
ETH Library

Using optimistic atomic broadcast
in transaction processing systems

Report

Author(s):
Kemme, Bettina; Pedone, Fernando; Alonso, Gustavo; Schiper, André

Publication date:
1999

Permanent link:
https://doi.org/10.3929/ethz-a-006653365

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 325

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006653365
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Using Optimistic Atomic Broadcast in Transaction

Processing Systems �

Technical Report No� ���

ETH Z�urich� Departement of Computer Science

Bettina Kemme� Fernando Pedoney Gustavo Alonso� Andr�e Schipery

�Information and Communication Systems yOperating Systems Laboratory

Institute of Information Systems Computer Science Department

Swiss Federal Institute of Technology �ETH� Swiss Federal Institute of Technology �EPFL�

ETH Zentrum� CH����	 Z
urich IN�Ecublens� CH����� Lausanne

E�mail
 fkemme�alonsog�inf�ethz�ch fFernando�Pedone�Andre�Schiperg�ep��ch

http
��www�inf�ethz�ch�department�IS�iks� http
��lsewww�ep��ch�

Abstract

Atomic broadcast primitives are often proposed as a mechanism to allow fault�tolerant

cooperation between sites in a distributed system� Unfortunately� the delay incurred be�

fore a message can be delivered makes it di�cult to implement high performance� scalable

applications on top of atomic broadcast primitives� Recently� a new approach has been

proposed for atomic broadcast which� based on optimistic assumptions about the com�

munication system� reduces the average delay for message delivery to the application� In

this paper� we develop this idea further and show how applications can take even more

advantage of the optimistic assumption by overlapping the coordination phase of the

atomic broadcast algorithm with the processing of delivered messages� In particular� we

present a replicated database architecture that employs the new atomic broadcast prim�

itive in such a way that communication and transaction processing are fully overlapped�

providing high performance without relaxing transaction correctness�

� Introduction and Motivation

Group communication primitives are often proposed as a mechanism to increase fault tol�

erance in distributed systems� These primitives use di�erent ordering semantics to provide

a very �exible framework in which to develop distributed systems� One example of the

available semantics is the Atomic Broadcast primitive �CT��	 BSS��
 which guarantees that

all sites deliver all messages in the same order� Unfortunately	 it is also widely recognized

that group communication systems su�er from scalability problems �BC��	 FvR��
� While

performance characteristics depend on the implementation strategy	 the fundamental bot�

tleneck is the need to do some coordination between sites before messages can be delivered�

�Part of this work has been funded by Swiss Federal Institute of Technology �ETH and EPFL� within the

DRAGON Research Project �Reg�Nr� ����	���
�

�

This results in a considerable delay since messages cannot be delivered until the coordination

step has been completed� Such delay makes it very di
cult to implement high performance	

scalable applications on top of group communication primitives�

Recently	 a new approach has been proposed for atomic broadcast which	 based on optimistic

assumptions about the communication system	 reduces the average delay for message delivery

to the application �PS��
� The protocol takes advantage of the fact that in a LAN	 messages

normally arrive at the di�erent sites exactly in the same order� Roughly speaking	 this

protocol considers the order messages arrive at each site as a �rst optimistic guess	 and only

if a mismatch of messages is detected	 further coordination rounds between the sites are

executed to agree on a total order� The idea has signi�cant potential as it o�ers a feasible	

realistic	 and reasonable solution to the performance problems of group communication�

In this paper we develop this idea further	 and show how applications can take full ad�

vantage of the optimistic assumption by overlapping the coordination phase of the atomic

broadcast algorithm with the processing of delivered messages� In particular	 we present

a replicated database architecture that employs the new atomic broadcast primitive in

such a way that communication and transaction processing are fully overlapped providing

high performance without relaxing transaction correctness �i�e�	 serializability�� Our general

database framework is based on broadcasting updates to all replicas	 and using the total

order provided by the atomic broadcast to serialize the updates at all sites in the same

way �AAES��	 KA��b	 KA��a	 PGS��	 PGS��
� The basic idea is that the communication

system delivers messages twice� First	 a message is preliminary delivered to the database

system as soon as the message is received from the network� The transaction manager uses

this tentative total order to determine a scheduling order for the transaction and starts ex�

ecuting the transaction� While execution takes place without waiting to see if the tentative

order was correct	 the commitment of a transaction is postponed until the order is con�rmed�

When the communication system has determined the de�nitive total order	 it delivers a con�

�rmation for the message� If tentative and de�nitive orders are the same	 the transaction is

committed	 otherwise further measures have to be taken to guarantee that the serialization

order obeys the de�nitive total order� If the time it takes to receive con�rmation of the order

in which messages are delivered is comparable to the time it takes to execute a transaction	

and there are not many cases in which the tentative order di�ers from the de�nitive order	

then the overhead of the group communication mechanism has been hidden behind the cost

of executing a transaction�

The results reported in this paper make several important contributions� First	 our solu�

tion avoids most of the overhead of group communication by overlapping the processing of

messages �execution of transactions� with the algorithm used to totally order them� In envi�

ronments where the optimistic assumption holds �namely local area networks� this may be

a �rst step towards building high performance distributed systems based on group commu�

nication primitives� Second	 the transaction processing strategy follows accepted practice in

database management systems in that we use the same correctness criteria �i�e�	 serializabi�

lity� and mechanisms as existing database management systems� Third	 we solve the problem

of the mismatch between the total order used in group communication and the data �ow

ordering typical of transaction processing	 thereby not losing concurrency in the execution of

�

transactions� Finally	 our approach compares favorably with existing commercial solutions

for database replication in that it maintains global consistency and has the potential to o�er

comparable performance�

The paper is structured as follows� In Section � we describe the system model and intro�

duce some de�nitions� In Section � we present the atomic broadcast primitive used in our

database algorithms	 and discuss degrees of optimism for atomic broadcast protocols� The

optimistic transaction processing is described in Section �	 and its correctness proof in Sec�

tion �� Queries are discussed in Section �� In Section �	 we enhance our transaction model

and allow �ne granularity concurrency control� Section � concludes the paper�

� Model and De�nitions

Our formal de�nition of a replicated database combines the traditional de�nitions of dis�

tributed asynchronous systems and database systems� A replicated database consists of a

group of sites N � fN�� N�� � � � � Nng which communicate with each other by exchanging

messages� We assume asynchronous �no bound on the transmission delays� and reliable

communication� Reliable communication ensures that a message sent by a site Ni to a site

Nj is eventually received by Nj� Sites can only fail by crashing �i�e�	 we exclude Byzantine

failures�	 and always recover after a crash�

We assume a fully replicated system	 i�e�	 each site Ni contains a copy of the entire database�

The data can be accessed by executing transactions� Updates are coordinated on the replicas

by two di�erent modules� the communication system using Atomic Broadcast with Opti�

mistic Delivery and the transaction management providing Optimistic Transaction Process�

ing �OTP��

��� Atomic Broadcast with Optimistic Delivery

Communication is based on atomic broadcast� Each site broadcasts a message to all other

sites� Atomic broadcast provides an ordering of all messages in the system	 i�e�	 all sites

receive all messages in the same order� Furthermore	 reliability is provided in the sense that

all sites decide on the same set of messages to deliver� Sites that have crashed will deliver

the messages after recovering from the failure�

Although there exist many di�erent ways to implement total order delivery �CT��	 BSS��	

DM��	 MMSA���	 vRBM��
	 all of them require some coordination between sites to guar�

antee that all messages are delivered in the same order at the di�erent sites� However	 when

network broadcast �e�g�	 IP�multicast� is used	 there is a high probability that the messages

arrive at all sites spontaneously totally ordered �PS��
� If this happens most of the time	

it seems to be a waste of resources to delay the delivery of a message until the sites agree

to this same total order� Instead	 one could optimistically process the messages as they are

received� If a message is processed out of order	 one has to pay the penalty of having to undo

the processing done for the message	 and redo it again in the proper order� This approach

is conceptually similar to the virtual time proposed by �Jef��
�

In order to illustrate the spontaneous total order property of local area networks	 we have

conducted some experiments on a cluster of � sites �Ultrasparc � workstations� connected

