mzuriCh ETH Library

ZEUS

A hardware description language for VLSI

Report

Author(s):
Lieberherr, Karl J.; Knudsen, Svend Erik

Publication date:
1983

Permanent link:
https://doi.org/10.3929/ethz-a-000474439

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgenossische Technische Hochschule Zirich, Institut fir Informatik 51

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000474439
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule
Zlrich

Institut fiir Informatik

Karl J. Lieberherr, Svend E. Knudsen

ZEUS: A HARDWARE DESCRIPTION
LANGUAGE FOR VLSI

February 1983 51

Adresses of the authors:

Prof. Karl J. Lieberherr

Princeton University

Dept. of Electrical Engineering & Computer Science
Princeton, New Jersey 08540, USA

Svend E. Knudsen

Institut fiir Informatik
ETH-Zentrum

CH-8092 Ziirich, Switzerland

(C) 1983 Institut fiir Informatik, ETH Zirich

Zeus: A Hardware Description Language for VLSI

Karl J. Lieberherr =

Institut fiir Informatik ETH Ziirich
and
Department of Electrical Engineering and Computer Science
Princeton University

Svend E. Knudsen

Institut fiir Informatik ETH Ziirich

Abstract

A technology-independent, simple, but powerful hardware description language
is proposed. The language is suitable for describing VLSI algorithms from the
architecture to the logical level. The layout language part which is suitable for
any two dimensional technology, allows the user to describe the relative positions
of the components and pins of the layout as well. With technology-dependent
language extensions, which are the subject of another paper, the Zeus text can be
refined down to the transistor level.

Zeus is a functional and structural design language. A Zeus program consists of a
sequence of constant, type and signal declarations. The structure of a hardware
component is described by a component type definition. A component type T is
instantiated by declaring a signal S of component type T. We call S a signal since
we consider a component to be represented by its interface, i.e. the signals which
enter and exit.

Signals (e.g. components) are connected by connection and assignment
statements. The basic signal types are boolean and multiplex (tri-state) but
signals can be structured as nested arrays and records. A signal of type boolean is
assigned a logical value exactly once, while a signal of type multiplex may be
assigned conditionally several times. These and other rules are checked at
compilation and simulation time to prevent the “burning" of transistors and to
exclude other mistakes.

The language has been tested on a variety of examples like: finite state machines,
multiplexors, adders, pattern matching, AM2901, dictionary machines, systolic
stacks and it is currently in the process of being implemented.

+ Partially supported by National Science Foundation under grant
MCS80-04490. Oct.82

Contents
1. Introduction 2
2. Vocabulary and representation 4
3. Declarations 5
3.1 Constant declarations)
3.2 Type declarations 6
3.3 Signal declarations 10
4, Statements 10
4.1 Assignments 11
4.2 Replications and conditional generation 14
4.3 Connections 16
4.4 Conditional statement 18
4.5 Sequential and parallel statement 18
4.6 With statement 19
4.7 Summary of static type rules 20
5. Storage elements 23
5.1 Synchronized systems . 23
5.2 Initializations 24
6. Layout language 24
6.1 Boundary statement 24
6.2 Order statement 25
6.3 Orientation changes 25
6.4 Replacement 26
7. Zeus syntax 27
8. Semantics 31
9. Relation to previous work 37
10. Examples 39
Blackjack, finite state machine example 39
Adders 41
Binary trees 43
Pattern matching 47
References 51

1. Introduction

Computer scientists and engineers have continuously invented and employed
notations for modeling, specifying, simulating, documenting, communicating,
teaching and controlling the design of digital systems through the three decades
of digital computer history. Initially electronic systems were represented via
circuit schematics. Following Shannon’s revelation of 1938, logic diagrams

and/or boolean equations represented digital systems in a fashion that
deemphasized electronic and fabrication detail while revealing logical behavior.
As system complexity grew, block diagrams, timing charts, sequence charts, other
graphic and symbolic notations were found to be useful in summarizing the gross
features of a system and describing how it operated. In addition, it always
seemed necessary or appropriate to augment these documents with lengthy
verbal descriptions in a natural language. ‘

While each notation was, and still is, a perfectly valid means of expressing a
design, lack of standardization, conciseness, and formal definitions interfecred
with communication and understanding. This problem was recognized early and
formal languages began to evolve in the 1950°s. Read [Read(1952, 1933)]
developed a notation that became known as a register transfer language. While
this notation had only a few of the features that are associated with register
transfer languages (RTLs), its development started an evolutionary process that is
still underway.

Programming language development influences RTL evolution. Because high
level programming languages were developed more rapidly and studied far more
extensively, RTL syntax has been influenced by known programming languages.
In some cases [Robinson(82)] programming languages were proposed with or
without slight modification as RTLs so that simulation may be performed via
available software.

Reed’s RTL, and the at least three dozens that followed (e.g. [INMOS(82),
Lattice(82), Wirth(82)]), have been used in many ways, often to enhance other
notations rather than replace them. RTL descriptions of digital systems are used
to communicate such information to computer programs which simulate the
described system or translate (semi-automatically) the description (for example
to TTL wiring lists or MOS layouts {Siskind (1982)]). Thus RTLs might be rated
according to their effectiveness as communication tools and are a crucial part of
design automation systems.

‘We propose a new notation, called Zeus, which was inspired by brother Hades
[Wirth (1982)]. Zeus has almost the expressive power of the well-known register
transfer language DDL [Duley (1968)], however Zeus programs appear to be
more readable and offer more security by compile time checks. Hades and Zeus
don’t allow every possible circuit to be expressed. We disallow feedback loops
which do not lead through registers and we restrict the legal assignments to signal
variables in several ways. This should be an advantage, because it may prevent
designers from critical designs, simplify simulation and preclude errors that are
difficult to pinpoint. The semantics of Zeus imply a simulator which is
conceptually simpler than state-of-the-art switch-level circuit simulators [Bryant
(1981), Lipton (1982), Mehlhorn (1982)]. Both Hades and Zeus are suitable for
describing systolic algorithms. In Zeus the activities of each beat are represented
by a sequence of assignments, function component calls and connection
statements which determine how the signals are propagated, manipulated and
stored into registers.

4

Zeus unifies the Hades-concepts of a block and a module into one concept: a
component type. A component type has a parameter list like a Hades-module.
While the Hades-module parameters can be influenced only by a module call,
the Zeus-component type parameters can be accessed like the fields of a Pascal
record. Combined with the Zeus connection statement this allows a succinct
description of interconnections without auxiliary variables. In contrast to Hades,
Zeus defines a piece of hardware as a component type which is instantiated by a
signal declaration. The parameters of a component type can be special
component types themselves. In Zeus, signals can be structured like Pascal
variables with the array and record construction. A Zeus-record type is simply a
component type without body (no internal connections). Hades only allows
arrays of a simple type.

Some aspects of the structural part of Zeus have been developed independently
at MIT [Lim (1982)]. The MIT language which is called HISDL uses components
and specifies connections in a similar way as Zeus. However HISDL is intended
only for a structural description. In section 4 of this paper we translate the
HISDL specification of a routing network given in [Lim(1982)] to Zeus.

Some aspects of the functional part of Zeus have been developed at USC [Hayes
(1982)] in form of the CS theory. However, intentionally, not every CS network
can be expressed as a Zeus component. This will be possible in a
MOS-technology-dependent language extension of Zeus.

Leiserson and Saxe [Leiserson/Saxe (1981)] use the same model for synchronous
ircuits as Zeus and they provide an elegant design methodology for developing
ertain systolic Zeus programs. [Cappello (1982)] and [Moldovan (1982)] contain
urther results which can be applied to the analysis and synthesis of Zeus

programs.

The order statement of the layout language is taken from [Valdes(82)].

The paper is organized as follows: Sections 2-8 define the language. Section 7
contains the complete, cross-referenced syntax in extended Backus-Naur form
(see e.g. [Wirth(82)]). Sections 1 and 9 relate Zeus to previous work and section
10 contains several examples of Zeus programs.

2. Vocabulary and representation

The vocabulary of Zeus consists of identifiers, numbers and special symbols.
Identifiers are used to denote the objects of a circuit.

Numbers may be followed by a letter B or b to specify an octal number.
Special symbols are the following sequences of characters.

+- plus minus
00 parentheses
P punctuation
< <=>>= = relation

1= == assignment

.. range
* unspecified, multiplication
<+ %) comment

AND ARRAY BEGIN BIN BOTTOM CLK COMPONENT CONST DIV DO
DOWNTO ELSE ELSIF END FOR IF IN IS LEFT MOD NOT NUM OF OR
ORDER OTHERWISE OTHERWISEWHEN OUT PARALLEL RSET
RESULT RIGHT SEQUENTIAL SEQUENTIALLY SIGNAL THEN TO TOP
TYPE USES WHEN WITH

3. Declarations

Declarations in general serve to introduce objects into the program and to
associate an identifier with the object. The identifier is valid within the
component type in which the declaration occurs. All constants, types and signals
must be declared before they are used. Signal declarations must occur after the
constant and type declarations. These rules imply that non-local signals (except a
predefined clock and a predefined reset signal) are not allowed in Zeus.

3.1 Constant declarations

A constant declaration associates an identifier with a numerical or a signal
constant. Signal constants are nested arrays and records of the basic types
boolean and multiplex (defined later); the structure is shown with parenthesis.
The basic signal constants are 0,1,UNDEF (undefined) and NOINFL
(no-influence (disconnected, high-impedance)) which will be explained later.
The type of 0,1 and UNDEF is boolean; the type of NOINFL is multiplex.

Examples

start=(0,0,0) ; a=((0,1),(1,0),(0,0)) <= signal constants *> ;
length = 7 <* numerical constant *>

For numerical constant expressions we have adopted the Modula-2 syntax.
Syntax

constDeclaration = CONST { ident "=" constant ";" } .
ident = letter { letter | digit } .
constant = ConstExpression | sigConstExpression.
ConstExpression = SimpleConstExpr [relation SimpleConstExpr] .

relation = "="["O" | <" | "¢="|"D" | "D=",

SimpleConstExpr = "="["+"|"-"] ConstTerm
{ AddOperator ConstTerm } .

AddOperator = "+" | "-"|OR.

ConstTerm = ConstFactor { MulOperator ConstFactor } .
MulOperator = "»" | DIV|MOD | AND .

ConstFactor = number | "(" ConstExpression ") | NOT ConstFactor |
ident ["(" ConstExpression { ";" ConstExpression } ")"].

pumber = digit { digit } ["B" | "b"].
sigConstExpression = "(" sigConstExpression
{ " sigConstExpression } ")" |
value | BIN "(" ConstExpression * * ConstExpression ")".
value = "0" | "1" | ident .

3.2 Type declarations

Zeus provides COMPONENT, ARRAY and basic types which can be arbitrarily
nested. A component type defines a circuit with its input and output signals as
parameters. Internal signals and functions are declared as local objects. A
component type is instantiated by a signal declaration; the component type
definition merely defines the circuit pattern. (Component type declarations may
be viewed as corresponding to type declarations in programming languages,
whereas component instantiations correspond to variable declarations.)

