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Optimistic fair exchange using trusted devices ∗

Mohammad Torabi Dashti

Abstract

Efficiency of optimistic fair exchange using trusted de-

vices is studied. Pfitzmann, Schunter and Waidner

(PODC1998) have shown that four messages in the main

sub-protocol is optimal when exchanging idempotent

items using non-trusted devices. It is straightforward

that when using trusted devices for exchanging non-

idempotent items this number can be reduced to three.

This however comes at the cost of providing trusted de-

vices with an unlimited amount of storage. We prove

that exchanging non-idempotent items using trusted de-

vices with a limited storage capacity requires exactly

four messages in the main sub-protocol.

1 Introduction

Fair exchange protocols (hereafter called FE) aim at ex-

changing items in afair manner. Informally, fair means

that all involved parties receive a desired item in ex-

change for their own, or none of them does so. Deter-

ministic fair exchange protocols cannot be constructed

with no presumed trust in the system [6]. Therefore,

many FE protocols rely on impartial processes which

are trusted by all the protocol participants, hence called

trusted third parties (TTPs). In theoptimisticfamily of

FE protocols, normally the participants execute an op-

timistic (or, main) sub-protocol which does not involve

the TTP at all. However, if a failure maliciously or acci-

dentally occurs, the participants are provided with fall-

back scenarios, which enable them to recover to a fair

state with the TTP’s help. When failures are infrequent,
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optimistic protocols are preferred over those which in-

volve the TTP in each exchange.

In this paper, we study optimistic FE betweentrusted

computing devices(TDs). TDs, by construction, follow

their certified software, and are guaranteed to observe

the terms of use and distribution of digital contents.

These devices are nowadays becoming prevalent, par-

ticularly in entertainment and multimedia industries. A

very common application of TDs pertains to protecting

digital contents from unauthorized access (e.g. render-

ing a media file) and illicit distribution.

Using TDs in optimistic FE protocols is hardly new.

TDs have previously been used in order to enrich

services provided by FE protocols, e.g. for exchang-

ing time-sensitive data [25], for exchanging electronic

vouchers [21], and for robust efficient multi-party com-

putation, which is a general form of fair exchange [9].

Moreover, in [7] a class of FE protocols using TDs is

developed which also tolerate accidental failures of de-

vices. Note that TDs are not necessarily operated by

honest owners, and usually have to communicate over

insecure media. Therefore, using TDs does not entirely

obliterate the need for security protocols to ensure fair-

ness in exchange. One would however expect that using

TDs results in simpler, more efficient, or value-added

FE protocols. Our main contribution here is a negative

result concerning two-party FE between TDs: Using

TDs does not increase theefficiencyof optimistic fair

exchange protocols incommon practical scenarios. In

the following, we describe what is meant by efficiency

and common practical scenarios.

The premise of optimistic FE is that failures are in-

frequent, and consequently fallback sub-protocols are

executed rarely. Therefore, a meaningful measure of
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efficiency in these protocols is the number of messages

exchanged in the main sub-protocol. This number will

serve as our measure of efficiency for FE protocols as

well. As a convention we refer ton-message FE pro-

tocols, wheren refers to the number of messages ex-

changed in their optimistic sub-protocol.

Most existing protocols for fair exchange assume that

the items subject to exchange areidempotent, meaning

that receiving (or possessing) an item once is not dif-

ferent from receiving it multiple times [1, 17]. For in-

stance, once Alice gets access to Bob’s signature on a

contract, receiving it again does not add anything to Al-

ice’s knowledge. The idempotency assumption reflects

mass reproducibility of digital contents. Certain digital

items are however not idempotent. Electronic vouch-

ers [12, 11] are prominent examples of non-idempotent

items. Depending on the implementation, right tokens

in various digital rights management schemes are as

well digital non-idempotent items, e.g. see [3, 14, 22].

As mentioned above, a common approach to secure use

and dissemination of non-idempotent items is to limit

their distribution to TDs. We focus on practical scenar-

ios in which fair exchange between TDs needs to ensure

that non-idempotent items are not cloned arbitrarily.