�

by an Ethernet network ��� Mbits�s�	 where all sites simultaneously send messages using IP

multicast� Figure � shows the percentage of spontaneously ordered messages vs� the interval

between two consecutive messages on each site� For example	 for this con�guration	 if each

site sends one message each � milliseconds	 around ��� of the messages arrive at all sites in

the same order�

82

84

86

88

90

92

94

96

98

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5P
er

ce
nt

ag
e

of
 s

po
nt

an
eo

us
 o

rd
er

ed
 m

es
sa

ge
s

Time between broadcast in msec

Spontaneous Ordered Messages

Figure �� Spontaneous total order in a ��site�system

The atomic broadcast with optimistic delivery used in this work	 is formally de�ned by the

three primitives shown below�

� TO�broadcast�m� broadcasts the message m to all sites in the system�

� Opt�deliver�m� delivers a messagem optimistically to the application� Opt�deliver

does not guarantee total order� We consider the order perceived by the application by

receiving the sequence of Opt�delivered messages as a tentative order�

� TO�deliver�m� delivers m de�nitively to the application� The order perceived by the

application by receiving the sequence of TO�deliveredmessages is called the de�nitive

order�

In practice	 TO�deliver�m� will not deliver the entire body of the message �which has

already been done OPT�deliveringm�	 but rather deliver only a con�rmation message that

contains the identi�er of m� Further details and a complete speci�cation of the atomic

broadcast with optimistic delivery is given in Section ��

��� Transaction Model

Typically	 there are three ways to interact with a relational database� One is to use SQL

interactively through a console� A second one is to use embedded SQL	 that is	 to use SQL as

part of programs written in other programming languages such as C� Program execution and

�ow control takes place outside the database system and only the speci�c database operations

are transfered to the database system� A third possibility is to use stored procedures� A

stored procedure allows to encapsulate complex interactions with the database into a single

�

procedure which is executed within the database context� It can be invoked using standard

remote procedure call �RPC� mechanisms� While discussing the nature and advantages of

stored procedures is beyond the scope of this paper	 it must be pointed out that it is an

approach that greatly facilitates interaction with databases as it allows to ignore the database

schema and the query language entirely� Stored procedures are written by experts and then

can be easily used by programmers which do not need to know anything about the underlying

database system� Since the entire code	 both data manipulation and the �ow control of the

program	 are executed within the scope of the database system	 this approach leads to better

performance and simpli�ed access��

For simplicity	 initially	 we assume that all data access is done through stored procedures	

with one transaction corresponding to one stored procedure� In the following	 we use trans�

action and stored procedure as equivalent terms� Since the details of transactions are hidden

by the use of stored procedures	 we use a simpli�ed version of the traditional transaction

model �BHG��
� Transactions access the database by reading and writing �updating� ob�

jects of the database� Transactions execute atomically	 i�e�	 a transaction T either commits

or aborts all its results� It is possible for two or more transactions to access the database

concurrently� Two transactions con�ict if both access the same object X and at least one

of the transactions updates X � A history H is a partial order of a set of transactions and

re�ects one possible execution� All con�icting transactions contained in H are ordered� We

only look at the committed projection of a history	 which is the history after removing all

active or aborted transactions� A history H is serial if it totally orders all transactions� A

correct execution will be determined in terms of con�ict equivalence to a serial history� Two

histories	 H� and H�	 are con�ict equivalent if they are over the same set of transactions and

they order con�icting transactions in the same way� A history H is said to be serializable if

it is con�ict equivalent to some serial history�

Since we use a replicated database system	 ��copy�serializability will be the correctness cri�

terion� despite the existence of multiple copies an object appears as one logical copy �also

called ��copy�equivalence� and the execution of concurrent transactions is equivalent to a

serial execution over the logical copy �serializability��

The serializable execution of concurrent transactions is achieved through concurrency con�

trol� The concurrency control mechanisms allow non�con�icting transactions to execute in

parallel while con�icting ones have to be serialized� A concurrency control protocol provides

serializability when all executions it allows are serializable� In a replicated database system

the combined concurrency control and replica control protocols provide ��copy�serializability

if the following holds�� H �
S
H Hi is serializable with H�� H�� � � � � Hn being the histories at

sites N�� � � � � Nn�

In Section �	 we enhance the model to be able to serialize transactions on the level of a single

operation and not on the entire transaction�

�In fact� many commercial databases base their replication solutions on the use of stored procedures �Sta
��

Gol
��
�We de�ne the union operation

S
H
between histories as follows� Let H � ����H� be a history where �

is a set of transactions� and �H is a set de�ning a transitive binary relation between transactions in �� If H �

and H �� are two histories� then H � H �
S
H
H �� is such that � � ��

S
��� and �H���

H

S
���

H �

�

��� Concurrency Control

For our purposes and to simplify the presentation	 we assume a rather simple version of

concurrency control� We assume that each stored procedure �or transaction� belongs to one

of several disjoint con�ict classes� The procedures of one con�ict class only access a certain

partition of the database	 and di�erent con�ict classes work on di�erent partitions� A con�ict

class is therefore determined by a set of objects	 and transactions belonging to this class are

only allowed to access these objects� This means that transactions within one con�ict class

have a high probability of having con�icts while it is assured that transactions from di�erent

con�ict classes do not con�ict�

With this assumption	 concurrency control is done as follows �Figure ��� For each con�ict

class C there exists a FIFO class queue CQ� When a transaction T 	 T � C	 is started	 it is

added to CQ� When T is the only transaction in CQ	 then it can be submitted to the data

manager� When there are already other transactions queued in CQ	 T has to wait� When

a transaction commits �this only happens when the transaction is the �rst one in its class

queue�	 it is removed from the queue and the next transaction waiting �if any� is submitted

for execution� This means that whenever transactions are in the same con�ict class	 they

are executed sequentially� When they are in di�erent classes	 their execution is not ordered�

It is easy to see that this protocol guarantees serializability because con�icting transactions

are fully serialized�

This mechanism is a simpli�ed version of the standard lock table used in existing database

systems �GR��
� The di�erence is that a lock table has a queue for each data item	 and an

entry corresponds to one transaction operation	 i�e�	 a transaction can have several entries in

a lock table	 while our approach has a queue per disjoint class and a transaction is exactly

queued in one class queue once when the transaction begins� Later on	 we show how these

same ideas can be applied to the more general case�

CQ1

CQ2

CQ3

Queues
Class

Ti Tm

Tj

Tl TnTk

Conflict
Classes

C2

C1

C3

Figure �� Con�ict classes and their class queues

�

��� Execution Model

We use a variation of the read�one�write�all approach for replica control� When a user

submits a query �i�e�	 a transaction that does not update any data� to a site N in the

system	 the query is executed locally at N � This is very important	 because replication is

mainly used to provide fast local read access �KA��b
� However	 when a user sends the

request for an update transactions to N 	 N TO�broadcasts the request to all sites so that

the updates are executed at all sites� Stored procedures support this approach very well�

Since they are prede�ned	 the type of the transaction �query or update transaction� can be

declared in advance� In the next sections	 we �rst focus on update transactions only� Queries

are considered in section ��

Figure � depicts the coordination of the communication manager and the transaction man�

ager to execute update transactions� The communication manager receives and orders

