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Low-Cost Fault-Tolerant Spanning Graphs for Point

Sets in the Euclidean Plane∗

Enrico Nardelli † Ulrike Stege ‡† ‡ Peter Widmayer §

March 27, 1997

Abstract

The concept of the minimum spanning tree (MST) plays an important role in topological
network design, because it models a cheapest connected network. In a tree, however, the
failure of a vertex can disconnect the network. In order to tolerate such a failure, we
generalize the MST to the concept of a cheapest biconnected network. For a set of points
in the Euclidean plane, we show that it is NP-hard to find a cheapest biconnected spanning
graph, where edge costs are the Euclidean distances of the respective points. We propose
a different type of subgraph, based on forbidding (due to failure) the use of a vertex. A
minimum spanning multi-tree is a spanning graph that contains for each possible forbidden
vertex a spanning tree that is minimum among the spanning trees that do not use the
forbidden vertex. We propose a worst-case time optimal algorithm for computing a minimum
spanning multi-tree for a planar Euclidean point set. A minimum spanning multi-tree is
cheap, even though it embeds a linear number of MSTs: Its cost is more than the MST cost
only by a constant factor. Furthermore, we propose a linear time algorithm for computing
a cheap vertex failure tolerant graph, given the Delaunay triangulation. This graph bounds
the cost of the minimum spanning multi-tree from above.

1 Introduction

In the past few years, networks with several desirable properties have been studied. Based on
the classical minimum spanning tree (MST) concept for a graph with edge costs, a most vital
edge of a MST has been defined as an edge whose removal from the underlying graph increases
the cost of a MST by the largest amount. Efficient algorithms for finding a most vital edge have
been proposed [17, 18]. Along a different track, spanning graphs for point sets in Euclidean
space have been studied with the goal of preserving all Euclidean distances up to a constant
factor in the shortest paths of the graphs – the Euclidean spanners [3, 4, 5, 6, 11, 12]. Recently,
it has been shown that Euclidean spanners with additional desirable properties can be found
efficiently, such as low total cost, bounded degree, and low diameter [4].

In this paper, we aim at a different combination of network properties, motivated by the
possibility of a vertex failure in a computer network. In a simply connected network, such a
failure can disconnect the network into several parts. We study the question of how we can save
a network from being disconnected by a failing vertex, while at the same time keeping the total
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cost of the network low. At one end of the spectrum of problems in this context, we generalize
the concept of the minimum spanning tree of a graph towards a higher degree of connectivity:
instead of searching for a cheapest simply connected spanning graph (i.e. a MST), we search for
a cheapest biconnected spanning graph. The underlying graph is defined as the complete graph
induced by a set of points in the plane and the Euclidean metric; that is, the cost of an edge
is the Euclidean distance of its incident points. We show that even in this highly structured
case, the computation of a cheapest biconnected spanning subgraph is NP-hard. This is in
sharp contrast with the complexity of the computation of a MST for a given point set: via the
Voronoi diagram and its dual, the Delaunay triangulation, the Euclidean MST of a set of n
planar points can be computed in time O(n log n) [21].

We then turn to a restricted type of MST, where the restriction forbids the use of a partic-
ular vertex. The idea behind this concept has a similar focus as the investigations to the most
vital edge: how can we still have a cheap connected network if a vertex fails? We are interested
in a graph that contains a MST of the remaining vertices and edges, no matter which vertex
is forbidden. Since this graph is the union of all possible restricted MSTs, we call it a vertex
fault-tolerant minimum spanning multi-tree (VMT). A vertex failure has the least possible con-
sequences in a VMT: we are guaranteed to still have a working MST available that avoids the
failed vertex. We show that we even do not need to pay a lot for this property: the total cost
of a VMT is less than four times the cost of a MST. As a side effect, it may therefore even
serve as an approximation (although not the best possible) for a cheapest biconnected graph.
Furthermore, we propose an algorithm to compute a VMT for a given set of n points in the
Euclidean plane in time O(n log n).

Our algorithm first computes an appropriate generalization of a Delaunay triangulation of
the point set, and then finds the result as a subgraph of the generalized Delaunay graph. In
this generalization, the planarity of the Delaunay triangulation is lost, and also the resulting
minimum spanning multi-tree need not be planar. Note that in case the output must represent
adjacency explicitly (e.g. it is an adjacency list representation of a graph), our algorithm is
asymptotically worst-case time optimal, since sorting can be reduced to VMT computation in
linear time (just as it can be reduced to MST computation.).

In our problem description so far, the failure of a vertex was our only concern. Concerning
the case of edge failures, our concepts and results carry over. It is interesting to note that the
problem of finding all the replacement edges when edges of the minimum spanning tree are
deleted was considered for the case of general graphs by Chin and Houck [9]. They gave an
O(n2) worst case time algorithm, which was later improved by Tarjan [23] (pp. 712-713) to
O(mα(m,n)) worst case time and space, where n denotes the number of vertices and m the
number of edges of the given graph. Hence we do not discuss an algorithm to compute an edge
fault-tolerant minimum spanning multi-tree (EMT).

Work related to our problem has been done in the field of dynamic algorithms for Euclidean
MST maintenance under insertion or deletion [1, 13, 14]. But since the objective there is to
compute the new MST resulting from each update, even the currently best solution for dynamic
maintenance of a Euclidean MST [13] only gives a O(n log2 n) time bound when directly applied
to our problem.

