
ETH Library

Interactive cuts through 3-
dimensional soft tissue

Report

Author(s):
Bielser, Daniel; Maiwald, Volker A.; Gross, Markus

Publication date:
1998

Permanent link:
https://doi.org/10.3929/ethz-a-006653048

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
CS technical report 309

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006653048
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Interactive Cuts through 3-Dimensional Soft Tissue

Daniel Bielser, Volker A. Maiwald, Markus H. Gross

Computer Science Department
ETH Zurich, Switzerland

e-mail: {bielser, grossm}@inf.ethz.ch
http://www.inf.ethz.ch/department/IS/cg

C
S

Te
ch

ni
ca

l R
ep

or
t 3

09
, N

ov
em

be
r

11
, 1

99
8

Zurich¨
Technische Hochschule
Eidgenossische¨

Swiss Federal Institute of Technology Zurich
Politecnico federale di Zurigo
Ecole polytechnique federale de Zurich´ ´

Institute of Scientific Computing Computer Graphics Research Group

Interactive Cuts through 3-Dimensional Soft Tissue

Daniel Bielser, Volker A. Maiwald, Markus H. Gross

Department of Computer Science
Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

e-mail: {bielser, grossm}@inf.ethz.ch

ABSTRACT
We describe a physically based framework for real-time modeling
and interactive cutting of 3-dimensional soft tissue that can be used
for surgery simulation. Unlike existing approaches which are
mostly designed for tensorproduct grids our methods operate on
tetrahedral decompositions giving more topological and geometric
flexibility for the efficient modeling of complex anatomical struc-
tures. We start from an initial tetrahedralization such as being pro-
vided by any conventional meshing method. In order to track
topological changes tetrahedra intersected by the virtual scalpel
are split into substructures whose connectivity follows the trajec-
tory of the cut, which can be arbitrary. For the efficient computa-
tion of collisions between the scalpel and individual tetrahedra we
devised a local collision detection algorithm. The underlying phys-
ics is approximated through masses and springs attached to each
tetrahedral vertex and edge. A hierarchical Runge-Kutta iteration
computes the relaxation of the system by traversing the designed
data structures in a breadth-first order. The framework includes a
force-feedback interface and uses real-time texture mapping to
enhance the visual realism.

Keywords: Physically Based Modeling, Surgery Simulation, Soft
Tissue, Tetrahedralization, Interactive Cut, Virtual Scalpel, Runge
Kutta Method;

1 INTRODUCTION
Surgery simulation is an extremely challenging field of

research encompassing the efforts of various disciplines, including
Graphics, Vision, Mechanics, Robotics, and Medicine. With the
availability of low-cost 3D graphics hardware, systems for surgical
training or planning emerged from many research labs and are
partly in use as instrumental tools [6]. Besides the development of
advanced human computer interfaces for surgery simulation the
key research issues relate to the provision of advanced computa-
tional models for the real-time representation, deformation, and
rendering of soft tissue structures. In most cases, the ultimate goal
is to interactively manipulate high resolution 3D models. In order
to tackle this problem, we have to address two different aspects:
The first one relates to the development of efficient representations
of the underlying 3D geometry tolerating topological changes dur-
ing manipulation. The second one applies to the fast computation
of the physics of deformation, which, of course, has to balance
real-time performance against computational accuracy.

Due to the fundamental importance of the above issues consider-
able related work has been done in the Graphics and Vision com-
munities, part of which, however, in different application contexts.
The computationally most accurate methods for the modeling of
elastic soft tissue mostly use Finite Element procedures to solve
the corresponding governing equations. [2], for instance, develops
surface-based snakes to represent human organs. [9] conveys a
FEM based model for facial surgery simulation and extend it for
animating human emotions [10]. Full volumetric soft tissue mod-
els over tetrahedral discretizations can be found in [17]. The pow-
erful mathematical setting of FEM procedures, however, comes
along with the drawback of computational costs.