Contributions. We confine to two-party exchange

protocols. Pfitzmann et al. [18] have shown that four

messages in the optimistic sub-protocol are sufficient

and necessary for secure fair exchange of idempotent

items between non-trusted devices. We show that when

exchanging non-idempotent items between TDs, the

number of messages in the optimistic sub-protocol can

be reduced to three. This would however come at a

cost which is often intolerable in practice: The TDs

need to keep record ofall their previous exchanges. If

TDs are provided with limited non-volatile storage ca-

pacity (hence not being able to store fingerprints of all

their previous exchanges), four messages in the main

sub-protocol are proved to be necessary. In order to

prove our minimality results, we give a knowledge-

based model of optimistic FE protocols between TDs.

Our formalization mainly follows [2]. Logics of knowl-

edge have proved to be a useful tool in deriving commu-

nication lower bounds in various distributed systems,

cf. [8].

Related work. In this paper, we investigate to which

extent using trusted computing devices can increase the

efficiency of optimistic FE protocols. The only papers

on the optimal efficiency of FE protocols, to our knowl-

edge, are [18] for two-party protocols, and [15] for pro-

tocols with more than two participants. The bounds de-

rived in these work are relevant for non-trusted partici-

pants, and their focus is on exchanging idempotent dig-

ital signatures over contracts.

Road map. Section 2 gives an informal introduc-

tion to optimistic FE protocols, idempotent and non-

idempotent items, TTP logic, etc. In section 3 we de-

velop a knowledge-based model for optimistic FE pro-

tocols using TDs. The main result of this section is to

formally determine theresolve patternof three-message

optimistic FE protocols, by proving that a TDp can suc-

cessfully complete an exchange only ifp knowsthat

his opponentq can also successfully complete the ex-

change. Intuitively, a resolve pattern describes alterna-

tives available to protocol participants in case they are

waiting for a message from their opponent and the mes-

sage does not arrive in time, or received messages at that

point do not conform with the protocol. Section 4 con-

cerns FE of non-idempotent items between TDs with

limited storage capacity. We give a four message proto-

col which satisfies the desired security requirements. To

prove that four messages in the optimistic sub-protocol

are necessary, we build upon the result of section 3 and

give a generic replay attack on all the three-message

protocols between TDs with limited storage which aim

at exchanging non-idempotent items. We also show that

the mentioned replay attack can be countered if TDs

possess an unlimited storage capacity, by presenting a

3-message protocol for this case. Section 5 concludes

the paper.
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2 An informal introduction to op-

timistic FE

Non-idempotent items. We consider electronic

vouchersas a generic model for non-idempotent items.

An electronic voucher, according to RFC 3506, is “a

digital representation of the right to claim goods or

services” [11]. A voucherv is a tuplev = (〈I, P 〉,H),

where I is the voucher’s issuer, who guarantees the

contents of the voucher,H is the voucher’s owner,

and P is I ’s promise to the owner of the voucher

(i.e. H). Voucher forgery and alteration are assumed

infeasible: No one, exceptI, can create〈I, P 〉, and

once it is created, no one can alterP . This can be

realized, e.g., using secure digital signature schemes.

Duplicating vouchers is nonetheless possible, and has

to be prevented.

Two voucher duplication scenarios are conceivable:

(1) local duplication, whereH, the owner of〈I, P 〉, du-

plicates the voucher for its own (excessive) use, and (2)

remote duplication, whereH ′, a device different from

H, gets a copy of〈I, P 〉 and stores it for its own use,

without H destroying its copy of the voucher. Using

TDs to store and spend vouchers can prevent local du-

plications. Security protocols designed for distribution,

exchange and use of vouchers are in charge of prevent-

ing remote duplications, by ensuring thatH destroys

(〈I, P 〉,H) beforeH ′ stores the voucher.

Trusted computing devices. Trusted devices are

tamper-proof hardware1 that, though possibly oper-

ated by malicious owners, follow only their embed-

ded sealed software. Trusted devices typically con-

tain a secure scratch memory and (a limited amount of)

non-volatile storage capacity. DeviceX maintains a

multiset of vouchersVX . Before adding the voucher

v = (〈I, P 〉, Y ) to VX , the device transformsv to

(〈I, P 〉,X).

1We do not address the problem of detecting, and revoking, tam-

pered trusted devices. An extensive body of work exists on this topic,

see e.g. [4].