The paper is organized as follows. Section 2 recalls a few central definitions. Section 3
defines the problem of computing a cheapest biconnected spanning graph precisely and shows
its NP-hardness. Section 4 introduces and discusses minimum spanning graphs for edge and
vertex failures, respectively. Furthermore, it discusses a few useful properties of an edge fault-
tolerant minimum spanning multi-tree EMT and a VMT and the relation between the two.
Section 4.4 derives an upper bound on the total cost of EMT and VMT, showing that this
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cost is only a constant times that of a MST. In Section 5, we propose an algorithm for the
efficient computation of VMT and analyze its performance. Section 6 proposes a linear time
algorithm for building a vertex failure tolerant graph with cost also at most 4·MST(V ), given
the Delaunay triangulation. Section 7 concludes the paper.

2 Definitions

We refer to standard graph terminology [7]. Let G = (V,E) be a weighted, undirected graph,
and let c(e) ∈ IR+ be the cost (weight) of edge e ∈ E. To avoid the discussion of singularities,
let us assume throughout the paper that all edge costs are pairwise different and every graph
has at least three vertices. The cost of a graph G = (V,E) is the sum of the costs of its edges,
denoted as c(G). When V is a set of points in IR2 and the cost of each edge is the Euclidean
distance between both incident points, we call G a Euclidean graph. In particular, the complete
Euclidean graph C(V ) induced by point set V is the graph C(V ) = (V,E) with E = V ×V and
c(x, y) = d2(x, y) for x, y ∈ V , where d2 denotes the Euclidean distance. Our assumption on
different edge costs implies the following general position assumption for the point set: no two
distances between points are the same.

For a given graph G = (V,E) and a vertex v ∈ V , degG(v) denotes the degree of v in G,
i.e., the number of incident edges of v in G. For simplicity, G − e (resp. G + e) for a graph
G = (V,E) and an edge e ∈ V × V is an abbreviation for (V,E − {e}) (resp. (V,E ∪ {e}));
similarly, we use G− v for G = (V,E) and a vertex v ∈ V as an abbreviation for (V −{v}, E ∩
((V − {v}) × (V − {v}))).

We are interested in low cost spanning, connected subgraphs of C(V ) that satisfy certain
constraints. Without constraints, a minimum spanning tree of a graph G = (V,E), denoted
as MST(G), is a lowest cost spanning, connected subgraph of G. For a given point set in the
Euclidean plane, we write MST(V ) for MST(C(V )). The constraints of interest refer to the
connectedness of the subgraph. A cut vertex (resp. bridge) in a graph G is a vertex (resp. an
edge) whose removal increases the number of connected components of G. A connected graph
G is two-vertex (resp. two-edge) connected, if G contains no cut vertex (resp. bridge).

Observation 2.1 Let |V | ≥ 3. Then any two-vertex connected graph G = (V,E) is two-edge
connected, but a two-edge connected graph need not be two-vertex connected.

3 Minimum biconnected spanning graph computation

We are interested in the computation of a two-vertex (resp. two-edge) connected graph that
spans a set V of points in the Euclidean plane and has minimum cost, denoted by M2VG(V )
(resp. M2EG(V )). This is a natural generalization of the minimum spanning tree problem,
when simple connectedness is replaced by biconnectedness. We will now show that we need not
distinguish the two types of biconnectedness:

Lemma 3.1 Consider a set V of points in the Euclidean plane. Let G = (V,E) be a M2EG(V ).
If v ∈ V is a cut vertex of G then the three following conditions are satisfied:

1. v and all its adjacent vertices are collinear;

2. there exist two pairs v11, v12 and v21, v22 of the adjacent vertices of v such that vi1 and vi2
are connected only by paths in G which contain v (for i = 1, 2);
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3. degG(v) = 4.

Proof. Let v be a cut vertex of G.

1. Pick any two neighbors v1, v2 ∈ V of v. Assume v1, v2, and v are not collinear, (v1, v),
(v2, v) ∈ E. If v1 and v2 are in the same connected component C1 of G − v, then there
exists a vertex v3 ∈ V , which is adjacent to v and lies in a different connected component
C2 �= C1 of G−v, since v is cut vertex. Hence v, v3 and at least one vertex of v1 and v2 are
not collinear. Therefore w.l.o.g. let v1 and v2 be in two different connected components of
G−v. Let G′ := G− (v1, v)− (v2, v)+(v1, v2). G′ is two-edge connected, since G contains
no bridges and therefore there is a path from v1 to v2 in G′ containing v. Because of the
triangle inequality c(G′) < c(G). This is a contradiction to the minimum cost requirement
for G.

2. v is cut vertex in G. Hence G− v consists of at least two connected components C1, C2,
C1 ∩C2 = ∅. Since G is two-edge connected and v is cut vertex in G, each path from any
vertex x ∈ C1 to any vertex y ∈ C2 contains v. Since G is two-edge connected there are at
least two edge-disjoint paths between x and y, and therefore there are at least two pairs
v11, v12 and v21, v22, (v11, v21 ∈ C1 , v12, v22 ∈ C2) of adjacent vertices of v containing v
in any connecting path.

3. If degG(v) < 4, G contains a bridge, since v is cut vertex, a contradiction. Therefore
assume degG(v) > 4. We know from 1. that all adjacent vertices of v are collinear.
Consider both halflines through v and all its neighbors; their union is one straight line.
Since v is a cut vertex and G is minimum, v has neighbors on both halflines. Order the
k adjacent vertices of v on one of the halflines according to their distance to v, with v1

being closest to v, then v2 and so on. Adding (v1, v2), . . . (vk−1, vk) to E and deleting
(v, v2), . . . , (v, vk−1) from E results in a cheaper graph than G, because of the triangle
inequality. Contradiction.

	

From Observation 2.1 we get that any M2EG(V ) not containing a cut vertex is also a M2VG(V ).
Otherwise, the next lemma tells us how to transform any M2EG(V ) into a M2VG(V ) of the
same cost.

Lemma 3.2 Consider a set V of points in the Euclidean plane. Let G = (V,E) be a M2EG(V).
If G is not two-vertex connected, we can transform G into a M2VG(V ) with the same cost.

Proof. Let G be two-edge connected but not two-vertex connected. As long as the number k
of cut vertices in G is at least one, transform G into a spanning two-edge connected graph G′

containing less than k cut vertices such that c(G) = c(G′), as follows. Pick any cut vertex v in
G; v satisfies the conditions in Lemma 3.1. Let v1, v2 ∈ V be in different connected components
of G−v and (v1, v), (v2, v) ∈ E. Let C1 be the connected component of G−v containing v1, C2

the connected component of G− v containing v2. Furthermore, let (v3, v), (v4, v) ∈ E, v3 ∈ C1,
v4 ∈ C2. Because G is two-edge connected, there is a path p from v3 to v1 in G such that p is
edge disjoint from the path v3, v, v1. Analogously, there exists a path p′ in G from v4 to v2 in
G, with p′ being edge disjoint from the path v4, v, v2. Let G′ = G− (v1, v) − (v2, v) + (v1, v2).
There is a path not containing v in G′ from any vertex v0 in C1 via v1 and edge (v1, v2) to any
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vertex v′0 in C2. Hence G′ is two-edge connected and the number of cut vertices is strictly less
than k. Since c((v1, v2)) = c((v1, v)) + c((v2, v)), we have c(G) = c(G′). 	

Let us state the problem of computing a M2EG(V ) for the special case of a point set V on an
integer grid in a decision version:

Problem: M2EG
Input: A set V of points in the plane with integer coordinates and an integer bound c > 0.
Question: Is there a two-edge connected Euclidean graph spanning V with cost at most c?

Theorem 3.3 The problem M2EG is NP-complete.

Proof. The problem is in NP, because we can guess a spanning graph and verify in polynomial
time that it is two-edge connected and costs at most c. It is NP-hard by a reduction from Exact
Cover by 3-Sets [19], in close analogy to the proof of the NP-hardness of the travelling salesman
problem in [16] (the travelling salesman tour in that proof happens to be a M2EG). 	

Note that from the construction in the proof it follows that for a weighted graph instead of a
point set, the corresponding problem is also NP-complete.

4 Minimum spanning graphs for vertex failures and edge fail-
ures

4.1 Vertex fault-tolerant minimum spanning multi-trees

Let us now turn our attention to a different concept of a cheap spanning graph with stronger
connectivity than a MST. Intuitively, we require that the removal of a vertex leaves us with a
spanning graph that contains a MST of the new set of vertices.

More precisely, for a set V of points in the Euclidean plane, a vertex fault-tolerant minimum
spanning multi-tree VMT(V ) = (V,E) is a connected minimum cost graph with the property
that for each v ∈ V , MST(V − v) ⊆ VMT(V ).

Lemma 4.1 For any two-vertex connected graph G = (V,E) and any vertex v ∈ V , (MST(G)−
v) ⊆ MST(G− v).

Proof. Let v ∈ V , MST(G) = (V,EG), MST(G− v) = (V − v,EG−v). Assume there is an edge
f in MST(G) − v, f /∈ EG−v. (Note that f is an edge in MST(G).) Then MST(G − v) + f
has a cycle K containing f , and f is longest in K. Therefore K ⊆ G − v ⊆ G. That is, there
is the cycle K in G and f is longest edge in K. Therefore f cannot be an edge of MST(G), a
contradiction. 	

Corollary 4.2 For each point set V in the Euclidean plane, MST(V ) ⊆ VMT(V ). Further-
more, VMT(V ) = MST(V ) if |V | < 3, and VMT(V ) =

⋃

v∈V
MST(V − v) if |V | ≥ 3, and

VMT(V ) is two-vertex connected.
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Proof. Lemma 4.1 implies MST(V ) ⊆ VMT(V ), and VMT(V ) = MST(V ) if |V | < 3,
and VMT(V ) =

⋃

v∈V
MST(V − v). We show VMT(V ) is two-vertex connected. If |V | < 3,

VMT(V ) = MST(V ). Since MST(V ) has no cut vertex for |V | = 1 or |V | = 2, VMT(V ) is
two-vertex connected. Let |V | ≥ 3. Since MST(V − v) ⊆ VMT(V ) for all v ∈ V , VMT(V ) − v
is connected for all v ∈ V and therefore VMT(V ) contains no cut vertex. 	

This suggests a method for the construction of VMT(V ): we start with MST(V ) = (V,EM ).
For each vertex v ∈ V , by removing v and all its incident edges we break the MST(V ) into
deg(v) connected components (in this paragraph for simplicity deg(v) denotes degMST (V )(v));
note that deg(v) < 6. Let a1(v), . . . , adeg(v)−1(v) be the deg(v)−1 edges that connect all deg(v)
components into a single component at the minimum cost. That is, MST(V − v) = MST(V )−

v + a1(v) + . . . + adeg(v)−1(v). Clearly, the set of edges of VMT(V ) is EM ∪ ⋃

v∈V

deg(v)−1⋃

i=1
ai(v).

4.2 Edge fault-tolerant minimum spanning multi-trees

In analogy to vertex failures, we define a graph that survives an edge failure and has minimum
cost among all such graphs. Intuitively, we require that the removal of an edge leaves us with
a spanning graph that contains a MST of the new set of edges. This concept is related to the
notion of the most vital edge (see [17, 18]) and to the notion of survivability of a network in
presence of an edge failure [10, 22].

For a set V of points in the Euclidean plane, |V | ≥ 3, an edge fault-tolerant minimum span-
ning multi-tree EMT(V ) = (V,E) is a connected minimum cost graph with the property that
for each x, y ∈ V , MST(C(V ) − (x, y)) ⊆ EMT(V ). Due to our non-degeneracy assumption
with respect to edge costs, the MST as well as the EMT are unique for a set V of points.

Let us clarify the relation between MST(V ) and EMT(V ).

Lemma 4.3 For any two-edge connected graph G = (V,E) and any edge e ∈ E, (MST(G) −
e) ⊆ MST(G− e).

Proof. Let e ∈ E, MST(G) = (V,EG), MST(G − e) = (V,EG−e). Assume there is an edge f
in MST(G) − e, e /∈ EG−e. (Note that f is an edge in MST(G).) Then MST(G − e) + f has
a cycle K containing f , and f is longest in K. Therefore K ⊆ G − e ⊆ G. That is, there is
the cycle K in G and f is longest edge in K. Therefore f cannot be an edge of MST(G), a
contradiction. 	

Corollary 4.4 For each point set V in the Euclidean plane, |V | ≥ 3, MST(V ) ⊆ EMT(V ).
Furthermore EMT(V ) =

⋃

e∈V×V
MST(C(V ) − e) and EMT(V ) is two-edge connected. 	

Proof. EMT(V ) is two-edge connected, since MST(C(V )−(x, y)) ⊆ EMT(V ) for each x, y ∈ V
and therefore EMT(V ) − (x, y) is connected for all x, y ∈ V , and therefore EMT(V ) contains
no bridge. 	
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This suggests a method for the construction of EMT(V ): we start with MST(V ) = (V,EM ).
For each edge e ∈ EM , by removing e we break the MST(V ) into two connected components,
say trees T1 and T2. Let a(e), the addition for the removal of e, be the second cheapest edge
connecting T1 with T2 (the cheapest is e). Clearly, the set of edges of EMT(V ) is EM ∪
⋃

e∈EM
{a(e)}. An algorithm implementing this method in O(mα(m,n)) worst case time and

space has been given by Tarjan [23] (pp. 712-713). Here m is the number of edges, n the
number of vertices and α is a functional inverse of Ackermann’s function.

4.3 Useful properties of minimum spanning multi-trees

In order to compute VMT efficiently, let us have a look at some useful properties of EMT and
VMT and their relation.

Lemma 4.5 Consider a set V of points in the Euclidean plane, |V | ≥ 3. Then EMT(V ) ⊆
VMT(V ).

Proof. Let (x, y) be an edge in MST(V ). Consider the cut (X,Y ) induced by (x, y) in
MST(V ), where X and Y are disjoint subsets of V , X ∪ Y = V , X and Y are the node sets of
the connected components of MST(V )− (x, y). Let (u, v) be the cheapest edge with u ∈ X and
v ∈ Y , (u, v) �= (x, y). Then (u, v) ∈ EMT(V ). From Corollary 4.4 we know that every edge in
EMT(V ) is such a second cheapest edge across a cut induced by a MST edge. W.l.o.g let x �= u
and x �= v. Assume (u, v) is not in MST(V − x). Then MST(V − x) contains an edge (u′, v′),
u′ ∈ X, v′ ∈ Y , c((u, v)) < c((u′, v′)). Contradiction. 	

Figure 1 illustrates for a given point set V in the Euclidean plane the relations between MST(V ),
EMT(V ), and VMT(V ).

Figure 1: (a) a given planar point set V , (b) MST(V ), (c) EMT(V ), and (d) VMT(V ).

Lemma 4.6 For each set V of n points in the Euclidean plane, the number of edges in VMT(V )
is at most 2n− 3.
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Proof. In the VMT-construction suggested in Section 4, we add to MST(V ) at most
∑

v∈V
(degMST (V )(v) − 1) edges. Since

∑

v∈V
(degMST (V )(v) − 1) = 2(n − 1) − n, the claim is

proved. 	

With Lemma 4.5 we immediately get:

Corollary 4.7 For each set V of n points in the Euclidean plane, the number of edges in
EMT(V ) is at most 2n− 3. 	

With the number of edges being bounded so strongly, it is natural to ask whether the multi-trees
are planar; planarity might help in the efficient computation. Unfortunately, we get:

Lemma 4.8 EMT(V ) for a set V of points in the Euclidean plane is not necessarily planar.

Proof. Figure 5 in the Appendix shows an example for V for which EMT(V ) is not planar.
	

With Lemma 4.5 we get

Corollary 4.9 VMT(V ) for a set V of points in the Euclidean plane is not necessarily planar.	

4.4 A bound on the cost of multi-trees

Since both minimum spanning multi-trees contain MST(V ), we aim at bounding their costs in
terms of the cost of the MST(V ).

Theorem 4.10 For a set V of points in the Euclidean plane, c(VMT(V )) < 4 · c(MST(V )).

