mzuriCh ETH Library

Differences between Oberon and
Oberon-2

Report

Author(s):
Mossenbdck, Hanspeter

Publication date:
1991

Permanent link:
https://doi.org/10.3929/ethz-a-000589808

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgendssische Technische Hochschule Zirich, Departement Informatik, Institut fiir Computersysteme 160

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000589808
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

S S . S

Eidgendssische Departement Informatik
Technische Hochschule Institut fir Computersysteme
Zirich

Hanspeter Mdssenbdck Differences between

Oberon and Oberon-2

The Programming
Language Oberon-2

Eidg. Techn. Hochschule Zirich
Informatikbibliothek
ETH-Zentrum
Mai 1991 CH-8092 Ziirich

160

2y -
iy . ;o
w}" & p (:;: 2 y? s LS

Authors” addresses:

Institut fur Computersysteme
ETH-Zentrum ‘

CH-8092 Zurich, Switzerland
e-mail: moessenboeck@inf.ethz.ch

© 1991 Departement Informatik, ETH Z(irich

Differences between Oberon and Oberon-2

Oberon-2 is essentially Oberon [1] with a few extensions. This note summarizes these extensions and
tries to shed some light on the motivations behind them. By that we hope to make it easier for the reader to
classify Oberon-2. For details the reader is referred to the language report.

One imponrtant goal for Oberon-2 was to make object-oriented programming easier without sacrificing
the conceptual simplicity of Oberon. After three years of using Oberon and its experimental offspring
Object Oberon [2] we felt that our experiences should be merged into a single refined version of Oberon.

_ The new features of Oberon-2 are type-bound procedures, read-only export of variables and record
fields, dynamic array variables, and a with statement with variants. The for statement is reintroduced after
having been eliminated in the step from Modula-2 to Oberon.

Oberon-2 is the result of many discussions among all members of the Institute for Computer Systems
at ETH. It is particularly influenced by the ideas of Niklaus Wirth, Jiirg Gutknecht, and Josef Templ.

Type-bound procedures

Procedures can be bound to a record (or a pointer) type. They are equivalent to methods in cbject-
oriented terminology. The binding is expressed by a separate parameter {the operand to which the
procedure is applicable, or the "receiver” as it is called in object-oriented terminclogy).

TYPE
Figure = POINTER TO FigureDesc;
FigureDesc = RECORD
X, ¥, w, h: INTEGER
END;

PROCEDURE (f: Figure) Draw; ... END Draw;
PROCEDURE (f: Figure) Move (dx, dy: INTEGER); ... END Move;

Draw and Mave are bound to Figure (and therefore also to its base type FigureDesc) which means that
they are operations applicable to Figure (or FigureDesc) objects. They are considered local to
FigureDesc and can be referenced like record fields, e.g. £ Move(10, 10) if fis a variable of type Figure.

Any procedure bound to a type T is also bound to all extensions of T. It can be redefined (overridden)
by a procedure with the same name and the same formal parameter list which is bound to an extension of
T, such as in)

TYPE
Circle = POINTER TO CircleDesc;
CircleDesc = RECORD (FigureDescy
radius: INTEGER
END;

PROCEDURE (c: Circle) Move (dx, dy: INTEGER);
BEGIN ...
END Move;

4

Circle is an extension of Figure. A procedure Move is bound to Circle and it redefines the Move that is
“inherited" from Figure. If fis a variable of type Figure and c Is a variable of type Circle, then the
assignment f:= ¢ makes the dynamic type of f(its run time type) be Circle instead of Figure. In the call

f.Move(10, 10)

the variable f serves two purposes: First it is passed as the receiver parameter to the procedure Move.
Second, its dynamic type determines which variant of Move is called. Since after the assignment f:= ¢
the dynamic type of fis Circle, the Move that is bound to Circle is called and not the one that is bound to
Figure. This mechanism is called dynamic binding, since the dynamic type of the receiver is used to bind
the procedure name to the actual procedure.

Within a redefining procedure the redefined procedure can be invoked by calling it with the suffix 4,
e.g. . Move* (dx, dy).

Motivation. We refrained from introducing the concept of a class but rather replaced it by the well-known
concept of records. Classes are simply record types with procedures bound to them.

We also refrained from duplicating the headers of bound procedures in the record as it is done in other
object-oriented languages like C++ or Object Pascal. This keeps record declarations short and avoids
unpleasant redundancy (changes to a header would have to be made at two places in the program and the
compiler would have to check the equality of the headers). If the programmer wants to see the record
together with all procedures bound to it he uses a tool (a browser) to obtain the information on screen or on
paper.

The procedures bound to a type may be declared in any order. They can even be mixed with
procedures bound to a different type. In Object Oberon, where all methods have to be declared within
their class declaration, it turned out that indirect recursion between methods of different classes make
awkward forward declarations of whole classes necessary.

In languages like Object Oberon or C++, instance variables of some predeclared object self (the
receiver of a message) can be accessed with or without qualification (i.e. one can write x instead of
self.x). In these languages it is sometimes difficult to see whether a name is an ordinary variable or an -
instance variable, particularly if the instance variable is inherited from a base class. We therefore decided
that record fields must always be qualified in Oberon-2. This also avoids having a choice between two
semantically equivalent constructs, which we consider undesirable in programming languages.

In Oberon-2, the receiver is declared as a formal parameter, so the programmer can choose a
meaningful name for it, which is usually more expressive than the predeclared name self that is used in
other object-oriented languages. The declaration of the receiver explicilly shows that the object to which
an operation is applied is passed as a parameter to that operation. This is usually not expressed in other
object-oriented languages. It is in the spirit of Oberon to avoid hidden mechanisms.

In Object Oberon methods have the same syntax as ordinary procedures. In large classes where the
class header is not visible near the method header it is impossible to see whether the procedure is an
ordinary procedure or a method, and to which class the method belongs. In Oberon-2, the type of the

receiver parameter of a bound procedure denotes the type to which the procedure is bound, so no
confusion can arise.

Read-only export N

While in Oberon all exported vatiables and record fields can be modified by.a client module, it is possible in
Oberon-2 to restrict the use of an exported variable or record field to read-only access. This is expressed
by. marking the object with a "-* instead of a "*. The "-" suggests the restricted use of such an object.

TYPE
Rec* = RECORD
{0*: INTEGER;
f1- INTEGER;
f2: INTEGER
END;

VAR
a*: INTEGER;
b-: Rec;
c: INTEGER,;

Client modules can read the variables a and b as well as the fields f0 and f1, since these objects are
exported. However, they can modify only a and f0; the value of b and f1 can be read but not modified.
Only the module which exports these objects can modify their values. (Even if clients declare a private
variable of type Rec, its field f7 is read-only.) Since b is read-only, its components b.f0, b.f1, and b.f2
are read-only, too.

The motivation behind read-only export is to allow a finer grain of information hiding. Information hiding
serves two purposes: First, it helps to keep off unnecessary details from clients. Second, it allows
establishing the assertion that the values of hidden variables are only modified by access procedures of
the module itself, which is important to guarantee invariants. Read-only export supports the second goal.