In order to make 3D soft tissue modeling real-time, different strat-
egies have been advocated. Most notably, [3] suggests methods to
accelerate the conventional FEM setting. Another interesting
approach is the 3D ChainMail, as introduced by [5]. Rather than
computing physical deformations on the fly, the method uses a
two-pass hybrid scheme, where in a first pass, pure geometric
deformation fields are applied. In the second pass, the tissue is
post-relaxed by some iterative solvers. The topology of the discre-
tization is restricted to tensor product grids. Others, like [11]
employ surface based mass-spring systems for their real-time sim-
ulators. Similar Euler type methods on regular grids are reported in
[19]. Pure geometric and topological manipulations based on
marching cubes techniques can be found in the algorithms of [16]
and [15], whose visual quality is amazing. In most approaches,
force feedback devices are utilized to implement the interface to
the user.

Furthermore, [12] for instance, developed a soft tissue model for
facial animation and [13] used mass-spring and particle systems
for the representation of human muscles. Other interesting work
can be found in [20] who devised an efficient collision detection
method for cloth simulation. Lately, [1] optimized implicit numer-
ical solution strategies for efficient use in cloth modeling.

In summary, existing real time cutting approaches are either
designed for surface based tissue models or they restrict the discre-
tization of the underlying continuum to a tensor product topology.
The major novelty of our framework lies in the fact that it operates
on irregular tetrahedral decompositions thus providing much more
topological and geometric flexibility for the efficient representa-
tion of complex anatomical structures. The required tetrahedraliza-
tion can be conveyed by any conventional meshing method,
including Delaunay or 3D progressive meshes as described in [7]
and [18]. In order to track the topological changes of the mesh
when cutting through the tissue, we split all intersected tetrahedra
into subsets of smaller simplices. The procedure follows the trajec-
tory of the scalpel, where in most cases collision detection can be
handled locally. The designed data structures allow a fast update of
the representation. Finally, a hierarchical fourth order Runge Kutta
relaxation drives the underlying governing equations. The iteration
step size is adapted to the distance from the current scalpel posi-
tion. We currently use a PHANToM® as a 6 degree of freedom
interface to the system.

Our paper is organized as follows: In section 2 we present an over-
view of our approach and describe its conceptual components.
Section 3 addresses the problem of efficient collision detection.
The procedures required to track and update geometric and topo-
logical changes are illuminated in section 4 and our numerical
solution strategies are detailed in section 5. Finally, we discuss the
performance and limitations of our framework in section 6. 1

1 In order to demonstrate the methods we have included some sample
software for the reviewers which runs both on Windows PCs and on SGI
workstations.

2 Overview
Fig. 1 depicts the fundamental components of our system. In order
to decouple the simulation pipeline from the force-feedback
device, we run different processes communicating via TCP/IP.
After each rendering step the current position and orientation of
the scalpel are read by the Read Force-Feedback module and trans-
ferred into the modeling pipeline. Then, a sequence of individual
processing steps has to be performed allowing one to eventually
render the scalpel and the soft tissue model. In a first step possible
collisions between the trajectory of the scalpel and individual
edges of the tetrahedral mesh have to be detected. In case of colli-
sions, all necessary geometric and topological changes of the
underlying tetrahedralization must be tracked and solved. The sub-
sequent relaxation step updates the mass-spring system enabling
tissue structures to open or deform when manipulated. In the fol-
lowing sections, we will describe the technical details of all com-
ponents presented below.

3 Collision Detection
The detection of interactions between the virtual scalpel and the
tetrahedral mesh is a substantial prerequisite for any further topo-
logical or geometric analysis and operates locally on a list of active
tetrahedra. Here, an active tertrahedron has at least one intersec-
tion point with the scalpel, which, for now, is represented by a thin
line. The list is updated at each time step . Fig. 2 shows two
consecutive scalpel positions over time. All active tetrahedra for
the scalpel position at time are drawn in black, whereas those at

are presented in yellow. The active tetrahedron containing
the point of the scalpel shall be named active point tetrahedron
(bold edges in Fig. 2). The swept surface bounded by the scalpel
positions at and and by the line between the two scalpel
points is colored in red. Assuming the time step to be suffi-
ciently small and approximating the swept surface by a plane the
collision detection reduces to finding a) intersections between the
approximating plane and the active tetrahedra edges and b) inter-
sections of the trajectory of the scalpel point and one of the faces
of the active point tetrahedron. As we will see, both computations
are needed to determine the topology of the tetrahedral splits
explained in Section 4.