The owner of a TD can deliberately turn the device

off, or permanently destroy it. We assume that TDs are

stateful: If a TD is abruptly turned off, it would resume

its previous state when turned on later. This can be real-

ized using various logging systems. For TDs, thus, we

assume the crash-recovery failure model with no amne-

sia, e.g. see [13]. For the moment, we ignore the possi-

bility that the owner delays, blocks or tampers with the

messages destined to the device, or transmitted by the

device. These issues are discussed within the system

and communication model below.

The TTP is a trusted device, which is immune to fail-

ures, and has access to an unlimited secure persistent

database. It is assumed that the identity of the TTP is a

common knowledge in the system.

A computing device which is not trusted, callednon-

trusted, can be faulty. In this case, it would follow the

Byzantine failure model.

System and communication model. We assume a

fully connected asynchronous message passing net-

work which connects all TDs; computations are asyn-

chronous, and communication delays, although being

finite, are not bounded. The communication channels

between any two deviceX andY are assumed to be

reliable, meaning:

• (resilience) No messages are lost in transition.

• (authenticity) A message delivered atY , has been

previously sent byX.

• (confidentiality) Messages sent fromX to Y are

readable only toY .

We remark that over reliable channels messagescanbe

delayed, reordered or replayed. These operations are

usually attributed to an omnipresentadversaryin the

system.

Authenticity and confidentiality2 can be guaranteed

using standard secure encryption and digital signature
2Note that confidentiality is an attribute for channels, but not an

attribute for messages transmitted over channels. For example, either

the sender or the receiver of a message transmitted over a confidential

channel may deliberately share the message with other participants.
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schemes, assuming a deployed secure public key infras-

tructure. Below, we discuss the prerequisites and impli-

cations of the resilience condition.

Assuming resilient channels, as observed in [1], is

unavoidable, in order to guarantee termination of FE

protocols (cf. Gray’s generals paradox). In practice, if

two principals fail to properly establish a channel over

computer networks, they can ultimately resort to other

communication means, such as various postal services.

These services, although being much slower, are very

reliable and well protected by law.

The resilience assumption may however seem to be

unrealistic when TDs are operated by malicious own-

ers, who may block messages destined to the devices.

Below, we argue that such communication failures are

subsumed in our device failure model and communica-

tion model. Assume thatX is a TD which expects to

receive a message. DeviceX either (1) has alternative

actions to take if the message does not arrive in time, or

(2) no such option is available. The effect of blocking

the message in case (1) is the same as delaying the mes-

sage in the communication network, which is allowed

in our model. As a convention, when a message is de-

layed long enough so that the intended recipient device

takes an alternative action, we say that the message has

beenintercepted. In case (2), however, the device would

not take any steps unless it receives that very message.

Preventing the message to ever arrive, thus, corresponds

to turning the device off; this is indeed allowed in our

device failure model (see above).

Optimistic fair exchange. Below, we briefly intro-

duce optimistic FE. For an extensive exposition of FE in

general see [1]. In the following, we opt for a high level

description that underlines the exchange patterns, and

for the moment we do not focus on exchanges between

TDs. Exact message contents are abstracted away, and

all messages are assumed to contain enough informa-

tion for protocol participants to distinguish different

protocol instantiations, and different roles in protocols.

Detailed specification of these issues is orthogonal to

our current purpose.

Optimistic protocols typically consist of three sub-

protocols:main or optimisticsub-protocol,abort sub-

protocol andrecoverysub-protocol. Figure 1 depicts a

generic main sub-protocol betweenA andB. The re-

gions in which the other two sub-protocols are alterna-

tive possibilities are numbered (1–4) in the figure. In the

main sub-protocol, that does not involve the TTP, the

agents firstcommitto release their items and then they

actually release them. The items subject to exchange,

and commitments are respectively denoted byiA, iB

andcA(iA), cB(iB). In figure 1 we havem1 = cA(iA),

m2 = cB(iB), m3 = iA andm4 = iB . If no fail-

ures occur, the participants exchange their items suc-

cessfully using the main sub-protocol.