Open array variables

Both in Modula-2 and in Oberon it-is possible to have open arrays as parameters. The length of such an
array is given by the length of the actual parameter. In Oberon-2.it is possible to declare open arrays not
only as parameters but also as ordinary variables. The predeclared procedure NEW is used to allocate an
open array variable at run time with an arbitrary length.

VAR v: ARRAY OF INTEGER;
.. NEW (v, 100)

The array v is allocated at run time with a length of 100 elements accessed as v{0] to v[99]. The
motivation behind this construct was to increase the regularity of the language. It seemed to be unnatural
that open array types were only allowed in a certain context. Besides, the possibility to define the length of
an array at run time has some interesting applications.

With statements
in Oberon, a with statement is a regional type guard of the form
WITHv: T DO SEND

If the variable v is of dynamic type T, then the statement sequence S is executed where a type guard
v(T) is applied to every occurrence of v, i.e. v is regarded as if it had the static type T. If the dynamic
type of vis not Tthe program is aborted. In Oberon-2, the with statement can be written with variants. The
syntax of the guarded variable has been revised to be the same as the syntax of ordinary type guards, e.g:

A real number always contains a decimal point. Optionally it may also contain a decimal scale factor. The
letter E (or D) means “times ten to the power of". A real number is of type REAL, unless it has a scale factor
containing the letter D. In this case it is of type LONGREAL.

number = integer | real.
integer = digit {digit} | digit {hexDigit} "H".
real = digit {digit} ".” {digit} [ScaleFactor].

ScaleFactor = ("E*|"D") ["+" | "] digit {digit}.
hexDigit P digﬂ I MA" | llBu I IIC" I 'IDII | "Ell l NF«-

digit = 70" | "7 "2" | "3" | "4° | "5 | 6" | "7 | "8" | "9".
Examples:
1991 INTEGER 1991
0DH SHORTINT 13
12.3 REAL 12.3
4.567E8 REAL 456700000
0.57712566D-6 LONGREAL 0.00000057712566

3. Character constants are either denoted by a single character enclosed in single (') or double (") quote
marks or by the ordinal number of the character in hexadecimal notation followed by the letter X.

character="""'char'""|"'" {char}"'" | digit {hexDigit} "X".
4, Strings are sequences of characters enclosed in single () or double (") quote marks. The opening
‘quote must be the same as the closing quote and must not occur within the string. The number of
characters in a string is called its length.

String___nu[char)nnlnnv{char}uun' ,

Examples: "Oberon-2" "Don‘t worry!"

5. Operators and delimiters are the special characters, character pairs, or reserved words listed below. The
reserved words consist exclusively of capital letters and cannot be used as identifiers.

+ = ARRAY IMPORT RETURN

- A BEGIN N THEN

* = BY 1S TO

/ # CASE LOOP TYPE

~ < CONST MOD UNTIL

& > DIV MODULE VAR
<= DO NIL WHILE

, >= ELSE OF WITH

; ELSIF OR

I : END POINTER

{) EXIT PROCEDURE

[1 FOR RECORD

{ } IF ‘ REPEAT

6. Comments may be inserted between any two symbols in a program. They are arbitrary character
sequences opened by the bracket (* and closed by *). Comments may be nested They do not affect the
‘meaning of a program.

4. Declarations and scope rules

4. Declarations and scope rules

Every identifier occurring in a program must be introduced by a declaration, unless it is a predeclared
identifier. Declarations also specify certain permanent properties of an object, such as whether it is a
constant, a type, a variable, or a procedure. The identifier is then used to refer to the associated object.

The scope of an object x extends textually from the point of its declaration to the end of the block

(module, procedure, or record) to which the declaration belongs and hence to which the object is local. It
excludes the scopes of equally named objects which are declared in nested blocks. The scope rules are:

1.

2.
3.

4.

No identifier may denote more than one object within a given scope (i.e. no identifier may be declared
twice in a block);

An object may only be referenced within its scope;

A type T of the form POINTER TO T7 (see 6.4) can be declared before the scope of T1. In this case,
the declaration of T71 must follow in the same block to which Tis local;

Identifiers denoting record fields (see 6.3) or type-bound procedures (see 10.2) are valid in record
designators only. . :

An identifier declared in a module block may be followed by an export mark (" * " or " - "} in its declaration to
indicate that it is exported. An identifier x exported by a module M may be used in other modules, if they
import M (see Ch.11). The identifier is then denoted as M.x in these modules and is called a qualified
identifier. \dentifiers marked with * - " in their declaration are read-only in importing modules.

Qualident = [ident “."] ident.
IdentDef =ident["*"|"-"].

The following identifiers are predeclared; their meaning is defined in the indicated sections:

ABS (10.3) LEN (10.3)
ASH (10.3) LONG {10.3)
BOOLEAN (6.1) LONGINT (6.1)
CAP (10.3) LONGREAL (6.1)
CHAR . (6.1) MAX (10.3)
CHR (10.3) MIN (10.3)
COPY (10.3) NEW (10.3)
DEC (10.3) . oDD (10.3)
ENTIER (10.3) ORD (10.3)
EXCL (10.3) © REAL (6.1)
FALSE (6.1) : SET (6.1)
HALT (10.3) SHORT (10.3)
INC (10.3) SHORTINT - (6.1)
INCL (10.3) SIZE {10.3)
INTEGER (6.1) TRUE (6.1)

5. Constant declarations

A constant declaration associates an identifier with a constant value.

ConstantDeclaration = IdentDef "=" ConstExpression.
ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a mere textual scan without actually

10

executing the program. its operands are constants (Ch.8) or predeclared functions (Ch.10.3) that can be
evaluated at compile time. Examples of constant declarations are:

N=100
fimit = 2+N - 1
fullSet = (MIN(SET) .. MAX(SET)}

6. Type declarations

A data type determines the set of values which variables of that type may assume, and the operators that
are applicable. A type declaration associates an identifier with a type. In the case of structured types (arrays
" and records) it also defines the structure of variables of this type.

TypeDeclaration = IdentDef "=" Type. . .
Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType.

Examples:

Table = ARRAY N OF REAL
Tree = POINTER TO Node
Node = RECORD
key : INTEGER,;
left, right: Tree
END .
CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)
width: INTEGER;
subnode: Tree
END
Function = PROCEDURE(x: INTEGER): INTEGER

6.1 Basic types

The basic types are denoted by predeclared identifiers. The associated operators are defined in 8.2 and
the predeclared function procedures in 10.3. The values of the given basic types are the following:

1. BOOLEAN the truth values TRUE and FALSE

2. CHAR the characters of the extended ASCI| set (0X .. OFFX)

3. SHORTINT the integers between MIN(SHORTINT) and MAX(SHORTINT)

4. INTEGER the integers between MIN(INTEGER) and MAX(INTEGER)

5. LONGINT the integers between MIN(LONGINT) and MAX(LONGINT)

6. REAL the real numbers between MIN(REAL) and MAX(REAL)

7. LONGREAL the real numbers between MIN(LONGREAL) and MAX(LONGREAL)
8. SET the sets of integers between 0 and MAX(SET)

Types 3 to 5 are integer types, types 6 and 7 are real types, and together they are called numeric types.
They form a hierarchy; the larger type includes (the values of) the smaller type:

LONGREAL 2 REAL = LONGINT 2 INTEGER 2 SHORTINT

11
6.2 Array types

An array is a structure consisting of a number- of elements which are all of the same type, called the
element type. The number of elements of an array is called its length. The elements of the array are
designated by indices, which are integers between 0 and the length minus 1.