Note, that an intersection between the trajectory and one of the
adjacent tetrahedral faces only occurs, if the scalpel point leaves
the old active point tetrahedron. This can be checked by an inside
test of the scalpel point. If this test fails we search the new active
point tetrahedron in the direct neighborhood of the old one by
applying similar inside tests. Of course, the success of this strategy
is based on the assumption that for sufficiently small time steps

the probability of finding the new active point tetrahedron in
the direct vicinity is very high. Therefore, the algorithm’s average

complexity is constant time O(1), albeit a global search is needed
to compute intersections in the worst case. After finding the new
active point tetrahedron we calculate the intersection of the trajec-
tory and the face shared by both. The pseudocode fragment drafted
below illustrates the algorithm.

determineNewActivePointTetrahedron(active_point_tetra)

if(InsideTetraTest(active_point_tetra) == TRUE)
return active_point_tetra

else
for all neighbor_tetra of active_point_tetra do

if(InsideTetraTest(neighbor_tetra) == TRUE)
return neighbor_tetra

for all tetra
if(InsideTetraTest(tetra) == TRUE)

return tetra

Note furthermore, that the global search could be substituted by
a recursive breadth-first traversal, however, the high hit rates
obtained in our experiments report no significant loss in speed
using a global search.

In a second step we determine the cut edges by calculating the
intersections between the swept surface and the edges of all old
active tetrahedra. Subsequently, for each active tetrahedron the
intersected edges are marked using a bitcode (cut-edge-code) con-
sisting of a bit for each of the six tetrahedral edges. This code is
stored for subsequent analysis. Again, a pseudocode fragment
illustrates the algorithm:

calculateEdgeIntersections()

for all old_active_tetra do
for all edge of old_active_tetra do

if(edge.cut == FALSE)
if(FaceIntersectionTest(edge) == TRUE)

edge.cut = TRUE

This procedure enables us to record possible topological changes
at time both using active simplices at and positional informa-
tion at and .

The last step consists of finding the new list of active tetrahedra.
Again, the spatial coherency allows us to devise an incremental
updating of the old active list given at time . Starting from the
active point tetrahedron we trace along the scalpel through all pen-
etrated tetrahedra at time . Those tetrahedra already found in
the old active list are kept, (in Fig. 2 only the first one behind the
new active point tetrahedron), others are removed and the newly
found tetrahedra are added. Here, we exploit the adjacency rela-
tions encoded in our data structure:

Figure 1: Conceptual components and data flow

Collision Detection

Relaxation

Rendering

Read Force-Feedback

Topology/Geometry
Changes

Force-Feedback Device

TCP/IP

Δt

ti
ti 1+

ti ti 1+
Δt

Δt

Figure 2: Local collision detection using a list of active tetrahedra

trajectory of the
scalpel point

surface swept by scalpel movement

= intersections of the

new active
tetrahedra old active

tetrahedra

old active point
tetrahedron

new active point
tetrahedron

scalpel position at
time ti 1+

scalpel position at
time ti

swept surface

= intersection of the
scalpel point
trajectory

ti ti
ti ti 1+

ti

ti 1+

buildNewActiveTetrahedraList()

old_active_tetra = first of old active tetra list

// recycle entries of the old active tetra list
while(IntersectionTest(old_active_tetra) == TRUE) do

new_active_tetra = old_active_tetra
old_active_tetra = old_active_tetra.next
new_active_tetra = new_active_tetra.next

// find and add newly active tetrahedra
exist_intersected_tetra = TRUE
while(exist_intersected_tetra == TRUE)

for all neighbor_tetra of new_active_tetra
exist_intersected_tetra = FALSE
if(IntersectionTest(neighbor_tetra) == TRUE)

exist_intersected_tetra = TRUE
new_active_tetra = neighbor_tetra
new_active_tetra = new_active_tetra.next

The described procedures are triggered once the scalpel pene-
trates the surface of the tissue structure.

4 Geometric and Topological Operations
After maintaining a list of active tetrahedra and retaining all infor-
mation about the intersection between the scalpel blade and the
edges, appropriate geometric and topological operations on the tet-
rahedra have to be carried out.

4.1 Cutting Tetrahedra
We start from the observation that there are only five topologically
different cases in which a tetrahedron can be cut during one inci-
sion. Fig. 3 exemplifies the five cases as occurring during a cut
trough a tetrahedral mesh, denoted by A through E. The cases A
and B represent a full cut and correspond to those used in the
marching tetrahedra algorithm [8]. In addition, we distinguish
between three types of slit tetrahedra distinguished by the number
of edge intersections (one in C, two in D and three in E).