TO�broadcasted requests� A �rst module	 the Tentative Atomic Broadcast module	 re�

ceives the messages	 and immediately Opt�delivers them to the transaction manager� In

the transaction manager part of the system	 the Serializationmodule takes the messages	 an�

alyzes the corresponding transactions and adds them to the corresponding class queue� The

Execution module executes the transactions of the class queues concurrently as long as they

do not belong to the same con�ict class� However	 whenever they con�ict	 they are ordered

according to the tentative order� If two transactions T� and T� con�ict	 and T� is tentatively

ordered before T�	 then T� has to wait until T� commits before it can start executing� How�

ever	 transactions are not committed until they are TO�delivered and their de�nitive order

is determined� Once the communication manager	 via the De�nitive Atomic Broadcast mod�

ule	 establishes a de�nitive total order for a message	 the message is TO�delivered to the

Correctness Check module of the transaction manager� This module compares the tentative

serialization order with the serialization order derived from the de�nitive total order� If they

match	 then the TO�delivered transaction can be committed� If there are mismatches	 then

measures need to be taken to ensure that the execution order is correct� This may involve	

as it will be later discussed	 aborting and rescheduling transactions� Using this mechanism	

the system guarantees one�copy serializability for the committed transactions�

� Atomic Broadcast with Optimistic Delivery

In this section we de�ne the properties of the atomic broadcast primitives on which our

database algorithm is based	 and discuss some degrees of optimism exploited by atomic

broadcast protocols�

Atomic broadcast protocols have traditionally been de�ned by a single delivery primitive �CT��	

BSS��	 DM��	 MMSA���	 vRBM��
 that guarantees that no site delivers a message out of

order �total order property �HT��
�� Only recently	 optimistic protocols that exploit the

characteristics of the network	 or the semantics of the application	 have been considered�

In �PS��
	 the authors propose an Optimistic Atomic Broadcast protocol that �rst checks

whether the order in which messages are received is the same at all sites� If so	 the algorithm

does not incur in any further coordination between sites to reach an agreement on the order

of such messages� Since the veri�cation phase introduces some additional messages in the

�

Communication Manager

CQi

Transaction Manager

CQj

Tentative

Module

SerializationTentative
Atomic Broadcast

Module

Tentative

serial

Reorder

Definitive

Commit

Execution

Check
Module

Transaction

Module

Class Queues

serial order
Tentative

Opt-deliver:

serial order
Definite

TO-deliver:

Atomic Broadcast

order

Correctness

TO-broadcast

Figure �� Execution model

protocol	 there is a tradeo� between optimistic and conservative �non�optimistic� decisions�

However	 messages are never delivered in the wrong order to the application�

The approach proposed here is a more aggressive version of the protocol in �PS��
	 in that

it shortcuts the veri�cation phase� This is possible because the application	 that is	 the

database	 allows mistakes �due to optimistic delivery� to be corrected by undoing operations

and redoing them later	 in the de�nitive order� This approach has signi�cant potential since

it does not only rely on the optimism about the network	 but also on the semantics of the

application	 that in this case does not always require messages to be totally ordered at all

sites �i�e�	 if two messages contain transactions that do not belong to the same con�ict class	

total order between these messages is not necessary��

Di�erent degrees of optimism are summarized in Figure � �for simplicity	 we consider a

scenario without failures�� If messages are sent to all sites using network broadcast	 there is

a high probability that they will reach all sites in the same order�

TO-Deliver(m)
(optimistic)

TO-Deliver(m)
(conservative)

message to all sites
time to send a time to check whether

the message reached
all sites in the same order

sites deliver the message
in the same order

time to ensure that all

Atomic Broadcast
with

Optimistic Delivery

Optimistic
Atomic

Broadcast

Traditional Atomic
Broadcast Protocols

Opt-Deliver(m)TO-Broadcast(m)

time

Figure �� Degrees of optimism

The Atomic Broadcast with Optimistic Delivery �de�ned in Section ���� is speci�ed by the

following properties�

Termination� If a site TO�broadcasts m	 then every site eventually Opt�delivers m and

�

TO�delivers m�

Global Agreement� If a site Opt�delivers m �TO�delivers m� then every site eventually

Opt�delivers m �TO�delivers m��

Local Agreement� If a site Opt�delivers m then it eventually TO�delivers m�

Global Order� If two sitesNi andNj TO�deliver twomessagesm andm�	 thenNi TO�delivers

m before it TO�delivers m� if and only if Nj TO�delivers m before it TO�delivers

m��

Local Order� A site �rst Opt�delivers m and then TO�delivers m�

These properties state that every message TO�broadcast by a site is eventually Opt�delivered

and TO�delivered by every site in the system� The order properties guarantee that no site

TO�delivers a message before Opt�delivering it	 and every message is TO�delivered �but

not necessarily Opt�delivered� in the same order by all sites�

� Optimistic Transaction Processing

In this section	 we show how transactions are executed in the system	 and present the OTP�

algorithm for optimistic transaction processing�

��� General Idea

To better understand the algorithms described below	 the idea is �rst further elaborated

using an example� Assume two sites N and N � where the following tentative sequence of

update transactions �messages� is delivered to the database�

Tentative total order at N � T�� T�� T�� T�� T�� T�

Tentative total order at N � � T�� T�� T�� T�� T�� T�

Assume as well that there are three di�erent con�ict classes and the distribution of the

transactions is T�� T� � Cx	 T�� T� � Cy	 and T�� T� � Cz � When the scheduler receives the

transactions in tentative order	 it places them as follows in the queues�

At N � CQx � T�� T�

CQy � T�� T�

CQz � T�� T�

At N � � CQx � T�� T�

CQy � T�� T�

CQz � T�� T�

The transaction manager will then submit the execution of the transactions at the head of

each queue	 i�e�	 T�	 T�	 and T� are executed at N 	 and T�	 T�	 and T� are executed at N ��

�

When the transactions terminate execution	 the transaction manager will wait to commit

them until their ordering is con�rmed� Assume that the de�nitive total order turns out to

be�

Definitive total order � T�� T�� T�� T�� T�� T�

This means that at N 	 the de�nitive total order is identical to the tentative order	 while at

N � the de�nitive order has changed in regard to the tentative order for transactions T� and

T� and for transactions T� and T��

Upon receiving the messages in de�nitive total order	 the transaction manager has to check

whether what it did makes sense� At N 	 the tentative order and the de�nitive order are the

same	 thus	 transactions T�	 T�	 and T� can be committed and the next transactions in the

queues executed� Since the de�nitive ordering for T�	 T� and T� has also been established	

once these transactions are completely executed they can also commit�

At N �	 however	 things are more complicated since the de�nitive total order is not the same

as the tentative order� However	 we can see that the ordering between T� and T� is not really

important because these two transactions do not con�ict� However	 the order between T� and

T� is relevant since they con�ict� Given that the serialization order must match the de�nitive

total order of the communication system in the case of con�icts	 the transaction manager

has to undo the modi�cations of T� and �rst perform the ones of T� before it reexecutes T��

It is trivial for the transaction manager of N � to detect such con�icts� Assume T� and T�

have been Opt�delivered and T� is ordered before T� in the con�ict queue CQz � When

T� is TO�delivered �note	 that T� is TO�delivered before T��	 the transaction manager

of N � performs a correctness check� It looks in the queue and scans through the list of

transactions� The �rst transaction is T� and T� has not yet been TO�delivered� The

wrong order is detected and the updates of T� can be undone using traditional recovery

techniques �BHG��
� T� will then be appended to the queue after T�� To be able to detect

whether a transaction in the queue has already been TO�delivered	 the transaction manager

should mark transactions as TO�delivered� This can be done during the correctness check�

In our example	 the transaction manager marks T� TO�delivered when it performs the

check� When at a later timepoint T� is TO�delivered	 the transaction manager performs

again a correctness check� It looks in the queue and scans through the list of transactions�

The �rst transaction is now T�� Since T� is marked TO�delivered the transaction manager

knows that this time the scheduling of T� before T� was correct and no rescheduling has to

take place� Thus	 T� is simply marked TO�delivered� Note	 that the transaction manager

does not need to realize that the tentative and the de�nitive order for T� and T� did not

match�

With this method there is no need for the transaction manager to memorize the tentative

and de�nitive orders� It only uses the primitives Opt�deliver and TO�deliver and marks

TO�delivered transactions committable	 because once TO�delivery has taken place	 the

transaction will not be aborted anymore� Whenever a transaction is marked committable and

all its operations have been executed it can commit and be removed from the queue	 so that

the next transaction can be started� Reordering will take place only when transactions in the

��

same queue are not in the right order	 this means that when a transaction is TO�delivered

but there are preceding transactions in the same queue which are not yet committable�

This example shows both the basic mechanisms used as well as the advantages of the ap�

proach� Namely	 how communication and transaction execution can be done at the same

time� Note also that	 whenever transactions do not con�ict	 the discrepancy between the

tentative and the de�nitive orders does not lead to additional overhead because ordering

these transactions is not necessary �see T� and T� at N
��� This means that in the case of low

to medium con�ict rates among transactions	 the tentative and the de�nitive order might

di�er considerably without leading to high abort rates �due to reordering��

��� Algorithm

In the following	 we present the OTP�algorithm for optimistic transaction processing� Its

main tasks are the maintenance of a serialization order	 a controlled execution and a correct

termination �commit�abort� of the transactions� For simplicity	 we divide the algorithm into

di�erent parts according to the di�erent modules described in section ����

The transaction management relies on the semantics of the primitives Opt�deliver�m� and

TO�deliver�m� provided by the communication system �see section ����� The serialization

module determines the serialization order on behalf of Opt�deliveredmessages	 the correct�

ness check module checks and corrects this order on behalf of TO�delivered messages	 and

the execution module executes the transactions� Note that these di�erent modules do not

necessarily represent di�erent threads of execution but rather separate the di�erent steps in

the lifetime of a transaction� Since all modules access the same common data structures	

some form of concurrency control between the modules is necessary �for instance	 by using

semaphores�� Moreover	 we assume without further discussing them here that there are two

functions	 commit and abort	 that perform all the operations necessary to commit or abort

a transaction locally�

Care must be taken that at most one transaction of each con�ict class is executed at a time	

and that transactions do not commit before they are both executed and TO�delivered to

guarantee that the serialization order obeys the de�nitive total order� To do so	 we label each

transaction with two state variables� The execution state of a transaction can be active or

executed� The delivery state can be pending �after Opt�deliver� or committable �after

TO�deliver��

The serialization module is activated upon Opt�delivery of a transaction� Its job	 depicted

in Figure �	 is to append Opt�delivered transactions to their corresponding con�ict classes

�S��	 to mark that this serialization order is still tentative �S��	 and to submit the execution

of transactions when there are no con�icts �S���

The execution module has to inform the transaction manager about completely executed

transactions �Figure ��� When a transaction is both executed and TO�delivered �E��	 it

can commit �E��� If a transaction has completely executed before its TO�delivery	 it must

be marked accordingly �E��� Note that only the �rst transaction in a queue can be marked

executed�

��

Upon Opt�delivery of message m containing transaction Ti�

S� Append Ti to the corresponding class queue CQ

S� Mark Ti as pending and active

S� if Ti is the only transaction in CQ

S� Submit the execution of the transaction

S� end if

Figure �� Serialization Module

Upon complete execution of transaction Ti�

E� if Ti is marked committable �see correctness check module�

E� commit Ti and remove Ti from the corresponding CQ

E� Submit the execution of the next transaction in CQ

E� else

E� Mark Ti executed

E� end if

Figure �� Execution Module

The correctness check module is activated upon TO�delivery of a transaction� Figure �

depicts the di�erent steps� The module veri�es whether the preliminary execution of a

transaction was correct and reschedules the transaction if this is not the case�

Since each message is Opt�delivered before it is TO�delivered �Local Order property�	 it is

guaranteed that there is an entry for a transaction T in its corresponding class queue �CC���

The �rst transaction of a class queue commits whenever it is TO�delivered and totally

executed �CC�	CC�� �both events must be true� and the execution of the next transaction in

the class queue can be submitted �CC��� If a transaction cannot be committed immediately

upon its TO�delivery it is marked committable �CC�� to distinguish between transactions

whose �nal serialization order has been determined and those where TO�delivery is still

pending� The last part of the protocol checks whether the tentative and the de�nitive order

are di�erent for con�icting transactions� If so	 abort �CC�	CC�� and reordering �CC��� take

place� Note that abort does not mean that the aborted transaction will never be executed

and committed� The aborted transaction will be reexecuted at a later point in time� The

protocol guarantees that all committable transactions are ordered before all pending ones

in the class queue CQ �due to step CC���� In particular	 if transaction T of queue CQ is

TO�delivered and the �rst transaction in CQ is still pending	 all transactions before T are

pending� Therefore	 step CC�� schedules T to be the �rst transaction in the queue �CC���	

and step CC�� keeps the execution of transactions in this queue running�

We illustrate this further with two examples �see Figure ��� In the following we use the follow�

ing notation� a for active	 e for executed	 p for pending and c for committable� In the �rst

example	 a class queue has the following entries� CQ � T��a� c
� T��a� c
� T��a� p
� T��a� p
�

This means that both T� and T� have been TO�delivered	 but not T� and T� and the exe�

cution of T� is still in progress� When the TO�delivery of T� is now processed	 T� is simply

��

Upon TO�delivery of message m containing transaction Ti�

CC� Look for the entry of Ti in the corresponding class queue CQ

CC� if Ti is marked executed �can only be the �rst one in CQ�

CC� Commit Ti and remove it from CQ

CC� Submit the execution of the next transaction in CQ if existing

CC� else �not yet fully executed or not the �rst one in CQ�

CC� Mark Ti committable

CC� if the �rst transaction Tj in CQ is marked pending

CC� Abort Tj
CC� end if

CC�� Schedule Ti before the �rst transaction Tk in CQ marked pending

CC�� if Ti has now become the �rst transaction in CQ

CC�� Submit the execution of Ti
CC�� end if

CC�� end if

Figure �� Correctness Check Module

T1[a,c] T2[a,c] T4[a,c] T3[a,p]

T1[a,c] T2[a,c] T3[a,p] T4[a,p]CQ

CQ

(I)

(II)

T-delivery(T4)

T1[e,p] T2[a,p] T3[a,p] T4[a,p]CQ(I)

T-delivery(T4)

abort(T1)(II)

(III) T4[a,c] T1[a,p] T2[a,p] T3[a,p]CQ

�a� �b�

Figure �� Examples of reordering transactions� �a� without and �b� with abort

rescheduled between T� and T� �CC���� Since	 the �rst transaction in the queue	 T�	 is

committable �it only waits for its execution to terminate� it will not be aborted�

In the second example	 the queue CQ has the entries� CQ � T��e� p
� T��a� p
� T��a� p
� T��a� p
�

This means that none of the transactions is TO�delivered but T� is already fully executed�

In this case	 when the TO�delivery of T� is processed	 the �rst transaction T� must be

aborted since it is still pending �CC��CC��� After this	 T� can be rescheduled before T� and

submitted� This means that the execution of T� is rescheduled after the execution of T��

These examples show how committable transactions get always ordered before all pending

ones�

��

� Correctness

In this section we prove that the OTP�algorithm is starvation free and provides ��copy�

serializability� Starvation free means that a transaction that is TO�delivered will eventually

be committed and not rescheduled forever� We use the following notation� for two transac�

tions Ti and Tj belonging to con�ict class C	 we write Ti �Opt Tj if Ti is Opt�delivered

before Tj � Similarly	 we write Ti �TO Tj if Ti is TO�delivered before Tj �

For Theorem ��� we assume a failure free execution�

Theorem ��� The OTP�algorithm guarantees that each TO�delivered transaction Ti even�

tually commits	

Proof

We prove the theorem by induction on the position n of Ti in the corresponding class queue

CQ�

�� Induction Basis� If Ti is the �rst transaction in CQ �n � ��	 it is executed immediately

�S��S�	E�	CC�	CC���CC��� and commits after its execution �E��E�	CC��CC���

�� Induction Hypothesis� The theorem holds for all TO�delivered transactions that are

at positions n � k	 for some k � �	 in CQ	 i�e�	 all transactions that have at most n��

preceding transactions will eventually commit�

�� Induction Step� Assume now	 a transaction Ti is at position n � k � � when the

correctness check module processes Ti�s TO�delivered message� Let Tj be any of the

transactions ordered before Ti in CQ� Two cases can be distinguished�

a�� Ti �TO Tj � When the correctness check module processes the TO�delivery of Ti	

Tj is still pending� This means	 step CC�� will schedule Ti before Tj 	 and hence	 to a

position n� � k� Therefore	 according to the induction hypothesis	 Ti will eventually

commit� Note that due to the reordering process Tj might be moved out of the

�rst k positions� Since it has not yet been TO�delivered this does not violate the

induction hypothesis�

b�� Tj �TO Ti� Since Tj has a position n� � k	 the induction hypothesis assures that

Tj will eventually commit and be removed from CQ� When this happens	 Ti is at

most at position k	 and hence	 will eventually commit according to the induction

hypothesis� �

Lemma ��� Each site executes and orders con�icting transactions in the de�nitive order

established by the atomic broadcast	

Proof

Let Ti and Tj be two con�icting transactions belonging to the same con�ict class C and let

Ti �TO Tj � We have to show that Ti commits before Tj � We can distinguish two cases�

�� Ti �Opt Tj � This means that Ti is included into CQ before Tj � We have to show that

this order can never be reversed and hence	 Ti executes and commits before Tj � The

��

only time the order could change according to the protocol is when the correctness check

module processes the TO�delivery of Tj � However	 at that time	 Ti is either already

executed and committed or it is marked committable	 because of Ti �TO Tj � Hence	

CC�� does not a�ect Ti�

�� Tj �Opt Ti� This means that Tj is included into CQ before Ti� We show that this order

is reversed exactly once and hence	 Ti commits before Tj � When Ti is TO�delivered	 Tj
might already be executed �when it is the �rst transaction in the queue� but cannot be

committed because it is not yet TO�delivered but still marked as pending� Therefore	

the protocol processes step CC�� and reorders Ti before Tj � This order cannot be

changed anymore because Ti is now marked committable� �

Theorem ��� The OTP�algorithm provides ��copy�serializability	

Proof

Since up to now	 we have only looked at update transactions that are executed at all sites	

the local histories of all sites contain exactly the same transactions� Lemma ��� proves that

in all these histories con�icting transactions are always processed in the same order	 namely

the de�nitive order established by the atomic broadcast� Therefore	 all local histories are

con�ict equivalent to each other� This guarantees the ���copy� property	 i�e�	 all the copies

behave in the same way� Moreover	 there is a serial history that is con�ict equivalent to

all those produced� the one derived from the de�nitive total order provided by the atomic

broadcast �this provides the �serializability� property�� �

The extension of the OTP�algorithm to include queries and �ne granularity locking can be

found in the next sections�

� Queries

A con�guration consisting of sites all performing exactly the same update transactions is

only useful for fault�tolerance purposes� A more common setting will be a database system

where the main load are queries which can be processed locally while a certain amount of

updates must be performed at all sites� Therefore	 a protocol needs to be not only tuned for

updating transactions but also for read�only transactions�

There exist many concurrency control approaches for queries �BHG��	 GR��	 Ora��
� Cur�

rent solutions include standard ��phase�locking �no di�erence between queries and updating

transactions�	 optimized locking protocols	 and snapshot mechanisms �which eliminate any

interference between queries and updating transactions��

In what follows we sketch how two di�erent solutions can be integrated into the replica

control presented in this paper� The protocols are extensions of the OTP�algorithm for

updating transactions described in Section ����

The �rst solution takes into consideration that it is not reasonable to require that queries

belong to a single con�ict class� Since queries often access a lot of data	 this approach would

make it necessary to choose a very coarse granularity for the con�ict classes	 thereby reducing

��

Upon begin of query Qi�

Q� for each con�ict queue CQ	 Qi wants to access

Q� Build an entry for Qi and mark it committable

Q� if �rst transaction Tj in CQ is marked pending

Q� Abort Tj
Q� end if

Q� Insert the entry of Qi before the �rst transaction Tk in CQ marked pending

Q� if Qi is now the �rst transaction in CQ

Q� Submit the execution of Qi

Q� end if

Q�� end for each

Figure �� OTP�Q�protocol for queries

concurrency� Therefore	 it is important to allow queries to belong to many con�ict classes

and hence	 to spread their access across arbitrary partitions of the database�

Figure � depicts the OTP�Q�protocol� The start of a query is very similar to processing

the TO�delivery of a transaction but with the di�erence that the query can access several

con�ict classes� For each con�ict class	 a query Q is scheduled after all committable and

before all pending transactions� It is easy to see that the protocol provides serializability�

The total order provided by the atomic broadcast is still an equivalent serial execution �i�e�	

whenever Ti �TO Tj then the serialization order at all sites is Ti � Tj�� A query Q is

included in this order as follows� Assume all transactions Ti are indexed according to the

total order of the atomic broadcast	 i�e�	 if Ti is TO�delivered before Tj 	 then i � j� Let i

be the index of the last transaction whose TO�delivery was processed before Q starts� Q is

added to the serialization order by simply ordering it directly after Ti and before Ti�� �we

could imagine Q to have the index i����

Since queries are added to all their con�ict classes at starting time	 all data the transaction

wants to access must be known in advance� Furthermore	 queries can be very extensive	

leading to considerable delay for succeeding update transactions� Hence	 it may be desirable

to handle queries dynamically	 i�e�	 queries should neither need to know in advance which

con�ict classes they are going to access nor should transactions be delayed too long by

queries�

However	 the solution is not straightforward� Queries cannot simply be added to a class

queue when they want to access an object of this class for the �rst time� Such a protocol

would violate ��copy�serializability� The problem is the fact that update transactions of

di�erent con�ict classes could now be indirectly ordered by queries that access both classes

at di�erent times� For example	 such a protocol would allow the following serialization orders

for the queues CQx and CQy at sites N and N ��

At N � CQx � T�� T�� Q� T�

CQy � T�� Q� T�� T�

��

At N � � CQx � T�� Q
�� T�� T�

CQy � T�� T�� Q
�� T�

This means that Q implicitly builds the serialization order T� � Q � T� at site N 	 while

Q� leads to the order T� � Q� � T� at N � �Alo��
�

To avoid such situation	 we have to ensure that the execution at all sites is equivalent to

the order induced by the atomic broadcast �as it is the case in the previous algorithm�� To

combine ��copy�serializability with dynamic queries and fast execution for updating transac�

tions	 our last proposal uses snapshots for queries �similar to Oracle snapshots �Ora��
�� To

provide consistent snapshots for queries	 di�erent versions of the data of a con�ict class are

maintained	 each labeled with the index of the transaction that created the version �again as�

suming that transactions are indexed according to their TO�delivery�� A query receives an

index when it starts� As in the previous algorithm	 if Ti was the last processed TO�delivered

message	 the index for the query is i��� When a query Qi�� wants to access a con�ict class C

for the �rst time	 it receives a snapshot of the data that has been created by transaction Tj 	

where j � max�k�� k � i� Tk � C� With this	 we produce the same execution order as with

the OTP�Q�protocol� Note that this approach is similar to the hybrid algorithm in �KA��b
�

� Fine Granularity Locking

Class queues as a concurrency model have allowed us to demonstrate in a simple manner

the idea of optimistic transaction processing� However	 requiring that transactions may only

access objects of a certain partition is quite restrictive� In some applications this might result

in very few classes and hence in a very low degree of concurrency� This section extends the

model to show how it can be applied in more generic settings� we drop the requirement that

an update transaction may only access objects of a single con�ict class� Instead transactions

are allowed to access arbitrary objects of the database�

Our model still uses stored procedures� Whenever a client sends the request for an update

transaction to a site N 	 N TO�broadcasts the request to all sites and each sites executes

the corresponding stored procedure� But instead of including the request into a single class

queue �corresponding to a partition�	 we now use a traditional lock table� The lock table

maintains lock queues for each object of the database and transactions place lock entries into

the queues of those objects they want to access� In our approach	 placing the lock entries of

a transaction is done in an atomic step at the time the transaction is delivered� This means

that there is no interleaving with any other transactions� In other words	 the important step

for our approach is not how many queues there are but that transactions must be placed in

all the necessary queues one at a time� Note that we require that all locks of a transaction

are known in advance� We are aware that this is still restrictive since it relies on prede�ned

stored procedures where one can tell in advance which �ne�granularity objects are accessed

by the transaction� We are working on improving our concurrency model so that it also

allows other transaction types	 e�g�	 interactive transactions�

��

X r_1*

w_1*Y

r_1*Z

T_1[a,p]

I OPT_delivery T_1

T_1[a,p], T_2[a,c]

w_2X r_1*

Y w_1*

Z r_1* r_2*

II OPT_delivery T_2

T_1[a,p], T_2[a,c]

Y

w_1*Y

X

IV abort of T_1 finished

w_2* r_1

T_1[ab,p], T_2[a,c]

TO_delivery T_2

Y

w_1*Y

X not_1* w_2 r_1

III

r_2* r_1* r_2* r_1*

Figure ��� Example of �ne granularity locking

��� Enhanced Transaction Model

In this section we enhance our original transaction model to �t the traditional transaction

model as presented in �BHG��
� We now characterize a transaction �stored procedure� as

a sequence of read ri�X� and write wi�X� operations on objects X � As before	 update

transactions perform both their read and write operations on an object X on all copies of

X in the system� Hence an operation oi�X�� o � fr� wg	 is translated to physical operations

oi�X��� � � � � oi�Xn�� Con�icts are no more de�ned between transactions but rather between

operations� Operations con�ict if they are from di�erent transactions	 access the same copy

and at least one of them is a write� A local history HN � ��N � �N� of a node N describes all

physical operations of a set of transactions � being executed on the copies ofN � Furthermore	

it describes a partial order	 �N 	 which orders all operations within a transaction �as they are

executed by the stored procedure� and additionally all con�icting operations� As described

in section ���	 a global history is the union of all local histories in the system� A history is

now serializable if it orders all con�icting operations in the same way as a serial history�

Concurrency control is done via locking� It is performed independently at each site� Before

a transaction accesses an object it has to acquire the corresponding read�write lock on the

object� There may not be two con�icting locks granted on an object� We maintain a lock

queue for each object X where the lock entries are included in �rst�in��rst�out order� If

the �rst lock in the queue is a write lock it is the only granted lock� Otherwise all read

locks before the �rst write lock are granted� Whenever a lock is released	 the next lock�s�

in the queue are granted� Our locking protocol requests all locks at the beginning of the

transaction and releases them at the end of the transaction� This is necessary because we

have to include the lock entries of a transaction in an atomic step� This atomicity can be

accomplished	 e�g�	 by acquiring a latch on the lock table during lock insertion�

��� Example

As before	 a transaction is sent to all sites� The main idea is for each transaction to request

all its read and write locks when it is Opt�delivered� Once all lock requests are included in

the lock table	 the transaction starts executing� As before	 once a message is TO�delivered

the serialization order has to be checked�

Figure �� depicts an example which shows the main di�erence between the enhanced system

and the class queue system� We look at a lock table with lock entries for three objects X 	

��

Y and Z and two transactions T� and T�� T� reads objects X and Z and writes Y � T� reads

object Z and writes X � Hence	 the accesses on X con�ict� Steps �I� to �V� depict di�erent

states of the lock table if the following delivery order of messages takes place�

Tentative total order � T�� T� Definitive total order � T�� T�

In step �I� T� is OPT�delivered� Since there are no other locks active	 all locks can be

granted and T� can start executing� Granted locks are labeled with a star� T��s state

is active and pending� When T� is OPT�delivered �II�	 its lock on Z can be granted

�because both T��s and T��s locks are reads� and the operation submitted	 but its write lock

on X has to wait until T� releases its lock� Both transactions are active and pending�

Step �III� depicts the TO�delivery of T�� Like in the case of class queues	 the correctness

check module scans through all of T��s locks and looks whether there exist locks of pending

transactions that are ordered before the waiting locks of T�� Note that all locks of a single

transactions are usually linked with each other making this check a fast operation� In our

example	 pending transaction T� has a con�icting granted lock on X and thus	 must be

aborted� Only when the updates of T� are undone	 the lock can be granted to T�� However	

this might take considerable time� Since we do not want to wait	 we reorder immediately

T��s locks before T��s locks� Additionally	 we keep a notification entry at the beginning

of the queue for X � It can be viewed as a copy of T��s lock entry� When T�� abort is

completed it removes the noti�cation entry from the queue and only then T��s lock can be

granted� Such a noti�cation entry on an object is only created if the lock of the pending

transaction and of the committable transaction con�ict on this object because only in this

case the committable transaction must wait� Hence	 there is no noti�cation entry for Z

�shared locks� or Y �T� does not need a lock for Y �� Step �IV� depicts the time after T� is

aborted� It scans through all its locks and whenever it �nds one of its noti�cation entries

�in our case X� it releases the entry so that the waiting requests can be granted� Note	

that its original lock entry on X has already been queued behind the TO�delivered entry

of T� in step �III�� Then	 T� is restarted from the beginning and its execution state changes

from aborting back to active� The TO�delivery of T� does not change anything� When

performing the check	 only locks of the committable transaction T� are ordered before T��

Hence	 T� is simply marked committable� Whenever both transactions are fully executed

their locks can be released and the transactions can be committed�

��� Algorithm

In this section	 the enhanced algorithm	 called FG�alorithm ��ne granularity�	 is described�

As before	 we divide transaction execution into the steps serialization	 execution and cor�

rectness check�

Figure �� depicts the serialization module� Upon Opt�delivery of a transaction	 all lock

entries are created and included into the lock table �S��S��� Some might be granted imme�

diately	 others might have to wait� Entering all locks into the lock table is considered one

atomic step	 i�e� the process may not be interrupted by other accesses to the lock table� As

noted before this can be done by using a latch on the lock table� At this stage	 the trans�

action has the delivery state pending� Only after the locks are requested the transaction

starts executing �S���

��

Upon Opt�delivery of message m containing transaction Ti�

S� for each operation oi�X� of Ti�

S� Append a lock entry in queue X

S� end for each

S� Mark Ti pending and active

S� Submit the execution of the transaction �see execution module E��E��

Figure ��� Fine granularity serialization module

The execution module �Figure ��� is responsible for processing transactions� Here	 we dis�

tinguish several cases� a transaction is submitted for execution	 a transaction has completely

executed	 the abort of a transaction is submitted	 and a transaction has completely aborted�

A transaction can now be in three di�erent execution states� It can be active	 executed or

aborting� Once a transaction is submitted by the serialization module it is active �E���

In our protocol	 all locks are requested at the beginning of the transaction� Then the stored

procedure is started executing the sequence of read and write operations as soon as the

corresponding locks are granted �E��E���

Once the transaction is fully executed we look whether the transaction has already the

delivery state committable� If this is the case we can commit it and release its locks �E��

E���� Otherwise	 the transaction transfers from the execution state active to executed�

As long as the transaction is in the delivery state pending it might happen that it has to

abort �E���E��� due to a mismatch between the OTP�delivery and the TO�delivery order�

Note that it can transfer both from the active and the executed execution state into the

aborting state�

Once the transaction is completely aborted it releases all its noti�cation entries �E���E����

These entries were created during the correctness check� They replaced locks that con�icted

with locks of committable transactions� For details of how these entries are created see the

correctness check module� Finally	 the transaction is restarted �E���� Note that the restart

transfers the transaction from the execution state aborting back to the active state �E���

The correctness check module �Figure ��� is activated upon TO�delivery of a transaction

Ti� As the serialization module	 the correctness check module performs its access to the

lock table in an atomic step	 i�e�	 it has exclusive access to the lock table until the check is

completed� A TO�delivered transaction can immediately commit and release its lock if it is

already totally executed �CC��CC��� If this is not the case we mark Ti committable �CC��

and check whether any reordering has to take place� We have to reorder entries whenever a

lock of a pending transaction Tj is ordered before one of Ti�s locks� Furthermore	 if the lock

of Tj is granted and con�icts with Ti�s lock	 Tj must be aborted to guarantee that con�icting

operations are ordered in the order of TO�delivery� Hence	 the correctness check scans

through all locks of Ti �CC��� Whenever there exists a con�icting granted lock of a pending

transaction Tj 	 Tj must be aborted� Note that Tj might already be in the aborting state if

there was already another con�icting transaction TO�delivered before Tj � Only if this is not

the case we have to submit Tj �s abort �CC���CC���� Then	 rescheduling takes place� Ti�s lock

entry is ordered before the �rst lock that belongs to a pending transaction �CC���CC����

��

Upon submission to execute transaction Ti�

E� Mark Ti active

E� for each operation oi�X��

E� As soon as the corresponding lock is granted

E� execute oi�X�

E� end for each

Upon complete execution of transaction Ti�

E� if Ti is marked committable �see correctness check module CC��

E� Commit Ti
E� for each lock on object X

E� Release the lock

E�� end for each

E�� else

E�� Mark Ti executed

E�� end if

Upon submission to abort transaction Ti�

E�� Mark Ti aborting

E�� Undo all operations executed so far

Upon complete abort of transaction Ti�

E�� for each notification entry on object X �see correctness check module�

E�� Release the entry

E�� end for each

E�� Restart the execution �E��E��

Figure ��� Fine Granularity Execution Module

Note that rescheduling takes place both for con�icting and non�con�icting locks� Since we

want to �nish the correctness check before the aborts complete	 we keep noti�cation entries

at the begin of the queue for each con�icting granted lock of a pending transaction �CC���

CC���� Only when these locks are released �namely	 when the corresponding transactions

have completely aborted see execution module E���E��� Ti�s locks can be granted�

Figure �� shows a second example with three transactions� The ordering is

Tentative total order � T�� T�� T�

Definitive total order � T�� T�� T�

The example shows the di�erent steps when the delivery takes place in the following order�

OPT�deliver�T��� OPT�deliver�T��� TO�deliver�T��� OPT�deliver�T��� TO�deliver�T���

OPT�deliver�T���

As in the previous example	 T� reads X and Z	 and writes Y 	 and T� writes X and reads Z�

Furthermore	 T� writes X 	 Y and Z� The �rst three steps are the same as in the previous

example� First �step I�	 T� is OPT�delivered	 its locks granted and its execution submitted

�E��E��� Its state is active and pending� When T� is OPT�delivered �step II� its lock on Z

��

Upon TO�delivery of message m containing transaction Ti�

CC� if Ti is marked executed �see execution module E���

CC� Commit Ti
CC� for each lock entry on object X

CC� Release the lock

CC� end for each

CC� else

CC� Mark Ti committable

CC� for each lock entry X of Ti
CC� for each con�icting granted lock of a pending transaction Tj

CC�� if Tj is not marked aborting

CC�� start aborting Tj �see execution module E���E���

CC�� end if

CC�� Schedule Ti�s lock before the �rst lock entry

CC�� that belongs to a pending transaction Tk�

CC�� for each con�icting granted lock of a pending transaction Tj

CC�� Keep a notification entry at the begin of the queue�

CC�� Only when this entry is released �see execution module E���E���	

CC�� Ti�s lock can be granted

CC�� end for each

CC�� end for each

CC�� end if

Figure ��� Fine Granularity Correctness Check Module

is granted	 the lock on X must wait� T��s state is active and pending� Upon TO�delivery

of T� �step III�	 T� must be aborted due to the con�ict on X �CC��CC���� T��s locks on X

and Z are scheduled before T��s locks �CC���� Note that lock entries are rescheduled both

for con�icting locks �X� and non�con�icting locks �Z�� Furthermore	 T� keeps a noti�cation

entry on X until it is totally aborted �CC���CC���� Now	 T� is aborting and pending

while T� is active and committable� In step IV	 T� gets Opt�delivered� The lock entries

are simply added to the queues� They all must wait and T� is active and pending� Next	

T� is TO�delivered �step V�� The correctness check scans through all of T� locks and �nds

con�icting granted locks of pending transaction T� on the objects Y and Z �CC��� Note that

T��s lock on X is no more granted and already reorder behind T�� lock� Since T� is already in

the aborting state	 steps CC���CC�� of the correctness check algorithm are not performed�

T� simply orders its locks before T��s lock entries �CC���CC���� Furthermore	 noti�cation

entries for T� on objects Y and Z are created� Since T� has already a noti�cation entry on X 	

there is no need to create a second one �CC���CC���� T� is now active and committable�

At this stage	 all locks are in the correct order of TO�delivery� Additionally there are some

noti�cation entries that control when locks are granted� When T� has completely aborted

�step VI�	 it releases its noti�cation entries and restarts �E���E���� The TO�delivery of T�
does not change anything� Whenever one of the three transactions is fully executed it can

��

r1

r1

not-1*

w3

w3w2

w1

w3r2*

not-1*

not-1*

w1*

not-1* w3

w3

w3r1*r2*

w2 r1

T1[ab,p], T2[a,c]

Y

w1*Y

X not-1* w2 r1

r2* r1*

Y

Y

X

T1[ab,p], T2[a,c], T3[a,c]

Y

Y

X

T1[ab,p], T2[a,c], T3[a,p]

T1[a,p]

OPT_delivery T_1

w1*Y

r1*Z

X r1* w2X r1*

Y w1*

Z r1* r2*

T1[ab,p], T2[a,c], T3[a,c]

Y

w3*Y

X

r2* w3

w2* r1

r1

w3

w1

I

TO_delivery T_2III

TO_delivery T_3V

OPT_delivery T_2II

OPT_delivery T_3IV

abort of T1 finishedVI

T1[a,p], T2[a,c]