AmayType = ARRAY [Length {"," Length}] OF Type.
Length = ConstExpression.

A declaration of the form
ARRAYLO, L1, ...,LnOFT
is understood as an abbreviation of the declaration

ARRAY LO OF
ARRAY L1 OF

ARRAY LnOF T

Arrays declared without length are called open arrays. Their length must be specified at run time. If visa
variable of an n-dimensional open array type, a call of the predeclared procedure NEW(v, ey, ..., ep-1)
allocates v with lengths given by the expressions ey, ..., 8,-7. NEW must not be applied o an element
of an open array which is again an open array.

Examples:
ARRAY 10, N OF INTEGER
ARRAY OF CHAR

6.3 Record types

A record type is a structure consisting of a fixed number of elements, called fields, with possibly different
types. The record type declaration specifies the name and type of each figld. The scope of the field
identifiers extends from the point of their declaration to the end of the record type, but they are also visible
within designators referring to elements of record variables (see 8.1). If a record type is exported, field
identifiers that are to be visible outside the declaring module must be marked. They are called public
fields; unmarked elements are called private fields.

RecordType = RECORD ["("BaseType")"] FieldList {"" FieldList) END.
BaseType = Qualident.
FieldList = [IdentList ":" Type].

Record types are extensible, i.e. a record type can be declared as an extension of another record type. In
the example

T0 = RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1is a (direct) extension of TO and T0 is the {direct) base type of 71 (see App. A). An extended type
T1 consists of the fields of its base type and of the fields which are declared in 71 (see Ch. 6).

12

Examples of record type declarations:

RECORD
day, month, year: INTEGER
END

RECORD
name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

6.4 Pointer types

Variables of a pointer type P assume as values pointers to variables of some type T. T is called the
pointer base type of P and must be a record or array type. Pointer types inherit the extension relation of
their pointer base types: if a type T7 is an extension of T, and P17 is of type POINTER TO T1, then P1is
also an extension of P.

PointerType = POINTER TO Type.

If pis a variable of type P= POINTER TO T, a call of the predeclared procedure NEW(p) has the following
effect (see 10.3): A variable of type Tis allocated in free storage, and a pointer to it-is assigned to p. This

pointer p is of type P; the referenced variable p* is of type 7. Any pointer variable may be assigned the
value N!i., which points to no variable at all. All pointer variables are initialized to NIL..

6.5 Procedure types
Variables of a procedure type T have a procedure (or NIL) as value. If a procedure P is assigned to a
variable of type T, the formal parameter lists of P and T must match(see App. A). P must not be a

predeclared or type-bound procedure nor may it be local to another procedure.

ProcedureType = PROCEDURE [FormalParameters].

7. Variable declarations

Variable declarations introduce variables by defining an identif[er and a data type for them.
VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with which they are declared — simply called

their type) and a dynamic type (the type they assume at run time). For pointers and variable parameters of

record type the dynamic type may be an extension of their static type. The static type determines which
fields of a record are accessible. The dynamic type is used to call type-bound procedures (see 10.2).

B e

B

13

Examples of variable declarations (refer to examples in Ch. 6):

i, j ki INTEGER

X, y: REAL

p, q: BOOLEAN

s:SET

F: Function

a: ARRAY 100 OF REAL

w: ARRAY 16 OF RECORD
name: ARRAY 32 OF CHAR;
count: INTEGER :

END
t,c: Tree

8. Expressions

Expressions are constructs denoting rules of computation whereby constants and current values of
variables are combined to compute other values by the application of operators and function procedures.
Expressions consist of operands and operators. Parentheses may be used to express specific
associations of operators and operands.

8.1 Operands

With the exception of set constructors and literal constants (numbers, character constants, or strings),
operands are denoted by designators. A designator consists of an identifier referring to a constant,
variable, or procedure. This identifier may possibly be qualified by a module identifier (see Ch. 4'and 11)
and may be followed by selectors if the designated object is an element of a structure.

Designator = Qualident {"." ident | "[* ExpressionList "]" | "*" | "(" Qualident ")"}.
ExpressionList = Expression {"," Expression}. :

If a designates an array, then a[e] denotes that element of a whose index is the current value of the
expression e. The type of e must be an integer type. A designator of the form a[eg, ey, ..., ep] stands
for afegller]...[en]. If r designates a record, then r.f denotes the field fof r or the procedure f
bound to the dynamic type of r (Ch. 10.2). If p designates a pointer, p* denotes the variable which is
referenced by p. The designators p*.f and p*[e] may be abbreviated as p.fand p[e}, i.e. record and
array selectors imply dereferencing. If a, r, or p are read-only, then also e, r.fand p* are read-only.

A type guard v(T) asserts that the dynamic type of vis T (or an extension of T), i.e. program
execution is aborted, if the dynamic type of vis not T (or an extension of T). Within the designator, v is
then regarded as having the static type 7. The guard is applicable, if

1. vis a variable parameter of record type or vis a pointer, and if
2. Tis an extension of the static type of v

If the designated object is a variable, then the designator refers to the variable's current value. If it is a
procedure, the designator refers to that procedure unless it is followed by a (possibly empty) parameter list
in which case it implies an activation of that procedure and stands for the value resuiting from its execution.
The actual parameters must correspond to the formal parameters as in proper procedure calls (see 10.1).

14

Examples of designators (refer to examples in Ch.7):

i (INTEGER)
afi] (REAL)
w[3].namefi] (CHAR)
t.left.right (Tree)
t(CenterNode).subnode (Tree)

8.2 Operators

Four classes of operators with different precedences (binding strengths) are syntactically distinguished in
expressions. The operator ~ has the highest precedence, followed by multiplication operators, addition
operators, and relations. Operators of the same precedence associate from left to right. For example, x-y-
z stands for (x-))-z.

Expression = SimpleExpression [Relation SimpleExpression].
SimpleExpression = ["+" | "] Term {AddOperator Term}.

Term = Factor {MulOperator Factor}.

Factor = Designator [ActualParameters] |

number | character | string | NIL | Set | "(" Expression ")" | "~" Factor.

Set ="{" [Element {"," Element}] "}".
Element = Expression ["." Expression].
ActualParameters = "(" [ExpressionL.ist] ")".)
Relation == | =" S | =" | INT IS,
AddOperator ="4"|""| OR.

MulOperator ="¥"|"/"| DIV | MOD | "&".

The available operators are listed in the following tables. Some operators are applicable to operands of
various types, denoting different operations. In these cases, the actual operation is identified by the type
of the operands. The operands must be expression compatible with respect to thie operator (see App.A).

8.2.1 Logical operators

OR logical disjunction pOR g
& logical conjunction p&q
~ negation ~p

"if pthen TRUE, else ¢"
"if pthen g, else FALSE"
"not p"

These operators apply to BOOLEAN operands and yield a BOOLEAN result.