Including all possible rotations and mirroring operations we end
up with four different subcases for A, three subcases for B, and six
for C, respectively. In addition, we obtain 12 combinations each
for cutting the two edges of case D and the three edges of case E.
For each of the five cases we first store the set of actions required
to establish the new mesh in a lookup-table entry. These actions
include the insertion of new massnodes, the assignment of their
connectivity, and the insertion of new faces. By rotating and mir-
roring these five entries we get all possible combinations of edge
intersections necessary to complement the lookup-table. The key
for the lookup-table, from where all required actions and topologi-
cal information can be taken, is the cut-edge-code described in sec-
tion 3.

4.2 Splitting Tetrahedra
In order to avoid individual subdivision procedures for each of the
five cases and to simplify implementation, we propose to apply a
generic 1:17 tetrahedral split, such as presented in Fig. 4. We
observe that all possible cases from section 4.1 can be mapped
onto this subdivision.

Note that Fig. 4 only depicts the topology of the split. For all edges
and faces, the correct geometry of a cut surface is computed by
replacing the indicated edge and face midpoints by the current
intersection points. Recall that this is exactly, where the results of
the collision detection computations from section 3 are used.

By referencing the edge midnodes twice and the face midnodes
three times the above subdivision scheme can be implemented as a
presplit tetrahedron. Fig. 5 illustrates the five parts of the presplit
tetrahedron according to the explained method.

4.3 Data Structures
In our implementation, we use the following data structures: Ini-
tially, the two references of the edge midnode (e.g. AB1 and AB2
in Fig. 5) and the three references of the face midnode (e.g. ABC1,
ABC2 and ABC3 in Fig. 5) point to the same node and glue the
pieces of the tetrahedron together. By defining a splitEdge and a
splitFace operator (Fig. 6) all the cuts can be represented. The
splitEdge operation is invoked for all edges that have to be cut. The
operation subdivides the initial nodal mass into two submasses

and assigns them to the corresponding vertices. Similar
operations hold for the splitFace procedure. A new mass is insertedFigure 3: 5 different topologies generated when cutting a tetrahedral mesh

A

B

C

D

E

Figure 4: Generic 1:17 split of a tetrahedron

A

C

D

B

edge midpoint

face midpoint

AB BD

CDAC

ABC

BC

AD

BCD

m
m1 m2,

and assigned to one of the edges (bold lines in Fig. 6). In both
cases we have to redistribute the masses according to the underly-
ing discretization and material settings. Here different algorithms
are possible including total mass preservation constraints.

The described approach enables one to use a single generic sub-
division for all five cases including the insertion of all new edges,
faces and masses. For efficient representation we store the split
operations defined above in a lookup-table, such as described in
Section 4.1. In general the operations splitEdge and splitFace are
sufficient to represent all tetrahedral splits. However, since we only
insert the visible cut-faces into the geometric representation we
have to store additional operations in the lookup-table. Fig. 7
shows a lookup-table entry for case D of Fig. 3.

Comparing the memory consumption of our datastructures to
typical tetrahedral meshes, the additional data is primarily required
for the representation of the mass-spring system and for the design
of efficient access methods.

Some limitations of the generic subdivision procedure deserve
further discussion: The first one relates to the potential existence of
hanging nodes having no connection to adjacent tetrahedra. This
may lead to cracks in the representation. However, due to the spa-

tial coherency of the scalpel trajectory we can avoid major visual
artifacts. Although it is possible to solve for all hanging nodes of
the representation by splitting adjacent tretrahedra appropriately,
we decided to balance accuracy against computational costs and
renounced this operation.

The second one relates to the fact that the splitting procedure of
the tetrahedra is invoked after completing the cut. This might lead
to minor positional and visual discontinuities.

5 Relaxation
As already pointed out the underlying physics is modeled by a
continuous relaxation of a damped mass-spring system. The
numeric solution strategies used to solve the second order differen-
tial equations have to find a trade-off between framerate con-
straints and numerical accuracy. In general, fast convergence
requires more computationally expensive schemes and leads to
lower framerates assuming one frame for each update cycle. The
relaxation algorithm presented in the following section is an
adapted fourth order Runge Kutta scheme for second order differ-
ential equations. We give an intuitive and geometric derivation of
the scheme and obtain correction terms which are similar to the
mathematically rigorous treatment in [4].