Figure ��� Reordering with �ne granularity locking

be committed�

Note that execution state and delivery state are orthogonal to each other� Figure �� depicts

all possible states of a transactions and their transitions� A transaction always starts with

the states active and pending and commits with executed and committable� Delivery

states can only change from pending to committable� Once it is committable there is no

cycle in the transitions�

��� Proof of Correctness

The proof of correctness follows the same line as the one provided in section �� We �rst want

to show that ��copy�serializability is provided� In the simple OTP�algorithm the de�ni�

tive total order of the atomic broadcast ordered entire transactions� Now	 it only orders

con�icting operations�

Lemma ��� Using the FG�algorithm
 each site orders and executes con�icting operations

in the de�nitive order provided by the atomic broadcast	

��

active
pending committable

executed

active
committable

TO-delivery

TO-delivery
ready

execution

ready
execution

*

pending

pending
aborting

executed

committable
abortingTO-

delivery

abort

abort

abort ready

abort ready

Figure ��� Execution and delivery states of transactions

Proof

Let Ti and Tj be two con�icting transactions accessing both object X and let Ti �TO Tj �

We have to show that Ti�s operation on X is executed before Tj �s operation� The proof is

identical to the one provided in section �� If Ti �OPT Tj the locks were already included

in the queue in the right order� This order will not change anymore since the correctness

module only reschedules entries if there is a mismatch between the OPT�delivery and the

TO�delivery� Hence Ti�s lock will be granted before Tj �s locks resulting in the correct order

of execution� If Tj �OPT Ti	 then the the TO�delivery of Ti will schedule Ti�s lock before

Tj �s lock� In the case Tj �s lock was already granted	 Tj will undo its operation and only

receive the lock and reexecute the operation when Ti has committed� �

Theorem ��� The FG�algorithm provides ��copy�serializability	

Proof

Again the proof is very similar to the one provided in section �� All local histories contain ex�

actly the same update transactions� Since all con�icting operations are executed in the same

order at all sites	 namely the de�nitive order of the atomic broadcast	 the ���copy� property

is guaranteed� The serial history that is con�ict equivalent to all those produced is the one

derived from the de�nitive total order established by the atomic broadcast ��serializability�

property�� �

Finally we want to prove that the protocol is starvation free�

Theorem ��� The FG�algorithm guarantees that each TO�delivered transaction Ti even�

tually commits	

��

Proof

We prove the theorem by induction on the position n of Ti in the de�nitive total order�

�� Induction Basis� If Ti is the �rst TO�delivered transaction the correctness check module

will schedule Ti�s locks before any other lock� Only noti�cation entries might be ordered

before Ti�s locks� However	 the corresponding transactions abort without acquiring any

further locks and hence will �nally release their noti�cation entries� Hence	 eventually

all of Ti�s locks will be granted	 Ti can execute all its operations and commit�

�� Induction Hypothesis� The theorem holds for all TO�delivered transactions that are at

positions n � k	 for some k � �	 in the de�nitive total order	 i�e�	 all transactions that

have at most n�� preceding transactions in the total order will eventually commit�

�� Induction Step� Assume now	 a transaction Ti is at position n � k � � of the de�nitive

total order� The correctness check module will schedule all of Ti�s locks behind all locks

of committable transactions and before all locks of pending transactions �CC���CC����

All of these committable transactions were TO�delivered before Ti and have a lower

position in the de�nitive total order� Hence	 they will all commit according to the

induction hypothesis� Existing noti�cation entries will �nally be released as described

before� Therefore	 Ti�s locks will �nally be granted	 Ti can execute all its operations and

commit� �

Note that in this case	 starvation free means not only that a transaction is not rescheduled

forever but also that the protocol is deadlock free� Transactions do not wait for each other

to release locks while holding locks other transactions are waiting for� This is true because

the locks of committable transactions are ordered in the de�nitive total order as noted in

the proof above�

	 Conclusion

In this paper	 we have presented a new way of integrating communication and database

technology to build a distributed and replicated database architecture� Taking advantage of

the characteristics of today�s networks	 we use an optimistic approach to overlap communi�

cation and transaction processing� In this way	 the message overhead caused by the need for

coordination among the sites of a distributed system is hidden by optimistically starting to

execute transactions� Correctness is ensured by delaying transaction commitment until the

message is de�nitively delivered�

The modularity of our approach is given by encapsulating message exchange using group

communication semantics	 on which the transaction processing module bases the execution

of transactions� The new solution can easily be integrated into existing systems because

the modi�cations both on group communication and database side are straightforward and

easy to implement� Our approach provides a solution whereby the bene�ts o�ered by group

communication can be fully exploited without loss of performance�

References

�AAES
	� D� Agrawal� G� Alonso� A� El Abbadi� and I� Stanoi� Exploiting atomic broadcast in replicated

databases� Technical report� Department of Computer Science� Santa Barbara� �

	�

��

�Alo
�� G� Alonso� Partial database replication and group communication primitives� In �nd Europ�

Research Seminar on Advances in Distr� Systems �ERSADS����� Zinal �Switzerland�� March

�

��

�BC
�� K� Birman and T� Clark� Performance of the Isis distributed computing toolkit� Technical

report� Departement of Computer Science� Cornell University TR�
������� June �

��

�BHG��� P� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in Database

Systems� Addison Wesley� Massachusetts� �
���

�BSS
�� K� Birman� A� Schiper� and P� Stephenson� Lightweight causal and atomic group multicast�

ACM Transactions on Computer Systems�
������������ August �

��

�CT
�� T� D� Chandra and S� Toueg� Unreliable failure detectors for asynchronous systems� In Proc�

of the �	th ACM Symp� on Principles of Distributed Computing� pages ��
����� August �

��

�DM
	� D� Dolev and D� Malki� The Transis approach to high availability cluster communication�

Communications of the ACM� �
����	����� April �

	�

�FvR

� R� Friedman and R� van Renesse� Packing messages as a tool for boosting the performance of

total ordering protocols� Technical report� Departement of Computer Science� Cornell University

TR�

��
��� July �

�

�Gol
�� R� Goldring� A discussion of relational database replication technology� InfoDB� ����� �

��

�GR
�� J� Gray and A� Reuter� Transaction Processing
 Concepts and Techniques� Morgan Kaufmann�

�

��

�HT
�� V� Hadzilacos and S� Toueg� Distributed Systems� �ed� chapter �� Fault�Tolerant Broadcasts

and Related Problems� Addison Wesley� �

�� Edited by S� Mullender�

�Jef�
� D� R� Je�erson� Virtual time� ACM Transactions on Programming Languages and Systems�

�����������
� July �
�
�

�KA
�a� B� Kemme and G� Alonso� Database replication based on group communication� Technical

report� Department of Computer Science� ETH Z�urich� No� ��
� February �

��

�KA
�b� B� Kemme and G� Alonso� A suite of database replication protocols based on group commu�

nication primitives� In Proc� of the Int� Conf� on Distributed Computing Systems� Amsterdam�

The Netherlands� May �

��

�MMSA�
	� L� E� Moser� P� M� Melliar�Smith� D� A� Agarwal� R� K� Budhia� and C� A� Lingley�

Papadopoulos� Totem� A fault�tolerant multicast group communication system� Communi�

cations of the ACM� �
����
��	�� April �

	�

�Ora

� Oracle� Concurrency Control� Transaction Isolation and Serializability in SQL�� and Oracle��

�

� White Paper�

�PGS
�� F� Pedone� R� Guerraoui� and A� Schiper� Transaction reordering in replicated databases� In

�
th IEEE Symp� on Reliable Distributed Systems �SRDS����� Durham� USA� October �

��

�PGS
�� F� Pedone� R� Guerraoui� and A� Schiper� Exploiting atomic broadcast in replicated databases�

In Proc� of EuroPar� Southampton �England�� September �

��

�PS
�� F� Pedone and A� Schiper� Optimistic atomic broadcast� In Proc� of the ��th Int� Symp� on

Distributed Computing �DISC����� September �

��

�Sta
�� D� Stacey� Replication� DB�� Oracle� or Sybase� Database Programming � Design� ������ �

��

�vRBM
	� R� van Renesse� K� P� Birman� and S� Ma�eis� Horus� A �exible group communication system�

Comm� of the ACM� �
�����	���� April �

	�

��

