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ON POSITIVE SEMIDEFINITE MATRICES WITH KNOWN NULL
SPACE

PETER ARBENZ* AND ZLATKO DRMACT

Abstract. We show how the zero structure of a basis of the null space of a positive semidefinite
matrix can be exploited to very accurately compute its Cholesky factorization. We discuss conse-
quences of this result for the solution of (constrained) linear systems and eigenvalue problems. The
results are of particular interest if A and the null space basis are sparse.

Key words. Positive semidefinite matrices, Cholesky factorization, null space basis.

AMS subject classifications. 65F05, 65F50

1. Introduction. The Cholesky factorization A = RTR, R upper-triangular,
exists for any symmetric positive semidefinite matrix A. In fact, R is the upper trian-
gular factor of the QR factorization of A*/? [11, §10.3]. R can be computed with the
well-known algorithm for positive definite matrices. However, zero pivots may appear.
As zero pivots come with a zero row/column in the reduced A, a zero pivot implies a
zero row in R. To actually compute a numerically stable Cholesky factorization of a
positive semidefinite matrix one is advised to apply diagonal pivoting [11].

A semidefinite matrix A may be given implicitly, in factored form 4 = FTF,
where F' € RP*™ is of full row rank » = rank(A). F, that does not need to be a
Cholesky factor, exposes the singularity of A explicitly as N'(4) = N(F). In this
case both the linear system and the eigenvalue problem can be solved efficiently and
elegantly by working directly on the matrix F', never forming the matrix A explicitly.
In fact, in some applications, not assembling the matrix A but its factor F' is the most
important step in the overall process of the numerical computation. One obvious
reason is that the (spectral) condition number of F' is the square root of the condition
number of A. In finite element computation, F is the so called natural factor of the
stiffness matrix A [2]. In the framework of linear algebra, every symmetric positive
semidefinite matrix is the Gram matrix of some set of vectors, the columns of F'.

Another possibility to have the singularity of A explicit is to have available a
basis of its null space N'(A). This is the situation that we want to investigate in this
note. We will see that knowing a basis of N'(A4) allows to determine a priori when the
zero pivots will occur in the Cholesky factorization. It also permits to give a positive
definite submatrix of A right away. These results are of particular interest if A and the
null space basis are sparse. This is the case in the application from electromagnetics
that prompted this study [1]. There, a vector that is orthogonal to the null space
corresponds to a discrete electric field that is divergence-free.

Our findings permit to work with the positive definite part of A and to compute
a rank revealing Cholesky factorization A = RTR where the upper trapezoidal R
has full row rank. What is straightforward in exact arithmetic amounts to simply
replacing by zero potentially inaccurate small numbers. We analyze the error that is
introduced by this procedure.
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2 PETER ARBENZ AND ZLATKO DRMAC

We complement this note with some implications of the above for solving eigen-
value problems and constrained systems of equations.

2. Cholesky factorization of a positive semidefinite matrix with known
null space. In this section we consider joint structures of a semidefinite matrix A
and its null space.

THEOREM 2.1. Let A = RTR be the Cholesky factorization of the positive
semidefinite matriz A € R"™"™. Let Y € R™™™ with R(Y) = N(A) and, for i =
1,...,m, set n; := max{k | yri #0}. If ny < ny < --- < ny, then Ty, = 0,
t=1,...,m. These are the only zero entries on the diagonal of R.

Proof. Notice that the assumptions imply that Y := [y1,...,yn] has full rank.
By Sylvester’s law of inertia R has precisely m zeros on its diagonal. Further,

(Ryz)nl =Tn;n;Yn;i = 07

whence 7y, =0 as yn,;; # 0. a

If only ny < ng < --- < my, Y, flipped upside-down, can be transformed into
column-echelon form in order to obtain strong inequalities.

The Cholesky factor R appearing in Theorem 2.1 is an n X n upper triangular
matrix with m zero rows. These rows do not affect the product RTR. Therefore, they
can be removed from R to yield an (n—m) X n matrix R with RTR = A.

If the numbers n; are known, it is convenient to permute the rows of Y and
accordingly the rows and columns n; of A to the end. Then Theorem 2.1 can be
applied with n; = n—m+1¢. The last m rows of R in Theorem 2.1 vanish. So, R is
upper trapezoidal.

After the just mentioned permutation the lowest m x m block of Y is non-singular,
in fact, upper triangular. This consideration leads to an alternative formulation of
Theorem 2.1.

THEOREM 2.2. Let A = RTR be the Cholesky factorization of the positive
semidefinite matriz A € RY"™. Let Y € RY™™ with R(Y) = N(A). If the last
m rows of Y are linearly independent, then the leading principal (n—m) x (n—m)
submatriz of A is positive definite and R can be taken (n—m) x n upper triangular.

Proof. Let

i Infm Yl _ Yl mXm
vl B v=]. wmews @

Y5 consists of the last m rows of Y. W is therefore invertible. Applying a congruence
transformation with W on A gives

T MmO | A Al [Inm V1| _ A O
WAW_[YlT i | R I v d PR

By Sylvester’s law of inertia Ay; must be positive definite.

