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Abstract

What is the influence of the chosen cost metric on
the performance of a mobile ad-hoc routing algo-
rithm? In this paper we define the notion of a gen-
eral cost metric and observe that all cost metrics
fall into two classes, linearly bounded and super-
linear. Distinguished by a natural argument, the
two classes yet show a dramatic difference: On a
network with linearly bounded cost metric a geo-
metric routing algorithm will find a route whose
cost at most quadratic in the cost of the optimal
route, which at the same time is asymptotically op-
timal. On the other hand there is no such bound
on a graph with super-linear cost functions for any
geometric routing algorithm. We introduce, how-
ever, the class of bounded degree unit disk graphs,
on which all cost metrics are equivalent. We finally
propose an asymptotically optimal distributed geo-
metric routing algorithm based on node clustering
and network backbone construction.

1 Introduction

One of the crucial points in the analysis of mobile
ad-hoc routing algorithms is the chosen path cost
model. What weight do we assign to the edges in
the network graph? Should the cost of a route rep-
resent the number of intermediate network nodes?
Should it rather describe the Euclidean length of
the route? Is it more suitable to consider trans-
mission energy? Or is yet another measure or even
a combination of different metrics reasonable? In
summary: What is possible with which metric? In
this paper we analyse such cost models for mobile
ad-hoc networks. Particularly we propose a defini-
tion of a general cost model and show that these
metrics naturally fall into two classes which differ

dramatically with respect to performance bounds
of routing algorithms.

In mobile ad-hoc networks nodes communicate
directly via wireless radio without stationary in-
frastructure. Two nodes hear each other if their
distance is not greater than a transmission range
R. When scaling the transmission range to 1, we
obtain a unit disk graph describing the network.

If the source and the destination of a message
cannot communicate directly, the message can be
forwarded by intermediate nodes. This process is
referred to as routing in wireless ad-hoc networks.
In particular we consider geometric routing, which
assumes that (1) each network node knows its own
position and the positions of its neighbors and (2)
the source sending a message knows the position of
the message destination.

For our general cost model we allow any nonde-
creasing cost function defined in the interval ]0, 1].
We show that these functions are naturally parti-
tioned into two classes, linearly bounded and super-
linear. The cost metric functions are classified ac-
cording to their behavior for edges approaching
zero length. Informally speaking, all cost functions
approximating zero faster then the edge length be-
long to the second class. Of the probably most
thoroughly studied metrics—link (hop) distance,
Euclidean distance, and energy cost—the first two
are linearly bounded, whereas the energy metric is
super-linear.

Astonishingly, a super-linear cost metric allows
to construct a chain of very close nodes over which
it is possible to cover a finite Euclidean distance
for “free”, i.e. for zero costs in the limit. We show
that using a super-linear edge cost function there
are graphs containing this construction on which no
geometric routing algorithm can compute a route
whose cost is bounded by the cost of the optimal
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route. On the other hand, all linearly bounded cost
functions are equivalent in the sense that there are
geometric algorithms which find a route whose cost
is upper-bounded by c2(p∗), where p∗ is the opti-
mal route with respect to the cost c(·). At the same
time this is shown to be a tight upper bound, i.e.
there are graphs on which no geometric routing al-
gorithm can reach a better result.

We also propose an algorithm which does com-
pute (asymptotically) optimal results for linearly
bounded cost metrics. Initially this algorithm con-
structs a backbone of the network. This backbone
is a bounded degree unit disk graph. We show that
for this class of graphs interestingly the above dis-
crimination of two cost metric classes does not hold
anymore: On bounded degree unit disk graphs our
algorithm finds routes quadratic in the cost of the
optimal route also for super-linear cost functions.
After forming the network backbone, actual rout-
ing takes place by means of the geometric routing
algorithm AFR introduced in [11].

The paper is organized as follows: Section 2 sum-
marizes relevant previous work, Section 3 intro-
duces the model and notation we use, and Section
4 defines the cost model. Sections 5 and 6 analyze
routing on bounded degree unit disk graphs and on
general unit disk graphs, respectively. The paper
is concluded in Section 7.

2 Related Work

Geometric routing for mobile ad-hoc networks has
been proposed already over a decade ago [4, 6, 15].
In geometric routing each network node knows its
own position and the positions of its neighbors. Ad-
ditionally, the source of a message knows the posi-
tion of the destination. Above all the first of these
conditions has become more and more realistic with
the advent of inexpensive positioning systems, such
as GPS or Galileo, particularly by equipping each
network node with an according receiver [7] or by
local information exchange with neighboring nodes
[14]. But also the availability of information about
the position of the destination is conceivable by
means of a separate location service, such as an
overlay peer-to-peer network maintaining destina-
tion positions [12]. In another setting—usually re-
ferred to as geocasting [8, 13]—it might be desirable
to send a message to any network node in a certain
area.

1ε1

u v

Figure 1: In order to maintain connectivity, both u
and v have to be cluster heads, even for arbitrarily
small ε.