Example

TYPE
halfadder =
COMPONENT (IN a,b: boolean; OUT cout,s: boolean) IS
BEGIN s : = XOR(a,b);
cout := AND(a,b)

END;
halfadder
1 > — cout
‘ | XOR — S
Fig. 3.2.1
fulladder =

COMPONENT (IN a,b,cin: boolean; OUT cout,s: boolean) IS
SIGNAL hl,h2:halfadder;

BEGIN hl(a,b,*,h2.a); h2(hl.s,cin,s,s);
<sthe = indicates that no connection is mades>
cout := OR(hl.cout,h2.cout)

END;

b > or —— couf
halfadder
hi

halfndder
h2 .

Y
(7]

cin

Fig. 3.2.2

A function component type is a component type which returns a value. A
function component type declaration is instantiated by a call. Function
component types cannot be used in signal declarations.

Example

TYPE

bo(n) = ARRAY][1..n] OF boolean;

mux4 = COMPONENT (IN d:bo(4); IN a:bo(2); IN g: boolean) :boolean;
CONST bit2 = ((0,0),(0,1),(1,0),(1,1));
SIGNAL h: multiplex ;

BEGIN
FOR i:=1TO 4 DO IF EQUAL(a,bit2[i]) THEN h : =d[i] END END;
RESULT AND(NOT g,h)

END;

Local declarations are valid only within the component type in which they occur.
The type identifier of a component type is used in signal declarations and calls
(in case of a function component type). The value of a function component type
is specified by the expression following the symbol RESULT. An assignment to
the type identifier is illegal.

The parameters of a component type declaration are called formal parameters.
They are either IN, OUT or INOUT parameters. An IN (OUT) parameter is used
to transmit a value to (from) a component. An INOUT parameter is specified by

omitting the IN and OUT reserved word and it is used for communication to and
from the component.

For the purpose of connecting signals, the formal parameters of an instantiated
component can be accessed with a notation as for the fields of a record in Pascal
(forget the IN, OUT indicators). However the connections to a function
component can be specified only in a function call. If a structured formal
parameter is an INOUT parameter it may be that some substructures are either
IN or OUT parameters. The IN or OUT property is inherited by substructures. A
substructure may not be at the same time an IN and OUT parameter. A
parameter X of a component type Y can be a component type itself.

The "uses" list of a component type A names all objects (constants or types, but
not signals) which are defined outside A but used inside A. If the uses list is
omitted then every object defined in the environment of A can be used in A. If
the uses list is empty then nothing from the outside is used in A. Predefined
standard types (e.g. the function component types AND, OR, NAND ... and the
component type REG) are pervasive and can be used everywhere without
mentioning in a uses list.

The parameters of a function component type are just place holders as the
parameters in a programming language like Pascal or Modula-2. These
parameters can be renamed in the type definition without affecting the
correctness of the program. However the renaming of the parameters in a
component type definition only, usually changes the meaning of the program. It
might be necessary to rename the names also outside the type definition in case
the parameters are accessed like the fields of a Pascal record. Therefore the
parameter names are an important part of the interface of a component type. If a
component type is imported in a uses list, all its parameter names are imported
t00.

The elements of the statement sequence define the functional interconnections of
the various signals. The order of the statements is irrelevant, but all assignees
must be well defined. This implies that no loops must occur in the definitions of
signal values. However loops leading through registers are allowed (see section
on storage elements).

A component type without body represents a record type of signals (in the Pascal
sense). Such a record type represents a sequence of signals (wires) where each
might have an individual type. The IN and OUT indicator may also be used in
such record definitions.

Example

TYPE
bus = COMPONENT (1,5t : bo(3) ; u : boolean);

An ARRAY type represents a sequence of signals, all of the same type.

Example

TYPE
bus4 = ARRAY [1..4] OF bus ;

The basic types are "boolean" and "multiplex”. Signals of type multiplex are
tri-state signals which can have the high-impedance value NOINFL. We prefer
the name multiplex to tri-state.

For signals of basic type the following rule holds (with two exceptions): Either
they are unconditionally assigned a value exactly once (syntactically) or they are
assigned a value an arbitrary number of times through an if statement.

Example
IF EQUAI(a,b) THEN r:=s END; t: = f(a,b)

r is assigned a value through an if statement. If all RESULT statements of f are
contained in if statements (i.e. f is of type multiplex) then t is also assigned a
value through an if statement.

The two exceptions are IN parameters of an instantiated component and formal
OUT parameters. Such parameters of a basic type must be boolean (see below),
however they can be treated like signals of type multiplex : Variables of a basic
type which are assigned through an if statement have to be either of type
multiplex or they have to be an IN parameter of an instantiated component or a
formal OUT parameter which is used inside the defining component type. In the
last two cases an implicit multiplex signal is generated and assigned to the IN or
OUT parameter.

Unstructured IN and OUT parameters must be of type boolean. INOUT
parameters of a basic type must be of type multiplex. This rule implies that no
assignments are allowed to a formal IN parameter within the defining component
type and that no assignment is allowed to an OUT parameter of an instantiated
component type.

The simulator checks that at most one (0,1,UNDEF)- assignment takes place at
“runtime”,i.e. if a signal is assigned conditionally through an if statement then it
has to be guaranteed that during the operation of the chip at most one
(0,1,UNDEF)-assignment is active. This rule safeguards against "burning"
transistors.

The unconditional assignment x:=y with x of type multiplex and y of type
boolean is legal. However no further assignments (conditional or unconditional
assignments) are allowed to x. In an assignment x:=y it is allowed that x is of
type boolean and y of type multiplex. It is assumed that hardware (e.g. an
amplifier) will be generated automatically to perform the type conversion.

These rules extend in a natural way to signals of structured type. All basic
substructures must satisfy the assignment rules.

Types can be parameterized with integers in Zeus. The formal parameters of a

10

type definition (to the left of “=") are valid in that definition only. The actual
parameters are numerical constant expressions and they are specified when types
are instantiated in signal declarations. Parameterized types are especially useful
in connection with recursion.

The actual parameters of a function component are specified in brackets in a call
statement. For example, plus[n}(a,b) is the call of a function component type
which will return the sum of the two n-bit numbers a,b.

Syatax

typeDeclaration = TYPE { ident ["(" idlist)"] "=" type """}
type = arrayDeclaration | componentDeclaration |
ident ["("ConstExpressionList")"].
arrayDeclaration =
ARRAY "[" ConstExpression ".." ConstExpression "]" OF type .
componentDeclaration =
COMPONENT "(" [fparams { ";" fparams }])"
["{" layoutStatementList "}"]
[[":" type]IS [USES idlist ";"] { declaration }
["{" layoutStatementList "}"] BEGIN StatementSequence END].
fparams = [IN | OUT] fieldlist .
fieldlist = idlist ":" type .
idlist = ident { "," ident }.

.3 Signal declarations

3ignals in Zeus correspond to variables in programming languages. A signal may
be structured with the COMPONENT and ARRAY facilities. Signals of type
multiplex have values 0,1,UNDEF (undefined), NOINFL (no-influence) and
signals of type boolean can have values 0,1 and UNDEF. NOINFL is the
disconnected or high-impedance state. An instantiated component type is called
a signal since the interface of a component consists of a sequence of signals.

Syntax

signalDeclaration =
SIGNAL { idlist ":" type ["(" ConstExpressionList ")"] ";" } .

4. Statements

In contrast to Pascal-like languages, the relative order of statements does not
influence the semantics of a Zeus program.

Syntax

StatementSequence = statement { ;" statement } .
statement = [assignment | replication | condGeneration | connection |

1
conditional | result | parallel | sequential | with] . (=emptys)

4.1 Assignments

Assignments denote signal definitions and connections. The assignment S:=e
signifies that signal s be defined by the expression e. The "direction” of the equal
sign to the left indicates the intended "signal flow". We require that the type of e
has the same number of substructures of basic type as the type of s.

There is a second kind of assignment statement which is used for aliasing signals.
An aliasing operation x= =y connects the two signals. The consequence is that
we have one signal with two (or more) names. It is required that x and y have the
same number of basic substructures and that they are pairwise of type multiplex.
There are two exceptions: One of the basic signals x or y may be of type boolean,
if it is an IN parameter of an instantiated component or a formal QUT
parameter. In case of the exceptions there will be an implicit type conversion
from multiplex to boolean. If a signal of type boolean is assigned with "= ="
then it may not unconditionally be assigned with ":=". An aliasing operation
x= =y must not occur within a conditional statement. .

If both x and y are signals of type multiplex then the assignment x: =y is illegal.
x==y has to be used instead. If x is a variable of type boolean then the
assignment x: =NOINFL is replaced by x: = UNDEF.

If the assignee s is of type boolean and not an IN parameter of an instantiated
component or a formal OUT parameter used inside the defining component type
then exactly one unconditional assignment must occur. Several conditional
assignments may occur to signals of type multiplex, to a boolean IN parameter of
an instantiated component or to a boolean formal OUT parameter. (The type
conversion from multiplex to boolean will be done automatically.) A variable
may not be assigned conditionally and unconditionally.

Expressions (and statements) describe the functional composition of a circuit.
The value of a function component call is defined by the corresponding type
declaration and the values of the actual parameters. The type of a function
component type cannot contain a component type with a body, i.e. it is a nested
type of records and arrays of a basic type.

The following are standard function component types; they are implicitely
defined and require no declaration:

AND(x0,x1, ... ;xn)
OR(x0,x1, ... xn)
NAND(x0,x1, ... ,xn)
NOR(x0,x1, ... ,xn)
XOR(x0,x1, ... ,xn)
NOT x
EQUAL(x0,x1)

12

For the AND,OR,NAND,NOR,XOR and EQUAL function we require that
x0,x1, ... ,xn have the same number m of substructures of basic type. The result
type is an ARRAY[l.m] OF boolean. The result type of NOT is an
ARRAY[L..m] OF boolean where m is the number of substructures of x of a
basic type. The operations are performed bit-wise. The detailed definition of
these functions is given in the semantics section.

The standard function BIN(a,b) transforms the numerical constant a into
ARRAY [1..b] OF boolean.

The standard function NUM(s) transforms a signal s into a numerical value. This
function is for example useful for defining a multiplexor or a random access
memory.

A signal which is of a structured type denotes all subcomponents of basic type in
natural order if a selector is omitted.

Examples
SIGNAL score: ARRAY [1..5] OF boolean;
In the statement part score denotes the five signals score[1], score[2], ... ,score[5].

SIGNAL r:ARRAY[L.n] OF COMPONENT (IN in:boolean; OouT
out:boolean);

r.in denotes the n basic signals 1f1..n].in.
This rule might lead to ambiguous situations.

Example
SIGNAL matrix: ARRAY[L..n] OF ARRAY[1..n] OF boolean;

matrix[2] might denote the second row or the second column of the matrix. For
such cases we define the default that right-most selectors have been omitted first.
Therefore matrix[2] is equivalent to matrix[2][1..n].

