mzuriCh ETH Library

HOST

An abstract machine for Modula-2 programs

Report

Author(s):
Kiener, Michel; Ultsch, Alfred G.H.

Publication date:
1987

Permanent link:
https://doi.org/10.3929/ethz-a-000404212

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH Zrich, Institut fir Informatik 73

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000404212
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

KL, /[, (&

ETH

Eidgendssische Technische Hochschule
Zirich

Institut fir Informatik

Zidg. Techn. Hochachule Zrich
Informeanikiibliothek
ETH-Zerntrum
CH-8082 Zlrich

Michel Kiener, Alfred Ultsch

HOST:

AN ABSTRACT MACHINE FOR
MODULA-2 PROGRAMS

Liag. Techn. Hocnschule Zirich
February 1987 Informetikbiblicthek o g
ETH-Zentrum
CH-8002 ZOrich o= (1

Address of the Authors:

Institut fiir Informatik
ETH-Zentrum
CH-8092 Ziirich
Switzerland

© 1987 Institut fiir Informatik, ETH-Ziirich

ABSTRACT

HOST is a library of Modula-2 modules which guarantees portability of
Modula-2 programs written on its top: after compilation of their sources,
the same programs will run on different computers under various
operating systems. However, HOST is more than yet another standard
library. We call HOST an abstract machine because it offers to the
programmer a coherent machine model with specific features:

- HOST incorporates a "shell” which enables users to operate programs in
an easy, uniform, flexible and powerful way. HOST’s shell has two
seemingly contradictory functions:

it isolates programs from the idiosyncrasies of the specific
environment
. it integrates programs nicely into the specific environment.

- HOST enforces handy, non pompose programming style because many
operations it can take care of by itself have been removed from the
programmer’s control and because the procedures it exports have been
deliberately designed to work together well.

- HOST offers flexible error handling, either system-provided or
programmer-supplied.

- HOST includes a simple yet powerful window handling capability.

- HOST is delivered with a set of utilities built on its top.

HOST has been implemented on several computers and used with success
in different projects.

CONTENTS

Acknowledgements
Preliminary note

1. INTRODUCTION

2. DESIGN CONCEPTS
2.1. Program interface
2.2. The hierarchical module structure of HOST
2.3. Programming style
2.4. Windows
2.5. Error handling

3. DESCRIPTION OF HOST'S MODULES
3.1. HPrimitives: Shell, files and heap management
3.2. HStrings: String manipulation
3.3, HDisplay: Window management
3.4. HEtc: Other modules
3.5. HConstypes: Constants and types

. EXPERIENCE WITH HOST
4.1, Software built on top of HOST
4.2. Portability and implementations of HOST

-~

5. COMPARISON WITH OTHER MODULA-2 LIBRARIES

6. CONCLUSION

References

APPENDIX A: Definition modules of HOST

page

-]

16
20
21

24
24
26

30
31

32
32
34

35

37
38

APPENDIX B: Definition modules of the utilities delivered with HOST

Acknowledgements

We are indebted to the designers of UNIX ([RITHO74], [RITHO78]),
Denis M. Ritchie and Ken Thompson, and to Brian W. Kernighan and P.J.
Plauger, the authors of the books "Software Tools” ([KEPL76]) and
"Software Tools in Pascal” ((K EPL81]), for many ideas presented here.

Our module HEsegmentlO has been inspired from the module
SIBlocklO ([BHHMS86)) by E.S. Biagioni, G. Heiser, K. Hinrichs and C.
Muller.

We would like to thank Hans-Jiirgen Appelrath, Martin Ester, Heinrich
Jasper and Helmut Lorek for many invaluable discussions and constructive,
criticism during HOST’s design phase and for careful reading and
commenting of the first draft of this paper. Thanks to Martin Odersky for
valuable last minute comments.

Preliminary note

Within this paper, programmers and users all are female. This is because
we love the idea of female programmers and users and they are too few
within the computing community. However, we hope that HOST will
seduce many male programmers and users as well,

By programmer, we mean a person writing programs which import
HOST’s modules. By user, we mean a user of such a program.

1. INTRODUCTION

The programming language Modula-2 has first been implemented in
1979 on a PDP-11 computer. In 1980, N. Wirth wrote a technical report
containing a language definition and some basic library modules
(IWIRB0]). Two years later, he published "Programming in Modula-2*
([WIR82]), a book which includes among others a description of some
library modules for the Lilith computer ((WIRB81]). Since that time, several
Modula-2 compilers appeared on the market, each of them delivered with
a different set of library modules. The lack of a standard Modula-2 library
(as it exists e.g. in UNIX for the C-language) has the effect that Modula-2
programs are not portable from an environment to another. A second
problem of existing libraries is that they appear as an unstructured heap of
modules rather than as a hierarchically ordered - and thus comprehensible
- set. The common approach is "everything must be possible”: it results in
lots of modules exporting lots of low level procedures.

Feeling that translating calls to procedures of one library into calls to
procedures of another library is an ungrateful and dispensable job and
convinced that few powerful well chosen concepts are better than many
pieces of junk, we decided to define a standard interface to the environ-
ment (hardware and operating system) which we called HOST, since it
appears to the programmer as the only host computer she writes programs
for. HOST should be viewed as an abstract machine whose machine lan-
guage is Modula-2 augmented by some special purpose instructions: these
are the procedures exported by the modules presented in this paper.

HOST was defined by the end of 1984 and a first version was imple-
mented for the Lilith computer in June 1985. Since then, several software
packages have been written on top of it and HOST has been ported to the
SUN-3 and Macintosh computers. Still HOST remains a relatively small
piece of software, so porting it from an environment to another is a
straight- forward task.

In section 2 of this paper HOST's design concepts concerning program
interface, module structure, programming style and window handling are
presented. In section 3, we describe briefly the modules of HOST, while in

section 4, we report our experience with HOST in different projects. In
section 5, we compare HOST to other Modula-2 libraries. Section 6
contains a short conclusion and a brief outlook on future work. HOST's
definition modules and the definition modules of the utilities built on top
of HOST and delivered with it are listed in the appendix.

2. DESIGN CONCEPTS
In this chapter, we describe the ideas that led to HOST's design con-
cerning program interface, module structure, programming style and win-
dow handling.

2.1. Program interface

With program, we mean here a main program written on top of HOST,
i.e. one that imports exclusively modules from HOST (of course, there may
be any module hierachy between the main program module on top and the
HOST modules at the bottom). The interface between such a program and
its user is the topic of this chapter.

The crucial idea is to imbed programs into a standard environment (i.e.

the "shell") which enables the user to operate them in an easy, uniform,
flexible and powerful way without programming overhead: when she
orders the execution of a program, she may redirect the input and output,
pass arguments and options or consult the program’s on line documen-
tation. The author of the program did not need to program this features
because HOST’s shell put them at her disposal.

Integration into the specific environment

While users of old fashioned computers type in commands on key-
poards, modern workstations’ users click mouses on icons. So every
computer has specific features and conventions on how it should be
operated - and users dislike software that does not make usage of these
features or does not respect those conventions.

For this reason, we have decided to make no prescriptions on how to
implement HOST’s shell on a certain computer. Each specific implemen-
tation should respect the conventions used on the underlying environment.
For instance, on an IBM PC, 170 (= input/output) redirection (see below)
may be initiated through typing in a redirection command, while on an
Apple Macintosh, this might be achieved through a first mouse click on an
icon representing a standard 170 channel and a second click on an icon
representing the chosen file. As another example, passing of arguments and
options (see below) might be implemented either through typing them in

r selecting them from a menu.

Cooperative programs

An important insight of Software Engineering is that programs should
be decomposed into modules, each module performing a well determined,
specific task, and all modules working together by means of their well
specified interfaces. Now why should modularity remain inside the
programs? Why shouldn’t we extend modularity to the program’s outside?
We postulate that programs shall be regarded as modules which perform
well defined, specific tasks and may be connected with other programs and
work together to achieve complex tasks. This way of looking at software
has a beneficial influence on programmers and on the longevity of project
leaders: the programmers will tend to develop sets of small, cooperative
programs that perform a single job at a time, but do it well.

Files as streams of bytes

Modules have interfaces and programs have 170. Thus, while modules
work together by means of their interfaces, programs have to cooperate
using each other’s I/0. So the wish for programs to be able to work to-
gether in a standard way sets requirements to their I/0: the output of every
program may become the input to another one, so it must have the simplest
and most general possible structure, which is a stream (= a sequence) of
bytes without type or structure.

Homogeneous treatment of I70

The 170 channels for programs supported by HOST are disk files,
devices (terminal-keyboard and display) and windows. All of them are
called “files” and treated homogeneously by HOST. While the idea of
treating devices like keyboard and terminal as files stems directly from the
UNIX environment, we have extended it to windows. This idea leads to a
tremendous simplification of I/0 handling for the programmers, since all
low level I70 details are handled by HOST: programs need not care where
their data comes from or goes to, and programmers need not care of the
idiosyncrasies of the file system, the window manager or particular devices
upon which files reside. Moreover they are delivered from the burden to
remember different names of procedures that perform the same operations

10

on different types of files because HOST provides procedures to write to
and read from files which work for all types of files, thus making 1/0
device independent. 170 calls that make no sense (e.g. an attempt to write
to the keyboard) are ignored and an error message may be displayed. The
only concepts programmers need to have in mind is that files are streams
of bytes and that all types of files are treated in the same way.

From the stream of bytes nature of files, it should not be infered that
files cannot have structure. Certain programs do write data in particular
forms for the benefit of people or other programs. For example, a compiler
creates object files in the form expected by the loader. But these structures
are imposed by the programs, not by HOST.

Standard 170 and 170 redirection

A surprising number of programs have one input, one output, and
perform a useful transformation on data as it passes through. This is the
reason why we defined standard 1I/0 mechanisms in HOST: standard input
(STDIN) is the source from which a program will take its input. Standard
output (STDOUT) is the destination for the output of a program. Standard
error (STDERR) is the destination for the error messages of a program.
Normally, STDIN is the terminal keyboard, STDOUT the terminal display
and STDERR the terminal display too, but they can be redirected to disk
files or windows.

STDIN PROGRAM STDOUT
—— —

STDERR

1

When the user executes a program and specifies no 170 redirection, the
program reads its input (if any) from the terminal keyboard (= default
value of STDIN), writes its output to the terminal display (= default value
of STDOUT) and, if any error occurs, writes an error message to the
terminal display (= default value of STDERR). Now suppose the user
wishes the same program to write its output onto a disk file instead of the
terminal display. She can achieve this without the programmer having to

make any change to the program: she will just have to enter a redirection
command when she initiates the execution of the program.

At program execution time, the following 170 redirections are available
to the user:

- redirection of input to a disk file (i.e. input is read from that file).

- redirection of output to a disk file. If that file already exists, it is
overwritten,

- appending of output to a disk file (i.e. if that file already exists, the
output is appended to the file after its initial content).

- redirection of error messages to a disk file (if that file already exists, it
is overwritten).

The reason, why the programmer must not change a program to enable
redirection of its 1/0 is, that programs importing HOST are embedded in a
standard interface to the operating system. This interface automatically
provides 1/0 redirection capabilities (the interface is called the “shell").
Nevertheless, it is possible to program 1/0 redirection as well: within a
program, STDIN, STDOUT and STDERR may be redirected through
simple assignement of variables of the Modula-2 type “file”, e.g.
"STDOUT := f1;". Whereas it is not possible for a user to redirect I/0 to
a window when she initiates program execution, programmers are free to
program I/0 redirection to windows within their programs (e.g.
"STDOUT : = myWindow;").

NOTE: If the user does not want to be "disturbed” by interactive error
messages, she may redirect STDERR to a disk file. If the programmer does
not want the user to be "disturbed" by interactive error messages, she may
either program a redirection of STDERR to a disk file or provide her own
error handling procedure (see section 2.5.).

12

Passing of arguments and options to programs

Beside the processing of redirection commands, the most important

function of HOST’s shell is to pass arguments and options to programs.
HOST puts procedures to fetch them at the programmer’s disposal.

Arguments are strings of characters used as a whole, while options are
strings of characters used individually. Each single character of an option is
called an option-character. As an example, "is-hungry” might be an
argument (to some sensible program) and "p2a” might be an option with
the option-characters "p" (e.g. standing for “protected”), “2" (e.g. meaning
that the computation has to be executed twice) and "a" (e.g. standing for
"abort"” if an error occurs).

The way of passing arguments and options is implementation depen-
dent: on a certain computer, the user will have to type them in at the
keyboard, on another she will have to choose them with the mouse or by
any other means. The details of the syntax depend on the implementation
as well: on some hardware, options may be "sequences of one or more
characters preceeded by a minus sign” while they may be “sequences of
one or more characters entered in the option window" on another
machine. '

A standard argument and options passing mechanism has two main
advantages:

- advantage for the users: all programs have the same standard
user-interface, which is not the case when each programmer writes her
own input routines

- advantage for the programmers: they are no more tempted (and are
delivered from the burden) to write their own input routines.

As an example of arguments and options passing, we assume that, in a
certain environment, the command

sqrt 17 -5n
activates a program sqrt, which computes the square root of the first
argument (here 17) with a precision of a number of digits that is given as
option (here 5 digits) and without rounding (we assume that the
option-character n stands for "no rounding”). As far as STDOUT is not
redirected, the result (here 4.12310) will be written to the terminal display.

i3

On-line documentation of programs

A last feature of HOST’s shell is its on-line program documentation
feature. When the user initiates the execution of a program and then per-
forms a certain, implementation dependent action (for instance clicking the
mouse on the "doc" icon or entering a question mark into a commandline),
HOST’s shell displays the content of the program’s documentation file (i.e.
a documentation text) on the terminal and is ready to execute the program.

In order to be imbeded in HOST's shell, a program must contain as its
first statement a call to a certain procedure which expects as a parameter
the name of the program’s documentation file. The advantage of this
feature is to motivate programmers strongly to write documentation for
their programs (this documentation should at least contain explanations
about arguments and options the program expects). At the latest when a
programmer first runs her program (probably to test it), the existence of
the on-line documentation facility leaps to her eye. If she has not yet
written a sensible text into the file the program considers to be its
documentation file, she will find almost natural to provide that text right
now.

Program connection and pipes

The output of a program normally goes to STDOUT but may be
redirected to a file. This file may be used as an input to another program.
This is an easy method to connect programs, used for instance by multiple
pass compilers.

In an environment which supports pipes (e.g. UNIX), Modula-2
programs written on top of HOST may be piped, i.e. the output of one
program can be connected directly to the input of another one without
having to be written onto an intermediary file.

14

Program model

HOST presents the following program model to programmers and users:

args, options

STDIN PROGRAM STDOUT
—> e —

shell

STDERR\L \Lon line documentation

NOTE: Although there are only one STDIN and one STDOUT, it is of
course possible to write programs with more than one input or one output
on top of HOST.

15

2.2. The hierarchical module structure of HOST

To facilitate clear handling, we have defined four groups of Modules.
Modules that belong conceptually together are in the same group and their
names begin with the two same letters (we have chosen this solution
because Modula-2 offers no construct to structure groups of modules
without costs). The four groups of modules are:

- group HP... = HOST Primitives: Shell, files and heap management
- group HS... = HOST Strings: String manipulation

- group HD... = HOST Display: Window management

- group HE... = HOST Etc: Other modules.

Additionally, there is a module HConstypes which belongs to no group
and defines implementation dependent constants and some types that are
used by several modules of HOST.

Of course, programs need only to import the HOST modules they need,
and do not have to pay the price (in terms of memory space) for the entire
HOST.

HOST’s module structure has proved to be valuable: it has remained
stable since the first design.

The different modules of HOST are briefly described in section 3 and
listed in the appendix.

16

2.3. Programming style

The style of the programs written on top of a library depends heavily on
the quality of the objects exported by the library. It was a goal of HOST's
design to make programmers’ life as easy as possible and to enable them to
write handy, non pompose programs. In this section, we first expose the
different concepts used to reach this goal and then demonstrate them in a
short example program.

Software Tools

All procedures exported by HOST have been designed with the
“Software Tool" idea in mind: (we cite Kernighan and Plauger
([KEPLS1])) "Tools solve general problems rather than special cases” (...)
"Tools are desipned to work together: their cumulative effect is much
greater than you could get from a similar collection of programs that you
could not easlily connect”. Laudable is, by the way, Kernighan and
Plauger’s intention, "not to claim that their choices will satisfy all the
programmer’s needs, but should provide her with ideas and insights about
her particuliar problem”.

The tool concept implies uniform representation of data: all procedures
that deal with strings use the same conventions about strings and all
orocedures that deal with real numbers use the same representation of real
numbers.

Another aspect of the tool idea is handiness. HOST is a software
package with manageable size and thus remains comprehensible to the
programmers. It provides relatively few but well designed basic functions.

Taking some of the programmers’ load off

One of our most important design decisions has been, to remove from
the programmer’s control the operations that our abstract machine can take
care of by itself. For instance, there are no instructions to move the cursor,
because we have postulated that our machine offers a mechanism (e.g. a
pointing device, however it could be a set of cursor keys as well) to do that
and because we think that this operation never needs to be performed by

17

an application program. While low level fans probably will feel frustrated
that some operations escape their control, experienced application
programmers will appreciate the compactness and readibility of programs
which do not need to care about unnecessary details. (In the same way,
some programmers consider the impossibility of incrementing processor
registers a threat of Modula-2, while others see that as a chance because it
enforces abstraction).

Another example is the extensive limitation testing: HOST's procedures
test that the passed parameters are within the allowed range (programmers
are delivered from that burden) and that the actions they are supposed to
perform (e.g. closing a disk file or converting a string to a number) are
performed successfully. Many procedures return a status information
indicating success or failure.

A step in direction of functional programming

A lot of function procedures of HOST return one or more VAR
parameters in addition to their own returned value. This is unconventional
Modula-2 usage, but perfectly legal. Example:

PROCEDURE getcf(VAR ¢ : CHAR; VAR f: file) : INTEGER;

reads a character ¢ from a file f. It returns the read character as VAR
parameter ¢ and its INTEGER value as returned value of the function
procedure. A program to read characters from a file looks like:

WHILE getcf(c, f) # ENDFILE DO
(» do something sensible with ¢ here »)
END (= WHILE »);

This is handy and contributes a great deal to the readibility of the code.

There is only one potential drawback of this programming style: suppose
we have a

PROCEDURE proc(VAR out : outType) : BOOLEAN;

which returns TRUE if a certain operation has been performed on the
variable x and FALSE if that operation failed. A possible use of that

18

procedure is:

VAR x, y : outType;

x:=y;
IF proc(x) THEN
(» do something sensible with x here)
ELSE
(» we would like to assume that x hasn’t been changed by proc here
L]
)
elseproc(x);
END (s IF 8);

Here is ‘a potential problem with the side effect of proc (changing the
value of the variable x) and the else part of the if statement: proc is called
anyway (because the condition part of the if statement is always executed).
If proc returns FALSE, elseproc(x) is executed. Here an error which is
rather difficult to discover may occur: the programmer could assume that x
has the value y when it is passed to elseproc. But this is only the case if
proc leaves x unchanged when it returns FALSE!

To avoid this kind of problems, we require that all function procedures
with VAR parameters leave those parameters unchanged when the value
they return corresponds to the less common case (e.g. when getcf returns
ENDFILE or when proc returns FALSE). Thanks to this restriction, we
attain both handy code and safety. (A description of the side effects in both
the common and the uncommon cases is part of the definition of the
function procedures of HOST).

Unread function

Many programs read sequentially characters or bytes from a file and
consume them one after the other until some criteria is met. Often they
have read one element too much when the criteria is met. Programs that
must handle the special case of the last read element tend to be
unnecessarily complicated. This is the reason why HOST provides an
“unget" procedure which (logically) puts back one character or byte to the

19

file. This element is read again by the "getcf” or "getbf" procedure at next
call (in reality, the character or byte is not written back to the file but put
into a buffer). The "unget” procedure is especially practical to scan input
and to write parsers.

A small example

In order to demonstrate some of the concepts praised in this section, we
present the following short program part:

LineNumber: =1; NrOfDigits: =1;
FOR i:=0 TO 4 DO NumberString[i}: =BLANK END (» FOR »);
WHILE getline(InString, InFile, MAXSTR)>0 DO

IF (cardtoc(LineNumber, NumberString, 5-NrOfDigits) # FAILED)

AND appendc(BLANK, NumberString)

AND vconcat(NumberString, InString, Outstring) THEN

putstr(Outstring, OutFile)

END (¢ IF s);

INC(LineNumber);

IF (LineNumber MOD 10) = 0 THEN INC(NrOfDigits) END;
END (= WHILE +);

This program reads from a file line by line (getline(InString, InFile,
MAXSTR)), puts an increasing line number in front of the line
(vconcat(NumberString, InString, Outstring)) and writes the result onto
another file(putstr(Outstring,OutFile)). The line number in string form is
generated from a cardinal number (cardtoc(LineNumber, NumberString, 5
- NrOfDigits)). It consists of 5 characters, is right justified and preceeded
by the necessary number of spaces (BLANK). Between the line number
and the input line, a space is inserted (appendc(BLANK, NumberString)).
The remaining statements contain some self explaining additional details.

20

2.4. Windows

We have mentionned already that HOST treats windows like files and
1/0 devices. This means that the same procedures for reading from/writing
into a file are used to read from/write to a window, and that input or
output may be redirected from/to a window (only through program
statement, not interactively at program execution time - see section 2.1.).
Other characteristics of HOST’s window management system are:

A pointing device (e.g. a mouse) is supported.

