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Abstract

The potential of large numbers of workstations for solving very large problems is tremendous.
Nevertheless, it is often considered inappropriate to parallelize applications with a fair amount of
communication on computer networks, because communication via networks with high latency and
low bandwidth presents a technological bottleneck. In this paper, a model to analyze the gain of
communication latency hiding by overlapping computation and communication is described. This
model captures the limitations and illustrates the opportunities of communication latency hiding for
improving speedup and efficiency of parallel computations that can be structured appropriately. Fur-
thermore, an implementation of a message passing protocol is presented that incorporates latency
hiding on top of the TCP/IP transport layer. This protocol ensures efficient, deadlock-free com-
munication in UNIX network environments. Experiments show that the presented latency hiding
technique increases the range of applications suited for parallel computing on networks of computers,
even across the Internet. Measurements with a multiprocessor system demonstrate the validity of
the latency hiding model for a broader range of parallel architectures. Parallel programming with
conventional message passing interfaces is only slightly affected, because an additional protocol layer

hides the increased complexity from the programmer.

1 Introduction

Currently, an increasing acceptance of network computing can be observed among engineers
and scientists [2,3,4,13,17]. Network computing is defined to be utilization of some software
platform to support distributed parallel computing in a heterogeneous computer network,

usually consisting of a large number of workstations — both on a local area network and in



long-haul nets. PVM [25] is often considered a de-facto standard in this field, and MPI [1]
is emerging to replace PVM as a widely accepted standard. However, running very large
problems with high resource requirements for both computation and communication is
only about to be understood. Furthermore, most systems for network computing to date
represent extremely complex implementations, and full understanding of the overheads,
capacities, and granularities attendant in such systems is lacking.

In this report the disposal of the communication bottleneck of network environments
is tackled. For communication performance in LAN-based networks, contention appears
to become a limiting factor, whereas latency usually limits communication for WAN based
networks. To ameliorate this situation, this work is focussed on a latency hiding technique
[15] to be utilized by algorithms that allow for overlapping computation and communi-
cation. Communication latency hiding is defined informally as a technique to increase
processor utilization by transferring data via the network and continuing with the compu-
tation at the same time. To analyze the opportunities and limitations of this technique,
in this paper:

1. A model is proposed for the analysis of communication latency hiding by overlapping
computation and communication in high-latency networks, and conclusions are drawn

about the possibility to achieve a maximal gain.

2. A refinement of the TCP/IP protocol is introduced that implements efficient and
deadlock-free message passing as well as communication latency hiding in UNIX envi-
ronments. The introduction of a separate communication kernel serves as a basis for

a novel architecture of software platforms for network computing.

3. Experimental results are presented that show that the model matches reality well
enough to serve as a basis for qualitative prediction of performance gain due to latency
hiding.

The field of scientific computing provides large classes of applications for which net-
work computing can be effective. This paper begins with a typical technique found in
many parallel implementations of scientific applications, domain decomposition [14], and
a simple model of gain due to exploitation of communication latency hiding is presented.
Then, a generic computational load measure is introduced that models a much broader
class of algorithms. This theoretical analysis has motivated the development of a latency
hiding protocol as a refinement of the TCP/IP suite [9]. By utilizing otherwise wasted
protocol wait times for computational tasks, latencies are reduced further, and smaller
granularities can be supported.

The earlier origin of this work was the development of PARC [22], a platform for
network computing in the large. There, for the sake of portability, all protocols are imple-
mented on top of TCP/IP and the Berkeley Socket Interface [20]. Stream sockets abstract

from low level data transfer by offering the stream model to the programmer. However,



this does not suffice to exchange messages in a safe way, because deadlocks may occur due
to bounded buffer implementations. The solution to this problem is left to the program-
mer. But not only with the socket interface, also IBM’s external user interface [5] and
Intel’s NX message passing interface [18] burden the programmer with deadlock avoid-
ance. Furthermore, message transfer might be inefficient due to protocol implementation
details. The design decisions of the protocol, presented in this report, are partially based
on empirical studies to ensure highest possible performance in a portable manner.

The model of communication latency hiding is based on ideas similar to those pre-
sented by Stone [21]. In the report to hand, the notion of software granularity and hardware
granularity is introduced, which offers a simpler representation and broader range of con-
clusions. Further, this work generalizes the modeling of numerical applications, as was
done by de Sturler and van der Vorst [24], and Wunderlich et al. [26], and describes the
notion of gain in a broader context.

In Section 2, the model of communication latency hiding is introduced, and the im-
plications for parallel processing are discussed. Section 3 presents an implementation of
a latency hiding protocol for UNIX environments. Preliminary experimental results are

used in Section 4 to validate the model and the protocol implementation.

2 A Latency Hiding Model

The idea of gain of communication latency hiding can be grasped by means of a simple
model. First consider a concrete example from scientific computing; a two-dimensional
parabolic partial differential equation that, for example, describes the phenomenon of heat
conduction:
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Applying an explicit finite-difference approximation [19] yields the following formula, based
on a five-point-stencil, also referred to as Jacobi-type iteration [6]:
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where r, = At/(Ax)?, r, = At/(Ay)?, and ugf]) denotes the temperature value at grid
point P; ; and time to + kAt

The index space of this equation is three-dimensional. Observing that ugfcj—i_l) depends
only on values u of the previous time step k, storage requirements can be reduced by one
dimension. Two two-dimensional arrays store the values of the entire spatial domain at
two consecutive time steps 2k and 2k + 1. Newly calculated values of time step 2k + 2 are

stored by overwriting the values of time step 2k.
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Figure 1. Domain decomposition.

For parallelization on a two-processor system, the spatial problem domain may be
decomposed into two subdomains. These subdomains are overlapped according to the
data dependencies of the five-point-stencil. Thereby, artificial boundary conditions are
introduced that are exchanged between subsequent iterations according to Fig. 1. Starting
the iteration with an initial condition, columns L1 and R1, calculated at time step 2k,
become the artificial boundary conditions of the other processor at the next time step 2k+1.
Thus, L1 and L2 have to be communicated before columns L2 and R2 can be calculated
at time step 2k + 1. The implementation of this algorithm has been studied in detail on a
LAN of workstations in [7].

2.1 A Simple Model

The purpose of the following model is a simple formalization of the phenomenon of commu-
nication latency hiding, and its effect on problem size and granularity. Assuming a runtime
system that supports non-blocking send and blocking receive operations, the following ab-

stract loop body of the time-iteration above would be straightforward to implement:

(i) Calculate all grid values
(ii) Send artificial boundaries to nearest neighbors (A1)

(iii) Receive artificial boundaries from nearest neighbors

This loop body is separated into two distinct phases, the calculation phase comprises step
(1), and the communication phase consists of phases (ii) and (iii). A simple model estimates

the sequential execution time consumption ., of one loop iteration:

tseq = Cxnxm,



where n is the z-dimension and m the y-dimension of the spatial problem domain, and
C' i1s a machine dependent constant that denotes the average calculation time per grid
point. Assuming an equal distribution of work among p processors, the calculation time
per task is tcqic = tseq/p, and the runtime of the parallelized loop body execution can be

approximated by

tseq

tpar(p) =tcale + tcom = + teom-

All overhead incurred is assumed to be communication related. The speedup for algorithm
(A1) is
S(p) = Eseq = tseq = p
tpar tseq/p‘|‘ teom 1 ‘I’tcom/tcalc

The ratio of calculation time and communication time per task is introduced as software

granularity v = i“ﬂ With ~, S can be written

p
Sp) = m
Comparing with Amdahl’s law, 1/4 can be interpreted as the sequential portion of the
program. To avoid its disastrous effect with respect to speedup, ~ has to be large, i.e. ac-
ceptable speedup requires large software granularity. However, rather than restricting
granularity v to large values (and thus restricting ourselves to only large problem sizes)
another possibility of reducing the (sequential) communication part is considered. The

basic idea is communication latency hiding as illustrated in Fig. 2.
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Figure 2. Illustration of communication latency hiding.