The early proposals of geometric routing were
of greedy nature. However, neither routing of the
message to the neighbor closest to the destination
[4, 6, 15] nor a “least deviation angle” approach
called Compass Routing [9] guarantee message de-
livery in all cases. The first geometric routing algo-
rithm that does guarantee delivery was Face Rout-
ing introduced in [9] (called Compass Routing II
there). Face Routing reaches the destination af-
ter O(n) steps, n being the number of network
nodes. There have been later suggestions for algo-
rithms with guaranteed message delivery; at least
in the worst case, however, none of them outper-
forms original Face Routing. Yet other geometric
routing algorithms have been shown to reach the
destination on special planar graphs without any
runtime guarantees. A more detailed overview of
geometric routing can be found in [16].

In [11] we proposed Adaptive Face Routing AFR.
With this algorithm based on Face Routing it is
possible to bound the cost of the computed route
by the cost of the optimal route. In particular,
the cost of the route found by AFR is not greater
than the squared cost of the optimal route. We also
showed that this is the optimal result any geometric
routing algorithm can reach.

The analysis of AFR is based on the Ω(1)-
model, the assumption that the distance between
any pair of network nodes is greater than a con-
stant. A straightforward approach to computing
such a graph from an arbitrary given network could
be sought in clustering, i.e. by grouping nodes
around cluster heads, such that finally the graph
induced by the cluster heads is an Ω(1)-graph. A
counterexample however shows that this approach
fails (see Figure 1).

Using results proposed in [17], it is nevertheless
possible to construct a graph with bounded degree
featuring all desired properties for our purposes.
Clustering for the means of ad-hoc routing has been
proposed by various researchers [3, 10]. A closely
related approach is the construction of connected
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dominating sets as routing backbones [5, 18].

3 Model

The purpose of this section is to define the model
and the notation we use. The focus of this paper
lies on geometric ad-hoc routing algorithms partic-
ularly on the unit disk graph. More specifically, we
assume that all nodes are placed in the Euclidean
plane R2. Hence, the communication graph is a
Euclidean graph, i.e. a weighted graph whose edge
weights correspond to the Euclidean distances be-
tween adjacent nodes. A graph G := (V,E) is de-
fined by its node set V and its edge set E ⊆ V 2.
n := |V | denotes the number of nodes, and the Eu-
clidean length of an edge e ∈ E is denoted by d(e).
A path p := v1, . . . , vk for vi ∈ V is a list of ad-
jacent nodes in G, i.e. (vi, vi+1) ∈ E. Note that a
node can occur multiple times when going along a
path p, i.e. p may contain cycles. Alternatively, we
also denote a path p by the corresponding list of
edges.

As already mentioned, we consider the widely
used model where all nodes have the same trans-
mission range R. This means that the neighbor-
hood of each node consists of all nodes with dis-
tance at most R and consequently that all links are
bidirectional. For convenience (and without loss
of generality), we scale the distances such that the
transmission range become 1. The resulting graph
is a unit disk graph (UDG).

Definition 3.1. (Unit Disk Graph) Let V ⊂ R2

be the set of nodes and let E ⊆ V 2 be the set of
edges such that (u, v) ∈ E if and only if the Eu-
clidean distance between u and v is at most 1. Then
the Euclidean graph G = (V,E) is called the unit
disk graph of the nodes in V .

We now give the definition of a geometric ad-hoc
routing algorithm.

Definition 3.2. (Geometric Ad-Hoc Routing
Algorithm) Let G = (V,E) be a Euclidean graph.
The purpose of a geometric ad-hoc routing algo-
rithm A is to transmit a message from a source
s ∈ V to a destination t ∈ V by sending packets
over the edges of G while complying with the fol-
lowing conditions:

• Initially all nodes v ∈ V know their geometric
positions as well as the geometric position of
all of their neighbors in G.

• The source s knows the position of the desti-
nation t.

• A node is not allowed to store anything except
for local information and temporarily stored
packets in transit.

• The additional information which can be stored
in a packet is limited by O(logn) bits, i.e. in-
formation about O(1) nodes is allowed.

In the past geometric ad-hoc routing has been
given various names, such as O(1)-memory routing
algorithm in [1, 2], local routing algorithm in [9],
or position-based routing. Due to the storage re-
strictions, geometric ad-hoc routing algorithms are
inherently local.

4 Cost Model

To measure the quality of a routing algorithm, we
give each edge e a cost which is a function of the
Euclidean length of e.

Definition 4.1. (Cost Function) A cost function
c : ]0, 1] 7→ R

+ is a nondecreasing function which
maps any possible edge length d (0 < d ≤ 1) to a
positive real value c(d) such that d′ > d =⇒ c(d′) ≥
c(d). For the cost of an edge e ∈ E we also use the
shorter form c(e) := c(d(e)).

Note that ]0, 1] really is the domain of a cost
function c(·), i.e. c(·) has to be defined for all val-
ues in this interval and in particular, c(1) < ∞.
The cost model defined by such cost functions in-
cludes all popular cost measures such as the link
distance metric (c(d) ≡ 1), the Euclidean distance
metric (c(d) := d), energy (c(d) := dα for α ≥ 2),
as well as hybrid measures which are positive lin-
ear combinations of above metrics. Although from
a theoretical point of view a more general notion
of cost functions would be possible, it does not ap-
pear to be reasonable to consider other (i.e. not
nondecreasing) functions.