A sequence of signals may be assigned in an assignment statement. For example,
if x is an ARRAY[1..n] OF boolean then x[2..7] denotes the six boolean signals
x{2], x[3], ... x[7]. A similar construction is possible with the component
constructor (see syntax definition).

Let s be a signal which is an instantiated component local to another component
C. If a port s.b of s is neither used nor assigned in C (also not with a connection
statement) then an error message is generated, provided that at least one port of s
is used or assigned. In other words, in Zeus it is legal to have completely
disconnected components (see the next subsection about conditional generation),
but unused ports of relevant (i.e. not completely disconnected) components have
to be "closed” explicetly with an assignment or connection statement. "s" has the
meaning of "empty signal” or "no connection”.

13

Example

COMPONENTY(....) IS
TYPE
atype=
COMPONENT(IN x:boolean;
OUT y:boolean; z:multiplex) IS

. BEGIN

END;
SIGNAL
g: ARRAY[L..2] OF atype;
x1,x2: boolean; x3:multiplex;
BEGIN

g[1](x1,x2,); <= see the section "4.3 Connections" s>
<= equivalent to
WITH g[1] DO
X:=xl;x2i=y;z==»
END;
L4

WITH gf2] DO
Xi=x %=y Z==x3
END
END;

In the following we summarize the rules for "s". Intuitively "+" represents the
empty signal.

Let x be an instantiated component and x.b a port of type boolean. The
assignment "x.b:=s" is considered to be an empty assignment (like no
assignment) to x.b. If no other (non-empty) signal is assigned to x.b then
"x.br=#" is equivalent to x.b:=UNDEF. After the assignment "s:=x.b" the
signal x.b is still available. (The assignment "»:=x.b" might happen with a
connection statement since unknown actual parameters are represented by "s",
See section 4.3.)

If b is a port of type multiplex then "x.b= =" (or "s= =x.b") is considered to
be an empty assignment (like no assignment) to x.b. If no other (non-empty)
signal is assigned to x.b then "x.b= =" is equivalent to x.b = =UNDEF.

*+" is typeless and on the left-hand-side of an assignment statement it may be
assigned conditionally or unconditionally several times (with *:=" or "= = ").

Syntax

assignment = signal (":="|"==") expression .

14

signal = (ident { "[" (ConstExpression -
[".." ConstExpression] "]"| NUM (" signal ")") "]
{"."ident[".." ident]}) ["+".
expression = signal | functionComponentTypeldent
["("ConstExpressionList")"] _
[expression] | BIN “(" ConstExpression "
ConstExpression")" | .
sigConstExpression | “s" [":" ConstExpression 11
"(" expression { "," expression } ")".
functionComponentTypeldent = ident .

4.2 Replications and conditional generation

The replication of a group of statements can be expressed conveniently by the for
statement. The identifier following the symbol FOR is a fresh identifier valid
only within the replication. It can be used in place of a constant expression.

Example

TYPE bo(n) = ARRAY [1..n] OF boolean;
SIGNAL a; COMPONENT (in,out:bo(4)); b:bo(4);

FOR i:=1TO 4 DO a.in[i] : = b[i] END;

“his statement can be abbreviated to ain := b. It is allowed to have
yarameterized types in Zeus. The actual parameters are numerical constant
xpressions. Parameterized types are very powerful in connection with recursion
see below).

The replication statement is very convenient and is used in most hardware
description languages. However it is appropriate to consider the replication
statement as part of a meta language which is used to generate hardware. (The
analogy to an assembly language with conditional assembly suggests itself.) In the
extreme case the meta language is a general purpose programming language
which is used to "compute” hardware.

Conditional hardware generation with simple conditions occurs often and
therefore we introduce it in Zeus. Conditional hardware generation should also
be considered as a part of the meta language. Conditional hardware generation is
expressed with WHEN-THEN-OTHERWISE keywords to distinguish it from the .
conditional statement (to be defined later).

Example

FOR i:=2TO 2#n-1 DO
WHEN i MOD 2 & 0 THEN
se[i}(=,(se[i DIV 2].in.contents{1],sefi DIV 2].in.sendup))
OTHERWISE
se[i](#,(se[i DIV 2].in.contents[2],+))

15

END

This is a wiring statement for a binary tree.

The condition after WHEN 1is a constant expression which is evaluated at
compile time. We have essentially adopted the Modula-2 syntax for these
constant expressions.

Conditional hardware generation and the parameterized types turn Zeus into a
recursive hardware description language. As an example we give the Zeus
specification of the routing network described in [Lim(1982)] with the structural
hardware description language HISDL.

TYPE
bit(n)= ARRAY][0..10] OF boolean; channel(n) = ARRAY[0..n] OF bit(10):

router=

COMPONENT(IN inport0,inport1:bit(10);
OUT outport0,outport1:bit(10)) IS

BEGIN ...

END;

routingnetwork(n) =
COMPONENT(IN input: channel(n-1); OUT output: channel(n-1)) IS
SIGNAL top,bottom: routingnetwork(n DIV 2);
<= this hardware is only generated
if it is used in connection or assignment statements later on >
c:ARRAY[0..n DIV 2 -1] OF router;
BEGIN
WHEN n=2 THEN <= 242 router >
c[0}(input[0],input[1],output[0],output[1])
OTHERWISE <+ decompose routing network into a column of 2+2
routers and two half-sized sub-networks top and bottom >
FOR i:=0TOn DIV 2-1 DO
c[il(input[2+i],input[2«i+ 1],top.input(i],bottom.inputfi]);
outputfi] : = top.output[i];
output[i+ n DIV 2] : = bottom.output[i]

END;
END;
END;
Syntax .
replication = FOR ident ": =" ConstExpression
(TO | DOWNTO) ConstExpression DO [SEQUENTIALLY]
StatementSequence END .

condGeneration = WHEN ConstExpression THEN StatementSequence
{ OTHERWISEWHEN ConstExpression THEN StatementSequence }

16

[OTHERWISE StatementSequence JEND.

4.3 Connections

A signal s which is an instantiated component type can be “"called" in a
connection statement. This connection statement establishes (additional)
connections between the pins of s (represented by the parameters) and other
signals. There may be at most one connection statement for an instantiated
component type.

The correspondence between the actual parameters and the formal parameters in
the heading of the referenced component is given by the parameters’ position. If
the formal parameter is specified as an OUT or INOUT parameter, the
corresponding actual parameter must be a signal expression,i.e. an S-expression
(in the Lisp sense) of signals. If the parameter is specified as an IN parameter,
the corresponding actual parameter is an expression, and no assignment to the IN
parameter occurs within the component type definition. The formal/actual
correspondence for IN and OUT parameters is subject to the rules of assignment
with the ":=" operator. If with the given connection statement no additional
connections are made for a pin, then a " is used as actual parameter.

Connection statements can be translated into assignment statements according to
‘he following rule. Let C be an instantiated component type with basic formal
yarameters al,a2, ... ,an. Let C(x1,x2, ... ,xn) be a connection statement. If aiis an
JUT parameter (hence of type boolean) then we generate xi:=ai. If ai is an IN
parameter (hence of type boolean) then we generate ai: =xi. If ai is an INOUT
parameter (hence of type multiplex), we generate ai==xi. It is allowed to
specify connections several times as long as they are identical.

The formal/actual correspondence for INOUT parameters is subject to the rules
of assignment with the "==" operator. An actual parameter is connected to a
formal INOUT parameter by aliasing. An aliasing operation

FormalParameter = = ActualParameter

causes a connection to be made between the formal and actual parameter. The
consequence is that we have one signal with two (or more) names. Only signals
whose basic substructures are of identical type may be aliased. A connection
statement which connects a formal INOUT parameter to an actual parameter
must not occur within an if statement. (Aliasing cannot be done conditionally.)

Example

TYPE
bo(n) = ARRAY [1..n] OF boolean;
RandomAccessMemory =

COMPONENT (IN A:bo(3); OUT DA:bo(9)) IS

17

BEGIN
END;

SIGNAL
RAM:RandomAccessMemory;

F:bo(9);
BEGIN

'li;AM(t,F); <= connects the output DA of RAM with signal F;
an equivalent statement is F:=RAM.DA »>

According to the syntax definition, any signal can occur at the beginning of a
connection statement. We have to restrict this rule as follows: At the beginning
of a connection statement we allow only signals which are the instantiation of a
component which has a body (i.e. a non-empty statement part) or signals which
are a sequence of instantiated equal components with a body. In the latter case
the signal type must be an array of components. If the sequence of instantiated
components contains q equal components of type

COMPONENT(x1:t1; ... ;xn:tn)

then in the connection statement the i-th parameter has to contain q times as
many basic signals as type ti (1{=i<=n).

Example

TYPE
r=COMPONENT(IN a:boolean; OUT b:boolean) IS
BEGIN ‘

SIGNAL

x:ARRAY(1..10] OF r;

s,tzZARRAY([1..10] OF boolean;
BEGIN

x(s,t) <»or x[1..10](s,t) »>
END

This statement part is an abbreviation for

BEGIN
FOR i:=1TO 10 DO)
X[i)(sil.tiD
END

END

18

Syntax
connection = signal [expression] .

4.4 Conditional statement

A hardware description language which is aimed at describing VLSI algorithms
(VLSI circuits) should offer a construction for a switch. One p0351b111ty is to
offer a standard function SWITCH(b,a) which returns the value of a if b is 1 and
which has value NOINFL otherwise.

Such a standard function has two disadvantages. First it does not provide an
"else" or "otherwise" facility. Second it only allows to formulate conditional
assignments but not conditional connections and replications.

Therefore we provide an IF statement with Modula-2 syntax instead of the
SWITCH function. The statement

IF b THEN h:=a END
has the same meaning as the assignment
h:=SWITCH(b,a).

All conditions in an IF statement are evaluated in parallel. Although switches are
bidirectional devices in many implementations, we allow to use them only in one
direction. For example, the statement

FbTHEN x==y END

s illegal. This is not a limitation at the level of Zeus programs. Bidirectional
witches might be hidden in predefined component types.

Syntax
conditional = IF expressmn THEN StatementSequence

{ ELSIF expression THEN StatementSequence }
[ELSE StatementSequence] END .

4.5 Sequential and parallel statement

So far the statement order was of no importance; all statements are thought to be
executed in parallel. The simulator has the job of finding the proper sequence of
execution by generalized topological sorting. However sometimes the user knows
that certain statements have to be executed sequentially.

The sequential and parallel statement permit the user to put more useful
redundancy into the Zeus text; however they have no semantical implications.
The simulator will check whether the specified sequence is compatible with the
sequence produced by the semantical definition. If the user knows that a
statement sequence S1; S2; ... ;Sn is executed sequentially by the hardware he
can specify this with

19

SEQUENTIAL
S1;S2; ... :5n
END

The statements Si migh.t contain statements which are executed in parallel. In
other words the sequentiality of S1; S2; ... ;Sn is not inherited by the statements
nested within the n statements.