8.2.2 Arithmetic operators

+ sum

- difference

* product

/ real quotient

DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric types. The type of the result is the type of that
operand which includes the type of the other operand, except for division (/), where the result is the
smallest real type which includes both operand types. When used as monadic operators, - denotes

e

15

sign inversion and + denotes the identity operation. The operators DIV and MOD apply to integer
operands only. They are related by the following formulas defined for any x and positive divisors y:

x=(xDIVy)*y+(x MODy)

0<(xMODy) <y
Examples:)

X y xDIVy xMODy

5 3 1 2

-5 3 -2 1

8.2.3 Set Operators

+ union
- difference (x- y = x* (-¥))
* intersection
/ symmetric set difference (x/ y = (x-)) + (X))

Set operators apply to operands of type SET and yield a result of type SET. The monadic minus sign
denotes the complement of x, i.e. -x denotes the set of integers between 0 and MAX(SET) which are
not elements of x.

A set constructor defines the value of a set by listing its elements between curly brackets. The
elements must be integers in the range 0..MAX(SET). A range a..b denotes all integers in the interval
[a, b].

8.2.4 Relatians
= equal
unequal
< less
<= less or equat
> greater
>= greater or equal
IN set membership
IS type test

Relations yield a BOOLEAN resuit. The ordering relations <, <=, >, and >= apply to the numeric types,
CHAR, (open) character arrays, and strings. The relations = and # also apply to BOOLEAN and SET, as
well as to pointer and procedure types (including the value NIL). x IN s stands for "x is an element of
s". x must be of an integer type, and s of type SET. v IS T stands for "the dynamic type of vis T
(or an extension of T)* and is called a type test. It is applicable if

1. vis a variable parameter of record type or v is a pointer, and if
2. Tis an extension of the static type of v

Examples of expressions (refer to examples in Ch.7):

1991 INTEGER
iDIV3 INTEGER
~pORQq " BOOLEAN
(4D * () INTEGER

s-{8,9, 13) SET

16

lex REAL

afi+] * afi] REAL

(0<=i) & (i<100) BOOLEAN
tkey =0 BOOLEAN
K IN {i..j-1} BOOLEAN
wli].name <= "John" BOOLEAN
t IS CenterNode BOOLEAN

9. Statements

Statements denote actions. There are elementary and structured statements. Elementary statements are
not composed of any parts that are themselves statements. They are the assignment, the procedure call,
the return, and the exit statement. Structured statements are composed of parts that are themselves
statements. They are used to express sequencing and conditional, selective, and repetitive execution. A
statement may also be empty, in which case it denotes no action. The empty statement is included in order
to relax punctuation rules in statement sequences. .

Statement =
[Assignment | ProcedureCall | IfStatement | CaseStatement | WhileStatement | RepeatStatement |
ForStatement | LoopStatement | WithStatement | EXIT | RETURN [Expression] J.

9.1 Assignments

Assignments replace the current value of a variable by a new value specified by an expression. The
expression must be assignment compatible with the variable (see App. A). The assignment operator is
written as ":=" and pronounced as becomes.

Assignment = Designator ":=" Expression.

If an expression e of type T, is assigned to a variable v of type Ty, the following rules apply:

1. if Ty and T are record types, only those fields of T are assigned which also belong to Ty
(projection); the dynamic type of v must be the same as the static type of v and is not changed by
the assignment;

2. if Tyand T, are pointer types, the dynamic type of v becomes the dynamic type of e;

3. if Ty is ARRAY n OF CHAR and e is a string of length m<n, v{] becomes ¢;for i = 0..m-1 and
v{m] becomes 0X.)

Examples of assignments (refer to examples in Ch.7):

i=0
p=i=j
x=i+1

k = log2(i+j)
F = log2

s:={2,3,5,7,11, 13}
a[l] = (x+y) * (x-y)
tkey =i

wfi+1].name := "John"
ti=c

17
9.2 Procedure calis

A procedure call activates a procedure. it may contain a list of actual parameters which replace the
corresponding formal parameters defined in the procedure declaration (see Ch. 10). The correspondence
is established by the positions of the parameters in the actual and formal parameter lists. There are two
kinds of parameters: variable and value parameters.

If a formal parameter is a variable parameter, the corresponding actual parameter must be a designator
denoting a variable. If it denotes an element of a structured variable, the component selectors are
evaluated when the formal/actual parameter substitution takes place, i.e. before the execution of the
procedure. If a formal parameter Is a value parameter, the corresponding actual parameter must be an
expression. This expression is evaluated before the procedure activation, and the resulting value is
assigned to the formal parameter (see aiso 10.1).

ProcedureCall = Designator [ActualParameters).

Examples:
Writefnt(i*2+1) (* see 10.1*)
INC(wik].count)
t.Insert("John") (* see 11 %)

9.3 Statement sequences

Statement sequences denote the sequence of actions specified by the component statements which are
separated by semicolons.

StatementSequence = Statement {";" Statement}.

9.4 If statements

|fStatement =
- IF Expression THEN StatementSequence
{ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence]
END.

It statements specify the conditional execution of guarded statement sequences. The Boolean
expression preceding a statement sequence is called its guard. The guards are evaluated in sequence of
occurrence, until one evaluates to TRUE, whereafter its associated statement sequence is executed. If no
guard is satisfied, the statement sequence following the symbol ELSE is executed, if there is one.

Example:

IF (ch >="A") & (ch <="Z") THEN Readldentifier
ELSIF (ch »="0") & (ch <= "9") THEN ReadNumber
ELSIF (ch=""'") OR (ch=""") THEN ReadString
ELSE SpecialCharacter

END

18

9.5 Case statements

Case statements specify the selection and execution of a statement sequence according to the value of
an expression. First the case expression is evaluated, then that statement sequence is executed whose
case label list contains the obtained value. The case expression and all labeis must be of the same type,
which must be an integer type or CHAR. Case labels are constants, and no value must occur more than
once. If the value of the expression does not occur as a label of any case, the statement sequence
following the symbol ELSE is selected, if there is one, otherwise the program is aborted.

CaseStatement = CASE Expression OF Case {"|" Case} {ELSE StatementSequence] END.
Case = [CaselLabelList "" StatementSequence].
Caselabellist = CaselLabels {"," CaseLabels}.
Caselabsls = ConstExpression [".." ConstExpression].
Example:
CASE ch OF
"A" .. "Z": Readldentifier
| "0".."9" ReadNumber
| """ """ ReadString

ELSE SpecialCharacter
END

9.6 While statements

While statements specify the repeated execution of a statement sequence while the Boolean expression
. (its guard) yields TRUE. The guard is checked before every execution of the statement sequence.

WhileStatement = WHILE Expression DO StatementSequence END.
Examples:

WHILEi>0DOi=iDIV2;k =k +1END

WHILE (t # NIL) & (tkey #1) DOt := t.left END
9.7 Repeat statements

A repeat statement specifies the repeated execution of a statement sequence until a condition specified
by a Boolean expression is satisfied. The statement sequence is executed at least once.

RepeatStatement = REPEAT StatementSequence UNTIL Expression.