For convenience we also define the cost of paths
and algorithms. The cost of a path p = e1, . . . , ek
is defined as the sum of the costs of its edges:

c(p) :=
k∑
i=1

c(ei).

Analogously, the cost c(A) of an algorithm A is
defined as the sum of the costs of all edges which
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are traversed during the execution of an algorithm
on a particular graph.

Sometimes the model allows to simultaneously
send a packet to more than one direct neighbor
by sending a single message. In this case the cost
of sending a packet to a group of neighbors with
maximal distance dmax is c(dmax). We do not use
this for our algorithm. With our lowerbounds, we
can even show that it has no asymptotic effect.

Because all our results remain unchanged if si-
multaneous sending to multiple neighbors is al-
lowed, we will not consider this case any further.

As Section 6 will show, the behavior around zero
divides the cost functions into two natural classes.
The cost functions which are lower-bounded by
a linear function are called linearly bounded
cost functions, the cost functions which are not
bounded by a linear function are called super-
linear cost functions:

linearly bounded : lim
d→0

c(d)
d

> 0,

super-linear : lim
d→0

c(d)
d

= 0.

Note that because c(d) is nondecreasing and since
it has to be defined for all d ∈]0, 1], it can be shown
that the above limit exists (∞ allowed).

5 Bounded Degree Unit Disk
Graphs

In [11] we show how to do geometric ad-hoc rout-
ing on unit disk graphs with a minimum distance
d0 between any two nodes (we called this the Ω(1)-
model). In this section we generalize this model to
unit disk graphs where the degree of each node is
upper-bounded and show that Adaptive Face Rout-
ing as introduced in [11] still is asymptotically op-
timal for all possible cost functions (cf. Definition
4.1).

Definition 5.1. (Bounded Degree Unit Disk
Graph) Let G be the unit disk graph for a given
set V ∈ R2 of points in the plane. If the degree of
each node in G is bounded by a predefined constant
k, G is called a bounded degree unit disk graph with
parameter k.

Note that if the distance between any two points
is lower-bounded by a constant d0 (Ω(1)-model),

the resulting unit disk graph is a bounded degree
unit disk graph with k ≤ 4/d2

0 + 4/d0 + 1, because
the disks with radius d0/2 around each node are
disjoint and all the disks of the neighbors of a node
u have to be completely inside the disk with radius
1 + d0/2 around u.

For the analysis of AFR on bounded degree unit
disk graphs, it will be important to know about the
number of nodes in a given two-dimensional region.
This leads to the next lemma.

Lemma 5.1. Let R ⊂ R
2 be a (closed) two-

dimensional convex region with area A(R) and
perimeter p(R). Further, let V ⊂ R be a set of
points inside R. If the unit disk graph of V is a
bounded degree unit disk graph with parameter k
(all degrees are at most k), the number of points in
V is bounded by

|V | ≤ (k + 1)
8
π

(A(R) + p(R) + π) .

Figure 2: Covering a convex region with a grid of
equally sized disks

Proof. In order to prove Lemma 5.1, we first con-
sider the disks with diameter 1. All nodes inside
such a disk are less than 1 apart and are therefore
adjacent in the unit disk graph. Since the number
of neighbors of each node is bounded by k, each
disk with diameter 1 contains at most k+ 1 nodes.
In order to give a bound on the number of nodes
inside the region R, we therefore have to find an
upper bound on the number of disks with diameter
1 needed to completely cover R. We can cover the
whole plane with disks of diameter 1 by placing the
disks on an orthogonal grid such that the horizon-
tal and the vertical distances between the centers
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of two neighboring disks are 1/
√

2 (see Figure 2).
By counting the number of disks intersecting R,
we get a bound on the number of disks needed to
cover R. We see that all disks intersecting R are
completely inside the region R′, where R′ is defined
as the locus of all points whose distances from R
are at most 1, i.e. we add a border of width 1 to R.
Let A′ be the area covered by R′. The number of
disjoint disks with diameter 1 which can be placed
inside R′ is bounded by 4A′/π (the area of a disk
with diameter 1 is π/4) and since in the above de-
fined grid of disks no point in R2 is covered by more
than 2 disks, the number of disks needed to cover
R can be bounded by 8A′/π. Thus, the number of
nodes in V is at most (k + 1)8A′/π.

In order to get the area A′, it is sufficient to con-
sider the case where R is a convex polygon. The
general case then follows by limit considerations.
We get A′ by adding A(R) (the area of R) and the
area of the border around R. As illustrated in Fig-
ure 2, the border can be composed into rectangles
and sectors of circles. For each side of the poly-
gon R we get a rectangle of width 1, and since all
the angles of the sectors add up to 2π, the sectors
add up to a disk of radius 1. For A′ we therefore
get A′ = A(R) + p(R) + π where p(R) denotes the
perimeter of R. This concludes the proof.

We could get a better constant than 8/π by tak-
ing a hexagonal grid and considering the portion of
the plane which is only covered by a single disk.

The next lemma shows that up to a constant fac-
tor all metrics defined by cost functions are equiv-
alent on bounded degree unit disk graphs.