The parallel statement is introduced for reversing the effect of the sequential
statement. For example if S1 and S2 have to be executed in parallel and
afterwards S3; ... ;Sn sequentially the user specifies this with

SEQUENTIAL
PARALLEL
S1;S2
END:;
S3; ... ;SN
END

A parallel statement which is not nested in a sequential statement has no effect
since parallelism is the default.

A special rule applies for the replication statement. If the sequence of statements
specified by a replication statement are executed sequentially then the reserved
word SEQUENTIALLY is written after DO.

Example
SEQUENTIAL

S1;

FOR i:=2TO n DO SEQUENTIALLY S§[i] END;
END

is equivalent to

SEQUENTIAL
S1;S2; ... ;Sn

END

Syntax

sequential = SEQUENTIAL StatementSequence END .
parallel = PARALLEL StatementSequence END .

4.6 With statement
The with statement specifies a signal variable and a statement sequence. In these

20

statements the qualification of component pin identifiers may be omitted, if they
are to refer to the variable specified in the with clause. The with statement opens
a new scope as in Modula-2.

The signal which occurs after WITH has to be specified completely. The
abbreviation rules which hold for signals in general do not hold here.

Syntax
with = WITH signal DO StatementSequence END .

4.7 Summary of static type rules

In this section we systematically summarize the static type rules which have been
scattered through earlier sections. The main purpose of these type rules is to
prevent hardware designs in which a direct connection from power to ground
could occur. The static type rules have to be supported by run-time checks for
signals of type multiplex (and boolean signals Wthh are conditionally assigned
several times or which are assigned with "==" and which are either formal
OUT parameters or IN parameters of an mstantlated component). It is easy to
show that deciding whether a signal of type multiplex is assigned the value 0 or 1
exactly once is NP-complete. This is a theoretical justification for the run-time
checks.

Jur static type rules can essentially be reduced to assignment statement rules.
Therefore we start with these rules. Let z: =e be an assignment statement, where
t is a signal and e an expression. We require that the types of z and e have the
;ame number of basic components. The basic components have a natural order
ind this specifies the pairs of basic subsignals which are assigned. Therefore it is
sufficient to discuss the case x:=e where x is a signal of basic type. x and e can
be of type multiplex or boolean.

Unconditional assignment (x: =e)

All four combinations of boolean and multiplex are legal, however there may be
no other assignments to x (also not "hidden" assignments within a connection
statement). This rule is adopted to prevent direct power ground connections, e.g.
x:=1; x:=0.

It should be noted that an unconditional assignment multiplex:=

boolean/multiplex abuses the type multiplex. Namely the assignee of type

multiplex on the lefthandside cannot obtain any further assignments. However

there are situations where this facility is important, e.g. if the first element af1]

of "a:ARRAY[1..n] OF multiplex is initialized by some boolean value, but a[2],
.. ,a[n] are assigned conditionally.

Conditional assignment (IF b THEN x:=e END)

21

" © boolearn, multiple x
ill33a| illeqal
boolean (excepﬂonl) (QXCePTiOh [)
multiplex leqal legal

type rules (I)

Exception 1: The boolean signal is a formal OUT parameter or an IN parameter
of an instantiated component.

Motivation:

Actually the conditional assignment boolean:=boolean/multiplex should be
illegal, however this would make many Zeus programs considerably longer.
Assume we have a formal OUT parameter x which is by definition of type
boolean. Internally we would like to define it through several conditional
assignments. Since it would be cumbersome to define an auxiliary multiplex
signal h and assign h to x, we adopt exception 1.

Equivalence of signals (x= =y, x and y basic signals)

Y boolean multiplex
X
boolean i”ejﬂ‘ illeqal
(exception)
multiplex legal leﬂ"“
(exception 1)

f'jpe rule_s (2)

22

Exception 1 is defined and motivated as above. The assignment
boolean= =boolean is illegal since it would allow direct power ground
connections, e.g. a:=1; b:=0; a==b.

It remains to summarize how connection statements and function component
calls are reduced to assignment statements. Let f be a (function) component with
formal parameters al,a2, ... ,an. Let f(x1,x2, ... ,xn) be a connection statement for
component f or a call of f. If ai is an IN parameter then xi is an expression. If ai
is an OUT or INOUT parameter then xi has to be a signal expression, i.e. an
S-expression (in the Lisp sense) of signals. The following table specifies the
corresponding assignments and the type rule restrictions for assignments of basic
signals.

ai IN out INouTt
xi (booleqn) (‘DoOle.om) (multiple x)
boolean Qi == x|

. . . . (illeqal i exception |
an=xi Xi=al net Sqf]tsﬁed)
(Xi may be

multiplex !
. an cxpresslon)

aj==x1

ty pe rules (3)

The types of ai and xi have the same number of basic subtypes, but ai and xi
might have different types. Parentheses might have to be used to structure the
actual parameters properly. Assume we have a component with n formal

23

parameters. Then in a connection statement or function call we need n signal
expressions (those corresponding to IN parameters might be general expressions)
which are separated by n-1 commas. However the parenthesis structure within
the n signal expressions is unimportant.

Examples

TYPE

h=COMPONENT(IN a:ARRAY][1..5] OF boolean;
OUT b:COMPONENT!(b1,cl,d1,el,f1: boolean));

SIGNAL s:h;

Correct connection statements are (p is a boolean array of 2 elements
and q is a boolean array of 3 elements):

s((p.9).(p[1].a[2].p[2].q[1].q[3]))
s((p,(1,1,1)),(1,0,1,0,1))

5. Storage elements
Storage facilities are introduced in the form of a standard component type.
5.1 Synchronized systems

Storage elements inherently introduce the concept of time. Time is assumed to
proceed in discrete steps, so-called clock cycles. In each cycle, all signal values
are re-evaluated. Storage elements make it possible to refer to the past,
specifically to the previous clock cycle. In Zeus the clock is (essentially) an
implicit object and is the same for all storage elements. A system with one clock
is called a synchronized system.

A register is a binary storage element with an input "in" and output "out". Its
heading is declared implicitely as

COMPONENT REG(IN in: boolean; OUT out:boolean);

"out” is defined to be equal to the value of parameter "in" in the preceding clock
cycle. If "in" is not changed during a clock cycle, it keeps its value.

It is allowed that in the same clock cycle the "in" port is assigned a value and that
the stored value (from the last clock cycle) is read at the "out" port.

The clock signal is denoted by the predefined identifier CLK. A signal of type
REG may e.g. be implemented by a flip-flop or a dynamic storage element.

The REG component type can be used to describe a random access memory. Let
ram: ARRAY/[0..1023] OF ARRAY][1..16] OF REG;
be a memory with n 16 bit words. Assume that a is a 10 bit address,i.e.

26

llr—*ll*—

Fig. Snake

6.4 Replacement

For many hardware arrangements it is convenient to think of them in terms of an
array of different elements, i.e. a chessboard like configuaration. To make the
definition of such hardware easy we introduce a signal type virtual. A signal of
Lype virtual is replaced in a replacement statement (a part of the basic statement)
by a real signal, e.g. s=type, where s is a signal of type virtual and "type" is a
Zeus type. A signal of type virtual may be replaced at most once.

The replacement statement is not a layout statement; however the layout
language is the only proper place for replacements. Perhaps the layout language
should be renamed to "layout and replacement” language.

Example

TYPE .
black = COMPONENT(IN top,left:boolean;
OUT bottom,right:boolean) IS ... ;
white=COMPONENT(IN top,left:boolean;
OUT bottom,right:boolean) IS ... ;

chessboard(n)=
COMPONENTY(...) IS
SIGNAL m: ARRAY[L..n,1..n] OF virtual;
{ ORDER toptobottom
FORi:=1TOn DO
ORDER lefttoright
FOR j:=1TOn DO
WHEN odd(i+j) THEN
m[i,j]=black
OTHERWISE
mfi,j]=white
END;
END;

27

END;
END;
END;

}
BEGIN

FOR i: =2 TO n-1 DO
FOR j:=2TO n-1 DO
m{i,j]J(m{i-1,j].bottom,m][i,j-1].right,
m[i+ 1,j].top,m[i,j+ 1].left);
END;
END;

END:

7. Zeus syntax

We use the extended Backus-Naur formalism proposed by N. Wirth (see e.g.
[Wirth(1982)]).

1 Hardware = {declaration} . .

2 declaration = constDeclaration | typeDeclaration | signalDeclaration .
3 constDeclaration = CONST { ident " =" constant ";" }
4 ident = letter { letter) digit } .

5 constant =ConstExpression | sigConstExpression.

6 ConstExpression = SimpleConstExpr [relation SimpleConstExpr] .
7 I'Clation - u:u l vv()" ' |-<u ' v-<=n I n)n i ">=u i

8 SimpleConstExpr = "="["+"]"-"] ConstTerm

9 { AddOperator ConstTerm } .

10 AddOperator = "+"|"-"|OR..

11 ConstTerm = ConstFactor { MulOperator ConstFactor }.
12 MulOperator = "+" | DIV | MOD | AND .

13 ConstFactor = number | "(" ConstExpression ")" | NOT ConstFactor |
14 ident ["(" ConstExpression { ";" ConstExpression })"].
15 number = digit { digit } ["B" | "b"].

16 sigConstExpression = "(" sigConstExpression

17 {"." sigConstExpression })" |

18 value | BIN "(" ConstExpression "," ConstExpression ")".

19 value = "0" | "1" | ident .

20 typeDeclaration = TYPE { ident ["(" idlist ")"] "=" type ";" }.
21 type = arrayDeclaration | componentDeclaration | ident

22 ["("ConstExpressionList")"].

arrayDeclaration =
ARRAY "[" ConstExpression ".." ConstExpression "]" OF type .
componentDeclaration =
COMPONENT "(" [fparams { ";" fparams }] ")"
["{" layoutStatementList "}"]
[[":" type]IS [USES idlist ";"] { declaration }

["{" layoutStatementList "}"] BEGIN StatementSequence END].

fparams = [IN | OUT] fieldlist .
fieldlist = idlist ":" type .
idlist = ident { "," ident } .

StatementSequence = statement { ;" statement } .
statement = [assignment | replication | condGeneration |

connection |
conditional | result | parallel | sequential | with]. Zempty/
assignment = signal (":="]"==") expression .

signal = (ident { "[" (ConstExpression
[".." ConstExpression] "]"|
NUM "(" signal ")") "]" | "." ident [".." ident] })
["
expression = signal | funcdonComponentTypeldent
["("ConstExpressionList")"]
[expression } | BIN "(" ConstExpression ","
ConstExpression")" |
sigConstExpression | "+" [":" ConstExpression] |
"(" expression { "," expression })" .
functionComponentTypeldent = ident .
replication = FOR ident ":=" ConstExpression
(TO | DOWNTO) ConstExpression DO
[SEQUENTIALLY] StatementSequence END .
condGeneration = WHEN ConstExpression THEN
StatementSequence
{ OTHERWISEWHEN ConstExpression THEN
StatementSequence }
[OTHER WISE StatementSequence END .
connection = signal [expression].
conditional = IF expression THEN StatementSequence
{ ELSIF expression THEN StatementSequence }
[ELSE StatementSequence] END .
result = RESULT expression .
parallel = PARALLEL StatementSequence END .
sequential = SEQUENTIAL StatementSequence END .
with = WITH signal DO StatementSequence END .
ConstExpressionList = ConstExpression { “," ConstExpression } .

signalDeclaration =

SIGNAL { idlist ":" type ["(" ConstExpressionList ")"]":" }.