Proof. We prove the existence of a graph G = (V,E) with the following properties:

1. c(G) < 4 · c(MST(V ));

2. MST(V ) ⊆ G

3. G tolerates the failure of a vertex; more precisely, for each v ∈ V , G contains exactly
degMST (V )(v)−1 edges that do not belong to MST(V ) and connect MST(V )−v into one
connected component.

Since VMT(V ) has minimum cost among all spanning graphs for V that contain MST(V )
and tolerate the failure of a vertex, the three properties together imply the theorem. Graph
G = (V,E) is constructed as follows. Pick an arbitrary vertex r ∈ V and consider MST(V ) as
a tree T rooted at r. Order the children of each vertex according to their geometric location,
in clockwise order around the vertex. For each vertex v that possesses a parent p(v) and
children q1(v), . . . , qdeg(v)−1(v), let edge-set E(v) = {(qi(v), qi+1(v))|1 ≤ i < deg(v) − 1} ∪
{(qdeg(v)−1(v), p(v))}. (In this paragraph for simplicity deg(v) denotes degMST (V )(v).) For the
root r let E(r) = {(qi(r), qi+1(r))|1 ≤ i < deg(r)}. Now, let E =

⋃

v∈V
E(v) ∪ EM . It is clear

that G has properties 2 and 3.
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To show that G has property 1, we charge the cost for each edge in some E(v) to an edge
of the MST(V ) in such a way that each MST edge is charged for at most three times its own
cost. The cost of a new edge (qi(v), qi+1(v)) between two adjacent children of the same vertex
v in T is no more than the sum of the costs of edges (v, qi(v)) and (v, qi+1(v)). In this way, a
MST edge is charged at most twice its own cost, once from each of the at most two adjacent
siblings. In addition, we charge the cost for a new edge from qdeg(v)−1(v) to its grandparent p(v)
to edges (qdeg(v)−1(v), v) and (v, p(v)), adding a third time its own cost to both edges. Since
the edges in T incident to the leaves of T are charged at most twice, we have cost strictly less
than 3 · c(MST(v)) for new egdes and cost c(MST(v)) for the MST. 	

With Lemma 4.5 we immediately get:

Corollary 4.11 For a set V of points in the Euclidean plane, c(EMT(V )) < 4 · c(MST(V )). 	

5 Efficient algorithms for vertex fault-tolerant multi-trees

It is by now standard textbook knowledge that the computation of a MST(V ) for a set V
of n points in the Euclidean plane takes only O(n log n) time in the worst case [21], even
though the underlying graph C(V ) has Θ(n2) edges. This is possible simply because C(V )
is never computed explicitly; instead, the fact that MST(V ) is a subgraph of the Delaunay
triangulation DT (V ) for V is used to first compute DT(V ) and then apply a MST algorithm to
DT(V ). DT(V ) can be computed (directly or via the Voronoi diagram) in O(n log n) time; it
has O(n) edges and is planar (by definition). A special MST algorithm for planar graphs even
runs in O(n) time [21].

For the computation of EMT(V ) and VMT(V ), we also want to avoid the explicit compu-
tation of C(V ) for efficiency reasons. We therefore search, similar in spirit to the role of DT(V )
for MST(V ), for a graph D(V ) that has few edges, can be computed efficiently, and contains
VMT(V ) (and therefore also EMT(V ), by Lemma 4.5). Let us define D(V ) as an appropriate
generalization of DT(V ), taking vertex failures into account. More precisely, let D(V ) = (V,E)
be the connected minimum cost graph with the property that for each v ∈ V , DT(V − v) ⊆
D(V ). Since MST(V ) ⊆ DT(V ) and therefore for all v ∈ V , MST(V − v) ⊆ DT(V − v) we have
VMT(V ) ⊆ D(V ). Let us call D(V ) the fault-tolerant Delaunay graph for V (see Figure 2).

This definition suggests a construction method for D(V ). We start with DT(V ). For each
vertex v ∈ V , we remove v from DT(V ) and update the Delaunay triangulation with the
algorithm of Aggarwal et al., given in [2].

For updating the Delaunay triangulation, if one vertex v is deleted, we only have to retri-
angulate the polygon in which v lies. For each vertex v with degDT (V )(v) �= 2, the updated
Delaunay triangulation contains at most degDT (V )(v) − 2 new edges. If degDT (V )(v) = 2, that
is v is element of the convex hull of V , the new convex hull simply drops v and both incident
edges and does not add any new edge to the triangulation.

Because the number of edges of DT (V ) is at most 3n − 6 due to planarity, we get a total
of at most 3n− 6 +

∑

v∈V
max{0, (degDT (V )(v)− 2)} = O(n) edges in D(V ). Using the technique

proposed in [2], all updates to DT(V ) and the computation of new edges can be performed in
time O(n) overall in the worst case. We summarize the discussion in the following theorem:
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Figure 2: DT(V ) (left) and D(V ) of point set V in Figure 1.

Theorem 5.1 Given DT(V ) for a set V of n points in the Euclidean plane, a fault-tolerant
Delaunay graph D(V ) can be computed in time O(n). D(V ) contains VMT(V ) and EMT(V ).

Proof. From the discussion above. 	