Lemma 5.2. Let c1(·) and c2(·) be cost functions
as defined in Definition 4.1 and let G be a bounded
degree unit disk graph with node set V and maxi-
mum node degree k. Further let p be a path from
s ∈ V to t ∈ V on G such that no node occurs more
than once in p, i.e. p is cycle-free. We then have

c1(p) ≤ αc2(p) + β

for two constants α and β, i.e. c1(p) ∈ Θ(c2(p)).

Proof. Let cd(x) := x be the cost function of the
Euclidean distance metric. We show that for any
cost function c there exist constants α1, β1, α2, and
β2 such that

c(p) ≤ α1cd(p) + β1 and (1)

c(p) ≥ α2cd(p) + β2. (2)

This means that all cost functions are in Θ(cd(p))
and particularly c1(p) ∈ Θ(cd(p)) and c2(p) ∈
Θ(cd(p)) which proves the lemma.

We start with Inequality (1). Let c`(x) ≡ 1 be
the cost function of the link distance metric. Now
pick a node u from the path p. Because u has at
most k neighbors, we leave the disk with radius 1
around u after at most k+1 steps when starting at u
and walking along p. Therefore, the total Euclidean
distance of any k+1 subsequent edges of p is at least
1. We then have

c`(p) < (k + 1)dcd(p)e ≤ (k + 1)cd(p) + k + 1.

Because cost functions are monotone increasing, we
have c(e) ≤ c(1) for any edge e and any cost func-
tion c(·). Therefore, we get

c(p) < c(1) · c`(p) ≤ (k + 1)c(1) (cd(p) + 1) ,

which proves Inequality (1). Note that as soon as
the cost function c(·) is fixed, c(1) is a constant
since we required c(x) to be defined for all x∈ ]0, 1].
In order to obtain Inequality (2), we observe that
a path p′ of length cd(p′) ≥ 1 has at least one edge
e′ of length cd(e′) ≥ 1/(k + 1). If p′ consists of
m < k+ 1 edges, the longest edge of p′ has at least
length 1/m; if p′ consists of k + 1 or more edges,
we use the fact that k + 1 subsequent edges of p
have a total Euclidean length of at least 1. We now
partition p into maximal subpaths of length smaller
than 2. All but the last of these subpaths have a
Euclidean length which is at least 1 and therefore
we have

c(p) ≥ c

(
1

k + 1

)
· bcd(p)

2
c

> c

(
1

k + 1

)
·
(
cd(p)

2
− 1
)
,

which concludes the proof.

As an application of Lemma 5.2 we get the fol-
lowing lemma.

Lemma 5.3. Let G be a bounded degree unit disk
graph with node set V . Further let s ∈ V and t ∈ V
be two nodes and let p∗1 and p∗2 be optimal paths from
s to t on G with respect to the metrics induced by
the cost functions c1(·) and c2(·), respectively. We
then have

c1(p∗2) ∈ Θ(c1(p∗1)) and c2(p∗1) ∈ Θ(c2(p∗2)),
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i.e. the costs of optimal paths for different metrics
only differ by a constant factor.

Proof. By the optimality of p∗2, we get

c2(p∗1) ≥ c2(p∗2). (3)

p∗1 and p∗2 are cycle free and therefore we can apply
Lemma 5.2. We then get

c2(p∗1) ∈ Θ(c1(p∗1)) and c1(p∗2) ∈ Θ(c2(p∗2)). (4)

Combining Equations (3) and (4) yields c1(p∗2) ∈
O(c1(p∗1)). But by the optimality of p∗1 we have
c1(p∗2) ≥ c1(p∗1) and therefore, c1(p∗2) ∈ Θ(c1(p∗1))
holds. The second equation of the lemma then fol-
lows by symmetry.

Our routing algorithm AFR works on planar
graphs, we therefore have to find a suitable pla-
nar subgraph of the unit disk graph. Note that
we always use the term planar graph for Euclidean
planar graphs, i.e. we consider an embedding in the
plane. There are several standard approaches to
obtain a planar subgraph of the unit disk graph,
one of which is the Gabriel Graph (GG). We will
now show that the Gabriel Graph has all required
properties. The Gabriel Graph of a set V ∈ R2 of
nodes is defined as the set of all edges (u, v) ∈ V 2

such that no other point w ∈ V is inside or on the
circle which has uv as a diameter. It is well known
that the intersection between the Gabriel Graph
and the unit disk graph (GG ∩UDG) is connected
iff the UDG is connected. It is also well known that
GG ∩ UDG contains an energy optimal path (see
Figure 7 in [11]). This leads to the next lemma.

Lemma 5.4. Let G be a bounded degree unit disk
graph with node set V and let GGG be the inter-
section of G and the Gabriel Graph of V . Further,
we fix two nodes s ∈ V and t ∈ V . Let c(·) be
a cost function and p∗ and p∗GG be optimal paths
with respect to the metric c(·) on G and on GGG,
respectively. We then have

c(p∗GG) ∈ Θ(c(p∗)),

i.e. GGG is a spanner for all cost functions.

Proof. As already mentioned, it is well known that
GGG contains an optimal path with respect to the
metric corresponding to the cost function c(d) :=
d2 (in fact, this also holds for exponents α > 2). By
applying Lemma 5.3, we now see that the optimal
energy path p∗E is competitive for all cost functions
c(·), i.e. c(p∗E) ∈ Θ(c(p∗)).

s t

Figure 3: Bounded Face Routing (no success: ĉd is
chosen too small)

s t

Figure 4: Successful Bounded Face Routing

In the following, we describe the core compo-
nent of our routing algorithm. For completeness,
we briefly review Adaptive Face Routing (AFR), a
geometric ad-hoc routing algorithm, which we in-
troduced in [11]. The key ingredient of AFR is
Bounded Face Routing (BFR), which itself is an
adaptation of Face Routing introduced in [9]. The
idea of BFR is to perform Face Routing while stay-
ing inside a finite region containing the source and
the destination. For a full description see [11].

Bounded Face Routing (BFR[ĉd]): Let E be
the ellipse which is defined by the locus of all points
the sum of whose distances from s and t is ĉd, i.e.
E is an ellipse with foci s and t.

0. Start at s and let F be the face which is inci-
dent to s and which is intersected by st in the
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immediate region of s.

1. We explore the face F and remember the in-
tersection point p of st with the edges of F
which is nearest to t. We start the exploration
by walking into one of the two possible direc-
tions. We continue until we come around the
whole face F (as in the normal Face Routing
algorithm) or until we would cross the bound-
ary of E. In the latter case, we turn around
and walk in the opposite direction until we hit
the boundary of E again. If the exploration of
F does not give a better p (we find the same p
as in the last iteration), Bounded Face Routing
does not find a route to t and we restart BFR
to find a route back from p to the source s by
using the same ellipse E. Otherwise, proceed
with step 2.

2. p divides st into two line segments where pt
is the not yet “traversed” part of st. Update
F to be the face which is incident to p and
which is intersected by the line segment pt in
the immediate region of p. Go back to step 1.

Figure 3 shows an example where BFR does not
find a path from s to t, because the ellipse, i.e. the
parameter ĉd, is chosen too small. Figure 4 shows a
successful execution of the Bounded Face Routing
algorithm. To obtain the final routing algorithm
AFR, we apply BFR iteratively with exponentially
growing ĉd until we succeed and finally arrive at t.

Adaptive Face Routing (AFR):

0. Set the size of the ellipse for the first iteration
by initializing c̃d, e.g. c̃d := 2st.

1. Execute BFR[c̃d].

2. If the BFR execution of step 1 succeeded, we
are done; otherwise, we double the estimate for
the length of the shortest path (c̃d := 2c̃d) and
go back to step 1.

We are now able to apply AFR on bounded de-
gree unit disk graphs:

Theorem 5.5. Let G be a bounded degree unit disk
graph and let GGG be the intersection of the corre-
sponding Gabriel Graph and G. Let p∗ be a short-
est path from the source s to the destination t on G
with respect to the metric defined by the cost func-
tion c(·). The cost of AFR when applying it on

GGG to find a route from s to t then is quadratic
in c(p∗):

c(AFR) = O
(
c2(p∗)

)
.

Proof. In [11] we showed that the link distance cost
c`(·) of Bounded Face Routing is linear in the num-
ber of nodes inside the ellipse E, no matter if BFR
finds a path from s to t or if it has to turn around
and go back to s. To bound the number of nodes in-
side ellipse E, we apply Lemma 5.1. As before, we
assume that ĉd denotes the sum of the distances
of a point on the boundary of E from the two
foci of E. For the perimeter p(E) and the area
A(E) of the ellipse we then have p(E) ∈ O(ĉd) and
A(E) ∈ O(ĉd

2). Because E is a convex region, we
can therefore conclude that the number of nodes
of G inside E is bounded by O(ĉd

2). Therefore we
get:

c`(BFR) = O
(
ĉd

2
)
. (5)

From [11], we also know that BFR succeeds if and
only if there is a path from s to t on G which com-
pletely lies inside (or on) the ellipse E. Let p∗d be
an optimal path (on G) with respect to the Eu-
clidean distance metric. By the definition of E, p∗d
lies inside E if ĉd ≥ cd(p∗d), where cd(·) denotes
the cost function for the Euclidean distance. For
AFR this means that step 1 succeeds as soon as
c̃d ≥ cd(p∗d) at the latest. The maximum c̃d is at
most 2cd(p∗d), and therefore the cost of the last ap-
plication of BFR is O(c2d(p

∗)). The sum of the costs
of all iterations (i.e. applications of BFR) is a geo-
metric series and therefore linear in the cost of the
greatest summand of the series, i.e. O(c2d(p

∗)) as
well. A detailed calculation of this geometric series
is given in [11]. Applying Lemma 5.3 now concludes
the proof.

We now give a matching lower bound to the up-
per bound of the last theorem.

Theorem 5.6. Let the cost of a best route p∗ for a
given source destination pair with respect to a cost
function c(·) on a unit disk graph G be c(p∗). Then
any (deterministic or randomized) geometric ad-
hoc routing algorithm has expected cost Ω(c2(p∗)).