In this figure, the solid lines correspond to calculation time ¢.4;., and the broken lines
indicate communication time t.,,,,. In all three cases, the upper line shows the serialized
execution of calculation followed by communication, as given by the parallelization scheme
of algorithm (A.1). The lower two lines illustrate calculation and communication starting
at the same time, and executing concurrently, thus hiding the communication latency
behind the calculation. The elapsed time t;; of this version is always lower than the

serial runtime t,.,. The three cases illustrate different degrees of latency hiding. In (a),



communication is hidden thoroughly, corresponding to t;, = tcqic > teom. Part (b) shows
the equilibrium case, where calculation time equals communication time: t;, = teqre =
teom. In case (¢), communication time exceeds calculation time, and thus cannot be hidden
completely: t.q1c < teom = tin-

These considerations suggest that the performance of algorithm (A.1) may be im-
proved if communication and calculation are executed concurrently. The loop body of a
modified algorithm (A.2) is therefore:

(i) Calculate artificial boundaries of next time step
(ii

(iii

Send artificial boundaries to nearest neighbors (A.2)

Calculate grid values (except those done in step (1))

)
)
)
(iv) Receive artificial boundaries from nearest neighbors

To model the runtime of algorithm (A.2), the overall domain is assumed to be suffi-
ciently large, such that step (i) of (A.2) can be neglected. Then, the idealized situation of
Fig. 2 holds, and the parallel runtime is

tpf“’(p) = maX<tcalm tcom)-
The speedup of (A.2) is derived analogously to (A.1):

p
S =
) = (1)
with v and the same assumptions as for algorithm (A.1). The ratio of the speedups of
algorithms (A.2) and (A.1) is defined as the gain

Swm(p)  14+1/y

@ C= 5~ ma(L, 1)

GG can be interpreted as speedup due to latency hiding, which only indirectly depends on p
through ~. Gain G is furthermore directly related to efficiency. With the definition of
efficiency E(p) = S(p)/p, the gain is the quotient of efficiencies G = Ej,/E. For parallel
algorithms structured like (A.1) and refined like (A.2), gain G is bounded by the constant 2
independent of the number of processors being employed. However, it should be pointed
out that without a high value of gain (i.e. close to 2), utilizing larger numbers of processors
will in general lead to low efficiency. Therefore, gain itself is a secondary objective which
will lead to higher efficiency, and leads to a solution that allows the use of a particular
number of processors with maximum efficiency. It is this point that is built upon as a main
thesis of this work. If large numbers of workstations are to be used, we are forced into

high-latency environments for technical and economical reasons. Thus, techniques should



be used to exploit overlapping. Gain, as defined here, becomes a primary focus of the
programmer and system designer, and therefore the relationships among gain, speedup,
granularity (), and communication overhead are examined. Fig. 3(a) shows the speedup

curves S and Sy, as a function of 4. Fig. 3(b) shows the corresponding gain G.

Sih

3plar

Speedup

plar

Figure 3. Ideal communication latency hiding.

For 0 < v <1, G =1+~ is a linearly increasing function. This corresponds to case
(¢) in Fig. 2, where communication outweighs calculation. Note that for a smaller ~, the
communication delay increases, thus less of it can be hidden, and the gain decreases. The
maximal gain G = 2 is obtained with v = 1, where the maximal amount of communication
latency hiding occurs. For v > 1, Si(p) = p is constant. As S(p) tends to p with
increasing v, G = 141/~ decreases asymptotically towards the limit 1. The communication
overhead, and thus the gain of latency hiding becomes negligible with increasing ~. i.e.
communication time .., is negligible compared to calculation time t.4. (cf. Fig. 2(a)).

The model of ideal communication latency hiding that lead to equation (1) can be
easily generalized to algorithmic structures, where only a fraction of the calculation can
be utilized for hiding communication. In algorithm (A.2), this part would be step (iii).
Usually, the data that are exchanged between the cooporating tasks have to be calculated
before the transfer. In the example of algorithm (A.2), this is done in step (i). Introducing
the fraction f of the calculation time that is effectively available for hiding communication,

the runtime of the parallel loop can be written as:

tpar(p) = (]- - f)tcalc + maX(ftcalcatcom>7

with 0 < f < 1. De Sturler [23] uses this representation to analyze the speedup behavior
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of Krylov subspace methods. The gain formula (1) extends to:

1+1/y
(1= f) + max(f,1/7)

G —

Obviously, f = 1 yields the ideal case modelled by equation (1), whereas for f = 0, no
latency hiding is possible at all. In the following, communication latency hiding is called

wdeal if f = 1. Figure 4 illustrates the effect of fraction f on speedup and gain.

f=1 /f=
1205 025

3plar

Speedup

plar

Figure 4. Partial communication latency hiding.

This figure shows that even if the fraction of the calculation phase that contributes to
communication latency hiding is relatively low (f = 0.5), the speedup reaches the maximal

value p for a relatively low granularity v. However, the maximal gain is only G = 14+ f

for v =1/f.

2.2 Extended Model

This section introduces an extension and refinement of the simple model. The goal is the
incorporation of fundamental properties of the gain function as parameters. The starting

point is the speedup formulae developed in the previous section:

p
(1 - f) + max(f, tcom/tcalc) ‘

p
2 Sp)=——— S =
( ) (p) 14 tcom/tcalc7 lh(p)
These equations are refined by introducing (1) a more detailed description of the calculation
and communication times, and (2) introducing a term that lumps together all overhead

induced by the latency hiding implementation. The following assumptions are made: (1)
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parallelization overhead other than latency hiding overhead can be gathered in t.,,,, and

(2) all other effects not explicitly mentioned are negligible.

The total calculation time is modeled as

where 7 denotes the number of instructions needed to sequentially solve the entire origi-
nal problem, and r,, the processor specific processing rate in instructions per unit time.
Depending on the processor technology, r,, varies with respect to the program. However,

rop 1s assumed to be constant in the following.

The message transfer time can be described as follows:

b ? b
tyr = tes + == + ) (3)
rCOm T.Op rCOm
where t.s = i.5/rop is the software overhead of the communication startup time, b the

number of communication units per message, and 7.y, the network transfer rate with
respect to this unit of communication. For small messages startup time is dominant, and
for long messages, bandwidth (throughput) limits the transfer time. Although the network
transfer rate is generally technology dependent, it often suffices to approximate r.,, as
a constant. From our experience, this assumption holds reasonably well in FDDI and
Ethernet LANs, and even in heterogeneous WANs such as the Internet. Particular effects
of different network technologies, such as congestion, can be modeled in r.,,,, for example

by defining r.,, as a function of the network transmission rate.

The communication time combines transfer time of a single message and the number of

messages transferred subsequently during a communication phase:

tcom =4q ttr-

The number of messages ¢ depends on the algorithm, and often on the number of proces-
sors p. Also, ¢ depends on the hardware. It denotes the number of message transfers that
are executed sequentially. In case, the hardware supports multiple network interfaces, and
messages are transferred simultaneously via these interfaces, this would be reflected in the
value ¢ by counting simultaneous message transfers as ¢ = 1. For example, a 2-dimensional
torus topology with 4 independent hardware links, and a task that delivers four messages
to its direct neighbors can be assumed to yield ¢ = 1. However, if the same application
were to run on an architecture with bus interconnect technology, all messages would have

to be sent sequentially, yielding ¢ = 4.

