
ETH Library

MODULA-2

Report

Author(s):
Wirth, Niklaus

Publication date:
1978

Permanent link:
https://doi.org/10.3929/ethz-a-000153014

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Eidgenössische Technische Hochschule Zürich, Institut für Informatik 27

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000153014
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Per. ,-
713 228 
: 27 

/ 

ETHICS ETH - Biß 

II 111111111111111111111111111111 
00100001658115 





Eidgenössische Technische Hochschule 
Zürich 

1 nstitut für 1 nformatik 

Niklaus Wirth 
MODULA-2 

Dezember 1978 27 





ETH 
Eidgenössische Technische Hochschule 
Zürich 

1 nstitut für 1 nformati k 

Niklaus Wirth 
MODULA- 2 

Dezember 1978 27 





MODULA-2 

N. Wirth 

Abstract 

Modula-2 is a general purpose programming language primarily 
designed for systems implemenation. This report constitutes its 
definition in a concise, although iRformal style. 

Institut fur Informatik 
ETH 
CH-8092 zurich 

December 1978 

Note: no compiler is available for distribution at this time. 

Please note that 
the pages 24/25, 
30/31 and 34/35 
have been changed 
by rnistake. 

(§:) 1978 I nst itut für Info rmatik der ETH Züric h 



- 2 -

Contents 

1. Introduct ion 
2. Notation for syntactic description 
3. Vocabulary and representation 
4. Declarations and scope rules 
5. Constants 
6. Types 

1. Ba s ic types 
2. Enumerations 
3. Subrange types 
4. Array types 
5. Record types 
6. Set types 
7. Pointe r types 
8. Procedure types 

7. Variab le s 
8. Expressions 

1. Operands 
2. Operators 

9. Statements 
1. Assi gnme nt s 
2. Procedure cal ls 
3. Statement sequences 
4. If statements 
5. Case stätements 
6. While statement s 
7. Repeat statements 
8. For statements 
9. Loop statements 

10. With statements 
11. Return and exit statements 

10. Procedures 
1. Formal parameters 
2. Standard procedures 

11. Modules 
12. Programs 
13. Pr ocesses 

1. Creating a process, and transfe r of contr o l 
2. Peripheral devices a nd interrupts 
3 . Interface modules 

14. Index 
1. Syntactic terms 
2. Semantic terms 

15. Syntax summary 

3 
4 
5 
6 
7 
7 
8 
8 
9 
9 

10 
11 
11 
12 
12 
l 2 
13 
13 
16 
16 
17 
17 
17 
18 
18 
19 
19 
19 
20 
20 
21 
21 
23 
25 
26 
2 7 
27 
28 
2 9 
30 
30 
32 
33 



- 3 -

1. Introd uct i on 

Modula-2 grew out of a practical need for a general, efficiently 
implementa ble sys tems programming language for minicomputers. It s 
ancestors are PASCAL [l) and MODULA [2]. From the latter it has 
inherited the name, the important module concept, and a systemati c, 
modern syntax, from PASCAL most of the rest. This includes in 
particular the data structures, i.e. arrays, records, variant 
records, sets , and pointers . Structured statements include the 
familiar if, case , repeat, while, for, and with statements. Their 
syn tax i s such that every structure ends with an explicit 
termination symbo l. 

The language is essentially machine-independent, with the exception 
of limitation s due to wordsize. This appears to be in contradiction 
to the notion of a system-programming language, in which it must be 
possible to express all operat ions inherent in the underlying 
computer. The dilemma is r esolved with the ~id of the module 
concept. Machine-dependent items can be introduced in specific 
modules, and their use can thereby effectively be confined and 
isolated. In particular, the language provides the possibility to 
relax rule s about data type compatibility in these cases. In a 
capable system-programming language it is possible to express 
input/ output conversion procedures, file handling routines, 
storage allocators, process sc hedulers etc. Such facilities must 
th e refore not be included as elements of the language itself, but 
appear as (so-called low-level) modules which are components of 
most programs written. Such a collection of standard modules is 
therefore a n essential pa rt of a Modula-2 implementation. 

The concept of processes and their synchronization with signals as 
included in Modula is replaced by the lower-level notion of 
co routine s in Modula-2. It is, however, possible to formulate a 
(Standard) module that implements such processes and signals. The 
advantage of not including them in the language itself is that the 
programmer may select a process scheduling algorithm tailored to 
his particular needs by programming that module on his own. Such a 
scheduler can even be entirely omitted in simple (but frequent) 
cases, e.g. when concurrent processes occur as device drivers only. 

This report is neither intended as a programmer's manual nor as an 
implementation tutorial. It is intentionall y kept concise, brief, 
and (we hope) clear. Its function is to serve as a reference for 
programmers, implementors, and manual writers, and as an arbiter, 
should they find disagreement. 

We reserve the right to extend or even change the language in areas 
where is s ues are as yet unresolved and experience in use of the 
language may provide new insight. This is in particular the case 
in the domains of definition modules, export of names, and 
low-level facilities. 

I should like to acknowledge the inspiring influence which the 
language MESA [3] has exerted on the design of Modula-2. An 
extended opportunity to use the sophisticated MESA system has 
taught me how to tackle problems on many occasions, and on a few 



- 4 -

that it is wiser to avoid them altogether. Acknowledgment is also 
due to the implementors of Modula-2, L. Geissmann, S.E. Knudsen, 
and Ch. Jacobi, whose invaluable feedback has helped to keep the 
language designer's fancies on firm ground. 

References: 

1. N.Wirth. The programming language PASCAL. Acta Informatica 1, 
35-63 (1971). 

2. N.Wirth. Modula: a language for modular multiprogramming. 
Software-Practice and Experience, 7, 3/35 (1977). 

3. J.G.Mitchell, W. Maybury, R.Sweet. Mesa Language Manual. 
Xerox PARC, CSL-78-1, (1978). 

2. Notation for syntactic description 

To describe the syntax, an Extended Backus-Naur Formalism called 
EBNF is used. Syntactic entities (non-terminal symbols) are denoted 
by English words expressing their intuitive meaning. Symbols of the 
language (terminal symbols) either are words written in capital 
letters, or they are strings enclosed in quote marks. Each 
syntactic rule (production) has the form 

S = E. 

where S is a syntactic entity and E is a syntax expression denoting 
the set of sentential forms (sequences of symbols) for which S 
stands. An expression E has the form 

Tl T2 1 Tn (n > 0) 

where the Ti are the terms of E. Each Ti stands for a set of 
sentential forms, and E denotes their union. Each term T has the 
form 

Fl F2 .•. Fn (n > 0) 

where the Fi are the factors of T. Each Fi stands for a set of 
sentential forms, and T denotes their concatenation. The 
concatenation of two sets of sentences is the set of sentences 
consisting of all possible concatenations of a sentence from the 
first factor followed by a sentence from the second factor. Each 
factor F is either a (terminal or non-terminal) symbol, or it is of 
the form [ E ] denoting the union of the set E and the empty 
sentence, or { E ) denoting the union of the empty sequence and 
E, EE, EEE, .... Parentheses may be used for grouping te(ms and 
factors. 

EBNF is capable of describing its own syntax. We use it here as an 
example: 



syntax 
production 
expression 
term 
factor 

- 5 -

{ production}. 
NTSym "•" expression " " 
term {"I" term}. 
factor {factor}. 
TSym 1 NTSym 1 "(" expression ")" 
"[" expression ")" 1 "{" expression "}" 

3. Vocabulary and representation 

A language is an infinite set of sentences (programs), namely the 
sentences well formed according to its syntax. Each sentence 
(program) is a finite sequence of symbols from a finite vocabulary. 
The vocabulary of Modula-2 consists of identifiers, numbers, 
strings, operators, and delimiters. They are called lexical 
symbols or tokens, and in turn are composed of sequences of 
characters. (Note the distinction between symbols and characters.) 
The representation of symbols in terms of characters depends on the 
underlying character set. The ASCII set is used in this paper, and 
the following lexical rules must be observed: 

1. Identifiers are sequences of letters and digits. The first 
character must be a letter. 

$ ident • letter {letter 1 digit}. 

Examples: 
X scan Module ETH GetSymbol firstLetter 

2. Numbers are (unsigned) integers. Integers are sequences of 
digits. If the number is followed by the letter B, it is taken as 
an octal number; if it is followed by the letter C, it denotes the 
character with the given (octal) ordinal number (and is of type 
CHAR). 