Proof. We can directly apply the lower bound of
[11] (Theorem 5.1). Because all edges (but one) of
the graphs of [11] have length 1, the lower bound
holds for all cost functions c(·).
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Combining Theorems 5.5 and 5.6 yields this sec-
tion’s main theorem, which states that AFR is
asymptotically optimal on bounded degree unit
disk graphs.

Theorem 5.7. Let G be a bounded degree unit disk
graph. Applying AFR on the Gabriel Graph edges
of G to route from a given source to a given desti-
nation is asymptotically optimal among all possible
geometric ad-hoc routing algorithms and for all cost
functions.

Proof. Combination of Theorem 5.5 and of Theo-
rem 5.6.

6 General Unit Disk Graphs

In this section we consider the problem of geomet-
ric ad-hoc routing on general unit disk graphs (i.e.
of unbounded degree). We describe a distributed
algorithm which constructs a connected dominat-
ing set on an arbitrary unit disk graph G inducing
a bounded degree unit disk graph. This subgraph
of G is afterwards used as a routing backbone. We
show that the resulting algorithm is asymptotically
optimal for linearly bounded cost functions and
that there is no geometric ad-hoc routing algorithm
whose cost is bounded by the cost of an optimal
path for super-linear cost functions.

6.1 Linearly Bounded Cost Func-
tions

The connected dominating set algorithm, which we
briefly review here for completeness, has been pre-
sented in [17].

The algorithm consists of two phases: (1) find-
ing dominators and (2) finding connectors. The
first phase results in a dominating set of the un-
derlying graph, i.e. a set of dominators, such that
each node in the network is either a dominator or
the neighbor of at least one dominator. According
to the dominator finding algorithm, no two domina-
tors are neighbors. In order to produce a connected
dominating set, the second phase is dedicated to
finding unique nodes connecting pairs of domina-
tors. The dominators together with the connectors
finally form the routing backbone.

The first phase is realized by having each node u
try to broadcast a message IAmDominator(u) to its

direct neighbors telling them that it is a domina-
tor. u may however only send this message if it has
not received such a message beforehand by any of
its neighbors. Each node stores all its dominators
into a set Dominators. This algorithm leads to a
dominating set whose members can be connected
by bridges consisting of at most two intermediate
nodes.

For the second phase, we use three types of mes-
sages:

• IAmDominatee(u,v) tells u’s neighbors that it
is dominated by v, i.e. that its neighbor v is a
dominator.

• 2HopPath(u,v,w) informs u’s neighbors that
it has a path to w via their connector v.

• 3HopPath(u,v,w,x) tells u’s neighbors that it
has a path to w via their connectors v and w.

In addition to Dominators each node u keeps two
sets:

• The path set 2HopConnectors containing a
path (w, v) iff w has been chosen as the con-
nector to v.

• The path set 3HopConnectors containing a
path (w, v, x) iff w and v have been chosen as
the connectors to x.

The second phase of the backbone construction
algorithm is initiated by each dominatee u broad-
casting IAmDominatee(u,v) for every v in its set
Dominators. Afterwards, all network nodes react
to received messages in the following way:

• A node u receives IAmDominatee(v,w) for the
first time: If u 6= w, v 6∈ Dominators, and no
path of the form (·, w) is in 2HopConnectors,
u adds (v, w) to 2HopConnectors. It broad-
casts 2HopPath(u,v,w) and will ignore any
later messages IAmDominatee(·,w). Note that
a dominator broadcasts 2HopPath(u,v,w) in
order to signal v that it has been chosen as the
connector between u and w, whereas a domina-
tee does so to enable the construction of 3-hop
paths.

• A dominatee v receives 2HopPath(u,v,w): If
u ∈ Dominators, v becomes a connector.
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• A dominator u receives 2HopPath(v,w,x): If
neither 2HopConnectors nor 3HopConnectors
contains a path to x, u adds (v, w, x)
to 3HopConnectors and broadcasts
3HopPath(u,v,w,x).

• A dominatee u receives 3HopPath(u,v,w,x):
u becomes a connector and asks w to become
a connector, too.

Note that the above algorithm may find a path
connecting a dominator u with v differing from the
path connecting v with u. This effect can be elim-
inated by introducing a total order on nodes (e.g.
by node identifiers) and by allowing only a connec-
tion constructed from u to v if u is “smaller than”
v.

The dominators together with the connectors
form a backbone which can be employed for rout-
ing. In [17] the algorithm defines edges only along
the found paths connecting dominators. The graph
consisting of the backbone nodes and the found
connecting edges is called CDS. What we are in-
terested in, however, is the unit disk graph induced
by all backbone nodes. We call this graph the Back-
bone Graph. Note that the edge set of the Backbone
Graph is a superset of the edge set of CDS.

The following lemma describes the central prop-
erty of the Backbone Graph for our purposes.

Lemma 6.1. The Backbone Graph GBG is a
bounded degree unit disk graph.

Proof. Since GBG is a unit disk graph by definition,
we only have to prove that it has bounded degree.
By an area argument Lemma 1 of [17] shows that
the number of dominators within a disk with radius
k is upper-bounded by a constant `k ≤ π(k+0.5)2

π(0.5)2 =
4(k + 0.5)2.