5.1 The Two-Level Runge Kutta Method
Mass-spring systems can be computed by any numerical method
solving the governing system of ordinary second order linear dif-
ferential equations of type

(1)

Given nodes the equation establishes the equilibrium of forces
for each of the of the diagonal mass matrix
with diag() =
and describes their positional movement =

over time . denotes the damping
and the stiffness matrix. and are sparse matrices, ele-
ment of consisting of matrices and

, respectively. is a vector of dimension and
represents the vector of external forces. It can be divided into 3-
dimensional vectors . The above system is solved by iterative
stepwise processing of each individual equation. To simplify nota-
tion, we will only consider the governing equation for a single
mass and omit all indices for the position .

Figure 5: Presplit tetrahedron according to the employed subdivision

Figure 6: a) SplitEdge operation, b) SplitFace operation

B

AB2

AB1

A

C

D

CD1

CD2

BD2

BD1

BC1

BC2

ABC3

ABC2

ABC1

AC1

AC2

AD1

AD2

ABC

BCD3

BCD2

BCD1

BCD

AB1

AB2
AB1

AB2

ABC1

ABC2

ABC3

ABC1

ABC2

ABC3

a)

b)

splitEdge(AB)

splitFace(ABC1)

m

m

m2

m2

m1

m1

Figure 7: Example of a lookup-table entry

cut-edge-code
 = AB|BC|BD|AC|CD|AD

action

48 = 110000 splitEdge(AB)
splitEdge(BC)

splitFace(ABC1)

insertFace(BC1, ABC1, BCD2)
insertFace(AB2, ABC1, ABD2)
insertFace(ABC1, BCD2, ABD2)
insertFace(BC2, ABC2, BCD2)
insertFace(AB1, ABC3, ABD2)
insertFace(ABC2, BCD2, ABD2)

ABC1

ABC2/3

BCD2ABD2
AB1

AB2
BC1

BC2

B

A

D

C

M
d2x t()

dt2
---------------⋅ D

dx t()
dt

-------------⋅ K x t()⋅+ + Fext=

n
mk M ℜ3n 3n×∈

M m1 m1 m1 m2 m2 m2 … mn mn mn, , , , , , , , ,[]
x t()

x1 t() x2 t() … xn t(), , ,[] t D
K D K

ℜ3n 3n× n Dk ℜ3 3×∈
Kk ℜ3 3×∈ Fext 3n

n
f k

mk k xk t()

In order to derive the method we divide the second order2 differ-
ential equation for a single mass into a system of two first
order differential equations by introducing the velocity function

.

(2)

Note that the vector-valued functions can be separated and
solved by calculating three scalar differential equations for each
component of and .

We assume that at time the equation has the initial values
and . Given the position

and velocity at time our goal is to compute the
values and respectively at the time .
We observe that there are two interdependent integration levels
which can be integrated using standard Runge Kutta steps, such as
known from [14]. Fig. 8 gives a pictorial representation of the dif-
ferent curves to be integrated during relaxation using the variables

, and as independent axes of a 3D Euclidean space. Conse-
quently, the curve lies in the bottom plane of the chart. An
approximation of this function requires the values of the tangent
vector. It can be obtained by the velocity (gradient) function v(t)
lying in the back plane of Fig. 8 with . Likewise,
an approximation of can be calculated by using the velocity
gradient which in turn requires values of .

The basic idea of the following method is to combine the two
integration levels by making use of the geometric corresponden-
cies illustrated in the chart.

Therefore, we construct the spatial parametric curve by
projecting the curve from the back plane onto the surface .
This surface is traced out by translation of along the -axis.
Note that defines the position and the velocity of
one spatial coordinate of the mass for each time .

Now, in order to solve the equation system (2), we integrate the
“3D” curve C(t) over time.

To this end, we introduce the gradient of given by

(3)

The method starts with the computation of the first intermediate
value by multiplying with half the stepsize (). The
intermediate value for is given correspondingly:

(4)

We compute a new intermediate guess for the gradient, say ,
by evaluating the acceleration at this position and continue in the
same fashion, we know well from Runge Kutta for first order equa-
tions [14].