$ number • integer. 
$ integer • digit {digit} 1 octalDigit {octalDigit} ("B" l "C"). 

Examples: 
1 1978 1777778 33C 

3. Strings are sequences of characters enclosed in quote marks. 
Both double quotes and single quotes (apostrophes) may be used as 
quote marks. However, the opening and closing marks must be the 
same character, and this character cannot occur within the string. 

$ string • "'" {character} "'" 1 "" {character} "" • 

Examples: 
"MODULA" "Don't worry!" 'codeword "Barbarossa"' 

4. Operators and delimiters are the special characters, character 
Pairs, or reserved words listed below. These reserved words consist 



- 6 -

exclusively of capital letters and MUST NOT be used in the role of 
identifiers. 

+ AND EXPORT PROCEDURE 
# ARRAY FOR QUALIFIED 

* < BEG IN FROM RE CORD 
/ > BY IF REPEAT 
& <= CASE IMPORT RETURN 

>= CONST IN SET 
DEFINITION LOOP THEN 
DIV MOD TO 
DO MODULE TYPE 
ELSE NOT UNTIL 
ELSIF OF VAR 
END OR WHILE 

·= EXIT POINTER WITH 

5 . Blanks must not occur within symbols (except in strings). Blanks 
and line breaks are ignored unless they are essential to separate 
two consecutive symbols. 

6. Comments may be inserted between any two symbols in a program. 
They are arbitrary character sequences opened by the bracket (* and 
closed by *). Comments may be nested, and they do not affect the 
meaning of a program. 

4. Declarations and scope rules 

Every identifier occurring in a program must be introduced by a 
declaration, unless it is a standard identifier. The latter are 
considered to be predeclared, and they are valid in all parts of a 
program. For this reason they are called pervasive. Declarations 
also serve to specify certain permanent properties of an object, 
such as whether it is a constant, a type, a variable, a procedure, 
or a module. 

The identifier is then used to refer to the associated object. This 
is possible in those parts of a program only which are within the 
so-called scope of the declaration. In general, the scope extends 
over the entire block (procedure or module declaration) to which 
the declaration belongs and to which the object is local. In the 
case of types, however, it extends from the declaration itself to 
the end of the block. The scope rules are modified in the following 
cases: 

1. If the object is local to a module and is exported, the scope 
is extended over that part of the block or module to which the 
identifier is exported and, for types, which textually follows 
the exporting module. 

2. Field identifiers of a record declaration (see 6.5) are va lid 
only in field designators and in with statements referring to a 
variable of that record type. 

3. A type Tl can be used in a declaration of a pointer 
type T (see 6.7) which textually precedes the declaration of Tl, 



- 7 -

if both T and Tl are declared in the same block (module). 

An identifier may be qualified. In thi s case it is prefixed by 
another identifier which designates the module (see Sect. 11) in 
which th e oualified identifier is defined. The prefix and the 
identifier are separated by a period. 

s o ualident = ident { 11.11 ident}. 

The f o llowing are standard identifiers: 

ABS (10. 2) INC ( 10. 2) 
ADR ( 10. 2) INCL ( 10. 2) 
ASH ( 10. 2) INTEGER ( 6 .1) 
BITS ET ( 6. 6) HALT ( 10. 2) 
BOOLEAN ( 6 .1) HIGH ( 10. 2) 
CAP (10. 2) 
CARDINAL (6 .1) NEW (10. 2) 
CHAR (6 .1) NIL ( 6. 7) 
DEC (10. 2) ODD ( 10. 2) 
DISPOSE (10. 2) SIZE (10. 2) 
EXCL ( 10. 2) STRING ( 10 .1) 
FALSE ( 6 .1) TRUE (6 .1) 

5. Constants 

A constant declaration associates an identifier with a constant 
value. 

S ConstantDeclaration = ident "=" constant. 
S constant = qual ident 1 [ "+ '' 1 "-"] number 1 string 1 set. 
S set = [qualident] "{" [element {"," element}] "}". 
S element = constant [" .. " constant]. 

Every constant is said to be of a certain type. Non-negative 
integers are of type CARDINAL (see 6 . 1), negative integers of type 
INTEGER. A single-character string is of type CHAR, a string 
consisting of n>l characters is of type (see 6.4) 

ARRAY 0 .. N OF CHAR (where N = n-1). 

In the case of sets the identifier preceding the left brace 
specifies the type of the set. If it is omitted, the standard type 
BITSET is assumed (see 6.6). 

6. Types 

A data type determines a set of values which variables of that type 
may assume, ~nd it associates an identifier with the type. In the 
case of structured types, it also defines the structure of 
variables of this type. There are three different structures, 



- 8 -

namely arrays, records, and sets. 

$ TypeDeclaration = ident "=" type. 
$ type = SimpleType 1 ArrayType / RecordType / SetType 
$ PointerType / ProcedureType. 
$ SimpleType = qualident / enumeration 1 SubrangeType. 

Examples: 

Color 
Index 
Card 
No de 

Tint 
TreePtr 
Function 

6 .1. Basic types 

(red, green, blue) 
1 .. 80 
ARRAY Index OF CHAR 
RECORD key: CARDINAL; 

left, right: TreePtr 
END 
SET OF Color 
POINTER TO Node 
PROCEDURE(CARDINAL): CARDINAL 

The following basic types are predeclared and den o ted by s tandard 
identifiers: 

INTEGER A variable of type INTEGER assumes as values th e 
integers between -32768 and +32767. 

CARDINAL A variable of type CARDINAL assumes a s values the 
integers between 0 and 65535. 

BOOLEAN A variable of this type assumes the truth values 
TRUE or FALSE. These are ~he only values of this 
type which is predeclared by the enumeration 

BOOLEAN = (FALSE, TRUE) 
CHAR A variable of this type assumes as values characters 

of the ASCII character set. 

6.2. Enumerations 

An enumeration is a list of identifiers that denote the values 
which constitute a data type. These identifiers are used as 
constants in the program. They, and no other values, belong to 
this type. The values are ordered, and the ordering relation is 
defined by their sequence in the enumeration. 

$ enumeration = "(" IdentList ")". 
$ IdentList = ident {"," ident } . 

Examples of enumerations: 

(red, green, blue) 
(club, diamond, heart, spade) 
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday) 



- 9 -

6.3. Subrange types 

A type T may be defined as a subrange of another, non-structured 
type Tl by specif ication of the least and the highest value in the 
subrang e . 

$ SubrangeType constant " .. " constant. 

The first constant specifies the lower bound, and must not be 
greater than the upper bound. The type Tl of the bounds is called 
the base type of T, and all operators applicable to operands of 
type Tl are also applicable to operands of type T. However, a value 
to be assigned to a variable of a subrange type must lie within the 
specified interval. If the lower bound is a non-negative integer, 
the base type of the subrange is taken to be CARDINAL; if it is a 
negative integer, it is INTEGER. 

A type Tl is said to be compatible with a type T, if either Tl is 
egual to T, or if Tl or T (or both) are subranges of the same 
(base) type. 

Examples of subrange types: 
0 99 

.;A" 

Monday 
1; z II 
Friday 

6.4. Array types 

An array is a structure consisting of a fixed number of components 
which are all of the same type, called the component type. The 
elements of the array are designated by indices, values belonging 
to the so-called index type. The array type declaration specifies 
the component type as well as the index type. The latter must be 
an enumeration, a subrange type, or the basic types BOOLEAN or 
CHAR. 

$ ArrayType =ARRAY SimpleType {"," SimpleType} OF type. 

A declaration of the form 

ARRAY Tl, T2, .•• , Tn OFT 

with n index types Tl •.• Tn must be understood as an abbreviation 
for the declaration 

APPAY Tl OF 
ARRAY T2 OF 

ARRAY Tn OF T 



Examples of array types: 

AFFAY 0 .. 99 OF CARDINAL 
ARRAY 1 .. 10, 1 .. 20 OF 0 .. 99 
ARRAY -10 .. +10 OF BOOLEAN 
ARRAY WeekDay OF Color 
ARRAY Color OF WeekDay 

6.5. Record types 

- 10 -

A record type is a structure consisting of a fixed number of 
components of possibly different types. The record type declaration 
specifies for each component, called field, its type and an 
identifier which denotes the field. The scope of these so-called 
field identifiers is the record definition itself, and they are 
also accessible within field designators (cf. 8 .1) refering to 
components of record variables. 

A record type may have several variant sections, in which case the 
first field of the section is called the tag field . Its value 
indicates which variant is assumed by the section. Individual 
variant structures are identified by so-called case labels. These 
labels are constants of the type indicated by the tag field. 

$ RecordType = RECORD FieldListSequence END. 
$ FieldListSequence = FieldList {";" FieldList}. 
$ FieldList = [IdentList ":" type 1 

$ CASE [ident ":"] qualident OF variant {"I" variant} 
$ [ ELSE FieldListSequence l END l. 
$ variant= CaseLabelList ":" FieldListSequence. 
$ CaseLabelList = CaseLabels {"," CaseLabels}. 
$ CaseLabels = constant [" .. " constant]. 

Examples of record types: 

RECORD day: 1 .. 31; 
month: 1 .. 12; 
year: 0 .. 2000 

END 

RE CORD 
name,firstname: ARRAY 0 .. 9 OF CHAR; 
age: 0 .. 99; 
sex: (male, female) 

END 

RECORD x,y: T0; 
CASE tag0: Color OF 

red: a: Trl; b: Tr2 
green: c: Tgl; d : Tg2 
blue: e: Tbl; f: Tb2 

END; 
z: T0; 
CASE tagl: BOOLEAN OF 



END 
END 

TRUE: u,v: INTEGER 1 

FA LSE: r,s: CARDINAL 

- 11 -

The example above contains two variant sections. The variant of the 
first section is indicated by the value of the tag field tag0, the 
one of the seco nd section by the tag field tagl. 

RE CORD 
CJISE BOOLEAN OF 

END 
END 

TRUE: i: INTEGER (*signed*) 
FALSE: r: CARDINAL (*urrsigned*) 

This example shows a record structure without fixed part and with a 
variant part with missing tag field. In this case the actual 
variant assumed by the variable cannot be derived from the 
variable's value itself. This situation is sometimes appropriate, 
but must be programmed with utmost care. 

6.6. Set types 

A set type defined as SET OF T comprises all sets of values of its 
base type T. This must be a subrange of the integers between 0 and 
15, or a (subrange of an) enumeration type with at most 16 values. 

$ SetType = SET OF SimpleType. 

The following type is standard: 

BITSET =SET OF 0 .. 15 

6.7. Pointer types 

Variables of a pointer type P assume as values pointers to 
variables of another type T. The pointer type P is said to be 
bound to T. A pointer value is generated by a call to the standard 
procedure NEW (see 10.1). 

$ PointerType = POINTER TO type. 

Besides such pointer values, a pointer variable may assume the 
value NIL, which can be thought as pointing to no variable at all. 



- 12 -

6.8. Procedure types 

Variables of a procedure type T may assume as their value a 
procedure P. The (types of the) formal parameters of P must 
correspond to those indicated in the formal type list of T. 
not be declared local to another procedure, and neither can 
standard procedure. 

$ ProcedureType = PROCEDURE [FormalTypeList]. 
$ FormalTypeList = "(" [ [VAR] Formal Type 

P must 
it be a 

$ {"," [VAR] FormalType)] ")" [":" qualident] . 

7. Variables 

Variable declarations serve to introduce variables and associate 
them with a uniaue identifier and a fixed data type and structure. 
Variables whose identifiers appear in the same list all obtain the 
same type. 

$ VariableDeclaration = IdentList ":" type. 

The data type determines the set of values that a variable may 
assume and the operators that are applicable; it also defines the 
structure of the variab le. 

Examples of variable declaration~ _(refer to examples in Sect.6): 

i 'j : 
p,q: 
s' t: 
F: 
a: 
w: 

t: 

INTEGER 
BOOLEAN 
BITS ET 
Function 
ARRAY Index OF CARDINAL 
ARRAY 0 •. 7 OF 

RECORD eh : CHAR; 
count : CARDINAL 

END 
TreePtr 

8. Expressions 

Expressions are constructs denoting rules of computat i on for 
obtaining values of variables and generating new values by the 
application of Operators. Expressions consist of operands and 
operators. Parentheses may be used to express specific associations 
of operators and operands. 



- 13 -

8.1. Operands 

With the exception of literal constants, i.e. numbers, character 
strings, and sets (see Sect.5), operands are denoted by so-called 
designator s . A designator consists of an identifier referring to 
the constant, variable, or procedure to be designated. This 
identifier may possibly be qualified by module identifiers (see 
Sect. 4 and 11), and it may be followed by selectors, if the 
designated object is an element of a structure. If the structure is 
an array A, then the designator A[E] denotes that component of A 
whose index is the current value of the expression E. The index 
type of A must be compatible with the type of E. A designator of 
the form A[El, E2, ... , En] stands as an abbreviation for 
A[El] [E2] [En]. 

If the structure is a record R, then the designator R.f denotes the 
record field f of R. The designator P- denotes the variable which 
is referenced by the pointer P. 

S designator = qualident {"." ident 1 "[" ExpList "]~ 1 · - ·). 
S ExpList = expression {"," expression). 

If the designated object is a variable, then the designator refers 
to the variable's current value. If the object is a function 
procedure, a designator without parameter !ist refers to that 
procedure. If it is followed by {a possibly empty) parameter !ist, 
the designator implies an activation of the procedure and stands 
for the value resulting from its execution, i.e. for the so-called 
"returned" value. The {types of these) actual parameters must 
correspond to the formal parameters as specified in the procedure's 
declaration {see Sect. 10). 

Examples of designators {see examples in Sect.7): 

i 
a [ i J 
w [3] .eh 
t - .key 
t - .left - .right 

8.2. Operators 

{INTEGER) 
{CARDINAL) 
{CHAR) 
{CARDINAL) 
{TreePtr) 

The syntax of expressions specifies operator precedences according 
to four classes of operators. The operatör NOT has the highest 
precedence, followed by the so-called multiplying operators, then 
the so-called adding operators, and finally, with the lowest 
precedence, the relational operators. Sequences of Operators of the 
same precedence are executed from left to right. 

S expression = SimpleExpression [relation SimpleExpression]. 
S relation = "=" 1 "#" 1 "<=" 1 "<" 1 ">" 1 ">=" 1 IN . 
S SimpleExpression = ("+"l"-"l term {AddOperator term}. 
S AddOperator = "+" 1 "-" 1 OR . 
S term = factor {MulOperator factor} . 



- 14 -

$ MulOperator = "*" 1 "/" 1 DIV 1 MOD 1 AND 1 "&". 
$ factor = number 1 string 1 set 1 designator [ActualParameters] 
$ " (" express ion ") " 1 NOT factor. 
$ ActualParameters = "(" [ExpList] ")" . 

The available operators are listed in the following tables. In some 
instances, several different operations are designated by the same 
operator symbol. In these cases, the actual operation is identified 
by the types of the operands. 

8.2.1. Integer operators 

symbol 

+ 

* 
DIV 
MOD 

operation 

addition 
subtraction 
multiplication 
division 
modulus 

These operators apply to operands of type INTEGER, CARDINAL, or 
subranges thereof. Both operands must be either of type CARDINAL or 
a subrange with non-negative lower bound, in which case the result 
is of type CARDINAL, or they must both be of type INTEGER or a 
subrange with a negative lower bound, in which case the result is 
of type INTEGER. If (at least) one operand is a constant in the 
range 0 <= c < 32768, the type of the constant is taken as that of 
the other operand. 

When used as operators with a single operand only, - denotes sign 
inversion and + denotes the identity operation. 

The operations DIV and MOD are defined by the following rules: 
x DIV y is equal to the truncated quotient of x/y 
x MOD y is equal to the remainder of the division x DIV y 
x = (X DIV y) * y + (x MOD y) 

8.2.2. Logical operators 

symbol 

OR 
AND 
NOT 

operation 

logical conjunction 
logical disjunction 
negation 

These operators apply to BOOLEAN operands and yield a BOOLEAN 
result. The symbols & and AND are synonyms. 

p OR q 
p AND q 

means 
means 

"if p then TRUE, otherwise q" 
11 if p then q, otherwise FALSE'' 



8.2.3. Set operators 

symbol 

+ 

* 
/ 

- 15 -

operation 

set union 
set difference 
set intersection 
symmetric set difference 

These operations apply to operands of any set type and yield a 
resu 1 t of the same type. 

x IN (sl + s2) iff (X IN sl) OR (X IN s2) 
X IN (sl - s2) i ff (x IN sl) AND NOT (X IN s2) 
x IN (sl * s2) iff (x IN sl) AND (x IN s2) 
x IN (sl / s2) iff (X IN sl) # (x IN s2) 

8.2.4. Relations 

Relations yie ld a BOOLEAN result. The ordering relations apply to 
the basic types INTEGER, CARDINAL, BOOLEAN, CHAR, to enumerations, 
and to subrange types thereof. 

symbol 

# 
< 
<= 
> 
>= 
IN 

relation 

equal 
unequal 
less 
less or equal 
greater 
greater or equal 
contained in 

(set inclusion) 

(set inclusion) 
(set membership) 

The relations = and # also apply to sets and pointers. If applied 
to sets, <= and >= denote (improper) inclusion. The relation IN 
denotes set membership. In an expression of the form x IN s, the 
expression s must be of type SET OF T, where T is (compatible with) 
the type of x. 