9.8 For statements

A for statement specifies the repeated execution of a statement sequence for a fixed number of times
while a progression of values is assigned to an integer variable called the control variable of the for
statement.

19

ForStatement =
FOR ident ":=" Expression TO Expression [BY ConstExpression] DO StatementSequence END.

The statement
FOR v := low TO high BY step DO statements END
is equivalent to

v = low; temp = high;

IF step > 0 THEN

WHILE v <= temp DO statements; v := v + step END
ELSE

WHILE v >= temp DO statements; v := v + step END
END

low must be assignment compatible with v (see App. A), high must be expression compatible (i.e.
comparable) with v, and step must be a nonzero constant expression of an integer type. If step is not
specified, it is assumed to be 1.

Examples:
FORi:=0TO 79 DOk :=k + a[)} END
FOR i := 79 TO 1 BY -1 DO a[i] := afi-1] END

9.9 Loop statements

A loop statement specifies the repeated execution of a statement sequence. It is terminated upon
execution of an exit statement within that sequence (see 9.10).

LoopStatement = LOOP StatementSequence END.

Example:
LOOP
Readint(i);
+ IFi<0THEN EXIT END;
Writelnt(i)
END

Loop statements are useful to express repetitions with several exit points or cases where the exit condition
is in the middle of the repeated statement sequence.

9.10 Return and exit statements

A return statement indicates the termination of a procedure. It is denoted by the symbot RETURN, followed
by an expression if the procedure is a function procedure. The type of the expression must be
assignment compatible (see App. A) with the result type specified in the procedure heading (see Ch.10).
Function procedures require the presence of a return statement indicating the result value. In proper
procedures, a return statement is implied by the end of the procedure body. Any explicit return statement
therefore appears as an additional (probably exceptional) termination point.
An exit statement is denoted by the symbol EXIT. it specifies termination of the enclosing loop

20

statement and continuation with the statement following that loop statement. Exit statements are
contextually, although not syntactically associated with the loop statement which contains them.

9.11 With statements

With statements execute a statement sequence depending on the result of a type test and apply a type
guard to every occurrence of the tested variable within this statement sequence.

WithStatement = WITH Guard DO StatementSequence {"|" Guard DO StatementSequence}
[ELSE StatementSequence] END.
Guard = Qualident "(" Qualident *)".

If vis a variable parameter of record type or a pointer variable, and it it is of a static type 70, the statement
WITH v(T1) DO 81 | v(T2) DO S2 ELSE S3 END

has the following meaning: if the dynamic type of vis T7, then the statement sequence S1 is executed
where v is regarded as if it had the static type T7; else if the dynamic type of vis T2, then S2 is
executed where v Is regarded as if it had the static type T2; else S3 is executed. T1 and T2 must be
extensions of T0. If no type test is satisfied and if an else clause is missing the program is aborted.

Example:

WITH t(CenterTree) DO := twidth; ¢ = t.subnode END

10. Procedure declarations

A procedure declaration consists of a procedure heading and a procedure body. The heading specifies
the procedure identifier and the formal parameters. For type-bound procedures it also specifies the
receiver parameter. The body contains declarations and statements. The procedure identifier is repeated
at the end of the procedure declaration.

There are two' kinds of procedures: proper procedures and function procedures. The latter are
activated by a function designator as a constituent of an expression and yield a result that is an operand of
the expression. Proper procedures are activated by a procedure call. A procedure is a function procedure
if its formal parameters specify a result type. The body of a function procedure must contain a return
statement which defines its result.

All constants, variables, types, and procedures declared within a procedure body are local to the
procedure. Since procedures may be declared as local objects too, procedure declarations may be
nested. The call of a procedure within its declaration implies recursive activation.

In addition to its formal parameters and locally declared objects, the objects declared in the
environment of the procedure are also visible in the procedure (with the exception of those objects that
have the same name as an object declared locally).

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
ProcedureHeading = PROCEDURE [Receiver] IdentDef [FormalParameters].
ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.
" DeclarationSequence =
{CONST {ConstantDeclaration *;"} | TYPE {TypeDeclaration *;"} | VAR {VariableDeclaration ";"} }
{ProcedureDeclaration ;" | ForwardDeclaration ";"}.,
ForwardDeclaration = PROCEDURE " * " [Receiver] IdentDef [FormalParameters].

21

If a procedure declaration specifies a receiver parameter, the procedure is considered to be bound to a
record type (see 10.2). A forward declaration serves to allow forward references to a procedure whose
actual declaration appears later in the text. The formal parameter lists of the forward declaration and the
actual declaration must match (see App. A). :

10.1 Formal parameters

Formal parameters are identifiers declared in the formal parameter list of a procedure. They correspond to
actual parameters specified in the procedure call. The correspondence between formal and actual
parameters is established when the procedure is called. There are two kinds of parameters, value and
variable parameters, indicated in the formal parameter list by the absence or presence of the keyword
VAR. Value parameters are local variables to which the value of the corresponding actual parameter is
assigned as an initial value. Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. The scope of a formal parameter extends from its declaration to the end of
the procedure block in which it is declared. A function procedure without parameters must have an empty
parameter list. it must be called by a function designator whose actual parameter list is empty t00.

FormalParameters = “(" [FPSection {";* FPSection}])" [":" Qualident].
FPSection = [VAR] ident {"," ident} ":* Type.

Let Ttbe the type of a formal parameter fand Tz the type of the corresponding actual parameter a. For
variable parameters, T must be the same as Ty, or Ty must be a record type and T an extension of Tr.
For value parameters, a must be assignment compatible with f (see App. A). If Tris an open array , then
a must be array compatible with f (see App. A). The lengths of f are taken from a. The result type of a
procedure can be neither a record nor an array.

Examples of procedure declarations:

PROCEDURE ReadInt(VAR x: INTEGER);
VAR I: INTEGER; ch: CHAR;
BEGIN i := 0; Read(ch);
WHILE ("0" <= ch) & (¢ch <="9") DO
i = 10*1 + (ORD(ch)-ORD("0"); Read(ch)
END;
X =i
END Readint

PROCEDURE Writelnt(x: INTEGER); (*0 <= x <105*)

VAR I: INTEGER; buf: ARRAY 5 OF INTEGER; -
BEGINi:=0;

REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0;

REPEAT DEC(j); Write(CHR(buf[i] + ORD("0"))) UNTILi=0
END Writelnt

PROCEDURE WriteString(s: ARRAY OF CHAR);

VAR i INTEGER;
BEGINi:=0;)

WHILE (i < LEN(S)) & (s[i] # 0X) DO Write(s[i]); INC(i) END
END WriteString;

22

PROCEDURE log2(x: INTEGER): INTEGER;

VARYy: INTEGER; (*assume x>0%) '
BEGIN

y = 0; WHILE x > 1 DO x :=x DIV 2; INC(y) END;

RETURN y
END log2

10.2 Type-bound procedures

An abstract data type consists of a record type and a set of associated procedures which are said to be -
bound to it. The binding is expressed by the type of the receiver in the heading of a procedure
declaration. The receivermay be either a variable parameter of record type or a value parameter of type
pointer to record. The procedure is bound to the type of the receiver. if itis bound to a pointer type it is also
bound to its pointer base type. A procedure bound to a record type is considered local to it.