Switching back from the scalar representations , and
into the vectorial world , and the complete

set of equations that make up the scheme can be summarized as
follows:

(5)

Here, the stand for the gradients in the bottom plane provid-
ing the desired estimations for the velocity, whereas the repre-
sent the gradients of the back plane function approximating the
acceleration.

The new position and velocity at time are calculated
straightforwardly by integration using the standard correction
terms from [14]:

(6)

5.2 Hierachical Breadth-First Traversal
Using the relations derived above the system is solved by itera-
tively calculating each mass position. As with standard Euler
schemes this procedure requires quadratic computational expense.
In order to further reduce the complexity of the method we added
the following two performance enhancements:

• exponential decay of the number of update cycles based on topo-
logical distance

• upper recursion bounds leading to local relaxation procedures

The traversal of the massnodes operates in a breadth-first manner,
starting from the current scalpel position, called
focus_of_traversal. The number of updates of the relaxation is
decreased exponentially with the topological distance of the asso-

2 The reader might distinguish from the “order” of the differential equa-
tion to be solved (=2) and the “order” of the Runge Kutta method (=4).

Figure 8: Geometric interpretation of the Runge-Kutta method adapted to second or-
der differential equations

mk

v t()

dx t()
dt

------------- v t()=

dv t()
dt

f k Dk v t()⋅– Kk x t()⋅–

mk
---=

x t() v t()
t0

x0 x t0()= v0 v t0()= xn x tn()=
vn v tn()= tn

xn 1+ vn 1+ tn 1+ tn Δt+=

x v t
x t()

vn 1 v t(),[]T=
v t()

an 1 a t(),[]T= x t()

Δt/2

v t()

x t()

v

x

t

C t()

S

vn

an

G

C t()
v t() S

x t() v
C t() x t() v t()

t

G C t()

G t() 1 v t() a t()
T

=

G tn() Δt 2⁄
C tn Δt 2⁄+()

tn
Δt
2
-----+ xn

Δt
2
----- vn⋅+ vn

Δt
2
----- an⋅+

T

G'

x t() v t()
a t() x t() v t() a t()

k1 vn=

l1 a tn xn vn,,()=

k2 l1 tΔ=

l2 a tn
tΔ

2
----- xn

tΔ
2
-----k1 vn

tΔ
2
-----l1+,+,+⎝ ⎠

⎛ ⎞=

k3 l2 tΔ=

l3 a tn
tΔ

2
----- xn

tΔ
2
-----k2 vn

tΔ
2
-----l2+,+,+⎝ ⎠

⎛ ⎞=

k4 l3 tΔ=

l4 a tn t xn tk3 vn tl3Δ+,Δ+,Δ+()=

ki
li

tn 1+

xn 1+ xn
tΔ

6
----- k1 2k2 2k3 k4+ + +()+=

vn 1+ vn
tΔ

6
----- l1 2l2 2l3 l4+ + +()+=

ciated node from the focus. This strategy is justified by the obser-
vation that due to the physics of deformation, most significant
changes of the continuum occur on average in the direct vicinity of
the applied external forces. Fig. 9 gives an illustration of the tra-
versal method.

Let indicate the topological distance of a massnode from the
focus_of_traversal measured in terms of the smallest number of
edges between them. The function defines the number of iter-
ation steps for the massnode as a function of and is set to
decrease exponentially.

Furthermore, we fix a maximum iteration depth to bound
the recursion. Starting with iteration steps for the
focus_of_traversal we receive

(7)

At each relaxation step a global time variable is increased by a
given increment . Storing a time stamp along with each node its
time increment is computed by subtraction of the stamp from the
global time variable. Consequently, those nodes are exposed to
time increments of size

(8)

For the calculation of the spring forces, the positions of the
neighbor nodes must be considered. These positions can be esti-
mated by using their velocity vector.

The computation of the nodal position includes a damping con-
stant which can slow down the convergence of the system for inap-
propriate settings. Therefore, we support penalty based damping as
well.