Let us now turn to the computation of VMT(V ) = (V,E), given D(V ). We first compute
MST(V ) from D(V ) in time O(n log n) for instance with Kruskal’s algorithm [20] (applying more
sophisticated MST algorithms does not pay off at this point, because the edges will anyway need
to be sorted in increasing order of their cost in our algorithm). We keep adding edges to MST(V )
as follows. We inspect the edges in D(V )−MST(V ) in order of increasing cost. We maintain a
collection C of subgraphs of D(V ), called bicomponents, where each bicomponent s = (Vs, Es) is
a subgraph of VMT(V ) and represents either a single edge e ∈ E (which is the case for each edge
of the minimum spanning tree initially) or a two-vertex connected component. Furthermore at
every particular stage of computing VMT(V ), we have that

⋃

s∈C
Vs = V , the bicomponents are

pairwise different, and if s1, s2 are two bicomponents, then s1 �⊆ s2. Additionally, Es1 ∩Es2 = ∅
for two edge sets s1, s2 in the same stage of computing VMT(V ).

For an inspected edge e = (v, w), we distinguish two cases. If e connects two vertices
in the same bicomponent, we discard e. Otherwise e connects two vertices in different bi-
components. In this case, we select e. We consider the path p = ({v, x1, x2, . . . xk, w},
{(v, x1), (x1, x2), . . . , (xk, w)}) from v to w in MST(V ). Path p and all bicomponents s =
(Vs, Es) that have a common edge with p, build in the particular stage of computing VMT(V )
a bicomponent. Therefore they are combined into one bicomponent. This computation ends
with a single bicomponent s0 = (VS0 , ES0) where Vs0 = V (cfr. the example, shown in Fig. 3
and 4).

In order to prove the correctness of this algorithm, we show that for a given point set V in
the Euclidean plane, in every stage of the computation, i.e., after rejecting or choosing an edge
e in D(V ), for every bicomponent s = (Vs, Es), we have s =VMT(Vs).
First we consider a useful lemma:

Lemma 5.2 For a set V of points in the Euclidean plane, let MST(V ) = (V,E) be the minimum
spanning tree of V , and let G′ = (V ′, E′) with V ′ ⊆ V be a connected graph for which G′ ⊆
MST (V ). Then MST(V ′) = G′.
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Figure 3: (a) D(V ) of point set V in Figure 1. The straight edges are edges of MST(V ). The
edges in D(V ) in increasing length are: (4, 5), (6, 7), (2, 4), (2, 7), (8, 9), (5, 6), (4, 7), (2, 5),
(2, 6), (4, 6), (2, 8), (1, 4), (1, 7), (4, 8), (7, 9), (5, 8), (6, 9). (b) VMT(V ) of point set V .

edge choose Esi of bicomponents si

{(1, 2)}, {(2, 3)}, {(3, 4)}, {(3, 5)}, {(3, 6)}, {(3, 7)}, {(1, 8)}, {(1, 9)}
(4, 5) yes {(1, 2)}, {(2, 3)}, {(3, 4), (4, 5), (3, 5)}, {(3, 6)}, {(3, 7)}, {(1, 8)}, {(1, 9)}
(6, 7) yes {(1, 2)}, {(2, 3)}, {(3, 4), (4, 5), (3, 5)}, {(3, 6), (3, 7), (6, 7)}, {(1, 8)}, {(1, 9)}
(2, 4) yes {(1, 2)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4)}, {(3, 6), (3, 7), (6, 7)}, {(1, 8)},

{(1, 9)}
(2, 7) yes {(1, 2)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)}, {(1, 8)},

{(1, 9)}
(8, 9) yes {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(5, 6) no {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(4, 7) no {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(2, 5) no {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(2, 6) no {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(4, 6) no {(1, 8), (1, 9), (8, 9)}, {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2)}
(2, 8) yes {(2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7), (6, 7)},

{(1, 2), (1, 8), (1, 9), (8, 9), (2, 8)},
(1, 4) yes {(1, 2), (1, 8), (1, 9), (8, 9), (2, 8), (2, 3), (3, 4), (4, 5), (3, 5), (2, 4), (2, 7), (3, 6), (3, 7),

(6, 7), (1, 4)}

Figure 4: Bicomponents in the computation of VMT(V ) (cfr. Figure 3(b).)

Proof. Given G′ = (V ′, E′) ⊆ MST(V ), G′ connected. Then G′ is spanning tree of V ′. As-
sume MST(V ′) �= G′. Hence c(MST(V ′)) < c((V ′, E′)). Let G be MST(V ), with the subgraph
(V ′, E′) replaced by MST(V ′). G is spanning tree of V . Therefore c(G) = c(MST(V )) −
c((V ′, E′)) + c(MST(V ′)) and, since c(MST(V ′)) − c((V ′, E′)) < 0, c(G) < c(MST(V )). Con-
tradiction. 	

11



     

It is easy to see that at the beginning of the computation of VMT(V ), every bicomponent
si = (Vsi , Esi) is a VMT, since |Esi | = 1 and therefore VMT(Vsi) = MST(Vsi). Now let us
consider any stage of computing the VMT(V ). All bicomponents are VMTs, and in the next
step the algorithm considers e. Furthermore all edges e′ /∈ MST, c(e′) < c(e), have already been
chosen or discarded by the algorithm. Now, if we discard e, we do not change any bicomponent,
and all bicomponents remain VMTs. If we choose edge e = (v, w), v and w do not belong to
the same bicomponent yet. The path p = (Vp, Ep) from v to w in MST(V ), (v, w), and all
bicomponents having a common edge with p build the new bicomponent.