Granularity is the parameter used to characterize both a parallel application and a parallel

machine. Software granularity v, and hardware granularity ~; are distinctly defined as

def 7;(p) def Top j
def L el Top,j
737] b] (p) ) 7 3] rcom7j 2

0< 7 <np.
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The software granularity ~, ; of task j is the ratio of the number of instructions i;(p) of
task 7 and the number of communication units b;(p), sent and received by this task. In this
definition, ;(p) and b;(p) denote some function, which depends primarily on the number
of processors p. If the partitioning of an algorithm matches a heterogeneous configuration,
Ys = (Vs.05+++>7s.p—1)] might be modeled as a vector quantity, characterizing each task
separately. Here, the simple case is studied, where the application is ideally parallelizable
into p parts that are assumed to be identical in their calculation times and communica-
tion requirements. Assuming constant communication volume, the software granularity
characterizes the parallel program with i(p) = 7;(p) = ¢/p and b(p) = b;(p) = b that are
identical for all j:
_i/p
Vs = b
where ¢ denotes the number of instructions of the sequentialized parallel program. The
hardware granularity +y ; is the ratio of the instruction rate r,, ; of processor 7 executing
task j and the transfer rate r.o,, ; of the network(s) processor j is connected to. In the
following, the (collective) machine is assumed to be homogeneous, and the rates to be

constant. Therefore, the hardware is characterized by the granularity:

”
= —%
rCOm
Still neglecting the overhead of communication latency hiding, the speedup formu-

lae (2) become

S(p) = N A— P |
L q(B5 + 2 2) 7 14 q( 55 + /)
and
Sin(p) = p4 = P : ‘
(1= f)+max(fq(8 + 22 2)) (1= f) +max(fq(52 + /7))

The gain of communication latency hiding (1) therefore becomes

Sun(p) L+ q( 55 + /)
Glp) = b - < '
P S(p) (1—f)—|—max<f,q<ﬁ—|—’7h/%>>

A particular latency hiding approach will introduce its own overhead, which depends on the

hardware and the implementation of the message passing protocol. In principle, overhead
increases both the calculation and communication parts of a program. However, to include
the effect of overhead, a term {2 > 0 is added to the calculation part of the latency hiding

version:

(4) G(p) = Lt e+ o) |
(1= £) +max(f + 2 q( 55 + /7))

i/p
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The term {2 models the qualitative overhead of communication latency hiding. Since
accurate measures will be hard to obtain for quantitative modeling, we introduce a unit-

less granularity here to examine the effect of varying this parameter.

2.3 Discussion of Latency Hiding Gain

The discussion of the gain function G can be simplified by treating short messages and
long messages separately. Short messages are characterized by t.s > b/rcom, and long

messages by tes € b/Tcom in equation (3). The gain then reduces to

1+qics

i/p + b
G ~ (1—f)+max(f+Q7qz7; ” cs > /rcom (5)
1+qvn /s
(1—f)+max(f+Q,qvn /v:) tcs < b/rcom

For short messages, the startup times are predominant, for long messages, the size of the

message accounts for the communication time that shall be hidden. Obviously, G shows the

same behavior in both cases, when substituting Z’;p for ratio v /vs. Since we are interested

in huge problems with large communication requirements, we direct our attention to the

second case with large messages. Here, hardware granularity, software granularity and
latency hiding overhead each appear as parameters. To study their impact on the latency
hiding gain, first the special case of a two-processor system is examined, and later extended

to a more general multi-processor case.

2.3.1 Two-Processor System

To grasp the qualitative expressiveness of the latency hiding model, the following special

case is considered:

1+7h/73

tes K b/Teom, =1, =1 = ~ )
freom: [ =14 a1+ 2,70/

This means that within certain pairs of tasks, resulting from a pipe topology for example,
one task sends a long message to the other task, and communication can be hidden ideally.
Although G could be discussed in terms of the quotient ~4 /v, and the overhead only, the
effects of hardware and software granularity would not become obvious. Varying v, and ~,
corresponds to different interpretations. Changing ~s can be interpreted as working with
a fixed amount of computation, and changing the communication volume, or as assuming
a fixed communication volume and changing the amount of computation. Varying ~
corresponds to changing processing elements, network technologies or implementations of

software communication interfaces. In the following, both parameters are treated explicitly.



— 14 —

Figure 5 shows a family of gain curves versus software granularity and hardware
granularity for negligible overhead €2 = 0. The curves have identical shapes. Due to
the quotient ~j/~vs, points lying on the linearly increasing part of a curve in one figure
correspond to points on the decreasing part in the other figure. G reaches its absolute

maximal value of 2 for v, = v5. Two conclusions can be drawn from these figures:

1. Larger granularities provide a certain degree of robustness concerning the range that
provides a particular gain, both in a hardware and software sense. For example,
consider a desired lower gain bound of 1.5. Given a hardware granularity of v, = 1,
the software granularity must be within the range 0.5 < ~, < 2. However, for v, = 10,
the range increases to 5 < v, < 20.

2. Smaller software granularity shifts the point of maximal gain towards smaller hardware
granularity, and analogous, smaller hardware granularity shifts the point of maximal
gain towards smaller software granularity. This result coincides with the need of faster
communication networks for programs with smaller grain size. However, Fig. 5(b) also
shows that smaller hardware granularities may not be necessary for applications with

a lower bound of software granularity.

I I I
20 25 0 5 20 25

10 15 10 15
Software Granularity Hardware Granularity

(a) (b)
Figure 5. Gain without overhead (2 = 0).

Figure 6 illustrates the effect of overhead on the gain G. Four insights can be extracted

from this figure:
1. Increasing overhead results in a decreasing maximal gain (< 2).

2. Increasing overhead results in a smaller range of software and hardware granularities,

within which a particular gain can be obtained.



~15 —

3. To gain from latency hiding, the condition

Yo /vs >

must hold. The latency hiding overhead Q affects G, if v, /vs < 1 + Q, according to

the maximum function in the denominator of G. Thus, the gain becomes a loss, if

_ 14y /7.
G = 140

granularity, as well as the hardware designer, system software and language designer

< 1, 1.e. if 4, /s < Q. This condition puts constraints on the application

to keep 75,/ large. Because it is intuitive that v, should not be increased, {2 must

be therefore minimized.

4. The fact of most importance to the parallel programmer is the point where gain G is

maximal:

1+Q=1/7.
Under this condition, the maximal gain becomes

Q

This dependency of the maximal gain on overhead, as well as hardware and software

granularity, can also be readily observed in Fig. 6.

Gain
Gain

0.5
0

5 10 15 20 25 0 5 10 15 20 2 30 35
Software Granularity Hardware Granularity

(a) (b)

Figure 6. Gain dependency on overhead.

Figures 7 and 8 show the impact of varying overhead on gain G. Two examples shall

illustrate the use of these figures.
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Gain

0.5
0

. . . . .
5 10 20 25 "o 5 20 25

15 10 15
Software Granularity Hardware Granularity
(a) (b)
Figure 7. Gain with overhead (2 =0.2).
2 T 2
Q=10 Q=10
Ys =1 Ys =5 Ys =10

1.5 1.5

Gain
Gain

L 0.5 .
20 25 0 5

05 I I I
0 5 10 20 25

15 10 15
Software Granularity Hardware Granularity

(a) (b)
Figure 8. Gain with overhead (€2 = 1.0).

Example 1 Assume a given software granularity v, = 5, and that three different
architectures are available, characterized by the following pairs (v4,Q): Hy = (1,1), Hy =
(5,0.2), H3 = (10,0). In Figures 8(a), 7(a), and 5(a), the respective gains can be found:
G(Hy) = 3/5, G(Hy) = 5/3, G(Hs) = 3/2. It follows that the given application achieves
the best gain on architecture Hs.