Let A;; = RI;Ri; be the Cholesky factorization of A;;. Then, the Cholesky
factor of the matrix in (2.2) is [R11,0] € R(»~™)*"_ Therefore, the Cholesky factor
of Ais [Ry,O)lW ™! = [Ry1,—Ri V1Y, Y. 0

Theorem 2.2 is applicable as long as the last m rows of Y form an invertible
matrix. If rows ¢y, ...,4, of Y are linearly independent, we can permute Y such that
these rows become the last ones. In particular, if we want A;; to be as sparse as
possible, we may choose iy, s, ... to be the m most densely populated rows/columns
of A with the following greedy algorithm: If we have determined iy, ...,i; we choose
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POSITIVE SEMIDEFINITE MATRICES 3

ix+1 to be the index of the densest column of A such that rows iy,...,igr1 of YV
are linearly independent. In this way we can hope for an A;; with sparse Cholesky
factors.

Remark 2.1. The equation

—Au(x) =0in Q C R?, Opu(x) =0 on 09, (2.3)

in a simply connected domain 2 is satisfied by all constant functions u. The discretiza-

tion of (2.3) with finite elements of Lagrange type [4] leads to a positive semidefinite

matrix A with a one dimensional null space spanned by the vector e with all entries

equal to 1. Theorem 2.1 now implies that, no matter how we permute A, in the

Cholesky factorization the single zero on the diagonal of R will not appear before the

very last elimination step. ad
Example 2.1. Let A and Y be given by

101 1 3 2 3
093 9 9 0 1
A=1|1 3 3 6 8], Y = 0 6
1 9 6 14 16 1 0
3 9 8 16 22 -1 -3

Then AY = O. As the last two rows of Y are linearly independent, Theorem 2.2 states
that the principal 3 x 3 submatrix of A is positive definite and that its Cholesky factor
is 3 x 5 upper triangular. In fact,

101 1 3
R=10 3 1 3 3
0 01 2 2

Let P be the permutation matrix, that exchanges 2nd with 4th and 3rd with 5th
entry of a 5-vector. Then,

1 1 3 01 2 3
1 14 16 9 6 1 0
A :=PAPT =3 16 22 9 8], V,:=PY=| -1 -3
09 9 93 0 1
1 6 8 3 3 0 6

Now we have ny = 3 < ny = 5 and according to Theorem 2.1 the Cholesky factor R;
of Ay has zero diagonal elements at positions 3 and 5. Indeed,

V13 V13 3V13 0 V13
5

1 0 13 13 9
R =— 0 0 0 0 0
Vi3 0 0 0 6 -1
0 0 0 0 0

3. Consistent semidefinite systems. In this section we discuss how to solve

Ax = RTRx =b € R(A), (3.1)
ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



4 PETER ARBENZ AND ZLATKO DRMAC

where A, R, and Y are as in Theorem 2.1. Without loss of generality, we can assume
that n; = r 4+ i, r := n —m. We split matrices and vectors in (3.1),

. A A X1\ _ Rﬁ X1\ _ b;
4= [A{Q A22] <X2> N {R% [Far, Fia] x2)  \bs (3.2)
with x;,b; € R" and x5,bs € R™. So, Ay; is obtained from A by deleting rows and
columns n;, i = 1,...,m. The factorization (3.2) yields
Ay =R Ry, A= RLRp. (3.3)

Although Aj; is invertible, its condition number can be arbitrarily high. To reduce
fill-in during factorization [8] any symmetric permutations can be applied to A
without affecting the sequel. As RT has full rank, AY = O implies RY = O or

R Y; + RppYs = 0. (3.4)

Since n; = r + ¢, the m x m matrix Y> is upper triangular with non-zero diagonal
elements. Because R(A4) = N (Y) the right side b of (3.1) has to satisfy

Vb, + Y 'by = 0. (3.5)
It is now easy to show that a particular solution of (3.1) is given by x with components
x; = A;'by = R{'R;'by, xs=0.
In fact, employing (3.3)-(3.5) the second block row in (3.2) is
ALx; —by = RLRx1 + Y, TV b, = RLR ' (Aj1x1 —by) = 0.

The manifold S of the solutions of (3.1)-(3.2) is

-1
SZ{X: <A1‘1)b1> +Ya|a€]Rm}.

The vector a can be determined such that the solution x satisfies some constraints
CTx = 0 with C € R*™"™ provided that CTY is invertible. In particular, if C =Y
then x is perpendicular to the null space of A.

Let now A be given implicitly as a Gram matrix A = FTF with F € R?*", p > n,
and Y € R"*™ be as above. (This may require renumbering the columns of F.) As

FY = FYi + F>Ys = O,

and as Y5 is nonsingular, the block Fy depends linearly on F;. Therefore, the QR
factorization of F' has the form

F=[F, F]=[Q1, Q] {ROH ROIQ} = Q1[R11, Ri2).