6 Results
The sequence of images presented in Fig. 10 shows four frames of
a cut through a grid of initially 576 tetrahedra. To enhance the
visual realism of the tissue, we applied texture mapping both for
exterior and for the interior faces generated during the cut. Dis-
placement boundary conditions were set along the left- and right-
hand sides of the volume. Fig. 113 gives a more detailed presenta-
tion of the topological changes of the mesh by depicting the wire
frame representations of the first and of the last frame of Fig. 10.

We observe that the tetrahedral splits follow the trajectory of the
scalpel. The number of simplices after the procedure grows to
2446.

To demonstrate the ability of our approach to support arbitrary
cutting trajectories on even coarse initial meshes Fig. 12 depicts
two additional examples based on 2x2x2 and 7x7x7 grids. In order
to simplify the construction of the initial meshes the presented
examples are based on tetrahedralizations of regular structures
using six tetrahedra per cell. However we emphasize, that the pre-
sented algorithms impose no restrictions on the initial mesh which
can be arbitrary.

Finally, Table 1 gives an idea of the algorithm’s performance
broken down into the different tasks. The time consumption of the
collision detection and of the geometric/topological operations is
relatively small compared to the relaxation and rendering proce-
dures. We can clearly verify that the hierarchical and localized
relaxation algorithms of section 5 lead to gracefully decreasing
framerates as a function of the initial mesh size.

Although the proposed method enables users to freely cut soft
tissue structures, there are two restrictions which have to be men-
tioned:

Since the collision-detection is based on the scalpel point posi-
tion, it must be the first part to enter the tissue. Likewise, the scal-
pel-point has to be the last one leaving the tissue.

In addition, no backward movement is supported in the current
setting, because each tetrahedron can only be processed once.

Conclusions and Future Work
We presented a framework for the representation and physically

based manipulation of volumetric soft tissue that is based on tetra-
hedral decompositions of the underlying continuum. The frame-
work encompasses several algorithms allowing the efficient
computation of all necessary steps including geometry, topology
and numerics. Thus, users can freely cut through three dimensional
soft tissue along almost arbitrary paths.

Our future work is primarily targeted at finding efficient solu-
tions for the described limitations. Specifically, the full avoidance
of cracks and visual discontinuities is an important direction. Fur-
ther research will be conducted towards a reduction of the substan-
tial increase of simplices during cutting. Additionally, the
migration from the line representation of the scalpel to a volume-
tric representation and the involved force-feedback simulation are
topics, we are interested in. Finally, alternative numeric solution
strategies will be subject of future research.

Acknowledgment
This research has been supported in part by the Swiss National

Science Foundation under grant No. 21-49247.96.

Figure 9: Hierachical breadth-first traversal strategy for efficient relaxation

s

i s()
s

focus

s = 1 s = 2

s = 3

focus_of_traversal (s = 0): N relaxation steps with stepsize Δt

topological distance s = 1, N/2 relaxation steps of stepsize Δt1 = 2Δt

topological distance s = 2, N/4 relaxation steps of stepsize Δt2 = 4Δt

topological distance s = 3, N/8 relaxation steps of stepsize Δt3 = 8Δt

edges

massnodes

smax
I

i s() I 2 s–⋅
0⎩

⎨
⎧

=
s smax≤

s smax>

Δt

Δts
Δt

i s()
---------=

3 We encourage the reviewers to verify the tetrahedral splits interac-
tively by using the “F”, “G” and “C” options of our demo software.

Table 1: System performance on a SGI Indigo 2, Impact with R10000,
180 MHz. The framerate is averaged over the cut. Notation: relaxation
(RX), rendering (RD), topology/geometric changes (GC) and collision
detection (CD).

number of
cells

initial
number of
tetrahedra

final
number of
tetrahedra

average
 frame-

rate RX RD GC CD

48 354 3.78 82.1 11.4 1.7 0.3

144 960 2.24 88.9 7.8 0.4 0.4

576 2446 1.14 92.2 4.9 0.1 0.5

2 2 2××

2 4 3××

4 6× 4×

 percentage

Figure 10: Four frames of an interactive cut through a grid of cells

Figure 11: Mesh structures corresponding to frames a) and d) of Fig. 10

Figure 12: Examples of cuts: a) grid, b) grid

a) b)

c) d)

4 6 4××

a) b)

a) b)

2 2 2×× 7 7 7××

References
[1] D. Baraff and A. Witkin. “Large steps in cloth simulation.” In SIG-

GRAPH Proceedings, pages 43–54, 1998.
[2] M. Bro-Nielsen. “Modelling elasticity in solids using active cubes

- application to simulated operations.” In N. Ayache, editor, Com-
puter Vision, Virtual Reality and Robotics in Medicine, Lecture
Notes in Computer Science, pages 535–541. Springer-Verlag, Apr.
1995. ISBN 3-540-59120-6.