Example 2 Given a range of software granularities 2 < ~, < 10. Which of the archi-
tectures Hy = (5,0), Hy = (1,0.2), Hs = (10,1) guarantees an effective gain G > 1 for the
entire range? Figures 5(a), 7(a), and 8(a) show that architectures H; and Hj fulfill the

requirement, while Hs does not.
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2.3.2 Multi-Processor System

From approximation (5), we see that for large messages gain G depends only indirectly on

the number of processors p through the software granularity ~v, = %

the two-processor system was based on the assumption that i(p) = ¢/p and b(p) = b, where

. The discussion of

the number of instructions ¢ and the size of the messages b is constant. In this case, the
dependency of software granularity upon the number of processors can be made explicit
by introducing the ratio
/b
A= ple 2 U
Yh Yh

Then, gain function (4) becomes

G(p) = L+palty + 1/%) .
(1-1)+ maX(f +Q,pq( == + 1/A)>

Focusing on long messages, startup times are neglected, and the formulae for speedup

(2), including latency hiding overhead €2, turn into

_ p

Sun(p) = i 7
(1= f) + max(f + 2qp/))

and gain G(p) = Su(p)/S(p):

1+ pg/A

G@%:u—ﬁ+mw0+ﬂmww'

(6)

Figure 9.1 illustrates the dependency of gain on the ratio of software and hardware granu-
larities A. In contrast to the previous discussions where ¢ = 1, the communication volume
is now assumed to be proportional to the number of processors (¢ = p), which corresponds
to all-to-all communication. The gain values in 9.1(b) correspond to the case of ideal
latency hiding (f = 1) with respect to the case without latency hiding (f = 0). Fig-
ure 9.1(a) shows the speedup curves Si,(p) of both versions. The dashed curves belong to
the case without latency hiding. Because the communication volume is proportional to the
number of processors, the dashed speedup curves attain a global maximum. Adding pro-
cessors beyond the number corresponding to p,p¢, leads to smaller speedup values, because

communication overhead outweighs calculation time.
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(a)

10 15
Number of Processors

20

25

20

10 15
Number of Processors

(b)

Figure 9.1. Gain dependency on granularity A\ (2 =0).

25

Figure 9.1 shows that the maximal value of speedup with ideal latency hiding is

achieved with the number of processors yielding also the maximal gain. For decreasing A,

the number of processors operating with maximal speedup and efficiency decreases. This

coincides with the general notion that software granularity, hardware granularity, speedup,

and efficiency are directly related to each other. For sensible utilization of large numbers

of processors, A has to be big. In case of ¢ = p, and the idealized situation f =1, =0,

the maximal gain G = 2 is obtained from equation (6) for A\ = p?.

25

20

— f=1
---f=0

A =25

(a)

I I
15 20

10
Number of Processors

25

1.9
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Figure 9.2. Gain dependency on communication volume ¢ (2 = 0).
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Figure 9.2 shows the effect of varying the number of messages ¢ on speedup and gain.

The ratio of software and hardware granularities is fixed. It is interesting to note that the
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speedup of the version with ideal latency hiding does not decrease with increasing number
of processors, if the communication volume is constant (c¢f. ¢ = 2 in Fig. 9.2). This case
is equivalent to the simple model presented in Fig. 3. Furthermore, as expected, increased
communication volume leads to smaller maximal speedup values, and smaller numbers of
processors where this maximum is achieved.

Analogous to the two-processor system, the influence of overhead can lead to a loss
(G < 1) instead of a gain if @ > pg/A. From equation (6) follows that this result is
independent of the degree of latency hiding f. A reasonable implementation of commu-
nication latency hiding must induce an overhead 2 <« 1. This is possible in practice as
will be shown in the next sections. So, there will be an effective gain, which implies that

communication latency hiding can improve both speedup and efficiency.

Speedup

10 15 20 25 0 5 10 15 20 25
Number of Processors Number of Processors

(a) (b)

Figure 9.3. Gain dependency on latency hiding degree f (2 =0).

Figure 9.3 shows the impact of varying the fraction of calculation that is available for
hiding communication on speedup and gain for fixed overhead, granularities and number
of messages. As before, the speedup values for f = 0 correspond to the algorithm without
latency hiding, and are therefore the reference values for the gain calculation. For f =1,
ideal latency hiding is given.

Figure 9.3(a) depicts a typical speedup curve of an application without latency hiding
(f = 0), where the communication volume increases proportional to the number of pro-
cessors, in this example ¢ = /p. Figure 9.3(a) illustrates, how the maximum of speedup
increases and shifts towards smaller numbers of processors with increasing degree of com-
munication latency hiding. These curves clearly demonstrate the benefit of communication
latency hiding: Maximal speedup and efficiency are increased simultaneously with increas-

ing f. Note that the points of maximal speedup and maximal gain do not coincide.
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2.3.3 Impacts on Parallel Processing

The modeling rises several basic questions concerning communication latency hiding that

can be of interest for different communities:

Architect:  What is the best hardware granularity for a fixed overhead Q7
There is a trade-off between the cost for smaller hardware granularity and the lower

bound of software granularity that delivers maximal gain.

Programmer: (1) Assuming a given machine (v;,$2), what is the optimal software granu-
larity to achieve maximal speedup through latency hiding? (2) Given a certain application
with software granularity 5, what is the best available parallel machine (v, 2) to optimize
the speedup through latency hiding?

The programmer can use the model to determine the best software granularity, if
this choice is open with respect to the application requirements. More important, the
programmer can choose that machine among all accessible ones, that yields the highest
speedup. Due to the simplicity of the expression G = Si /S = tpar(p)/tin(p), where tpq,(p)
and t;,(p) are the runtimes of algorithms (A.1) and (A.2) with p processors respectively,

Just two experiments are necessary to determine the actual gain G.

System software designer and language designer: How can the overhead {2 be reduced
best?

This question depends on many parameters. In the following section, a concrete imple-
mentation for UNIX environments is introduced, illustrating the parameters arising in this
setting. In Section 4, results are discussed with implementations in a UNIX environment

and a Transputer based multi-processor.

3 Latency Hiding in UNIX

Communication latency hiding can be provided by building additional communication
processors into the hardware. This technology is the basis of the more recent generations
of parallel architectures such as the Intel Paragon. Communication latency hiding can also
be emulated on workstations by refining the send and receive operations implemented on
top of the TCP/IP protocol. The ideas about latency hiding arose during the design of a
message passing kernel, which is the basis of PARC [22], a platform for network computing
in the large. To ensure portability, all protocols are implemented on top of TCP/IP
and the Berkeley socket interface [20]. Although stream sockets abstract from low level
data transfer by offering a stream model to the programmer, there are still deficiencies
with messages passing. Deadlocks may occur due to bounded buffer implementations, or
the transfer becomes unnecessarily inefficient due to implementation details. This section
describes how latency hiding, combined with efficient and deadlock-free communication

can be realized in UNIX environments.
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3.1 Aspects of UNIX Interprocess Communication

UNIX provides the system calls read and write (or, almost identical, send and recv) to
communicate across connection-oriented communication channels by means of streams [20].
A contiguous memory region is sent as a stream of bytes, and received as a stream of bytes.
Composing and decomposing the stream is in the programmer’s responsibility, for both
inserting and extracting individual data items from the stream and for determining message
boundaries. If message lengths are known at the sender and receiver side, the stream
can correctly be split into messages, because the connection-oriented protocol ensures the
stream to be unique. If the length of a message is not known a priori at the receiver end,

the sender can prepend it in a message header.

For the following discussion the overloading of terms used for the description of mes-
sage passing shall be resolved. In the classical theory of communicating processes, blocking
denotes that the send or receive operations wait until the operation has been terminated.
A non-blocking send operation returns as soon as the send call has been submitted to the
underlying system layer independent of whether the data have been transferred, and a
non-blocking receive call returns whether data are available or not. Synchronous commu-
nication refers to the case, where the send and receive operations block, until the data are
transferred. Asynchronous communication denotes the three cases where at least one of
the communication calls is non-blocking. Within this classification, UNIX communication
is asynchronous on the application level. In contrast to the former definition, the terms
blocking and non-blocking denote the operational behavior of the communication prim-
itives on the transport layer. The send call can return after having transmitted only a
part of the message, and the receive call after having received only a part of the message.
This is in contrast to the classical semantics, where the transmission is usually viewed as

atomic, and either the whole message is sent or received or nothing.

3.1.1 Message Buffering

For message passing on top of streams, the message data have to be provided in a con-
tiguous memory region. Therefore, structured data or different values scattered over the
memory have to be marshaled into a continuous buffer!. On the receiving side, a buffer is
needed to receive the message. An ideal buffer management would allocate buffer memory

and marshal the data in negligible time. In practice, this is not the case.

1 UNIX offers scatter read and gather write system calls readv and writev. Although these operations
are supported by network hardware, they are not portable [20], and assigning buffer start addresses and

message lengths also incurs overhead.
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Figure 10. Overhead of message buffering.

Figure 10 shows message transfer times versus message size measured between two Sun
SPARCstationl+ and two SPARCstationl0 connected by an Ethernet. Three modes of
buffering are shown: (1) byte-wise copying with an explicitly programmed for-loop, which
is representative for the cost of data representation conversion; (2) beopy is a C-library
function for byte-wise memory-to-memory copying; (3) without copying into or out of a
message buffer. Relatively fast machines like a Sun SPARCstation10 perform the copying
in negligible time compared to the transmission time of an Ethernet. In contrast, a Sun
SPARCstationl+ needs more than three times the transmission time to copy data into
and out of a message buffer with the explicitly programmed copy-loop. However, although
the machines deliver different peak performance, both are fast enough to operate at nearly
the same transmission rates without copying, identifying the Ethernet as the limiting
component. In principle, the lower the hardware granularity, the more essential is an
efficient buffer management for communication performance. Avoiding message copying
at all has been proposed repeatedly [8,11,12].

In order to design a deadlock-free, efficient message passing protocol on top of UNIX
stream sockets, the buffer management of asynchronous communication is investigated in
more detail. The sockets at both ends of a connection-oriented channel allocate a receive
buffer and a send buffer. In principle, two cases have to be distinguished: The sum of the
lengths of the send buffer at the sender side and the receive buffer at the receiver side is
(1) smaller than the message, and (2) not smaller than the message. In the first case, a
blocking send call will not terminate, until the receiver empties the receive buffer. This

situation can lead to deadlocks, if two processes simultaneously send messages to each
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other. With the default buffer size of 4 Kbyte, messages bigger than 8 Kbyte cause both
processes to deadlock in the send operation. Deadlocks cannot occur in the second case.

However, for performance considerations, it is interesting to investigate two subcases
of case (2): (a) the message is smaller than the send buffer, (b) the message is larger than
the send buffer. In case (a), the send call returns as soon as the entire message has been
copied into the socket buffer. While the user process continues, the data are communicated
by the TCP protocol. Case (b) is more complex. Suppose for simplicity that send buffer
and receive buffer have the same size. Now, the first part of the message is copied into the
send buffer, and communicated to the receive buffer. The send call returns after the second
part of the message is copied into the send buffer. If the receiver has not yet submitted a
receive call, its receive buffer is still fully occupied and the data in the send buffer at the
sender side cannot be transferred. Within the TCP protocol layer, the receiver advertises
a zero window, and the sender starts probing the receiver periodically [9]. Handling this
case is expensive, and eventually increases the runtime of the send call dramatically. Only
after the corresponding receive call has emptied the receive buffer, the pending send buffer
content can be transferred. This again increases the cost of the receive call, because the
message 1s not entirely available in the receive buffer yet, but is partially transferred during
the receive call.

An implementation detail of the TCP protocol leads to increased transfer times, if
the message size ranges from 4097 to 5552 bytes. Expected times of less than 10ms
on an Ethernet jump up to about 100 ms. This can be explained historically, when small
messages have been buffered until one bigger message could be sent, or a timer expires [16].
On Sun systems, this effect has been removed for small messages, but not for “4 KByte
+ small messages”. For “8 KByte + small messages” the increased transfer times also
appear, but only about 50% bigger than the expected transfer times. Switching on the
TCP_NODELAY option removes this peculiarity. Similar observations have been reported
by Crowecroft et al. [10].

3.1.2 Message Fragmentation

Streams relieve the programmer from implementation details such as fragmenting messages
into network dependent maximal transmission units [20]. TCP/IP hides these details of
interhost communication. Surprisingly, fragmenting messages above the TCP/IP transport
layer can reduce communication latency as shown in Fig. 11. The measurements were
conducted on two SPARCstationl+, connected via an Ethernet. Obviously, there exists
a local minimum of transfer time for a fragment length of 4 Kbyte. This suggests that
transmission of 4 Kbyte fragments is the best way of communicating long messages in
UNIX environments. Although for large messages (> 16 Kbyte in Fig. 11), transfer without

fragmentation is slightly faster, it is not safe, since deadlocks may occur, if the message
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Figure 11. Performance of message fragmentation.

The reason for the optimum fragment size of 4 Kbyte is an implementation detail of the
dynamic buffer memory management of UNIX [16]. An mbuf memory buffer stores 112
bytes of data. To buffer larger messages, multiple mbuf data structures are connected
as a linked list. If the message length exceeds half of the machine’s page size, a whole
page is mapped into an mbuf structure. In contrast to managing a linked list of mbufs,
the page-table entry is cheaper. Data are moved without memory-to-memory copies by

remapping pages.

3.1.3 Deadlock Avoidance

Asynchronous communication requires buffering of data at the receiver side. Because these
buffers are bounded in UNIX, deadlocks may occur, if the communication system calls are
blocking. Suppose, two processes execute a send operation, sending a message to each
other, before they invoke a receive operation to copy the received message out of the TCP
receive buffer. As mentioned above, if both messages are larger than the capacities of
the corresponding send and receive buffers, both processes block in their send calls — the
processes deadlock. Pierce discusses this, and a more complicated example, for the Intel
NX message passing system [18]. Bala et al. [5] describe how to write a safe program with
the IBM external user interface. However, in both systems, deadlocks can occur, and the

programmer is responsible for deadlock avoidance. For UNIX stream sockets, the default
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send and receive buffer size is 4 Kbyte. Although this maximal buffer size can be adjusted
with the setsockopt system call?, bounded buffers are a principle problem.

A solution for avoiding deadlocks when communication via 4.3BSD sockets is sketched
here informally. The key is fragmenting messages into sizes not bigger than the send or
receive buffers, and reading from a socket with pending data in the receive buffer before
writing any data. Multiple processes sending a message consisting of multiple fragments
to each other, first read an eventually arrived fragment. This frees receive buffer space
that the other process might use to complete the send operation. The total ordering
of respective simultaneous send and receive operations guarantees the correctness of this
algorithm. A formal treatment is beyond the scope of this report and appears elsewhere.

The correctness and efficiency criteria developed in this section imply the following

design decisions for a message passing protocol:
1. To increase efficiency, message copying is avoided where possible.

2. To avoid deadlocks, messages are fragmented above the TCP transport layer into

pieces not larger than the socket’s send and receive buffers.

3. For efficiency reasons, the fragment size is fixed at 4 Kbyte. This size coincides with

the fragment size required in 2. for default socket buffer sizes.

3.2 Protocol Support for Latency Hiding

The basic concept for implementing communication latency hiding in UNIX is the sepa-
ration of communication and calculation into two processes. The communication process
contains the message passing protocol, and the calculation process executes the user pro-

gram with special communication primitives.

3.2.1 Overlapping Calculation and Communication

In this section, the ideas based on the observations in the previous sections are introduced
stepwise. Consider the application described in Section 2 (Fig. 1). The implementation
of the loop body given in algorithm (A.1) is shown in the following pseudo code fragment

(1.1) running on two processors:

Calculate entire domain
write(s, abcol, len); (I.1)

read(s, bcol, len);

In this code fragment, abcol is a pointer to the artificial boundary column, that is cal-

culated as part of the domain and serves as boundary condition during the calculation of

2 The maximal receive buffer size of 4.3BSD is 52,428 bytes.
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the next time step. bcol points to the boundary column, that stores the received artificial
boundary calculated in the current time step. The socket s denotes the communication
end point of the UNIX stream connection, and len the number of bytes to be sent or
received, respectively.

Figure 12 illustrates the runtime behavior from the user’s point of view (a), and
relevant system details in (b). The communication and calculation structure in this, and
several following figures, is depicted by means of event diagrams. The send and receive
buffers of the sockets are assumed to be of equal size, and message size is twice the buffer
size. Therefore, the solid lines correspond to the transfer of a message fragment size equal to
the buffer size. The broken lines symbolize acknowledgments. TCP internal fragmentation

is omitted for clarity.

P1 P2 P1 P2

Calculate

Communicate ><

() User (b) System

Figure 12. Naive implementation (A.1).

As mentioned earlier, this kind of asynchronous message passing deadlocks with blocking
send primitives, if the message sizes are larger than the sum of the corresponding send
and receive buffer lengths. The only safe way to avoid deadlocks is to write two codes, one
for each process, with a reversed order of the send and receive calls. As shown later, the
resulting ping-pong styled communication structure requires not only more programming
effort, but is much less efficient than an interleaved, simultaneous communication.

The implementation of algorithm (A.2), requires only little restructuring of the code
fragment (I.1):

Calculate artificial boundary

write(s, abcol, len); (1.2)

Calculate interior domain

read(s, bcol, len);

To maximize the overlap of communication and calculation, the artificial boundary is

calculated first, and transmitted. During the main part of the calculation, the computation
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of the inner points of the domain, the message can travel over the network, before it is
received by the user process. This notion is illustrated in Fig. 13(a). Figure 13(b) shows
the lower level details as described already in Section 3.1.1. The first message fragment
fills the receive buffers. The second fragment cannot be transferred before the receive calls

have emptied the receive buffers.

P1 P2 P1 P2
Calculate

T - Send _ _
Calculate

Receive = =

(8) User (b) System

Figure 13. Separation of send and receive (A.2).

The problem of this implementation is the cost associated with the blocking send and
receive calls. In fact, this version can even be less efficient than the naive implementation,
if the blocking times introduce a significant overhead. Using non-blocking calls here is
no alternative. Even worse, it would burden the programmer with keeping track of the

number of bytes consumed by the transport layer.

Ul UZ
Pipe Pipe
TCP
K 1 K )
Processor 1 Processor 2

Figure 14. Process separation: User process and communication process.

A way to utilize the CPU idle times during blocking send operations is the intro-

duction of a separate communication process. This setting is shown in Fig. 14. The



_ 98 —

communication processes Ky and K, are connected through a TCP channel. The user
processes U7 and Us communicate via these communication processes. The corresponding
user and communication processes can exchange data via a pipe.

The effect of process separation on the interleaving of communication and calculation
is shown in Fig. 15. Once a message to be sent is available to the communication process,
it starts submission, and returns the CPU to the user process as soon as the transport
layer idles. The calculation is interrupted by the communication process if a TCP event
occurs. The overhead of context switching becomes less significant, with larger hardware

granularity.
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Figure 15. Context switching for communication latency hiding.

This mechanism is well suited for large messages. For very small messages with
dominant message startup times, the time for context switches between user and kernel
process should be much smaller than the time for message startup. To keep the overhead
of the two-process implementation small, also an efficient transfer of the message between
user and kernel process, as well as their efficient synchronization are necessary. A solution
based on shared memory, together with the necessary program notation is presented in the

next section.

3.2.2 Synchronization and Message Access

Given the process splitting described above, the main implementation objective is to min-
imize the latency hiding overhead (2 introduced in Section 2. For the following discussion,
the implications of embedding latency hiding into the PARC system [22] are considered.
This configuration comprises an extended communication process, called kernel process
that is not only responsible for communication, but also for dynamic process generation

and termination. The kernel process spawns a process that executes a user program.
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Two mechanisms are necessary to implement latency hiding in this setting. Both
processes, user process and kernel process, must be able to access a message, and both
processes must be able to synchronize. These mechanisms are required to be fast to
minimize overhead. To access the message, it could either be communicated between the
processes, or be referenced in a physically shared memory segment, as for instance provided
by UNIX System V IPC [20]. The latter mechanism is faster, because it avoids copying and
communicating the message between user process and kernel process. Additional expense
such as allocation of shared memory segments and portability problems are therefore taken
into account. Fortunately, they can almost be hidden from the programmer.

More intricate is the choice of a synchronization mechanism for user and kernel pro-
cess. The alternatives are either System V semaphores, or synchronizing messages. Syn-
chronizing two processes by means of semaphores requires the execution of the semaphore

operations, and switching the context of these processes.

Machine Model Sem Sync [ms] | Pipe Msg [ms]
HP9000 0.09 0.18
IBM RS6000 0.053 0.050
SGI Crimson 0.222 0.222
Sun SPARCstationl+ 0.5 0.38
Sun SPARCstationl0 0.19 0.11

Table 1. Overhead of synchronization.

When a new user process is generated by PARC [22], it is automatically connected
to the kernel process via a bidirectional pipe (two unidirectional UNIX pipes [20]). This
connection suggests implementing synchronization by means of a pipe messages. Commu-
nication via a pipe should in principle require more time than a semaphore synchronization.
Surprisingly, this is not always the case. Table 1 lists the cost of a single synchronization
by means of semaphores, and transferring an 8 byte message (comprising a 4 byte header
and 4 byte message identifier) via a pipe for various machines. This table shows that syn-
chronization my means of semaphores is more expensive than transferring a short message
via a pipe on Sun SPARCstations and IBM RS6000. Only the HP9000 workstation offers
faster semaphore operations. Figure 16 shows the costs of semaphore synchronization and
synchronization by means of pipe communication.

The plot symbols of Fig. 16 at message size 1280 Byte, and labelled with the machine
types mark the measured synchronization times of two processes by means of semaphores.
The lines marked with the same plot symbols show the transfer times of unbuffered mes-
sages via a pipe on the respective machines. This figure lead to the design decision that
synchronization will be done by exchanging short messages via the pipe. For example,

transferring about 512 Byte via a pipe on a SPARCstationl+ is almost as expensive than
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the synchronizing overhead by means of a System V semaphore. To implement synchroniza-
tion with semaphores, an appropriately large set of semaphores is needed, corresponding
to the number of concurrently pending messages, and faster hardware support to reduce

the synchronization overhead.
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Figure 16. Semaphore synchronization versus pipe communication.

Figure 17 illustrates those steps of the communication protocol that are important for
the programmer, although most of these operations can be hidden, as described below.
Consider user process 1 sending a message to user process 2. Step 1 indicates that user
process 1 has written values into the shared memory array A, or has marshaled a message
into array A. User process 1 initializes the send operation by sending a send request via the
pipe to kernel process 1 (2). Kernel process 1 transfers the message to kernel process 2 (3),
while both user processes can continue their computation. At some point during program
execution (4), user process 1 synchronizes the pending send call by sending a sync request
to kernel process 1. User process 1 blocks until kernel process 1 has signaled that it has
delivered the message completely to the TCP protocol layer. At some time, user process 2
signals a receive request to kernel process 2 (5). Two cases are distinguished here. First, if
this request has been issued after the message transfer has been started, kernel process 2
allocates buffer space to store the message. Buffer space is allocated according to the size
of a message fragment (max. 4 Kbyte), and eventually linked into lists as indicated by
array C. When user process 2 sends a sync request to the kernel (6), the message has
to be copied into the requested memory region. Second, to avoid this copy, the receive

request (5) should be transferred to kernel process 2, before the message arrives. In this
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case, the message can directly be stored in user space (array B). The sync request of user
process 2 (6) blocks until the entire message is stored in B. Finally, step 7 indicates, that

user process 2 can access the message in the requested memory region.
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Figure 17 Data exchange via shared memory (cf. Fig. 14).

The program fragment corresponding to Fig. 15 can be given now. Both user processes
initiate the receive before the send, to ensure that the arriving message is stored in array
becol without copying. Then, both processes initiate the transfer of the artificial boundary
array abcol. The transfer of the messages is hidden behind the calculation, or, interpreted
differently, idle times of the kernel process are utilized for calculation. The synchronization
of both send and receive operations by means of wait calls completes the example. It is in
the programmer’s responsibility to guarantee that the initread call is issued before the

message arrives, if additional copying shall be avoided.

Calculate artificial boundary

rid = initread(s, bcol, len);

wid = initwrite(s, abcol, len); (1.3)
Calculate inner domain

wait (wid) ;

wait (rid) ;

The idea of splitting the send and receive primitives into two calls is not new. It has
been introduced to utilize hardware support for latency hiding. Intel’s NX asynchronous
message passing primitives isend and irecv together with msgwait are an example [18].
The request and release communication primitives for the Seamless architecture provide
a similar notion of latency tolerance, yet based on more sophisticated hardware support

12,
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4 Experimental Results

In this section the overhead induced by the process splitting is analyzed. Also, measure-
ments of application performance are given that illustrate the benefit of latency hiding in
the Internet. To demonstrate the communication performance of systems typically avail-
able today, we give performance measures of three different networks in Fig. 18. LANs
are typically connected via Ethernet, or sometimes via FDDI technology. For large-scale

distributed computing, the heterogeneous Internet is available.
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Figure 18. Performance comparison of different networks.

The data given in Fig. 18 have been collected with ping-pong measurements via stream
sockets without message buffering. Comparing the latencies with those of a typical super-
computer, that today are in the order of a microsecond, the presented networks are about

three to four orders of magnitude slower.

4.1 Overhead Analysis

Equation (4) expresses the sensitivity of communication latency hiding gain with respect
to the overhead induced by the latency hiding implementation. The following first order
effects contribute to this overhead: Context switches between user and kernel process, pipe
communication for synchronization and TCP protocol overhead for managing the actual
message passing. The major sources of overhead are the four pipe communications each
accompanied by a context switch of the steps 2, 4, 5 and 6 in Fig. 17. Table 2 lists measure-
ments of user space-to-user space messages with 8 byte of user data, transferred via direct
stream socket connections and without message copying (direct), and transferred by the
latency hiding protocol (lathide). For convenience, the overhead of four pipe communica-
tions, including the context switch, are included according to Table 1. The measurements

are conducted on two machines of the listed model connected by an Ethernet.
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Machine Model Pair Overhead [ms] | direct [ms] | lathide [ms]
IBM RS6000/590 0.2 0.596 0.977
Sun SPARCstationl+ 1.52 0.962 2.489
Sun SPARCstationl0 0.44 0.442 0.996

Table 2. Overhead of latency hiding protocol on the Ethernet.

The sum of direct transfer times and overhead due to pipe communication and context
switches matches the measured transfer times with the latency hiding protocol fairly well.
If the receiving kernel process can copy the message directly into user space, the effect
of overhead on message transfer times decreases with larger message sizes, because the
overhead is a fixed number. Figure 19 shows the penalty factor, which is the ratio of

transfer times with latency hiding and those of direct stream socket transfer.
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Figure 19. Penalty of latency hiding.

In the Internet with startup times of about 50 ms the latency hiding overhead of about
1 ms is negligible. In the Ethernet, the overhead is negligible for messages sizes bigger than
about 4 Kbyte. The overhead increases relative to the network speed, as the comparison
of the Ethernet and FDDI penalties show for identical machines (RS6000). It is obvious
that faster hardware mechanisms for synchronizing user and kernel process are desirable to
reduce the impact of overhead especially for small messages on the Ethernet. The penalty
factor is approximately of the size of the gain for small messages. If these messages can be

hidden, the penalty can be tolerated.
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The hardware impacts the overhead term {2 of the model above. Workstations usually
operate with an additional network interface chip, that allows for concurrent communi-
cation and calculation. Memory bandwidth will contribute to the overhead, if CPU and
network interface compete for access. More important are the software sources of overhead
though. Synchronization, including context switching, has been analyzed already. These
costs also include socket abstraction overhead and TCP /IP protocol overhead. Queueing
pending messages in the kernel and message fragmentation are minor overheads caused by
the latency hiding implementation. Furthermore, the application structure might require
marshaling messages to avoid the even higher cost of sending multiple messages.

An important advantage of the developed protocol is the possibility to simultaneously
send off messages between two processes before receiving them. In contrast to the above
ping-pong benchmarks, this communication pattern can deadlock with pure stream socket
communication. The interleaved transmission and receipt of message fragments of the pro-

tocol makes much better use of the network bandwidth and achieves almost peek transfer

rates.
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Figure 20. Performance of simultaneous send via Ethernet.

The results of simultaneous communication in Fig. 20 have been measured between two
SPARCstationl+ connected via an Ethernet. Message sizes correspond to the amount of
user data. The figures compare the cost of ping-pong styled communication via stream
sockets with simultaneous send through the communication kernel, with default socket
buffer size (4 Kbyte) and increased buffer size of 16 Kbyte. The performance hardly im-
proves for send and receive buffer sizes bigger than 16 Kbyte. Thus, for this particular
configuration, 16 Kbyte buffers are well matching the hardware granularity, i.e. the over-

head of the protocol and the raw network transfer times. For larger message sizes, the
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transfer of a message is in the average about 50% faster with simultaneous send through
the communication kernel than with a ping-pong styled message exchange via direct stream
connections. This result favors the use of programming models that run a single program

on different processors in parallel (such as SPMD).

4.2 Two-Processor Experiments

Mlustrating the gain of the UNIX latency hiding implementation is fairly complex because
of implementation details of the TCP protocol. Recalling the example of Fig. 1, and its
parallel computation by means of algorithms (A.1) and (A.2), the speedup of algorithm
(A.2) with respect to (A.1) has to be attributed to different mechanisms, depending on
the socket buffer size. Two cases have to be distinguished: (1) The send buffer size is not
smaller than the message size, and (2) the send buffer size is smaller than the message
size. In the former case, the UNIX send system call returns immediately after copying
the entire message into the send buffer. Latency hiding is implemented on the hardware
level, where the physical separation of CPU and network interface hardware guarantees
partial overlapping of calculation and communication. Latency hiding overhead is induced
by the TCP and IP protocols that require CPU cycles. In the second case, the UNIX send
system call would block until the first part of the message is transferred and the second
part is copied into the send buffer, as described in 3.1.1 and illustrated in Fig. 13. Because
the UNIX send call is issued by the communication process, the user process utilizes those
CPU cycles during which the blocking send operation would otherwise wait for TCP events.
These wait times can be largely attributed to the protocol overhead at the corresponding
peer process.

To illustrate the difference between these two cases, two experiments have been per-
formed on a two-processor configuration that investigate the effect of software granular-
ity on gain G. The explicit finite difference solver has been run on a rectangular two-
dimensional domain, with the versions (I.1), (I.2), and (/.3), implemented on top of the
developed protocol. The behavior of the blocking send system call in (1.2) has been simu-
lated by executing the synchronizing wait calls of (.3) immediately after communication
has been initialized. The three versions were executed with two different grid sizes in the
y direction. In experiment (a), the y direction contained 500 grid points, corresponding
to 500 doubles or 4000 byte per message. Experiment (b) was conducted with 1000 grid
points in the y direction, yielding 8000 byte messages. Using the default socket buffer
size of 4 Kbyte for the send and receive buffers, the message size in experiment (a) is
smaller than the buffer size, corresponding to case (1). In experiment (b) it is bigger,
which corresponds to case (2). The number of time steps is 7' = 50 in all experiments.

These experiments yield the gains of implementation (1.2) versus (I.1) (blocking send)

and (1.3) versus (I.1) (latency hiding). Figure 21 shows gains versus a normalized domain
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size or software granularity, Fig. 21(a) for experiment (a), and Fig. 21(b) for experiment

(b). Software granularity is varied by changing the mesh size in the x-dimension. Thus,

the number of instructions is varied, while communication volume is kept constant. v; = 1

corresponds to the domain size of 5 grid-points on the z-axis per processor. Accordingly,

~vs = 120 denotes an x-range of 600 points per processor.
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Figure 22. Two-processor speedup on the Internet.

These measurements were performed with one SPARCstationl+ at ETH, Zurich, con-
nected with a SPARCstation2 at MIT, Cambridge, via the Internet. The different com-

putational power of these machines is irrelevant, because the application enforces tight
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synchronization, and the configuration behaves like two SPARCstationl+ [7]. The differ-
ence between Fig. 21(a) and Fig. 21(b) visualizes the relation between message size and
buffer sizes. In Fig. 21(a), the message size is smaller than the send buffer size. Because the
network interface handles this case almost independently of the CPU, both the blocking
send and the latency hiding version perform similar (within the measurement accuracy of
the Internet). In Fig. 21(b), the blocking send requires the message to be transferred in
two steps, as described in Section 3.1.1. Here, only the latency hiding protocol delivers a
gain. If the message size increases, the gain can be expected to be even higher. Figure 22
shows the corresponding speedup curves of the three measurements per experiment. The
reference for calculating the gain values are the speedup values of implementation (I.1)
(naive algorithm).

In the previous experiments, the dependency of message size and the socket buffer
sizes on latency hiding performance became obvious. To illustrate the effect of latency
hiding for large messages, and different communication implementations, another suite
of experiments has been performed between two SPARCstation10 on an Ethernet. The
finite difference solver was run with 100,000 grid points in the y-direction, corresponding

to 800,000 byte per message. This size exceeds the maximal socket buffer size by far.
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Figure 23. Two-processor speedup and gain on the Ethernet.

The reference implementation (ping-pong) operates with pure stream socket communica-
tion. To avoid deadlock, this version is programmed with ping-pong styled communication,
l.e. two programs are required, one that first sends a message and then receives, and the
other that first receives a message and then sends. To illustrate the performance gain of the

developed protocol without latency hiding but simultaneous sending of messages, version
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(I.1) has been implemented (simultaneous send). In contrast to pure stream socket com-
munication, the processes do not deadlock but achieve higher network utilization according
to Fig. 20. The third version is the latency hiding implementation (latency hiding). For
both versions with simultaneous send and latency hiding, the communication kernel has
been tuned by switching on the TCP_NODELAY flag and setting the socket buffer sizes
to 32 Kbyte. The resulting speedup and gain values are presented in Fig. 23.

The domain size of 3 x 100,000 grid points per processor corresponds to v, = 1. The
huge communication volume demonstrates the performance capabilities of the Ethernet,
although it is clearly an unrealistic partitioning of the problem domain. For ~, > 5,
the memory requirements for the sequential measurements exceeded the physical memory.
Consequently, swapping activities instead of latency hiding lead to large speedups of values
> 10, and are therefore omitted in Fig. 23(a).

Compared to the Internet experiments, the calculation of the artificial boundary can-
not be neglected, especially for smaller software granularities. Thus, the latency hiding is
less ideal, which results in a lower maximal gain. Furthermore, the hardware granularity
of the Ethernet configuration is different from the Internet configuration, probably smaller
due to the faster network despite of the faster machines. Therefore, the influence of the
overhead of the latency hiding implementation increases relatively, which also decreases

the maximum of gain G.

4.3 Multi-Processor Experiment

To further illustrate the validity of our latency hiding model for multiprocessor systems,
we compare with the results of a performance model of two Krylov subspace algorithms,
with and without latency hiding. In [24], de Sturler and van der Vorst gave the following

runtime model for their conjugate gradient algorithms without latency hiding

N
T(p)= 9+ 4nz)tf,? + 6(ts + 3tw)\/D,

and with latency hiding

N N
Tu(p) = (9-+ 2n:)tp -+ max <2nztf,? 4 24(t, + 3ty), 6(ts + 3tw)\/§>

for a mesh-based multi-processor, which has been validated by experiments. For the evalu-
ation of gain, the values of all variables in these equations are kept constant with exception

of the number of processors p. The equations can therefore be written:
a

Tin(p) = (1 — f)% —|—max<f% + w, b\/]_)>



-39 —

Figure 24(a) shows the speedups S(p) = T(1)/T(p) (CG) and Sin(p) = Ti(1)/Tin(p)
(parCQ), as presented in [24]. Based on the equality G = T(p)/Tin(p), the gain can be

calculated, and reduces to:

1—|—p\/g_)b/a

G = )
(1-1) +max<f+wp/a, PP b/@)

Comparing this formula, derived from runtime modeling of two conjugate gradient algo-
rithms, with our general formula (6) based on granularities, it turns out that the commu-

nication volume is ¢ = ,/p, and the ratio of granularities A and overhead €2 are:

(9 + 4n2)tle
6(ts +3Tw)

24(t3 + 3Tw)
(9 + 4n2)tlep'

A=a/b= Q=wp/a=
Hence, this algorithmic runtime model can be expressed by the latency hiding model, and
the benefit of communication latency hiding can be illustrated by the notion of gain, as

shown in Fig. 9.3.
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Figure 24. Speedup and gain of Conjugate Gradient implementation.

This example elucidates the impact of communication latency hiding in multi-processor
systems. The maximal gain G = 1.307 is obtained with p = 229 processors. The speedup
without latency hiding and 229 processors is S(229) = 155.7. With latency hiding, the
G-fold speedup is S7;(229) = 203.5, which is a substantial improvement. The maximum
speedup of the version without latency hiding is 200.2 with 601 processors. With latency
hiding, the maximum speedup is 230.6 with only 453 processors, despite the fact that the

overhead of this latency hiding implementation is relatively high.
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5 Conclusions

The notion of communication latency hiding gain as the ratio of speedups of an algorithm
with and without latency hiding, and a model of gain was introduced that expresses the
gain in terms of software granularity, hardware granularity and overhead. The model cap-
tures the opportunities and limits of latency hiding by overlapping communication and
calculation. Communication latency hiding is especially valuable for parallel computing in
computer networks where relatively large messages cause high communication cost. Many
algorithms are directly suited or can be restructured to allow for overlapping communica-
tion and calculation.

The analysis of latency hiding motivated the introduction of a protocol layer for ef-
ficient and deadlock-free message passing in UNIX environments. This protocol is imple-
mented by means of a separate process, called communication kernel. Providing latency
hiding is not the only feature enabled by this process separation. First of all, the kernel
i1s message-driven, that is, it reacts on each incoming message depending on a message
tag. This allows not only for user level message exchange, but various actions at runtime
system level. The separation provides flexibility with respect to various communication
abstractions. Message queueing, selective message passing, remote procedure calls, and
so on can be implemented. Building these mechanisms on top of the communication ker-
nel offers a machine independent interface, which allows for the development of portable
runtime systems for parallel languages.

The validity of the communication latency hiding model has been illustrated by pre-
senting experimental data and a model from numerical algorithm design that both match
the model. The experimental data showed the validity of latency hiding for distributed
parallel computing. In particular, for appropriate applications, latency hiding can make
the Internet appear as suited for solving large problems with parallel computing as a
supercomputer. Furthermore, communication latency hiding impacts massively parallel
processing, because efficiency can be improved considerably, and, accordingly, the number
of employable processors can be increased. As a side effect, measurements indicated that
faster synchronization and context switching methods are desirable to reduce the over-
head that especially elongates the transfer of small messages. Implementations based on

light-weight processes may perform better.
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