Report

Faulhaber's triangle

Author(s):
Torabi Dashti, Muhammad

Publication Date:
2011

Permanent Link:
https://doi.org/10.3929/ethz-a-006804427

Rights / License:
In Copyright - Non-Commercial Use Permitted
Faulhaber’s Triangle

Mohammad Torabi-Dashti

December 22, 2011

Like Pascal’s triangle, Faulhaber’s triangle is easy to draw: all you need is pen, paper and a little recursion. The rows of Faulhaber’s triangle are the coefficients of polynomials that represent sums of integer powers. Such polynomials are often called \textit{Faulhaber formulae} [2], after Johann Faulhaber (1580–1635); hence we dub the triangle Faulhaber’s triangle.

\textbf{Constructing Faulhaber’s triangle}

Draw a right triangle, similar to the one shown in Figure 1. Number the rows, starting with row 0; number the columns from left to right, starting with column 1. The numbers on row \(i \) are found using the following recursive rules:

\begin{itemize}
 \item The leftmost element of each row is chosen such that the row sums to 1. In particular, the only number on row 0 is 1.
 \item The element at row \(i \) and column \(j \) (\(1 < j \leq i + 1 \)) is found by multiplying the number directly above and to the left by \(\frac{i}{j} \).
\end{itemize}

\textbf{Sums of integer powers}

The sum of integer powers \(1^p + 2^p + \cdots + n^p \), with integers \(n, p \geq 0 \), is a polynomial in \(n \) of degree \(p + 1 \). That is \(f_p(n) = a_{p+1}n^{p+1} + a_p n^p + \cdots + a_1 n + a_0 \). Taking \(n = 0 \), it follows immediately that \(a_0 = 0 \). In order to find the coefficients of the polynomial, we draw Faulhaber’s triangle. Row \(p \) of the triangle gives the coefficients \(a_1, \cdots, a_{p+1} \).

1
Figure 1: Faulhaber’s triangle

row 0	1					
row 1	1/2	1/2				
row 2	1/6	1/2	1/3			
row 3	0	1/4	1/2	1/4		
row 4	-1/30	0	1/3	1/2	1/5	
row 5	0	-1/72	0	5/72	1/2	1/6
row 6	1/12	0	-1/6	0	1/2	1/7

For instance, to find \(f_4(n) \) we use row 4 of Figure 1:

\[
\begin{align*}
 a_1 &= -\frac{1}{30}, \\
 a_2 &= 0, \\
 a_3 &= \frac{1}{3}, \\
 a_4 &= \frac{1}{2}, \\
 a_5 &= \frac{1}{5}.
\end{align*}
\]

That is

\[
f_4(n) = \sum_{i=1}^{n} i^4 = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n.
\]

We now observe that \(f_p(n) \) is always of the shape

\[
\frac{1}{p+1}n^{p+1} + \frac{1}{2}n^p + a_{p-1}n^{p-1} + a_{p-3}n^{p-3} + \ldots,
\]

with all coefficients \(a_{p-2k} = 0 \) for \(k > 0 \). We also note that the numbers appearing on the vertical leg (leftmost column) of Faulhaber’s triangle are the Bernoulli numbers, namely \(B_0 = 1, \ B_1 = \frac{1}{2}, \ B_2 = \frac{1}{6}, \ B_3 = 0, \ B_4 = -\frac{1}{30}, \) etc. This is due to the well-know Bernoulli formula stating \(f_p(n) = \frac{1}{p+1} \sum_{i=0}^{p} \binom{p+1}{i} B_i n^{p+1-i}. \)

Why it works

Suppose the coefficient of \(n^a \) is \(\alpha \) in \(f_b(n) \), for some \(1 < a \leq b+1 \), and the coefficient of \(n^{a-1} \) in \(f_{b-1}(n) \) is \(\beta \). It can be shown that \(\alpha = \frac{b}{a} \beta \), cf. [1, 3]. In Faulhaber’s triangle, this corresponds to row \(b-1 \) containing \(\beta \) at column \(a-1 \), and row \(b \) containing \(\alpha \) at column \(a \). Note that our construction of Faulhaber’s triangle ensures \(\alpha = \frac{b}{a} \beta \).

Next, observe that \(f_p(1) = a_{p+1} + \cdots + a_1 = 1 \), for all \(p \), so that \(a_1 = 1 - (a_{p+1} + \cdots + a_2) \). This is the reason the leftmost element of each row is chosen such that the values on the row sum up to 1.

Now, by a straightforward induction, if the numbers on row \(p \) are the coefficients of \(f_p(n) \), then the numbers on row \(p + 1 \) are the coefficients
of $f_{p+1}(n)$. The base case is immediate, as $f_0(n) = n$.

References