- Moving and resizing windows are part of the HOST machine
capabilities and thus not under programmers’ control. Each time a
window’'s location or dimensions are changed (and also at opening
time), a programmer supplied restore-procedure is called.

- Menus and scroll bars may be attached to windows without
programming overhead.

- HOST’s text windows can be implemented on computers without
bitmapped display and mouse.

21

2.5. Error handling

Often programmers spend little time in thinking about errors. In some
special cases however, they want their program to react to an error in a way
they determine. For this reasons, HOST offers two different kinds of error

handling: system provided (= default) and programmer supplied.

All procedures exported by HOST are written so that, whenever they
detect an error, they call the error procedure, passing to it the number of -
the occured error. Per default, the error procedure which is called is
supplied by HOST, however it may be redefined by the programmer (in
terms of Modula-2, the error procedure is a procedure variable which may
be reassigned).

In the following, we describe how the standard error handling
mechanism works and give some examples of programmer supplied error
handling.

Standard error handling

Somewhere (e.g. in a text file) there is a table containing for each error
number a corresponding text (e.g. "Attempt to write to a file opened for
read") and a corresponding action (either "IGNORE", "ABORT" or
"CONTINUE"). Whenever called, the default error procedure reads from
that table the text and action entries corresponding to the error number
that was passed to it. If the action is "IGNORE", the procedure does
nothing, otherwise it displays the corresponding text and either aborts
(when action = "ABORT") or continues (when action = "CONTINUE")
the program.

22

Examples of programmer supplied error handling

To treat all errors in the standard way, except error number 184, we may
write the following procedure:

PROCEDURE MyErrorProcl(ErrorNr : INTEGER);
BEGIN (* MyErrorProcl »)
IF ErrorNr = 184 THEN
(» programmer supplied error handling of error 184)
ELSE
DefaultErrorProc(ErrorNr);
END (= IF »);
END MyErrorProcl;

If this error procedure is to be called only at a certain location in the
program, this program part may look like:

AssignErrorProc(MyErrorProcl);

(*here is the location of the non standard error handling »)
HOSTprocl(...);

AssignErrorProc(DefaultErrorProc);

Of course, it is possible to get the number of an error and use it within a
program as well. To illustrate this, let us suppose we want a HOST
procedure, say HOSTproc2, to be called as often as necessary until the user
interactively enters a valid actual parameter x:

REPEAT
GetParamFromUser(x);
HOSTproc2(x);

UNTIL ... (» x valid =)

In HOST, the following are true statements:

- HOST procedures treat calls with non-valid parameters as errors, so
they call the (default or programmer-supplied) error procedure

- When no error occured, no error procedure is called

- When there is an error, its number is different from NOERROR (error
number "NOERROR" is reserved for "successful completion").

23

So our program may look like:

VAR ErNr : INTEGER;

PROCEDURE MyErrorProc2(ErrorNr : INTEGER);
BEGIN

ErNr : = ErrorNr; (» get HOST's ErNr »)
END MyErrorProc2;

BEGIN (= ... »)

AssignErrorProc(MyErrorProc2); (¢ ErNr can be changed by HOST »)
REPEAT
ErNr:= NOERROR;
GetParamFromUser(x);
HOSTproc2(x);
UNTIL ErNr = NOERROR;
AssignErrorProc(DefaultErrorProc);

END..;

If an error occurs during execution of HOSTproc2, MyErrorProc2 will be
called and ErNr will get a value different from NOERROR.

24

3. DESCRIPTION OF HOST'S MODULES

In this section, we describe briefly the different modules of HOST. For
more details, see the definition modules in the appendix.

3.1. HPrimitives: Shell, files and heap management

HPshell

This module implements the program interface (the shell) described in
section 2.1. It exports procedures to access inline arguments and options
and print error messages. Further, HPshell exports the variables STDIN
(= the file, all standard read procedures take their input from), STDOUT
(= the file, all standard write procedures write to), STDERR (= the file
where the error and message procedures write to), Keyboard (= the
terminal keyboard = the file STDIN is assigned to per default) and
Terminal (= the terminal display = the files STDOUT and STDERR are
assigned to per default). HPshell exports the default error procedure called
by all HOST procedures and a procedure to assign a programmer supplied
error procedure (see section 2.5.).

HPfiles

HOST offers 4 types of files which are all treated in the same fashion:
lisk files, windows, terminal display and keyboard. The module HPfiles
exports procedures that work for all types of files. Other procedures, which
are for files of type window only, are exported by the module HDwindows.

A file (of any one of the 4 types) is a stream (sequence) of elements,
Smallest element-size is one byte, largest element-size is any arbitrary
user-defined record. As far as the underlying file system is concerned, a
file has no internal structure: it is a featureless, contiguous stream of bytes.

All files have one of five IOmodes which is declared when a file is
opened. On illegal file access, an error message appears on STDERR (see
note at the end of the paragraph "Standard 170 and 170 redirection” in
section 2.1). The last read element of an input file can be put aside (unget)
such that it is read again by get at next call. File 170 is normally sequential

25

- put and get procedures continue where the pre- ceeding call left off. This
may be changed by a call to the procedure seek, which provides an easy
random access capability (on disk files only). seek allows bytewise
positionning of the file pointer (= actual read or write position). The:
actual file pointer position may be inquired through procedure getpos.

HPmemory

This module allows program controlled heap storage management and
provides procedures to allocate and deallocate the heap space. The
allocation is byte-wise.

26

3.2. HStrings: String manipulation

HOST respects the same conventions about strings as N. Wirth in

[WIRS2]:

String indexing starts at 0. Thus, in the description of the procedures,
the position i in an ARRAY OF CHAR refers to the (i+ 1)-th character
in the string. (We have chosen this type of indexing because in
Modula-2 the index range of an actual array parameter is mapped onto
the integers 0 to N-1 (where N is the number of elements) when the
array is passed to a procedure with open array parameter (see [WIR82],
Page 156)).

The length of a string str is defined as: HIGH(str) + 1, if str does not
contain an ENDSTR character. Otherwise the number of characters of
str up to but not including ENDSTR.

An empty string is an ARRAY OF CHAR which contains an ENDSTR
character at its first position (i.e. str[0] = ENDSTR).

By "the last character” of a string, we mean the one preceeding the
ENDSTR character, or the last one indeed if the string contains no
ENDSTR.

All procedures which append a string or a character to a string str
override the ENDSTR in str with the first character to append. If
possible (i.e. if the last appended character does not occupy the last
place of str), an ENDSTR is appended to str after the last appended
character.

HSfunctions

This module exports procedures to;

- insert, add, delete, select and modify strings

- get information about strings and

- do the lexical ordering of letters and strings.

27

HSconversions
This module exports procedures for conversion of strings to

CARDINAL (in any base with 2 <= base <= 36) and INTEGER and vice
versa.

HSreal

This module exports procedures for conversion of strings to REAL and
vice versa.

28

3.3. HDisplay: Window management

HDwindows
This module defines operations for the following objects:

Screen: Rectangular display area on which 0, 1 or several windows can be
simultaneously displayed. At one time there is one cursor to be
seen somewhere on the screen and carets (see below) mark a
position in the windows.

Window: A rectangular area that shows a part of a text file, To every
window belongs optionally a title (line of text) and a location bar.
Window may be resized by a hidden mechanism. Each time the
window’s dimensions are changed (and also at opening time), a
programmer supplied restore-procedure is called. The actual
line/column-dimensions can be inquired any time. At most one
menue is associated with a window. The same procedures for
reading from / writing to a file (putcf, putlf, putstr, ...) exported
by HPfiles are used for reading from / writing to a window.

Cursor: A pointing mark somewhere on the screen. The cursor is moved
on the screen by some input mechanisms, that is hidden in the
implementation (maybe a mouse).

Menue: A menue is used to select commands. At most one menue can be
seen on a screen at a time.

Caret: A caret marks a position in each window (for example to mark a
position to the left of which the next character is inserted when
keyboard input is done). A caret can be positioned (or its position
inquired) in coordinates of lines and bytes relative to the window
where the caret is in.

HDbutton

This module defines an input device with several buttons (it may but
must not be 2 mouse). One or more of these buttons can be pressed at any
time. If one of the buttons on the button-device is pressed, the procedure
"pressed” exported by HDbutton returns a bitset enclosing a constant

29

corresponding to that button. Inquiring the state of the buttons is real time
(busy-read). The buttons can, but must not, have a special meaning in
connection with windows and the cursor.

HDbar

This module defines a scroll bars for windows. A scroll bar is a
retangular area at the left side of a window. Pressing a button when the
cursor is inside a scroll bar results in a call to a programmer supplied
procedure. Installed scroll bars can be enriched by a background colored
rectangle which can be dimensioned in per-mille of the total bar length. A
scroll bar (incl. rectangle) is always painted and refreshed by a hidden
mechanism (after changes of the outlook of the window).

30

3.4. HEtc: Other modules
HEreal

This module enables conversions from REAL to INTEGER and vice
versa.

HEmathlib

This module exports basic mathematical functions (arc tangent, square
root, exponential function, natural logarithm, cosine and sine).

HEsegmentlO

This module provides low level block 1/0 to mass storage and defines
operations for the following objects:

Block: Blocks are arrays of bytes of fixed length.

Segment: Integral numbers of blocks grouped into so-called segments
may be stored to / retrieved from so-called BIOFiles. From the
programmer’s point of view, segments are contiguous pieces of
memory on the BIOFiles. Each segment on a particular BIOFile is
uniquely identified by 2 SegmlId which serves as the programmer’s
address of the segment.

BIOFile: Files of type "BIOFile" are incompatible with the files of type
“file" described in the other modules of HOST (HConstypes,
HPfiles, HDwindows). When created, BIOFiles get a stamp that
marks them as BIOFiles. Applying procedures exported by
HEsegmentlO to files that do not have that stamp produces an
error message on STDERR. .

3

3.5. HConstypes: Constants and types

The module HConstypes exports implementation dependent constants
(e.g. MAXREAL = largest real number or BYTESPERCARD = size in
bytes of the standard type CARDINAL) plus the types "string”, "file" and
“IOmode" which are used by several modules of HOST.

32

4. EXPERIENCE WITH HOST

As Kernighan and Plauger state, "it’s not possible to learn to program
well by reading platitudes about good programming, nor it is sufficient to
study small examples. (The software tools have to be) real working pro-
grams that we know from experience that one can build good programms
with them" ([KEPLS81]).

HOST was defined by the end of 1984 and a first version was
implemented for the Lilith computer in June 1985. Since then, several
large software packages have been written on top of it (see 4.1.) and HOST
has been ported to the SUN-3 and Macintosh computers (see 4.2.).

4.1. Software built on top of HOST

Since its first implementation, HOST has been used intensively in
different projects that we briefly describe here.

KOFIS

In Summer 1984 the project KOFIS (Knowledge Based Office
Information System) was started in our research group at the ETH Ziirich.
TOFIS (JAEJUB86)) is a prototypical knowledge based personal infor-
1ation retrieval system running on a personal workstation. It can be
iewed as an expert system for storing and retrieving documents and
Jomain dependent knowledge in an office environmemnt. KOFIS is a
large software package including a sophisticated user interface, an
inference engine and a knowledge base manager. It is entirely written in
Modula-2 and Prolog (the Prolog interpreter itself is written in Modula-2).
The whole KOFIS software is written on top of HOST. Some of its parts
have been ported from the Lilith to the Macintosh and to the SUN-3.

ODIR

In the project ODIR (Optical Disc Information Retrieval) ([APP85],
[APP86]) we develop special applications and general tools for the coupling
of optical disc players and personal computers. Optical discs are primarily

33

used to store color picture and tv-movies. The aim of the project is to
develop a comfortable information retrieval system which manages
database descriptors for up to 54.000 pictures stored on a disc and displays
the relevant pictures when the user makes a corresponding query. The
ODIR software has first been developped on the Lilith and then ported to
the Macintosh without changes.

EUREKA project PROTOS

The aim of the EUREKA project PROTOS (Prolog Tools for Building
Expert Systems) is to develop an integrated set of Prolog oriented tools for
building expert systems, e.g. intelligent CIM-applications. Partners in
PROTOS are ETH Ziirich, IBM Deutschland GmbH, Sandoz AG and
Universitit Dortmund. The integration of two additional partners is
planned.

The project consists of the four subprojects:
- Prolog programming environment
- Prolog and Databases
- Integrity concepts for Prolog systems
- Application development and tool evaluation.

The project partners have decided to use HOST as a basis for all
Modula-2 software.

TOOLS

This set of utilities for programmers to sort text lines, change patterns in
texts, check words against a dictionary, produce a KWIC (keywords in
context) index, concatenate files, analyse the dependencies between
modules within a Modula-2 program, etc., was first developped for the
Lilith and then ported to the Macintosh. These tools were the first software
developped on top of HOST. They are in daily use within our research
group.

34

4.2. Portability and implementations of HOST

HOST has been designed with portability in mind and thus renounces
idiosyncrasies of special hardware or software environments. For instance,
HOST’s text windows can be implemented on computers without bitmap-
display and mouse. However, this does not mean that HOST offers only
the features which all the environments have in common - which would be
equivalent to offering the features of the worse one. Indeed, HOST
provides the comfort, users of modern workstations with bitmap display
and mouse are accustomed to. This means however, that implementing
some parts of HOST on an old fashioned machine will require some extra
work.

As HOST remains a relatively small piece of software (3500 lines of
source code for the implementation modules, 12 kByte object code and 2
kByte data for the Lilith version), porting it from an environment to
another is a straightforward task. Depending on how the implementor is
familiar with HOST and with the target computer and on the quality of the
available Modula-2 library on that machine, porting may take two weeks to
two months.

Currently, implementations of HOST are available for the following
hardware:

- Lilith

- Macintosh (4 pass compiler MacLogimo)

- Macintosh (1 pass compiler MacMETH)

- SUN 3 (SUN Modula-2)

An implementation for the IBM RT workstation is planned.

35

5. COMPARISON WITH OTHER MODULA-2
LIBRARIES

In this section, we present a brief overview of the Modula-2 libraries we
looked at, followed by some comments about HOST’s uniqueness.

The library of modules described in the Lilith Handbook ([LILI85]) was
designed specially for the Lilith. Although it is compiete and includes
powerful modules for screen software, it does not pretend to be a portable
standard library since many modules are specific to Lilith’s operating
system Medos-2. We consider it more suitable for system programming
than for application programming (for instance the type File exported by
the module FileSystem).

Many modules of the library delivered by Logitech with their Modula-2
system for IBM PC and compatibles ([LOGI84]) are derived from the
modules created for the Lilith library. A mouse, but no screen software, is
supported. As in MS-DOS, there are two different types of files: binary
and text.

The library of the Modula-2 for VAX/Unix BSD 4.2 system developped
at Cambridge University Computer Laboratory ((CAMBR]) is organised in
four sections:

1. Portable general purpose modules

2. Non-portable general purpose modules
3. Cambridge input/output

4. Unix specific modules

Only a part of the library is portable. There are lots of modules which
export lots of procedures; everything seems to be possible, but it seems
difficult to find what one needs. There is no screen software.

The Modula-2 library developped at OCE - Wissenschaftliches For-
schungsinstitut ((OWF85]) is small, easy to use and well structured. It
consists of the following modules: Conversion (of CARDINAL,
INTEGER, and REAL numbers to strings and vice versa), FilelO (read
and write numbers on files), Files (simple sequential and random access to

36

files), MathLib (set of standard mathematical functions), Storage (dynamic
storage allocation and deallocation), Strings (basic string handling),
TerminallO (reading and writing characters, strings, and numbers on the
standard input/output) and UnixParam (access to the parameters of a Unix
program). Windows are not supported. The library is machine independent
and thus portable (except UnixParam).

The Modula-2 Standard Library Definition Modules proposed by
Modus, the Modula-2 Users Association ((MODUBS]), were developped to
be portable from a computer to another. They "provide 1/0 services,
format conversion, mathematical functions, dynamic storage allocation and
program calling. The I/0 service modules tend to form layers, with some
modules using services or data defined in other modules; the non-1/0
modules tend to be more independent.” There is no screen software.

OSSI ((BHHMS6)) is a portable Modula-2 library which provides, beside
the usual services, screen handling capabilities including text and graphic
windows and an event manager. System dependent constants are grouped
together into a module named SISystem. HOST’s module HEsegmentIO
has been inspired by OSSI's module SIBlocklO.

All reviewed libraries provide functions for 170, string manipulation,
number conversions, dynamic storage allocation and mathematical
functions. Not all of them are portable, only the Lilith library and OSSI
offer window handling procedures. Only HOST treats windows as files and
claims to be portable to non-bitmap/mouse environments. Three unique
features confer HOST its strong personality: its shell, its error handling
mechanism and its enforcement of good programming style.

37

6. CONCLUSION

In our design of HOST, we have chosen the pragmatic approach: we
profited from the experience of the UNIX designers ([RITHO74],
[RITHO78]) and the authors of “Software Tools" ([KEPL76], [KEPL81)),
because their ideas had proved to be worthwhile for real applications;
further, we kept HOST small to ensure easy portability for implementors
and ease of use for programmers; and, thinking that programmers have
enough to do, we removed from their control the features that HOST can
take care of by itself and offered them handy and powerful tools designed
to work well together. Our experience with HOST in different projects has
proved the soundness of this approach.

In Spring 1987, we plan to design a new version of the window handling
part of HOST (i.e. the modules HDwindows, HDbar and HDbutton) that
will contain an event manager enabling programmers to write programs
with a so-called inverted structure: classical interactive programs control
all user interaction. Often such programs consist of a main loop waiting for
user input and performing some actions in response to that input. In
programs with inverted structure, the control is at the event manager,
which waits for events to occur and performs certain procedures (called
event handlers) in response to events. Typical programs with inverted
structure do not consist of straight-line code, rather they consist of a set of
procedures, the event handlers. These procedures are called at the
appropriate time by the event manager. '

With our version of HOST’s window software, programmers will have
the freedom to write classical programs, programs with inverted structure
and an hybrid form of both types as well, because it will be possible to pass
the control from program to event manager and vice versa.

Further ameliorations of HOST's window software will include
additional window, scroll-bar and menu handling capabilities and a
module for graphics. ‘

38

References

[APP85] H.-J. Appelrath, ODIR: Optical Disc Information Retrieval, in:
Tagungsband Datenbank-Systeme fiir Biiro, Technik und Wissen-
schaft (GI-Fachtagung, Karlsruhe, Mirz 1985), Informatik-Fach-
berichte, Nr. 94, Springer-Verlag, Heidelberg, Marz 1985.

[APP86] H.-J. Appelrath, Retrieval strategies for optical disc documents,
in: Proceedings of the 43rd Congress of the International Fede-
ration for Documentation, Montreal, September 1986.

[AEJUS6] H.-J. Appelrath, M. Ester, H. Jasper, A. Ultsch, KOFIS: An
Expert System for Information Retrieval in Offices, in: Procee-
dings of the "Second International Conference on the Appli-
cations of Microcomputers in Information, Documentaion and
Libraries" (Baden-Baden, Mirz 1986), North Holland Publ. Co.,
1986.

[BHHMS86] E. Biagioni, G. Heiser, K. Hinrichs, C. Miiller, OSSI - A Por-
table Operating System Interface and Utility Library for Modula
-2, Interner Bericht Nr. 67 des Instituts fiir Informatik der ETH
Ziirich, 1986.

[KEPL76] B. W. Kernighan and P.J. Plauger, Software Tools, Addison-
Wesley, 1976.

[KEPL81] B. W. Kernighan and P.J. Plauger, Software Tools in Pascal,
Addison-Wesley, 1981.

[LILI85] L. Geissmann, J. Hoppe, S. E. Knudsen, W. Winiger, B. Wagner,
F. Peschel, M. Wille, W. Heiz, C. Vetterli, E. Kohen, H. Schir, J.
Gutknecht, N. Wirth, Lilith Handbook, A Guide for Lilith Users
and Programmers, Institut fiir Informatik der ETH Ziirich, 1985.

[LOGI84] Logitech Modula-2/86 User’s Manual, 1984, Logitech Inc., 805
Veterans Blvd., Redwood City, California 94063.

[MODUS8S] Modula-2 Standard Library Definition Modules, Modula-2
News, Issue # 1, January 1985, Modus (Modula-2 Users
Association), PO Box 51778, Palo Alto, California 94303.

[CAMBR] Modula-2 for VAX/Unix BSD 4.2, Cambridge University
Computer Laboratory, Corn Exchange Street, Cambridge,
England, CB2 3QG.

39

[OWF85] Modula-2 Library Modules, OWF, OCE-Wissenschaftliches
Forschungsinstitut AG, Ziirich.

[RITHO74] D. M. Ritchie and K. Thompson, The UNIX Time-Sharing
System, Communications of the ACM, July 1974, Vol. 17, Nr. 7,
pp 365-375.

[RITHO78] D. M. Ritchie and K. Thompson, The UNIX Time-Sharing

System, in: The Bell System Technical Journal, Vol. 57, No. 6,
July-August 1978.

[WIR80]Wirth, N., Modula-2, interner Bericht Nr. 36 des Instituts fiir
Informatik der ETH Ziirich, 1980.

[WIR81]Wirth, N., The personal computer Lilith, in: Proc. 5th Intern.
Conf. on Software Engineering, San Diego, March 1981, IEEE
Computer Society Press, 1981.

[WIR82]Wirth, N., Programming in Modula-2, Springer-Verlag, New
York, 1982.

APPENDIX A: DEFINITION MODULES OF HOST
CONTENTS:

HPrimitives: Shell, files and heap management:

HPshell
HPfiles
HPmemory

HStrings: String manipulation:

HSfunctions
HSconversions
HSreal

HDisplay: Window management:

HDwindows
HDbutton
HDbar

HEtc: Other modules:

HEreal
HEmathlib
HEsegmentIO

HConstypes: Constants and types

DK.v20.HPmemory.def 1087-02-18-17-28-20

DEFINITION MODULE HPmemory;
(= HPmemory ++ allocation & deallocation of heap space =)
(= $HOST-COMPUTER: SUN, L11ith, Macintosh

SJAUTHOR: Alfred Ultsch

SDATE: February 17th, 1987 SVERSION: 2.0
SPROJECT: hosT SFILE: HPmemory. def
SNODIFICATIONS:

SDESCRIPTION: Procedures for program controlled heap storage mlnagomont.a"
Allocation 1s BYTE-wise.

°)

(= Alphabstical List of Procedures: =)

(® ===mmmmmmmsomeeees o cccecmta———— =)

(= ALLOCATE -~ allocate heap space)
(= avallable -- check 1f hsap space can be allocated %)
(= DEALLOCATE ~-- ‘return heap spece to storage management =)
(= freepartial -- return parts of an ALLOCATEd aroa to storage managsment =)
(= setmode -- determine reactions when no more space avaiable ®)

(= Import List: =)

(=
FROM SYSTEM IMPORY ADDRESS;

(= Export List: =)

(= Type =) HPmemorymode,
(® Procedures =) ALLOCATE, available, DEALLOCATE, freepartial, setmode;

(= Description of exported Type: =)
HPmemorymode = (ABORT, CONTINUE);

(= Description of exported Procedures: =)

(8 === e =)
PROCEDURE ALLOCATE(VAR a : ADDRESS; size : CARDINAL) : ADDRESS;

-

FUNCTION : allocates an area of the given sizs

PARAMETER: size: number of allocated bytes of memory

RETURNS : a: the address of the area or NIL if no allocation is possible
*)

PROCEDURE available(size : CARDINAL) : BOOLEAN;

4

FUNCTION : inspects If a storage area of a given size 1s avallable
PARAMETER: the size (1n bytos) of a storage area

RETURNS : TRUE 1ff an area of the given size is available

*)

PROCEDURE DEALLOCATE(VAR a : ADDRESS; size : CARDINAL);

FUNCTION : frees the area with the given size, assigns NIL to a

DK.v20. HPmemory.def 1987-02-18-17-26-29

PARAMETER: & : address of the area
size : number of bytes of a storage area
=)

PROCEDURE freepartial(a : ADDRESS; originalsize, remainingsize : CARDINAL});

-

FUNCTION : If a was originally a POINTER TO ARRAY [0..originalsize-1],
it becomes a POINTER TO ARRAY [0..remafningsize-1],
with array elements (0..remainingsize-1) bcing unchanged.

NOTE: If originalsize <= remainingsize, nothing happens.

PARAMETER: a : address of the area
originalsize, remainingsize : sizes in bytes of the areas

L]

)

PROCEDURE setmode(m : HPmemorymode);
=
FUNCTION : 1f m = CONTINUE, ALLOCATE returns a = NIL when not enough
free space (defauvlt)

if m = ABORT, ALLOCATE aborts when not enough free space
*)

END HPmemory.

o oass

DK.v20.HSfunctions.def 1987-02-23-12-17-59

DEFINITION MODULE HSfunctions;
(= HSfunciions ++ string functions involving strings & characters x)

(= SHOST-COMPUTER:

$SAUTHOR:
SDATE:
$PROJECT:
SMODIFICATIONS:
SDESCRIPTION:
SNOTE:
SNOTE:
1)
2)
3)
4)
5)
SNOTE:

=)

SUN, Li11th, Macintosh

Alfred Ultsch, Miche! Kiener

February 17th, 1987 SVERSION: 2.0

HOST SFILE: HSfunctions.def

Procedures to:
~ insert, add, delete, select and modify strings
- gat Information about strings and
- do the Texical ordsring of letters and strings.
For the definition of a string with the maximal
number of charactsers in 1t, import the type
"string™ (= ARRAY [0 .. MAXSTR-1] OF CHAR)
from HConstypes.
Here follow some remarks about the conventions
that HOST respects about the use of strings.
No panic, these convantions are the ones used by
N. Wirth and his disciples!
It 1s a convention of Modula-2 that the index
range of an actual array paramster is mapped
onto the iIntegers 0 to N-1 (where N is the
number of elements) whan the array is passed to
a procedure with open array parameter (ses N, Wirth,
"Programming in Modula-2", Second Edition, Page 158).
This 1s why we have chosen the conventional indexing
of array elements starting at 0. Thus, 1n the description
of the procedures, the position 1 1n an ARRAY OF CHAR
refers to the (1+1)-th character 1in the string.
An empty string 1s an ARRAY OF CHAR which contains
an ENDSTR character at its first position
(1.e. str[0] = ENDSTR).
The length of a string str is defined as:
- HIGH(str) + 1 1f str does not contain an ENDSTR character
- the number of characters of str up to but not including
ENDSTR otherwise.
By "the last character”™ of a string, we mean the
one preceeding the ENDSTR charactar, or the last one
indeed 1f the string contains no ENDSTR.
A1l procedures which append a string or 8 character
to a string str override the ENDSTR in str with
the first character to append. If possible (i.s. if
the last appended character does not occupy the
last place of str), an ENDSTR 1s appended to str after
the Tast appended character.

The procedures exported by this module return only a simple
error status.
Applications requiring more detailled error informations
may get the error number passed to the error procedurs.
See section 2.5. of the report:

HOST: An Abstract Machine for Modula-2 Programs

by Michel Kiener and Alfred Ultsch

Report of the Institut fuer Informatik der ETH Zuerich

February 1987.

(* Alphabetical List of Procedures: =)

DK.v20.HSfunctfons.defl 1987-02-23-12-17-69

B meemmer——- - o o o e o e o e e x)

g: addch -~ put char in string at positon J 1f 1t fits, {increment j
(= appendc -~ append & cheracter to a string

(= capitalize -- convert all small Tetters to capital letters

(= case -- meke procedures lexorder and cmp case-sensitive

(* cmp -- compare two strings for lexical (DUDEN) ordering

(= concat -~ concatenate two strings

(= deleteNEWLINE -- delete NEWLINE character In string

(* emptystr -~ empty a string

(= equal -~ test two strings for equality

(= esc -~ convert escaps sequence in & string into a single character
(= getword -- {solate next coherent word starting at position 1

(* index -~ find first position of a character in a string

(= insert -~ insert a substring, shift characters to make room

(* isalphanum -~ test 1f & character is a letter or a digit

(= length -~ roturn the length of a string

(* lexorder -- compare two characters for lexical (DUDEN) ordering
(= notcase -~ make procedures lexorder and cmp case-insensitive

(* notumlavt -~ make procedures lexorder and cmp umlaute-insensitive
(= scopy -~ string copy: dest[f...]J:= src[1...]

(= vmlaut ~-- make procedures lexorder and cmp umlaute-sensitive
(s NOTE: The procedures vconcat, vcmp, vequal, vinsert and vscopy

are the same as concat, cmp, equal, 1insert and scopy
respectivaly, excepted that their first parameter is a
VAR parameter instead of a CONST parameter =)

(= vconcat -- concatenate two strings

(= vcmp -- compare two strings for lexical (DUDEN) ordering
(= vequal -~ test two strings for equality

(= vinsert -- insert a substring, shift characters to meke room
(= vscopy -~ string copy: dest[]...]J:= src[1...]

(* Export List: =)
EXPORT QUALIFIED

(= - 1nsert, add, delete, select, modify =)
addch, appendc, capitalize, concat, vconcat,
deleteNEWLINE, emptystr, esc, getword,
insert, vinsert, scopy, vscopy,

« - information about strings =)

index, isalphanum, length,
(= - lexical ordering of lctters and strings =)

case, notcase, cmp, vemp,
equal, vequal, 1lexorder, umlaut, notumlaut;

(= Description of exported Procedurses: =)

(% =c-w=recmmmccrcmrrrccmc e e ———— -)
PROCEDURE addch(ch : CHAR;
VAR str : ARRAY OF CHAR;
VAR j : INTEGER;
(maxind : INTEGER) : BOOLEAN;
-

FUNCTION : write character ch 1into str[j]. increment j. If j points

outside str, J end str rcmain unchanged and addch returns FALSE.

DK.v20.HSfunctions.def 19087-02-23-12-17-59
PARAMETER: maxind: the maximal index for which a writing 1s dons
J: 1s dncremented when addch returns TRUE
and remains unchanged when addch returns FALSE
RETURNS : TRUE 1ff j <= maxind and J < length(str)
EXAMPLE : s: ARRAY [0..20] OF CHAR;
J:=0; WHILE addch("a®, s, j, 8) DO END;
==> 5[0..9] =« "aaaganzaaa”
s[10..20] = (unchanged)
L
)

PROCEDURE appendc(c : CHAR; VAR str : ARRAY OF CHAR) : BOOLEAN;

FUNCTION

.
‘

PARANETER:

RETURNS

EXAMPLE

*)

PROCEDURE

FUNCTION

append a character at the end of a string if possible
c: the character to append
str: the string to which ¢ 1s to append. str remains
unchanged 1f ¢ could not be appended.
TRUE 1ff c could be appended
FALSE 1ff Tength(str) >= MAXSTR or length(str) = HIGH(s) + 1
s: ARRAY [0..20] OF CHAR;
3[0..2] = “abc"
s[3] = ENDSTR
x:=appendc("d”, s);
-=> 5[0..3] = "abcd”
s[4] = ENDSTR

capitalize(VAR str : ARRAY OF CHAR);

PARAMETER:

EXAMPLE

*)

PROCEDURE

FUNCTION

NOTE

*)

PROCEDURE

-
FUNCTION
NOTE

NOTE

all letters from 'a’ to 'z’ are transformed into the
corresponding capital letters; capital letters and
non-letter characters remain unchanged

str: the string to capitalize

: 8: ARRAY [0..9] OF CHAR;

s[0..8] = "aAl bcX4$B"
capitalize(s);
--> s[0..9] = "AA1 BCX4$8"

case():

indicates to the procedures equal, lexorder and cmp that lowsr-case
letters are to be considered the same as upper-case igtters.

by default (i.e. as long as the procudure case() has not

been called), lower-case letters are considered different

from upper-case letters.

cmp(s1, s2 : ARRAY OF CHAR) : INTEGER;

.
:
.
H

compare two strings for lexical (DUDEN) ordsring.

By default (1.e. as long as the procedure case() has not
been called), lower-case letters are considered different
from upper-case letters.

By default (1.e. as long as the procedure umlaut() has not
been called), umlauvte letters are considersd different
from not umlaute letters.

the procedures case()., notcase(), umlaut() and notumlaut()
have an influence on the behaviour of the procedure cmp

DK.v20.HSTunctions.def 1087-02-23-12-17-569

RETURNS : -1 Iff s1 < s2
0 Iff st = s2
1 1ff s1 > s2
EXAMPLES : 1) cmp("michel®, "mike") = -1
2) cmp("zappa®, "mother of invention") = +1
3) cmp("aa”, “"AA") = 0 1f case() wasn't called, ~ +1 otherwise
4) cmp("124”, "123%) = +1
5) cmp("a1", "11") = +1
*)

PROCEDURE vcmp(VAR s1 : ARRAY OF CHAR; s2 : ARRAY OF CHAR) : INTEGER;

=

FUNCTION : same as cmp but s1 is passed as VAR paramater
*)

PROCEDURE concat(s : ARRAY OF CHAR;
t : ARRAY OF CHAR;
VAR out : ARRAY OF CHAR): BOOLEAN;
=
FUNCTION : concatenate "s” and "t" to "out".
RETURNS : TRUE 1ff concatenation was successful,
If HIGH(out) 1s too small for out to receive the entire
concatenated string, as much characters as possible are
written into "out"”.
EXAMPLES : 1) s, t: ARRAY [0..2] OF CHAR;
out: ARRAY [0..20] OF CHAR;
s[0..2] = "sss"
t[0..2] = "ttt"
x:=concat(s, t, out);
--> x = TRUE
out[0..6] = "sssttt”
out[6] = ENDSTR
2) s, t, out: ARRAY [0..2] OF CHAR;
s[0..1] = "ss"
s[2] = ENDSTR
t[o0..2] = "ttt";
x:=concat(s, t, out);
-=> x = FALSE -
out[0..2] = "sst”
*)

?ROCEDURE vconcat(VAR s : ARRAY OF CHAR;
VAR t : ARRAY OF CHAR;
VAR out : ARRAY OF CHAR): BOOLEAN;
(=
FUNCTION : same as concat but s and t are passed as VAR parameters

*)

PROCEDURE deleteNEWLINE(VAR str : ARRAY OF CHAR) : BOOLEAN;

-

FUNCTION : replace the first NEWLINE character found in a string through
an ENDSTR character.

PARAMETER: str: the string from which a NEWLINE ciiaractor 1s to delete,

RETURNS : TRUE 1ff & NEWLINE character was deleted
FALSE otherwise

EXAMPLE 1: s: ARRAY [0..9] OF CHAR;
s[0..9] = a[b|c|NEWLINE[ENDSTR]. .

DK.v20.HSfunctions. def 1987-02-23-12-17-59

X := deleteNEWLINE(s);
==> s[0..9] = a|b]c|ENDSTR|ENDSTR]...
X = TRUE;

EXAMPLE 2: s: ARRAY [0..8] OF CHAR;

®)

PROCEDURE
-

FUNCTION
NOTE

)

PROCEDURE

=
FUNCTION
NOTE

RETURNS
EXAMPLES

*)

PROCEDURE

-
FUNCTION
*)

PROCEDURE
(=
NOTE
FUNCTION

EXAMPLES

s[0..8] = aJbJc|d|ENDSTR]...

X := deleteNEWLINE(s):

--> 3[0..9] = a[bjc|d[ENDSTR]...
X = FALSE;

emptystr(VAR s : ARRAY OF CHAR);

: s 1s assigned an empty string (==> length(s) = 0)
: the implementation of this procedure is:
s[0]:=ENDSTR;

equal(str1, str2 : ARRAY OF CHAR) : BOOLEAN;

: test the equality of two strings.

: By default (i.e. as long as the procedure case() has not

been called), lower-case letters are considered different

from upper-case letters.

By default (1.e. as long as the procedurs umlaut() has not

been called), umlaute letters are considered different

from not umlaute letters.

TRUE 1iff the strings are equal

1) squal(~aa”, "AA") = FALSE if case() has not been called
= TRUE if case() has been called

2) squal("squal”™, "equal®) = TRUE

[N

vequal(VAR str1 : ARRAY OF CHAR; str2 : ARRAY OF CHAR) : BOOLEAN;

: same as equal but strl 1s passed as VAR parameter

esc(VAR s : ARRAY OF CHAR; VAR i : INTEGER) : CHAR;

: s 1s passed as VAR parameter for efficiency reasons onlyl
: convert escape sequence in & string into a single character.
The algorithm of this procedure is:

IF (1 € 0) OR (1 > HIGH(s)) THEN RETURN ENDSTR;

ELSIF s[1] # "@" THEN RETURN s[1]:

ELSE (= s[i] = "@" =)
IF 1 = HIGH(s) THEN RETURN "8~;
ELSIF s[1+1] = ENDSTR THEN RETURN "0~;
ELSIF s[1#1] = "n" THEN INC(1): RETURN EOL;:
ELSIF s[1+1] » "b" THEN INC(1); RETURN BLANK;
ELSIF s[1+1] = "t" THEN INC(1); RETURN TAB;:
ELSE INC(1); RETURN s[1+1];
END (= IF ¥);

END (e IF «);

: 1) s: ARRAY [0..5] OF CHAR;
s[0..5] = "ab@nb@”
1a2 ,

DK.v20.HSfunctions. def 1087-02-23-12-17-69

ch:=esc(s, 1);
--> ch = EOL
{=3
s = unchanged
2) s: ARRAY [0..5] OF CHAR;
s[0..6] = "ab@nb@~
1i=5
ch:=asc(s, 1):
~-> ch = "@"
{=6
s = unchanged
3) s: ARRAY [0..5] OF CHAR;
s[0..5] = "ab@nb@"
1=8
ch:=esc(s, 1);
-=> ch = ENDSTR
1 =6
s = unchanged

*)
PROCEDURE getword(VAR s : ARRAY OF CHAR;
i: INTEGER;
VAR out : ARRAY OF CHAR) : INTEGER;
(*
NOTE : s 1s passed as VAR parameter for efficiency reasons onlyl

FUNCTION : 1solate the next coherent seqence of non BLANK'S or TAB’s
starting at s[1] and skipping Teading BLANKs, TABs and NEWLINEs.
if there 1s no word to get or 1f 1 points outside s,
out 1s returned empty.
RETURNS : the index of the first character past the end of the word,
FAILED 1ff there ere no more characters in s or 1 points outside s
NOTE : The constant FAILED = -1 1s exported by HConstypes
EXAMPLES : 1) s: ARRAY [0..99] OF CHAR;
out : ARRAY [0..9] OF CHAR;
$[0..20] = " this 1is & text "
x:=getword(s, 0, out);
“=> x = 6
out[0..3] = "this"
out[4] = ENDSTR
2) s: ARRAY [0..99] OF CHAR;
out : ARRAY [0..8] OF CHAR;
s[0..20] = " this 1s a text "
x:=getword(s, 3, out);
“-> x = 8
outf[0..2] = "his"
out[3] = ENDSTR
3) s, out: ARRAY [0..8] OF CHAR;

s[0..9] = "hello "
x:=gotword(s, 6, out);
==> x = FAILED

out[0] = ENDSTR
4) s, out: ARRAY [0..89] OF CHAR;

$[0..9] = "hello "
x:sgetword(s, 20, out);
==> x = FAILED

out[0] = ENDSTR
*)

;ROCEDU!E index(VAR s: ARRAY OF CHAR; ¢ : CHAR; VAR 1 : INTEGER) : BOOLEAN:
E

—

pK.v20.HSfunctions.def 1087-02-23-12-17-59

NOTE : s Is passed as VAR parameter for efficlency reasons only!
FUNCTION : searches from left to right the string s for character ¢
PARAMETER: 1: the first 1 for which s[1] = ¢, FAILED 1f no ¢ found in s
RETURNS : TRUE 1ff ¢ was found in s,
EXAMPLE : s: ARRAY [0..4] OF CHAR;
s[0..4] = "abcde”;
x1:=1ndex(s, "¢, 1); x2:=index(s, "z". J); x3:=index(s, "a", k):
-~> 1 =2
x1 = TRUE
J = FAILED
x2 = FALSE
k = FAILED
x3 = TRUE
NOTE : Tha constant FAILED = -1 1is exported by HConstypes

*)

PROCEDURE insert(src : ARRAY OF CHAR;
VAR dest : ARRAY OF CHAR;
J : INTEGER) : BOOLEAN;
L 4
FUNCTION : insert the substring str into the string dest, starting at
position dest[j] and after having shifted the original characters
dest[J], dest[j+1], dest[j+2], ..., dest[] + length(src) - 1]
to the right to make room. src 1s copied from its first character
up to 1ts last one. If dest is too short, only as much characters
as possible are inserted and shifted.
If j points outside dest, dest remains unchanged and
insert returns FALSE.
RETURNS : TRUE ifrf all characters could be inserted and shifted
FALSE 1iff HIGH(dest) + 1 < length(src) + J
EXAMPLES : 1) dest : ARRAY [0..8] OF CHAR;
dest[0..5] = "abcfgh”
dest[6] = ENDSTR
x:=insert("de", dest, 3):
-=> x = TRUE
dest[0..7] = "abcdefgh"”
dest[8] = ENDSTR
2) dest : ARRAY [0..8] OF CHAR;
dest[0..6] = "abcfgh"
dest[6] = ENDSTR
x:=insert("12345", dest, 3);
=~> x = FALSE
dest[0..9] = "abc12345fg"
3) dest : ARRAY [0..8] OF CHAR;
dest[0..56] = "abcfgh"
dest[6] = ENDSTR
x:winsert("12345678", dest, 3);
-=> x = FALSE
dest[0..8] = "abc1234587"

*)

PROCEDURE vinsert(VAR src : ARRAY OF CHAR;
VAR dest : ARRAY OF CHAR;
3 : INTEGER) : BOOLEAN;
L 4
FUNCTION : sams as insert but src is passed as VAR parameter
*)

PROCEDURE isalphanum(c : CHAR) : BOOLEAN;

pK.v20.HSfunctions.def 1687-02-23-12-17-69

RETURNS : TRUE iff ¢ in [a..z, A..Z, 0..9, & o, U, A, U, U]
*)

PROCEDURE length(VAR s : ARRAY OF CIAR) : CARDINAL;

-
(NOTE : s 1s passed as VAR parsmeter for efficiency reasons onlyl
“< RETURNS : the length of the string s, which is:

HIGH(s) + 1 1ff s does not contain an ENDSTR character
the number of characters up to but not including ENDSTR otherwise
EXAMPLES : 1) s : ARRAY [0..4] OF CHAR;
s[0..4] = "abcde"
-=> length(s) = 6
2) s : ARRAY [0..4] OF CHAR:
s[0..1] = "AB"
s[2] = ENDSTR
. s[3..4] = "cD"
-~> length(s) = 2
=)

PROCEDURE lexorder(c1, c2 : CHAR) : INTEGER;
L 4
FUNCTION : compare two characters for lexical (DUDEN) ordering
NOTE : By default (1.e. as long as the procedurs case() has not
been called), lower~-case letters tre considered different
from upper-case letters.
By default (1.e. as long as the procedure umlaut() has not
been called), umlaute lTetters are considered different
from not umlavte Tetters.
NOTE ¢ the procedures case(), notcase(), umlaut() and notumlaut()
have an influence on the behaviour of the procedure lexorder
RETURNS : -1 1ff c1 < c2
0 Iff ci1 = ¢c2
1 iff c1 > c2

*)

PROCEDURE notcase();
=
FUNCTION : indicates to the procedures equal, lexorder and cmp that lower-case
letters are to be considered different from upper-case letters.
YOTE : by default (1.e. as Tong as the procedure case() has not
been called), lower-case Tetters are considered differant
from upper-case letters.

PROCEDURE notumlaut();
-
FUNCTION : 1indicates to the procedures equal, lexorder and cmp that umlaute
letters (1.e. ¥, & and U) are to be considered the same
as the corresponding not umlaute letters (1.8. 8, o and v).
NOTE : by default (1.e. as long as the procedurs umlaut() has not
been called), umlaute lettors are considared different
from not umlaute Tetters.

*)

——

pK.v20.HiSfunctions.def 1987-02-23-12-17-59
PROCEDURE scopy(src : ARRAY OF CHAR;

i : INTEGER;

VAR dest : ARRAY OF CHAR;

J : INTEGER) : BOOLEAN;

-
(SHORT DESCRIPTION: string copy: dest[]...]:= sref[1...]
FUNCTION : copy src from i1ts (1 + 1)-th character up to Its Tast ons
into dest, with the first copled character put into dest[j].
IT dest 1s too short, only as much characters as possible
are copled.
If 1 points outsids src or j points outside dest, dest
remains unchanged and scopy returns FALSE.
RETURNS : TRUE 1ff all characters could bs copied
FALSE 1ff HIGH(dest) + 1 - § ¢ length(src) - 4
EXAMPLES : 1) src : ARRAY [0..4] OF CHAR;
dast : ARRAY [0..4] OF CHAR;
src[0..4] = “abcde"
x:=scopy(src, 1, dest, 0);
--> x = TRUE
dest[0..3] = "bcde”
dest[4] = ENDSTR
2) src : ARRAY [0..9] OF CHAR;
dast : ARRAY [0..4] OF CHAR:
src[0..6] = "abcdefg"”
src[7] = ENDSTR
x:=scopy(src, 1, dest, 3);
~=> x = FALSE
dest[0..2] = (unchanged)
dest[3..4] = "bc"
3) src, dest : ARRAY [0..8] OF CHAR;
src[0..6] = "abcdefg”
src[7] = ENDSTR
x:=scopy(src, 1, dest, 0);
-~> x = TRUE
dest[0..5] = "bcdefg”
dest[6] = ENDSTR

*)
PROCEDURE vscopy(VAR src : ARRAY OF CHAR;
i : INTEGER;
VAR dest : ARRAY OF CHAR;
J : INTEGER) : BOOLEAN;

L 3
FUNCTION : sams as scopy but src 1s passed as VAR parametesr
*)

PROCEDURE umlaut();
T
FUNCTION : 1ndicates to the procedures equal, lexordsr and cmp that umlaute
letters (1.e. H, U and U) are to be considared different
Trom the corresponding not umlauts letters (1.s. &, o and u).
NOTE : by default (1.e. as long as the procedure umlaut() has not
been called), umlaute letters are considered differant
from not umlaute Yetters.

*)

DK.v20.HSfunctions.def

END HSfunctions.

1987-02-23-12-17~59

10

DK.vZO.HPsheii.def

DEFINITION MODULE HP
« HPshell ++ proces
(* $HOST-COMPUTER:
$SAUTHOR:
$DATE:
$PROJECT :
$MODIFICATIONS:
$DESCRIPTION:

1087-02-23-14-04-56

shell;

sing of STD-f1les, arguments & options; error handling =)
SUN, L111th, Macintosh

Alfred Ultsch, Michel Kiener

February 17th, 1987 SVERSION: 2.0

HOST SFILE: HPshell.def

This module defines a program interface (called “shell”)
which enables the user to redirect 1/0, pass arguments
and options and activate on-1ine program documentation.
It exports procedures to enter and leave the shell,
access the arguments and options passed by the user,
assign the terminal keyboard or the terminal display
to a rile and display error messages onto the standard
error channel.
Further, this module exports error handling procedures,
including the default error procedure called by all
HOST procedures whenever an error occurs and a procedure
to assign a progremmer supplied error procedure.
The concepts behind HPshell are described 1n sections
2.1, and 2.5. of the report:

HOST: An Abstract Machine for Modula-2 Programs

by Michel Kiener and Alfred Ultsch

Report of the Institut fuer Informatik der ETH 2uerich

February 1987.

A main program which has called EnterShell is connscted to
the outer world according to the following picture:

| arguments and options

v
$ommmmm e +
| #mmmmmee +
STDIN | | program | | STDOUT
-------- DY B Y EEELEI I
] shell)
$ommmm - +

I
STDERR | | on-1ine documentation
v v

and has the following proporties:

1) It 1s connected to standard 1/0 channols: standard
input (STDIN) 1s the source from which the program
takes i1ts input. Standard output (STDOUT) is the
destination for the output of the program.

Standard error (STDERR) 1s ths destination

for the error messages of the program. Per default
STDIN {is the terminal koyboard, STDOUT the terminal
display and STDERR the terminal display

too, but they can be redirected to disk files or
windows.

2) Disk files, devices (Keyboard and Terminal) and
windows are all treated in the same way and are
all considered to be files.

3) It {s possible to redirect 1/0: STDIN, STDOUT and
STDERR can be rodirected to davices (Terminal,
Keyboard) disk files or windows:

DK.v20.HPshell.def 1887-02-23-14-04-68

a) either when the user starts a program and passes
8 redirection command
b) or 1in the program through the assignments

"STDIN := f;", "STOOUT := f;" and "STDERR := f;*
(e.g. STDOUT := f; assigns STDOUT to file f, 1.e.
sends standard ovtput to f). If 7 1s a disk
file, it 1s the praogrammer’s responsibility to make
sure that it has be opensd through a call of
HPf1les.open(...) for an appropriate I0mode
(IOEEAD or IFTHERE for reading and IOWRITE,
TOAPPEND or IOVERRIDE for writing).
If t has not boen opened properly or 1f it has
been opened for a wrong IOmode, an error message
will appear on STDERR when the next 1/0 operation
is performed.
It 1s the programmer’'s responsibility to closs an old
standard I/0 when redirecting to a new ons (1.e.
ir STDOUT = f1, and then "STDOUT := r2;" is
performed, then f1 has to be closed before the
program i1s finished).
Redirecting a standard I/0 to the same file it
was before (1.e. "AssignTerminal(STOOUT)* whean
STDOUT already was equal to Terminal) has no
effect.
The standard I/0s that are actually assigned to
STDIN, STDOUT and STDERR should all be closed
at the end of a program through a call of

* HPshell.LeaveShell().

4) The user may pass argumsnts and options to the program
at execution tims. It 13 the programer’s responsibility to
have arguments and options fetched by her program through
corresponding calls to the procedures getarg and getopt. Ir
the program doss not fetch some or all of the
arguments or options, nothing happens (1.s. the
program runs without considering the unused
arguments or options). Options are a special kind
of arguments composed of & sequence of so called
option~characters.

SNECESSARY CONDITION: To ensure opening and closure of the shell,
the very first and last statements of a main program
ppp written on top of HOST must be calls to EnterShall
and LeaveShell:

MODULE ppp;

(*...%)

BEGIN (= ppp =)
EnterShell("ppp.MAN");
(>...7)
(* <ppp’s program-text> =)
(*...%)
LeaveShell();

END ppp.

e e

DK.v20.HPshell.def 1987-02-23-14-04-50

.. 10 e s o o t o e

NOTE: AI1 procedures exported by HOST call the (default or
programmer-supplied) error procedure ONLY WHEN AN ERROR OCCURS.
When completion 18 successful, NO ERROR PROCEDURE IS CALLED
(becavse this would consume computing tims for nothing).

/

l

l

l

; Programmers must be aware of ths following when they use error
| numbers:

| - the constant NOERROR 1s exported fcr programmers’

) convenience only

| - when an error occurs, 1ts error number 1s different from

) NOERROR

| - when no error occurs, NOERROR 1s NOT the value passed to the
| error procedure, becavse when no error occurs, the error

] procedure 1s not called at alll

|

/

/

l

/

I

I

An example how to get the error number and use 1t within a
program can bs found in section 2.5. of the report:
HOST: An Abstract Machine for Modula-2 Programs
by Michel Kiener and Alfred Ultsch
Report of the Institut fuer Informatik der ETH Zuerich
Febrvary 1987.

e T Sy "y, S, S, S, S, S, S, T, Sy, S Ty, S, T, S, S, S, S, Sy

g

(* Alphabetical List of Procedures: =)

@ mmmemr e G- —————————— »)

f- AssignErrorProc -~ assign & programmer defined error procedurs ®)
(¢ AssignKeyboard -- assfgn terminal keyboard to file =)
(® AssignTeminal -- assfgn terminal display to file =)
(* DefaultErrorProc -- default proc called by HOST whan an error occurs =)
(= EnterShell -~ enter the shell s)
(= error == print a message and exit thes progrem s)
(= getarg -~ get an argument entered by the user =)
(* GetErrorProc -= return current error procedure =)
(* GetErrorText -- get error text and action from error table =)
(* getopt -- get an option-character entered by the user *)
(= LeaveShell -~ leave the shell *)
(= message -- print & message and continue .)
(= nargs -- return the number of arguments ®)

(= Import List: ')

FROM HConstypes IMPDRT (= type =) file;

(= Export List: =)

(=
EXPORT QUALIFIED

(= Constant: =)
NOERROR, (= When there 1s an error, its number is different from NOERROR.
SEE NOTE ABOVEI *)

(® Types: =)
ErrorAction, (* typs of the action to undertake when an error occurs s)

DK.v20.HPshell.defl 1987-02-23-14-04-5686

ErrorProcType, (= type of the error procedures 2)
(= Varilables: =)

STDIN, (= the fila, all standard read procs take their input from =)

STDOUT, (= the rile, all standard write procs write to =)

STDERR, (= the rile where the error and message procs write to ®)
(* Procedures: =)

AssignKeyboard, (= assign keyboard to file %)

AssignTerminal, (= assign terminal display to fila =)

EnterShell, LeaveShell, (= enter and leave the shell ®)

getarg, getopt, nargs, (= commandline decoding v)

error, message, (= hints for ths user ®)

GetErrorText, (= get error text and action =)

GetErrorProc, (= return error procedure =)

AssignErrorProc, (= assign error procedure)

DefaultErrorfroc; (= default error procedurs ®)

(= Declaration of exported Objects: =)

(8 ==--—=—mememmr e =)
CONST
NOERROR = 0;
TYPE
ErrorAction (ABORT, CONTINUE, IGNORE);

wou

ErrorProcType = PROCEDURE (INTEGER):
VAR
STDIN, STDOUT, STDERR : file;

(= Declaration of exported Procedures: =)

[R e x)

PROCEDURE AssignErrorProc(ErrorProc : ErrorProcType):
=
FUNCTION: assign error procedure
PARAMETER: ErrorProc : the error procedure that will be called by the
procedures exported by HOST when they dectect an error
v)

OCEDURE AssignKeyboard(VAR ToFile : file);

UNCTION : ToFile := keyboard;
assign the terminal keyboard (which 1is the file STDIN is
assigned to per default) to the file ToFile
PARAMETER : ToFils : the file the terminal keyboard is assigned to
L2
)

PROCEDURE AssignTerninal(VAR ToFile : file);
-
FUNCTION : ToFile := terminal;
essign the terminal display (which 1s the file STDOUT is
assigned to per default) to the file ToFile
PARANETER : ToFl1le : the filo the terminal display is assignad to
*)

DK.v20.HPshell.defl 1987-02-23-14-04-56

PROCEDURE DefaultErrorProc(ErrorNr : INTEGER);

(c

FUNCTION : default proc called by MHOST when error ErrorNr occurs
PARAMETER : ErrorNr: the number of the occured error

*)

PROCEDURE EnterShell(DocFileName: ARRAY OF CHAR);

*

FUNCTION : Enter the shell, procesd the arguments and options and the
redirection commands. If ths user requests on-Tine
documentation, print the content of the file with nams
DocFileName on STDOUT and continue. If no such fils exists,
print an error message and continus.

PARAMETER: DocFileName: the name of the documentation file

NOTE : a call to EnterShell must be the first statement of any main
program

*)

PROCEDURE error(msg : ARRAY OF CHAR);
L]

FUNCTION: write the message msg on STDERR, then perform HALT
*)

PROCEDURE getarg(n : INTEGER;
VAR str : ARRAY OF CHAR;
maxsize : INTEGER) : BOOLEAN;
®
FUNCTION: Get the n-th commandline argument. The first argument on the
commandiine 1s number one.
PARAMETERS: n: number of the commandline argument to fetch.
maxsize: 1f maxsize 1s smaller than the length of
the actual parameter str, the returned ergument
1s truncated to this length.
str: 1f getarg returns TRUE, str contains the argument
1f getarg returns FALSE, str remains unchanged.
RETURNS: TRUE 1if the argument 1s present, FALSE otherwise.

*)

PROCEDURE GetErrorProc{VAR CurrentErrorProc : ErrorProcType);

-

FUNCTION: Return the current error procedure, e.g. to bs included in & new one
PARAMETER: CurrentErrorProc : current error procedure

PROCEBURE GetErrorText{(ErrorNr : INTEGER;
VAR Text : ARRAY OF CHAR;
VAR Action : ErrorAction);
-
FUNCTION: read from the error table the text and the action
corresponding to the error number ErrorNr
PARAMETERS: ErrorNr : the aumber of the error
Text : the corresponding text (1s truncated to the Tength

DK.v20.1iPshell, def 1087-02-23-14-04-68

of the actual parameter Text if necessary)
Action : the corresponding text

s)

PROCEDURE getopt(argnr : INTEGER; optchar : CHAR) : INTEGER;

-

FUNCTION: Look 1f the character optchar 1s present on the commandline
as part of an argument starting with the character
OPTION ("-").

PARAMETERS: argnr : the argument number on the commandline, from where on

to search.

optchar: the character, that 1s supposed to be present

RETURNS : The number of the srgument, where optchar was found.
FAILED 1t 1t was not found (the constant FAILED 1s exported
by HConstypes and has the value -1).

*)

PROCEDURE LeaveShell();

=

FUNCTION : leave the shall

NOTE : a call to LeaveShell must be the last statement of any main
program

*)

PROCEDURE message(msg : ARRAY OF CHAR);

L 4
FUNCTION: write the message msg to STDERR, then continve
*)

PROCEDURE nargs() : INTEGER;

L d
FUNCTION: return the number of argumants that have bsen entered by the user

*)

END HPshell.

DK.v20 . HPfiles.def 1987-02-26-09-30-33

T,
DEFINITION MODULE HPfiles;
(= HPfiles ++ f1ls streams & gst, put of BYTE, CHAR, RECORD and string =)
(= SHOST-CONPUTER: SUN, L111th, Macintosh

$AUTHOR: Alfred Ultsch, Michel Kiener

SDATE: February 17th, 1987 SVERSION: 2.0
$PROJECT: Host SFILE: HPfiles.def
SNODIFICATIONS :

$DESCRIPTION: - HOST offers 4 types of files which are all treated
in the same fashion: disk files, windows, terminal
display and keyboard. The data type "file”
and some constants returned or used by the procedures
of HPfiles (e.g. ENDSTR, ENOFILE, atc.) are exported
by the module HCanstypes.
- Each variabls of type "file” has a "filename“-field.
When a rile 1s opened the actual! "name” {s copied
into the "filename"-field of the file variable, so that
it can be asked later.
- A file (of any ons of the 4 types) 1s a stream
(sequence) of elements. Smallest element-sizs is
one byte, largest element-size is any arbitrary
user-defined record. As far as the underlying file
system 1s concerned, & file has no internal structure:
1t 1s & featureless, contiguous stream of bytes.
- A1l files have one of five IOmodss: IOREAD, IOWRITE,
I0APPEND, IOVERRIDE, or IFTHERE, which 1s declared when
a file 1s open-ed. For disk files, the IOmode can be changed
through a call to the procedurs sesk, The IOmodes are:
IOREAD: files are sequences of elemsnts from which
elements may be read (get) in a sar{ial manner.
IOWRITE: files are sequences of elements to which
elements may be written (put) in a serial
manner, If the file exists already, the
user 1s asked 1f she wants to override it.
IOAPPEND: the same as IOWRITE, but eventual contents of
the file are not removed and new stuff 1is
appended at the end of the file.
IOVERRIDE: the same as IOWRITE, but sventual existing file
is overridden without user-confirmation.
IFTHERE: the same as IOREAD but no action 1s taken if
the file cannot be opened.
On 11legal file access (e.g. attempt to write on a file
opensd with IOREAD) the error procedure of HPshell 1s
called.
~ The last read byte of an input f1le (of a file
opened for IOREAD or IFTHERE) can be put aside (unget)
such that it is read again by getcf or getbf at next call,
- File 1/0 1s normally sequential - put and get procedurss
continue where the preceeding call left off. This
may be changed by a call of the procedurs seek,
which provides an sasy random access capability - on disk
files only -. seek allows bytewise positionning of
the file pointer (= ectual read or write position).
The actual file pointer position may be asked through
procedure getpos.
- CHAR values that are read/written may be interpreted or
changed in values by the files devices, for example by
coercing CR, LF to NEWLINE. BYTE vslues remain unchanged.

SNOTE : The procedures exported by this module return - 1f any -
only g simple error status (TRUE {ndicating success and
FALSE faflure).

pK.v20.HPf11es.def 1987-02-25-09-30-33

Applications requiring more detailled error iInformations
may get the error number passed to the error procedure.
See section 2.5. of the report:

HOST: An Abstract Machine for Modula-2 Programs

by Michel Kiensr and Alfred Ultsch

Report of the Institut fuer Informatik der ETH Zuerich

February 1987,

*)

(= Alphabstical List of Procedures: =)

W e m e s esee e - »

g- busyget -- check 1f a byte 1s currently at Keyboard s)
(* close -= close an open disk file)
(= EchoOff =-- characters typed in at Keyboard are NOT echoasd at,Terminal)
(= EchoOn -- characters typed in at Keyboard are echoed at Terminal v)
(= getbr -- get a BYTE from a file)
(= getcf -- gat a CHAR from a file)
(= getline -- get a line of text from a file)
(* gstpos ~- gest actual file pointer position of disk file s)
(= getrf -- get a RECORD from a file)
(= lengtht -- return length in bytes of a disk file s)
(= open -- associate a filenams to the f11e and specify IOmode s)
(* putbf -~ put a BYTE into a file ®)
(s putcf -- put a CHAR into a file .)
(= putlf -- put & NEWLINE into a file)
(= putrf -~ put a RECORD into a file =)
(= putstr -=- put a string 1into a file s)
(= remove -~ remove & disk fils =)
(= rename ~- rename an open f1le)
(= seek -~ position bytewise in a disk file =)

(= ungatf -- put last read BYTE aside so that getbf or getcf will read it again =)

(* Import List: =)

(-
FROM HConstypes IMPORT (= typ

(= Export List: =)

(=
‘XPORT QUALIFIED
= Procedures: =)
'- - installation of files =)

‘s - busyread from Keyboard =)
'« - input)
(* - output ®)
* - put back one byte =)
(= - positioning ®)
(® - echo on/off v)

(= Declaration of exported Pro

(% =====-=----m-ssceccmcmeae-
PROCEDURE busyget(VAR b : BYTE

L]
FUNCTION : get ths next chara
but return immedia

s) BYTE, IOmode, file;

close, open, remove, rename,
busyget,

getbf, getcf, getrf, getline,

putbf, putcf, putrf, putstr, putlf,

ungetf,
seek, getpos,
EchoOff, EchoOn;

cedures: =)

........ v)
} : INTEGER;

cter from the terminal keyboard,
tely 1f no character has been typaed.

PARAMETER: b: 0C 1f no character has besn typed, the reesd character otherwise.

RETURNS : the integer value of b or FAILED if no character has been typed.

pK.v20.HPFf1les.def 1987-02-26-09-30-33

*)

PROCEDURE close(VAR f : Tile) : BOOLEAN;

(t
FUNCTION :
RETURNS :
NOTE :
*)

close the file
TRUE 1f file was closed, FALSE otherwise
the destiny of unclosed disk files 1is environment dependent!

PROCEDURE EchoOff():

FUNCTION :

*)

After this procedure has been called, characters typed in at
the terminal keyboard are not echoed to the terminal display.

PROCEBURE EchoOn(};

FUNCTION :

*)

After thfs procedure has been called, characters typed in at
the terminal keyboard are echoed to the terminal display.

PROCEDURE getbf(VAR b : BYTE; VAR f : file) : INTEGER;
=

FUNCTION :
PARAMETER :

RETURNS :
*)

read a byte from a file

b: the read byte, 0C 1f there 1s no (more) byte to read.
f: the file from which to read.

the integer value of the read bytes {f possible or
ENDFILE if there 13 no more byte to read.

PROCEDURE getcf(VAR ¢ : CHAR; VAR f : file) : INTEGER:

L
FUNCTION :
PARANETER :

RETURNS @

®)

read a character from a file

c: the read character, 0C {f there 1s no (more) character to read.
f: the file from which to read.

the integer value of the read character if possible or

ENDFILE if there 1s no more character to read.

PROCEDURE getline(VAR line : ARRAY OF CHAR;

FUNCTION:

NOTE:

NOTE:

NOTE:

VAR infile : file;
maxlength : INTEGER) : INTEGER;

read sequentially characters from the file "infile”

and put them into 1ins starting at 1ins[0] and until

1) either NEWLINE or end-of-fils 1s ancountered

2) or maxlength characters have been read, or 1ine 13 already full.
In this case (1.e. if maxlength characters have besen
read, or line is already full) read and skip the next characters
until NEWLINE or ENDFILE is encountered (so that the next
call of getline will really get the next Tinel).

Then append an ENDSTR to 1ine 1f possible.

The returned 1ine does contain & NEWLINE character {f one

was read and the size of the actual line paramster and

maxlength are big enough.

If the Tength of the actual paremeter 1ins is not sufficient,

ths returned line will be truncated.

To aliminate the NEWLINE character In & string, use the

e

DK.v20.MHPf1les.daf 1087-02-26-09-30-33

procedure HSfunctions.deleteNEWLINE(...).

NOTE: The escapes character is treated by getline 1ike all the other
characters. If special trestmant of the escape character is
wanted, 1t has to be programmsd using procedure getcf.

PARAMETER: line: place, where the resulting line Is storasd to. If

end-of-fi1le was encountered, 1ine is raturned empty
(1.e. 1ine[0] = ENDSTR).

infile: the rile from which 1t 1s read

maxlength: the returned 1ine 1s truncated to this length irf
necessary

RETURNS : the number of read characters (NEWLINE included), = 0 implies
end-of-file

EXAMPLE 1) Suppose the file infile contains:

a/bjc|NEWLINE|d |8 [NEWLINE|f|g|ENDFILE
t t

byte number 0 byte numbsr &
and we have:
VAR 1ins: ARRAY [0..20] OF CHAR; 1infile: file; x: INTEGER;
x:= getline(line, infile, 30);
~=> x = 4, 11n8[0..2] = "abc", 1ine[3] = NEWLINE;
Tine[4] = ENDSIR.
x:= getline(line, infile, 30);
--> x = 3, 11ne[0..1] = "de", 1ins[2] = NEWLINE;
1ine[3] = ENDSTR.
x:= getline(line, infile, 30);
--> x =2, line[0..1] = "fg", 11ne[2] = ENDSTR.
x:= getlins(line, infile, 30);
--> x = 0, 1ine[0] = ENDSTR.
EXAMPLE 2) Suppose the f1le infile contains:
ajb/c|NEWLINE|d[e |NEWLINE|T|g|ENDFILE
and wg have:
VAR 1ins: ARRAY [0.,20] OF CHAR; infile: file; x: INTEGER;
x:= getline(1ing, infile, 2);
--> x = 2, line[0..1] = *ab", 11ne[2] = ENDSTR.
x:= getline(lins, infile, 3);
==> x = 3, line[0..1] = "de", 11ne[2] = NEWLINE;
11ne[3] = ENDSTR,
-
)

PROCEDURE getpos(VAR highpos : CARDINAL; VAR lowpos : CARDINAL; VAR f : file);
-

FUNCTION : get actual file pointer position of disk file f.
The actual file pointer position 1s the byte aumber
(highpossMAXCARD+1owpos). Byte numbers
are counted from the beginning of the file starting with zero,
NOTE : on the SUN, highpos 1s always returned with a value = 0.
-
)

PROCEDURE getrf(VAR record : ARRAY OF BYTE; VAR f : file) : INTEGER;

L J
FUNCTION : read a record from file f. The numbsr of BYTEs read is
determined by the size of the actual parametsr "record”.
RETURNS : the number of BYTEs read
or 0 If the read was not successful
or ENDFILE, if there 1s no more record to read.

)

PROCEDURE lengthf(VAR highpos, lowpos: CARDINAL: VAR f : file);
- .

FUNCTION : the length of file f in bytes 1s (highpos = MAXCARD + lowpos)

pK.v20.HPfiles.def 1987-02-25-09-30-33

NOTE : on the SUN implementation, the returned highpos 1s always = 0.
=)

PROCEDURE open(name : ARRAY OF CHAR; mode : I10moda; VAR f : file) : BOOLEAN;

-

(FUNCTION : Sat the filetype of £ to DISKFILE.
Connect & system’s filename (and the f1le denoted) to the file f
and open the file for the kind of opsration specified in “"mode”.
Copy “name” into the "filename” field of f.

RETURNS : TRUE 1f the file was successfully opened, FALSE otherwise.

*)
PROCEDURE putbf(b: BYTE; VAR f : file);

(.
FUNCTION : write the BYTE b to the file f.
*)

PROCEDURE putcf(c : CHAR; VAR f : file);

(-
FUNCTION : write the character ¢ to ths file f.
*)

PROCEDURE put1f(VAR f : file):

(-
FUNCTION : write a caracter NEWLINE character to the rile f.
*)

PROCEDURE putrf(record : ARRAY OF BYTE; VAR f : file);

(t

FUNCTION : write & record to file f. The number of BYTEs written is
determined by the size of the actual parameter,

=)

PROCEDURE putstr(str : ARRAY OF CHAR; VAR f : file);

(:

FUNCTION : writes the characters 1n str up to, but not including the
terminating ENDSTR to the file f.

*)

PROCEDURE remove(VAR f : file);

L 4

FUNCTION : close the f1le and remove 1t.

NOTE: the f1le must be open 111 (otherwise it 13 not associated to
& var of type filsl)

*)

PROCEDURE rename(newname : ARRAY OF CHAR; VAR f : file) : BOOLEAN;

1

FUNCTION: rename file f to new name

RETURNS : TRUE 1f the r1le was successfully renamsd, FALSE otherwise.
®)

PROCEDURE seek{highpos, lowpos : CARDINAL; mode : I0mode; VAR ¥ : file):

[]

FUNCTION : positions the file such that a subsequent read or write will
access the byte number (h1ghpos-MAXCARD+lowpos). Byte numbers
are counted from the beginning of the file starting with zero.
Set the IOmode to "mode”.

DK.v20.HPr1lgs.daf 1987-02-256-09-30-33

PARAMETER: 1f mode = IOWRITE then the file i3 cut to the actual position.
if mods = IOVERRIDE then the file 1s overwritten from
the actual position on, the rest of the file remaining unchanged.
a1l other modes : the file keeps it’s length and 1s
set to the specified mods.

NOTE : saek cen changs the IOmode of a f1le which was opened for another
I0Omods.
NOTE : 1f the actval highpos and lowpos are too big - which corresponds

to positionning behind the end of the file - an

error message 1s displaysd and the program 1s aborted.
NOTE : on the SUN, highpos has no meaning (13 considered to be 0

even 1f another actual valve 1s passed).

=)

- PROCEDURE ungetf(VAR f : file);
-
FUNCTION : The call of this procedure informs the procedures getbf or getct
that the next byte should not be read from the fila, ¢
but & copy of ths last read byte should bs returned.

=)

END HPfiles.

S

pK.v20.HSconversions.def 19687-02-18-17-26-63

DEFINITION MODULE HSconversions;

(* HSconversions ++ string conversions from/to CARDINAL and INTEGER =)
(* $HOST-COMPUTER: SUN, L111th, Macintosh

SAUTHORS : Michel Kiener, Alfred Ultsch

$SDATE: February 17th, 1087 SVERSION: 2.0

$PROJECT: HOST SFILE: HSconverstions.def
$SMODIFICATIONS:

$DESCRIPTION: Procedures for conversion of strings to CARDINAL (in any
base with 2 <= base (~ 368) and INTEGER and vice versa

i (1n bases > 10, upper case letters A..Z ars used as

digits in the following way:

"A" 1n any base > 10 means "10" in base 10,

"8" 1in any base > 11 means "11" {in base 10,

"Y" in base 35 or 36 means "34" {n base 10,
"Z" 1n base 36 means "35" in base 10).
$NOTE: For the definition of & string with the maximal
number of characters in it, import the type
"string® (= ARRAY [0 .. MAXSTR-1] OF CHAR)
from HConstypes.

$NOTE: For the used conventions about strings, see
SDESCRIPTION of DEFINITION MODULE HSfunctions.
$NOTE: The procedures exported by this module raturn only a simple

error status.
Applications requiring more detailled error Informations
may get the error number passed to the error procedurs.
Sees section 2.5. of the report:
HOST: An Abstract Machine for Modula-2 Programs
by Miche) Klener and Alfred Ultsch
Report of the Institut fuer Informatik der ETH Zuerich
February 1887.

*)

(* Alphabetical List of Procedures: =)

® mresccmerancarersr N R e, «)

;- CardinalToString -- conv. CARD. to str. representing 1t in any base <= 38 =)
(* cardtoc == convert & CARDINAL to a string representing it in base 10 =)
(= ctocard -~ conv. str. representing a cardinal 1in bass 10 to CARDINAL =)
(* ctol -- conv. str. represanting an integral in base 10 to INTEGER =)
(= 1toc == convert an INTEGER to a string representing 1t in base 10 =)

(= StringToCardinal -- conv. str. representing card. in base (= 36 to CARDINAL =)

(= Export List: =)

(= - to/from CARDINAL 1n base 10 =) ctocard, cardtoc,
(= - to/from CARDINAL 1n any bsse =) StringToCardinal, CardinalToString,
(s - to/from INTEGER =) ctol, itoc:

(= Description of exported Procedurss: s)

(l ----------------------------------- t)

PROCEDURE CardinalToString(number,
base : CARDINAL;
position : INTEGER;

DK.v20.HSconversions.def 1987-02-18-17-26-53

minus: BOOLEAN;
VAR s : ARRAY OF CHAR) : INTEGER;

-
FUNCTION : Convert the CARDINAL “"number® to a character sequence
representing 1t in base "base” (2 <= bass (= 36).
Ir "minus” » TRUE and "number” # 0, the genserated
character sequence contains a "-" as 1ts first character.
If the generated character sequence (possibly including
a "-= character) rits into s (i.e. 1f 1ts length is
less than or equal to HIGH(s) - "position” + 1), insert
it into s with the rirst character insertsd at the place
of the ("position"™ + 1)-th character of s.
It possible (1.e. 1f s[HIGH(s)] 1s still unoccupled),
insert an ENDSTR character into s after the insarted sequence.
If the gensrated character sequence doss not fit into s,
nothing 1s inserted into s, and the procedure returns FAILED.
RETURNS : The next position after the insertion (which 1s either
occupled by an ENDSTR character or points outside s)
it the generated character sequence could be 1nserted
into s, FAILED otherwise.
NOTE : The constant FAILED = -1 1s exported by HConstypes
NOTE : Returned value > 0 (== successful conversion
Returned valus = FAILED (==)> the generated character sequencs
does not fit into the actual string.
EXAMPLE : s : ARRAY [0 .. 20] OF CHAR;
x:=CardinalToString(123, 10, 1, TRUE, s);
--> s[0] = (unchanged)
sf1..4] = "-123"
s[5] = ENDSTR
x =5

*)

PROCEDURE cardtoc(c : CARDINAL; VAR s : ARRAY OF CHAR; 1 : INTEGER):INTEGER;

=

FUNCTION : Convert the CARDINAL ¢ to a character sequence representing
it in base 10. IT the gensrated character sequance
fits into s (1.e. 1f 1ts langth is less than or esqual
to HIGH(s) - "i" + 1), insert 1t into s with the first
character inserted at the place of the (1" + 1)~-th character of s.
If possible (1.e. 1f s[HIGH(s)] 1s sti11 unoccupied),
insert an ENDSTR character into s after the inserted sequsnce.
If the generated character sequence doss not fit into s,
nothing is inserted into s, and the procsdure returns
the value FAILED.

NOTE: x:=cardtoc(c, s, 1) is equivalent to
x:=CardinalToString(c, 10, 1, FALSE, s).

RETURNS : The next position after the insertion (which is either
occupied by an ENDSTR character or points outside s)
if the gensrated character sequencea could bs inserted
into s, FAILED otherwise.

NOTE : The constant FAILED = -1 1s exported by HConstypas
NOTE : Returned value > 0 (==> succassful conversion
Returned value = FAILED <(=»> the gensrated character sequance
does not fit into the actual string.
EXAMPLE : s : ARRAY [0 .. 20] OF CHAR;

x:=cardtoc(123, s, 0);
--> s[0 .. 2] = 123"

o e
pK.v20.HSconversions.def 1987~02-18-17-25-53

s[3] = ENDSTR
x =3

PROCEDURE ctocard(VAR c:CARDINAL; s:ARRAY OF CHAR; VAR i:INTEGER) : BOOLEAN;
L]
FUNCTION : The string s 1s scanned from left to right,
starting from the ("1" + 1)-th character of s.
Leading blanks and tabs are skipped. Then a string
representing & cardinal number in base 10 is expected.
Scanning stops either at the end of the string s, or when
a character which 1s not a digit in base 10 s encountered.
There are two possible cases:
- the string does not represent a cardinal number 1in base 10
or represents & cardinal number greater than MAXCARD:
then "c" 13 assigned the value 0, "1" remains unchanged
and the procedure returns FALSE.
- the string represents a cardinal number that can be converted:
then "c" 1s assigned the value of the converted number, "1"
polats to the next position after the number and the procedure
returns TRUE.
NOTE: x:=ctocard(c, 8, 1) 1s equivalent to
x:=StringToCardinal(s, 10, 1, bool, c): IF bool THEN c:#0; x:=0 END;
RETURNS : The status of the conversion:
TRUE: indicates successful conversion
FALSE: indicates that the string does not represent
a number in the expected format or that
the string represents a syntactically valid
number which 1s outside ths machine dependent
Tegal range for that type.
EXANPLES: 1) s : ARRAY [0 .. 20] OF CHAR;
s[2..7] = "123ABC";
i=2;
x:=ctocard(c, 8, 1);
-=>c = 123
x = TRUE
{1 =5
2) s : ARRAY [0 .. 20] OF CHAR:
s[0..17] = "9999999999998LABLA";
1= 0;
x:=ctocard(c, 8, 1);
~~>c¢c =0
x = FALSE
190
3) s : ARRAY [0 .. 20] OF CHAR;
s[1..3] = "BLA";
1 1;
x:=ctocerd(c, s, 1);
==>cs0
x = FALSE
1«1
*)

PROCEDURE ctoi(VAR n: INTEGER; VAR s: ARRAY OF CHAR; VAR i: INTEGER): BOOLEAN;

DK.v20.HSconversions.def 1987-02~18-17-25-63

E 4
FUNCTION : The string s 1s scanned from left to right,
starting from the (“i" + 1)-th character of s.
Leading blanks and tabs are skipped. Then a string
representing an integral number 1s sxpected.
Scanning stops efther at the end of the string s, or when
8 character which 1s not a digit in base 10 1s encountered
There are two possible cases:
~ the string does not represent an integral aumber
or it represents an integral number smaller than MININT
or greater than MAXINT: then "n" 1s assigned the value 0,
"1" remains unchanged and the procedure returns FALSE.
- the string represents a cardinal number that can be converted:
then "n" 1s assigned the value of the converted number,
"{" points to the next position after the number
and the procedure returns TRUE.
RETURNS : The status of the conversion:
TRUE: indicates successful conversion
FALSE: indicates that the string does not represent
8 number 1n the expected format or that
the string represents a syntactically valid
number which 1s outside the machine dependent
legal range for that type.
EXAMPLES: 1) s : ARRAY [0 .. 20] OF CHAR;
s[2..7] = "-123AB";
1= 2;
x:wctof(n, s, 1);
-=>nw ~123
x = TRUE
1=8
2) s : ARRAY [0 .. 20] OF CHAR;
s[1..18] = "999009990999BLABLA";
1= 1;
x:=ctoi(n, s, 1);
-=>nmw=(
x = FALSE
1s 4
3) s : ARRAY [0 .. 20] OF CHAR;
s[1..3] = *BLA";

1=1;
Xx:=ctoi(n, s, 1);
==>n=20

x = FALSE

1 =1

=)

PROCEDURE itoc(n : INTEGER; VAR s : ARRAY OF CHAR; 1 : INTEGER) : INTEGER;
L 4

FUNCTION : Convert the INTEGER n to a character sequence representing
1t 1n base 10. If the generated character sequence
fits into s (i.e. It {ts length is less than or equal
to HIGH(s) - "1" + 1), insert 1t Into s with the first
character inserted at the place of the ("1" + 1)-th character of s.
If possible (1.e. it s[HIGH(s)] 1s still unoccupied),
insert an ENDSTR character into s after the inserted sequence.
If the generated character sequence does not it into 3,
nothing 1s inserted into s, and the procedure returns
the value FAILED.

RETURNS : The next positfon after ths fnsertion (which 1s either

W o

DK.v20.HSconversions.def 1887-02-18-17-25-63

NOTE :
NOTE :
EXAMPLE :
*)

occupied by an ENDSTR character or points ouiside s)

if the generated character sequence could bs fnserted

fnto s, FAILED otherwise.

The constant FAILED = ~1 {s exported by HConstypes

Returned valuve > 0 (»=> successful conversion

Returned valuve = FAILED <(==> the generatsd charscter sequence

does not it inte the actual string,
$: ARRAY [0 .. 20] OF CHAR;

x:=ftoc(123, s, 0);
--> s[0 .. 2] = "123"
s[3] = ENDSTR

x =3

PROCEDURE StringToCardinai(s : ARRAY OF CHAR;

base: CARDINAL;

VAR position : INTEGER;

VAR minus: BOOLEAN;

VAR number : CARDINAL) : BOOLEAN;

(-
FUNCTION : The string s {s scanned from left to right,

RETURNS :

EXAMPLES :

starting from the ("positfon” + 1)~th character of s.

Leading bianks and tabs are skipped. Then & string

representing a cardingl number in base "basa"”

(2 (= base <= 36) 1s expected. If "base” = 10, & sign

character (plus or minus) in front of the numbsr is accepted.

Scanning stops efther at the end of the string s, or when

@ character which s not a digit in bass "base” s encountered.

There are two possible cases:

- the string does not represent a cardinal number 1n bass “base”
or the string represents a cardinal number greater than MAXCARD:
then "number” is assigned the vaive 0, "position” remains
unchanged and the procedure returns FALSE,

- the string represents (in base "base"”) a cardinal number
that can be converted: then "number” {1s assfgned the value
of the converted number, “"position” points to thes next
position after the number and the procedure returns TRUE.

If "base” = 10

and there 1s & minus sign in front of the scanned string

and the converion 1s successful

then "minus”™ becomes TRUE.

In all other ceses, "minus"™ becomes FALSE,

The status of the conversion:

TRUE : indicates successful conversion

FALSE: indicates that the string does not represent
& number in the expected format or that
the string represents a syntactically valid
number which 1s outside the machine dependent
legal range for that type.

1) s : ARRAY [0 .. 20] OF CHAR;

s[2..7] = "12BCXY";
position = 2;
x:=StringToCerdinal(s, 16, position, minvs, number);
==> number = 4798
x = TRUE
position = 8
2) s : ARRAY [0 .. 20] OF CHAR;
3[1..18] = "9999908999999BLABLA";
position = 2;
x:«StringToCardinal(s, 10, position, minvs, number);

DK.v20.HSconversions.def 1987-02-18-17-25-53

~-> number = 0
x = FALSE
position = 1
3) s : ARRAY [0 .. 20] OF CHAR;
s[1..4] = " BLA";
position = 1;
x:=StringToCardinal(s, 10, position, minus, number);
==> humber = 0
x = FALSE
position = 1

°)

END HSconversions.

pK.v20.HSreal.def 1987-02-18-17-26~46

DEFINITION MODULE HSreal;
« HSreal ++ string conversions from/to REAL =)
(e $HOST-COMPUTER: SUN, L111th, Macintosh

$SAUTHOR: Michel Kiener

$DATE: February 17th, 1987 SVERSION: 2.0

$PROJECT: HOST SFILE: HSreal.def

SMODIFICATIONS:

SDESCRIPTION: Procedures for conversion of strings to REAL and
vice versa.

SNOTE : For thes definition of a string with the maximal

number of characters 1n 1t, import the type
"string” (= ARRAY [0 .. MAXSTR-1] OF CHAR)
from HConstypes.

SNOTE: For the vsed conventions sbout strings, see
$DESCRIPTION of DEFINITION MODULE HSfunctions.
SNOTE: The procedures exported by this module return only a simple

error status.
Applications requiring more detailled error informations
may get the error number passed to the error procsdurs.
Sees section 2.5. of the report:
HOST: An Abstract Machine for Modula-2 Programs
by Michel Kiener and Alfred Ultsch
Report of the Institut fuer Informatik der ETH Zuerich
Februsry 1087.

*)

(* Alphabetical List of Procedures: =)

(# ==r=emmemmmmmm e —ae e *)

(= RealToString -~ convert 8 REAL to a string representing 1t =)

(= StringToReal -- convert & string representing a real numbsr to a REAL)

(= Export List: =)
)
EXPORT QUALIFIED RealToString, StringToReal;

(= Dascription of exported Procedures: =)

(8 =m=mmeee e e e cn e =)
PROCEDURE RealToString (r: REAL ;
i: INTEGER;
VAR s: ARRAY OF CHAR;
Tength,
precision: CARDINAL;
scientific: BOOLEAN) : INTEGER;

®

FUNCTION : Convert the REAL "r” to a character sequence of “length”
characters representing 1t. If "length" 1s’'greater than
required, the generated character sequence 1s filled up
with lTeading spaces. If the generated character sequence
fits Into s (f.e. 1f "length” 1s less than or equal to
HIGH(s) - "1" + 1), 1insert it into s with ths first
character inserted at the place of the (1" + 1)-th
character of s. If possible (f.e. 1f S[HIGH(s)] 1s stil?
inoccupied), 1insert an ENDSTR cheracter 1into s after
the inserted sequence (1.e. into the ("1" + "length" + 1)
character of s). If "length” 1s smaller than the number of
charecters needed to represent the number or 1f the
generated character sequence doas not fit into 3, nothing

DK.v20.HSreal,def 1887-02-16-17-25-48

Is inserted into s (i.e. s remains unchanged) and the
procedure returns FAILED,

Otherwise the procedure returns the index of

the next position after the Insertion (1.e. the indax of

the ("1" + "length” + 1)-th character of s - which 1is

either occupied by an ENDSTR character or "liss outside” s -).

If "scientific” = FALSE, the argument 1s converted to
decimal notation of the format:

real = ["-"] digits ", " digits
dfg.,t - .o.l'l-,~2'l~3’l"'l-5.l'o-l-7.l.a.l'g'
digits = digit (digit)

where the number of digits after the decimal point is specified
by "precision”.

If "scientific” = TRUE, the resulting string has the forrmat:
real = [*-*] digit *." digits "E" ["+"|"-"] digit digit

whers the digit before the decimal point 1s the first
significant digit, the number of digits between "."~ and "E"
1s specified by "precision” and the exponent is reprssented
by two digits preceeded by & plus or a minus sign.
It the given "length” 1s too small for the given "precision”,
nothing is inserted into s and the procedure returns the
valus 0.

RETURNS : {if the conversion was successful, ("i" + "length”) 1s returned,
- 1.8. the index of the next position after the insertion
(which 1s eithar occupied by an ENDSTR character or "lies
outside™ s) -.
1f the conversion was not successful, FAILED {1s returnad.

NOTE : The constant FAILED = -1 1s exported by HConstypss

NOTE : Returned value > 0 <(==) successful conversion
Returned value = FAILED C==> the generated character sequence

doss not fit into the actual string.

EXAMPLES: 1) s : ARRAY [0 .. 20] OF CHAR;
x:=RealToString(123.45, 1, s, &5, 1, FALSE);
==> s[0] = (unchanged)

s[1..6] = "123.4"
s[6] = ENDSTR
x =6
2) s : ARRAY [0 .. 20] OF CHAR;
x:=ReslToString(123.45, 1, s, 2, 1, FALSE):
. =-> s[0 .. 20] = (unchanged)
x = FAILED
3) s : ARRAY [0 .. 20] OF CHAR;
x:=RealToString(-1.5, 0, s, 10, 3, TRUE);
==> s[0 .. 8] = "-1_B00E+00"
s[10] = ENDSTR
x = 10
=)

PROCEDURE StringToReal (s: ARRAY OF CHAR;
VAR r: REAL;
VAR i: INTEGER) : BOOLEAN;

»

DK.v20.HSreal.defl 1837-02-18-17-26-48

FUNCTION : The string s 1s scanned from left to right,

RETURNS

EXAMPLES :

*)

.

END HSreal.

stariing from the ("1" + 1)-th character of s.
Leading blanks and tabs are skipped. Then & string
representing & real number in the format:

real = ["+7["-"] digits ["." digits] ["E" [*+*["-*] digits]
d,g"t - "O"I.I"'2"'3""""5"'6"'7',-6".9.
digits = digit {digit)

1s expected. Scanning stops sither at ths end of the string s,
or when a character which doss not fit in the format is encountsred.
There are two possible cases:
- the string doss not represent a real number or it
represents a syntactically valid real number
which 1s outside the machins defined range for the type
REAL: then "r" {is assigned the valus 0.0, "i® remains
unchanged and the procedure returns FALSE.
- the string represents a syntactically valid real number
thet can be converted: then "r” 1s assigned the value
of the converted number, "1™ points to the next
position after the number and the procedure returns
TRUE.
The status of the conversion:
TRUE: indicates successful conversion
FALSE: indicates that the string does not represent
a number 1in the expected format or that
the string represents a syntactically valid
number which 1s outside the machine dependent
Tegal range for that type.
1) s : ARRAY [0 .. 20] OF CHAR;
s$[0..8] = *XX0.123A8";
1= 2;
x:sStringToReal(s, r, 1);
-~>r = 0.123
x = TRUE
i =7
2) s : ARRAY [0 .. 20] OF CHAR;
$[0..3] = "BLAB";
1= 1;
x:sStringToReal(s, r, 1);
==>r = 0.0
x = FALSE
1 =1

DK.v20.HOwindows . def 1087-02-19-16-17-43

DEFINITION MODULE HDwindows;
(° HDwindows ++ screen, window, menus and CARET-handling =)
(= $8HOST-COMPUTER: Lil1th, SUN, MacIntosh

SAUTHOR: Alfred Ultsch

$DATE: July 14th, 1985 SVERSION: 1.3

$PROJECT: HOST SFILE: HDwindows.der
SMODIFICATIONS:

SDESCRIPTION:

This module defines operations for the following objects:

Screen: A rectangular display area dimansioned in pixsl-units
(x.,y-coordinates) painted with a BACKGROUND-colour. A screen can
be opensd, cleared (set to a background colour) and closed.

A screen has & fix-dimentioned scresn-window (FIRSTWINDOW) and a
BACKGROUND-menus. The screens’ window can have a title and a menus.
On a scresn a8 set of 0 to MAXWINDOW windows can be

simuitaneously displayed with evental BACKGROUND 1n betwsen them.
At one time there 1s one CURSOR to bs seen somewhere

on the screen and & CARET marks a position 1in some windows.

If the CURSOR 1s pointing to the BACKGROUND and a MENUE (see below)
1s requested, a simple menue, that allows thes change of
window-boundaries 1s displayed.

It the standard-output STDOUT was not previously

redirected to a file, 1t 1s redirected to the screen-window.

Window: A rectangular area dimensioned in pixel-units (x.y-coordinates)
that shows (a part of) a text stream (fils).To svery window belongs
eventually a title (1ine of text) and a location bar.

When a window is opened through a call of

HDwindows.openw(name, ..., window, windownumber),

the actual "name” 1Is copled into the “filename"-risld ofthe file
variable "window”, so that it can be askad later.

From then on the window boundaries may be changed by a hidden
mechanism if the window 1s opensd RESIZABLE. If ths window is
opened NOTRESIZABLE then the window's location and boundaries
remain static as long as the window is open.

f.e. the number of 1ines/colums displaysd can vary. Each time the
window’s dimensions are changed (and also at opening time), a
restore-procedure 1Is called. The actual 1ine/column-dimensions can
be inquired any tims. Writing starts at the top-left corner,
writing 1s dons at the CARET's position. The window wraps around
to the beginning of the next 1ins when the right margin 1s reached.
At most one menue Is associated with a window. Menuss are used to
commands. The command selection 13 done by a hidden mechanism but
can be inquired by calling procedurs command. Since command
selection Is real time, command should be called frequently (busy
read). The same procedures for writing into a file (putbf, putcf,
putlf, putrf, seek) are used for writing to a window,

Interpretation of cheracters:

When writing characters to a window, the following interpretations

are done (CARET 1s synonymous for the actual writing position):

10C BS backspace CARET without deletion

12C LF move CARET to next Tine,same column

14C FF clear window, CARET to top-left

16C CR move CARET to same Tina,first column

30C CAN clear the 1ine where CARET 1s, CARET to the same 1ine
first column

34C FS write special caracter for end-of-file.

35C GS write spscial caracter G/S

36C EOL move CARET to next ITine, first column.

=

pK.v20.HDwindows.def 1987-02-19-16-17-43

1

Cursor:

Menues:

Caret:

SNOTE:

Alphabet
clearcar
clearscr
closescr
closew
command
dimensio
getcaret
Tinecol
Tocatecu

37C US write special caracter U/S

77C DEL delete caracter, backspace one position (exept at the top)
The NEWLINE-character separatss the byte-streams into different
1ines.

Other characters < 37C (US) have the sffect of deleting anything
at the CARET’s actual position.

A pointing mark somewhere on the screen. The cursor 1s moved on the
screen by some input mechanisms, that 1s hidden in the
implementation (maybs a roll-balled mouse).

The cursor movements are actualized by calling command. At s given
time (for exampls when a BUTTON on the button-device is pressad),
1ts position with respect to a window can bs inquired.

The cursor’s position 1s given 1in coordinates of Iines (starting
from the topline as number 1) and bytes (starting from the
leftmost as number 1) relative to the window where the cursor 1s
in. Special positions of the cursor and pressing of buttons have
the effect of selecting a command (see below) or moving a window
boundary (see above).

At most one menue can be seen on a screen at a time.

A menue 13 used to select commands this selection is dones in real
time. When a menve entry 1s selected, the vser-redefinable
procedurs (variable) MenveRaquest 1s called.

Hidden in the implementation are the details of menuss’

pop-up and diseppearance 8s well as the details of command
selection.

A caret marks a position in each window.

(for example to mark & position to the lTeft of which the next
character 1s insertsd when keyboard input is done).

A caret can be positioned (or 1ts position inquired) 1n coordinates
of lines (starting from the topline as number 1)

and bytes (starting from the leftmost as number 1) relative to

the window where the caret 1s 1n.

The caret’s position can be Inquired any tims.

The procedures exported by this module return only a simple
error status.
Applications requiring more detailled error informations
may get the error number passed to the error procedurs.
See section 2.5. of the report:
HOST: An Abstract Machine for Modula-2 Programs
by Michel! Kiener end Alfred Ultsch
Report of the Institut fuer Informatik der ETH Zuerich
February 1987.

ical List of Procedures: =)

.................... —————

et -=- turn the display of the CARET off)
-~ close all open windows reset the colour to background =)
-~ close & screen reset STDOUT(eventually))
-- closs & text window)
-~ Tlook for menue- commands ®)

ns -- return the actual window’'s site and dims *)

pos -- get the current position of the CARET s)
-- return the actval window's Vines/columns .)

rsor -~ find out where the CURSOR 1s on the screen s)

DK.v20.HDwindows.det 1087-02-19-16-17-43

(* mark -= highlight a character of & window ®)
(* openscr -- open a screen,display name,redefine STDOUT(eventually)s)
(= openw ~=- open text window =)
(* scrollup == scroll window content up ons line s)
(= setcaret ~=- position the CARET inside a specific window)

(® Import List: =)

FROM HConstypes IMPORT (= Typs =) file;

(* Export List: =)

(=

EXPORT QUALIFIED

(= Constants: =) BACKGROUND, FIRSTWINDOW, MAXWIHDOW,
(= Types: =) WINDOWNR, WINDOWPROC, WINDOWSIZE,
(® Variables: =) MenueRequest, Screen,

(* Procedures: =)

(= screen =} openscr, closescr, clearscr,

(= window =) openw, closew, dimensions, linecol, scrollup,
(= menue =) command,

(= cursor =) locatecursor,

(= CARET =) setcaret, getcaretpos, clearcaret,

(= mark coordinates =) mark;

(= Daclaration of exported Cpnstants, Types and Variables: ®)

(® === m et m s)
CONST
BACKGROUND

= 0; (= "windownumber"” of screen area where no window 1s =)

FIRSTWINDOW = 1; (= the smallest window-identifying number =)

MAXWINDOW = 8; (= the largest window-identifying number = max. nr. of
windows =)

VYPE WINDOWNR = [BACKGROUND..MAXWIKDOW]; (= possible windownumbers =)
TYPE WINDOWPROC = PROCEDURE(WINDOWNR);
(= The type for the procedures to refresh a window’s content.
WINDOWNR : what window 1s to refresh
=
TYPE WINDOWSIZE = (RESTZABLE ,NOTRESIZABLE); (= ses dascrption of screen
above =)

IVA R
Screen : file ; (* 1 & scresn 1s opaned, then assoclated to ths screens’
basic window, elss synonymous to STDOUT s)
MenueRequest : PROCEDURE(WINDOWNR, CARDINAL);
(® This procedurs 1s called whenever a menus appeared on the scresn.
Parameters are:
windownumber : WINDOWNR : The number of the window where the menue
request was
menugEntryNumber : CARDINAL : The manuenumber {s interpreted as octal
numbar.
If no menve entry was selected menuveEntryNumber 1s zero. Fach

pK.v20.HDwindows , def 1987-02-19-16-17-43

octal position corresponds to a submenue level.Ths rightmost
octal aumber indicates the command chosen in the main menve,
the digit at the next higher position indicates the commmand
in the first submenue etc. The inftial valus determines

the inital selection when the menus pops up.

(= Description of exported Procedures: =)

I PROCEDURES for SCREEN handling ==-------ce- “m---u)

PROCEDURE openscr(name : ARRAY OF CHAR; menue : ARRAY OF CHAR:
VAR width, height : CARDINAL) : BOOLEAN;
L]
PARAMETER:
name : 1f the name {is nonempty a title-l1ine is dispalyed
width, height : screen dimensions in pixel-unit’'s
menve : the description of & menue that can be called on the
screen’s FIRSTWINDOV.
FUNCTION : Opens up a rectangular display area, returns 1t dimensions
in pixel-unit’s. Furthermore, FIRSTWINDOW 13 opened
with fixed dimensions and man "menue”.
IF STDOUT was not rediracted to a file, all put‘s go to
the screen’s FIRSTWINDOW. NOTE: this can be changed by simply
assigning (:=) anothar file to STOOUT.
RETURNS : TRUE 1f the screen could be opened
L
)

PROCEDURE clearscr ();
-
FUNCTION : all open windoes are closed, the scren 1s reset to the sams
condition as after openscr
*)

PROCEDURE closescr (); -

L4
FUNCTION : all open windows are closed, STDOUT 1s reset 1f it was redefined
*)

(#-mmmmmee R ERCEEEE R PROCEDURES for WINDOW handling ----==-----=)

PROCEDURE openw(name : ARRAY OF CHAR;
menue : ARRAY OF CHAR;
X,
Y.
width,
height : CARDINAL;
resizable : WINDOWSIZE;
content : WINDOWPROC;
VAR window : file;
VAR windownumber : WINDOWNR) : BOOLEAN;
L d
(INPUT PARAMETERS:
name : 17 the name 1s nonempty a2 title-line {is drawn
X, ¥ : window coordinates in pixel-unit’'s starting down, left
width, height : window dimensfons 1in pixel-unit’'s

DK.v20.HDwindows.daf 1987-02-10-16-17-43

resizable : 1t the s1ze and location of the window may be changed

content : a procedure (e.g. ons that 1s able to write the whole window
content at a tims) which 1s called once &t opening time,
then whenever the window’s dimensions ars changed

menue : the description of a menue
OUTPUT PARAMETERS:
window : the opened window as file

windownumber : a unique number to identify the window in the rangs
from FIRSTWINDOW to MAXWINDOW.
FUNCTION : Opens & 'window’ in the form of a IOWRITE fils.
A1l file-writing procedures are applicable.
The CARET 1s set to the top left of the writable field.
RETURNS : TRUE 1ff the window was successfully opened.

*)

PROCEDURE closew(windownr : WINDOWNR);

=
FUNCTION : close the window, reduce the occupied space to BACKGROUND
*)

PROCEDURE dimensions(windownumber: WINDOWNR; VAR x,y,width,height: CARDINAL);
-

PARAMETER: the window for which the dimensions are asked

FUNCTION : returns the actval window location and dimensions In pixels

)
PROCEDURE linecol(windownumber : WINDOWNR; VAR lines, colums : CARDINAL);

(-
PARAMETER: the window for which the dimensions are asked
FUNCTION : returns the actual window dimensions in 1ines and colums

*)
PROCEDURE mark(windownumber : WINDOWNR; line, byte : CARDINAL) : BOOLEAN;
=
FUNCTION : the specified position is marked visible (inverted or so0).
A second call with the same coordinates will reset the

caracter to normal Tooks.
RETURNS : TRUE {f the marking could bs dons.

=)

SROCEDURE scrollup(windownumber: WINDOWNR);

s

"FUNCTION : scroll the window up one line

r)

(#m=mmmmmmmmmcmmcmnaan PROCEDURES for meue handling ==-=--=-=--m-eueu.)

PROCEDURE command() : BOOLEAN;
(:

FUNCTION : Inquire 1f a command of a certain menue 1s actually pressed.
NOTE: The command seletion 1s time-dependand (busy-read), so
1t’s usefull to call this procedure frequently.

As sids effects this proceduras may:

1) Adjust the cursor according to user-input

2) Let menues pop-up and disappear

3) Let window-boundaries be changed

If the user salects a menug-command, the MenueRsquest perform
1s called.

RETURNS : TRUE {f the display of a menus has besn requested.

DK.v20.HDwindows. def 1087-02-19-16-17-43
*)
(#==-===-mommmemcceoan PROCEDURES for CURSOR handling ====-evc-ooomcoaoo s)
PROCEDURE locatecursor(VAR windownumber : WINDOWNR:
VAR 1line,
byte : CARDINAL) : WINDOWNR;
t
FUNCTION : Gives the window and the coordinates, where the cursor 1s at the
moment
RETURNS : The windownumber where the cursor 1s
*)
(#-==mmmmmmrem e PROCEDURES for CARET handling =--e==~=rcececcoca)

PROCEDURE setcaret(windownumber: WINDOWNR; 1ine, byte : CARDINAL) : BOOLEAN;

L 4
PARAMETER:
windownumber : the window where the caret is saet. If this
number = BACKGROUND then the caret 1s turned off.
line : the 1ine on which the caret 1s set 1n the window, starting from the
top Tine as number one.
byte : the caret's position in the Tine in number of displayed bytes
starting from the leftmost byte as number one.
FUNCTION : positlions the caret to a location inside a window.
RETURNS : TRUE 1f the positioning could be done.
L
)

PROCEDURE clearcaret();
-

FUNCTION : switches the display of the CARET off.
If no CARET was displayed, the procedure has no effects.
=)

PROCEDURE getcaretpos(VAR windownumber : WINDOWNR; VAR line, byte : CARDINAL);

-

PARAMETER:

windownumber : the window where the caret 1s currently in or

BACKGROUND 1f the carret 1s not on the screen

1ine : the 1ine on which the caret 1s in ths window, staring from the
top 1ine as number ons.

byte : the caret’s positfon in the 1ine in number of displayed bytes
starting from the leftmost byte as number one.

FUNCTION : Inquire the caret’'s actual position.
=}

END HDwindows.

DK.v20.HDbutton.dof 1087-02-18-17-25-31

DEFINITION MODULE HDbutton;

(= HDbutton ++ 1input device with button(s) =)

(= SHOST-CONPUTER: Lilith (other versions exist for SUN and Macintosh)
SAUTHOR: Alfred Ultsch

SDATE: July 14th, 1985 SVERSION: 1.3
$PROJECT: HOST SFILE: HDbutton.def
SMODIFICATIONS:

SDESCRIPTION: This module defines an input device with several buttons:
Ong or more of these buttons can be pressed at any time.
If one of the BUTTONs on the button-dsvice is pressed,
the procedure pressed returns a BITSET enclosing
a constant corresponding to that button.
Inquiring the state of the buttons 1s real time (busy-read)
The buttons can, but must not, have a special meaning
in connection with windows and the CURSOR.

=)

(= Alphabetical List of Procedures: =)

(# ===-=c--ccmcmncciccccienaac e [

(= pressed -- 1nquire state of buttons =)

(= Export List: =)

(a

EXPORT QUALIFIED

(= Constants: s) BUTTONNUMBER, POINTINGBUTTON, MENUEBUTTON, MARKINGDUTTON,
(* Type: =) BUTTONPROC,

(= Procedurs: =) pressed;

(= Declaration of exported Constants: s)
LA e R L E LT TP s

CONST BUTTONNUMBER = 3; (= how many buttons there are s)
POINTINGBUTTON = 15;
MENUEBUTTON = 14;
MARKINGBUTTON = 13;

(* These names of the BITSET elements for the LILITH-mouse BUTTGNs
may suggest a certain meaning in the design of a user interface =)

(= Declaration of exported Typs: =)
-

)
"YPE BUTTONPROC = PROCEDURE(BITSET) : BOOLEAN; (= type of PROCEDURE pressed =)

)
{OCEDURE pressed(VAR button : BITSET) : BOOLEAN;
L J

FUNCTION : If & button 1s pressed the appropriate BUTTON 1s
a member of the returned BITSET.
The procedure returns immediately, even when no BUTTON 13 pressed.
NOTE: the button state is checked real-time(busy read).

?ETURNS : TRUE if any button is actually pressed

L]

END HDbutton.

Y

DK.v20.HDbar .def 1987-02-18-17-25-23

DEFINITION MODULE HDbar;

(= HDbar ++ scroll bars with optional rectangles s)
(= SHOST-COMPUTER: SUN, L111th, MacIntosh
$AUTHORS : Martin Ester, Alfred Ultsch
$DATE:; July 14th, 1986 SVERSION: 1.3
$PROJECT : HosT SFILE: HDbutton.der

SDESCRIPTION: This module definos the instsllation of a bar to a window.
. A scroll bar is a retangular area at the left
side of a window. Pressing a mouss-button Inside a
scroll bar results in a call to the procedure
barcommand, which 1s exported as procedure variable by
this module in order to supply user-deffned reactions.
Installed scroll bars can be enriched by a background
colored rectangle which can be dimensfoned in per-mille
of the total bar length. A scroll bar (incl. rectangle)
is always painted and refreshed by a hidden mechanism
(evan after changes of the outlook of tha window).
SNOTE: The procedures exported by this moduls return only & simple
error status (TRUE indicating success and FALSE failure).
Applications requiring more detailled error informations
may get the error number passed to the error procedure.
See section 2.5. of the report:
HOST: An Abstract Machine for Modula-2 Programs
by Michel Kiensr and Alfred Ultsch
Report of the Institut fuer Informetik der ETH Zusrich
February 1987.

®)

(= Alphabetical List of Procedures: =)

(8 =commeme e e w)

(¢ deletebar -- remove bar form window *)
(* eraserectangle -- let rectangle in a bar dissapear v)
(» Installbsr -~ install @ scroll bar for & window =)

(= setractangle -- position the rectangle of a scrollbar e)

(= Export List: =)

(= Typa: =) PERMILLE,
(* Variable: =) barcommand,
(e Procedures: =) deletebar, eraserectangle, installbar, setrectangle;

Jclaratfon of exported Type: =)
------- Smmemeuadceceeeaeaea a)

(t
TYPE PERMILLE = [0..1008];

(® Declaration of exported Variable: =)
(® =w=== B L e Ll =)
VAR barcommand : PROCEDURE (VAR CARDINAL, VAR BITSET, VAR PERMILLE);
(® This procedure is called, whenever a button was pressed
and released inside the region of en installed bar. A user defined

B S

DK.v20.HDbar .def 1987-02-18-17-25-28 2

procedurs may be assigned by the user. The default procedure has no

jeffects.

Parameters are:

VAR windownr: CARDINAL the window where the button was released inside
the bar’s ares

VAR button: BITSET an saet containing the pressed button(s)
ses HDbutton for mors details

VAR relpos: PERMILLE relative position counted from the top of the
window whare the cursor was at the time of the call.

*)

(= Description of exported Procedures: «)
§ mmr e — e s
PROCEDURE deletebar(windownr : CARDINAL);

FUNCTION : Remove an installed bar
*)

PROCEDURE eraserectangle(windownr : CARDINAL);

FUNCTION : If a bar with rectangle was installed, the rectangie dissapsars
=)

PROCEDURE installbar(windownr : CARDINAL) : BOOLEAN;
L

FUNCTION

RETURNS

*)
PROCEDURE setrectangle(windownr: CARDINAL; begin, length: PERMILLE) : BOOLEAN;

L 4
PARAMETER: begin defines the begin counted from the top,
length the relative length of the rectangle
FUNCTION : the rectangle of bar windownr 1s set to new values begin
and length and painted accordingly
RETURNS : TRUE 1ff the setting was successfull

=)
END HDbar.

Install a rectangle-less bar for & specific window
TRUE 17f the bar could bs installed

.
H
o
H

MR
DK.v20.HEres1.daf 1987-02-18-17-26-28

DEFINITION MODULE HEreal;
« HEreal ++ conversions from REAL to INTEGER and vice verss =)
(s SHOST-COMPUTER: SUN, L11ith, Macintosh

SAUTHOR: Michel Kiener

$SDATE: February 17th, 1087 SVERSION: 2.0
$PROJECT : HOST SFILE: HEroal.dsf
$SMODIFICATIONS:

$DESCRIPTION: Procedures for conversions from REAL to INTEGER and
vice versa.

*)

(= Alphabetical List of Procedures: =)

P e e fadudd 13
(v entier -« convert 8 REAL to an INTEGER s)
(= real -~ convert an INTEGER to & REAL s)

(» Export List: =)
=

EXPORT QUALIFIED (e Procedures: s) entier, real;

(= Description of exported Procedures: «)

(% =~-==-==eessecmccecccc-ccccocconeno x)

PROCEDURE entier(x: REAL): INTEGER;
L 4
FUNCTION : convert a REAL to en INTEGER.
This procedure 1s not defined for results that are not 1in
the VTegal INTEGER range.
RETURNS : the INTEGER value of the REAL
*)

PROCEDURE real(x: INTEGER): REAL;

(-

FUNCTION : convert an INTEGER to a REAL
RETURNS : the REAL value of the INTEGER

*)
END HEreal.

DK.v20.HEmath11b.def 1987-02-18-17-25-24

DEFINITION MODULE HEmathlib;
(= HEmathlib ++ basic mathematical functions =)
(= SHOST-COMPUTER: SUN, L111th, Mecintosh

SAUTHOR ; N. Wirth 7/ J. Waldvogel
SDATE: December 10th, 1880 SVERSION: 2,0
$PROJECT: HOST $FILE: HEmathlib.def
SDESCRIPTION: Basic mathematical functions
L 4
)
(* Alphabstical List of Procedures: =)
(- -------------------------------- -)
(= arctan -- arc tangent =)
(e sgrt -~ square root =)
(= exp -~ exponential function =)
(= In -~ natural logarithm =)
(= cos ~= cosine =)
(= sin -~ sine =)

(= Export List: »)
EXPORT QUALIFIED

(* Constant: =) pi,
(= Procedures: =) sqrt, exp, In, sin, cos, arctan;

(= Declaration of exported Constant: =)

(u -------------------------------- -)
CONSY pi = 3.1415927;

{® Description of exported Procedures: =)
s)

(% ===~
PROCEDURE arctan (x: REAL): REAL;
PROCEDURE cos (x: REAL): REAL;
PROCEDURE exp (x: REAL): REAL;
ROCEDURE 1n (x: REAL): REAL;
ROCEDURE sin (x: REAL): REAL;

/ROCEDURE sqrt (x: REAL): REAL;

END HEmathlib.

DK.v20.HEsegment10.def 1987-02-19-16-17-32

DEFINITION MODULE HEsegmentlIO;
(= HEsegmentIO ++ Segment access to mass storage =)
(= SHOST-COMPUTER: SUN, L111th, Macintosh
$AUTHOR : Michel Kiener and Heinrich Jasper,
inspired by SIBlockl0 by E. S. Biagioni, G. Heiser,
K. Hinrichs and C. Muller

$DATE: Febrvary 17th, 1087 SVERSION: 2.0
$PROJECT: HOST SFILE: HEsegmentIO. def
SMODIFICATIONS :

SDESCRIPTION: HEsegmentIO:

- This module provides low level segment 1/0 to mass storage
(probably on disk).
Blocks:

- Blocks are arrays of bytes of the fixed length BYTESPERBLOCK.
Segments:
- Integral numbers of blocks grouped into so-called segments
may be storsd to / retrieved from so-called BIOFiles.
From the programmer's point of view, segments are
contiguous pieces of memory on the BIOFiles.
BIOFiles:
- BIOFiles must be opaned through s call to OpsnBIOF{ile.
This procedure returns a record of type "BIOFilse”
which contains a unique identifier of the BIOFIle: BIOFId,
The BIOFId 1s vsed in all further block 1/0 cperations
on that particular BIOFile and the segments on the BIOFile.
- Files of typs "BIOFile” ares incompatible with the files
of type "file” described 1n the other modules of
HOST (HConstypes, HPfiles, HDwindows).
~ When created (through OpenBIOFile), BIOFiles gst a stamp
that marks them as BIOFiles. Applying procedures
exportad by HEsegmentIO to files that do not have that
stamp produces an error massags on STDERR.
Segments again:

- Each segment on a particular BIOFile 1s uniquely
identified by a SegmId which serves as the programmer’s
address of the segment.

- Segments are allocated / deallocated using AllocateSegment /
DeallocateSegment eand I/0 operations are performed on
them vsing PutSegment / GetSegment.

-~ It 1s the programmer’s sole responsiblity to manage her
segments, that 1s to remember and properly use their
identifiers (SegmId) and sizes (NrOfBlocks).

- For this purpose, HEsegmentlO provides for the usage of
so-called SpecislBlocks, which are stored at e particular
place of the external BIOFile. A SpecialBlock 1s read from
the external BIOFile when it 1s opened and written to
the external BIOFile when 1t 1s closed. Thus, the
programmer might use the SpecialBlock to store / retrieve
information about identifiers (SegmId) and
sizes (NrOfBlocks) of segments onto / from an external
BIOF1le. The procedure PutSpecialBlock which enables
to write at any time a BIOFile’'s SpecfalBlock onto
the external BIOFile 1s providaed for data security reasons
(e.g. the programmer wishes an updated version
of a BIOFile’s SpecfalBlock to be written externally
immediately and not only when the BIOFile 1s closed).

e

DK.v20.HEsegmentIO.d

SNOTE:

$NOTE:

af 1987-02-19-18-17-32

- The programmer 1s responsible for remembering the size
(Nr0fBlocks) of a segment and for using the same size
in each procedure call. Failure to observe this rule
may result in ssrious disk end system errors.

VaitBlO:

- HEsegmentIO input / output operations may be implemested
asynchronously, provided the underlying system supports
asynchronous 1/0.

- That requires some care on the progremmer’s sida: a call
to GetSagment will only initiate the physical I/0 operation,
Before accessing the dats read into the programmer-supplied
buffer, the programmer must await completion of the physical
read operation. This 13 done by & call to the WaitBIO
procadure. Similarly, a call to WaitBIO must be performed
after calling PutSegment if the programmer-supplied buffer
1s to be modified afterwards. Of courss, the call to
WaitBIO doas not have to be performed immediately
afterwards, the programmer can.do other processing in
betwsen, thus possibly avoiding any delays due to waiting
for I1/0 completion.

- Thers is an implicit synchronisation done by the system
before any further I/0 operation and CloseBIOFile are
performed on the respective BIOFile. Hance an explicit
call to WaitBIO is not required, 1f a GetSegment
operation follows a PutSegment call or vice versa,
or between successive calls to GatSegment or PutSegment
using different buffers.

On soms implementations, 1t might bs possible
to read sequentially files of typs "BIOF1le” with
the procedures exported by HPfiles (this probably might
make sense for test purposes onlyl).
The procedures exported by this moduls return only & simple
error status (TRUE indicating success and FALSE failure).
Applications requiring more detailled error informations
may get the error number passed to the error procesdure.
See section 2.5. of the report:

HOST: An Abstract Machine for Modula-2 Programs

by Michel Kiener and Alfred Ultsch

Report of the Institut fuer Informatik der ETH Zuerich

February 1987.

SNECESSARY CONDITIONS: Opened BIOFiles must be closed before program

~)

Alphabetical L1ist

termination.

of Procedures: =)

B st e e e — e ——,— e — - -)

(= AllocateSegment
(= BIOFiTeExists

(= CloseBIOF{ile

(= DeallocateSegment
(= GatSegment

(= OpenBIOFile

(= PutSegment

(= RemoveBIOFile

(= PutSpecialBlock
(= WaitBIO

-- allocate a segment of memory on a BIOF1ile ")
-~ check wether a8 BIOF1ls exists =)
-- close a BIOF1le ®)
-- deallocate a segment of memory on a BIOF1le =)
== read & segmsnt of memory on a BIOF1ile s)
-=- open 8 BIOF1ls for a specified access s)
-~ write a segment of memory on a BIOFile *)
== remove a BIOF1le =)
-- write the special block of 8 BIOFile =)

-- wait for completion of previous 1/0 operation =)

DK.v20.HEsegmentIO.def 1087-02-16-18-17-32

(» Import List: =)

FROM HConstypes INPORT (= CONST =) BYTESPERBLOCK,
(= TYPE =) BYTE:

(= Export List: =)

............ -

(* Types: =)
Block,
BIOFile,

(= Procedures: =)
BIOFileExists, RemoveBIOFile,
OpenBIOFile, CloseBIOFile,
AllocateSegment, DeallocateSegment,
PutSegment, GetSegment,
PutSpecialBlock,
WaitBIO;

(= Description of exported Types: =)

Block = ARRAY [0..BYTESPERBLOCK-1] OF BYTE;
SegmentId = INTEGER; (= Identifier and programmer’s address of a segment =)
BIOFileld; (= Identifier of a BIOFile; opaque type =)
BIOFile = RECORD
BIOFId : BIOFileld; (= A unique identifier assigned to
sach BIOFile when 1t 1s created.
Must be vused in all further
operations on that BIOFile. =)
SpecialBlock : Block: (= When OpenBIOFile 1s called,
this block 18 read from the
external BIOFile, When CloseBIOF1ile
1s called, this block 1s written
to the external BIOFiTe.
The SpecialBlock may be used to
store informations about the BIOF1le.
Its usags 1s under the sole
programmer’s rasponsibilty. s)
END;

(= Description of exported Procedures: =)

{7 ~~=memeerecce e =)

ITATIDURE AllocateSegment(BIOFId : BIOFileld:
NrOfBlocks : CARDINAL;
VAR Segnld : SegmentId) : BOOLEAN;

L J

FUNCTION: Return a SegmId for NrOfBlocks contiguous free blocks.

PARANETER: BIOFId: BIOFileld of the BIOFile on which the segment

shall be allocated.

NrOfBlocks: Number of blocks to allocate for the segmsnt.
Segmld: Client’s address of the segment.

RETURNS : TRUE 1f a ssgment of NrOfBlocks blocks could bs allocated,
FALSE otherwiss.

®)

R —
DK.v20.HEsegmentIO. def 1987-02-19-16-17-32 4

PROCEDURE BIOFileExists(filename : ARRAY OF CHAR) : BOOLEAN;
-
{FUNCTION: Check wether a BIOFile with name "filename™ exists.
PARAMETER: filename: name of the external BIOFile.
RETURNS : TRUE 1f a rile named “fi1lename" exists and 1t 1s & BIOFile
(1.8. 1t has been created through & call of OpenBIOFils).
FALSE otherwise.

)

PROCEDURE CloseBIOFile(VAR f : BIOFile) : BOOLEAN;

(l

NOTE : f 1s a VAR parameter for efficiency reasons only,

FUNCTION: Close ths BIOFile and write its SpecialBlock into the external file
with the name "filename” given for f when it was opened.

PARAMETER: f: the BIOFile to close.

RETURNS : TRUE if the BIOF1iie could be closed.
FALSE if the BIOFId-field of f did not designate an open BIOFils,

NOTE: Open BIOFiles must be closed before program termination.
*)
PROCEDURE DeallocateSegment(BIOFId : BIOFileld;
NrOfBlocks : CARDINAL;
SegmId : SegmentId) : BOOLEAN;
(=

FUNCTION: Delete the block set identified by Segmld.
PARAMETER: BIOFId: BIOFileld of the BIOFile from which the segment
shall be deallocated.
NrOfBlocks: Number of blocks of the segment to dsallocate.
Must be the same as the NrOfBlocks used for
the corresponding call of AllocateSegment.

Segmld: Cl1ent’'s address of the segment to delsts
RETURNS : TRUE 1f deallocation successful, FALSE otherwise.
*)
PROCEDURE GetSegment(BIOFId : BIOFileld;
NrOfBlocks : CARDIMAL;
. SegmId : Segmentld;

VAR Segment : ARRAY OF Block) : BOOLEAN;

L]

FUNCTION: Initiate reading NrOfBlocks blocks identified by SegmlId.

PARANETER: BIOFId: BIOFil1eId of the BIOFile from which the sagment
shall be read.

NrOfBlocks: Number of blocks of the segment to read

Must be less than or equal to the NrOrBlocks
daclared 1n AllocateSegment and less than or
equal to HIGH(Segment) + 1

Segmld: Client’s address of the segment to read
Segment: Read segment
NOTE: The segment to be read must have been written before.
RETURNS : TRUE 1f successful, FALSE otherwise.

*)

PROCEDURE OpenBIOFile(filename : ARRAY OF CHAR;
ReadOnly : BOOLEAN;
VAR IsNew : BOOLEAN;

LSS
DK.v20.HEsegmentIO. def 1987-02-19-16-17-32 6

VAR f : BIOFile) : BOOLEAN;
L 4
FUNCTION: Open & BIOFile for the specified access
(ReadOnly = TRUE --> read only, ReadOnly = FALSE --> read and write).
PARAMETER: filenams: name of the external BIOFile to open
ReadOnly: If TRUE:
- If a file named "filename” exists, and 1t 1s a
BIOFile, 1t 1s opened for read access only.
If opening 1s successful, the procedure returns
TRUE, otherwise FALSE. An attempt to write on
a BIOFile opened with ReadOnly = TRUE will
generate an error message on STDERR and ebort
the progrem.
- If a file named "filename” exists, and 1t 1s not a
BIOFile, 1t 1s NOT opened and the procedure
returns FALSE,
- If no file named "filename" exists, the procedure
returns FALSE.
It FALSE:
- If a file named "filename” exists, and 1t is a
BIOFile, it 1s opened for read and write access.
If opening {s successful, ths procedurs returns
TRUE, otherwise FALSE.
- If a file named "filename” exists, and 1t is not @
BIOFile, it 1s NOT opened and the procedure
raeturns FALSE.
= If no file named "filename” exists, a BIOFile
with name filename 1s created and opened for
read and write access. If creating and opening
are svccessful, the procedure returns
TRUE, otherwise FALSE.
IsNew: = TRUE 1f the BIOFile has been new created
(this supposes that ReadOnly = FALSE and that no
file named "filename” existed).
- FALSE 1f an existing BIOFILE has been opened.
f: When OpenBIOF1le returns FALSE (see above), T remains
unchanged.
When OpenBIOF{ile returns TRUE (ses above), the fields
of f contain:

- BIOFId: a unique identifier of the BIOFile.
~ SpacialBlock: - If IsNew = TRUE, SpacialBlock contains
garbage

- If IsNew = FALSE, SpecialBlock contains
what the programmer had written into 1t
before closing the BIOFile the Tast time.

NOTE: The SpecialBlock may be used to

store informatfion about the BIOF{Te.
Its usage 1s undsr the sole
programmer‘s responsibilty.

RETURNS: See "ReadOnly" above.

)

PROCEDURE PutSegment(BIOFId : BIOFileld;
NrofBlocks : CARDINAL;
Segmld : Segmentld;

VAR Segment : ARRAY OF Block) : BOOLEAN;

-
NOTE: Segment 1s a VAR parameter for efficiency reasons only.

DK.v20.HEsegment10.def 1987-02-19-16-17-32

FUNCTION: Initiate writing NrOfBlocks blocks identified by Segmld.
PARAMETER: BIOFId: BIOFileld of the BIOFile on which the segment
shall be written.
NrOfBlocks: Number of blocks of the segment.
Must be less than or equal to the NrOfBlocks
declared in AllocateSegment and less than or
equal to HIGH(Segment) + 1
Segmld: Client’s address of ths segment
Segment: Segment to be written
RETURNS : TRUE if successful, FALSE othsrwise,

*)

PROCEDURE PutSpecialBlock(VAR f : BIOFile) : BOOLEAN;
L]

FUNCTION: write f’'s SpecialBlock BIOFile into the external BIOF1ls.
PARAMETER: f.BIOFId : BIOFilelId of the BIOFile whose SpecialBlock
shall be written

f.SpecialBlock: Block to be written
RETURNS : TRUE 1f successful, FALSE otherwise.

*)

PROCEDURE RemoveBIOFile(filename : ARRAY OF CHAR) : BOOLEAN;
(c
FUNCTION: Remove the file with name “filename” 1f it exists and 1s a BIOF1le.
PARAMETER: filename: name of the extarnal BIOFile to remove.
RETURNS : TRUE 1f & f1le named "filename" existed, was a BIOFile
and could bs removed,
FALSE otherwise.
=)

PROCEDURE WaitBIO(BIOFId : BIOFileld) : BOOLEAN;

-

FUNCTION: Awaits completion of any previously initiated 170 operation
(= PutSegment or GetSegmant) on the BIOFile with the
specified BIOFileld.

PARAMETER: BIOFId: the BIOFileId of the BIOFile on which the psrformance

of a praviously initiated 1/0 operation is to wait for.

RETURNS : TRUE 1f the previously initiated I/0 operation 1s completed
succassfully or 1f there was no 1/0 operation initiated.
FALSE otherwiss.

NOTE: FALSE 1indicates an error occured during the execution of
the previously initiated 1/0 operation.

)

END HEsegmentIO.

