis for
proving properties of the languages and programs written in the
languages. Much emphasis has been placed on the notion of "adequacy";

this is a type of correctness, defined in net theory, that implies

freedom from deadlock.

4.4.2 The basic path/process notation is extended to permit the
definition of classes of paths and their instantiation[ll,32,34,60].
The most recent development is the COSY language which contains

a macro facility with elaborate path/process generators{34,60].

Example 30: (from [341])
Below is a COSY program:
begin array DEPOSIT, REMOVE (n)
[path DEPOSIT (i) REMOVE(i) end [i]/1,n,1]
[ process u(DEPOSIT) end /l,m,l]

[ process u(REMOVE) end /l,k,l]
end

The path declarations "macro" expands to n paths:
p_a_j_:b_ DEPOSIT(1) REMOVE (1) end ... path DEPOSIT(n) REMOVE (n) end
The array declares each DEPOSIT(i) and REMOVE(i), i=l,...,n as a
separate distinct operation.
The notation u(DEPOSIT) is an abbreviation for
DEPOSIT(1) u DEPOSIT(2) ... u DEPOSIT (n)
The first process then expands to m processes, each a copy of
process DEPOSIT(1) u ... u DEPOSIT(n) end
Similar expansions hold for the second process. The COSY program
then defines m+k processes, subject to restrictions given by n
paths. It models an n slot buffer that permits a process to
DEPOSIT into an empty slot and REMOVE from a full one (one that had
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been previously DEPOSIT'ed) .

The COSY notation has been used to describe many small systems
including buffering programswith different disciplines, extended
(and bounded) semaphores, and a simple spooling system [33,34,58,59].
Some suggestions are given in [58] for extending the notation to
handle unbounded elements, for example, unbounded counters. As
in the other PE notations, COSY does not have the full power of

a general programming language (Turing machine).

5. Assessment and Future Directions

5.1 Many regular expression based schemes are proposed as design

aids for describing sequential and concurrent software. The

numerous specification examples appearing in published reports
demonstrate, at least on a small scale, that convenient and tractable
descriptions can be produced with these notations; in particular,
standard, and difficult, synchronization problems, such as those,
involving critical sections, reader-writers, producer-consumers,
buffering, and priority scheduling, have surprisingly simple
descriptions. In addition, the notations have resulted in some

new approaches in systems analysis, and programming.

I believe that the principal contributions, and novel and useful
ideas of these works are the following:
1) The behavior of a system should (can?) be modelled in terms
of sequences of events, flows, or operations that may occur
during execution. Much of systems design is concerned, directly
or indirectly, with the specification of permissible sequences.
2) Given 1), RE's are a natural notation on which to base a non-
procedural design language.
3) Shuffling operators can express concurrent and interleaved
behaviors, and are a natural extension to RE's.
4) Given 1), path expressions are an attractive way to describe
synchronization constraints on operations in resource objects.
5) The resulting EE, FE, and PE notations have theoretical properties
and underlying models of computing that are interesting in their

own right.



- 31 -

5.2 The EE and FE notations are similar in that they both use

the same shuffling operators (SE's); however, they have different
synchronization schemes, and a distinction is made between indefi-
nite repetition (*) and cyclic or infinite repetition (=) in FE's.
Examples can be found where ejither scheme provides a simpler
specification than the other. It is difficult to compare the
analysis possibilities of the two notations, but software analysis
applications have been more extensively investigated in the EE
case.

PE's, as a general class of notations, have several properties
that distinguish them from EE's and FE's. The extension of RE's
that appear in PE's are completely different than the synchronization
mechanisms of EE's and FE's. The parallel operator { }can be
modelled by ® but interleaving is not the same as potentially
asynchronous concurrency; multiple paths also have parallelism
by default. 1In both cases, the total orderings of elements in
FE and EE descriptions are replaced by partial orderings.

None of the PE schemes are universal while EE's and FE's

are capable of describing any computable constraint. The specific
interpretation of PE elements as procedure executions and the
programming language flavour of some of the extensions, e.g.
conditional elements, also permit some descriptions that are not
easy to formulate in EE's or FE's. While FE's and EE's are not
meant to be implemented in programming languages, PE's are used

in both the design and programming stages of software development.

5.3 Research with all of these schemes has lead to some notational

issues that should be further analyzed:

1) bounded vs unbounded parallelism.
Should unbounded parallelism be expressible in a software design
notation? Is an operator such as ® or { } necessary? Bounded
schemes are more tractable theoretically (e.g. Petri net models)
but unbounded methods appear to be more natural when exact
numbers of resources or processes are not known, or when they

may vary dynamically.
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2) interleave vs concurrency
Interleaving is an adequate model for concurrency in most
applications but it can well be argued, at least philosophically,
that it does not alwayscapture the notion of concurrency,
especially for distributed asynchronous systems. Parallel
operators such as the PE { } are one solution but they appear
to be difficult to formally manipulate. Notations based
directly on partial orderings of events offer another possible
approach that might be developed further into a description
notaticn [19,29,38]. Here for two events a and b, either a
precedes b (a+b), b precedes a (b+a), or neither (a#b and b#a);

3 in the last case, the events are concurrent.

LU3) limited power.
How descriptively powerful should a design notation be? One
apparent reason for the each proposed extension of PE's is
the discovery of a new problem that requires the extension;
this is inevitable unless the notation is universal. A design
notation does not have to be universal necessarily, especially
if it describes most practical behaviors conveniently and

precisely, and provides reasonable approximations to others.

5.4 Design notations are only useful if they facilitate the analysis
and implementation phases of software development. I have referred
to some of the work in these other phases but it is fair to say

that the new notations have not yet been used as practical tools.

Cn the other hand, they do provide a precise software specification
language that can be clearly independent of implementations as
compared with procedural design languages.

The many examples and theoretical results show that the
RE based notations are promising. Some practical experiences in
software design and development would seem to be the next logical
step. The experiences obtained with the several implementations

should be of value in further assessing the notations [3,12,37,50].
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5.5 There are also some new description applications worth pursuing.
The problems of distributed systems and their message communications
are still being formulated, and the RE description notations may

be useful for problem and design specifications. Coroutines have
been recognized as a fundamental control structure for both
simulating concurrent activities and for naturally interleaved
tasks; FE's and EE's, which can describe coroutine-~like interleaving,
should be studied as a design notation for coroutine-based software.
The uses of interleaving in command language specifications [55,56]
and PE's in input processing [8,9,10] are still relatively undeveloped.
Finally, there are some protection applications, such as the ARE
proposal [27], where constraints on sequences of operations,
messages, and other entities are required; two of these are access
control lists for files - who can use a particular file and how,

and limitations on process operations such as those expressed by
capabilities.
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