Since A = FTF = RRT, the factor R = [Ry1, Ri»] equals the upper trapezoidal
Cholesky factor in (3.2).

4. Error Analysis. In this section we give backward error analyses for the
semidefinite Cholesky factorization and for the null space basis.

ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



POSITIVE SEMIDEFINITE MATRICES )

4.1. Semidefinite Cholesky factorization. The floating-point computation
of the Cholesky factorization of a semidefinite matrix is classified as unstable by
Higham [11, §10.3.2]. The principal problem is the determination of the rank of the
matrix.

If we assume, as we do in this note, that a basis of the null space of the matrix
under consideration is known a priori then, of course, its rank is known. Let A be
partitioned as in (3.2). We assume that A;; € R™*" is positive definite numerically,
i.e. that the Cholesky factorization does not break down in floating point arithmetic
with round-off unit u. Due to a result by Demmel [5] (see also [11, Thm.10.14]) this
is the case if,

+1
min A = A Mt 2 = 7"7 4.1
(A1) = AT I > 2000w, f0) = gm0
where Amin () denotes the minimal eigenvalue, ||-|| is the spectral norm, and

(All)s = diag(A11)71/2A11diag(A11)71/2.

If (4.1) does not hold, Ay; is not numerically definite. Note that (A;1)s is symmetric
positive definite with unit diagonal. The assumption on Anin((A11)s) can be relaxed
if, for instance, we use double precision accumulation during the factorization. Then
f(r) can be replaced by a small integer for all 7 not larger than 1/u. We assume,
however, that 2r f(r)u < 1.

The Cholesky decomposition of A is computed as indicated in (3.3). The Cholesky
factor of A;; is computed first. Then the matrix Ry is obtained as the solution of
the matrix equation RY; X = Ajs.

Let R1; denote the computed floating-point Cholesky factor of A;;. Then the
following two important facts are well-known. s
(1) There exists a symmetric §A4;; such that A;; +64;; = RY, Ry and

max @Al < f(r)u (4.2)

tseisr \/(An)ii(Aan) j
This is the backward error bound by Demmel [5], [11, Theorem 10.5].

(2) Let (0A11)s = diag(Ay1)~"/20A; 1 diag(A;1)~"/2. (4.1) and (4.2) imply that the
Frobenius norm of (0A411)s satisfies ||(6A11)s||lFr < rf(r)u < Amin((A411)s). Since
assumption (4.1) implies 2||(0411)s||F < Amin((A11)s), one can show [7] that there
exists an upper triangular matrix I' such that

> 20|(A11) 7 (6 A1) s 1
B — [+ DRy, [Tl < — YA IGAW I, 1

/T2l G A e V2

Let ﬁlg be the floating-point solution of the matrix equation R?IX = Ai>. Then R=
[Rll, ng] is the computed approximation of the exact Cholesky factor R = [R11, R12].
Let A = A+0A = RTR be partitioned conforming with (3.2). Since A+ 64 is positive
semidefinite and of rank r by construction, the equation 222 = E%Zﬁl ng holds.

If we compute }~212 column by column, then, using Wilkinson’s analysis of trian-
gular linear systems [11, Theorem 8.5],

|RY Raz — Ava| < t(r)ulRi| 7| Ruol, t(r) = 1—ru’

ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



6 PETER ARBENZ AND ZLATKO DRMAC

where the matrix absolute values and the inequality are to be understood entry-wise.
Thus, we can write Rio as

ng = EI_IT(A12 + (5A12), |6A12| S t(r)u|1§11|T|1§12|. (43)
Also, if we define U = (I +T)" 7 -1, Q =t(r )u|R T||RE,|, we have
Ris = (I +9)Rys+ Ry T0A15,  |R;T6A1s| < Q|Rys|. (4.4)

Further, from the inequality |Ria| < (I + |¥])|Ria| + Q|Ri2| and using the M-matrix
property of I —  we obtain

|Ris| < (I — Q)7 (I +|¥])|Rual. (4.5)

Hence, relations (4.2), (4.3), (4.5) imply that the backward error for all (4,7) in the
(1,2) block in (3.2) is bounded by

[(0A12)35] < t(r)ul|Rizei||[| Rizej|| < t(r)uy/ (A)i(An)yy, ' =34—r

<ttt + £y L ()

We first observe that || |¥] || < v/7||T||/(1 = ||T|]) and that ||Q]] < rt(r)uy/[](A11)7 -
Note that our assumptions imply that

1 r
Q< —
I < 2= YT <

It remains to estimate the backward error in the (2, 2) block of the partition (3.2).
Using relation (4.4), we compute dAss = RL, Ri» — RL Ry as follows:

1]
1/2, <1+V2.
1— T

§Ass = RL,(UT + W + UTO)Ryy + RT,(T + OT)R;T6 A
+ 6AT,RTHI + W)Ryo + 6AT, R RTT6 Ay

Using the inequalities from relations (4.4), (4.5) we obtain, for all (i, j),

i 2
[(6A22)i5] < 1/ (A22)ii(A22)j5 <2¢+2w11+_zf} +¢? ! J_ri) )’

where w = |QI], = 1]}, 1+’ = (1+¥)(1 + || 9] ]).