29

"LayoutStatementList” is defined in the layout language syntax (see below).
"digit" and "letter” have the standard interpretation. In the following
cross-reference listing the pegative line numbers indicate where a symbol has
been defined.

arrayDeclaration -23 21
assignment -36 34
AddOperator -10 9
componentDeclaration -26 21
condGeneration -50 34
conditional -54 35
connection -53 34
ConstExpression 61 61 51 50 48 47 44 43

42 38 37 24 24 18 18 14
14 13 -6 5

ConstExpressionList 63 -61 41 22

ConstFactor 13 -13 11 11

ConstTerm -11 9 8

constant -5 3

constDeclaration -3 2

declaration 28 -2 1

digit 15 15 4 (standard definition)

expression 57 55 54 53 45 45 42 -40
36

fieldlist -31 30

fparams -30 26 26

functionComponentTypeldent -46 40

Hardware -1

ident 47 46 39 39 37 32 32 21
20 19 14 -4 3

idlist 63 -32 31 28 20

layoutStatementList 29 27 (see layout language syntax)

letter 4 4 (standard definition)

MulOperator -12 11

numher -15 13

parallel -58 35

relation -7 6

replication -47 34

result -57 35

sequential -59 35

SimpleConstExpr -8 6 6

StatementSequence 60 59 58 56 55 54 52 51
50 49 -33 29

sigConstExpression 44 17 16 -16 5

signal 60 53 40 39 -37 36

signalDeclaration ~62 2

statement -34 33 33

type 63 31 28 24 -21 20

typeDeclaration -20 2

value -19 18

with -60 35

30

Predefined function component types
AND,NAND,OR,NOR,NOT,XOR,EQUAL
RANDOM (for describing bistable elements)

Predefined component types
REG

Predefined signals
CLK, RSET

Predefined functions for constant expressions
min, max, odd

Layout language syntax

1 layoutStatementList = layoutStatement { “;" layoutStatement } .
2 layoutStatement = [basic | order | replication | boundary |
condGeneration | with].
basic = [orientationchange] signal = type.
orientationchange = ident .
order = ORDER directionOfSeparation layoutStatementList END .
directionOfSeparation = ident.
replication = FOR ident ": =" numConstExpression
(TO | DOWNTO) numConstExpression DO
8 layoutStatementList END .
9 boundary = TOP | RIGHT | BOTTOM | LEFT layoutStatementList .
10 condGeneration = WHEN ConstExpression THEN layoutStatementList
11 { OTHERWISEWHEN ConstExpression THEN layoutStatementList }
12 [OTHERWISE layoutStatementList] END .
13 with = WITH signal DO layoutStatementList END .

~N AN bW

basic -3 2

boundary -9 2

ConstExpression 11 10 (see main syntax)
condGeneration -10 2

directionQOfSeparation -6 5

ident 7 6 4 (see main syntax)
layoutStatement -2 1 1

layoutStatementList 13 12 11 10 9 8 5 -1
numConstExpression 7 7 (see main syntax)
order -5 2

orientationchange -4 3

reptication : -7 2

signal 13 3 (see main syntax)
type 3 (see main syntax)

with -13

~

31

Directions of separation
toptobottom, bottomtotop, lefttoright, righttoleft, toplefttobottomright,
bottomrighttotopleft, toprighttobottomleft, bottomlefttotopright.

Orientation changes (counter clock wise)
All operations of the dihedral group, except the identity: rotate90, rotate180,
rotate270, flip0, flip45, flip90, flip135.

8. Semantics

Several formal mechanisms have been proposed to describe the semantics of
Zeus-like languages. The semantics could be described by a restricted form of
Petri-nets as in [Misunas(1973)] or by data-flow schemas (elementary
computation schemas) [Dennis(1974)]. An elementary computation scheme is
essentially an abstraction of a Zeus component. We prefer the use of an informal
semantical description. First we define the semantics of the functional part of
Zeus and later the semantics of the layout part.

We introduce the functional definition of Zeus with a comparison of CS
networks [Hayes(82)] and Zeus components. Zeus components correspond
essentially to restricted CS (conpector-switch) networks. Only a subset of the CS
networks can be expressed in Zeus since at most one (0,1, UNDEF)-assignment
is allowed to a signal of type multiplex. We believe that this is a reasonable
restriction which makes the design of hardware safer.

A positive switch in CS theory is represented by the if statement
IF kK THEN dl:=d2

and a negative switch by

IF NOT k THEN dl:=d2.

Connectors in CS theory are represented by connection and assignment
statements in Zeus.

For example, a regular nor-gate cannot be expressed in terms of switches and
connections in Zeus (however note that the nor-function is predefined). The
reason is that we would have a sequence

IF a THEN x:=0 END; IF b THEN x: =0 END
which is illegal if both a and b are one.

We define the semantics of Zeus by describing a simulator for Zeus programs.
The basic problem of defining a sequential simulator is that hardware is
inherently parallel. We perform a straight-forward simulation without delay
information.

32

It is sufficient to describe the simulation of one component. First we translate a
Zeus component type definition into a node-labeled directed graph. The nodes
of this graph represent signals, the predefined components and if statements. The
directed edges indicate how the signals are evaluated in a generalized topological
order (in a wide sense).

A Zeus component C is translated into a directed semantics graph G(C) which
contains one node for each basic signal local to C, one node for each predefined
component (AND, ..., REG) and one node for each if statement. The local
signals include: 1. The pins of C, 2. the pins of components local to C and 3. the
other signals which are declared local to C.

The predefined component REG has a special interpretation: It has neither
internal nodes nor edges and acts in this way as a cycle breaker,

The assignment statements with the operator ":=", function component
instances and connection statements introduce directed edges.

An assignment statement of the form s1:=s2, where s1 and s2 are signals of basic
type introduces a directed edge s2 -> sl. This rule generalizes to structured
signals. An expression e of the form "ident(a,b)" is evaluated in the following
way (a,b signals of basic type):

If ident is the name of a predefined component we introduce a node with the
name of the component in the semantics graph. This node has two entering edges
ind one edge which exits.

f ident=AND then the exiting edge carries a 0 as soon as one entering edge is 0.
Che exiting edge carries a 1 iff both entering edges are 1. In all other cases the
sutput is UNDEF.

If ident=NAND then the exiting edge carries a 1 as soon as one entering edge is
0. The exiting edge carries a 0 iff both entering edges are 1. In all other cases the
output is UNDEF.

If ident=0R then the exiting edge carries a 1 as soon as one entering edge is 1.
The exiting edge carries a 0 iff both entering edges are 0. In all other cases the
output is UNDEF.

A similar rule holds for ident=NOR.

If ident=XOR a and b have to be defined (0 or 1) to get output 0 or 1. The
exiting edge has the value 1 iff 2 and b are different. In all other cases the output
is UNDEF.

If ident=EQUAL also both a and b have to be defined (0 or 1) to get output 0 or
1. The exiting edge is 1 iff a and b are equal. In all other cases the output is
UNDEF.

For the NOT component the obvious rule holds.
These rules are easily generalized to structured signals and to components which

33

have more than two parameters (the above rules hold for each substructure of
basic type).

User defined function components are translated into a semantic graph and
evaluated by applying the above rules recursively.

An assignment statement of the form al := f(b1,b2, ... ,bn) where al is a signal
of basic type, introduces a semantics graph for the function component f and the
exiting edge of this graph is directed towards al. This rule generalizes to
assignments involving structured signal variables (remove the structure and
consider the natural sequence of basic signals). The RESULT statement has a
similar interpretation as the assignment statement. The assignment statement
x= =y identifies the two signals x and y.

In order to define the semantics of the IF-THEN-ELSE statement we
reformulate it as a sequence of IF-statements.

The Zeus statement
IF bl THEN sl
ELSIF b2 THEN s2

ELSIF bn-1 THEN sn-1
ELSE sn
END

is equivalent to

IF bl THEN s1 END;
IF AND(NOT b1,b2) THEN 52 END;

IF AND(... AND(NOT b1,NOT b2), ... ,bn-1) THEN sn-1 END;

IF AND(... AND(NOT b1,NOT b2), ... NOT bn-1) THEN sn END;
To describe the semantics of

IF bl THEN s1 END

we distinguish three cases:

a) assignment: If s1 is an assignment s: =e then we need to know the values of bl
and perhaps of e before we can make the assignment. Therefore we introduce an
if node in the semantics graph which has two entering edges, one coming from
bl the other from e. The exiting edge goes to signal s. As soon as bl is 0, signal s
has value NOINFL (see below). IF bl is 1 then e has to be evaluated and its
value is transmitted to s.

b) connection: If sl is a connection statement it can easily be rewritten as a
sequence of assignment statements for which rule a) applies.

¢) replication: If sl is a replication statement we apply rules a) and b) to the

*

34

connection and assignment statements within the replication statement.

Connection statements introduce arrows according to the following rule. Let C
be a component with basic formal parameters al,a2, ... ,an. Let C(x1,x2, ... ,xn)
be a connection statement. Then there is an arrow from ai to xi or vice versa
according to the IN/OUT modes of ai: OUT ->, IN<-. In other words, if ai is
an OUT parameter then there is an arrow ai->xi. If ai is an IN parameter then
there is an arrow xi->ai.

INOUT parameters don’t introduce arrows but they identify signals. If one signal
in a class of identified signals is assigned a value then all signals in the class are
assigned the same value. Function component instances introduce arrows in a
similar way as connection statements. We require that the resulting graph G(C)
defines a partial order on the nodes.

A signal can have four values in our model of computation: 0, 1, UNDEF
(undefined), NOINFL (no influence). Only a signal of type multiplex can have
value NOINFL. We define how these values behave for the predefined function
components AND, NAND, OR, NOR, NOT, XOR, EQUAL: If these predefined
components don’t have a 0 or 1 value according to rules defined earlier then the
result has value UNDEF. In the IF statement

IF b THEN s:=¢ END

the value of s is NOINFL if b=0, otherwise if b=1 the value of s is the value of

e. If b=NOINFL then s has value UNDEF. This rule generalizes in the obvious
way to other IF statements since they can be rewritten as IF statements of the
ibove form.

%inally we have to define how signals behave under conditional simultaneous
issignments. Let x be a basic signal variable which is assigned a value several
times. Value NOINFL is overruled by any other value. If UNDEEF is assigned to
x then x has value UNDEF independent of other assignments. If x is assigned
several times 0,1 or UNDEF at runtime then x has value UNDEF and an error
message is given.