We now prove that any node u in GBG has
bounded degree. Since GBG is a unit disk graph,
u has an edge to every other node in CDS which
lies within Du, the unit disk centered at u. First,
at most 5 dominators lie within Du. Second, every
connector has an edge to a dominator. Therefore,
every node v within Du has a dominating neighbor
within the disk centered at u with radius 2. Since
this disk contains no more than `2 dominators, and
since every dominator has degree at most 2`3 in
CDS (Lemma 4, [17]), the total number of nodes
on CDS within Du is upper-bounded by 2`2`3 + 5.

(Note that the factor 2 can be eliminated by halv-
ing a dominator’s maximum degree via the intro-
duction of an order over the nodes as suggested
above.)

Since the backbone contains a dominating set of
the underlying graph, every regular node (a node
not in the backbone) can be associated to one of
its dominators. Since this can be regarded as a
clustering of all regular nodes around their domi-
nators, we call this graph the Clustered Backbone
Graph. In order to route a message from a reg-
ular node s to a regular node t, the message will
first be sent to s’s associated dominator and then
routed along the Backbone Graph to t’s associated
dominator before finally being forwarded to t itself.
Note that while the Backbone Graph is bounded in
degree, this is not the case for the Clustered Back-
bone Graph, since a dominator can have arbitrarily
many dominatees. Also note that consequently in
the Backbone Graph construction algorithm each
node transmits at most a constant number of mes-
sages.

The following lemma shows that a route over the
backbone is competitive with the optimal route for
the link metric.

Lemma 6.2. The Clustered Backbone Graph is a
spanner with respect to the link metric, i.e. a best
path between two nodes on the Clustered Backbone
Graph is longer than a path between the same nodes
in the underlying graph by a constant factor only.

Proof. Follows directly from Lemma 5 in [17].

The next lemma shows that the Clustered Back-
bone Graph is a spanner with respect to all linearly
bounded cost functions (see Section 4).

Lemma 6.3. The Clustered Backbone Graph
GCBG is a spanner with respect to any linearly
bounded cost metric c(·), i.e. the cost of an optimal
path on GCBG is only by a constant factor larger
than the cost of an optimal path on the underlying
unit disk graph G.

Proof. Let c`(·) be the link distance metric. By
Lemma 6.2, we have a path p′` on GCBG such
that c`(p′`) ∈ Θ(c`(p∗` )) where p∗` is an optimal
link distance path on G. Let p∗ denote an opti-
mal path with respect to the cost c(·) on G. We
then have to show that c(p′`) ∈ O(c(p∗)). The Eu-
clidean length of p∗ is cd(p∗) where cd(·) denotes
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the cost function of the Euclidean distance metric.
We partition p∗ into maximal subpaths of length
at most 1. Because two consecutive such subpaths
have a total length greater than 1, we get at most
2 · dcd(p∗)e subpaths. We define the path p′ by
replacing each subpath with a direct edge. Note
that all edges of p′ have length at most 1. The
link distance cost c`(p′) of p′ is upper-bounded by
c`(p′) ≤ 2cd(p∗) + 1. By the optimality of p∗` , we
also have c`(p′) ≥ c`(p∗` ) ∈ Θ(c`(p′`)). And because
with respect to the metric c(·), each edge of p′` has
cost at most c(1), we have c(p′`) ≤ c(1)c`(p′`). To-
gether, we get

c(p′`) ∈ O(cd(p∗)) . (6)

Note that c(1) is a constant because c(x) has to
be defined for all x∈ ]0, 1]. Since c(·) has to be a
linearly bounded cost function, the value

α := min
x∈]0,1]

c(x)
cd(x)

= min
x∈]0,1]

c(x)
x

> 0 (7)

is a constant greater 0. Therefore c(p∗) ≥ αcd(p∗)
and combined with Equation (6), we have

c(p′`) ∈ O(c(p∗)) .

We are now ready to apply AFR on general unit
disk graphs. In a precomputation phase the Clus-
tered Backbone Graph and its intersection with the
Gabriel Graph are constructed. Then the routing
from source s to destination t works as follows.

• If s and t are neighbors in G (the unit disk
graph), the message is directly sent from s to
t; otherwise, s sends the message to one of its
dominators if s is not a dominator itself.

• Then we use AFR to route the message along
the Gabriel Graph edges of the Clustered
Backbone Graph. As soon as we arrive at a
node whose Euclidean distance to t is at most
one, the message is directly sent to t. Note that
there has to be such a node on the boundary
of one of the faces we visit.

Theorem 6.4. Let the cost of the best path between
a given source destination path with respect to a
given linearly bounded cost metric be c. The cost
of AFR as described above with respect to the same
metric then is O(c2).

Proof. The case where s and t are direct neighbors
follows from the fact that the cost function has to
be linearly bounded and particularly from Equation
(7). For the other cases we use that the Clustered
Backbone Graph is a spanner for linearly bounded
cost functions and that AFR has the given worst
case cost on all bounded degree unit disk graphs
(Theorem 5.5).