ProcedureHeading = PROCEDURE [Receiver] IdentDef [FormalParameters)].
Receiver ="(" [VAR] ident "" ident ")".

It a procedure P is bound to a type. T0, it is implicitly also bound to any type T7 which is an extension of
T0. However, a procedure P (with the same name as P) may be explicitly bound to 77 in which case it
overrides the binding of P. P is considered as a redefinition of P for T1. The formal parameters of P
and P must match {see App. A).

If vis a designator and P is a type-bound procedure, then v.P denotes that procedure P which is
bound to the dynamic type of v (dynamic binding). Note, that this may be a different procedure than the
one bound to the static type of v. v is passed to P's receiver according to the parameter passing rules
specified in Chapter 10.1. If r is a receiver parameter declared with type T, r.P* denotes the (redefined)
procedure P bound to the base type of T.

In a forward declaration of a type-bound procedure the receiver parameter must be of the same type
as in the actual procedure declaration. The formal parameter lists of both declarations must maich (App.A).

Examples:

PROCEDURE {t: Tree) Insert (node: Tree);
VAR p, father: Tree;
BEGINp :=t;
REPEAT father = p;
IF node.key = p.key THEN RETURN END;
IF node key < p.key THEN p := p.left ELSE p := p.right END
UNTIL p = NIL;
IF node key < father.key THEN father.left := node ELSE father.right := node END;
node.left = NIL; node.right := NIL
END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree); (*redefinition*)
BEGIN

Writelnt{node(CenterTree).width);

t.Insert* (node) (* calls the Insert procedure bound to Tree *)
END Insert;

23

10.3 Predeclared procedures

The following table lists the predeclared procedures. Some are generic procedures, i.e. they apply to
several types of operands. v stands for a variable, x and n for expressions, and T for a type.

Function procedures

Name Argument type Result type Function
ABS(x) numeric type type of x absolute value
ASH(x, n) X, n: integer type LONGINT arithmetic shift (x * 27)
CAP(x) CHAR CHAR x is letter: corresponding capital letter
CHR(x) integer type CHAR character with ordinal number x
ENTIER(x) real type LONGINT largest integer not greater than x
LEN(v, n) v: array; n: integer const. LONGINT length of v in dimension n
LEN(v) v. aray LONGINT equivalent to LEN(v, 0)
LONG(x) SHORTINT INTEGER identity
INTEGER LONGINT
REAL LONGREAL
MAX(T) T = basic type T maximum value of type T
T=SET - INTEGER maximum element of a set
MIN(T) T = basic type T minimum value of type T
T=SET ’ INTEGER 0
ODD(x) integer type BOOLEAN xMOD2=1
ORD(x) CHAR INTEGER ordinal number of x
SHORT(x) LONGINT INTEGER identity
INTEGER SHORTINT identity
LONGREAL REAL identity (truncation possible)
SIZE(T) any type integer type number of bytes required by 7
Proper procedures
Name Argument types Function
COPY(x, v) Xx: character array, string; v: characterarray vi=x
DEC(W integer type v=v-1i
DEC(v, n) v, n: integer type vi=v-n
EXCL(v, x) v: SET; x: integer type v=v-{x
HALT(x) integer constant terminate program execution
INC(v) integer type vi=v+1
INC(v, n) v, n: integer type Vi=v+n
INCL{v, X) v: SET; x: integer type vi=v+ {4
NEW(W) pointer type allocate v*
NEW(v, xg, ..., Xn) v: open array; xj. integer type allocate array v with lengths xg.. xp

COPY allows the assignment of (open) character arrays with different types. If necessary, the source is
shortened to the target length minus one. The target is always terminated by the character 0X. In HALT(x),
the interpretation of x is left to the underlying system implementation. ’

24

11. Modules

A module is a collection of declarations of constants, types, variables, and procedures, together with a
sequence of statements for the purpose of assigning initial vaiues to the variables. A module constitutes a
text that is compilable as a unit.

Module = MODULE ident ;" [ImportList] DeclarationSequence
[BEGIN StatementSequence] END ident ".".

Importlist = IMPORT Import {"," Import} ";".

Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a module Ais imported by a module M and
A exports an identifier x, then x is referred to as A.x within M. If A is imported as B := A, the object x
is referenced as B.x. This allows short alias names in qualified identifiers. Identifiers that are to be
exported (.. that are to be visible in client modules) must be marked by an export mark in their declaration.

The statement sequence following the symbol BEGIN is executed when the module is added to a
system (loaded), which is done after the imported modules have been loaded. it follows that cyclic import of
modules is illegal. Individual (parameterless and exported) procedures can be activated from the system,
and these procedures serve as commands.

MODULE Trees; ‘ (* exports: Tree, Node, Insert, Search, Write, NewTree *)
IMPORT Texts, Oberon; (* exports read-only: Node.name *)
TYPE

Tree* = POINTER TO Node;
Node* = RECORD
name-: ARRAY OF CHAR;
left, right: Tree
END;

VAR w: Texts.Writer;

PROCEDURE (i: Tree) Insert* (name: ARRAY OF CHARY);
VAR p, father: Tree;
BEGINp :=t;
REPEAT father = p;
IF name = p.name THEN RETURN END;
IF name < p.name THEN p := p.left ELSE p := p.right END
UNTIL p= NIL;
NEW(p); p.left = NIL; p.right := NIL; NEW(p.name, LEN(name)+1); COPY(name, p.name);
IF name < father.name THEN father.left := p ELSE father.right := p END
END Insert;

PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree;
VAR p: Tree;
BEGIN p :=t;
WHILE (p # NIL) & (name # p.name) DO
IF name < p.name THEN p := p.left ELSE p = p.right END
END;
RETURNp
END Search;

PROCEDURE (t: Tree) Write*;

BEGIN
IF t.left # NIL THEN t.left.Write END;
Texts.WriteString(w, t.name); Texts.WriteLn(w); Texts.Append(Oberon.Log, w.buf});
IF t.right # NIL THEN t.right.Write END

END Write;

PROCEDURE NewTree* (): Tree;
VAR t: Tree;
. BEGIN NEW(t); NEW(t.name, 1); t.name[0] ;= 0X; t.left := NIL; t.right := NIL; RETURN t
END NewTree;

BEGIN Texts.OpenWriter(w)
END Trees.

25

26

Appendix A: Definition of terms

Integer types SHORTINT, INTEGER, LONGINT , '
Real types REAL, LONGREAL
Numeric types integer types, real types

Y
Same types

Two variables a and b with types Ty and 7, are of the same type if

1. Tgand Tp are both denoted by the same type identifier, or

2. Tais declared to equal Thin a type declaration of the form T = Tp, or

3. aand b appear In the same identifier list in a variable, record field, or formal parameter declaration.