We summarize the above analysis in the following

THEOREM 4.1. Let A be a n X n positive semidefinite matriz of rank r with block
partition (3.2), where the r X r matriz Ay, is positive definite with the property (4.1).
Then the floating-point Cholesky factorization with roundoff u will compute an upper
trapezoidal matriz R of rank r such that RTR = A+ 6A where 54 is a symmetric
backward perturbation with the following bounds:

04| < f(r)uy/Aidj;, 1<i,j<r,
0451 < {21+ 1+ VDVI(L+ f(w) f uy/Aid;, 1<i<r<j<nm,
0435] < {2rt(r)VE + VErf()r + O(w) fuy/AiAy;, v <ij<n.

ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



POSITIVE SEMIDEFINITE MATRICES 7

In the last estimate, & = ||(A11)7 ], & = ||(A11)7 ||. Further, if R = [Ri1, Ri2] and

S

if R =[Ri1, R12] is the exact Cholesky factor of A, then

f{n — Ry1 =TRyy, Tl < vV2rf(r)su,
|Ri2 — Ria| < Z|R1a|,  ||E|| < rt(r)VEu + V2r f(r)ku 4+ O(u?).

Here, the matriz T is upper triangular and = is to the first order |¥| + Q.

Further, let the Cholesky factorization of A1 be computed with pivoting so that
(Ry1)ii > Efc:i(Ru)ij, 1<i<j<r. Then, the error SR11 = Ry — Ryy is also
row-wise small, that is

llef6Ry|| < lef T||Vr —i + 1(Riy)is, i=1,...,r. (4.6)

Remark 4.1. Note that Theorem 4.1 also states that in the positive definite case
the Cholesky factorization with pivoting computes the triangular factor with small
column- and row-wise relative errors. This affects the accuracy of the linear equation
solver (forward and backward substitutions following the Cholesky factorization) not
only by ensuring favorable condition numbers but also by ensuring that the errors in
the coefficients of the triangular systems are small. d

4.2. Null space error. We now derive a backward error for the null space
Y of A. We seek an n x (n — r) full rank matrix ¥ = Y + §Y such that §Y is
small and AY = 0. As the null space and the range of A change simultaneously
(being orthogonal complements of each other), the size of §Y necessarily depends on
a certain condition number of A; and the relevant condition number will depend on
the form of the perturbation dA. B B

The equation that we investigate is R(Y + 0Y) = 0 or, equivalently, R0Y =
—§RY . If R is sufficiently close to R (to guarantee invertibility of ER*) we can write

§Y = RY(RRT)""6RY = R"(RR")"'6RY. (4.7)

Though simple this equation is instructive. First of all, only the components of the
columns of R that lie in the null space N'(A) affect the value of 6Y. Also, Y + Y
keeps the full column rank of Y. Finally, Y7§Y = O. Therefore, tanZ(R(Y), R(Y)) =
10Y||/omin(Y). Tt is easy to modify Y such that omin(Y) > 1, eg., if Yo = I,,.
Thus, ||0Y|] measures the angle between the true null space and the null space of the
perturbed matrix A. In the sequel we try to bound [|6Y].

If we rewrite (4.7) as

§Y = RY(I+6RRY)"'SRY = (R)" (I +6R'(R)*) ' 6R'Y,

we get, after some manipulations,
PROPOSITION 4.2. Let D be nonsingular matriz and let R = DR', 6R = DSR'.
If||6R'(RT|| < 1 then, fori=1,...,n—r,

168" Py lI[[(R)*]]
L—[loR"(R")*||

!
S | e | | <

lyill- (4.8)

Here, y; = Ye;, dy; = Yde;, and Py(a) denotes the orthogonal projection onto the
null space of A. |
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8 PETER ARBENZ AND ZLATKO DRMAC

We will discuss choices for D later. The Proposition indicates that the crucial
quantity for bounding ||0Y|| is ||0R'Y||. The following two examples detail this fact.
Ezample 4.1. Let 8 be big, of the order of 1/u, and let

V3 0 3. V3 B3
A=RTR=1|1 1 {‘{? } ﬂ: V3 2 B+1
g1 BV3 B+1 2+1

The null space of A is spanned by Y = [(1—3)/v/3, —1,1]7, which means that deleting
any row and column of A leaves a nonsingular 2 x 2 matrix. Let’s choose it be the last
one, and let us follow the algorithm. For the sake of simplicity, let the only error be
committed in the computation of the (1,1) entry of Ry; which is v/3(1+¢1), |e1| < u,
instead of v/3. Then we solve the lower triangular system for Elg and obtain

R =[Ru, Riz] = {\/3(10+ &) i 631(1:%2)} , el Su+ 0.