Theorem 6.5. Applying AFR on the Gabriel
Graph part of the Clustered Backbone Graph as
described above is asymptotically optimal among
all possible geometric ad-hoc routing algorithms for
linearly bounded cost metrics.

Proof. Because the lower bound of Theorem 5.6
holds for general unit disk graphs, Theorem 6.5 di-
rectly follows from Theorems 5.6 and 6.4.

6.2 Super-Linear Cost Functions

For the remainder of this section we consider geo-
metric ad-hoc routing on general unit disk graphs
for super-linear cost functions. Unlike for linearly
bounded cost functions, the cost of a geometric ad-
hoc routing algorithm cannot be bounded by the
cost of an optimal path in this case.

v1
1<D<2

w’
t

d

d
u1 w s

1

Figure 5: Lower bound graph for super-linear cost
functions

Theorem 6.6. Let the best route with respect to
a super-linear cost function c(·) for a given source
destination pair be p∗. Then, there is no (deter-
ministic or randomized) geometric ad-hoc routing
algorithm whose cost is bounded by a function of
c(p∗).

Proof. We construct a family of unit disk graphs
in the following way (see Figure 5). We choose
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a positive integer n and place n + 1 nodes on a
straight (say horizontal) line such that two neigh-
boring nodes have distance 0 < d < 1. Starting
with the first node, we mark every b2/dcth node.
For every marked node ui we then place a node vi
such that uivi has length 1 and such that all the
new nodes lie on a line which is parallel to the line
where we put the first n + 1 nodes. This yields k
vertical edges of length one. The distance between
two such edges isD = b2/dcd. Note that 1 < D ≤ 2
because we have chosen d to be smaller than 1. The
number of marked nodes (i.e. the number of such
edges) k is then bounded by

k = bdn
D
c ≥ bdn

2
c > dn

2
− 1. (8)

Now we choose an arbitrary marked node (we call
it w) and the corresponding vi. At vi we add two
other vertical edges and arrive at node w′ which
has distance 3 from the line with the original n +
1 nodes. Symmetrically to the the original n + 1
nodes, we now place another n+1 nodes (including
w′) on a horizontal line with distance 3. Figure 5
illustrates this construction.We choose an arbitrary
node of the top n + 1 nodes for the source s. The
destination t is chosen arbitrarily from the bottom
n+ 1 nodes. The optimal route p∗ from s to t then
first goes from s to w, then from w to w′ and finally
from w′ to t. The cost of p∗ can be bounded by

c(p∗) ≤ 2nc(d) + 3c(1).

We want this cost to be constant and therefore
choose c(d) = 1/n, yielding d = c−1(1/n). Note
that since c(·) has to be nondecreasing, c−1(·) is
well-defined as long as there are no intervals where
c(·) is constant. For those intervals we define c−1(·)
to take any of the possible values. For the cost of
the optimal path c(p∗) we now get a constant value
(c(1) is a constant!), i.e. c(p∗) ∈ Θ(1). In order
to get the cost of a geometric ad-hoc routing al-
gorithm A, we observe that A has no information
about the location of w and therefore has to test
all possible nodes by using the k edges of length 1.
For a deterministic A we can always place w such
that it is the last marked node which is tried. For
a randomized A we can place w such that the ex-
pected number of needed trials is at least k/2. For
the cost c(A) of any geometric ad-hoc routing al-
gorithm we therefore get c(A) ∈ Ω(k)c(1) = Ω(k).

Plugging d = c−1(1/n) into Equation (8), we get

k ≥ 1
2
nc−1(1/n)− 1,

and for n approaching infinity we then get

lim
n→∞

k ≥ lim
n→∞

1
2
nc−1(1/n)− 1

=
1
2

lim
y→0

c−1(y)
y

− 1

=
1
2

lim
x→0

x

c(x)
− 1 = ∞,

where we substituted y := 1/n in the first step and
x := c−1(y) in the second step. The last limit is∞,
because by the definition of c(·), which is a super-
linear cost function. We have limx→0 c(x)/x = 0.
Therefore, the cost of any algorithm A is un-
bounded with respect to the best path p∗, which
has constant cost.

7 Conclusion

In this paper we introduced a general definition of
cost metrics for mobile ad-hoc routing. We showed
that the cost metrics are naturally partitioned into
linearly bounded and super-linear cost functions ac-
cording to their behavior for an edge approaching
zero length. In particular, we constructed graphs
for which there is no geometric routing algorithm
that finds a route whose cost is bounded by the cost
of the optimal route if the cost metric is in the sec-
ond class. On the other hand, a linearly bounded
cost metric allows to find an algorithm with guaran-
teed message delivery whose cost is quadratic in the
cost of the optimal route, which at the same time
is shown to be a tight upper bound. We showed
that on a bounded degree unit disk graph this bound
holds also for super-linear cost metrics. Finally, we
proposed an algorithm that reaches the optimum
by construction of a network backbone and by em-
ployment of Adaptive Face Routing.

We implicitly analyze a one-shot scenario, where
routing takes place once the backbone is formed
for a given network topology. An interesting open
question is how to maintain the backbone in a dy-
namic network efficiently.
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