Let si = (Vsi , Esi), 1 ≤ i ≤ bp ≤ |Ep|, be the bicomponents with si ∩ p �= ∅ and
si =

⋃
v∈Vsi

MST(Vsi − v), where bp is the number of bicomponents appearing on path p.
For simplicity let H = Vp ∪

⋃
Esi∩Ep �=∅ Vsi be the set of vertices in the new bicomponent and let

S =
⋃

Esi∩Ep �=∅ si be the set of old bicomponents to be connected into one with path p and the
chosen edge e. We show that (p+e)∪S =VMT(H), i.e. (p+e)∪S =

⋃
v∈H MST(H−v). Lemma

5.2 implies that MST(H) = p∪⋃
si∈SMST(Vsi). Assume (p+e)∪S �= ⋃

v∈H MST(H−v). Then
there is an edge e′ in

⋃
v∈H MST(H−v) and not in (p+e)∪ S or there is an edge e′ in (p+e)∪S

and not in
⋃

v∈H MST(H − v). In the first case there exists a vertex x ∈ Vp such that e′ is the
shortest connection of K1 and K2, who are two of the connected components of MST(H) − x.
Therefore c(e′) < c(e) and e′ is not chosen by the algorithm until now, a contradiction. In the
second case e′ ∈ S + e. Since the number of edges in

⋃
v∈H MST(H − v) is at least the number

of edges in (p+ e)∪S, if e′ = e or e′ �= e and e not in
⋃

v∈H MST(H − v), there is an edge e′′ in
⋃

v∈H MST(H−v), e′′ not in (p+e)∪S. That is there exists a vertex x ∈ Vp such that e′′ is the
shortest connection of K1 and K2, who are two of the connected components of MST(H) − x.
Therefore c(e′′) < c(e) and e′′ is not chosen by the algorithm until now, a contradiction. If
e′ �= e and e is in

⋃
v∈H MST(H − v), then c(e′) < c(e), and e′ is chosen by the algorithm.

That is there is a si0 (1 ≤ i0 ≤ |Ep|) with e′ is edge in si0 and therefore e′ is edge of
⋃

v∈Vsi0

MST(Vsi0
− v), a contradiction. This completes the proof of the correctness of the algorithm.	

Let us consider how to implement this algorithm efficiently. Since for any two bicomponents
si = (Vsi , Esi), sj = (Vsj , Esj ) in one step of computing VMT(V ), Esi ∩ Esj = ∅ for i �= j,
the sets of the bicomponents build a partition. For our purpose, it is sufficient to represent
a bicomponent by the set of its edges. So to update the bicomponents efficiently, we put the
edges of the bicomponents in a simple union find structure (cfr. [24]). MakeSet(e) creates a
new bicomponent consisting of the single edge e. In general, the two vertices incident with edge
e define a path in the rooted MST(V ) that can be traversed by following MST(V ) edges from
both vertices towards the root of the MST(V ) until the lowest common ancestor of the two
vertices is met. To decide when this happens, we keep track for each bicomponent of the vertex
closest to the root of the MST(V ). We call this vertex the root of the bicomponent and use
it as the indentifier of the bicomponent in the union-find structure. This identifier is created
easily in a makeset operation by taking the vertex of e closer to the root of MST(V ). Find(e)
returns the identifier of the bicomponent containing edge e. Union(e, f) joins the bicomponents
containing edges e and f .

Then we can describe the algorithm for VMT computation as follows:

procedure VMT(V : set of points in the Euclidean plane): set of edges;
Compute D(V );
Compute MST(D(V )) with Kruskal’s algorithm; (* Computes the rooted MST with the algo-
rithm of Kruskal, and a priority queue Q which contains the edges of D(V ) without the edges
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of MST(V ) in sorted order. Let r be the root of the rooted MST. *)
for all vertices v ∈ V do compute v.level (the level of v in the rooted MST);

(* Here r.level := 1 and son(v).level := v.level +1. *)
for all edges (v, w) ∈ MST do MakeSet((v, w));
while the number of bicomponents > 1 do

(v, w) := Min(Q); DeleteMin(Q);
if not SameBicomponent(v, w) then (* v and w join the bicomponents on the path p from
v to w in MST(V ) into a new one. *)

finished := FALSE; (* finished is set TRUE, if all bicomponents in path p are joined into
one bicomponent. *)
(v0, w0) := (v, w); (* Don’t loose the original. *)
MakeSet((v0, w0));
while not finished do (* All bicomponents in path p are walked along in descending
order of the levels. *)

Ev := FALSE; Ew := FALSE;
if v.level ≥ w.level then

v′ := Find(v, father(v));
Ev := TRUE;

if v.level ≤ w.level then
w′ := Find(w, father(w));
Ew := TRUE;

if not SameBicomponent(v′, w′) then
if Ev then Union((v, father(v)), (v0, w0)); v := v′;
if Ew then Union((w, father(w)), (v0, w0)); w := w′;

else
Union((v, father(v)), (v0, w0)); Union((w, father(w)), (v0, w0));
if v′.level = w′.level then Union((v′, father(v′)), (v0, w0));
finished := TRUE;

end VMT.

The procedure SameBicomponent is given by:

procedure SameBicomponent(v, w: node): boolean; (* Returns TRUE, if there are edges
e and f incident to v resp. w with e and f are in the same bicomponent, otherwise FALSE. *)

return Find((v, father(v))) = Find((w, father(w))) ;
end SameBicomponent.

Theorem 5.3 For a set V of n points in the Euclidean plane, VMT(V ) can be computed in
time O(n log n).