Thus,

_[VBer 0 e _ (L= B)er + ey
6R—{01 0 _ﬂ;], 6RY_< ey )

If we take 8 = 10'® and perform the computation in MATLAB where u ~ 2.22 - 1016
then Bes = 0.25. Thus, [|[0RY|| = O(1). However, omin(Y) = ||Y|| = O(8) such that
the angle between Y and §Y is small. d

Ezample 4.2. We alter the (1,1) entry v/3 of R of the previous example to get 3,

A=RTR=1|1 1 01 11=17 2 B+1
g 1 B2 B+1 pZ+1

Now, Y = [(1 - 3)/8,—1,1]T. Again, we delete the last row and column of A and
proceed as in Example 4.1. Let us again assume that the only error occurs in the
(1,1) entry of Ry; which becomes 5/(1 +€1). Then,

P;:[ﬁ/(l+51) } 5(1+51)},

0 1—Be
and
sr=|F/(0te) 0 fer) o ppy (L4 fe)/(+e))
0 0 —pey —fer
Again, [|0RY]|| = O(1). But now also ||Y] = O(1). In fact, in computations with
MATLAB, we observe an angle as large as O(10~2) between Y and §Y. O

Remark 4.2. Interestingly, if we set 3 = 10° in Example 4.1, the MATLAB function
chol() computes the Cholesky factor

_ 1.7321e + 000 1.0000e + 000 1.0000e + 005
R = 0 1.0000e + 000 1.0000e + 000
0 0 1.9531e — 003

It is clear that the computed and stored A is a perturbation of the true A. Therefore,
numerically, it can be positive definite. It is therefore quite possible to know the rank

ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



POSITIVE SEMIDEFINITE MATRICES 9

r < n of A exactly, to have a basis of the null space of A and a numerically stored
positive definite floating-point A. Strictly speaking, this is a contradiction. Certainly,
from an application or numerical point of view, it is advisable to be very careful when
dealing with semidefiniteness. d

In Examples 4.1 and 4.2 we excluded the largest diagonal entry of A. In fact, we
can give an estimate that relates the error in Rjs to the size of the deleted entries.
Suppose we managed the deleted diagonal entries of A to be the m = n — r smallest
ones. Can we then guarantee that the relevant error in R will be small, and can we
check the stability by a simple, inexpensive test?

According to Theorem 4.1, the matrix Ry; is computed with row-wise small rela-
tive error, provided that the Cholesky factorization of Ay is computed with pivoting.
If that is the case, then it remains to estimate the row-wise perturbations of Rjs. If
Z is as in Theorem 4.1, then the inequality

_ _, [trace(A 12 R e;
Ief Rl < et =) iraeel) < lef =) (2522} L et ),

holds for all i =1,...,r and

|Rires||  ||Rures]| [(Ri)a| _ ||Rivedl| 1 -1
= < = — < Ai1)s 4.10
TR = 1@l [S7R] = |(Fal ~ sing; = VA (@10

with some ¢; € (0,7/2]. The angle ¢; has a nice interpretation. Let A = FTF be any
factorization of A, with F' = [Fy, F5] where F} has full column rank and Fl Fy = Ay;.
Then ¢; is the angle between Fje; and the span of {Fiey,..., Fie;_1}. (This is easily
seen from the QR factorization of F}.)

The following Proposition states that well-conditioned (A11)s and a certain dom-
inance of A1 over Ass ensure accurate rows of the computed matrix R.

PROPOSITION 4.3. With the notation of Theorem 4.1, let A (and accordingly V')
be arranged such that

If the Cholesky factorization of A11 is computed with (standard) pivoting, then

78Rl < max{leT Tl TS o el Rl = Lr, (412)
where sin ¢; is defined in (4.10).
Proof. This follows from relations (4.6), (4.9), (4.10) and the assumption (4.11).
We only note that in (4.9) and (4.10) we can replace ||e] R|| by ||e] Ry1]|. O
Remark 4.3. If A = SA,S with S?=diag(4;;), then SY spans N'(4;), and any
partition of Ay satisfies condition (4.11). If we apply the preceeding analysis to A
and SY, we get an estimate for ¢} in the elliptic norm generated by S. 0
Note that Proposition 4.2 is true for any diagonal D as long as ||(R')T|| is mod-
erately big and ||0R'|| is small. We have just seen that 0R’' is nicely bounded if we
choose D = diag(|lel Ry1||). Moreover, R = D 'R has an inverse nicely bounded
independent of A;; because [11, §10]

I(R)F] < (D7 Ru) 7 H| < h(r).
ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



10 PETER ARBENZ AND ZLATKO DRMAC

Here the function h(r) is in the worst case dominated by 2" and in practice one usually
observes an O(r) behaviour. In any case, ||(D~!Ry1)~!|| is at most r times larger than

(A1)t ||1/2. More sophisticated pivoting can make sure that the behaviour of h(r)
is not worse than Wilkinson’s pivot growth factor. We skip the details for the sake of
brevity.

To conclude, if the Cholesky factorization of Ay; is computed with pivoting and
relation (4.11) holds, then the backward error in Y can be estimated using (4.8)
and (4.12), where D = diag(|lel Ry1]]).

4.3. Computation with implicit A. We consider now the backward stability
of the computation with A given implicitly as A = FTF, where F € RP*" has
rank 7. Thus, the Cholesky factorization of A is accomplished by computing the QR
factorization of F.

In the numerical analysis of the QR factorization we use the standard, well-known
backward error analysis which can be found e.g. in [11, §18]. The simplest form of
this analysis states that the backward error in the QR factorization is column-wise
small. For instance, if we compute the Householder (or Givens) QR factorization of
F in floating point arithmetic with roundoff u, then the backward error § F satisfies

l6Fe;|| <erl|Feill, &1 < fi(p,n)u, 1<i<n,

where fi(p,n) is a polynomial of moderated degree in the matrix dimensions.

Our algorithm follows the same ideas as in the direct computation of R from
A. The knowledge of a null space basis admits that we can assume that F' is in the
form F = [Fy, Fy] the p x r matrix Fj is of rank r, see section 3. We then apply r
Householder reflections to F' which yields, in exact arithmetic, the matrix

Tr_ p_ (B R
orr=r= (" )

where Ry; € R™*" is upper triangular and nonsingular. If @ = [Q1, Q2] is partitioned
conforming with F', then F; = Q1 R1; is the QR factorization of F.

In floating point computation, Rao is unlikely to be zero. Our algorithm simply
sets to zero whatever is computed as approximation of Rss. As we shall see, the
backward error (in F') of this procedure depends on a certain condition number of the
matrix Fj.

THEOREM 4.4. Let F' € RP*™ have rank r and be partitioned in the form F =
[F1, F2], where Fy € RP*" has the numerically well determined full rank r. More
specifically, if (F1). is obtained from Fy by scaling columns to have unit Euclidean
norm, then we assume that \/req||(F1)F|| < 1/5.

_ Let the QR factorization of F' be computed as described above, and let R =
[R11, Ri2] be the computed upper trapezoidal factor.

Then there exist a backward perturbation AF and an orthogonal matriz @ such
that F+AF = QR is the QR factorization of F+AF. The matriz F+AF has rank .
If AF = [AF,,AF] and Q [Ql,QQ] are partitioned as F, and 0Q1 := Q1 - Q1,
then

Ry =0,

|AFe;|| < ei||Fel, 1<i<r,

16Q1]lr < 11n+ O(n), n=[ARR|r < Vrel(F)E,
|AFei|| < (1 + [10Q1])) || Feil, r+1<i<n,

Ry — Riy = GRyy, Gl < 16Q1]lF +m,
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POSITIVE SEMIDEFINITE MATRICES 11

where 1 < f1(p,r)u bounds the roundoff.
Proof. Let F(") be the matrix obtained after r_steps of the Householder QR
factorization. Then there exist an orthogonal matrix ) and a backward perturbation

OF such that

Ell -11%12

=F") =QT(F +6F), |0Fei| <eil|Fesl|, 1<i<n.
O Ry

Our assumption on the numerical rank of Fy implies that F| + dF, = @11:311 is the
QR factorization with nonsingular Ry;. Now, setting Ras to zero is, in the backward
error sense, equivalent to the QR factorization of a rank r matrix,

A [En ffu

~[0 ©
Q' O]:F+AF, AF:&F—Q{ }

O Ry

It remains to estimate Q\gﬁm = @QQ\;(FQ +0F,). First note that F» = @1 R12, where
the i-th column of R;5 has the same norm as the corresponding column of F,. Then,

@2@2TF2 = @2@?@11?12 = @2@5(@1 —0Q1)R12 = —@2@55Q1312
and we can write
1Q:Q5 Foesll <116Qu | [|Foeill,  1<i<n—r.
To estimate 6@, we first note that Fy = Q1 Ry1 and F; + AF;| = @1}~211 imply that
Qi = (I + AR FHQi (R Ry,
and that
R TRLRuR =T+ QTAR R + RTAFTQ, + R FAFTAFR RT.
Thus, fian—f is the Cholesky factor of I + E, where
IE|lr <2|AR R |IF + AR RT |7

Now, by [7], ||E||r < 1/2 implies that Ry Ry' = I + T, where T is upper triangular
and

T < — V2Bl !

= < —.
1+1-2Elr V2

Hence, Ry R;" = I + T, where |D|lr < |ID|l#/(1 = ||IT||r) < (2 + v2)||T||7. Since
Q1 =Q1+ QT + AF,R;}' + AR R|'T we obtain

16Q1llF < [ITllF + IARRE |7 + ITIHIARLRE -

Finally note that Ry; — Ry = (QT6F R — 6QTQ1)Ry;. O
We remark that

) T AT
Riz = Ri2 +0Q7 Q1 R12 + Q1 APy,
ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



12 PETER ARBENZ AND ZLATKO DRMAC

which means that we can nicely bound dR15 = }~212 — Ry>. We have, for instance,
|0 R12e:]| < (2/]0Q1] +e1)||Rizel|, 1<i<n-—r.