Equal types

Two types T and Tpare equalif

1. Tgand Tpare the sametype, or

2. Taand Tp are open array types with equal element types.

Type inclusion
Numeric types include (the values of) smaller numeric types according to the following hierarchy:
LONGREAL = REAL 2 LONGINT 2 INTEGER =2 SHORTINT

Type extenslion (base type)

Given a type declaration Ty = RECORD (T4} ... END, Tp s a direct extension of Tg, and Ty is a direct
base typeof Tp. Atype Tpis an extension of atype T (Tais a base type of Tp) if

1. Tzand Tp are the sametypes, or

2. Tpis adirect extension of an extension of T3

if Pa = POINTER TO Tgand Pp = POINTER TO Tp, Pg is an extension of Pp (Pp is a base type of Pa)

if T4 is an extension of Tp. ’

Assignment compatibie
An expression e of type T, is assignment compatible with a variable v of type Ty if one of the following
conditions hold:
Te and Ty are the same type but are not open arrays nor structured types which contain open arrays;
Te and T, are numeric types and T includes Tg,
Teand Ty are record types and Ty is an extension of Ty, and the dynamic type of vis Ty, ;
Te and Ty are pointer types and Tpis an extension of Ty;
Tvis a pointer or a procedure type and e is NIL;
. Tyvis ARRAY n OF CHAR, eis a string constant with m characters, and m< n;
Ty is a procedure type and e is the name of a procedure whose formal parameters maich those of
Tv. .

N o e WS

27

Array compatibie

An actual parameter a of type Ty is array compatible with a formal parameter fof type Trif
1. Tazand Tyare the same type, or

2. Taand Trare both open arrays and their element types are array compatible, or

3. Tais any array whose element type is not an open array, Tyis an open array, and their element types
are array compatible.

Expression compatible

For a given operator, the types of its operands are expression compatible if they conform to the following
table (which shows also the result type of the expression):

operator valid operand types result type
- numeric largest numeric type of the operands
/ numeric smallest real type incl. both operands
+-*/ SET SET
DIV MOD integer largest integer type of the operands
OR&~ BOOLEAN BOOLEAN
=f#<<=>5= numeric, CHAR, character arrays, strings BOOLEAN
=# BOOLEAN, SET, pointers (incl. NIL),
procedure types (incl. NIL) BOOLEAN
IN 1st: integer; 2nd: SET BOOLEAN
IS 1st: pointer or record variable BOOLEAN

2nd: pointer or record type

Matching formal parameter lists

Two formal parameter lists match if

1. they have the same number of parameters, and

2. they have either the same function result type or none, and

3. parameters at corresponding positions have equal types and are both either value or variable
parameters.

28

Appendix B: Syntax of Oberon-2

* Module = MODULE ident " [ImportList] DeclSeq [BEGIN StatementSeq] END ident ",
ImportList = IMPORT [ident ":="] ident {"," [ident ":="]} ident} *;". '
DeciSeq = { CONST {ConstDecl ;" } | TYPE {TypeDec! "'} | VAR {VarDec! *;"}} {ProcDecl " | ForwardDecl! ";'}.

ConstDecl = ldentDef "=" ConstExpr.

TypeDeci = IdentDef "=" Type.

VarDecl = ldentList ™" Type.

ProcDecl = PROCEDURE [Receiver] ldentDef [FormalPars] ;" DeclSeq [BEGIN StatementSeq] END ident.
ForwardDecl = PROCEDURE "* [Recaiver] [dentDef [FormalPars].

FormalPars = "(" [FPSection {";" FPSection}])" [:" Qualident].

FPSection = [VAR] ident {*," ident} ":" Type.
Receiver = "(" [VAR] ident " ident)".
Type = Qualident

| ARRAY [ConstExpr {","” ConstExpr}] OF Type
| RECORD [*("Qualident")"} FieldList {";" FieldList} END
| POINTER TO Type
| PROCEDURE [FormalPars].
FieldList = [ldentList ":" Type).
StatementSeq = Statement {";" Statement}.
Statement = [Designator "=" Expr
| Designator ["(" [ExprList] ")
| IF Expr THEN StatementSeq {ELSIF Expr THEN StatementSeq} [ELSE StatementSeq] END
| CASE Expr OF Case {"|" Case} [ELSE StatementSeq] END
| WHILE Expr DO StatementSeq END
| REPEAT StatementSeq UNTIL Expr
| FOR ident “:=" Expr TO Expr [BY ConstExpr] DO StatementSeq END

| LOOP StatementSeq END
| WITH Guard DO StatementSeq {"|" Guard DO StatementSeq} [ELSE StatementSeq] END
| EXIT . . :
| RETURN [Expr]
1
Case = [CaseLabels {*," CaseLabals} ":" StatementSeq].
Caselabels = ConstExpr [".." ConstExpr].
Guard = Qualident "(" Qualident ")".
ConstExpr = Expr.
Expr = SimpleExpr [Relation SimpleExpr].
SimpleExpr = [+"| "-"] Term {AddOp Term}.
Term = Factor {(MulOp Factor}.
Factor = Designator ["(* [ExprList] *)*] | number | character | string | NIL | Set | "(" Expr ")" | " ~ " Factor.
Set = "{" [Element {",” Element}] "}".
Element = Expr [*.." Expr].
Relation = =T et S e | IN IS
AddOp =""[""]OR,
MulOp ="%"|"r|DIV| MOD | "&".
Designator = Qualident {"." ident | "[" ExprList "J" | "~ " | *(" Qualident ")"}.
ExprList = Expr {"," Expr}.
~ IdeniList = IdentDef {"," IdentDef}.

Qualident = [ident "."] ident.
IdentDef = ident ["* ™| "-"].

29
Appendix C: The module SYSTEM

The module SYSTEM contains certain types and procedures that are necessary to implement low-level
operations particular to a given computer and/or implementation. These include for example facilities for
accessing devices that are controlled by the computer, and facilities to break the type compatibility rules
otherwise imposed by the language definition. 1t is strongly recommended to restrict their use to specific
modules {called low-leve! modules). Such modules are inherently non-portable, but easily recognized
due to the identifier SYSTEM appearing in their import list. The following specifications hold for the
implementation of Oberon-2 on the Ceres computer.

Module SYSTEM exports a type BYTE with the following characteristics: Variables of type CHAR or
SHORTINT can be assigned to variables of type BYTE. If a formal variable parameter is of type ARRAY OF
BYTE then the corresponding actual parameter may be of any type. The predeclared procedures CHR and
ORD are applicable to BYTE. '

Another type exported by module SYSTEM is the type PTR. Variables of any pointer type may be
assigned to variables of type PTR. If a formal variable parameter is of type PTR, the actual parameter may be
of any pointer type.

The procedures contained in module SYSTEM are listed in the following tables. Most of them
correspond to single instructions compiled as in-line code. For details, the reader is referred to the
processor manual. v stands for a variable, x, y, a, and nfor expressions, and T for a type.