For evaluating the signals we cannot rely on a regular topological order since the
signals determine the evaluation sequence. The evaluation starts with all the
nodes (signals) which have no predecessor (signals corresponding to input pins,
the out pin of registers or signals defined by constant signal expressions). These
signal values are propagated according to the rules specified above for the
predefined components and the if nodes.

The signal propagation is best described in terms of firing rules. A node of the
semantics graph is firing under the following conditions: If itis a

a) signal node: If the signal node is of type boolean then it is firing on the exiting
edges as soon as it is assigned a value (0,1, UNDEF). If the signal node is of type
multiplex then it is firing as soon as all incoming edges have been assigned
(0,1, UNDEF,NOINFL). The "strongest" signal survives as described earlier.

35

b) predefined function component node: The node is firing on its exiting edge as
soon as the value of the function is determined according to the rules described
earlier. For example the node corresponding to AND(b,c) is firing on its exiting
edge as soon as b or c is assigned 0; it is firing 1 if both b and c are assigned 1;
otherwise it is firing UNDEEF after b and c have been assigned.

c) IF-node: The node is firing as soon as both entering edges have been assigned.

There are many ways of propagating the signals sequentially; however all will
lead to the same result.

Note that a subcomponent may be executed before its super component has all
inputs assigned. Therefore this semantical definition sort of ignores the
hierarchical structure of components. However it is possible to implement the
simulator in such a way that it obeys the hierarchical structure and still gives the
same result. Each component type is considered to be a package (in the Ada
sense) which exports a procedure (representing the functionality) and which
stores the register values internaily. A signal declaration corresponds to an
instantiation of the (generic) package. A call of the exported procedure will be
performed after all the IN and INOUT parameters have been assigned.

Example
TYPE

c=
COMPONENT(IN a,b,c,x,y,rin: boolean;
OUT rout: boolean; out: multiplex) IS

SIGNAL r:REG;
BEGIN

IF x THEN out: =AND(a,b);

IF y THEN out: =c;

r(rin,rout)
END;

— out

o

36

X
a AND FIIF—| ouf
b .|

[REG e—s
rin | L‘_KE_J 2 roul ,____Ea
Fig. G(c) Y

A possible evaluation sequence is

2(0),rout(0),rin(1),1(1),a(1),c(0),b(1),x(1),y(1),out(1)

Now we sketch the semantics of the layout language. We use the abbreviation
"x11is left of x2" for "the right edge of the bounding rectangle of x1 is left of the
left edge of the bounding rectangle of x2". Each order, and replication statement
defines a bounding rectangle. This bounding rectangle contains all the
components referred to in the order or replication statement. To explain the
semantics of the order statement

kY

ORDER lefttoright
x1;x2
END

recursively we distinguish the following cases:
1. x1 and x2 are both components
Component x1 is left of component x2,

2. x1 is a component and x2 a replication statement FOR i:=1 TO n DO y[i]
END

Component x1 is left of element y[1], where y[1] is the first element of the
replication statement. Element y[i] is left of y[i+ 1], i=1, ... ,n-1.

3. x1 is a component and x2 is an order statement
x1 is left of x2.

Other combinations and the other directions of separation (besides lefttoright)
have similar semantics.

9. Relation to previous work

A large number of hardware description and layout languages have been
proposed and it is impossible to compare Zeus to all of them. Some comparisons
have already been given in the introduction. We believe that Zeus is unique in
the sense that it incorporates many of the lessons which have been learned in the
design and usage of programming languages like Pascal and Modula-2
[Wirth(1982a)]. Zeus offers only a few concepts: constants (signal and
numerical), types (components, arrays, multiplex, boolean), signals, statements
(assignment, connection, conditional, replication, conditional generation) which
are sufficient for describing "reasonable” synchronized circuits at a level which is
close to the actual hardware.

For some applications Zeus is either too high-level or too low-level. OCCAM
([INMOS(1982a)], based on Hoare’s communicating sequential processes) is a
language which is at a higher level than Zeus. OCCAM is a simple programming
language, based on the concepts of concurrency and communication, providing a
close relationship between a program and its implementation, OCCAM is an
interesting front-end for Zeus.

For applications where the functional part of Zeus is too high-level (since it is
technology independent) Zeus is easily extended by a few basic types and
corresponding assignment rules. We propose to extend Zeus in such a way that
CSA networks [Hayes(1982)] can be expressed. With such an extension Zeus is
suitable for describing MOS circuits down to the transistor level.

One might go further and add layout language features to Zeus which are
available in layout languages like MULGA [Weste (1981)], ALI [Lipton(82)],
HILL [Lengauer(1982)] and others.

38

Zeus was developed with the following applications in mind:
1. Communication tool

Many VLSI circuits have been described informally in the literature but only a
few of them have been written down in a formal language like Zeus. One
advantage of a formal, easy to read, and technology relevant notation is that the
circuits are studied more thorougly. Different solutions can be analyzed and
compared and the dissemination of circuits is facilitated. The reader is invited to
use Zeus to describe for example the circuits which have been published in the
following papers: [Ahmed (1982), Cappello(1982), Cappello/Steiglitz(1981),
Floyd/Ullman (1982), Foster/Kung(1981), Fuchs(1982), Guibas(1979),
Guibas(1982), Hambrusch(1981), Hambrusch/Simon (1981), Hwang(1982),
Kung(1980), Levitt(1972), Ottman(1982), Rosenfeld(1983), Thompson(1981)].

2. Input language to a simulator

A simulator at the Zeus level is a well understood subject, see e.g.
[Breuer/Friedman (76), Nestor/Thomas(1982)]; for interactive simulation see
[Sakai(1982)].

3. Input language to an interactive silicon compiler

Developing silicon compilers is a very active research area today. We plan to use
work reported e.g. in [Trimberger (1981a,b), Valdes(1982), Rivest(1982)).

Regarding the interaction we plan to use a Lilith-like machine [Wirth(1981)]
(language-oriented architecture, high-resolution screen, mouse) and a systematic
approach for the design of the interaction like the one used in XS-1 [Nievergelt
et al. (1982)]. A syntax directed editor is currently being implemented under
XS-1 by Carlo Muller.

Zeus provides the user with the capability to algorithmically define hardware.
But a Zeus program, although it contains a complete specification, is not intuitive
if it is not accompanied by a picture which represents the components (by
rectangles) and the connections (by wires). Interactive graphics systems, on the
other hand, allow the user to debug in the form in which he sees the design, but
severely restrict the language he may use to express the graphics; he cannot
express parameterized components. What is really needed is an interactive
system that combines the language and graphics modifications to the data. Sucha
system has already been investigated but for a language whichis ata much lower
level than Zeus [Trimberger (1981b)].

39

10. EXAMPLES
Blackjack, a finite state machine example

TYPE
bo5 = ARRAY [1..5] OF boolean;

<= available:
REG = COMPONENT (IN in:boolean; OUT out:boolean)
REG.out is REG.in of the previous clock cycle.
plus, minus = COMPONENT (IN terml, term2:bo5):bo5
ge,lt = COMPONENT (IN terml, term2:bo5): boolean
£ 4
blackjack = COMPONENT (IN ycard:boolean;
IN value:bo5; OUT hit, broke, stand:boolean) IS
CONST start=(0,0,0); read=(0,0,1); sum=(0,1,0);
firstace=1(0,1,1); test=(1,0,0);
end =(1,0,1); zero5 = (0,0,0,0,0); ten = BIN(10,5) ;
TYPE reg(n) = ARRAY [1.n] OF REG;
SIGNAL score, card:reg(5); ace:REG:; state:reg(3);
scorelt22, scoregel : boolean;
BEGIN
IF RSET THEN state.in: =start
ELSE <= the multiplex assignment rule might be
violated without this else =>
scorelt22 : = It(score.out,BIN(22,5));
scoregel? : = ge(score.out,BIN(17,5));
{*state =start*>
IF EQUAL(state.out,start) THEN
score.in: =zero5; ace.in: =0; state.in : =read
END;
(sstate =read+>
IF EQUAL(state.out,read) THEN
card.in: =value; hit: =1;
IF ycard THEN state.in : = sum END;
END;
{sstate =sums#*>
IF EQUAL(state.out,sum) THEN
score.in: = plus(score.out,card.out);state.in: = firstace
END;
C»state = firstaces>
IF EQUAL(state.out, firstace) THEN
state.in : = test;
IF AND(EQUAL(card.out,BIN(1,5)),NOT ace.out) THEN
score.in : = plus(score.out,ten);
ace.in:=1;

40

END;
END;
(astate =test+>
IF EQUAL(state.out,test) THEN
IF NOT scoregel7 THEN state.in : = read
ELSIF scorelt22 THEN state.in: =end
ELSIF ace.out THEN
<+ state.in: =test; *>
score.in: =minus(score.out,ten);<+ ace.in: =1 >
END;
END;
{astate =end*>
IF EQUAL(state,end) THEN
IF scorelt22 THEN stand: =1 ELSE broke: =1 END,;
IF ycrd THEN state.in: =start ELSE state.in: =end END;
END;
END
END <=* blackjack #>

41

Adders

TYPE
halfadder =
COMPONENT (IN a,b: boolean; OUT cout,s: boolean) IS
BEGIN s : = XOR(a,b);
cout := AND(a,b)
END;

fulladder =
COMPONENT (IN a,b,cin: boolean; OUT cout,s: boolean) IS
SIGNAL hl,h2:halfadder;
BEGIN hl(a,b,*,h2.a); h2(hl.s,cin,s,s);
cout : = OR(hl.cout,h2.cout)
END;

bo(n) = ARRAY [1..n] OF boolean;
rippleCarry4 =
COMPONENT (IN a,b:bo(4); IN cin: boolean;
OUT cout: boolean; OUT s:bo(4)) IS
SIGNAL add : ARRAY [1..4] OF fulladder; h : bo(5);
{ ORDER lefttoright
FOR i:=1TO 4 DO add[i] END
END

}
BEGIN
SEQUENTIAL
h[1] : = cin;
FOR i:=1TO 4 DO SEQUENTIALLY
add][i] (ali],b[il, h{il.h[i+ 1}.s[i]);
END;

cout ‘= h[5];
END
END

is equivalent to (if length = 4)
rippleCarry (length) <* without auxiliary array h #> =
COMPONENT (IN a,b:ARRAY[L.length] OF boolean;
IN cin: boolean; OUT cout: boolean;
OUT s:ARRAY/[1..length] OF boolean) IS
SIGNAL add : ARRAY [1..length] OF fulladder;
{ ORDER lefttoright
FOR i: =1 TO length DO add[i] END
END

}
BEGIN

42

SEQUENTIAL

add[1](a[1],b[1],cin,* <* add[2].cin #>,s[1]);