[3] M. Bro-Nielsen and S. Cotin. “Real-time volumetric deformable
models for surgery simulation using finite elements and condensa-
tion.” Computer Graphics Forum, 15(3):C57–C66, C461, Sept.
1996.

[4] L. Collatz. The Numerical Treatment of Differential Equations,
chapter 2, pages 61–73. Springer, 1966.

[5] S. F. Gibson. “3D Chainmail: a Fast Algorithm for Deforming
Volumetric Objects.” In Proceedings 1997 Symposium on Interac-
tive 3D Graphics, pages 149–154, Apr. 1997.

[6] M. H. Gross. “Graphics in medicine: From visualization to surgery
simulation.” In ACM Computer Graphics, volume 32, pages 53–
56, 1998.

[7] M. H. Gross, O. G. Staadt, and R. Gatti. “Efficient triangular sur-
face approximations using wavelets and quadtree data structures.”
In IEEE Transactions on Visualization and Computer Graphics,
volume 2, pages 130–143, 1996.

[8] P. S. Heckbert. Graphics Gems IV, chapter 4, page 329. 1994.
[9] R. M. Koch, M. H. Gross, D. von Bueren, G. Frankhauser,

Y. Parish, and F. Carls. “Simulating facial surgery using finite ele-
ment models.” In Proceedings of SIGGRAPH 96, pages 421–428,
1996.

[10] R. M. Koch, M. H. Gross, and A. A. Bosshard. “Emotion editing
using finite elements.” In COMPUTER GRAPHICS Forum,
volume 17, pages C295–C302, 1998.

[11] U. Kühnapfel, C. Kuhn, M. Hübner, H. Krumm, H. Maafl, and
B. Neisius. “The Karlsruhe endoscopic surgery trainer as an exam-
ple for virtual reality in medical education.” In Minimally Invasive
Therapy and Allied Technologies, volume 6, pages 122–125.
Blackwell Science Ltd., 1997.

[12] Y. Lee, D. Terzopoulos, and K. Waters. “Realistic face modeling
for animation.” In R. Cook, editor, SIGGRAPH 95 Conference
Proceedings, Annual Conference Series, pages 55–62. ACM SIG-
GRAPH, Addison Wesley, Aug. 1995.

[13] L. P. Nedel and D. Thalmann. “Real time muscle deformations
using mass-spring systems.” Computer Graphics International,
pages 156–165, 1998.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C, chapter 16, pages 710–714. Cam-
bridge University Press.

[15] K. D. Reinig, H. L. Pelster, V. M. Spitzer, T. B. Johnson, and T. J.
Mahalik. More Real-Time Visually and Haptic Interaction with
Anatomical Data, pages 155–158. IOS Press, 1997.

[16] K. D. Reinig, C. G. Rush, H. L. Pelster, V. M. Spitzer, and J. A.
Heath. Real-Time Visually and Haptically Accurate Surgical Sim-
ulation, chapter 60, pages 542–546. IOS Press, 1996.

[17] S. H. M. Roth, M. H. Gross, and F. R. C. S. Turello. “A bernstein-
bezier based approach to soft tissue simulation.” In COMPUTER
GRAPHICS Forum, volume 17, pages C285–C294, 1998.

[18] O. G. Staadt and M. H. Gross. “Progressive tetrahedralizations.” In
Proceedings of IEEE Visualization ’98, pages 397-402, 1998.

[19] N. Suzuki, A. Hattori, S. Kai, T. Ezumi, and A. Takatsu. “Surgical
planning system for soft tissues using virtual reality.” Medicine
Meets Virtual Reality, pages 159–163, 1997.

[20] P. Volino, M. Courchesne, and N. M. Thalmann. “Versatile and
efficient techniques for simulating cloth and other deformable
objects.” In SIGGRAPH Proceedings, pages 137–144, 1995.