If we use entry-wise backward analysis of the QR factorization (|6F| < ereel|Fy,
e=(1,...,1)T), then we can also write

6R12| < (16QT Q1] + £2]Q1 | ee” |Q1])| Rzl

where the matrix absoulute values and inequalities are understood entry-wise, and &
is defined similarly as ;. B

From the above analysis we see that the error in the computed matrix R is
bounded in the same way as in Theorem 4.1. Also, the QR factorization can be
computed with the standard column pivoting and R;; can have additional structure
just as in the Cholesky factorization of A;;. Therefore, the analysis of the backward
null space perturbation based on R holds in this case as well. However, the bounds
of Theorem 4.4 are sharper than those of Theorem 4.1.

5. Constrained systems of equations. Let again be N(4) = R(Y) with
Y € R"™™ having full rank. Let C' € R"*™ be a matrix with full rank. Systems of

equations of the form
A Cf (x b
& oG- () 6

appear at many occasions, e.g. in mixed finite element methods [3], or constrained
optimization [12]. They have a solution for every right side if R* = R(A4) & R(C)
which is the case if H := YTC is nonsingular. In computations of Stokes [3] or
Maxwell equations [1] the second equation in (5.1) with ¢ = 0 imposes a divergence-
free condition on the flow or electric field, respectively.

To obtain a solution of (5.1) we first construct a particular solution of the first
block row. Pre-multiplying it by Y7 yields y = H~'YTb. As b — Cy € R(A) we
can proceed as in section 3 to obtain a vector X with AXx = b — C'y. The solution x
of (5.1) is obtained by setting x = X + Ya and determining a such that CTx = c.
Thus, a = H~T(c - CT%).

This procedure can be described in an elegant way if a congruence transformation
as in (6.2) is applied. Multiplying (5.1) by W7T @ I,,,, cf. (2.2), yields

An O Oy X1 by X =X1 — Y1Y271X2;
0] O H al=|(Y"pb], a=— Y2_1x2, (5.2)
ct HT o] \y c by = IT b.

Notice that X; € R". From (5.2) we read that
: _ g-1yT
(1) y __H _1Y b, (iv) x1 =X; + Yia,
(i) %3 =A7 (b1 —Cuy), () % =Ya
(iii) a=H T(c—Crx), S

This geometric approach differs from the algebraic one based on the factorization

(5.3)

A A Ch R1T1 0 O[Ru Rz Rfchl
AT, Ay Co|=| RL, I. O||O 0 C,—RLRTC

T T Tp-1 -1 1 p-T
cy ¢y O C/R;y O In|lO Cf-CIR;'Ri» -CIR 'R, Ci
ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



POSITIVE SEMIDEFINITE MATRICES 13

where the LU factorization of Cy — RL,R;;T'Cy is employed to solve (5.1). In the
geometric approach the LU factorization of H is used instead. Of course, there is a
close connection between the two approaches: Using (3.4) we get C — Cf R;}' Ri» =
HTY,'. Notice that the columns of C or Y can be scaled such that the condition
numbers of H or Co —RT,R;F'Cy are not too big. Notice also that Y can be chosen
such that Y5 = I, in which case C7 — CTR; ! Ris = HT. A thorough perturbation
analysis of (5.1)—(5.3) remains to be done in our future work.

Golub and Greif [9] use the algebraic approach to solve systems of the form (5.1)
if the positive semidefinite A has a low-dimensional null space. As they do not have
available a basis for the null space they apply a trial-and-error strategy for finding a
permutation of A such that the leading r x r principal submatrix becomes nonsingular.
They report that usually the first trial is successful. This is intelligible because n; =
r 4+ 1 =mn —m + ¢ if the basis of the null space is dense which is often the case.

If the null space of A is high-dimensional then Golub and Greif use an augmented
Lagrangian approach. They modify (5.1) such that the (1, 1) block becomes positive

definite,
A+ CACT C] (x\ _(b+CAc
cT Ol \y/) c ’

Here, A is some symmetric positive definite matrix, e.g. a multiple of the identity.
A+CACT is positive definite if Y7'C' is nonsingular. The determiniation of a good A
is difficult. Golub and Greiff thoroughly discuss how to choose A and how the ‘penalty
term’ CACT affects the condition of the problem. In contrast to this approach where
a term is added to A that is positive definite on the null space of A, N'(A) can be
avoided right away if a basis of it is known.