Function procedures

Name Argument types Result type Function
ADR(V) any LONGINT address of variable v
BIT(a, n) a: LONGINT BOOLEAN bit n of Mem[a]
n: integer type
CC(n) integer constant BOOLEAN condition n (0 < n< 16)
LSH(x, n) x, n:. integer type type of x logical shift '
ROT(x, n) X, n. integer type type of x rotation
VAL(T, x) T, x: any type T x interpreted as of type T
Proper procedures
Name Argument types Function
GET(a, V) a: LONGINT; v: any basic type, v = Mem[a}
pointer type, procedure type ’
PUT(a, x) a: LONGINT; x: any basic type, Mem[ag] = x
pointer type, procedure type
-GETREG(n, v) n: integer constant; v: any basic type, v := Register,
pointer type, procedure type
PUTREG(n, x) n:integer constant; x: any basic type, Registerp = v
pointer type, procedure type
MOVE(ag, a7, n) ap, ay: LONGINT; n: integer type Mem[ay.. a+n-1] = Mem[ag.. ag+n-1]
NEW(v, n) v: any pointer type; n: integer type allocate storage block of nbytes

assign its address to v

30

Appendix D: The Oberon Environment

Oberon-2 programs usually run in an environment that provides command activation, garbage collection,
dynamic loading of modules, and certain run time data structures. Although not part of the language, this
environment contributes to the power of Oberon-2 and is to some degree implied by the language
definition. Appendix D describes the essential features of a typical Oberon environment and provides
implementation hints. More details can be found in [1], [2], and [3].

D1. Commands

A command is any parameterless procedure P that is exported from a module M. it is denoted by M.P
and can be activated under this name from the shell of the operating system. In Oberon, a user invokes
commands instead of programs or modules. This gives him a finer grain of control and aliows modules with
muttiple entry points. When a command M.P is invoked, the module M is dynamically loaded unless it is
already in memory (see D2) and the procedure P is executed. When P terminates, M remains loaded. All
global variables and data structures that can be reached from global pointer variables in M retain their
values. When P (or another command of M) is invoked again, it may continue to use these values.

The following module demonstrates the use of commands. It implements an abstract data structure
Counterthat encapsulates a counter variable and provides commands to increment and print its value.

MODULE Counter;
IMPORT Texts, Oberon;

VAR
counter: LONGINT;
w: Texts.Writer;

PROCEDURE Add*; (* takes a numeric argument from the command line *)
VAR s: Texts.Scanner;

BEGIN
Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(s);
IF s.class = Texts.Int THEN INC(counter, s.i) END

END Add;

PROCEDURE Write*;

BEGIN
Texts.Writeint(w, counter, 5); Texts.WriteL.n(w);
Texts.Append(Oberon.Log, w.buf)

END Write;

BEGIN counter := 0; Texts.OpenWriter(w)
END Counter.

The user may execute the following two commands:

Counter.Add n adds the value nto the variable counter
Counter.Write writes the current value of counterto the screen

Since commands are parameterless they have o get their arguments from the operating system. In
general, commands are free to take arguments from everywhere (e.g. from the text following the

31

command, from the most recent selection, or from a marked viewer). The command Adduses a scanner (a
data type provided by the Oberon system) to read the value that follows it on the command line.

When Counter.Add is invoked for the first time, the module Counter is loaded and its body is
executed. Every call of Counter.Add n increments the variable counter by n. Every call of
Counter. Write writes the current value of counter to the screen. '

Since a module remains loaded after the execution of its commands, there must be an explicit way to
unload it {e.g. when the user wants to substitute the loaded version by a recompiled version.) The Oberon
system provides a command to do that.

D2. Dynamic Loading of Modules

A loaded module may invoke a command of a still unloaded module by specifying its name as a string. The
specified module is then dynamically loaded and the designated command is executed. Dynamic loading
allows the user to start a program as a small set of basic modules and to extend it by adding further modules
at run time as the need becomes evident.

If a module MO causes the dynamic loading of a module M1, then M1 may import and use all the
other loaded modules (among others M0). However, MO does not import M7 and needs not know about
its existence. M1 can be a module that is designed and implemented long after MO.

D3. Garbage Collection

In Oberon-2, the predeclared procedure NEW is used to allocate data blocks in free memory. There is,
however, no way to explicitly dispose an allocated block. Rather, the Oberon environment uses a garbage
-collector to find the blocks that are not used any more and to make them avaitable for allocation again, A
block is in use as long as it can be reached from a global pointer variable via a pointer chain. Cutting this
chain (e.g., setting a pointer to NIL) makes the block collectable.

A garbage collector frees a programmer from the non-trivial task of deallocating data structures correctly
and thus helps to avoid errors. However, it requires information about dynamic data at run time (see D5).

D4. Browser

The interface of a module (the declaration of the exported objects) is extracted from the module by a so-
called browser which is a separate tool of the Oberon environment. For example, the browser produces
the following interface of the module Trees from Ch. 11.

DEFINITION Trees;
TYPE
Tree = POINTER TO Node;
Node = RECORD
name: ARRAY OF CHAR;
PROCEDURE (t: Tree) Insert (name: ARRAY OF CHAR);
PROCEDURE (t: Tree) Search (name: ARRAY OF CHAR): Tree;
PROCEDURE (t: Tree) Write;
END;
PROCEDURE NewTree (): Tree;
END Trees.

For a record type, the browser also collects all procedures bound to this type and shows their declaration in
the record type declaration. '

32
D5. Run Time Data Structures

Certain information about records has to be available at run time: The dynamic type of records is needed for
type tests and type guards. A table with the addresses of the procedures bound to a record is needed for
calling them using dynamic binding. Finally, the garbage collector needs information about the location of
pointers in dynamically allocated records. All that information is stored in so-called type descriptors of
which there is one for every record type at run time.

The dynamic type of a record corresponds to the address of its type descriptor. For dynamically
allocated records this address is stored in a so-called type tag which precedes the actual record data and
which is invisible for the programmer. If tis a variable of type CenterTree (see example in Ch. 6) Figure
D5.1 shows one possibie implementation of the run time data structures.

type descriptor
of CenterNode

" ProcTab
1 BaseTypes .
- o
| CenterNode
4| leit -
- NIL
8 | right Iy
12 | width ML . f poi i
4 offsets of pointers in t*
16 | subnode 8 | (for garbage collector)
e

Fig. D5.1 A variable tof type CenterTree, the record t it points to, and its type descriptor

Since both the table of procedure addresses and the table of pointer offsets must have a fixed offset from
the type descriptor address, and since both may grow when the type is extended and further procedures
and pointers are added, the tables are located at the opposite ends of the type descriptor and grow in
different directions.

A type-bound procedure t.P is called as t.tag". ProcTab[Indexp]. The procedure table index of
every type-bound procedure is known at compile time. A type test v IS T is translated into
vA.tag’.Base Types| ExtensionLevelt] = TypeDescrAdrT. Both the extension level of a record type and
the address of its type descriptor are known at compile time. For example, the extension level of Node is 0
(it has no base type), and the extension level of CenterNode is 1.

[1] -N.Wirth, J.Gutknecht: The Oberon System. Software Practice and Experience 19, 9, Sept. 1989
[2] M.Reiser: The Oberon System. User Guide and Programming Manual. Addison-Wesley, 1991
[3] C.Piister, B.Heeb, J.Templ: Oberon Technical Notes. Report 156, ETH Ziirich, March 1991

Eidg. Techn. Hochschule Zirich
informatikbibliothek
" ETH-Zentrum
CH-8092 Zirich

