mzuriCh ETH Library

The remote computation system

Report

Author(s):
Arbenz, Peter; Gander, Walter; Oettli, Michael

Publication date:
1996-04

Permanent link:
https://doi.org/10.3929/ethz-a-006651600

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technische Berichte 245

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006651600
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

The Remote Computation System

P. Arbenz, W. Gander and M. Oettli
Institut fur Wissenschaftliches Rechnen,
ETH Zurich, 8092 Zirich

April 24, 1996

Abstract

Today many high performance computers are reachable over some network. However,
the access and use of these computers is often complicated. This prevents many users
to work on such machines. The goal of our Remote Computation System (RCS) is
to alleviate the usage of modern algorithms on high performance computers. RCS
has an easy-to-use mechanism for using computational resources remotely. The com-
putational resources available are used as efficiently as possible in order to minimize
the response time. We report on experiments involving computations from high-end
workstations up to supercomputers.

1 Introduction

Wide area computer networks have become a basic part of today’s computing infrastruc-
ture. These networks connect a variety of machines, from workstations to supercomputers,
presenting an enormous computing resource.

However, the access and the use of these computers and the software is often complicated.
A major problem for the inexperienced user to exploit such high performance computers
is that he has to deal with machine dependent low level details. The goal of this work
is to make high performance computing accessible to scientists and engineers without the
need for extensive training in parallel computing and allowing them to use resources best
suited for a particular phase of the computation.

This goal shall be achieved with a client-server system, which provides uniform access to
modern parallel algorithms on supercomputers. The design and a prototype implemen-
tation of such a system, called the remote computation system (RCS) is presented here.
The user’s view of RCS is that of an ordinary software library. The user calls RCS [i-
brary routines (e.g. to solve a system of linear equations) within his program running on
a workstation. In contrast to common libraries, the problem is not necessarily solved on
the local workstation, but is dynamically allocated to an arbitrary machine in a given
computer cluster, in order to minimize the response time. Further, the system allows
distributed applications with several solvers running concurrently on different machines.
Furthermore, the RCS routines are generic in the sense that the method with which the
problem is solved, is not predetermined. The system tries to solve the problem by the
best possible algorithm according to the input arguments. A few additional parameters

2 2 SYSTEM DESIGN

would allow a knowledgeable user to precisely steer the problem-solving process while the
inexperienced user gets the correct answer in a possibly non-optimal way.

2 System Design

The Remote Computation System has a client-server architecture and consists of two
components: the user interface and the run time system. The underlying computational
software can be any existing scientific library. This section describes the user interface as
well as the internals of a prototype RCS which is restricted to problems from Numerical
Linear Algebra.

2.1 User Interface

The interface to the RCS is given in terms of a library of interface routines, which can be
called in the user’s application. The user writes his application in a platform independent
way in Fortran or C as usual. The RCS interface library provides a pair of procedures
for each problem, a request and a claim procedure to allow asynchronous calls. With
the first procedure a request is posted to RCS, i.e., the necessary arguments are passed
to RCS. In the example of a linear system, the matrix and the right hand side vector
would have to be given. The RCS then decides on the basis of a certain knowledge base
and additional parameters given by the user, which algorithm and which host computer,
sequential or parallel, is most appropriate to solve the problem. The solver is then started
on this machine. In the meantime, the user application continues execution until the
claim procedure is called. This procedure blocks until the result is returned from the
solver. Thus, the system allows distributed applications running on several machines and
in particular, the concurrent execution of two or more solvers.

The following deals with the functionality available to the user through the interface
library. Before using any other call to the RCS, the application must enroll into the RCS.
The last call to the RCS is to notify that the application does not need its service anymore.
The routines

subroutine RCinitiate(handle,info)
subroutine RCterminate(handle)

enroll the application into RCS and terminate the service respectively. The routine
RCinitiate() returns a handle, an identifier of the local RCS server which is required in
any subsequent call to RCS.

Computational problems are submitted to the RCS by posting a request and passing
the necessary arguments. The results are then claimed by calling a second routine. For
instance, the routines

subroutine RCpostSys(n,A,1d,b,host,handle,rqst)
subroutine RCclaimSys(n,x,rgst,info)

post the request to solve a linear system of equations Ax = b and claim the solution
x respectively. The parameter rqst which is returned by RCpostSys() is required by

2.2 Run Time System 3

RCclaimSys() to identify the corresponding result as there might be more than one out-
standing result. The argument host can be either a valid name of a host in the RCS com-
puter pool or >*’ if the selection of the host shall be left to the RCS. While RCpostSys ()
returns as soon as the request is accepted by the RCS, RCclaimSys() is blocking and
returns only after the result has been send by RCS.

Although scientific packages usually provide solvers for different data types (real and com-
plex with various precisions), our interface is currently restricted to real double precision
arguments.

A couple of auxiliary routines are available to inquire RCS parameters, the status of a
host in the pool or how long it takes to solve a specific problem. For instance, the routine

subroutine RCingSys(n,host,handle,time,info)

returns the time it takes to solve a linear system of equations on the host host.

Another interesting kind of interface would be for interactive mathematical software pack-
ages like MATLAB, Maple or Mathematica. These systems provide a very user-friendly
working environment. However their performance is often unsatisfactory for large prob-
lems because of the limited power of the workstation it is running on. The RCS may
be regarded as a powerful enhancement of such packages. The interface to RCS would
consist of a couple of procedures which may be called within such a package. For example,
the following MATLAB statements generate a random 480-by-120 matrix A and call RCS
synchronously to compute its singular value decomposition:

>> A = rand(480,120);
>> [u,s,v] = rcs_svd(A);

Businger et al. [6] present such an enhancement to Mathematica. Casanova and Dongar-
ra [7] investigate other possible interfaces to a computational system like the RCS.

The usage of the RCS system is easy once it is installed correctly, see Sec. 2.4. When a
user wants to run a RCS application, he first starts up the RCS run time system from
the UNIX prompt and then runs his application as usual. The RCS can serve multiple
applications concurrently.

2.2 Run Time System

The design of the RCS run time system is shown in Figure 1. The server residing on
the scientist’s workstation represents the core of the system. It accepts requests from the
application to solve a certain problem and spawns an appropriate solver on a computer in
a predefined pool. The interface library is linked to the user’s application. It handles all
interprocess communication between the application and the RCS. Similarly, the backend
is a simple driver program to which the computational solvers are linked. It handles
communication between the solver and the server. Finally, the daemon called monitor
serves to periodically update dynamically changing parameters such as the workload on
each computer. These components of the RCS are now discussed in more detail.

4 2 SYSTEM DESIGN

‘ [
local computer remote computer 1
appli- ‘monitor ‘ %monitor ‘
cation Q
RCS RCS i~ RCS solver
interface [~ |server [] backend u

Fig.1: components of run time system

2.2.1 The Server

The server accepts requests from the user’s application, determines the most appropriate
RCS solver according to the input arguments and starts the solver. If the remote host
is not specified by the user, the server selects the solver-host pair such that the response
time is minimized. This selection process is described in Section 2.3.

In order to make an optimal choice, the server requires information about

the request, e.g. problem size, amount of necessary data transfer,
e the problems which RCS can solve,

e the hosts computers in the pool and their characteristics such as number of processors
etc.,

e the available computational software (solvers) on each host and their characteristics;
for instance, a mathematical model is required to assess its response time,

e dynamically changing parameters as the current workload on each host and the
available communication bandwidth on the network.

Most of this information does not change while RCS is running and is read from a config-
uration file at startup time. Dynamically changing parameters such as the workload of a
host computer are periodically measured by monitors residing on each platform.

2.2.2 The Monitor

One criterion influencing the selection of the computational solver is shortest response
time. As the UNIX hosts commonly do not run under dedicated conditions, the response
time depends on the workload and the network throughput. A simple network monitor is
included in RCS which allows to survey the load on the host computers. A daemon called
monitor resides on each host of the pool to determine this information. (The prototype
implementation uses predetermined information about the network throughput only).

In PVM [10], on which the RCS prototype is implemented, it is planned to take the machine
load into account when distributing tasks. This feature is currently not yet implemented.
At least, the PVM host file permits to specify the raw performance of a host.

2.2 Run Time System 5

Unfortunately, there is no easy way to determine the workload of a host computer. Prob-
ably the simplest way is to open a pipe to read from a program that gets this information.
Possible programs for getting the machine status are uptime, w, who, vmstat, pstat or
ps. They are portable and do not require root permissions to be run. However, this
is not proper programming. Another way is to write code that gets the relevant UNIX
kernel variables directly. The problems with that approach are that the program may
need special permission to run, and it would be less portable, since kernels from differ-
ent companies are substantially different. A further method to determine the workload
is to run a benchmark program and measure cpu time versus wallclock time consumed,
e.g. using getrusage() and gettimeofday(). But this requires to impose a dummy load
on the system and is somewhat slower, since the program must run for a while to get a
meaningful reading.

The last approach has been chosen for the RCS workload monitor. The daemons, i.e. the
monitors, periodically run a short benchmark program. If this workload has changed more
than some threshold it is sent to the server. This is because the workload of a host usually
stays the same for a longer time and the amount of communication can be kept low.

The above metric of the workload, i.e. the ratio of the cpu time to the wall clock time of
a small benchmark program, is suitable for UNIX multiuser, single processor computers,
where process scheduling is done by time sharing. The monitor has not been tested on
shared-memory multiprocessors however. Distributed-memory multicomputers often do
not allow multiple user applications running on a single node. In this case, the workload
would simply be determined by the number of nodes in use.

2.2.3 The Computational Software

The underlying computational software is not subject of this work. It is a problem on its
own to write reliable and efficient software for sequential or parallel computers. Therefore
it is assumed that a computer platform considered to collaborate in the pool, has such
software installed. RCS is able to incorporate any package available on the platform
provided that an appropriate RCS driver program has been written which calls the specific
solver from the package.

The prototype RCS is restricted to problems from numerical linear algebra and uses LA-
PACK [2] for workstations, vector processors and shared-memory multiprocessors. Scal.A-
PACK [8] is intended for distributed-memory multicomputers. In addition, in the first part
of this project, divide-and-conquer algorithms for solving real symmetric eigenvalue prob-
lems and systems of linear equations on multicomputers have been investigated [9, 3, 4].

It has to be noticed however that the concept of the RCS is applicable to a much broader
range of applications than those from numerical linear algebra.

2.2.4 Communication Layer

The communication layer could be built on top of the low level TCP/IP protocol. However,
tools for implementing distributed programs as the RCS are provided by software packages
like PVM [10] or SCIDDLE [5]. These packages allow the utilization of a heterogeneous
network of parallel and serial computers as a single computational resource. They provide
facilities for spawning and synchronization of and communication between processes over

6 2 SYSTEM DESIGN

a network of heterogeneous machines. The advantage of implementing the RCS on top of
PVM is portability and ease of use. PVM runs on any UNIX based machine on which the
user has a valid account and which is accessible over some network.

2.3 Selecting a Solver

The RCS consists of many computational solvers installed on different hosts in the pool.
A specific host may not be able to solve every problem provided by the RCS. But there
may be more than one solver to handle a specific problem. Further, the pool of hosts
consists of machines with different characteristics from workstations to supercomputers.
When the user does not specify the remote host, it is the task of the RCS server to select a
computational solver, which is most appropriate to handle a given problem. Furthermore,
the selected solver should minimize the response time. To our knowledge, this sort of
selection process has not yet been done in the context of a library.

In a first step, the server determines a set of computational solvers which can handle
the problem (i.e. solve a symmetric positive definite system of linear equations) and are
suitable in terms of memory requirements. All informations required for this first step are
found in the configuration file.

In a second step, the server selects the solver in the set from step one, which minimizes
the response time. This selection takes into account

e the problem size,

the computational complexity of each solver,

the raw execution rate of the solver on the host it is installed on,

the workload of each host, and

the bandwidth from the user’s machine to each host in the pool.

The application-dependent parameter problem size is included in the problem request
sent by the application to the server. The remaining parameters except the machine
workload and network bandwidth are regarded as static in the RCS and are defined in
the configuration file. The dynamically changing parameters are periodically measured by
the monitor daemons and sent to the RCS server. The response time for each solver is
assessed with the help of theoretical models based on the above parameters. The Models
are described in Section 3.

2.4 System Configuration

The configuration of the RCS, i.e. the pool of host computers, the tasks it can solve and the
corresponding computational solvers each host provides are read in from a configuration
file at startup. It can not be modified dynamically once the system runs. The only
exception is that hosts which got unreachable are removed from the pool.

Below is a simple configuration file defining one problem (task) by its symbolic name, one
host and a few parameters describing the computational solver.

2.5 Fault Tolerance 7

CONFIGURATION
TASK = Linsys;

HOST vinci;
path = $HOME/nfp/prg/system;
arch = serial;
network = [2.0e-3,5.0e5]; (* latency [s] and bandwidth [Byte/s] *)

SOLVER linsolve;
task = Linsys;

tau = 6.67E-7; (* time for one flop [g] *)
complexity = [0.66,-0.5,0.833,0]; (% coff. of cubic polynomial *)
END
END

One design objective of the RCS is that it should be easy to extend it. The person
who administrates RCS should be able to add new problems, hosts or computational
solver without much effort. New hosts are added by including their specification in the
configuration file, provided that PVM is already installed. New computational solvers
require a driver program which is able to communicate with the server, allocates the
necessary work space and calls an appropriate library routine to solve the problem. This
driver program could be generated automatically based on some specification of the library
routine and its arguments. More effort is required when adding a new problem to the
prototype RCS. Unfortunately, the RCS administrator has to include the corresponding
interface routine in the source of the RCS interface library. A task-independent generic
interface would be more suitable.

2.5 Fault Tolerance

An important issue in any distributed system is fault tolerance. Failures may occur due to
a network malfunction or to a host disappearance. Assume the RCS server fails to start
a solver on a remote host. The server takes this failure into account and tries to start the
second best solver. On the other hand, the blocking interface routine to claim a result
periodically checks whether the solver is still alive and returns with an error if necessary.

3 Assessing the Response Time

Typically, several hosts in the pool provide a solver for the same problem. If the user
does not specify the host in his request, RCS automatically choses the fastest algorithm-
computer pair in order to minimize the response time. In order to select the best pair,
models of the expected response time for the different choices are required. More precisely,
mathematical expressions are required that specify the response time T as a function of
parameters like the problem size n, the number of processors p and other algorithm and
hardware characteristics:

T=f(n,p,...).

Modeling the response time requires some knowledge about the implementation of the RCS
system. The client (the user’s application) sends a request to the RCS server. The server

8 3 ASSESSING THE RESPONSE TIME

selects an appropriate solver and starts it on the corresponding host. Then, the input data
is directly sent from the client to the solver. After solving the problem, the result is sent
back to the client. Hence, the response time consists of three major components which
can be examined independently: the solver startup time, the time for data transmission
and the actual computation time. Empirical tests on a workstation cluster show that
the startup time makes only a small contribution to the total response time unless the
problem size is very small, see Section 4.3. Therefore, we are only concerned with the data
transmission time and the computation time.

3.1 Modeling the Execution Time

For applications in numerical linear algebra it is commonly agreed that the floating-point
operation (flop) count is a good estimation of work. The execution time in turn is the
ratio between this amount of work and the computational speed of the computer.

Two difficulties arise with this approach. First, the amount of work is most often problem
dependent. Only for direct solvers can operation counts be given as a function of the
problem size. For iterative solvers only a crude estimation of work can be given based on
some approximation of the convergence rate, see Section 3.1.4.

The second problem is that the speed, i.e., the work divided by time is not a fixed value.
The time for executing a floating-point operation is not only hardware-dependent but also
context- and operand-dependent. For instance, level-3 BLLAS routines [14] are faster than
level-2 or level-1 BLLAS routines on modern pipelined computers with a hierarchical mem-
ory. Or, multiplications which produce denormalized numbers conforming to the IEEE
standard are much slower than those producing normalized results on a Sun SPARCsta-
tion 1. Therefore, models for modern computers are typically based on an idealized model
of the computer taking hardware details such as vector processing capabilities or memory
hierarchies into account [8].

Another simpler approach to run time estimation would be to extrapolate from available
measurements. It requires a model for the run time as a function of the problem size.
Consider for instance solving a linear system by Gaussian elimination. The estimator
function is a cubic polynomial in n, the matrix size:

T = b3n3 + b2n2 + bln + bo.

The unknown parameters b; are determined from measurements by a least squares fit. The
danger of this approach is that one or even several measurements serve only to determine
performance in a narrow region of what is a large, possibly multidimensional, space. Es-
pecially for algorithms on high performance computers, they may be a poor indicator of
performance in other situations.

Numerous algorithms have been investigated in the context of the idealized PRAM (par-
allel random access machine) model [1]. However, this is a theoretical model appropriate
only for shared-memory multiprocessors. A DLAM (Distributed Linear Algebra Machine)
model was introduced in the ScaLAPACK project [8]. It is used to obtain theoretical per-
formance bounds for algorithms in dense linear algebra running on distributed-memory
multicomputers. It allows to estimate the execution time before and after implementation
and is useful in scalability analysis. Another approach found in the literature is to use

3.1 Modeling the Execution Time 9

discrete event models to simulate program execution on a certain computer. Such a simu-
lation is very time-consuming and therefore not applicable for simple run time estimations.

3.1.1 Conventional Computers

A suitable execution time model for a conventional unpipelined computer without hierar-
chical memory is

r="" (1)

r

where ¢(n) is an expression for the number of floating-point operations dependent on the
problem size n and r denotes the computational speed. Parameter r is machine- and
algorithm-dependent and is approximated by putting the results of a few test runs into
equation (1).

The time to perform one floating-point operation is the inverse of the computational rate
and is denoted by 7:

T=1/r.
For example, the time for one floating-point operation on a Sun SPARCstation 10 is

7~ 9.9-107% s. This equals a performance rate r of about 10 Mflop/s.

The application of this model is demonstrated in the following example. The observed
and estimated run times were compared for three different algorithms given in Table 1.
The procedures together with the flop count for m X n-matrices were taken from LA-

Description Procedures flop count

LU factorization DGETRF %n3 — %nQ + %n
Tridiagonalization DSYTRD %n?’ +3n2% — 16—771 - 19
QR factorization DGEQRF 2mn? — %n3 + mn+n?+ 13—4n

Table 1: examined algorithms and flop count

PACK [2]. Figure 2 gives the execution times depending on the problem sizes on a Sun
SPARCstation 10. The dashed lines of the model approximate the observed timings fairly
well.

3.1.2 High Performance Shared-Memory Computers

Modern high performance computers make use of pipelined instruction execution, vector
processing, superscalar processing and often have more than one processor sharing a single
global main memory, see [12]. Furthermore, they usually incorporate an increased hierar-
chy of memory layers to alleviate the difference in speed of memory access and computa-
tion rate. This group of computers not only consists of the traditional vector-processors
and shared-memory multiprocessors (e.g. Cray Y-MP) but also of high-end workstations
(e.g. HP J200). Distributed-memory multicomputers are considered in the next section.

Unfortunately, the performance of numerical computations on these high performance
computers heavily depend on the number of memory references per floating-point oper-
ation. Thus, the observed performance or execution rate depends on the algorithm and

10

140

120t

100t

execution time [s]

401

20t

Fig. 2:

3 ASSESSING THE RESPONSE TIME

80r

60r

I + X 0O

: dgetrf
: dsytrd
: dgeqrf (m=1000)
: estimation
A4
o X
e - 7 - _.C -7
200 400 600

order n

800 1000

observed and estimated run times on a workstation

problem size. Figure 3 presents the execution rate of the LU factorization depending on

the problem size on one processor of a Cray J90 multiprocessor. A valuable model to

200
180} o: experimental data -
- model Q-
/O’ -
7 -
S160r Q-
[e
£ S
8140 L
=
£ /
g ?
£120f ,
Q /
/
/
100t /
/
80 o
0 200 400 600 800 1000

matrix order n

Fig. 3: performance on one processor of a Cray J90 multiprocessor

characterize pipelining effects stems from Hockney and Jesshope [13, Sec. 4.5.3]. They
model the execution rate r(n) as

Too

B

r(n) =

(2)

That is, the performance rate r(n) is expressed in terms of parameters ro, and n; /5. These

parameters are characteristic for a specific algorithm and denote the peak performance

for large problem sizes (r.,) and the problem size for which half the peak performance is

reached (7).

Again, test runs of the specific algorithm are required to determine these two parameters.

An expression ¢(n) = c3n® 4+ ¢on? + eyn for the number of flops is known from theoretical
considerations. Further, it is known that the run time has the form b3n>+byn%4bn. The

3.1 Modeling the Execution Time 11

parameters b; may be computed through a least squares fit of the data. As the performance
is

03n3 + 02n2 +cn
r(n) =

- b3n3 + b2n2 + bln7
the asymptotic performance rate can be predicted by letting »n go to infinity. One obtains

C3
Too = .
b3

By examining the point at which half the asymptotic rate is reached, n;/, can be deter-

mined,
Too C3 03n3 + ...

2 :2—1)3—1)3713_'_()2”2_'_”‘-

Solving for n, one determines that

n1/2 ~ b2/b3.

The same model can be used on a shared-memory multiprocessor when parallelism is real-
ized through splitting the loops over the processors. When the number of processors p is
increased, r., grows slightly less than linear and n,/; grows faster, because of synchroniza-
tion effects. Of course, the two parameters have to be determined anew for each number
of processors. Consequently, the run time model for an algorithm on a multiprocessor is

T— c(n) (3)

i.e. the flop count divided by the corresponding execution rate as given in equation (2)
for a specific number of processor. A run time estimation of the LU factorization on
p=1,2,4,6,8,10 processors of a Cray J90 is given in Fig. 4. In general, this model gives

4
3.5+ /
,
p=[1,2,4,6,8,10] ’
3t oA
», ;
0257 7
£ ,
5 2 o q
3 ,
L1.5¢
[}
o P
1 P -
o - L2z ig
e o ==7 -
0.5 T e oz E T
e
0 gmziziEEEF T . .
0 200 400 600 800 1000

matrix order n

Fig.4: run time estimation on a Cray J90 multiprocessor

a good abstraction of the physical machine. However more hardware details would have
to be incorporated to describe possible cache effects, see e.g. [11].

12 3 ASSESSING THE RESPONSE TIME
3.1.3 Distributed-Memory Multicomputers

A distributed-memory multicomputer (DMC) consists of multiple processors, often called
nodes, interconnected by a message-passing network. Each node is an autonomous com-
puter consisting of processor and local memory. The Intel Paragon is an example for a
DMC. As the nodes do not share a global memory, processes must interact by passing
messages over the interconnection network. Consequently, the execution time of a parallel
program on a DMC is the sum of computation time t., communication time ¢; and idle
time t; on the slowest processor:

T=t.+1t+1.

While models to characterize {. and t; are considered in the previous two sections, modeling
t; is examined in Section 3.2.

3.1.4 Tterative Algorithms

The work of iterative algorithms does not only depend on the problem size but also on
problem-dependent input arguments. Typically, the flop count for one iteration step can
be given, but the speed of convergence must be estimated. For instance, the convergence
rate of most iterative methods for solving sparse linear systems depends on the extremal
eigenvalues of some matrix. Unfortunately, these eigenvalues are commonly not readily
available but have to be computed or approximated themselves what is expensive. The
situation is even worse for eigenvalue solvers. Their convergence rates directly depend on
the spectrum, which is subject to computation. Thus, only rough estimations of work for
iterative algorithms can be given in general.

3.2 Data Transfer Time

An idealized model for the time to send a message from one process to another can be
based on two parameters: the message startup time ¢, which is the time required to
initiate the communication, and the bandwidth b, which tells how many data items can
be moved in a certain time interval from the source to the destination process. The time
required to send a message of n data items then is

1

It typically takes a relatively long time to start up the operation, after which data items
arrive at high speed. This idealized model is adequate for many purposes. Nevertheless, it
does not take into account the topology of the interconnection network (the Ethernet typ-
ically used in LAN’s is a bus-based network) and the number of processes communicating
at the same time and therefore competing for bandwidth.

Table 2 shows parameters t; and b for interprocess communication using PVM on dif-
ferent host computers connected by Ethernet. In particular, the computers are a Sun
SPARCstation-1 (ru6), a Sun SPARCstation-10 (vinci) and two HP J200 workstations
(turing2, turing3) in the institutes local area network as well as a Sun classic (raf2) and a
Cray J90 supercomputer (grizzly) in the same building. The values have been determined
by a least squares fit of measured communication times in a non-dedicated environment.

13

standard routing, direct routing,
XDR encoding no encoding

Connection ts [s] b [Byte/s] ts [s] b [Byte/s]
ru6 - vinci 3.6x107° 3.7x10° | 1.4x 107° 8.7 x 10°
rub - turing? 3.3x 1072 3.6x10° [1.5x 1073 7.9 x 10°
rub - raf2 73%x107° 23x10° | 6.1x 107% 6.6 x 10°
ru6 - grizzly 1.0x 1072 1.4 x10° - -
turing? - turingd | 1.3 x 107> 5.9 x 10° | 5.8 x 107* 1.1 x 10°
turing?2 - turing3 ¥ | 1.0 x 1072 1.0 x 10® | 5.7 x 10=* 5.7 x 10°

Table 2: Communication latency and bandwidth over Ethernet (i fast Ethernet)

A comparison of the two columns make evident that PVM has to be set up properly to get
the maximal throughput. By default, PVM uses routing through the PVM daemons and
XDR encoding. However, if direct process-to-process links are used and XDR encoding is
turned off between computers with the same data format, communication can be sped up
considerably. However, XDR encoding, which can make up to 20% of the total message
transmission cost in a local ethernet network [16], is inevitable between heterogeneous
machines such as a Sun and a Cray J90. The network distance is a further parameter
influencing the data transmission throughput.

4 Proof-of-concept

A prototype RCS based on PVM has been implemented to demonstrate its feasibility.
PVM (Parallel Virtual Machine) is a software package, which allows the utilization of
a heterogeneous network of parallel and serial computers as a single computational re-
source. The advantage of implementing the RCS on top of PVM is portability and ease
of implementation.

This prototype RCS so far provides solvers for linear systems of equations, linear least
squares problems and symmetric eigenvalue problems. The underlying computational
software is from LINPACK and LAPACK. The RCS itself is a single user system. However,
the user may run multiple RCS application concurrently. Prerequisites to running an RCS
application is that the user as a valid account on each host in the pool and that RCS has
been properly installed by an experienced administrator.

Experiments have been carried in a computer pool consisting of various workstations and
a Cray J90 supercomputer. These hosts were connected by a local area Ethernet network.

4.1 An Illustrative Example

Consider to solve a linear system of equations Ax = b, A € IR"*" with RCS. An excerpt of
the corresponding sample application is given below. The application enrolls in RCS with
a call of RCinitiate(). Afterward, the problem is posted and its solution claimed using
the routines RCpostsys() and RCclaimsys(), respectively. The following investigations
are based on this simple example.

14 4 PROOF-OF-CONCEPT

program System
call CreateSystem(n,A,lda,b)

call RCinitiate(handle,info)
call RCerror (info)

call RCpostsys(n,A,lda,b,host ,handle,rqsth,info)

call RCclaimsgys(n,x,rqsth, info)
write ’the sgolution is:’, x

call RCterminate (handle)
end

4.2 Break-even Analysis

Remote computation introduces overhead consisting of the evaluation of the computing
request by the server, the starting of the solver as well as the transmission of the necessary
data between the local workstation and the remote host. Thus, remote computation only
pays off if the problem is sufficiently large and the remote computer is faster or less loaded
than the local workstation.

The following experiments shall give an idea at which point remote computation starts
to pay off. A generally valid number for the break-even point can not be given as it
depends on the specific configuration of a computer pool and the solvers installed. In
each experiment, a problem of various size is solved with RCS on a remote host and its
execution time is compared with the time of a library routine linked to the user program.

First, a system of linear equations Ax = b is solved with Gaussian Elimination on a Sun
SPARCstation 1 and remotely with RCS on one processor of a HP J200 workstation. Then,
the eigenvalues of a symmetric matrix are computed on the same two host computers.
The asymptotic computational speed of these computers is 1.5 Mflop/s and 107 Mflop/s
respectively. Thus the remote computer is about 70 times faster. The execution times are
given in Figure 5 and Figure 6 respectively. The break-even point for the linear system

lO3 T T T lO3

response time [s]
response time [s]
5

w0l - - Sun SPARCstation-1] Fx

- - Sun SPARCstation—-1

x — remote HP J200 remote HP 1200
10_2 L L L 10_1 L L L
0 200 400 600 800 0 200 400 600 800
problem size n problem size n
Fig. 5: lincar system Fig. 6: symmetric eigenproblem

is at moderate n = 100 and is even lower for the symmetric eigenproblem. It depends on
the ratio of remote computation time to the overhead caused by data transfer. As both
problems require the same amount of data transfer but the eigenproblem involves more

4.2 Break-even Analysis 15

computation, (’)(%n?’) compared to (’)(%n?’) for the linear system, the ratio is better for
the eigenproblem. Thus, if more computation is associated with a given data movement,
it is relatively less costly.

Of course, the gain in performance is lower if the remote computer is only little faster
than the local machine or the network is slow relative to the performance rate of the local
workstation. We verify this statement in a second experiment. The linear system is run
on two different host configurations, which have about the same ratio of computational
speed (the remote host is about ten times faster than the local workstation). However,
the absolute performance of the computers in the second configuration is higher. As
the interconnection network is the same for both configurations, the relativ cost of data
transfer is higher in the second case. Figures 7 and 8 show that the break-even point

3 2

10 ‘ ‘ : 10
107
10"}
))
£ E
o g10° |
§ 140 5
al0 o
2 2
o o
= 10_1’ M .
10 X,X - Sun SPARCstation-1 E /X/ - - Sun SPARCstation-10
— remote Sun SPARCstation-10 N — remote HP J200
-2 -2|)/
10 ‘ ‘ ‘ 10 ‘ ‘ ‘
0 200 400 600 800 0 200 400 600 800
problem size n problem size n
Fig. 7: low cost data transfer Fig. 8: high cost data transfer

is higher and the gain in speed is smaller in the second case due to the higher relative
communication overhead.

In the last experiment, RCS runs again on a Sun SPARCstation 1 and the response time
of the linear system solver on a Cray J90 is compared with that on the HP J200. Also,
the computational power of the Cray J90 is higher than that of the HP workstation,
the total response time is higher because of a slower network connection, see Figure 9.
Thus, it is not worth using the supercomputer in this situation (unless its large main

3
10
2 X7
10 -
-
@ >
oanl
(4]
£ 10
[
g o
210
7]
<
- - Sun SPARCstation—-1
107t ! — remote HP J200
X - -remote Cray J90
-2

0 200 400 600 800
problem size n

Fig.9: remote Cray J90

memory is required). Such a selection is automatically made by the RCS with the help of

16 4 PROOF-OF-CONCEPT

the performance models and the characteristics of the computational resources involved.
Section 4.4 shows how good these models match experimental data.

4.3 System Performance

The experiments in the previous section indicate when remote computation helps in terms
of speed. Here, we have a closer look at the performance of RCS. That is, the overhead
due to data transfer and process start up is examined.

Figure 10 shows that the overhead consisting of start up time and data transfer time
makes a major contribution to the overall response time in the experiment presented in
Figure 5. The reason is that the remote host (the HP J200) is fast relative to the computer
network. Fortunately, the fraction of overhead decreases with n, as the complexity of the
computation (a linear system solve) is O(n®) whereas the communication goes with O(n?).

100- 100-
computation
S 80 < 80
Q Q
£ £ .
= = computation
& 60 2 60
c c
o o
g jcath g
3 communication 8
s 40 s 40
c c
S S
g g
E 20 E 20
communication
start up start up
0 0
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
problem size n problem size n
Fig.10: remote HP J200 Fig.11: remote Sun SPARCstation 10

The experiment shown in Figure 7 involves much less overhead as can be seen in Figure 11.
Nevertheless, the response time in the first situation is shorter as the overhead in both
situations is about the same in absolute numbers. Thus, a high percentage of overhead
must be taken into account if the response time shall be minimized. In other words, the
network-computer configuration is badly balanced in terms of performance.

4.4 Validation of Performance Models

In this section, we compare the theoretical models derived in Section 3 for run time
estimations with actual program runs.

The flop count for solving a system of linear equations by Gaussian Elimination is ¢(n) =
2/3n°—1/2n%45/6n. If the user’s workstation is a Sun SPARCstation-1 with an execution
rate r & 1.5 x 10% 1/s (64 Bit precision), then the local execution time T}, is according to
equation (1) given by

_2/3n% —1/2n* +5/6n

T .
L 1.5 x 10° [<]

For the remote computer, an HP J200 workstation, the total response time Tk consists of
the computation time T, the solver start up time T, and the data transfer time 7;. The
computation time is given by equation (3) with p =1, ro, = 107 Mflop/s and ny/, = 393.
The start up time was measured to be T ~ 0.25 s. Gaussian elimination requires the

4.5 Parallelism 17

transfer of n? 8-Byte data elements. The data transfer over the Ethernet network is
modeled with equation (4) with ¢y &~ 0.001 s, b ~ 5 x 10°> Byte/s. Thus, we get

2/3n3 — 1/2n%2 +5/6n 8
Tp=T.+T,+T, = / 1/07 /6n 0.5+ = 105n2 [s].
393/n+1 X

As the above two models do not include any workload information, they have to be com-
pared to experimental data obtained under dedicated conditions. Figure 12 shows that
the model matches the experimental data well.

-

] xl// - - Sun (model)

-2 /) — remote HP (model)

! x Sun (measured)

10 °H o remote HP (measured)

response time [s]

0 200 400 600 800
problem size n

Fig.12: Modelled versus measured response times

4.5 Parallelism

Different types of parallelism can be exploited with the RCS. Because RCS is called asyn-
chronously, it allows distributed applications with several solvers running concurrently
on different host computers. Thus, independent subproblems can be solved concurrently.
However, the server start up and data transmission is sequential. Therefore, the fraction
of computation must be high in order to exploit the parallelism. Only small speedups
were obtained with the prototype implementation of RCS.

More promising speedups are obtained by calling a parallel solver on a parallel computer
(e.g. LAPACK on multiprocessors or ScaLAPACK on multicomputers). The process to
process communication on such computers either through shared memory or a high speed
interconnection network is much more efficient than that on a local or even wide area
network.

4.6 Discussion

The prototype implementation of the RCS shows the suitability of the design decision.
Good estimations of the actual response time have been obtained with the performance
models presented in Section 3. Although, the models could be improved by considering
further hardware details such as the cache memory, this does not make sense in the context
of selecting the fastest of several available solvers in a non-dedicated environment. Other
factors such as the proper determination of the workload or the communication bandwidth
have more influence on the decision than the omitted hardware details.

18 5 RELATED WORK

Communication is a critical issue. Its performance is low relative to the computation rate
of modern workstations and is a major source for further improvements. Surprisingly, it is
not the physical data transmission itself but copying data from system in user buffer and
data conversion which is expensive (at least in a local area network). These overheads can
be reduced in PVM by setting the appropriate parameters. However, things like data con-
version are inevitable in a heterogeneous computer pool. The experiments show that local
high-end workstations may have a response time comparable to that of supercomputers
farther away because of a higher network bandwidth. Then, the only reason for using the
supercomputer might be large memory requirements.

An implementational detail which should be mentioned, is that, the interface should be
kept more general by providing generic functions to post and claim any problem. This
would allow to keep the source code of RCS independent of the problems and tasks it can
handle. However, Fortran does not provide the necessary mechanisms to handle variable
argument lists.

5 Related Work

Related research is being done at other universities. We mention some projects that have
come to our attention.

5.1 The External Computation System

This is a project at the Computer Science Department of the School of Engineering in
Biel with the main objective to establish a library of parallel programs in the field of
numerical mathematics [6]. The parallel programs are written in a portable way using
parallel language extensions to standard C. A simple functional parallel programming
system, the External Computation System (ECS), allows to call these programs on a
parallel computer within Mathematica running on a workstation.

5.2 The NetSolve Solution Engine

The goal of the NetSolve project [7] at the University of Tennessee at Knoxville is to
develop a system which allows users to access computational resources remotely in order
to solve scientific problems. Netsolve is designed as fault-tolerant client-server application.
Good performance is ensured by a load-balancing policy. On each computer platform in
the collection a server process resides which monitors the work load and forks processes
that solves the problem using scientific packages. New servers shall be dynamically added
to the collection. Ease of use is obtained as a result of different interfaces, some of which
do not require any programming effort from the user.

5.3 The Ninf System

Today, many software archives accessible over the Internet provide computational software
to the scientific community. This software is typically provided in form of source code,
which has to be downloaded by the user to his local computer. There, he has to create

19

an executable program. Often, it is a tedious task to adapt a piece of software to an
inidividual environment. Sometimes, it would be preferable to use computational software
by sending the input data to and running the appropriate executable program on some
remote host where it is already installed. This is another form of sharing computational
resources. However it requires some client-server system which allows to access and run
this computational software on a remote host. It is the goal of the Ninf project to develop
such system [15].

6 Concluding Remarks

The RCS provides an easy-to-use interface to a variety of numerical linear algebra libraries
on UNIX platforms. When the user does not explicitly specify the computer, the RCS is
able to select among a number of computer platforms in order to provide the answer in
minimal wall clock time.

The RCS is portable and expandable. Its process control and communication is done
with PVM assuring that it runs on any UNIX based machine which is accessible over
some network. New solvers are easily added to the RCS. Essentially the driver for the new
solver has to be provided and a configuration file describing the solvers has to be modified.
If the solver provides a new service, corresponding procedures have to be included in the
frontend library. So far, such configuration and installation work must be done by a
computer scientist.

Often, there is an administrative hindrance in using such an RCS system on expensive high
performance computers of a computer center. The RCS system uses remote commands
such as a remote shell. These commands are often not available on such computers because
of security reasons.

The experimental usage of the prototype system revealed how its extensibility and per-
formance could be further improved. A major drawback of the current implementation
is the dependence of the interface library on the problems RCS can solve. When adding
a new problem, the interface library has to be modified accordingly. The extensibility of
the RCS would be improved by using generic, problem-independent interface routines for
posting and claiming any problem. A specification of the problems including the number
of arguments and its data types could be given in the configuration file. Although, new
computational solvers are easily added to the system, its administration could be further
simplified by providing a tool to generate driver programs automatically, given some spec-
ification of the solvers. Last but not least, the assessement of the response time could
be improved by periodically measuring the network throughput as is already done for the
workload.

7 Acknowledgments

The authors would like to thank the Swiss National Science Foundation for their sup-
port. This project was part of the priority program informatics, module massive parallel
computing.

20

REFERENCES

References

[1]
[2]

[10]

[11]

[12]
[13]

[14]

[15]

S. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, 1989.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’
Guide. SIAM Publications, Philadelphia, 2nd edition, 1994.

P. Arbenz and W. Gander. A survey of direct parallel algorithms for banded linear
systems. Technical Report 221, Departement Informatik, ETH Ziirich, 1994.

P. Arbenz, W. Gander, and K. Gates. Direct parallel algorithms for banded linear
systems. In Conference on the Priority Programme Informatics Research, Module 3:
Massively Parallel Systems, Technopark Zirich, 1994.

P. Arbenz, H. P. Liithi, C. Sprenger, and S. Vogel. SCIDDLE: A tool for large scale
distributed computing. Technical Report 213, Departement Informatik, ETH Ziirich,
1994.

W. Businger, P. A. Chevalier, N. Droux, and W. Hett. Mathematical algorithms for
parallel and distributed systems. In Conference on the Priority Programme Infor-
matics Research, Module 3: Massively Parallel Systems, Technopark Zirich, 1994.

H. Casanova and J. Dongarra. NetSolve: A network server for solving computational
science problems. Technical Report CS-95-313, Department of Computer Science,
University of Tennessee at Knoxville, November 1995.

J. Choi, J. Demmel, I Dhillon, J. Dongarra, S. Ostrouchov, A Petitet, K. Stanley,
D. Walker, and R. Whaley. LAPACK working note 95: ScaLAPACK: A portable
linear algebra library for distributed memory computers — design issues and perfor-
mance. Technical Report CS-95-283, Department of Computer Science, University of
Tennessee, 1995.

K. Gates and P. Arbenz. Parallel divide and conquer algorithms for the symmet-
ric tridiagonal eigenproblem. Technical Report 222, Departement Informatik, ETH
Ziirich, 1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine - A Users’ Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, Cambridge, 1994.

V. S. Getov. Performance characterisation of the cache memory effect. Supercomputer,
11:31-49, 1995.

K. Hwang. Advanced Computer Architectures. McGraw-Hill, New York, 1993.

D. Sorensen J. Dongarra, 1. Duff and H. van der Vorst. Solving Linear systems on
Vector and Shared Memory Computers. STAM Publications, 1991.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Software, 5:308-323, 1979.

S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. — Ninf —: Network
based information library for globally high performance computing. In Parallel Object-
Oriented Methods and Applications (POOMA), Santa Fe, 1996.

REFERENCES 21

[16] H. Zhou and A. Geist. Receiver makes right data conversion in PVM. In 14th Intel
Conference on Computers and Communication, Phoeniz, 1995.