Examples of expressions (refer to examples in Sect.7): 

1978 
i DIV j 
NOT p OR q 
(i+j) * (i-j) 
(s*t) - (8,9,13) 
a[i] + a[j] 
a[i+j] * a[i-j] 
(0<=i) & (i<l00) 
t' .key = 0 
(13 .. 15) <= s 
i IN (0, 5 .. 8, 15) 

(CARDINAL) 
(INTEGER) 
(BOOLEAN) 
(INTEGER) 
(BITSET) 
(CARDINAL) 
(CARDINAL) 
(BOOLEAN) 
(BOOLEAN) 
(BOOLEAN) 
(BOOLEAN) 



- 16 -

9. Statements 

Statements denote actions. There are elementary and structured 
statements. Elementary statements are not composed of any parts 
that are themselves statements. They are the assignment, the 
procedure call, and the return and exit statements. Structured 
statements are composed of parts that are themselves statements. 
These are used to express sequencing, and conditional, selective, 
and repetitive execution. 

$ statement = [assignment 1 ProcedureCall 1 

$ IfStatement 1 CaseStatement 1 WhileStatement 1 

$ RepeatStatement 1 LoopStatement 1 ForStatement 
$ WithStatement 1 EXIT 1 RETURN [expression) ) . 

A statement may also be empty, in which case it denotes no action. 
The empty statement is included in order to relax punctuation rules 
in statement sequences. 

9.1. Assignments 

The assignment serves to replace the current value of a variable by 
a new value indicated by an expression. The assignment operator is 
written as ":=" and pronounced as "becomes". 

$ assignment = designator ":=" expression. 

The desig.nator to the left of the assignment operator denotes a 
variable. After an assignment is executed, the variable has the 
value obtained by evaluating the expression. The old value is lost 
("overwritten"). The type of the variable must be compatible with 
the type of the expression. CARDINAL and INTEGER are considered as 
compatible under assignment. 

A string of length nl can be assigned to a string variable of 
length n2 > nl. In this case, the string value is extended with a 
null character (0C). 

Examples of assignments: 

:= 0 
p := i j 
j := log2(i+j) 
F log2 
s : = {2,3,5,7,11,13) 

a [ i l := ( i+j) * (i-j) 
t- .key := 

w[i+l] .ch := "A" 



- 17 -

9.2. Procedure calls 

A procedure call serves to activate a procedure. The procedure call 
may contain a list of actual parameters which are substituted in 
place of their corresponding formal parameters defined in the 
procedure declaration (cf. 10). The correspondence is establ ished 
by the positions of the parameters in the lists of actual and 
formal parameters respectively. There exist two kinds oE 
parameters: variable and value parameters. 

In the case of variable parameters, the actual parameter must be a 
designator. If it designates a component of a structured variable, 
the selector is evaluated when the formal/actual parameter 
substitution takes place, i.e. before the execution of the 
procedure. If the parameter is a value parameter, the corresponding 
actual parameter must be an expression. This expression is 
evaluated prior to the procedure activation, and the resulting 
value is assigned to the formal parameter which now constitues a 
local variable. The types of corresponding actual and formal 
parameters must be equal in the case of variable parameters and 
compatible in the case of value parameters. 

S ProcedureCall = designator [ActualParameters]. 

Examples of procedure calls: 

Readinteger(i) 
Writeinteger(j*2+1,6) 
INC (a [ i]) 

9.3. Statement sequences 

(see Sect.10) 

Statement seouences denote the sequence of actions specified by the 
component statements which are separated by semicolons. 

S StatementSeouence = statement {";" statement}. 

9.4. If statements 

S IfStatement = IF expression THEN StatementSequence 
S {ELSIF expression THEN StatementSequence} 
S [ELSE StatementSequence] END. 

The expressions following the symbols IF and ELSIF are of type 
BOOLEAN. They are evaluated in the sequence of their occurrence, 
until one yields the value TRUE. Then its associated statement 
sequence is executed. If an ELSE clause is present, its associated 
statement sequence is executed if and only if all Boolean 
expressions yielded the value FALSE. 

Example: 



- 18 -

IF (eh >= "A") & (eh <= "Z") THEN Readidentifier 
ELSIF (eh >= "0") & (eh <= "9") THEN ReadNumber 
ELSIF eh= '"' THEN ReadString('"') 
ELSIF eh= "'" THEN ReadString("'") 
ELSE SpeeialCharaeter 
END 

9.5. Case statements 

Case statements speeify the seleetion and exeeution of a statement 
sequenee aeeording to the value of an expression. First the ease 
expression is evaluated, then the statement sequenee is exeeuted 
whose ease label list eontains the obtained value. The type of the 
ease expression must not be struetured. No value must oeeur more 
than onee as a ease label. If the value does not oeeur as a label 
of any ease, the statement sequenee following the symbol ELSE is 
seleeted. 

$ CaseStatement = CASE expression OF ease {"I" ease} 
$ [ELSE StatementSeauenee) END. 
$ ease = CaseLabelList ":" StatementSequenee. 

Example: 
CASE i OF 

END 

0: p := p OR q; x := x+y 
1: p := p OR q; x := x-y 
2: p := p AND q; x := x*y 

9.6. While statements 

While statements speeify the repeated exeeution of a statement 
sequence depending on the value of a Boolean expression. The 
expression is evaluated before eaeh subsequent exeeution of the 
statement sequenee. The repetition stops as soon as this evaluation 
yields the value FALSE . 

$ WhileStatement = WHILE expression DO StatementSequence END. 

Examples: 
WHILE x > 0 DO 

X := X DIV 2; 
END . 

WHILE a # b DO 

:= i+l 

IF a > b THEN a := a-b 
ELSE b := b-a 

END 
END 

WHILE (t # NIL) & (t' .key # i) DO 
t := t ' .left 



- 19 -

END 

9.7. Repeat statements 

Repeat statements specify the repeated execution of a statement 
sequence depending on the value of a Boolean expression. The 
expression is evaluated after each execution of the statement 
sequence, and the repetition stops as soon as it yields the value 
TRUE. Hence, the statement sequence is executed at least once. 

$ RepeatStatement = REPEAT StatementSequence UNTIL expression. 

Example: 
REPEAT k : = 
UNTIL j = 0 

MOD j; : = j; := k 

9.8. For statements 

The for statement indicates that a statement sequence is to be 
repeatedly executed while a progression of values is assigned to a 
variable. This variable is called the control variable of the for 
statement. 

$ ForStatement = FOR ident ":=" expression TO expression 
$ [BY constant] DO StatementSequence END. 

The for statement 

FOR v := A TO B BY C DO SS END 

expresses repeated execution of the statement sequence SS with v 
successively assuming the values A, A+C, A+2C, ••. , A+nc, where 
A+nc is the last term not surpassing B. v is called the control 
variable, A the starting value, B the limit, and C the increment. 
A, B, and v must be of compatible types; C must be a (possibly 
signed) integer. If no increment is specified, it is assumed to be 
1. 

Examples: 
FOR 
FOR 

:= 0 TO 99 DO s := s+a[i] 
:= 99 TO l BY -1 DO a[i) := 

9.9. Loop statements 

END 
a[i-1) END 

A loop statements specifies the repeated execution of a statement 
sequence. It is terminated by the execution of any exit statement 
within that sequence. 

$ LoopStatement = LOOP StatementSequence END. 



Example: 

- 20 -

LOOP 
IF tl" .key >X THEN t2 := tl" .left; p := TRUE 

ELSE t2 := tl" .right; p := FALSE END 
IF t2 = NIL THEN EXIT END 
tl := t2 

END 

While, repeat, and for statements can be expressed by loop state­
ments containing a single exit statement. Their use is recommended 
as they characterize the most frequently occurring si tuations where 
termination depends either on a single condition at either the 
beginning or end of the repeated statement sequence, or on reaching 
the limit of an arithmetic progression. The loop statement is, 
however, necessary to express the continuous repetition of cyclic 
processes, where no termination is specified. It is also useful to 
express situations exemplified above. Exit statements are 
contextually, although not syntactically bound to the loop 
statement which contains them. 

9.10. With statements 

The with statement specifies a record variable and a statement 
sequence. In these statements the qualification of field 
identifiers may be omitted, if they are to refer to the variable 
specified in the with clause. 

$ WithStatement = WITH designator DO StatementSequence END . 

Example: 
WITH t DO 

key := 0; left := NIL; right := NIL 
END 

9.11. Return and exit statements 

A return statement consists of the symbol RETURN, possibly followed 
by an expression E. It indicates the termination of a procedure. E 
specifies the value returned as result of a function procedure, and 
its type must be the result type specified in the procedure heading 
(see Sect. 10). 

Function procedures require the presence of a return statement 
indicating the result value. There may be several, although only 
one will be executed. In proper procedures, a return statement is 
implied by the end of the procedure body. An explicit return 
statement therefore appears as an additional, probably exceptional 
termination point. 

An exit statement consists of the symbol EXIT, and it specifies 
termination of a loop statement and continuation with the statement 
following the loop statement (see 9.9). 



- 21 -

10. Procedures 

Procedure declarations consist of a procedure heading and a block 
which is said to be the procedure body. The heading specif ies the 
procedure identifier and the formal parameters. The block contains 
declarations and statements. The procedure identifier is repeated 
at the end of the procedure declaration. 

There are two kinds of procedures, namely proper procedures and 
function procedures. The latter are activated by a function call as 
a constituent of an expression, and yield a result that is an 
operand in the expression. Proper procedures are activated by a 
procedure call. The function procedure is distinguished in the 
declaration by indication of the type of its result following the 
parameter list. Its body must contain a RETURN statement which 
defines the result of the function procedure. 

All constants, variables, types, modules and procedures declared 
within the block that constitutes the procedure body are local to 
the procedure. The values of local variables, including those 
defined within a local module, are not defined upon entry to the 
procedure. Since procedures may be declared as local objects too, 
procedure declarations may be nested. Every object is said to be 
declared at a certain level of nesting. If it is declared local to 
a procedure at level k, it has itself level k+l. Objects declared 
in the module that constitutes the program are defined to be at 
level 0. 

In addition to its formal parameters and local objects, also the 
objects declared in the environment of the procedure are known and 
accessible in the procedure {with the exception of those objects 
that have the same name as objects declared locally). 

The use of the procedure identifier in a call within its 
declaration implies recursive activation of the procedure. 

$ ProcedureDeclaration = ProcedureHeading ";" block ident. 
$ ProcedureHeading = PROCEDURE ident [FormalParameters). 
$ block = {declaration) [BEGIN StatementSequence) END. 
$ declaration = CONST {ConstantDeclaration ";") 1 

$ TYPE {TypeDeclaration ";") 1 

$ VAR {VariableDeclaration ";") 1 
$ ProcedureDeclaration ";" 1 ModuleDeclaration ";". 

10.1. Formal parameters 

Formal parameters are identifiers which denote actual parameters 
specified in the procedure call. The correspondence between formal 
and actual parameters is established when the procedure is called. 
There are two kinds of parameters, namely value and variable 
parameters. The kind is indicated in the formal parameter list. 
Value parameters stand for local variables to which the result of 



22 -

evaluating the eorresponding aetual parameter is assigned as 
initial value. Variable parameters eorrespond to aetual parameters 
that are variables, and they stand for these variables. Variable 
parameters are indieated by the symbol VAR, value parameters by th~ 
absenee of the symbol VAR. 

Formal parameters are loeal to the proeedure, i.e. their s e ope is 
the program text whieh eonstitutes the proeedure deelaration. 

$ FormalParameters = 
$ "(" [FPSeetion {";" FPSeetion}] ")" [":" qualident]. 
$ FPSeetion = [VAR] IdentList ":" Formal Type. 
$ FormalType = [ARRAY OF] qualident. 

The type of eaeh formal parameter is speeified in the parameter 
list. In the ease of variable parameters it must be the same as 
that of its eorresponding aetual parameter (see Seet. 9.2), in the 
ease of value parameters the formal type must be assignment 
eompatible with the aetual type (see 9.1). If the parameter is an 
array, the form 

ARRAY OF T 

may be used, where the speeifieation of the aetual index bounds is 
omitted. T must be eompatible with the element type of the aetual 
array, and the index range is mapped onto the integers 0 to N-1, 
where N is the number of elements. The formal array ean be aeeessed 
elementwise only, or it may oeeur as aetual parameter whose formal 
parameter is without speeified index bounds. The standard formal 
type STRING is defined as 

STRING = ARRAY OF CHAR 

A funetion proeedure without parameters has an empt y parameter 
list. lt must be ealled by a funetion designator whose aetual 
parameter list is empty too. 

Restrietion: If a formal parameter speeifies a proeedure type, then 
the eorresponding aetual parameter must be either a proeedure 
deelared at level 0 or a variable (or parameter) of that proeedure 
type. lt eannot be a standard proeedure. 

Examples of proeedure deelarations: 

PROCEDURE Readlnteger(VAR x: CARDINAL); 
VAR i: CARDINAL; eh: CHAR; 

BEGIN i:=0; 
REPEAT ReadChar(eh) 
UNTIL (eh >= "0") & (eh <= "9"); 
REPEAT i := 10*i + (INTEGER(eh)-INTEGER("0")); 

ReadChar(eh) 
UNTIL (eh < "0") OR (eh > "9"); 
X : = i 

END Readlnteger 

PROCEDURE Writelnteger(x,n: CARDINAL); 
VAR i,q: CARDINAL; 



- 23 -

buf: ARRAY 1 .. 10 OF CARDINAL; 
BEGIN i := 0; q := x; 

REPEAT i := i+l; buf[i] q MOD 10; q := q DIV 10 
UNTIL q = 0; 
WHILE n > i DO 

WriteChar(" "); DE C (n) 
END ; 
REPEAT WriteChar(buf[i]); DEC(i) 
UNTIL i = 0 

END Writelnteger 

PROCEDURE log2(x: CARDINAL): CARDINAL; 
VAR y: CARDINAL; 

BEGIN x := x-1; y := 0; 
WHILE x > 0 DO 

x := x DIV 2; y := y+l 
END ; 
RETURN y 

END log2 

10.2. Standard proeedures 

Standard proeedures are predefined. Some are so-ealled generie 
proeedures that eannot be explieitly deelared, i.e. they apply to 
elasses of operand types or have several possible parameter list 
forms. Standard proeedures are 

ABS(x) 
ADR(v) 
ASH(x,n) 
CAP(eh) 

HIGH(a) 
ODD(x) 
SIZE (x) 

DEC(x) 
DEC(x,n) 
EXCL (s, i) 
INC (x) 
INC(x,n) 
INCL (s, i) 
HALT 

absolute value; result type = argument type 
address of variable v 
n >= 0: X* (2**n), n < 0: X DIV (2**(-n)) 
if eh is a lower ease letter, the eorresponding 
eapital letter; if eh is a eapital letter, 
the same letter 
high index bound of array a 
x MOD 2 # 0 
size of variable x 

X := x-1 
X := x-n 
s := s - { i) 
X := x+l 
X := x+n 
s := s + { i} 
terminate program exeeution 

NEW(p) 
DISPOSE(p) 
NEW(p,tl,t2, 
DISPOSE(p,tl,t2, 

SYSTEM.ALLOCATE(p,S) 
SYSTEM.DEALLOCATE(p,S) 
SYSTEM.ALLOCATE(p,S) 
SYSTEM.DEALLOCATE(p,S) 

The proeedures INC and DEC also apply to operands x of enumeration 
types and of type CHAR. In these eases they replaee x by its (n-th) 
sueeessor or predeeessor. NEW and DISPOSE are abbreviations for 



procedures defined in a module called SYSTEM (see also Sect. 13); S 
denotes the size of the variables referenced by the pointer p, and 
tl, t2, ... are possible tag field values, if the referenced 
variable has a variant record structure. 

11. Modules 

A module constitutes a collection of declarations and a sequence of 
statements. They are enclosed in the brackets MODULE and END. The 
module heading contains the module identifier, and possibly a 
number of so-called import-lists and a so-called export-list. The 
former specify all identifiers of objects that are declared outside 
but used within the module and therefore have to be imported. The 
export-list specifies all identifiers of objects declared within 
the module and used outside. Hence, a module constitutes a wall 
around its local objects whose transparency is strictly under 
control of the programmer. 

Objects local to a module are said to be at the same scope level as 
the module. They can be considered as being local to the procedure 
enclosing the module but residing within a more restricted scope. 

$ ModuleDeclaration = 
$ MODULE ident [priority] ";" {import} [expert] block ident. 
$ priority ="["integer"]". 
$ expert EXPORT [QUALIFIED) IdentList ";". 
$ import [FROM ident] IMPORT IdentList ";". 

The module identifier is repeated at the end of the declaration. 

The statement sequence that constitutes the module body (block) is 
executed when the procedure to which the module is local is called. 
If several modules are declared, then these bodies are executed in 
the sequence in which the modules occur. These bodies serve to 
initialize local variables and must be considered as prefixes to 
the enclosing procedure's statement part. 

If an identifier occurs in the import (expert) list, then the 
denoted object may be used inside (outside) the module as if the 
module brackets did not exist. If, however, the symbol EXPORT is 
followed by the symbol QUALIFIED, then the listed identifiers must 
be prefixed with the module's identifier when used outside the 
module. This case is called qualified expert, and is used when 
modules are designed which are to be used in coexistence with other 
modules not known a priori. Qualified expert serves to avoid 
clashes of identical identifiers exported from different modules 
(and presumably denoting different objects). 

A module may feature several import lists which may be prefixed 
with the symbol FROM and a module identifier. The FROM clause has 
the effect of "unqualifying" the imported identifiers. Hence they 
may be used within the module as if they had been exported in 
normal, i.e. non-qualified mode. 



2.5 
- ~ -

Standard identifiers are always imported automatieally. As a 
eonseouenee, standard identifiers ean be redeelared in proeedures 
only, but not in modules, ineluding the main program. 

Examples of module deelarations: 

The followinq module serves to sean a text and to eopy it into an 
output eharacter sequenee. Input is obtained eharaeterwise by a 
proeedure inehr and delivered by a proeedure outehr. The eharaeters 
are given in the ASCII eode; eontrol eharaeters are ignored, with 
the exeeption of LF (line feed) and FS (file separator). They are 
both translated into a blank and eause the Boolean variables eoln 
(end of line) and eof (end of file) to be set respeetively. FS is 
assumed to be preeeded by LF. 

MODULE Linelnput; 
IMPORT inehr, outehr; 
EXPORT read, NewLine, NewFile, eoln, eof, lno; 
CONST LF = 12C; CR = 15C; FS = 34C; 
VAR lno: CARDINAL; (*line number*) 

eh: CHAR; (*last eharaeter read*) 
eof, eoln: BOOLEAN; 

PROCEDURE NewFile; 
BEG IN 

IF NOT eof THEN 
REPEAT inehr(eh) UNTIL eh FS; 

END; 
eof := FALSE; lno := 0 

END NewFile; 

PROCEDURE NewLine; 
BEG IN 

IF NOT eoln THEN 
REPEAT inehr(eh) UNTIL eh LF; 
outehr (CR); outehr (LF) 

END ; 
eoln := FALSE; INC(lno) 

END NewLine; 

PROCEDURE read(VAR x: CHAR); 
BEGIN (*assume NOT eoln AND NOT eof*) 

LOOP inehr (eh); outehr (eh); 
IF eh >= " " THEN 

x := eh; EXIT 
ELSIF eh = LF THEN 

x := " "; eoln := TRUE; EXIT 
ELSIF eh = FS THEN 

X := " "; eoln := TRUE; eof := TRUE; EXIT 
END 

END 
END read; 

BEGIN eof := TRUE; eoln := TRUE 
END Linelnput 



- 26 -

The next example is a module which operates a disk track 
reservation table, and protects it from unauthorized access. A 
function procedure NewTrack yields the number of a fre e track wh ich 
is becoming reserved. Tracks can be released by calling procedure 
ReturnTrack. 

MODULE TrackReservation; 
EXPORT NewTrack, ReturnTrack; 
CONST m = 64; w = 16; (*there are m*w tracks*) 
VAR i: CAFDINAL; 

free: ARRAY 0 .. 63 OF BITSET; 

PROCEDURE NewTrack(): INTEGER; 
{*reserves a new track and yields its index as result, 

if a free track is found, and -1 otherwise*) 
VAR i,j: CARDINAL; found: BOOLEAN; 

BEGIN found := FALSE; i := m; 
REPEAT DEC{i); j := w; 

REPEAT DEC{j); 
IF j IN free[i] THEN found:=TRUE END 

UNTIL found OR (j=0) 
UNTIL found OR {i=0); 
IF found THEN EXCL{free[i] ,j); RETURN i*w+j 

ELSE RETURN -1 
END 

END NewTrack; 

PROCEDURE ReturnTrack{k: CARDINAL); 
BEGIN {*assume 0 <= k < m*w *) 

INCL{free[k DIV w], k MOD w) 
END ReturnTrack; 

BEGIN (*mark all tracks free*) 
FOR i := 0 TO m-1 DO free[i] := {0 .. 15) END 

END TrackReservation 

12. Programs 

A unit of program text which is accepted by the compiler is called 
a program. lt has the form of a module declaration and is 
terminated by a period. 

$ program = [DEFINITION 1 ident] ModuleDeclaration ". " 

lt is possible to refer from one program module to other modules 
according to the import/export rules of modules. Program modules, 
howeve r, must spec i fy qua 1 if ied expor t. 

A program may be pref ixed by the symbol DEFINITION or by the 
identifier of a definition module . The former case cons ti t ul e s a 
so-called definition module, the latter a so-called implementation 
module. A definition module contains declarattons only . More 
specifically, it contains constant, type, and variable 
declarations, and procedure headings. Also, the statement part 



- 27 -

must be empty. 
syntax) . 

(Note: these rules are not reflected by the 

A module Ml prefixed with an identifier M of a definition module is 
said to implement (part of) M. Ml contains declarations of those 
procedures whose headings appear in the definition module M. All 
declarations of M are imported into Ml, even if not mentioned in 
the export list of M. 

A definition module is likely to be used in those cases where 
several, (perhaps separately compiled) modules are to be 
implementing the definition module, and where the definition module 
serves as a central basis and binding contract between the various 
implementor s. 

13. Processes 

Modula-2 is designed primarily for implementation on a conventional 
single-processor computer. For multiprogramming it offers only some 
very basic facilities which allow the specification of quasi 
concurrent processes and of genuine concurrency for peripheral 
devices. The ward "process" is here used with the meaning of 
"coroutine". Coroutines are processes that are served (executed) by 
a (single) processor one at a time. 

13.1. Creating a process, and transfer of control 

A new process is created by the procedure call 

NEWPROCESS(P,A,n,pl) 

P denotes the procedure which constitutes the process, 
A is the base address of the process' workspace, 
n is the size of this workspace, and 
pl a variable of type PROCESS 

A new process with Pas program and A·as workspace-of size n is 
assigned to pl. This process is allocated, but not activated. P 
must be a parameterless prbcedure declared at level 0. 

A transfer of control between two processes is specified by the 
call 

TRANSFER (pl ,p2) 

where pl and p2 are variables of type PROCESS. The effect of this 
call is to suspend the current process, assign it to pl, and to 
resume the process designated by p2. (Note: assignment to pl occurs 
after identification of new process p2; hence, the actual 
parameters may be identical). Evidently, p2 must have been assigned 
a process by an earlier call to either NEWPROCESS or TRANSFER. Both 



- 28 -

procedures, as well as the type PROCESS, must be imported from the 
module SYSTEM. 

A program terminates, when control reaches the end of a procedure 
which is the body of a process. 

In the following example a procedure called Reply is defined. It is 
used in a program with t~o processes in order to transmit 
"messages". One process is represented by the main program, the 
other is generated by a call to CallPartner. 