- R ——

—————'——7"
DK.v20.HConstypes.dof 1987-02-23-12-18-16

DEFINITION MODULE HConstypes;

(» HConstypes ++ implementation dependant constants and types file & string =)
(= SHOST-COMPUTER: SUN (other versions exist for L11ith and Macintosh)

SAUTHOR: Alfred Ultsch, Michel Kiener

$DATE: February 17th, 1987 SVERSION: 2.0

$PROJECT: HOST SFILE: HConstypes.daf
SMODIFICATIONS:

SDESCRIPTION: This module defines constants and basic types depending
on the host computer.
*)
(= Import List: =)
E

IMPORT SYSTEM; (= to Import the typs BYTE =)
FROM HChidden IMPORY hiddenfile;

(= Export List: =)

(= Constants: =)
(= constant indicating failure =)

FAILED, (= indicates failure =)
(* constants for strings »=)

ENDSTR, (® Indicates the end of a string =)
MAXSTR, (* maximal number of CHAR's in one string =)
NEWLINE, (= end-of-71ine character ®)

(* constants for files =)
ENDFILE, (= all read procedures return this when end of f1le is reached =)

EOT, (= this character signals end of file on a terminal *)
(= constants for the commandline interface =)

BLANK, (= definition of & spacing char (separates arguments) =)
ESC, (= escape character to escape from execution of a progr =)
OPTION, (v & character to designate options on the commandline =)
TAB, (= definition of a spacing char (separatss argumants) =)
BS, (= backspace one character *)
DEL, (= delate last input character »)
(= constants for number ranges =)

MAXCARD, (= largest CARDINAL number =)
MAXINT, (= Targest INTEGER number =)
MININT, (* smallest INTEGER number *)
MAXREAL, (= Targest REAL number =)
MINREAL, (* smallest REAL number *)
LEASTREAL, (* -LeastReal is the maximum negative resl s)
REALPRECISION, (= below this constant REALs are equal 5)
(* constants for storage alignments =)

BITSPERBYTE, (® number of bits in one byte)
MOSTSIG, (= place of most significant bit 1n a byte r)
LEASTSIG, (% place of least significant bit 1n & word =)
BYTESPERWORD, (= size in bytes of the standard type WORD =)
BYTESPERCARD, (= size in bytes of the standard type CARDINAL e)
BYTESPERINT, (= size in bytes of the standard type INTEGER *)
BYTESPERREAL, (= size 1n bytes of the standard type REAL =)
BYTESPERBITSET, (= size in bytes of the standard type BITSET)
BYTESPERADDRESS, (* s1ze 1n bytes of the typs ADDRESS =)
BYTESPERSIZE, (# if x 1s the size of a type returned by standard

function SIZE or TSIZE then (x = BYTESPERSIZE) 1is

DK.v20.HConstypes.def 1987-02-23-12-18-18 2

BYTESPERBLOCK,

(l
s
f

1
B

Types: =)
tring, (= stri
ile, (= Opar

File

the size in bytes of that type =)
(= length 1n BYTEs of blocks of storage used by HEsegmentIO <)

ng of the maximal possible length =)
ations on this type are defined 1n the module HPfiles,
s have one of five IOmodes:

IOREAD, IOWRITE, IOAPPEND, IOVERRIDE, IFTHERE.

For
Omode, (= the
YTE; (s 8-b1

a8 desciption see module HPfiles =)
different file opening modes =)
t byte »)

(= Declaration of exported Constants: =)

(o ===-==- e L ey =)
CONST
FAILED = -1;
EOL = 12C;
BITSPERBYTE = 8;
BLANK =y
BS = 010C;
BYTESPERBITSET = 4;
BYTESPERCARD = 4;
BYTESPERINT = 4;
BYTESPERREAL = 4;
BYTESPERWORD = 4,
BYTESPERADDRESS = 4;
BYTESPERBLOCK = 266;
BYTESPERSIZE = 4;
DEL = 177C;
ENDFILE = -1
ENDSTR = 0C ;
EOT = 04C;
ESC = 033C;
LEASTREAL = 1.4694738E-39;
LEASTSIG = 31;
MAXCARD = 4294967295;
MAXINT = 2147483647,
MAXREAL = 3.4028E38;
MAXSTR = 256;
MININT = - 1 - MAXINT;
MINREAL = - MAXREAL;
MOSTSIG = 0;
NEWLINE = EOL;
OPTION = -ty
REALPRECISION = 1.0E-06;
TAB = 011C;
(= Declaration of exported Types: =)
(% ===-=emmmmmmem e s)
TYPE
BYTE = SYSTEM.BYTE; (= on L11ith: BYTE = CHAR; =)

file = RECORD

file
(t

hf :

name : ARRAY [0..79] OF CHAR;
Each variable of type "f11s” has a "filename"-field.
When a f1le 1s opened, the actual "name” is copied
into the "filename"-field of the rile variable f, so that
1t can be asked later. =)
hiddenfile;

DK.v20.HConstypes.def 1987-02-23-12-18-16

END;
IOmode = (IOREAD, IOWRITE, IOAPPEND, IOVERRIDE, IFTHERE) ;
string = ARRAY [0..MAXSTR-1] OF CHAR;

END HConstypes.

APPENDIX B: DEFINITION MODULES OF THE
UTILITIES DELIVERED WITH HOST

CONTENTS:
HUrwns: read / write number and strings

HUreal: read / write real numbers

DK.v20.HUrwns.def 1987-02-19-16-56-04

DEFINITION MODULE HUrwns;
(* HUrwns ++ read / write numbers and strings, no REAL type =)
(= SHOST-COMPUTER: SUN, L111th, Macintosh

SAUTHOR: Michel Kiener

$DATE: February 17th, 1987 $VERSION: 2.0

$PROJECT: HOST SFILE: HUrwns.dsf
SMODIFICATIONS:

SDESCRIPTION: Praocedures to read numbers (no REAL type) and strings from

STDIN and from a file;
Procedures to write numbers in different formats (no REAL
type) and strings on STDOUT and on a file.
Tha functional difference between a Get...-procedurs and
the corresponding Read...-procedure is that the
Get...-procedure doss NOT distinguish (1.e. returns the
same value zero) betwween input zero and syntactically
incorrect input or 1input outside the legal range for that
typs, but the Read...-procedure does.
The procedures to read from / write to a f1le have
the same names as the corresponding procedures to read
from STDIN / write to STDOUT, excepted that a letter "f"
is appended to their name. They have the same function,
parameters and return velue than the proceduras without
"f", excepted that they hsve an additionsl parsmeter
which 1s the file to read from / to write to.

SNECESSARY CONDITIONS: The ...f-procedures assuma that the file
from which 1s read / on which 1s written to have been
properly opened through a call of HPfiles.open and will be
properly closed through a call of HPfiles.closs.

Alphabetical List of Procedures:

GetCard ~-= read 8 CARDINAL as a string from STDIN

GetChar -- read & CHAR from STDIN

GetInt -- read an INTEGER as a string from STDIN

GetL ine -- read at most one 11ne from STDIN

ReadCard -~ read a CARDINAL as a string from STDIN

ReadInt -~ read an INTEGER as a string from STDIN

WriteBin ~-- write binary representation of a CARDINAL on STDOUT

WriteCard «-= write & CARDINAL as a string on STDOUT
WriteChar -- write a CHAR on STDOUT

WriteHex ~- write hexadecimal representation of & CARDINAL on STDOUT
Writelnt -- write an INTEGER as a string on STDOUT

Writeln -~ write NEWLINE on STDOUT

WriteOct ~-- write octal representation of a CARDINAL on STDOUT
WriteString -- write a string on STDOUT

GetCardf -~ read 8 CARDINAL as a8 string from & file

GetCharf -~ read a CHAR from & file

GatIntf -~ read an INTEGER as a string from & f1le

Getl fnef -- read at most one 1ine from a file

ReadCardf -- read a CARDINAL as 8 string from a file

ReadIntf -- read an INTEGER as & string from a file

writeBinf -~ write binary representation of a CARDINAL on a file
WriteCardf =-- write @ CARDINAL as a string on a file

WriteCharf -- write a8 CHAR on a file

WriteHexf -~ write hexadecimal representstion of a CARDINAL on 2 file
WritelIntf -~ write an INTEGER as & string on a file

Writelnf? -- write NEWLINE on a file

WriteOctf -- write octal representation of a CARDINAL on a file
WriteStringf -- write a string on a file

=)

DK.v20.HUrwns.def 1987-02-19-16-56-04

(-------lt- IMPORTED OBJECTS_-u.-s.---t---tt-tttt-ccac---t)

FROM HConstypes IMPORT (= type =) file;

(.'..-l-l'l‘l.Illl’..lIl'..'....I‘""-'...."..ll..l'.ll.‘.)

EXPORT QUALIFIED

(= proc =) GetCard, GetChar, GetlInt, GetLine,
ReadCard, ReadInt,
WriteBin, WriteCard, WriteChar, WriteHex, WriteInt, Writeln,
WriteOct, WriteString,

GetCardf, GetCharf, GetIntf, GetLinef,

ReadCardf, ReadIntf,

WriteBinf, WriteCardf, WriteCharf, WriteHexf, WriteIntf Writelnf,
WriteOctf, WriteStringf;

(c
Description of Procedures:

PROCEDURE GetCard (VAR c : CARDINAL) : CARDINAL;
E
FUNCTION : Read characters from STDIN skipping leading BLANKsS and TABs until
- either a sequence of digits followed by a non-digit
- or a sequence of non-digits followed by a digit or & NEWLINE
is encountered.
IT the last read character is not a NEWLINE, put it back to
STDIN (so that it can be read again by a following call of a
Get...-procedure).
The DEL character has the commonly known effect.
PARAMETER: ¢ becomss either the value 0 or the value of the read cardinal
number.
¢ becomes the value 0 when
- either the read CARDINAL is 0
- or the read digits build a cardinal number greater than MAXCARD
(this 1s especially the case 1f the read sequence of digits has
more digits than MAXCARD has; notice that the procedurs goss on
reading as many digits as encountered and stops only when 1t
meets the next non-digit!)
- or a sequence of non-digits followed by a digit or a NEWLINE
has been read
RETURNS : the same value as the parameter c has.

)

PROCEDURE GetChar (VAR ch : CHAR) : CHAR;
(.
FUNCTION : read one character from STDIN
PARAMETER: ch 1s the read char or EOT (which indicates the end of the
STDIN-1nput)
RETURNS : the read CHAR (has the same value as ch), or EOT (which indicates
the end of the STDIN-input)
-
)

PROCEDURE GetInt (VAR i : INTEGER) : INTEGER;

S o S

RETURNS
CAUTION

*)

FUNCTION

RETURNS
*)

=
FUNCTION

pK.v20.1lUrwns.def 1987-02-19-16-56-04

FUNCTION : Read characters from STDIN skipping Teading BLANKs and TABs until

- e#ither a sequence of digits preceeded by at most one minus
sign and followed by a non-digit
- or a sequence of non-digits followed by a digit or a minus sign
or & NEWLINE is encountered.
If the last read charscter s not a NEWLINE, put 1t back to
STDIN (so that 1t can be read again by a following call of a
Get...-procedure).
The DEL character has the commonly known effact.

PARAMETER: 1 becomes aither the value 0 or the value of ths read integer

number.
1 becomes the value 0 when
-~ either the read INTEGER 1s 0
- or the read digits build an integer number greater than MAXINT
or Tess than -1-MAXINT (this is espscially the case 1f the read
sequence of digits has more digits than MAXINT or -1-MAXINT
have;
notice that the procedure goes on reading as many digits as
encountered and stops only when 1t meets the next non-digiti)
- or & sequence of non-digits followed by & digit or a minus
sign or a NEWLINE has besn read

: the same value as the parameter 1 has.

: only numbers >= -1-MAXINT and <= MAXINT are translated into an
INTEGER: numbers smaller than -1-MAXINT cannot be translated. By
Tuck, 1t can be assumed that MININT = -1-MAXINT on & reasonnabls
computer|

PROCEDURE GetLine (VAR Tine : ARRAY OF CHAR; max : INTEGER) : BOOLEAN;

: Read at most one 11ne from STDIN,
DEL and (CRTL> are proceeded.

PARAMETER: Tine: place where the read 1ine is stored to.

max: the 1ine 1is truncated to this Tength if desired.
: true 1f a 11ne 1s successfully obtained; FALSE implies end-of-file

PROCEDURE ReadCard (VAR c : CARDINAL) : BOOLEAN;

: Read characters from STDIN skipping leading BLANKs and TABs until
- sfther a sequence of digits followed by a non-digit
- or 8 sequence of non-digits followed by either a digit or a

NEWLINE

i1s encountered.
If the lTast read character s not a NEWLINE, put 1t back to
STDIN (so that 1t can be read again by a following call of a
Get...-procsdure).
The DEL character has the commonly known effect.

PARAMETER: ¢ becomes efither the valus 0 or the value MAXCARD or the value of

the read cardinal number.
¢ becomes the value 0 when
- gither the read cardinal number is 0
- or & sequence of non-digits which does not contain only BLANKs
or TABs and 1s followed by either 8 digit or & NEWLINE has
been read
¢ becomes the value MAXCARD when
- g@ither the read cardinal number 1s MAXCARD

B O I A —— A A—....

DK.v20.HUrwns.def 1987-02-19-16-66-04 4

- or the read digits build a cardingl number greater than MAXCARD
(this 1is aspecially the cass if the read sequence of digits has
more digits than MAXCARD has; notice that the procedurs goes on
reading as many digits as encountered and stops only when it
meats the next non-digitl).
Otherwise, ¢ becomes the valus of the read cardinal number.
RETURNS : true 1ff a cardinal number not greater than MAXCARD has been read.

*)

PROCEDURE ReadInt (VAR 1 : INTEGER) : BOOLEAN;
L J
FUNCTION : Read characters from STDIN skipping leading BLANKs and TABs until
- gither a sequence of digits prececded by at most one minus
sign and followed by 8 non-digit
- or a sequence of non-digits followed by a digit or & minus sign
or a NEWLINE 1s encountered.
If the last read character is not a NEWLINE, put 1t back to
STDIN (so that 1t cen be read again by & following call of a
Get...-procedurs).
The DEL character has the commonly known effsct.
PARAMETER: 1 becomes elther the value 0 or the value -1-MAXINT or the value
MAXINT or the valus of the read integer number.
1 becomes the value 0 whan
- gither the read integer number 1s 0
- or a sequence of non-digits followed by a digit or a minus
sign or a NEWLINE has been read
becomes the valus ~1-MAXINT when
gither the read integer number is -1-MAXINT
- or the read digits build an integer number less than -1-MAXINT
(this 1s especially the case 1f the read sequence of digits has
more digits than -1-MAXINT has; notice that the procedure goas
on reading as many digits as encountered and stops only when
1t meets the next non-digitl)
becomes the value MAXINT when
- @ither the read integer number has the value MAXINT
- or the read digits build an integer number greater than NAXINT
(this 1s especially the case 1f the read sequence of digits has
more digits than MAXINT has; notice that the procedure goes on
reading as many digits as encountered and stops only when it
meets the next non-digit!)
Otherwise, 1 becomes the value of the read integsr number.
ETURNS : true Iff an integer number not less than -1-yMAXINT and not
greater than MAXINT has been read.
‘AUTION : only numbers D= -1-MAXINT and <= MAXINT are translated into an
INTEGER; numbers smallar than -1-MAXINT cannot be translated. By
Tuck, 1t can be assumed that MININT = -1-MAXINT on a reasonnsble
computer!

-

-

*)

PROCEDURE WriteBin(c, n : CARDINAL);

(l

FUNCTION : Write on STDOUT the string which is the binary representation of
the CARDINAL ¢ with at least n characters. .
If n 1s smaller than the number of digits needed, n 1s ignored
and the number of digits needed 1s written.
If n 13 greater than the number of digits needed, blanks
are added preceeding the number.

I T R e .

DK.v20.HUrwns.def 1987-02-19-16-56-04
*)

PROCEDURE WriteCard(c, n : CARDINAL);

-

FUNCTION : Write on STDOUT ths CARDINAL c as a string with at lsast
n characters.
If n Is smaller than the number of digits needed, n 1s 1gnored
and the number of digits needed 1s written.
IT n is greater than the number of digits nssded, blanks
are addsd proceeding the numbsr.

=)

PROCEDURE WriteChar(ch : CHAR);

-

FUNCTION : Write the character ch on STDOUT.
=)

PROCEDURE WriteHex(c, n : CARDINAL);
-

FUNCTION : Write on STDOUT the string which is the hexadecimal
representation of the CARDINAL ¢ with at least n characters.
If n is smaller than the number of digits needed, n 1s ignorad
and the number of digits needed 1s written.
If n is greater than the number of digits needed, blanks
are added preceeding the anumber.

*)

PROCEDURE WriteInt(i : INTEGER; n : CARDINAL);

E]

FUNCTION : Write on STDOUT ths INTEGER 1 as a string with at least

n characters.

If n is smaller than the number of digits needed, n 1s ignored
and the number of digits needed is written.

It n 1s greater than the number of digits needed, blanks

are added preceeding the numbar.

*)

PROCEDURE Writeln;

3
FUNCTION : Write the character NEWLINE on STDOUT.
*)

PROCEDURE WriteOct(c, n : CARDINAL);
-
(FUHCTION : Write on STDOUT the string which 1s the octal representation of
the CARDINAL ¢ with at lsast n characters.
It n is smaller than ths number of digits nseded, n is ignored
and the number of digits nesded is written.
If n 1s greater than the number of digits needed, blanks
are added preceeding the number.

*)

PROCEDURE WriteString(str : ARRAY OF CHAR);

DK.v20.HUrwns . def 1087-02-19-16-56-04

FUNCTION : Write the string str on STDOUT.

*)

PROCEDURE

PROCEDURE
(=
FUNCTION

GetCardf (VAR c : CARDINAL; VAR f : file) : CARDINAL;
GetCharf (VAR ch : CHAR; VAR f : file) : CHAR;

: read one character from file 1

PARAMETER: ch 1s the read char or FS (imported from MConstypes, indicates

RETURNS
*)

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

end of file)
: the read CHAR (has the same value as ch), or FS (imported from
HConstypes, indicates end of fila)

GetIntf (VAR i : INTEGER; VAR f : file) : INTEGER;
GetLinef (VAR 1ine:ARRAY OF CHAR; max :INTEGER; VAR f :file):BOOLEAN;
ReadCardf (VAR c : CARDINAL; VAR f : file) : BOOLEAN;
ReadIntf (VAR i : INTEGER; VAR f : file) : BOOLEAN;
WriteBinf(c, n : CARDINAL; VAR ¢ : file);
WriteCardf(c, n : CARDINAL; VAR f : file);
WriteCharf(ch : CHAR; VAR f : file);

WriteHexf(c, n : CARDINAL; VAR f : file);

WriteIntf (i : INTEGER; n : CARDINAL; VAR f : file);
Writelnf(VAR f : file);

WriteOctf(c, n : CARDINAL; VAR f : file);
WriteStringf(str : ARRAY OF CHAR; VAR f : file);

END HUrwns.

DK.v20.1lUrsal.def 1087-02-19-16-55-44

DEFINITION MODULE HUreal;
(» HUreal ++ read / write REAL numbers =)
(» SHOST-COMPUTER: SUN, L111th, Macintosh

$AUTHOR: Michel Kiener

$DATE:; February 17th, 1087 $VERSION: 2.0
$PROJECT: HOST SFILE: HUreal.def
SMODIFICATIONS:

$DESCRIPTION: Procedures to read REAL numbers from STOIN and from a
ff;;; procedures to write REAL numbers on STDOUT and on
a e.
The procedures to read from / write to a file have
the same names than the corresponding procedures to read
from STDIN / write to STDOUT, excepted that a letter "fr"
1s appended to their name. They have the same function,
parameters and return value than the procedures without
"f", sxcepted that they have an additional parameter
which 1s the Tile to read from / to write to.
SNECESSARY CONDITIONS: The ...f-procedures assums that the file
from which 1s read / on which is written to have been
properly opened through a call of HPfiles.open and will be
properly closed through e call of HPfiles.closs.

Alphabetical List of Procedures:

- " -

ReadReal -~ read & REAL as & string from STDIN

ReadRealf -- read 8 REAL as a string from & f1le
WriteReal -- writs a REAL as a string on STDOUT

WriteRealf -~ write & REAL as a string on a file

*)

FROM HConstypes IMPORT (= type =) file;
EXPORT QUALIFIED (= proc =) ReadReal, ReadRealf, WriteReal, WriteRealf;

(= Description of Procedures: =)
[e z)

PROCEDURE ReadReal(VAR r: REAL): BOOLEAN;
L 4
FUNCTION : Read characters from STDIN until a NEWLINE 1s encountered.
Convert if possible the read string into a REAL.

Format {s the same as for the procedure HEreal.StringToReal,
PARAMETER: r : the read real

RETURNS : FALSE 1f no syntactically valid number 1s found or 1f the number
found is outside the machine defined range for the type REAL. TRUE
otherwise.

*)

PROCEDURE ReadRealf (VAR r : REAL; VAR f : file) : BOOLEAN;

-
FUNCTION : Same as ReadReal, excpeted that the characters are read from the

file 7.
RETURNS : See ReadReal.
=)
PROCEDURE WriteReal(r: REAL;

Tength,

DK.v20.HUreal.def 1887-02-19-18-55-44

precision: CARDINAL;
scientific: BOOLEAN);

4
FUNCTION : Convert the REAL r to a a string representing it and write it

on STDOUT.
Meaning of parameters and format are the same as in procedure
HEreal.RealToString.
PARAMETERS: See HEreal.RealToString.
*)
PROCEDURE WriteRealf(r: REAL;
Field,
Digits: CARDINAL;
scientific: BOOLEAN;
VAR f: file);

L d
FUNCTION : Same as WriteReal, excpeted that the characters are written on
file 1.

l) .

END HUreal.

