
ETH Library

First experiences with high
performance Fortran on the Intel
Paragon

Report

Author(s):
Sturler, Eric de; Strumpen, Volker

Publication date:
1995

Permanent link:
https://doi.org/10.3929/ethz-a-006651254

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Internal report 234

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006651254
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Eidgenössische
Technische Hochschule
Zürich

Departement Informatik
Institut für
Wissenschaftliches Rechnen

Eric De Sturler
Volker Strumpen

First Experiences with
High Performance Fortran
on the Intel Paragon

May 1995

234

ETH Zürich
Departement Informatik
Institut für Wissenschaftliches Rechnen
Prof. Dr. W. Gander

Eric De Sturler
Interdisziplinäres Projektzentrum für Supercomputing
Eidgenössische Technische Hochschule
CH-8092 Zürich
e-mail: sturler@ips.id.ethz.ch

Volker Strumpen
Institut für Wissenschaftliches Rechnen
Eidgenössische Technische Hochschule
CH-8092 Zürich
e-mail: strumpen@inf.ethz.ch

This report is also available via anonymous ftp from ftp.inf.ethz.ch
as doc/tech-reports/1995/234.ps.

c� 1995 Departement Informatik, ETH Zürich

First Experiences with

High Performance Fortran on the Intel Paragon

Eric De Sturler

sturler�ips�id�ethz�ch

Interdisciplinary Project Center for

Supercomputing

Volker Strumpen

strumpen�inf�ethz�ch

Institute for Scienti�c Computing

Swiss Federal Institute of Technology

ETH�Zentrum� CH���	
 Zurich� Switzerland

May 	� �		�

Abstract

Recently the �rst commercial HPF subset compilers have appeared� This paper reports
on our experiences with the APR XHPF compiler� version ���� for the Intel Paragon� At
this stage� we do not expect optimum performance of our HPF programs� even though
performance will eventually be of paramount importance for the acceptance of HPF� Instead�
the objective is to study how to convert large F�� programs to HPF such that the compiler
generates e�cient parallel code�

We use three case studies to identify several problems	 we discuss our solutions at the
program level� and present the results on the Intel Paragon� We use the dense matrix
matrix
product to show that the distribution of arrays and the order of nested loops signi�cantly
in�uence the performance of the parallel program� This in�uence is of great importance�
because loop parallelization and array distribution are the corner stones of HPF� We use
Gaussian elimination to study the parallelization strategy of the compiler if the �optimal

parallelization is not clear from the data distribution� This provides some insights into
the analysis and optimization capabilities of the compiler� and shows how much e�ort is
required from the programmer to get an e�cient parallel implementation� Finally� we use
a small application to show that the interprocedural analysis introduces problems for the
parallelization� even though all subroutines of the application are easy to parallelize by
themselves� The application consists of a �nite volume discretization on a structured grid
and a nested iterative solver� The problems arise when arrays with alignment attributes
or with distribution attributes are passed to several subroutines� in which alignment and
distribution of the dummy arguments are declared� and when in addition such subroutines
are called at several places in the program with di�erent arguments�

� Introduction

Our objective is the conversion of large F�� programs to HPF programs that allow the compiler
to generate e�cient parallel code� However� our conclusions apply to the development of new
HPF programs as well� We do not know in detail how APR�s FORGE HPF Parallelizer XHPF
��	 works below the user level� nor whether other compilers will handle certain problems the
same way� However� we focus on problems and solutions that seem to be at the core of using

HPF� and we believe that the problems and solutions that we have found are valuable for other
programmers and also for compiler developers�

HPF is a data�parallel language where parallelization is addressed by array distribution and
loop parallelization� The programmer speci�es the distribution of arrays and alignment between
arrays� Furthermore� HPF o
ers the forall statement and several new intrinsic functions�
Except for these explicit parallel constructs� the compiler is expected to generate reasonably
e�cient parallel code automatically� An important aspect of HPF directives is that they are
safe� they do not change the semantics of a program�

Apart from the HPF subset� the APR XHPF compiler o
ers several additional directives�
The most important use of the APR directives is to force the compiler to make certain opti�
mizations� like forced loop parallelization� or neglecting communication or synchronization� In
contrast to HPF directives� these directives are dangerous� they may change the semantics of
the program� which makes their use undesirable in general� However� it seems that with the
state�of�the�art in parallel compiler technology these directives are necessary to generate e�cient
parallel code� and as such they are a valuable aid if used sparingly� We refer to these directives
collectively as forced optimizations�

� Case studies

We analyze HPF using three case studies� ��� With a dense matrix�matrix product we show that
the distribution of arrays and the order of nested loops in which distributed arrays are referenced
signi�cantly in�uence the compiler optimizations and the performance of the parallel program�
More speci�cally� they a
ect the place of subroutine calls for communication and runtime checks
in the program generated by the HPF compiler� which determines the cost of communication�
Furthermore� the subroutine calls reduce the optimization opportunities for the native compiler�
��� With Gaussian elimination with partial pivoting and backward substitution we study the
parallelization strategies of the compiler� and we describe data�parallel implementations that
help the compiler generate an e�cient parallel implementation� �
� With a small application
we show how unwanted e
ects of the interprocedural analysis may actually impede e�cient
parallelization�

��� Dense Matrix�Matrix Multiplication

The dense matrix�matrix product is one of the basic building blocks of linear algebra� To ensure
scalability with respect to memory usage we distribute all three matrices� More speci�cally�
we declare a row�block distribution for all matrices� In Figure � we give the ijk�variant of the
threefold loop that implements the multiplication� including data distribution directives� All
timings listed in this section give exclusively the runtime of the multiplication kernel �loop ���
or one of its permutations� These permutations are de�ned by exchanging lines �����

We study two e�ciency�related issues of the parallel program generated by HPF�

� Loop partition match� Consistency of the data distribution with the loop order and
loop partition�

Depending on the loop �nesting� order and the �given� data distribution the compiler
decides where to insert runtime checks� index transformations� and communication prim�
itives� This determines the number of messages generated� and hence a
ects the runtime
e�ciency� Given the data distribution� the appropriate order of the three nested loops in
the sequential program is essential to ensure minimal communication overhead� and vice

�

versa� We call this aspect the loop partition match to characterize the match of the data
distribution against the loop order and loop partition�

� Optimization gap� Loss of optimization potential of the parallel program generated by
the HPF compiler�

E�ciency aspects related to the processor architecture� in particular� register allocation�
pipelining� and caching� are coupled with the loop order� Complex RISC processors such as
the i��� of the Paragon rely heavily on machine speci�c optimizing compilers for generating
e�cient sequential code ��	� Thus� in our case the quality of the sequential code for the
individual processors depends on the ability of the native compiler to optimize the program
generated by the HPF compiler� We call the interface problems between the two compilers
the optimization gap�

Although the optimization gap is not HPF speci�c� there are two reasons to mention this
aspect explicitly� The �rst reason is the large di
erence in performance between the HPF
programs and the sequential program on one processor� and the second reason is the di
erence
in performance between the HPF programs with di
erent loop orders on multiple processors� A
further complication is that loop partition match and optimization gap are closely coupled� as
will be illustrated by the performance results below�

� double precision a�m�n�� b�n�m�� c�m�m�

� �

� chpf� distribute a �block���

� chpf� distribute b �block���

� chpf� distribute c �block���

� �

� ��� Initialize a� b and c

� �

	 do �	 i
 �� m

�
 do �	 j
 �� m

�� do �	 k
 �� n

�� c�i�j�
 c�i�j� � a�i�k� � b�k�j�

�� �	 continue

Figure �� Program fragment of matrix�matrix multiplication�

The optimization gap is illustrated in Table �� Measurements with the six permutations of
the loop order are shown� i traverses the rows of the product matrix C� j the columns� and k is
the loop index of the inner product� The XHPF generated parallel program has been compiled
with the native if�� compiler using two di
erent optimization levels� Option �O optimizes some
register allocation and performs global optimizations such as induction recognition and loop
invariant motion� Optimization level �O� introduces software pipelining� �Mvect enables vector
optimizations� and �Mstreamall streams all vectors to and from cache in a vector loop� Such
optimizations cannot be made manually in the F�� source program�

Comparing the run�times with little and full compiler optimization in Table �� we observe two
points� First� for the sequential code the loop order has a large in�uence on performance unless
the native compiler �if��� can restructure the loop order� This is done when full optimization is

�

Loop order �O �full

seq par�� seq par��

ijk ������ ������ ����� �
����
ikj ����
� ������ ����� ������
jik ������ ������ ����� �
����
jki ����� �
��� �����
����
kij ����
� ����
� ����� ������
kji ����� ����� �����
����

Table �� Runtimes �seconds	 of sequential matrix�
matrix multiplication ���������� The sequential pro�
gram �seq� and a ��processor XHPF parallelized ver�
sion �par��� are compiled with di
erent optimization
degrees of Intel�s native if�� compiler� �full is an
abbreviation of �O� �Mvect �Mstreamall�

Loop order �O �full

Cijk
�
� ����
Cikj ���� ����
jCik ���
 ����
jRki ����� �����
Rkij �
��� �
���
Rkji ���� ����

Table �� Runtimes �seconds	 of dif�
ferent loop permutations of the par�
allel matrix�matrix multiplication
���� � ���� on
� processors� All
matrices are row�block distributed�
�full is an abbreviation of �O�

�Mvect �Mstreamall�

enabled� which improves the computational speed by more than a factor of four� with the ikj and
kij variants even up to a factor of ��� Second� for the parallel code executed on one processor we
see that even with full optimization the native compiler is no longer able to restructure the loop
order because of code inserted by the HPF compiler �runtime checks� calls to communication
routines� etc��� Therefore� the loop order a
ects the run�time e�ciency of the parallel program�
Comparing the sequential runtimes and the one�processor runtimes of the XHPF generated
parallel code� both fully optimized� we can interpret the di
erence as parallelization overhead�
This overhead is signi�cant� The ikj or kij variant require at least �� processors to obtain the
runtime of the optimized sequential version� On small machines with few processors it might
even be impossible to reach the sequential time�

The loop partition match is illustrated in Table �� The parallel code was executed on
�
processors of the Intel Paragon� The C and R extensions of the loop order triples mark type and
location of interprocessor communication inserted by XHPF� C denotes preloop communication
and R denotes a reduction add operation ���	� An additional concern is that for the ijk and ikj

variants all communication is done in one operation� This indicates that one of the matrices is
replicated on all processors� and the compiler reintroduces the scalability problem with respect
to memory requirements that we tried to avoid by distributing all matrices� It is not clear
whether this code is scalable�

The loop orders with the best timings in Tables � and � clearly illustrate the interaction
between the optimization gap and loop partition match� The best loop order for the parallel
code on one processor �jki� gives the worst runtime on
� processors� whereas the best code on

� processors �ijk� performs poorly on one processor� To investigate this e
ect� we measured a
series of speedup curves for both the ijk and jki variants� The results are presented in Table
�

The ijk variant scales well up approximately �fty processors� where the communication
volume limits further speedup� independent of the optimization level� However� reasonable
speedups are obtained with this variant� Superlinear speedups are caused by cache e
ects�
not by swapping� With the problem size of ��� � ���� each processor can hold three matrices
simultaneously� Each matrix requires �MB� whereas the main memory of one Paragon processor
has
�MB ��	�

In contrast to the regular behavior of the ijk variant the speedup behavior of the jki variant

�

Number ijk � �O ijk � �full jki � �O jki � �full

of procs runtime speedup runtime speedup runtime speedup runtime speedup

� ������ ��� �
���� ��� �
��� ���
���� ���
� ����� ��� ���
�
�� ������ ��
 ������ ���
� ����� ��
 ����� ��
 �
��� ��� ����� ���
� ���� ���� ���� ����
���� ���

��� ���
�� ���� ���� ����

�� ����� ��� ����� ���

�
�
� ���� ���� ���� ����� ��� ����� ���
�� ��
� ���
 ���� ���� ����� ��� ����� ��

�� ���
 ���� ���
 ���� �
��� ��� �
��
 ���
�� ���� ���� ���� ����
���� ���
���� ���
�� ���� ���� ���� ����
���� ���
���� ���
�� ���� ���� ���� ����
���� ���
���� ���

Table
� Runtimes �seconds	 and speedups of matrix�matrix multiplication ����� ���� relative
to the one�processor HPF code� ijk�variant and jki�variant with di
erent optimization degrees�
�full stands for �O� �Mvect �Mstreamall�

Number ikj jik kij kji

of procs runtime speedup runtime speedup runtime speedup runtime speedup

� ������ ��� �
���� ��� ������ ���
���� ���
� ����
� ��� �����
�� ������ ��
 ����� ���
� ����� ��� ����
 ��
 ����� ��� �����
��
� ����� ���� ���� ���
 ����� ��� ���� ���
�� ���
� ���
 ���� ���� ����� ���� ���� ���

� ���� ���� ���� ���� �
��� ���� ���� ���
�� ��
� ���� ����� ���
 ����� ���� ���� ���
�� ���� ���� ����� ��� ���

 ���� ����
��
�� ���� ���� ����� ��� ����� �
�� ���

��
�� ���
 ���� ����� ��� ����� �
�� ����
��
��
��
 ���
 ����� ��� ����� �
�� ����
��
��
��� ���� ����� ��� ����� ���� ���

��

Table �� Runtimes �seconds	 and speedups of matrix�matrix multiplication ����� ���� relative
to the one�processor HPF code� All variants are compiled with full optimization�

�

is rather strange� The runtimes of the two�processor executions are about �ve times larger
than those of the one�processor executions of the parallel code� We do not know why this
happens only with the jki�variant� As shown in Table � below� no other variant exhibits this
behavior� The lack of knowledge of the XHPF speci�c functions in the parallelized code makes
the interpretation of the timings di�cult� The only feasible way to analyze the peculiarities
seems to be performance monitoring or empirical methods� Therefore� we present speedup
curves for all other variants� We restrict these data to the versions with fully optimized native
compilation� since the timing di
erences of the parallel codes with little and full optimization
are not signi�cant� The results are listed in Table �� The runtime and speedup curves for the
complete set of permutations are given in Figure ��

� � �� �� �� �� �� �� �� 	� �� ��
�

Number of Processors

���

���

���

���

Runtime
�s�

��
��
���
��
���
��
���
��
�
��
��
�
��
���
��
���
���
��
���
��
���
���
��
���
��
�
��
��
�
��
���
��
���
��
���
�
�
���
�
��
��
�
���
��
�
��
���
�
�
���
�
�
�
��
�
��
��
�
��
��
�
��
�
��
�
�
�
��
�
�
�
��
�
��
��
�
��
�
�
��
�
�
��
�
�
�
��
�
�
�
��
�
��
�
�
��
�
�
��
�
�
��
��
�
��
����
��
�
��
�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
�
��
�
���
���
��
�
��
�
�
��
�
��
����
��
�
��
�
�
��
�
��
�
��
����
�����
����
�����
����
�����
����
�������������������������

���

�
���
��
���
��
��
�
��
�
��
��
�
��
��
���
��
��
���
��
���
��
���
��
���
��
���
��
���
��
��
���
��
����
�
��
���
��
�
��
���
���
��
�
��
�
�
�
��
�
�
��
��
�
�
��
�
��
��
�
��
��
�
���
���
��
�
��
��
�
����
�
����
��
��
��
��
���
��
����
��
��
�
���
���
��
����
��
��
�
���
�
��
��
���
�
��
���
��
�����
���
����
��
����
�
��
����
���
���
����
���
���
����
���
����
��
����
���
�������
���
����
����������������

����������������
�����������������

���������������������������������
�����������������

��

��
���
��
���
��
���
��
���
��
���
�
��
��
�
��
��
�
��
��
�
��
��
��
�
�
�
��
�
�
��
�
�
�
��
�
�
�
��
��
�
��
��
��
�
��
�
�
�
��
�
�
�
���
�
��
���
��
�
��
��
�
��
��
�
���
�
�
���
��
���
��
�
��
��
�
��
���
���
��
���
��
���
��
�
��
���
��
��
�
���
��
���
��
���
���
����
��
��
�
���
���
��
��
�
���
���
�
�
���
���
�
��
�
�
���
���
�
��
��
���
�
�
��
�
���
���
�
��
��
���
�
���

������
����
�����
����
������
������
������
������
�����
������
����
������
����
�����
������
������
������
�����
����
��
����
��
����
����
��
����
��
����
����
���
���
���
����
���
���
���
���
���
��
����
���
���
����
��
����
���
���
����
�����
�������
�����
�������
������
�������
�������
�������
�������
�����
����
�����
�������
�������
����
�������
�����
�����
������
����
�����
����
�����
������
������
�����
������
�����
����
����
���
��������
�������
�����
��������
�������
���������
����������

������
����������
��������������������������

���������������������������

��
�
��
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
�
�
��
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
����
���
��
���
��
���
��
�
�
�
��
�
�
��
�
�
�
��
��
��
�
��
�
�
�
��
�
�
��
�
�
�
��
��
��
�
��
�
�
�
��
�
�
��
�
�
�
��
���
�
����
��
����
��
����
�
�
����
�
����
�
�
����
�
�
����
�
�
����
�
����
�
���������������������������������������

�����
�������������

��
������
��������
�����
���������
��������
������
��������
������
��������
�������
����
��������
���

���
�
���
��
���
��
��
���
��
��
���
���
��
���
���
��
���
���
���
���
���
���
���
���
��
���
���
��
��
�������������

���
�������������

�
��
���
��
���
��
���
��
���
��
���
��
���
��
��
��
�
��
��
�
��
���
��
���
��
���
��
���
��
��
����
���
��
�
��
��
�
���
��
�
��
��
�
��
�
�
��
�
��
��
��
�
�
��
�
��
��
�
��
���
���
���
��
���
���
���
�
��
���
���
��
�
��
���
�
��
��
��
��
��
�
���
�
��
��
��
��
��
�
��
���
�
��
����
�����
����
������������
���
�����
�������
��������
����
��������
��

�����������������
�������������������������

���

��
��
���
��
���
��
��
�
��
��
�
��
��
�
��
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
���
�
��
�
�
��
�
���
���
��
�
��
��
���
�
��
���
��
��
�
��
���
��������������������

����
���
����
��
��

����������������
���������������

����������
����������������

����������
���������������

���������������������������
���

�����������������������
��������
�������������

�������������
��������
�������������

��

�

��

��

��

��

��

�� �� �� �� �� �

�

��

��

��

��

��

��

�� �� ��
�� �

�

��

��

��
��

��

��

��

�� ��
�� �

�

��

��

��

�� ��
�� ��

�� �� �� �

�

��

��

��

��
�� �� �� �� �� �� �

�

��

��

��
�� ��

�� ��
���� �� �

� ijk

� ikj

� jik

� jki

� kij

� kji

� � �� �� �� �� �� �� �� 	� �� ��
�

Number of Processors

�

�

��

��

��

��

��

��

��

	�

��

��

�

Speedup

��
�
��
�
��

��
�
��
��
�

��
��
��
��

��
��
�
��
�

��
��
��
��

��
��
��
��

��
�
��
�
��

��
�
��
��
�

��
��
��
�
�

��
��
��
��

�
��
�
��
��

�
��
��
��
�

��
��
�
��
�

��
��
��
��

��
��
��
�
�

��
��
��
�
�

�
��
�
��
��

�
��
��
��
�

�
��
��
��
�

��
��
��
��

��
��
��
��

��
�
��
��
�

��
�
��
��
�

��
��
��
��

��
��
��
��

��
��
��
��

��
�
��
�
��

��
�
��
�
��

��
��
��
�
�

��
��
��
�
�

��
��
�
��
�

�
��
��
��
�

�
��
��
��
�

��
��
��
�
�

��
��
��
�
�

��
��
��
��

�
��
��
��
�

�
��
��
��
�

��
��
�
��
�

��
��
�
��
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�
�

��
��
��
��

��
��
��
��

�
��
��
��
�

�
��
��
��
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
�
��
�

��
��
�
��
�

��
��
��
��

��
��
�
�
��
��
�
��
��
��
��
�
��
�
�
��
��
��
�
��
�
�
��
�
�
��
�
��
�
�
���
�
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
�
��
�
��
�
�
��
�
��
�
��
�
��
��
�
��
��
�
��
�
�
��
�
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
���
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
��
��
��
��
��
�
��
�
��
�
��
���
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
��
�
��
��
��
�
�
��
��
��
��
�
��
�
��
��
��
�
��
��
��
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
��
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
��
�
��
��
��
��
�
���
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
��
���
��
��
���
��
��
��
�
���
��
���
��
���
��
���
��
���
��
��
��
��
�
���
��
���
��
��
��
��
��
��
��
��
��
��
��
����
��

��������������������������������������
��������������������������������������

���
�����������������

��

��
��
��
��
�
���
�
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
��
���
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
��
���
�
��
�
��
�
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
�
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
�
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
���
��
��
���
���
��
��
��
��
���
���
��
��
�
���
���
���
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
��
��
��
��
��
��
��
���
��
���
��
��
��
���
��
���
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�������
��������
��������
�����
��������
�����
��������
��������
������
��������
��������������������

���������
���
���
���
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
������������

��������������������������������������

��
��
�
�
��
��
�
��
��
��
��
�
��
�
�
��
��
��
�
��
�
�
��
�
�
��
�
��
�
�
���
�
�
��
�
��
�
�
��
��
��
�
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
�
���
����
����
����
���
����
����
��
����
���
����
���
����
���
��
���

��
���
����������
������
������������

��������
�������������������

��������������������
���

��
��
�
��
��
���
�
��
�
��
�
��
��
��
�
��
�
���
�
��
��
��
�
��
��
��
�
��
�
��
��
��
��
��
��
��
���
��
��
��
�
��
���
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
���
����
����
���
����
���
����
����
���
����
����
��
���
���
����
����
���
����
���
����
���
���
���
���
����
����
���
����
����
��
��������
���������
�������������

�������������
��������������

�������������
��������������

�������������
���������
�����������

�������
������������

���������
�����
������������

�������
�����������

�����������
��

��������������
��������������

��������������������
����������������������������������

��
��
��
�
����
��
��
��
���
����
�����
�����
�����
�����
�������
�����������������

�������������������������
���

�
��

��

��

��

��

�� �� �� �� �� �

�
��

��

��

��

��

��

��
�� ��

�� �

�
��

��

��

��

��

��
��

�� �� �� �

����� �� �� �� �� �� �� �� �� ����
��

��

��

�� �� �� �� �� �� �

���
���� �� �� �� �� ���� �� �

� ijk

� ikj

� jik

� jki

� kij

� kji

�a� �b�

Figure �� Runtime and speedup of dense matrix�matrix multiplication ����� �����

These experiments show that the loop partition match and the optimization gap strongly
in�uence the parallel e�ciency� Moreover� Figure � indicates that the optimal loop order depends
on the number of processors� Hence� there is no variant that is optimal for all numbers of
processors� Experimenting and pro�ling may be the only way to �nd the best variant for a
particular number of processors� since it seems di�cult to predict�

��� Gaussian Elimination

Our second example is the solution of a dense system of linear equations by Gaussian elimination
with partial pivoting and backward substitution� In order to include the in�uence of partial
pivoting on the performance we use an arti�cial� square system of order �� ��� that yields ���
row exchanges �worst case��

To show the in�uence of the loop partition match and the optimization gap we use two
sequential variants� a kij�ordered� forward�looking Gaussian elimination �gelim� combined with
an ij backward substitution �backsb�� and a kji�ordered� forward�looking Gaussian elimination
with ji backward substitution ��	� The runtimes are listed in Table �� They show that the

�

kji�elimination and ji�backward substitution lead to substantially better processor utilization�
and that they have a higher potential for compiler optimizations� However� we will not further
elaborate these aspects�

Optimization gelim kij backsb ij gelim kji backsb ji

�O ����

 ���� �
���� ����

�O� �Mvect ������ ���� ���
� ����
�Mstreamall ��
��� ���� ����� ����

Table �� Sequential runtimes �seconds	 of Gaussian elimination with partial pivoting and back�
ward substitution� The large variation in the runtimes show the sensitivity of the performance
with respect to compiler optimizations and loop ordering�

The interesting issues here are the implementation decisions of the parallelizing compiler�
In this respect the dense matrix�matrix product is straightforward compared to Gaussian elim�
ination� For the matrix�matrix product the implementation follows immediately from the data
distribution and the loop order� although this does not necessarily produce the desired e��
ciency� However� for the Gaussian elimination with partial pivoting several choices need to be
made beyond the speci�cation of the data distribution� These choices signi�cantly a
ect the
communication cost of the program�

Number distribution only forced optimization
of procs Elim Back Elim Back

� ������ ���� �
���
 ����
� ������� ���� ����� ����
� �
����� ���
 ����� ����
�
������
���
����
���
�� ������� ���� ����� ����
�� � � ����� ����

� � � ���
� ����
�� �
������ ����� ����� �����
�� � �
���� �
��

�� � �
���� �����
�� � � ����
 �����

Table �� Runtimes �seconds	 of Gaussian elimination and backward substitution for a nonsym�
metric ����� ���� matrix and ��� row exchanges due to partial pivoting� The runtimes show
a large di
erence between the parallelization with only data distribution directives �distribu�
tion only� and with additional forced optimizations �forced optimizations�� For the �distribution
only��version we thought it was not useful to measure the runtimes for all numbers of processors�

We �rst consider the parallelization of the Gaussian elimination and backward substitution
algorithms given in Appendix A� They are based on the sequential program without any algo�
rithmic changes to assist an HPF compiler� We use a column cyclic distribution for the matrix�
and we replicate the right hand side on all processors� the HPF distribution directives at lines
�
 and �� request this� Running the solver compiled with these directives only �without the

�

capr� directives� produces the runtimes given in Table � �distribution only�� which are clearly
unsatisfactory� Looking at the XHPF generated FORTRAN program discloses the problem�
most communication is inserted inside the loops generating tremendous overhead due to a large
number of communications and runtime checks� Our �rst work�around relies on XHPF speci�c
forced optimizations �ignore directives� to move communication out of loops �line
��� to dis�
tribute a loop such that its body is executed on the processor that owns the requested elements
�lines
�� ��� �� and ���� and to prevent super�uous communication and runtime checks �lines
�� and ���� The runtimes of this version� given in Table � �forced optimization�� are encourag�
ing� However� this version still has some unnecessary communication overhead� The overhead
occurs mainly because the scope of automatic parallelization �and optimization� is limited to
single loops� optimizations over several consecutive loops are not considered� Also the reuse of
data that have been fetched previously is ignored� Therefore� we have to indicate better imple�
mentations and optimizations to the compiler with a data�parallel programming style �see e�g�
��� �	��

Before presenting our data�parallel programs� we discuss some design decisions for paral�
lelization� Since we distribute the columns of the matrix cyclicly� the row exchange for pivoting
can be done distributedly without communication� Furthermore� after the elimination factors
have been computed and are available on all processors� the distributed update of the submatrix
rows with the pivot row is also local� Therefore� communication is necessary only provide the
index of the pivot row and the elimination factors to all processors� Hence� the pivot column �the
pivot element and the elements below� and�or the elimination factors must be broadcasted from
the processor that owns the pivot column to the other processors�� This leads to the following
three parallelization variants for one iteration of the outer most loop �loop ��� in Appendix A��

�� The processor that owns the pivot column does the pivot search locally and broadcasts
the result� After this� the row exchange is carried out distributedly� Then� the processor
that owns the pivot column computes the elimination factors� and broadcasts the column
which contains these� Afterwards� the update of the submatrix is carried out distributedly�
and the update of the right hand side is replicated on all processors�

�� First� the pivot column is broadcasted� and the pivot search is replicated� Then the row
exchange is carried out distributedly� The computation of the elimination factors is also
replicated on all processors� and the update of the submatrix is carried out distributedly�
Finally� the update of the right hand side is replicated on all processors�

� The processor that owns the pivot column does the pivot search locally and broadcasts the
result� After this� the row exchange is carried out distributedly� Then� the pivot column is
broadcasted� and the computation of the elimination factors is replicated on all processors�
Afterwards� the update of the submatrix is carried out distributedly� and then the update
of the right hand side is replicated on all processors�

The three variants can be implemented with approximately the same e�ciency� because they
exhibit a similar amount of communication� The second variant should be the most e�cient�
because it needs slightly less communication than the others and requires the least synchroniza�
tion� We consider two possible changes to the source program that create a more data�parallel
programming style�

�It is also possible to distribute the pivot column and distribute the computation of the elimination factors�

We will not consider this possibility because it will be very hard for the compiler to analyze whether this improves

e�ciency or not�

��

Local pivot search� We replace the scalars ppiv and abspiv by arrays of a size that equals
the number of columns� and align these arrays with the columns of the matrix� see Ap�
pendix B� This way� for each column col of the matrix� we use the local vector elements
ppiv�col� and abspiv�col� in the pivot search instead of �replicated� scalars that incur
communication inside the loop�� Now� only the �nal result must be communicated to the
other processors� This implements the �rst scheme�

All local� We declare a replicated �dummy or automatic� array �pcol� of the size of a matrix
column� and copy the pivot column into that array� see Appendix C� loop ���� This
copying leads to the broadcast of the pivot column� Furthermore� we replace all references
to the pivot column by corresponding references to the replicated array �pcol�� This
leads to strictly local work for the pivot search� the row exchange� the computation of the
elimination factors� and the update of the rows and the right hand side� This implements
the second scheme�

The local pivot search�version without any forced optimizations does not have the desired
e
ect� The compiler still broadcasts all intermediate results of the distributed array elements
ppiv�piv� and abspiv�piv� in the pivot search� This is strange because these elements are
local to the processor that executes the loop and �obviously� only the values after the loop are
important for the rest of the algorithm and the other processors� The communication inside the
loop can be avoided with the XHPF parallelizer by using a forced optimization that inhibits
communication� However� without any further warning this leads to a segmentation violation in
one of the APR runtime library routines if the program is executed on more than one processor�
With several other �forced optimizations� and algorithmic changes we could get the program to
run� but we never obtained reasonable timings for the local pivot search�version�

Also the all local �version does not lead to the desired implementation immediately� the com�
piler still creates �now obviously� unnecessary communication related to the use of the replicated
vector� This is the more disturbing since it is clear from the program that no such communica�
tion is necessary� and the program entirely follows the data�parallel paradigm without any need
for compiler optimizations� First of all if the array pcol is declared as an automatic array inside
the subroutine gelim the compiler implements the copying of the pivot vector by broadcasting
each element separately instead of broadcasting the whole vector once� Furthermore� it puts a
subroutine call for computing indices for the array pcol inside the loop� This leads to a very
poor implementation� see the runtimes in Table � in the �automatic array� column� However�
if the array pcol is passed as a dummy array to gelim the pivot column is broadcasted as a
whole� and the index calculation is moved out of the loop� This leads to the timings given in
Table � in the �dummy array� column� This type of performance di
erences for slightly di
erent
program versions is� of course� very undesirable� Especially� since from a programming point of
view the �automatic array� version is better� because the array pcol has no meaning outside the
subroutine gelim�

The use of forced optimizations is undesirable for the reason already mentioned in the intro�
duction� However� there is one more potential problem� which also plays a role if the compiler
forces the programmer to make meaningless changes to the program only to prevent poor im�
plementations� If the compiler insists on generating an ine�cient program� the programmer
is prone to resort to �non�constructive programming�� That is� instead of carefully designing a
program that assists the compiler to �nd the most e�cient implementation� the programmer will

�According to the data�parallel programming paradigm scalars are replicated on all processors and therefore

are broadcasted if they are updated on some processor�

��

Number automatic array dummy array
of procs Elim Back Elim Back

�
����� ���� �
���� ����
� ��
��� ���� ����� ����
� ������� ��
�
���� ��
�
�
������ ���� ����� ����
�� ���
�
� ���� ����� ����
�� � � �����
�
�

� � � ���
�
���
�� �
������ ����� ����� ����
�� � � ���
� ����
�� � � �
��� ���

�� � � ����� ����

Table �� Runtimes �seconds	 of data�parallel style Gaussian elimination with partial pivoting
and backward substitution� all local �version�

leave a �possibly poor� program for what it is� and prevent ine�cient parallel implementations
by inserting a large number of forced optimizations in the program� This leads to unreliable
code� which is based on numerous unclear assumptions�

After the Gaussian elimination we compute the solution by backward substitution� For the
given distribution of the matrix there are two straightforward implementions� a row�oriented and
a column�oriented backward substitution with the solution vector x aligned with the columns of
the matrix� The column�oriented version and the row�oriented version are given in Appendix D�
It is clear from these programs that the column�oriented version requires more communication
than the row�oriented version� The column�oriented version needs a broadcast of the array ele�
ment x�col� and a one�to�all scatter of a��	row��
col� in each step� whereas the row�oriented
version needs only a reduction add over the local products a�row
col��x�col�
 col�row
�

� � �
n �cf� line
� in the column�oriented version and line �� in the row�oriented version�� which
costs about the same �in communication� as the broadcast of a scalar� Therefore� we have chosen
the row�oriented version for our timings�

��� Simple Flow Application

The third example involves the �nite volume discretization of a simple �ow problem on a regular
grid and a �xed number of steps of the nested iterative �linear� solver described in ��
	�

In a large application� a single array may be passed to and updated by many di
erent sub�
routines with di
erent access patterns� Conversely� a single subroutine may be called at many
places in the program with array arguments that di
er in size� shape� and�or distribution� The
complexity of the entire set of potential optimizations that results from the interprocedural anal�
ysis may prevent the compiler from making the appropriate optimizations� leading to sequential
execution of� in principal� parallel parts of the program� or to excessive communication and
synchronization� None of the speci�c parts of the program at hand plays a role by itself� indeed�
each of the routines used in this program parallelizes well by itself� It is the global parallelization
and the propagation of dependencies that causes the problems described here�

Regarding these problems we will �rst describe some concepts that underlie the paralleliza�

��

tion and distribution of loops and arrays� Di
erent compilers will address these concepts in
di
erent ways� However� since the distribution of arrays and parallelization of loops lie at the
heart of data�parallelism the concepts themselves must be addressed in some way� Based on this
introduction we will then describe the problems we found for our particular compiler�

With each array we can associate an index set that consists of the valid index references to
that array� With each loop we can associate an index set that consists of the values that are
assigned to the loop index during the execution of the loop� The distribution of an array a is
described by a function from the array index set into a processor index set P � MIa�P � Ia � P ��

Likewise� we can describe the distribution of a loop l by a function from the loop index set to
a processor index set P � MIl�P � Il � P � We assume that all statements within one iteration of
the loop are carried out on the same processor� This is the case for the APR XHPF compiler
and for example in the Oxygen compiler ���	� however it is not de�ned in the HPF language
speci�cation ��	� Through this use of index sets the distribution of data and partitioning of loops
are described in the same way�

The programmer can indicate to the compiler that the distribution of the elements of one
array should depend on the distribution of the elements of another array through the alignment
directive ��	� This directive describes a linear function from the index set of one array� the
alignee� into the index set of another array� the align target� Given the arrays a and b with
the index sets Ia and Ib� the alignment � � Ia � Ib� a processor set P � and the �distribution�
MIb�P of the array b� we can describe the interpretation of the alignment indicated by �� For
the processor set P this alignment leads to the �distribution�

MIa�P � Ia � P such that MIa�P �i� � MIb�P ���i���

In order to minimize data movement for the execution of a distributed loop an optimizing
compiler will try to assign the execution of each loop iteration to the processor that owns the
array elements referenced in that loop iteration� This implies functions from the loop index set
to the array index sets of the arrays that are referenced inside the loop� which leads to certain
desired �alignments� between the loop index set and the array index sets� In fact� for the APR
XHPF compiler the alignment of the loop index set with one array index set can be indicated
explicitly through a directive�

In this article we will refer to alignments that are indicated explicitly by directives as explicit
alignments� We will refer to all other �alignments� that an optimizing compiler may make to
reduce communication as implicit alignments� Such implicit alignments come� for example�
from references to di
erent distributed arrays in a single distributed loop� Several partitioning
strategies are used in data�parallel compilers that lead to di
erent implicit alignments� e�g� owner
computes and almost owner computes ���	� However� they all su
er from serious limitations with
respect to optimization when applied rigorously� so in practice relaxed versions are used� APR
uses a so�called owner sets strategy ��	�

We illustrate the e
ects of partitioning by means of an example� Consider a loop in which
two arrays are referenced� The loop index set is given by Il� the index sets of the arrays are
Ia and Ib� and the alignments of the loop with the array index sets are given by the functions
�a � Il � Ia and �b � Il � Ib� In order to keep all array references local in this loop for all
possible P � the distributions MIa�P � Ia � P and MIb�P � Ib � P must ful�l� for all possible P �

�i � Il �MIa�P ��a�i�� � MIb�P ��b�i���

�We use the term processor for simplicity� one may use instead process� thread� and so on� These have to be

mapped to physical processors in turn�

�

This de�nes an implicit alignment of Ia and Ib in the following sense�

��b � �a�Il�� Ib such that �b��a�i�� � �b�i�
or

��a � �b�Il�� Ia such that �a��b�i�� � �a�i�

Obviously implicit alignments can have a much more complicated form than explicit align�
ments � and they may be only a relation on part of the index set of the alignee� Implicit
alignments may also arise indirectly by aligning several arrays explicitly with the same array� or
through an explicit alignment in combination with a distributed loop referencing more than one
distributed array� Although implicit alignments indicate potential compiler optimizations� they
might create problems as well� in particular at subroutine boundaries� as we will discuss below�

We will now describe four problem classes that ocurred in the parallelization of our applica�
tion�

� Directive�based implicit alignment

Subroutines may declare the alignment and distribution of dummy arguments� These
declarations can lead to implicit alignments of actual arguments of the subroutine in
separate calls� Consider a scenario where subroutine sub�x
y� aligns array x with array y

on subroutine entry by means of an align directive� Then� two calls to this subroutine of
the form call sub�a
b� and call sub�c
b� lead to an implicit alignment of the arrays
a and c� The compiler may want to propagate the two alignments to the calling routine to
prevent redistribution inside the subroutine �like the APR XHPF compiler does�� This will
only be possible if the potential distributions �indicated by the programmer� for example�
of the index sets of a and c satisfy the requirements from this implicit alignment�

We call the implicit alignment of arrays that arises in this way directive�based implicit

alignment� because it arises out of alignments that are indicated by a directive�

� Loop�based implicit alignment

As we described above� for a distributed loop containing references to a distributed array
an optimizing compiler will try to align the loop index set with the index set of the
distributed array such as to minimize communication� We refer to this type of implicit
alignment as loop�based implicit alignment� If such a loop occurs inside a subroutine
and the distributed array is a dummy argument� this leads to the implicit alignment of the
loop index set with the index set of the actual argument in each call to this subroutine� If
the distribution of the loop index set could be di
erent for each call to the subroutine� this
would not create any problems� However� this seems generally not to be the case� Except
for the speci�c processor set� which is only known runtime �at loading�� the distribution
mapping will be �xed by the compiler� because it typically generates only one object
module for the subroutine� This holds� for example� for the APR XHPF compiler and for
the ADAPTOR�tool �
	� A �xed distribution mapping of the loop index set� however� leads
to the implicit alignment of all the actual arguments in separate calls to the subroutine�
The e
ect is the same as if all the actual arguments were referenced in this loop at the
same time�

� Aliasing

If more than one symbolic name to a reference �variable or memory location� exists within
a loop� we call this an alias� following the APR XHPF documentation ��	� Aliasing
creates problems for parallelizing a loop if the name is assigned a value within the loop�

��

In practice� the compiler may also spot many �potential� aliases that are not real� This
depends largely on the �interprocedural� analysis capabilities of the compiler� Fake aliases
lead to parallelization and optimization problems that require forced optimizations�

� Interprocedural propagation

Because of the interprocedural analysis� parallelization problems may propagate through
the entire program� A problem that comes up in one subroutine may prevent some array
from being distributed� which leads to problems in other subroutines� and so on� The
interprocedural analysis may have the unwanted side e
ect of globalizing local problems�

It should be clear that implicit alignments are not in themselves a problem� They arise nat�
urally from the program and form a source for compiler optimizations� However� where implicit
alignments lead to con�icts or potential con�icts� the analysis and optimizations capabilities of
the compiler are put to the test to produce reasonable choices� Especially in large programs
the number and complexity of implicit alignments may become hard for the compiler to deal
with� Compilers� therefore� tend to make several passes through the program making incremen�
tal improvements or adding optimization information in a database �the APR XHPF compiler�
or in the program itself �see ���	� that may lead to further optimizations in a future pass of
the compiler� However� there is no guarantee that such an incremental optimization strategy
leads to good optimizations� this probably depends largely on how compilers deal with choices
made in previous passes� The �nal results of the compiler analysis are very important� since for
reasons of safety the compiler will sequentialize� either explicitly or implicitly through synchro�
nization or communication in a loop� any part of the code where a correct parallel execution is
not guaranteed� On the other hand� unwanted implicit alignments are often the result of poor
programming� at least from a data�parallel point of view�

In the following� we will illustrate the four problem classes by examples that arose from of
the parallelization of our application program�

Directive�based implicit alignment

First� we consider potential con�icts arising from directive�based implicit alignment� and then
we consider a distribution problem associated with workspace arrays� Consider a simpli�ed
version of the subroutine daxpy� �vector update� that is invoked twice within another routine�
See the program fragment given in Figure
�

The explicit alignment of dummy arguments in the daxpy subroutine and the two calls in
the program lead to an implicit alignment of the arrays a and c� The daxpy can be executed
without any communication if the arguments have the same distribution� The actual distribution
of the arguments does not matter� as long as it is the same for both arrays� In the program
in Figure
� however� the implicit alignment leads to a problem regarding the distribution of
the array b� and it depends on the rest of the program what the best choice will be for the
distribution of b� Although for this example the con�ict seems the programmer�s fault� one
should realize that the choice of distribution for c could have arised from previous optimizations
of the compiler �without the explicit directive�� A con�ict like this does not only arise with
di
erent distributions� but also for arrays with the same distribution but with di
erent size or
shape� and so on� In the small application at hand we had to resolve such problems several
times�

�The daxpy routine as it is de�ned in the BLAS has di�erent increments for the two vectors dx and dy� this

makes alignment impossible in the general case�

��

� subroutine daxpy�n�da�dx�dy�

� c

� c compute dy
 da�dx � dy

� c da is a scalar� dx and dy are vectors

� c

� double precision dx�n�� dy�n�

� double precision da

� chpf� align dx�k� with dy�k�

	 c

�
 do i
 �� n

�� dy�i�
 dy�i� � da�dx�i�

�� end do

�� end

�� c

�� program use
daxpy

�� double precision a�n�� b�n�� c�n�

�� double precision alpha� beta

chpf� distribute a�block�

chpf� distribute c�cyclic�

���

�� call daxpy�n�alpha�a�b�

�	 call daxpy�n�beta�b�c�

���

�
 end

Figure
� The daxpy routine and its use lead to directive�based implicit alignment

A problem that will arise frequently in converting existing F�� programs to HPF� and which
can easily be avoided� is the implicit alignment of unrelated arrays due to the use of workspace
arrays passed to a subroutine� Consider the program fragment in Figure �� The programmer
wants array a to be block distributed �line ��� and the array b to be cyclicly distributed �line
���� If the parallelizing compiler obeys these directives� any distribution for array h will lead to
large communication overhead� Typically� the parallel program will redistribute h upon entry
to the subprogram�

The alignment directive does not solve the problem� it only indicates to the compiler that it
is probably better to align �redistribute� the array dummy�vector at the start of the subroutine
than to do the communication in the subroutine element�wise� The solution is to use the dynamic
allocation features of HPF �derived from F���� that is to use automatic arrays as workspace�

����� Loop�based implicit alignment

Second� we look at a problem associated with loop�based implicit alignment� In the daxpy routine
given in Figure
 we replace the prescriptive �desired� alignment ��	 at line � by a descriptive
�asserted� alignment ��	� The descriptive alignment �chpf� align dx with �dy� asserts to the
compiler that the actual arguments are �already� aligned on entry to the subroutine� Now�
consider the use of the daxpy in the program fragment of Figure ��

��

� subroutine sub��n�vector�dummy
vector�

� c dummy
vector is a workarray

� chpf� align dummy
vector with vector

� c

� forall �i
��n� �dummy
vector�i�
vector�i��

���

� end

� c

� program

	 double precision a�n�� b�n�� h�n�

�
 chpf� distribute a�block�

�� chpf� distribute b�cyclic�

���

�� call sub��n�a�h�

�� call sub��n�b�h�

���

�� end

Figure �� Example program illustrating unnecessary implicit alignment

For each call to daxpy the compiler knows that the actual arguments are aligned and that
no communication is necessary� However� the daxpy�loop from the �rst call �line �� should be
distributed due to the block�distribution directive in line �� whereas the daxpy�loop from the
second call �line �� should be replicated due to the replicated�distribution directive in line ��

The APR XHPF compiler generates a single implementation of the daxpy routine� This
results in the compiler decision to either replicate the loop� which gives �tremendous� communi�
cation and calculation overhead for the distributed arrays� or to parallelize the loop� which gives
a tremendous amount of communication overhead for the replicated arrays� Here� the compiler
treats unrelated arrays that are arguments in di
erent calls of the subroutine as if they were in
the same loop� this causes the implicit alignment of a� b� c� and d� In our case we needed forced
optimizations or two di
erent daxpy subroutines� one for block�distributed array arguments and
one for replicated array arguments� to obtain an e�cient parallel code�

It is interesting to note that if the daxpy program were not in a subroutine but in�lined
by the programmer there would be no problem at all� The compiler could have implemented
the optimal choice for each loop� For the implementation of a simple routine like the daxpy

this may be a good idea� the entire �simpli�ed� daxpy can be implemented in a single forall
statement� However� the same problem also appears for more complicated kernel routines that
are not suited for in�lining at the source code level�

It is not de�ned in the HPF standard that a subroutine will have only one object module
for all invocations� However� that seems to be the standard implementation� Having di
erent
subroutine sources for di
erent argument distributions� alignments� or shapes is undesirable
because it means that the programmer has to keep track of the di
erent uses� and he has to
�nd out the di
erent uses for an existing program� This is all the worse or even impossible since

��

� program loop
align

� double precision a�n�� b�n�

� double precision c�m�� d�m�

� c

� chpf� distribute �block� �� a� b

� chpf� distribute ��� �� c� d

���

� call daxpy�n�alpha�a�b�

� call daxpy�m�beta �c�d�

���

	 end

Figure �� The daxpy routine and its use lead to undesired loop�based implicitly alignment

the distributions of arrays may not be known before the program is compiled �the compiler may
choose other distributions than indicated in the program� or even not before runtime�

����� Aliasing

Third� we consider parallelization and optimization problems that arise from aliases� In F��
we often address parts of arrays as independent items� For example� we may consider a two
dimensional array as a matrix and access its �columns�� or we may consider a three�dimensional
array as a three�dimensional grid of which we access planes or lines �for example in a three�
dimensional FFT�� If we pass two �or more� di
erent parts of a distributed array to a subroutine
and modify at least one part in a partitioned loop� potential aliases occur and the compiler has
to determine whether they are real or not� If the compiler cannot establish that no alias exists� it
will typically execute the loop sequentially� Alias problems arise in the generation of orthogonal
bases in the iterative solver� A two�dimensional array is used to represent a sequence of vectors�
these vectors are generated by multiplying the last generated vector with a matrix and then
orthogonalizing it on the previously generated vectors �inner products and vector updates�� see
Figure �� In the subroutines for the matrix�vector product and the vector update two �disjunct�
parts of the same array are used and one is updated� If the compiler cannot check that these parts
are disjunct� it cannot parallelize the loops in these subroutines� Using dynamic allocation� we
made an implementation of the program that enables the compiler to check that the referenced
parts of the array are always disjunct� however� the compiler still refused to parallelize the
routines� We could solve the problem only with forced optimizations�

An alternative implementation in �full� HPF may be to represent the sequence of vectors by
an array of structures each of which contains a pointer to a vector� However� pointers are not
part of the HPF subset and the construction is rather cumbersome� Moreover� this approach
does not provide a solution if it is necessary to traverse a higher dimensional array in more than
one way� Consider� for example� a
D FFT over a three�dimensional array� We would like to
consider such an array �rst as a collection of x�vectors� then y�vectors� and �nally z�vectors�
This cannot be done with pointers in HPF�

��

� subroutine gmreso�n�vv�����

� c

� double precision r�n�� vv�n�m���

� double precision hh�m���m�

� c

� chpf� distribute r�block�

� chpf� align vv�i��� with r�i�

� chpf� distribute ����� hh

	 c

���

�
 ����� Arnoldi �����

�� do i
 �� n

�� vv�i���
 r�i��res�
norm

�� end do

�� c

�� do i
 �� m

�� c ����� v
�i���
 Av
i �����

�� call matvec�n�vv���i��vv���i��������

���

�� do j
 �� i

�	 c ����� h
�ij�
 � v
j � v
�i��� � �����

�
 hh�j�i�
 ddot�n�vv���j����vv���i������

�� c ����� v
�i���
 v
�i��� � h
�ij��v
j �����

�� call daxpy�n��hh�j�i��vv���j����vv���i������

�� end do

�� end do

���

�� end

Figure �� Parallelization problems due to aliases created by passing parts of vv as di
erent
vectors�

��

����� Interprocedural Propagation

Fourth� we look at the in�uence of parallelization problems in one subroutine on the rest of
the program� Because of the interprocedural analysis� parallelization problems may propagate
through the entire program� Consider the program fragment in Appendix E� Potential aliases
for the di
erent parts �vectors� of the array vv in the Arnoldi part in the subroutine gmreso��

prevent the compiler from parallelizing the matrix�vector product and the daxpy� This in turn
seems to prevent the distribution of arrays uu and cc and creates huge communication overhead�
The resulting replication of the arrays uu and cc gives rise to problems parallelizing other loops�
and so on� Finally� signi�cant parts of the code are not parallelized� or su
er from excessive
overhead and communication� The propagation has the additional problem for the programmer
that it is not always clear where the problem starts� and how it can be solved or at least limited
to a small part of the program� The interprocedural analysis has the unwanted e
ect of making
local problems global�

����� Experimental Results

The runtimes for the discretization and a �xed number of steps of the iterative solver in the �nal
HPF program are given in Table � for three problem sizes and several numbers of processors�
For one processor the table gives the runtime for the original sequential code �seq� and for the
HPF code �hpf� executed on one processor� For the �rst two problem sizes the program �ts in
the memory of a single processor� for the largest problem size the program does not �t in the
memory of a single processor �so some paging is done� but �ts in memory for two processors or
more� So� considering the size of the machine� �� processors� this is still a small problem�

It is clear from a comparison between the sequential runtimes of the original program and
the HPF program that the latter induces a substantial amount of overhead� Since no special
measures are taken in the solver to improve the e
ects of a large number of inner products� which
need global communication� the speedup deteriorates rapidly for smaller problems ���� ��	� For
the largest problem the speedup on
� processors is approximately eight� Moreover� if we look
at a speci�c number of processors �say ���� then we see that the runtime increases by only
��� to
��� whereas the problem size increases by a factor of ���� So for very large problems
the overhead induced by the compiler becomes less noticeable� and the �relative� performance
improves�

� Recommendations and Discussion

In this section we discuss some of the previously described problems and their proposed solution�
and we propose an order in which the steps in converting a program from F�� to HPF should
be applied�

The recommendations are mainly based on the work with the APR XHPF compiler� although
we have tried to make them general by considering the background of the problems� Furthermore�
we encountered several problems that seemed typical for the APR compiler� and therefore we
did not discuss them in detail� even though some of them caused severe performance problems�
It is likely that other compilers will have similar idiosyncratic problems�

Another concern is that only an HPF language speci�cation has been de�ned� and this
speci�cation �of course� makes no requirements on the implementation of an HPF�program�
nor does it require a minimal set of optimizations that the HPF programmer can assume�
Indeed� at the main program level all directives �particularly distributions and alignments� are

��

Number � � ��� � � ��� ��� � ���

of procs discr� it�solver discr� it�solver discr� it�solver

� �seq� ��
� ���� ���� �
��� ��
� ���
�
� �hpf� ���� ����
 ����
���� ���� ������

� ���� ���� ���� ����
 ���� �����
� ���
 ���� ���� ���
� ��
� �����
� ����
��� ��
� ���� ���� �����
�� ���� ���� ���� ���� ���� ��
�

� ���� ���� ����
��� ���� ��
�
�� ����
��� ���� ���� ���� ��
�
�� ���� ���� ���� ���� ���� ���

Table �� Runtimes �seconds	 for the �nite volume discretization and �� iterations in total of the
nested iterative solver for three problem sizes� the sequential program and the HPF program
for several numbers of processors�

so�called prescriptive� that is� they indicate a desired feature but they may be ignored� Strictly
speaking� the programmer has no control over the actual distribution� although in practice the
situation will not be so bad� Nevertheless� any distributions that the compiler will use or �grant�
the programmer and any optimizations it will make depend on the analysis capabilities of the
compiler� This severely hampers the possibility to make assumptions about the generated code�
Moreover� the wide range of possible implementations by compiler developers poses a threat
to the aim of performance portability that is mentioned in section ��� of the HPF Language
Speci�cation ��	� Preliminary testing of our programs using the PGI� compiler con�rmed our
fears in this respect� especially since other people report quite favourable results for this compiler�

As an example of the range of possible implementations consider the following case� In
a subroutine the programmer asserts the alignment of two dummy arguments �a descriptive
alignment�� This means that it is the programmer�s responsibility that this alignment is in fact
true upon each entry to the subroutine� However� in the main program the programmer cannot
insist on any particular distribution� because he can use only prescriptive directives� which may
be ignored by the compiler� Recognizing this problem the HPF Language Speci�cation ��	 states

All this� is under the assumption that the language processor has observed all other
directives� While a conforming HPF language processor is not required to obey
mapping directives� it should handle descriptive directives with the understanding
that their implied assertions are relative to this assumption�

We can immediately distinguish two ways of handling the problem that are at opposite ends of
a wide range of possibilities� One way is that as soon as the compiler does not observe a single
directive or encounters a single analysis problem �and its analysis capabilities may be poor� it
will simply ignore all descriptive directives� The other way is that the compiler does extensive
interprocedural analysis and propagates such requirements on dummy arguments to the actual
arguments in the calling routine�s�� and so on� In this way the compiler can check whether
decisions it made elsewhere in the program have an in�uence on this particular descriptive
directive� In fact� the directive may even in�uence distribution decisions taken at higher levels

�Trademark of Portland Group Inc�
�It is the programmer	s responsibility that the asserted statement holds�

��

in the program� Obviously� there are many possibilities in between the two extremes� All
are in�uenced by the quality of the analysis and the type of analysis being done� and by the
optimizations that the compiler supports�

In order to support novice users of HPF we provide a small summary of those points of the
parallelization process that appear most important to us�

One should always start with a sound analysis of the program� the algorithms involved� and
the purpose of the program�� From this analysis a parallelization strategy should be developed
that involves the distribution of both data and work� The distribution of data is mainly done
through declarations and directives �distribute and align�� The distribution of work �in HPF� is
done by using a data parallel programming style and the use of statements and constructs that
indicate independence of loop iterations �forall and independent�� and by using the HPF library
�not in the HPF subset�� As far as optimized functions are available from the HPF library
they should be used� In order to assist the compiler in generating an e�cient parallel program�
one should reduce the complexity of nested loop structures and index expressions as much as
possible� Furthermore� declaring arrays only where they are needed and using the dynamic
allocation features generally improves the generated parallel code� but one should be aware that
sometimes it is better to declare large� distributed arrays at a higher level in the program to
facilitate the alignment with other arrays�

In order to take care of the loop partition match� one should make loop nestings and array
distributions such that communication can be moved out of the loops as much as possible� Less
subroutine calls for communication and runtime checks inside the loops will also increase the
optimization opportunities for the native compiler� which may reduce the optimization gap�
The optimization gap may be further reduced by adjusting the loop order in the �original� HPF
program such as to improve locality� vector length� or other features in the program generated by
the HPF compiler� However� one should realize that such changes may improve the performance
on one parallel computer and reduce it on another� Furthermore� in order to do this well a
thorough understanding of the HPF compiler itself is necessary� In many cases loop partition
match and optimization gap requirements will con�ict� One possibility to resolve this is to change
the algorithm and�or the data structures� in numerical simulations often di
erent algorithms
can be used to obtain the same result� and the choice for the current algorithm may have been
based on assumptions that do not hold in a a parallel �or HPF� setting� Another� but more
machine speci�c� consideration is that on a machine with few powerful processors optimizations
by the native compiler might be much more important than the cost of communication� whereas
on a machine with many relatively slow processors this might be the opposite�

Changing the algorithms and data structures or replacing one algorithm by another should
always be tried to reduce problems if simple �tricks� do not work�

To prevent problems with implicit alignments one should be careful with directives for
dummy �array� arguments in subroutines and with the actual arguments of the subroutines
calls� Often alignments can be made at a higher level to prevent some of the implicit alignment
problems� This assumes a certain amount of interprocedural analysis though� It is important
to be aware of what happens at subroutine boundaries� Furthermore� one should consider the
inlining of small often used subroutines� Another possibility is to have di
erent versions of cer�
tain subroutines for arguments with di
erent sizes and�or distributions� If possible one should
prevent loops referencing arrays that cannot be aligned�

Alias problems can sometimes be prevented by using automatic arrays� one should not pass

�We hope that this sounds like an obvious truth to everybody� We mention it because we feel that recently

HPF has been oversold to be very easy to use� and to involve nothing more than inserting a few directives at the

start of a program or subroutine� This� however� is not our experience�

��

workspace arrays� Another possibility is to use pointers� although this only helps in simple cases�
Finally� one may use forced optimizations� if changing the algorithms and data structures does
not work�

To avoid interprocedural propagation problems� one should realize that the best way to avoid
them is by removing the problem that is the source of the propagation� To remove remaining
problems one should again consider changes to algorithms and�or data structures� Finally� one
could use forced optimizations�

Only at the end one should consider the use of forced optimizations to improve the e�ciency
of the parallel code by removing unnecessary communication and runtime checks�

� Conclusions

We have illustrated several problems� the loop partition match� the optimization gap� problems
with program sections whose parallelization is not clear from the data distribution� implicit
alignment and alias problems� and problems introduced by the interprocedural analysis� Al�
though we have investigated these problems only for the APR XHPF compiler� we think they
play a role for other compilers as well� For most of these problems we have indicated possible
solutions at the program level �even though they may not work work with the XHPF com�
piler�� However� the solution of these problems at compiler level would substantially enhance
the performance of the parallel program and substantially reduce the e
ort of the programmer�
We obtained reasonable performance for our programs� but it took some program changes or
algorithmic changes� and several APR speci�c forced optimizations�

Concerning the APR XHPF compiler more speci�cally� we can draw the following conclu�
sions� The program must be �re�written in a data�parallel programming style� Furthermore� a
rather detailed understanding of the compiler is necessary to obtain good results� and the com�
piler is sometimes over�conservative �which probably indicates insu�cient analysis capabilities��
so that considerable time must be devoted to removing unnecessary communication calls and
runtime checks�

References

��	 Arbenz P�� First Experience with the Intel Paragon� in ��th Speedup Workshop on Vector
and Parallel Computing� Speedup 	���� pages �
���� December �����

��	 Bailey D� H�� RISC Microprocessors and Scienti�c Computing � in Supercomputing��
� Port�
land� Oregon� pages �������� November ���
�

�
	 Brandes T� and Zimmermann F�� Data Parallel Programming on IBM�s Scalable Parallel
Systems with the ADAPTOR Tool � ���� �URL http	��www�gmd�de�SCAI�lab�adaptor�

documents�html��

��	 Crooks P� and Perrott R�� Language Constructs for Data Partitioning and Distribution�
Technical Report� Department of Computer Science� Queen�s University of Belfast� �����

��	 FORGE HPF Parallelizer XHPF User�s Guide ��� � Applied Parallel Research� ��� Main
Street� Suite I� Placerville� CA ������ ���
�

��	 Freeman T� L� and Phillips C�� Parallel Numerical Algorithms �Prentice Hall� Englewood
Cli
s� ������

�

��	 Hatcher P� J� and Quinn M� J�� Data�Parallel Programming on MIMD Computers �MIT
Press� Cambridge� ������

��	 High Performance Fortran Language Speci�cation� High Performance Fortran Forum�
November �����

��	 Hillis W� D� and Steele G� L�� Jr�� Data Parallel Algorithms � Communications of the ACM
�
����� pages ��������
� December �����

���	 Kumar V� et al�� Introduction to parallel computing� Design and Analysis of Algorithms
�Benjamin�Cummings� Redwood City� ������

���	 Ponnusamy R� and Saltz J� and Choudhary A�� Runtime�Compilation Techniques for Data
Partitioning and Communication Schedule Reuse�! Technical Report UMIACS�TR�
��

����� University of Maryland� October ���
�

���	 R"uhl R�� A parallelizing compiler for distributed memory parallel processors � PhD thesis�
ETH Z"urich� �����

��
	 Sturler De E�� Nested Krylov methods based on GCR� Technical Report
����� Faculty of
Technical Mathematics and Informatics� Delft University of Technology� Delft� The Nether�
lands� ���
� �accepted for publication in the Journal of Comp� and Appl� Mathematics�
North�Holland� Amsterdam��

���	 Sturler De E� and Vorst Van der H� A�� Reducing the e	ect of global communication in
GMRES
m� and CG on parallel distributed memory computers � Technical Report 	���
Mathematical Institute� University of Utrecht� Utrecht� The Netherlands� ���
� �accepted
for publication in Applied Numerical Mathematics��

���	 Sturler De E� and Vorst Van der H� A�� Communication cost reduction for Krylov methods
on parallel computers�! In W� Gentzsch and U� Harms� editors� High�Performance Com�
puting and Networking� Lecture Notes in Computer Science ���� pages �������� Berlin�
Heidelberg� Germany� ����� Springer�Verlag�

���	 Zima H� and Chapman B�� Supercompilers for Parallel and Vector Computers � ACM Press
Frontier Series �Addison�Wesley� Wokingham� ������

A Linear Equation Solver

This is the parallelization of the sequential implementation� see Table � for results�

� c

� c Gaussian elimination with partial pivoting

� c

� subroutine gelim�a�lda�b�n�tol�perm�errflg�

� c

� c ��� in�out variables ���

� c

� double precision a�lda�n�� b�n�� tol

	 integer lda� n� perm�n�� errflg

�
 c

�� c ��� local variables ���

�� c

��

�� integer row� col� piv� ppiv� itmp

�� double precision abspiv� dtmp

�� c

�� c ��� intrinsic functions ���

�� c

�� intrinsic abs

�	 double precision abs

�
 c

�� c ��� distribution and alignment ���

�� c

�� chpf� distribute a���cyclic�

�� chpf� distribute b���

�� chpf� distribute perm���

�� c

�� errflg
 	

�� do �		 piv
 �� n��

�	 c

�
 c ��� pivot search ���

�� c

�� ppiv
 piv

�� abspiv
 abs�a�piv�piv��

�� capr� do par on a���piv�

�� capr� ignore sync com

�� do ��	 row
 piv��� n

�� dtmp
 abs�a�row�piv��

�� if �dtmp �gt� abspiv� then

�	 abspiv
 dtmp

�
 ppiv
 row

�� endif

�� ��	 continue

�� c

�� c ��� permutation for perm ���

�� c

�� itmp
 perm�piv�

�� perm�piv�
 perm�ppiv�

�� perm�ppiv�
 itmp

�	 c

�
 c ��� check for singularity ���

�� c

�� if �abspiv �lt� tol� then

�� errflg
 ppiv

�� write ����� �tolerance exceeded� �� abspiv

�� return

�� else if �ppiv �ne� piv� then

�� c

�� c ��� permutation for a ���

�	 c

�
 capr� do par on a���col�

�� do ��	 col
 �� n

�� dtmp
 a�piv�col�

�� a�piv�col�
 a�ppiv�col�

�� a�ppiv�col�
 dtmp

�� ��	 continue

�� c

��

�� c ��� permutation for b ���

�� c

�	 dtmp
 b�piv�

�
 b�piv�
 b�ppiv�

�� b�ppiv�
 dtmp

�� endif

�� c

�� c ��� elimination ���

�� c

�� capr� do par on a���piv�

�� capr� ignore all com

�� do ��� row
 piv��� n

�	 a�row�piv�
 a�row�piv� � a�piv�piv�

�
 ��� continue

�� capr� do par on a��� piv�����

�� capr� ignore all com on a���piv���piv�

�� do ��	 col
 piv��� n

�� do ��	 row
 piv��� n

�� a�row�col�
 a�row�col� � a�row�piv� � a�piv�col�

�� ��	 continue

�� b�col�
 b�col� � a�col�piv� � b�piv�

�� ��	 continue

�	 c

	
 �		 continue

	� c

	� c ��� final check for singularity ���

	� c

	� if �abs�a�n�n�� �lt� tol� then

	� errflg
 n

	� endif

	� end

	� c

		 c Backward substitution

�

 c

�
� subroutine backsb�a�lda�b�x�n�

�
� c

�
� c ��� in�out variables ���

�
� c

�
� double precision a�lda�n�� b�n�� x�n�

�
� integer lda� n

�
� c

�
� c ��� local variables ���

�
	 c

��
 integer row� col

��� c

��� do ��	 row
 �� n

��� x�row�
 b�row�

��� ��	 continue

��� do ��	 col
 n� �� ��

��� x�col�
 x�col� � a�col�col�

��� do ��	 row
 �� col��

��� x�row�
 x�row� � a�row�col� � x�col�

��	 ��	 continue

��
 ��	 continue

��

��� c

��� return

��� end

B Data�parallel Linear Equation Solver� local pivot search vari�

ant

The pivoting is done locally on the processor that owns the pivot column� no intermediate results
are broadcasted�

� subroutine gelim�a�lda�b�n�tol�perm�errflg�

� c

� c ��� in�out variables ���

� c

� double precision a�lda�n�� b�n�� tol

� integer lda� n� perm�lda�� errflg

� c

� c ��� automatic arrays ���

	 c

�
 double precision abspiv�n�

�� integer ppiv�n�

�� c

�� c ��� local variables ���

�� c

�� double precision dtmp� rpiv

�� integer piv� ppiv� row� col� itmp

�� c

�� c ��� distribution and alignment ���

�	 c

�
 chpf� distribute a���cyclic�

�� chpf� align ppiv�col� with a���col�

�� chpf� align abspiv�col� with a���col�

�� chpf� distribute b���

�� chpf� distribute perm���

�� c

�� errflg
 	

�� do �		 piv
 �� n��

�� c

�	 c ��� pivot search ���

�
 c

�� ppiv�piv�
 piv

�� abspiv�piv�
 abs�a�piv�piv��

�� do ��	 row
 piv��� lda

�� if �abs�a�row�piv�� �gt� abspiv�piv�� then

�� abspiv�piv�
 abs�a�row�piv��

�� ppiv�piv�
 row

�� endif

�� ��	 continue

�	 c

�
 c ��� distribute pivot ���

�� c

�� ipiv
 ppiv�piv�

��

�� rpiv
 abspiv�piv�

�� c

�� c ��� check for singularity ���

�� c

�� if �rpiv �lt� tol� then

�� errflg
 ipiv

�	 write ����� �tolerance exceeded� �� rpiv

�
 return

�� else if �ipiv �ne� piv� then

�� c

�� c ��� permutation in a ���

�� c

�� do ��	 col
 piv� n

�� dtmp
 a�piv�col�

�� a�piv�col�
 a�ipiv�col�

�� a�ipiv�col�
 dtmp

�	 ��	 continue

�
 c

�� c ��� permutation in b ���

�� c

�� dtmp
 b�piv�

�� b�piv�
 b�ipiv�

�� b�ipiv�
 b�piv�

�� c

�� c ��� permutation in perm ���

�� c

�	 itmp
 perm�piv�

�
 perm�piv�
 perm�ipiv�

�� perm�ipiv�
 itmp

�� end if

�� c

�� c ��� elimination ���

�� c

�� do ��	 row
 piv��� n

�� a�row�piv�
 a�row�piv� � a�piv�piv�

�� b�row�
 b�row� � a�row�piv� � b�piv�

�	 do ��	 col
 piv��� lda

�
 a�row�col�
 a�row�col� � a�row�piv� � a�piv�col�

�� ��	 continue

�� ��	 continue

�� c

�� �		 continue

�� c

�� c ��� final check for singularity ���

�� c

�� if �abs�a�n�n�� �lt� tol� then

�	 errflg
 n

	
 endif

	� c

	� return

	� end

��

C Data�parallel Linear Equation Solver� all local variant

Pivot search� row exchange� and elimination are independent for all �distributed� columns� see
Table �cf� �� for results�

� subroutine gelim�a�lda�b�n�tol�perm�pcol�errflg�

� c

� c ��� in�out variables ���

� c

� double precision a�lda�n�� b�n�� tol

� integer lda� n� perm�n�� pcol�n�� errflg

� c

� c For programming reasons pcol should have been

	 c an automatic array� however� in that case the XHPF compiler

�
 c would compute indexes for pcol inside the copy�loop�

�� c

�� c ��� local variables ���

�� c

�� integer row� col� piv� ppiv� itmp� npiv

�� double precision abspiv� dtmp

�� c

�� c ��� intrinsic functions ���

�� c

�	 intrinsic abs

�
 double precision abs

�� c

�� c ��� distribution and alignment ���

�� c

�� chpf� distribute a���cyclic�

�� chpf� distribute b���

�� chpf� distribute pcol���

�� chpf� distribute perm���

�� c

�	 do �		 piv
 �� n��

�
 c

�� c ��� copy pivot column into pcol �replicated� ���

�� c

�� do �		 row
 �� lda

�� pcol�row�
 a�row�piv�

�� �		 continue

�� c

�� c ��� pivot search ���

�� c

�	 ppiv
 piv

�
 abspiv
 abs�pcol�piv��

�� do ��	 row
 piv��� lda

�� if �abs�pcol�row�� �gt� abspiv� then

�� abspiv
 abs�pcol�row��

�� ppiv
 row

�� endif

�� ��	 continue

�� c

�� c ��� check for singularity ���

�	 c

�
 if �abspiv �lt� tol� then

��

�� errflg
 ppiv

�� write ����� �tolerance exceeded� �� abspiv

�� return

�� else if �ppiv �ne� piv� then

�� c

�� c ��� permutation in a ���

�� c

�� do ��	 col
 �� n

�	 dtmp
 a�piv�col�

�
 a�piv�col�
 a�ppiv�col�

�� a�ppiv�col�
 dtmp

�� ��	 continue

�� c

�� c ��� permutation in b ���

�� c

�� dtmp
 b�piv�

�� b�piv�
 b�ppiv�

�� b�ppiv�
 dtmp

�	 c

�
 c ��� permutation in perm ���

�� c

�� itmp
 perm�piv�

�� perm�piv�
 perm�ipiv�

�� perm�ipiv�
 itmp

�� ��� permutation in pcol ���

�� dtmp
 pcol�piv�

�� pcol�piv�
 pcol�ipiv�

�� pcol�ipiv�
 dtmp

�	 end if

�
 c

�� c ��� elimination ���

�� c

�� do ��� row
 piv��� lda

�� pcol�row�
 pcol�row� � pcol�piv�

�� ��� continue

�� do ��	 col
 piv��� lda

�� do ��	 row
 piv��� n

�� a�row�col�
 a�row�col� � pcol�row� � a�piv�col�

�	 ��	 continue

	
 ��	 continue

	� do ��	 row
 piv��� lda

	� b�row�
 b�row� � pcol�row� � b�piv�

	� ��	 continue

	� c

	� �		 continue

	� c

	� c ��� final check for singularity ���

	� c

		 if �abs�a�n�n�� �lt� tol� then

�

 errflg
 n

�
� endif

�
� c

�
� return

�
� end

�

D Backward substitution

This section describes the column� and row�oriented versions of the backward substitution� Since
we implemented the row�oriented version� only this version has the forced optimizations�

� subroutine backsb�a�lda�b�x�n�

� c

� c ����� column�oriented backward substitution �����

� c

� c ��� in�out variables ���

� c

� integer lda� n

� double precision a�lda�n�� b�n�� x�n�

	 c

�
 c ��� local variables ���

�� c

�� double precision dtmp

�� integer row� col

�� c

�� c ����� distribution and alignment �����

�� c ����� in general for this type of routine �����

�� c ����� the distribution is done outside the �����

�� c ����� subroutine �����

�	 c

�
 chpf� distribute x�cyclic�

�� chpf� align a���i� with x�i�

�� chpf� distribute b���

�� c

�� do row
 �� n

�� x�row�
 b�row�

�� end do

�� c

�� do col
 n� �� ��

�	 x�col�
 x�col� � a�col�col�

�
 do row
 col��� n

�� x�row�
 x�row� � a�row�col��x�col�

�� end do

�� end do

�� c

�� return

�� end

� subroutine backsb�a�lda�b�x�n�

� c

� c ����� row�oriented backward substitution �����

� c

� c ��� in�out variables ���

� c

� integer lda� n

� double precision a�lda�n�� b�n�� x�n�

�

	 c

�
 c ��� local variables ���

�� c

�� double precision dtmp

�� integer row� col

�� c

�� c ����� distribution and alignment �����

�� c ����� in general for this type of routine �����

�� c ����� the distribution is done outside the �����

�� c ����� subroutine �����

�	 c

�
 chpf� distribute x�cyclic�

�� chpf� align a���i� with x�i�

�� chpf� distribute b���

�� c

�� do row
 n� �� ��

�� dtmp
 	�d	

�� capr� do par on x���row���

�� capr� ignore preloop com

�� do col
 row��� n

�	 dtmp
 dtmp � a�row�col� � x�col�

�
 end do

�� x�row�
 b�row� � dtmp

�� x�row�
 x�row� � a�row�row�

�� end do

�� c

�� return

�� end

E Propagation

The interprocedural analysis propagates parallelization problems�

� subroutine gcro�����

� c

� double precision r�n�� uu�n�m���

� double precision x�n�� cc�n�m���

� double precision ri�n�� vv�n�m���

� double precision hh�m���m�

� c

� chpf� distribute r�block�

	 chpf� align uu�i��� with r�i�

�
 chpf� align cc�i��� with r�i�

�� chpf� align vv�i��� with r�i�

�� c

���

�� call gmreso�n�m�k�r�uu���k����ri�����

�� k
 k��

�� do i
 �� n

�� cc�i�k�
 r�i� � ri�i�

�� end do

�

�� cn�ksize�
 sqrt�ddot�n�cc���ksize����cc���ksize�����

�	 call daxpy�n��d�ksize��cc���ksize����r���

�
 call daxpy�n�d�ksize��uu���ksize����x���

���

�� end

�� c

�� subroutine gmreso�n�m�k�b�x�r�����

�� c

�� double precision vv�n�m���

�� c

�� chpf� inherit ���

�� chpf� align vv�i��� with b�i�

�	 c

�
 c ����� Arnoldi �����

�� do while ��j�le�m� �and� ��not�conv��

�� call matvec�n�vv���j��vv���j��������

�� c ����� orthogonalize on cc
� �� cc
k �����

�� do i
 �� k

�� bb�i�j�
 ddot�n�cc���i����vv���j��������cn�i�����d	�

�� call daxpy�n��bb�i�j��cc���i����vv���j������

�� end do

�� c ����� orthogonalize on vv
� �� vv
j �����

�	 do i
 �� j

�
 hh�i�j�
 ddot�n�vv���i����vv���j������

�� call daxpy�n��hh�i�j��vv���i����vv���j������

�� end do

�� end do

���

�� c ����� compute inner solution �����

�� do i
 �� j��

�� call daxpy�n�rsh�i��vv���i����x���

�� end do

���

�� c ����� compute inner residual �����

�	 do i
 �� j

�
 call daxpy�n��xl�i��vv���i����r���

�� end do

�� ����� oblique orthogonalization of new u
k�� �����

�� do i
 �� k

�� call daxpy�n��x	�i��uu���i����x���

�� end do

���

�� end