MODULE Conversation; 
FROM SYSTEM IMPORT 

PROCESS, PROC, NEWPROCESS, TRANSFER; 
EXPORT CreatePartner, Reply; 

VAR spr: PROCESS; (*suspended process*) 
msg: CARDINAL; 
wsp: ARRAY 0 .. 99 OF WORD; (*workspace*) 

PROCEDURE CallPartner(P: PROC): CARDINAL; 
BEGIN NEWPROCESS(P, ADR(wsp), SIZE(wsp), spr); 

TRANSFER(spr, spr); RETURN msg 
END CallPartner; 

PROCEDURE Reply(x: CARDINAL): CARDINAL; 
BEGIN msg := x; TRANSFER(spr, spr); RETURN msg 
END Reply; 

END Conversation 

13.2. Peripheral devices and interrupts 

Control of and communication with peripheral devices differs not 
only between devices, but in particular between different computer 
systems. The facilities described in this paragraph are specific 
for the PDP-11. 

Devices are controlled via so-called device registers. They are 
specif ied in a program as variables, and their identity is 
determined by their absolute address. This address is indicated as 
an integer enclosed in brackets immediately following the 
identifier in the variable declaration. The choice of an 
appropriate data type is left to the programmer. 

Example: 
VAR TWB [1775668]: CHAR; (*typewriter buffer*) 

If a device is to be operating under interrupt control, then 
initiation of the device operation is achieved by specific 
assignments to the appropriate register. This is followed by a 
call 

IOTRANSFER(pl,p2,va) 



- 29 -

where pl and p2 are variables of type PROCESS and va is the 
"interrupt vector" address of the device. This procedure must be 
imported from the module SYSTEM. The effect of the call is (in 
analogy to TRANSFER) to suspend the calling process, to assign it 
to pl, to transfer control to the process designated by p2, and 
additionally to prepare a return transfer to the calling process 
pl. This return transfer will be initiated by the interrupt signal 
emitted by the device associated with the interrupt vector at 
address va. The interrupt signal will suspend the current process, 
assign it to p2, and resume pl, from which the IO transfer had 
started. 

13.3. Interface modules 

Transfer of control between two processes occurs because of an 
intended, programmed interaction. Such interactions are normally 
accompanied by the transmittal of a message and/or the transfer of 
data via variables common to both processes. lt is a recommended 
practice to group the declarations of such common variables (like 
buffers) together with the procedures operating on these variables 
in a module, and to program transfers of control within that module 
only. This module is then called an interface module. 

If interrupts are utilized, the interface module has the additional 
and essential function to suppress all or some of the interrupts in 
order to prevent interference and to guarantee data integrity. In 
the case of the PDP-11, the heading of the module declaration may 
therefore specify a processor priority pp (namely 0 ... 7). This 
means that procedures declared within this module are executed with 
priority pp, effectively disabling interrupts from devices with 
interrupt level less than or equal to pp. 

Processes that represent device handlers (interrupt routines) are 
usually declared fully within an interface module. lt is the 
programmer's responsibility to ensure that its priority is that of 
the device as specified by the PDP-11 hardware. 

The following example shows a module interfacing with a process 
that acts as a driver for a typewriter. The module contains a 
buffer for N characters. 

MODULE Typewriter [4]; (*interrupt priority = 4*) 
FROM SYSTEM IMPORT 

PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER, LISTEN; 
EXPORT typeout; 

CONST N = 32; 
VAR n: 0 .. N; (*no. of chars in buffer*) 

in, out: 1. .N; 
B: ARRAY l .. N OF CHAR; 
PR: PROCESS; (*producer*) 
CO: PROCESS; (*consumer = typewriter driver*) 
wsp: ARRAY 0 .. 20 OF WORD; 
TWS (1775648]: BITSET; (*status register*) 



TWB [177566B]: CHAR; 

PROCEDURE typeout(ch: CHAR); 
BEG IN INC (n); 

30 
- )1 -

(*buffer register*) 

WHILE n > N DO LISTEN END ; 
B[in] := eh; in := in MOD N + l; 
IF n = 0 THEN TRANSFER(PR,CO) END 

END typeout; 

PROCEDURE driver; 
BEG IN 

LOOP DEC(n); 
IF n < 0 THEN TRANSFER(CO,PR) END ; 
TWB := B[out]; out := out MOD N + l; 
TWS := {6}; IOTRANSFER(CO,PR,64B); TWS := {} 

END 
END driver; 

BEGIN n := 0; in := l; out := l; 
NEWPROCESS(driver, ADR(wsp), SIZE(wsp), CO); 
TRANSFER(PR,CO) 

END Typewriter 



3~ 
- /() -

14. Index 

---- - ----
14 .1 Syntactic terms 
---------------------

llctualParameters 8.2 
AddOperator 8.2 
ArrayType 6.4 
assignment 9 .1 
block 10 
case 9.5 
CaseLabelList 6.5 
CaseLabels 6.5 
CaseStatement 9.5 
character 3 
constant 5 
ConstantDeclarati on 5 
declaration 10 
designator 8.1 
digit 3 
element 5 
enumeration 6.2 
ExpList 8.1 
export 11 
expression 8.2 
factor 8.2 
~'ieldList 6.5 
FieldListSequence 6.5 
FormalParameters 10.l 
Formal Type 10.l 
FormalTypeList 6.8 
ForStatement 9.8 
FPSection 10.l 
ident 3 
IdentList 6.2 
IfStatement 9. 4 
import 11 
integer 3 
letter 3 
LoopStatement 9.9 
ModuleDeclaration 11 
MulOperator 8.2 
number 3 
octalDigit 3 
PointerType 6.7 
priority 11 
program 12 
ProcedureCall 9.2 
ProcedureDeclaration 10 
ProcedureHeading 10 
ProcedureType 6.8 
qualident 4 
RecordType 6.5 
relation 8.2 
RepeatStatement 9.7 
set 5 



Set Type 
SimpleExpression 
SimpleType 
statement 
StatementSequence 
string 
SubrangeType 
term 
type 
TypeDeclaration 
VariableDeclaration 
variant 
WhileStatement 
WithStatement 

14.2 Semantic terms 

* 

actual parameter 
binding 
block 
comment 
compatible (type) 
component type 
control variable 
coroutine 
definition module 
device register 
EBNF 
empty statement 
export (list) 
field (of record) 
formal parameter 
implementation module 
import (list) 
index type 
lexical rule 
pervasive 
production 
qualified export 
reserved word 
scope 
standard identifier 
tag (field) 
token 
value parameter 
variable parameter 

6.6 
8.2 
6 
9 
3.3 
3 
6.3 
8.2 
6 
6 

- 32 -

7 
6.5 
9.6 
9.10 

9.2 
6.7 
4 
3.6 
6. 3 
6.4 
9.8 

13 
12 
13. 2 

2 
9 

11 
6.5 
9.2 

12 
11 

6.4 
3 
4 
2 

11 
3.4 
4 
4 
6.5 
3 
9.2 
9.2 



- 33 -

15. Syntax summary 

1 ident = letter {letter 1 digit). 
2 number = integer. 
3 integer = digit {digit) 1 octalDigit {octalDigit) ("B" l ''C"). 
4 string = '"" {character} "'" 1 "" {character) 
5 aualident = ident {"." ident}. 
6 ConstantDeclaration = ident "=" constant. 
7 constant = qualident 1 ["+''!"-"] number 1 string 1 set. 
8 set = [qualident] "{" [element {"," element}] "}". 
9 element = constant [" .. " constant]. 

10 TypeDeclaration = ident "= " type. 
11 type = SimpleType 1 ArrayType 1 RecordType 1 SetType 
12 PointerType 1 ProcedureType. 
13 SimpleType = qualident 1 enumeration 1 SubrangeType. 
14 enumeration = "(" IdentList ") ". 
15 IdentList = ident {"," ident}, 
16 SubrangeType = constant " . • " constant. 
17 ArrayType =ARRAY SimpleType {"," SimpleType} OF type. 
18 RecordType = RECORD FieldListSequence END. 
19 FieldListSequence = FieldList {";" FieldList), 
20 FieldList = [IdentList ":" type 1 

21 CASE [ident ":"] qualident OF variant {"I" variant} 
22 [ ELSE FieldListSequence ] END ] . 
23 variant = CaseLabelList ":" FieldListSequence. 
24 CaseLabelList = CaseLabels {"," CaseLabels). 
25 CaseLabels = constant [" .. " constant]. 
26 SetType = SET OF SimpleType. 
27 PointerType = POINTER TO type. 
28 ProcedureType = PROCEDURE [Forma.lTypeList]. 
29 FormalTypeList = "(" f[VAR] FormalType 
30 {"," [VAR] FormalType}] ")" [":" qualident]. 
31 VariableDeclaration = IdentList ":" type. 
32 designator = aualident {"." ident 1 "[" ExpList "]" 1 "l"}. 
33 ExpList = expression {"," expression). 
34 expression = SimpleExpression [relation SimpleExpression]. 
35 relation = "=" 1 "#" 1 "<=" 1 "<" 1 ">" 1 " >=" 1 IN . 
36 SimpleExpression = ["+"!"-"] term {AddOperator term}. 
37 AddOperator = "+" 1 "-" 1 OR . 
38 term = factor {MulOperator factor}. 
39 MulOperator = "*" 1 "/" 1 DIV 1 MOD 1 AND 1 "&". 
40 factor = number 1 string 1 set 1 designator [ActualParameters] 
41 • (" express ion ")" 1 NOT factor. 
42 ActualParameters = "(" [ExpList] ")" . 
43 statement = [assignment 1 ProcedureCall 1 
44 IfStatement 1 CaseStatement 1 WhileStatement 1 

45 RepeatStatement 1 LoopStatement 1 ForStatement 
46 WithStatement 1 EXIT 1 RETURN [expression] ] . 
47 assignment = designator ":=" expression. 
48 ProcedureCall = designator [ActualParameters]. 
49 StatementSequence = statement {";" statement}. 
50 IfStatement = IF expression THEN StatementSequence 
51 {ELSIF expression THEN StatementSequence} 
52 [ELSE StatementSequence] END. 
53 CaseStatement = CASE expression OF case {"I" case} 
54 [ELSE StatementSequence] END. 
55 case = CaseLabelList ":" StatementSequence. 
56 WhileStatement = WHILE expression DO StatementSequence END. 
57 FepeatStatement = REPEAT StatementSequence UNTIL expression. 



- 34 -

58 ForStatement = FOR ident ":=" expression TO expression 
59 [BY constant) DO StatementSequenc e END. 
60 LoopStatement = LOOP StatementSequence END. 
61 WithStat e me nt = WITH designator DO StatementSequence END 
62 Pr ocedureDeclaration = ProcedureHeading ";" block ident. 
63 Pr ocedureHeading = PROCEDURE ident [FormalParameters). 
64 bl oc k = {declaration} [BEGIN StatementSequenc e] END. 
65 dec laration = CONST {ConstantDeclaration ";"} 1 

66 TYP E {TypeDeclaration ";"} 1 

67 VAR {Va riableDeclaration ";"} 1 

68 Pr ocedureDeclaration ";" 1 ModuleDeclarati o n "; " 
69 Fo rmalParameters = 
70 "(" [FPSection {";" FPSection}] ")" [":" qualident). 
71 FPS ec ti o n = [VAR) IdentList ":" FormalType. 
72 FormalType = [ARRAY OF) qualident. 
73 Modu leDe claration = 
74 MODULE ident [priority) ";" {import} [expert] block ident . 
75 priorit y = " ["integer " )". 
76 expert = EXPORT [QUALIFIED) IdentList "; " . 
77 import = [FROM ident] IMPORT IdentList " ;". 
78 pr og ram = [D EFINITION 1 ident] ModuleDeclaration " " 

a ssignment -47 43 
ActualParameters 48 -42 40 
AddOperat o r -37 36 
ArrayType -17 11 
block 74 -64 62 
case -55 53 53 
CaseLabelList 55 -24 23 
CaseLabels -25 24 24 
CaseStatement -53 44 
ConstantDeclar a tion 65 -6 
character 4 4 
constant 59 25 25 16 16 9 9 -7 

6 
declaration -65 64 
designator 61 48 47 40 -32 
digit 3 3 1 
ExpList 42 -33 32 
element -9 8 8 
enumeration -14 13 
expert -76 74 
expression 58 58 57 56 53 51 50 47 

46 41 -34 33 33 
factor 41 -40 38 38 
FieldList -20 19 19 
FieldListSequence 23 22 -19 18 
FormalParameters -69 63 
Formal Type -72 71 30 29 
FormalTypeList -29 28 
ForStatement -58 45 
FPSection -71 70 70 
IdentList 77 76 71 31 20 -15 14 
IfStatement -50 44 
ident 78 77 74 74 63 62 58 3 2 



- 34 -

21 15 15 10 6 5 5 -1 
import -77 74 
integer 75 -3 2 
LoopStatement -60 45 
letter 1 l 
ModuleDeclaration 78 -73 68 
MulOperator -39 38 
number 40 7 -2 
octalDigit 3 3 
priority -75 74 
program -78 
PointerType - 27 12 
ProcedureCall -48 43 
ProcedureDeclaration 68 -62 
ProcedureHeading -63 62 
ProcedureType -28 12 
qualident 72 70 32 30 21 13 8 7 

-5 
relation -35 34 
!lecordType -18 11 
RepeatStatement -57 45 
Set Type -26 11 
SimpleExpression -36 34 34 
SimpleType 26 17 17 -1 3 11 
StatementSequence 64 61 60 59 57 56 55 54 

52 51 50 -49 
SubrangeType -16 13 
set 40 -8 7 
statement 49 49 -43 
string 40 7 -4 
term -38 36 36 
type 31 27 20 17 -11 10 
TypeDeclaration 66 -10 
VariableDeclaration 67 -31 
variant -23 21 21 
WhileStatement -56 44 
WithStatement -61 46 



Berichte des Instituts für Informatik 

* Nr. 1 

* Nr. 2 

Nr. 3 

Nr . 4 

* Nr. 5 

* Nr. 6 

Nr . 7 

Nr . 8 

* Nr. 9 

Nr . 10 

Niklaus Wirth: 

Niklaus Wirth: 

Peter Läuchli: 

Walter Gander, 
Andrea Mazzario: 

Niklaus Wirth: 

C.A.R . Hoare, 
Niklaus Wirth: 

Andrea Mazzario , 
Luciano Molinari: 

E . Engeler, 
E. Wiedmer, E. Zachos: 

Hans-Peter Frei: 

K.V. Nori, U. Ammann, 
K. Jensen, H. H. Nägeli, 
Ch. Jacobi: 

The Programming Language Pascal 

Program development by step-wise ref inement 

Reduktion elektrischer Netzwerke und Gauss'sche 
Elimination 

Numerische Prozeduren 

The Programming Language Pascal (Revised Report) 

An Axiomatic Definition of the Language Pascal 

Numerische Prozeduren II 

Ein Einblick in die Theorie der Berechnungen 

Computer Aided Instruction: The Author Language and 
the System THALES 

The Pascal 'P' Compiler: Implementation Notes 
(Revised Edition) 

Nr. 11 G.I. Ugron , F.R . Lüthi: Das Informations-System ELSBETH 

Nr. 12 Niklaus Wirth: 

* Nr. 13 Urs Ammann: 

Nr. 14 Karl Lieberherr: 

*Nr. 15 Erwin Engeler: 

Nr, 16 Willi Bucher: 

Nr. 17 Niklaus Wirth: 

* Nr . 18 Niklaus Wirth: 

* Nr. 19 Niklaus Wirth: 

Nr . 20 Edwin Wiedrner: 

* Nr. 21 J . Nievergelt , 
H.P. Frei, et al.: 

Nr . 22 Peter Läuchli: 

Nr. 23 Karl Bucher: 

Nr. 24 Erwin Engeler: 

Nr . 25 Urs Ammann: 

Nr. 26 Efstathios Zaches: 

Nr . 27 Niklaus Wirth: 

* out of print 

PASCAL-S: A Subset and its Implementation 

Code Generation in a PASCAL Compiler 

Toward Feasible Solutions of NP - Complete Problems 

Structural Relations between Programs and Problem! 

A contribution to solving large linear systems 

Programming languages: what to demand and how to 
assess them and 
Professor Cleverbyte's visit to heaven 

MODULA: A language for modular multiprogramming 

The use of MODULA and 
Design and Implementation of MODULA 

Exaktes Rechnen mit reellen Zahlen 

XS-0, a Self-explanatory School Computer 

Ein Problem der ganzzahligen Approximation 

Automatisches Zeichnen von Diagrammen 

Generalized Galois Theory and its Application to 
Complexity 

Error _Recovery in Recursive Descent Parsers and 
Run-time Storage Organization 

Kombinatorische Logik und S-Terme 

MODULA-2 





. , 