6. Eigenvalue problems. Let us consider the eigenvalue problem
Ax = AMx, (6.1)

where A is symmetric positive semidefinite with A (4) = R(Y) and M is symmetric
positive definite. We assume that the last m rows of Y are linearly independent such
that W in (2.1) is nonsingular. Then,

T _|An O T _|Mu Cy
w AW—{O ol W MW = T H (6.2)
where
Ch My M| (Y1 T T
ol = el Bl
Using the decomposition
T _ M Ci| _pr|S O _ I 0
W MW_[C’IT I =P o I P, P= HCT | (6.3)

with the Schur complement S := M, — C; H~*C{, and noting that PTWTAW P =
WTAW , it is easy to see that the positive eigenvalues of (6.1) are the eigenvalues of

—1 T
Ally = A(Mll - ClH Cl )y = )\Sy (64)
ETH Zirich, Computer Science Department, Technical Report #352, November 17, 2000



14 PETER ARBENZ AND ZLATKO DRMAC

Notice that S is dense, in general, whence, in sparse matrix computations, it should
not be formed explicitly.
If y is an eigenvector of (6.4) then

-7 ()- (er)

is an eigenvector of (6.1). By construction, CTx = YT Mx = 0, i.e., x is M-orthogonal
to the null space of A.

We now consider the situation when A and M are given in factored form, A =
FTF and M = BT B, with F = [F, F5] and B = [By, B»] such that the rank of F}
equals the rank of A. Let us find an implicit formulation of the reduced problem (6.4).
With W from (21) we have [Fl,FQ]W = [Fl,O]. As before, A1; = RERH, where
Ry, is computed by the QR factorization of Fj. It remains to compute a Cholesky
factor of the Schur complement S, but directly from the matrix B. To that end we
employ the QL factorization (‘backward’ QR factorization) of BW,

BW =Qr=[0,,0.] " O, q@ro=1, (6.6)
Ly Lo
whence, with (6.3),
W MW = WTBT BW — LELyy +LE Ly Li L]  [Min G (6.7)
= = LT, Lo ILI.| = el H| :

Straightforward calculation now reveals that
S =M — ClH_lclT = L{lLll-

Thus, the eigenvalues of the matrix pencil (411, S) are the squares of the generalized
singular values [10] of the matrix pair (Ri1, L11) or, equivalently, the squares of the
singular values of R11L1_11. An eigenvector y corresponds to a right singular vector
Li1y. The blocks Loy and Los come into play when the eigenvectors of (6.1) are to
be computed: using (6.7) equation (6.5) becomes

(3
_L2_2 L21y

It is known that the GSVD of (Ry1,L11) can be computed with high relative
accuracy if the matrices (Rq1). and (Li;). are well conditioned [6]. Here, (R11). and
(L11). are obtained by Ry and Lqy, respectively, by scaling their columns to make
them of unit length. Obviously, k2((R11):) = k2((F1).), where k2(-) is the spectral
condition number. It remains to determine x3((L11).). From (6.6) we get

QTBW = QT[B1, BY] = [Li1, Oy ],

whence QTB; = L;;. Let the diagonal matrix D; be such that (B;), := By D;*
has columns of unit length. Further, let (By). = U1G; be the QR factorization of
(B1). and let (L11)s = L1 D7t = QTULGy. As @ is orthogonal we have ||(L11)s]| <
I(B1)ell = 0max((B1)e). Further,

1
1y < |31 Trr \-1|| —
N < NG QT T = e
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where @ is the largest principal angle [10] between R(B;) and R(Bs)* () R(B). There-
fore,

Omax((B1)e) _ rk2((Bi)e)
Omin((B1).) cos ® cos®

ka((L11)s) <

Since k2((L11)c) < /7 minp—diagonal £2(L11D) [13] [11, Thm.7.5], we have
k2((L11)e) < Vrh2((Li1)s) < Vrk2((Bi)e)/cos @. (6.8)

So, we have identified condition numbers that do not depend on column scalings and
that have a nice geometric interpretation. If the perturbations are column-wise small,
then these condition number are the relevant ones.

7. Concluding remarks. In this paper we have investigated ways to exploit the
knowledge of an explicit basis of the null space of a symmetric positive semidefinite
matrix.

We have considered consistent systems of equations, constrained systems of equa-
tions and generalized eigenvalue problems. First of all, the knowledge of a basis of the
null space of a matrix A permits to extract a priori a maximal positive semidefinite
submatrix. The rest of the matrix is redundant information and is needed neither for
the solution of systems of equations nor for the eigenvalue computation. The order
of the problem is reduced by the dimension of the null space. In iterative solvers it is
not, necessary to complement preconditioners with projections onto the complement
of the null space.

Our error analysis shows that a backward stable positive semidefinite Cholesky
factorization exists if the principal r x r submatrix, r = rank(A), is well conditioned.
This does however not mean that the computed Cholesky factor R has a null space
that is close to the known null space of R, A = RT R. We observed that the backward
error in the null space is small if the error in the Cholesky factor is (almost) orthogonal
to the null space of A. We show that this is the case if the positive definite principal
r X r submatrix after scaling is well conditioned and if its diagonal elements dominate
those of the remaining diagonal block.

For systems of equations and eigenvalue problems, we considered the case when
A = FTF, where F is rectangular. This leads to interesting variants of the original
algorithms and most of all leads to more accurate results.

What remains to be investigated is the relation between extraction of a positive
definite matrix and fill-in during the Cholesky factorization. In future work we will
use the new techniques in applications and, if possible, extend the theory to matrix
classes more general than positive semidefinite ones.
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