Proof. If the algorithm chooses an edge, the number of bicomponents decreases per one pass
through the while-statement by at least one as follows: Choosing an edge e = (v, w) means
creating a new set e. This increases the number of bicomponents momentarily by 1. Then we
join e and all bicomponents in the path p in MST(V ) connecting v with w. Path p consists of at
least two edges, and at least two edges in p are in different bicomponents (otherwise we do not
choose e). The creation of the new bicomponent hence decreases the number of bicomponents
by at least two. In summary after the pass through the loop, the number of bicomponents is
decreased by at least one.
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How often do we use the operations Find, Union, and SameBicomponent? At least n times,
if we only add one edge to receive a VMT. In worst case we pass the outer while loop (n − 2)
times and reduce the number of bicomponents by one in each pass through the loop. Then
every pass causes two Find, two Union operations, and one SameBicomponent operation. In
summary, we use any of the three operations at most 2n− 2 times.

MakeSet can be implemented in time O(1), Union and Find in time O(log n), and since
the degree of a vertex in the Euclidean MST is bounded by a constant, also SameBicomponent
needs time O(log n). 	

We also arrive at a O(n log n) time algorithm if we apply Eppstein’s offline algorithm [13] of
the dynamic minimum spanning tree problem to D(V ). Although we are in the Euclidean case,
this is possible, since we only remove one vertex in the MST at once. Eppstein’s algorithm,
however, solves a more general problem and, as a consequence, is more complex and therefore
harder to implement.

6 A fault-tolerant graph with weaker conditions than a VMT

In this section, we relax the conditions of a VMT with the goal of arriving at a faster algorithm.
We search for a vertex failure tolerant graph with cost no more than a constant times the cost
of the MST. We give a linear time algorithm building a cheap two-vertex connected graph,
C2VG(V ), for a Euclidean point set V in the plane, |V | ≥ 3, given DT(V ). The cost of G is
c(G) ≤ k · c(MST (V )), k = 4. This is the algorithm:

1. Compute MST(V ) from DT(V ) with the algorithm by Cheriton and Tarjan [8].

2. Build a new graph G′(V ) = (V,E′) with edge set E′ := {(v, x)|(v, w) and (w, x) are edges
in MST(V )}.

3. Compute the minimum spanning forest MSF(G′) with the algorithm by Cheriton and
Tarjan [8].

4. C2VG(V ) = MST(V )∪ MSF(G′(V )).

The next Lemma shows that C2VG(V ) has the desired properties.

Lemma 6.1 1. G′(V ) has O(n) edges.

2. C2VG(V ) is two-vertex connected.

3. c(C2VG(V )) ≤ 4 · c(MST(V ))

4. Given DT(V ), the algorithm runs in linear time.

Proof. Consider the following construction with a two-coloring of MST(V ), using colors red
and blue.

1. Let e ∈ E′, e = (v, w). Then either v and w are red or both are blue, and there are O(|V |)
vertices of each color. All edges with red vertices are in one connected component in G′,
all edges with blue vertices are in a second connected component. W.l.o.g. we consider
the graph with edges with red vertices. To every blue vertex v, we conceptually attach
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all edges incident to the adjacent red vertices of v. The degree of a vertex in a Euclidean
minimum spanning tree is bounded by 5 (given that all edge lengths are different), and
therefore at most 10 edges belong to any blue vertex. That is, G′(V ) has O(|V |) edges.

2. By construction, MST(V )∩MSF(G′(V )) = (V, ∅). Consider any vertex v0 ∈ V . Let
v1, . . . vk be the vertices adjacent to v0 in MST(V ); they all have the same color. All
vertices of the same color are a connected component of MSF(G′(V )). Since the color of
v0 differs from the color of each vi, 1 ≤ i ≤ k, in C2VG(V ) − v0 vertices v1, . . . , vk are
connected within MSF(G′(V )). Hence, C2VG(V ) − v0 is connected.

3. This follows directly from the proof of the cost bound of VMT(V ).

4. The algorithm proposed by Cheriton and Tarjan [8] to build a MST of a graph G = (V,E)
runs in time O(|E|). That is, steps 1 (the number of edges of the Delaunay triangulation is
linear in the number of vertices) and 3 (cfr. Lemma 6.1, property 1) of our algorithm take
O(|V |) time. It is easy to see that also step 4 takes no more than linear time. Consider
step 2. Every vertex in MST has degree at most 5. That is, since G′ contains at most 20
edges incident to a vertex, we can find every edge in constant time.

	

7 Conclusion

In this paper, we have taken a step towards the definition and efficient computation of networks
for points in the plane that tolerate the failure of a vertex and do so at low cost. We have used
the rich structure of the underlying Euclidean space throughout. A number of more general
settings of the problem therefore suggest themselves: how does the problem change for other
interesting metrics, such as obstacles in the plane, or on a terrain? It seems also interesting to
look into the problem with more than one failure. A straight extension of our approach makes
things technically very complicated and does not promise to adapt well to higher numbers
of failures. Also, other measures of quality than the total cost should be investigated. In
particular, we are interested in keeping the diameter of the network low after failures of edges
and vertices. Finally, it would of course be desirable to integrate fault-tolerance with many of
the properties that have been considered into one spanning graph structure, similar in spirit to
what Arya et al. [4] have accomplished for Euclidean spanners. We have, however, no clue as
to how this can be achieved.
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Appendix

Figure 5: A subgraph sketch of a non planar EMT: the subgraph is isomorphic to K5. The
MST is shown with dotted lines and solid edges. The dashed edges are edges in EMT\MST:
deleting a solid edge that is fully contained in one of the cyles forces the addition of a dashed
one. It is important that in the cycles there are no other points than the ones shown.
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