FOR i:=2 TO length-1 DO SEQUENTIALLY
add[i] (a[i],b[i],add[i-1].cout,add[i + 1].cin,s[i]);
<= alternative:

add[i].a: =a[i]; add[i].b: =b[i]; add[i].cin: =add[i-1].cout;

add[i+ 1].cin: =add][i].cout; s[i]: =add[i].s >

END;

add[length](a[length],b[length],

= <#add[length-1].cout*> ,cout,s[length]);

END
END

SIGNAL adder:rippleCarry(4);

Cin

—>— coul

all] al2] a(¥] ~t)
1 el 2] bf3] b[¥]
]
add] add[g] add[3] add[y]
1 si 1 sl2) sB] 1:l4]

F'(ﬂ. Adder

Binary Trees

TYPE

q =
COMPONENT (IN in: boolean; OUT outl,out2: boolean) IS
BEGIN ...
END;
tree (n) <* n a power of 2 > =
COMPONENT (IN in: boolean; OUT leaf: ARRAY [1..n] OF boolean) IS
SIGNAL h: ARRAY [1..0-1] OF q;
BEGIN
h[1]in : = in;
FORi:=1TOnDIV2-1DO
hli](+,h[2=i].in,h[2+i + 1]);
END;
FOR i:=1TOn DIV 2DO
h[i + n DIV 2 -1](s,leaf[2+i-1],leaf[2+i]);

END;
END;
SIGNAL a:tree(4);
{in
hii]
|
h[2) h[3]
| y
leaf{l] leaf[2] leaf[3] leaf[¥]

Fitj. bihar5 Tree
(new)

43

The following is an equivalent recursive definition of a binary tree
{but with layout information):

TYPE
tree(n) = <* n a power of two, n >= 2 #>
COMPONENT(IN in:boolean; OUT leaf:ARRAY[L..n] OF boolean) IS
SIGNAL
left, right: tree(n DIV 2);
preleaf: ARRAY[1.. n DIV 2] OF q; root:q
{ ORDER toptobottom
root;
ORDER lefttoright
feft;right
END;
END

}
BEGIN
WHEN n>2 THEN
root.in: =in; left.in: =root.outl; right.in: =root.out2;
FORi:=1TO nDIV2DO
leaf]2+i-1]: = preleaf]i].outl;
leaf{2+i]: =preleaf]i].out2;
END;
FOR i:=1TO n DIV 4 DO
preleafli].in: = left.leaffi];
preleafli+n DIV 4]: =right.leafli+n DIV 4]
END;
OTHERWISE (* n=2 %>
rgot.in: =in; leaf[1}: =root.outl; leaf[2]: =root.out2
END
END;

SIGNAL a: tree(4);
The following component type htree describes the well-known
H-tree which has a linear layout area.

htree(n) = <= binary tree with n leafs, n a power of 4 >
COMPONENT(IN in:boolean; out: multiplex) { BOTTOM in;out } IS

45

TYPE
leaftype= ,
COMPONENT(IN in:boolean; out: multiplex) { BOTTOM in;out }IS
BEGIN

END;
SIGNAL
s: ARRAY([1..4] OF htree(n DIV 4); leaf: leaftype;
{ ORDER lefttoright
ORDER toptobottom
s[1]; flip90 s[3]
END;
ORDER toptobottom
s[2]; flip90 s[4]
END;
END
}
BEGIN
WHEN n>1 THEN
FOR i:=1TO 4 DO
s[i].in: = in; out = = sfi}.out
END
OTHERWISE
leaf.in: = in; out = = leaf.out
END
END;

SIGNAL a: htree(4);

46

S[1]- leaf o[2] - leaf
]
]
S[S] S Ile S[‘!’] =|e.af
o out

Fig. hiree(4)

47
Pattern Matching

<= for 2 letter alphabet only [Foster/Kung (1979)]
It is assumed that string and pattern enter bitwise every second clock cycle.
During an idle input phase we assume that 0’s go into the circuits>

TYPE
patternmatch (length) = <= length odd >
COMPONENT (IN pattern, string, endofpattern, wild, resultin: boolean;
OUT result,endout,stringout, wildout, patternout : boolean) IS
TYPE
comparator =
COMPONENT (IN pin,sin: boolean; QUT pout, dout, sout: boolean) IS
SIGNAL p,s: REG;
BEGIN
p(pin,pout); s(sin,sout);
dout : = AND(1,LEQUAL(p.out,s.out));
<= the AND could be deleted for the 2 letter alphabet case >
END

sial_ E:] _‘i‘m
b | __E]—_—-;:uf
f

dout

Fig. Comparator

accumulator =
COMPONENT (IN d,lin,xin,rin: boolean;
OUT lout,xout,rout:boolean) IS
SIGNAL tp <+ temporary result #>,1x,1:REG;

BEGIN
IF RSET THEN
tp.in:=1
ELSE

1(lin,lout); x(xin,xout); r(rin,*);

48

IF Lout THEN rout: = AND(tp.out,OR(x.out,d)); tp.in:=1
ELSE rout: =r.out; tp.in: = AND(tp.out,OR(x.out,d))
END;
END;
END;

[— | >— |out

o xouf

Xin =

rnut ——1

i

Fig. Accumulator

SIGNAL pe:ARRAY(L..length] OF
COMPONENT(comp: comparator; acc: accumulator) IS
BEGIN acc.d: =comp.dout
END;

{ ORDER lefttoright

FOR i:=1TO length DO
ORDER toptobottom
WITH pe[i] DO
comp; acc
END;
END;
END
END

¥
BEGIN
SEQUENTIAL
{=Connections to outsides>

49

WITH pe[1] DO
comp.pin : = pattern; acc.lin : = endofpattern; acc.xin : = wild;
result : = acc.rout ; stringout: = comp.sout;
END;
WITH pe[length] DO
patternout: = comp.pout; comp.sin : = string ; wildout : = comp.xout;
comp.rin ;= resultin; endout : = acc.lout;
END;
resultin: =0;
END;
<{xInternal connections*>
FOR i: =2 TO length-1 DO
WITH peli] DO
comp(pe[i-1].comp.pout,peli+ 1].comp.sout,
peli+ 1].comp.pin,=,pe[i-1].comp.sin);
acc(=,pefi-1].acc.lout,pefi-1].acc.xout,pe[i+ 1].acc.rout,
peli+ 1).acc.lin,pefi+ 1].acc.xin,pe[i-1].acc.rin);
END
END
END

SIGNAL match: patternmatch(3);

stringoul
- 4 Strihs
pattern
> > paﬁcruoﬂ
Mc * {
fPQﬂC.“ end oul
witd — wildout
result
Q - 0

Fi g- PqTTevhmqfd'\

50

s, 0 S,
P O P
o5, o0
0 ps O
s 03sy
Pe O Ps
0 3Sw (o]
o p O
35,+ 0 Sg
pa 0 P

. - ,2,3
A possible computation sequemce. The numbers

represenl result bifs.

Acknowledgements

We would like to thank Niklaus Wirth for encouraging this work. Many thanks
to Michael Fitchett, Tarck Ibrahim, Carlo Muller and Peter Schulthess for their
comments and suggestions to earlier versions of this paper.

51

REFERENCES

Ahmed (}982) H.M. Ahmed, "Signal processing algorithms and architectures”,
Dissertation, Department of Electrical Engineering, Stanford University.

Bode/Hindler(80) A. Bode, W. Hindler, "Rechnerarchituktur", Springer, 1980.

Breuer(1976) M.A.Breuer, "Digital System Design Automation”, Computer
Science Press, 1976.

Breuer/Friedman(76) M.A. Breuer, A.D. Friedman, "Diagnosis and reliable
design of digital systems", Computer Science Press, 1976.

Bryant(1981) R.E. Bryant, "A switch-level simulation model for integrated
logic circuits”, VLSI Conference, Edinburgh 1981, pp 329-340.

Cappello(l982). P.R. Cappello, "VLSI architectures for digital signal
processing”, Dissertation, Department of Electrical Engineering and Computer
Science, Princeton University.

Cappello/Steiglitz(1981) P.R Cappello, K. Steiglitz, "Digital Signal Applications
of Systolzi;: Algorithms", CMU Conference on VLSI Systems and Computations,
pp. 245-254.

Dennis(1974) J.B. Dennis, J.B. Fosseen, JP. Lindermann, "Data Flow
Schemas”, in: Proc. of Symposium on theoretical programming, Novosibirsk,
Lecture Notes in Computer Science, Vol.19, pp 187-216, Springer Verlag, Berlin
1974.

Duley(1968) J.R. Duley, D.L. Dietmeyer, "A digital system design language
(DDL)", IEEE Trans. Comp., Vol. C-17, 1968, pp 850-861.

Floyd(1982) R.W. Floyd, J.D. Ullman, "The compilation of regular
expressions into integrated circuits", J ournal of the ACM, July 82, Vol. 29, No.3,
pp 603-622.

Foster/Kung(79) M.J. Foster,H.T. Kung, "Design of Special-Purpose VLSI
Chips: Examples and Opinions”, Dep. of Comp. Science, CMU-CS-79-147.

Foster/Kung(81) M.J. Foster, H.T. Kung, "Recognize regular languages with
programmable building-blocks", VLSI Conference, Edinburgh 1981.

Foster(1981) M.J. Foster, "Syntax-Directed Verification of Circuit Function”,
Proc. CMU Conference on VLSI Systems and Computations, Ed. Kung,Sproull,
Steele, pp. 196-202, 1981.

Fuchs(1982) H. Fuchs, J. Poulton, A. Paeth, A. Bell, "Developing
Pixel-planes, a Smart Memory Based Raster Graphics System, 1982 Conf. on
Advanced Research in VLSI, MIT, pp. 137-146.

Guibas(1979) L.J. Guibas, H.T. Kung, C.D. Thompson, "Direct VLSI
implementation of combinatorial algorithms”, Proc. Caltech Conf. VLSI, 1979,
pp 509-525.

52

Guibas(1982) L.J. Guibas, F.M. Liang, "Systolic Stacks, Queues and
Counters”, Proc. 1982 Conference on advanced research in VLSI, MIT.
pp.155-164.

Hambrusch(81) S.E. Hambrusch, “"VLSI algoritims for the connected
component problem”, Computer Science Department, Penn. State Univ.,
CS-81-09, March 1981.

Hambrusch/Simon(81) S.E. Hambrusch, J. Simon, "Solving undirected graph
problems on VLSI", Computer Science Department, Penn. State Univ.,
CS-81-23, Sept. 1981.

Hayes(1982) J.P Hayes, "A unified switching theory with applications to VLSI
design”, Proc. of the IEEE, Vol.70, No. 10, Oct. 1982, pp. 1140-1151.

Hill(1979) D.D.Hill, "ADLIB: A modular, strongly-typed computer design
language”, Computer Hardware Description Languages (ACM/IEEE) 1979,pp.
75-81.

Hill(1979) D. Hill, W.M. vanCleemput, "SABLE: A tool for generating
structured, multi-level simulations”, Proc. 16th Design Automation Conference
(ACM/IEEE), San Diego, California, 1979, pp. 272-279.

Hwang(1982) K.Hwang and Y.-H. Cheng, "Partitioned algorithms for VLSI
Arithmetic Systems”, IEEE Trans. on Computers, Dec. 1982, Vol. C-31, No.12,
v 1215-1224.

VMOS(82) "HDL: A hardware description language”, in "Advanced Course
a VLSI Architecture”, University of Bristol (UK), July 1982.

NMOS(82a) "OCCAM, Abstract, Multiprocessor applications, Semantics,
Design station presentation”, INMOS, see also Electronics Nov./Dec. 1982.

Kramer/Leeuwen(82) M.R. Kramer, J. van Leeuwen, "Systolic Computation and
VLSI", RUU-CS-82-9, June 82, University of Utrecht.

Kung(79) H.T. Kung, "Let’s design algorithms for VLSI systems", Dep. of
Computer Science, Carnegie Mellon University, Pittsburgh, Penn.

Kung(1980) H.T. Kung, "The structure of Parallel Algorithms", Advances in
Computers, Vol. 19, 1980.

Lattice(82) "MODEL: A high-level structured design language”, in "Designing
with Gate Arrays”, Lattice Logic Ltd, Edinburgh, 1982.

Leiserson/Saxe (81) C.E. Leiserson, J.B. Saxe, "Optimizing synchronous
systems”, Proc. 22nd Annual Symposium on Foundations of Computer Science,
IEEE, October 1981.

Lengauer(82) Thomas Lengauer, "Eine Spezifikationssprache fiir integrierte
Schaltkreise”, A 82/7 Universitit des Saarlandes.

Levitt(72) K.N. Levitt, W.H, Kautz, "Cellular Arrays for the solution of graph

53

problems, Communications of the ACM, Sept.72, Vol. 15, No.9, pp 789-801.

Lim(82) W. Y-P. Lim, "HISDL - A structure description language", Comm.
ACM, Vol. 25, No. 11, pp 823-830.

Lipton(82) R.J.Lipton, R.Sedgewick, J.Valdes : Programming Aspects of
VLSI, 9th ACM POPL Symposium, Jan 1982, pp 57-65.

Mead/Conway(80) C. Mead, L. Conway, "Introduction to VLSI Systems",
Addison-Wesley, 1980.

Mehlhorn(82) K. Mehlhorn, St. Niher, M. Novak, HILLSIM, Ein Simulator
fiir MOS-Schaltkreise, Universitit des Saarlandes, August 1982.

Misunas(1973) D. Misunas, "Petri Nets and Speed Independent Design",
CACM, Vol 16, No. 8, pp 474-481, Aug. 1973.

Moldovan(1982) D.I. Moldovan, "On the analysis and synthesis of VLSI
algorithms", IEEE Transactions on Computers, Nov. 1982, Vol. C-31, No 11, pp
1121-1125.

Nestor/Thomas(1982) J.A. Nestor, D.E. Thomas, "Defining and Implementing a
Multilevel Design Representation With Simulation Applications”, 19th Design
Automation Conference, pp. 740-746, Las Vegas 1982.

Newkirk(82) J. Newkirk, Rob. Mathews, Peter Eichenberger, Dan Perkins, "A
constraint-based layout description system", Stanford University, VLSI report.

Nievergelt et al. (82) G. Beretta, H. Burkhart, P. Fink, J. Nievergelt, J.
Stelovsky, H. Sugaya, A. Ventura, J. Weydert, " XS-1: An integrated interactive
system and its kernel”, 6th Intern. Conf. on Software Engineering, Tokyo, Japan,
1982.

Organick (79) G.F. Maxey, E.I Organick, "CASL - A Language for Automating
the Implementation of Computer Architectures”, 4th International Symposium
on Computer Hardware Description Languages and Their Applications, Palo
Alto, California (ACM/IEEE), 1979, pp. 102-108.

Ottmann(82) T.A. Ottmann, A.L. Rosenberg, L.J. Stockmeyer, "A dictionary
machine for VLSI", IEEE Transactions on Computers, Sept. 82, Vol. C-31, No.9,
pp. 892-897.

Reed(1952) LS. Reed, "Symbolic synthesis of digital computers”, Proc. ACM,
Toronto 1952, pp. 90-94.

Reed(1953) LS. Reed, "Symbolic design of digital computers”, MIT Lincoln
Laboratory Technical Memorandum no. 23, Lexington, Mass. 1953.

Rem(1981) M. Rem, C. Mead (1981), "A notation for designing restoring
logic circuitry in CMOS", Proc. 2nd Caltech Conference on VLSI, ed. C.L. Seitz,
California Institute of Technology, Pasadena, Calif.

Rem(1982) M.Rem, "On the design of restoring logic circuitry”, Advanced

54

course on VLSI architecture, University of Bristol.

Rivest(1982) R. Rivest, "The PI System”, Proc. Design Automation
Conference, Las Vegas, 1982.

Robinson(82) P. Robinson, J. Dion, "Design Aids for Uncommitted Logic
Arrays”, Cambridge University Computer Laboratory, Cambridge, England.

Rosenfeld(83) A. Rosenfeld, "Parallel Image Processing Using Cellular Arrays”,
Computer, Vol. 16, No.1, Jan. 83, pp 14-22.

Sakai(1982) T. Sakai et al, "An interactive simulation system for structured
logic design -- ISS", 19th Design Automation Conference, pp 747-754, Las Vegas
1982.

Sastri (82) S. Sastri, S.Klein, "PLATES: A metric-free layout language", Proc.

Conference on Advanced research in VLSI, P.Penfield Editor, MIT, Cambridge,

January 1982.

Sequin(82) C.H. Sequin, "Managing VLSI Complexity", Draft of invited
paper for IEEE proceedings.

Sequin(1981) C.H. Sequin, "Standard interchange formats for integrated
circuit design”, Computer Science Division, UC Berkeley.

Siskind(1982) J.M. Siskind, J.R. Southard, and K.W. Crouch, "Generating
Custom High Performance VLSI Designs from Succinct Algorithmic
Descriptions”, Proc. Conference on Advanced Research in VLSI, P. Penfield,
Editor, January (1982), pp 28-40.

Suzuki(1982) N. Suzuki, R. Burstall, "Sakura: A VLSI modeling language”,
Proc. Conf. on Advanced Research in VLSI, MIT, 1982.

Thompson (1981) C.D. Thompson, "VLSI Complexity of Sorting”, CMU
Conference on VLSI Systems and Computations, pp. 108-118.

Trimberger(1981a) S. Trimberger, J.A. Rowson, CR. Lang, J.P. Gray, "A
structured design methodology and associated software tools”, IEEE
Transactions on Circuits and Systems, Vol. CAS-28, No.7, July 1981.

Trimberger(1981b) S. Trimberger, "Combining graphics and a layout language
in a single interactive system"”, 18th Design Automation Conference, 1981.

Valdes(1982) J. Valdes, ALI2 Documentation and Implementation Guide:
Language Overview, Version 2, Dep. of EECS, Princeton University.

vanCleemput(79) W.M. vanCleemput, "Computer Hardware Description
Languages and their Applications”, Proceedings 16th Design Automation
Conference, June 1979.

Weste(81) N.Weste, B. Ackland, "A pragmatic approach to topological
symbolic IC design”, VLSI 81 Proc., pp. 117-130.

Wirth(1981) N. Wirth, "The personal computer Lilith", Rep. 40, Inst. fiir

55

Informatik, ETH Ziirich, April 1981.

Wirth(1982) N. Wirth, "Hades: A Notation for the Description of Hardware",
ETH Zurich, August 1982.

Wirth(1982a) N. Wirth, "Programming in Modula-2", Springer Verlag 1982.

56

Berichte des Instituts fiir Informatik

«Npr.

Nr.
«Nr,

*Nr.

=N,

*Nr

NP

*Nr

sNr.

«Npr.

*Nr

NP

*Np

sNpr.

Ne.

NP,

25

26
27
28

29

.30

.31

.32
.33

34

35

.36
.37

.38

.39

.43

U. Ammann:

. Zachos:
. Wirth:

. Nievergelt,
. Weydert:

GG = m

A.C. Shaw:

. Thurnherr,
.A. Zehnder:

[--]

A.C. Shaw:

. Engeler:
. Wirth:
. Marti,

. Rebsamen,
. Thurnherr:

.Schoenberger:
. Hoppe:

. Wirth:

p. Biirkler,

E
N
R
J
B
H.H. Nigeli,
R
J
N
H)
C.A, Zehnder:

H. Burkhart,
J. Nievergelt:

A. Meier,
C.A. Zehnder:

N. Wirth:
T.M. Fehimann:

E. Graf:

H. Burkhart:

Error Recovery in Recursive Descent Parsers
and Run-time Storage Organization

Kombinatorische Logik und S-Terme
HMODULA-2

Sites, Modes and Trails: Telling the User
of an Interactive System where he is,
what he can do, and how to get to places

On the Specification of Graphic Command
Languages and their Processors

Global Data Base Aspects, Consequences
for the Relational Model and a Conceptual
Schema Language

Software Specification Languages based
on regular Expressions

Algebras and Combinators
A Collection of PASCAL Programs

Meta Data Base Design - Consistent
Description of a Data Base Management
System

Preventing Storage Overflows in
High-level Languages

A Simple Nucleus written in Modula-2
MODULA-2 (second edition)

EDV-Projektentwicklung - Ein Arbeitsheft
fiir Informatik-Studenten

Structure-oriented editors

Flichenmodel1-Register: Die Strukturen
wichtiger geographischer Datensammlungen
der Schweiz

The Personal Computer Lilith

Theorie und Anwendung des Graphmodells der
Kombinatorischen Logik

Probabilistische Algorithmen und
Computer-unterstiitzte Untersuchungen von
probabilistischen Primalitidtstests

Konzepte zur Systematisierung der
Benutzerschnittstelle in interaktiven

i,

«Nr.44 J. Nievergelt,
F.P. Preparata:
Nr.45 M. Reimer,
J.W. Schmidt:
Nr.46 J. Nievergelt,
H.Hinterberger,
K.C. Sevcik:
Nr.47 J. Nievergelt:
Nr.48 P. Lduchli:

Nr.49 A. Meier:

Nr.50 . Rebsamen,

Reimer,

T

Ursprung,
.A. Zehnder:

Nr. 51 K.J.Lieberherr

.E. Knudsen:

w = [-lin-]

* out of stock

57

Systemen und ihre Anwendung auf den Entwurf
von Editoren

Plane-sweep Algorithms for Intersecting
Geometric Figures

Transaction Procedures with Relational
Parameters

The Grid File: An adaptable, symmetric
multi-key file structure
Errors in dialog design and how to avoid them

PG - Ein interaktives System fiir die Manipulation
von Figuren der projektiven Geometrie

A Graph Grammar Approach to Geographic Data Bases

LIDAS
A Database System for the Personal Computer Lilith

The Database Management

Zeus: A Hardware Description Language for VLSI