If an expected message does not arrive in time, or

the arrived message does not conform to the protocol,

then the participant expecting that massage can resort

to the TTP using abort or recovery sub-protocols. Here

we introduce the notion ofresolve patterns. This no-

tion helps us in reasoning about optimistic FE proto-

cols. Consider again the generic four message protocol

shown in figure 1. A resolve pattern characterizes the

alternative sub-protocols which are available to partic-

ipants when they are waiting for a message from their

opponent in the main sub-protocol; namely, the alterna-

tive sub-protocols envisaged for points 1, 2, 3 and 4 in

figure 1.

Four different symbols can be assigned to a point in

the resolve pattern:abort (a), recovery(r), quit (q), and

none(−). Intuitively, a (r) means that the device can

initiate an abort (resolve) sub-protocol, andq means

that in case the expected message does not arrive in

time, the participant can safely quit the exchange. Nat-

urally, if no message has been exchanged, the partici-

pant quits the protocol, e.g.B is figure 1 quits the ex-

change, if it does not receive the first message in time.

A ‘none’ option (−) indicates that the participant has

no alternatives but following the optimistic protocol. It

will be proved later (in theorem 3) that ‘none’ options

undermine termination of optimistic FE protocol. This

is intuitively because TDs may crash and never send

the message their opponent is waiting for. When com-
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municating with the TTP (using resolve sub-protocols),

however, TDs know that the message they send to and

expect to receive from the TTP will be delivered in a fi-

nite time. This is due to resilience of the channels, and

the fact that the TTP is immune to failures (see TTP

assumptions, above). We use tuples for representing re-

solve patterns. For instance, a resolve pattern for the

protocol of figure 1 can beπ = (q, a, r, r); then we write

π1 = q, π2 = a, etc.

The resolve sub-protocols (abort/recovery) involve

the TTP. Without loss of generality we assume that the

participant sends its message history (all messages sent

and received up to now by the participant in the cur-

rent execution of the protocol) to the TTP, and based on

these the TTP either returns anabort tokenA, or a re-

covery tokenR. TokenA often has no intrinsic value;

it merely indicates that the TTP will never send anR

token in the context of the current exchange. TokenR

should however help a participant to recover to a fair

state. Although it is impossible forB alone to derive

iA from cA(iA) (and vice versa), it is often assumed

that the TTP can generateiA from cA(iA), andiB from

cB(iB), and thatR containsiA and iB . In case the

TTP cannot do so, usually an affidavit from the TTP

is deemed adequate, cf.weak fairness[17].

The TTP logic matching the resolve pattern(q, a, r, r)

for the protocol of figure 1 is also shown in figure 1. For

each exchanged item, the finite state (Mealy) machine

of the TTP is initially in theundisputedstatesU. If the

TTP receives a valid abort request (fromA) while be-

ing at statesU, then it sends back an abort token, and

moves toabortedstatesA. Similarly, if the TTP is in

statesU, and receives a valid resolve request (from ei-

ther A or B), then it sends backR, containingiA and

iB , and moves torecoveredstatesR. When the TTP is

in either ofsA or sR states, no matter it receives an abort

or a recovery request on this exchange, it consistently

replies withA or R, respectively.

Security requirements. A process iscorrectif it does

not deviate from the terms of the protocol; otherwise it

is faulty. In particular, a TD is correct if it does not

A B

m1 1

2 m2

3m3

4 m4

a

A

a,r

R

sU

sA

a,r

A

sR

r

R

Figure 1: Generic four message protocol (top); Abstract

Mealy machine of TTP (down)

crash. Due to our assumptions,TTP is always correct.

A fair exchange protocol issecureiff it satisfies the fol-

lowing conditions in presence of any number of faulty

processes [1]:3

• Timeliness: Any correct process can terminate the

protocol in a finite amount of time, with no help

from its opponent.

• Fairness: When the exchange terminates, ifA

owns iB (or R) andB does not owniA, then we

say the protocol isunfair for B. A protocol isfair

iff it is not unfair for any correct process.

• Functionality: IfA andB are correct, and commu-

nication delays are negligible, then theA getsiB

andB getsiA, with no contact to the TTP.

Furthermore, any secure protocol for exchanging

non-idempotent items (between TDs) has to guarantee

the following requirement [11]:

3Fairness is a safety trace property, timeliness is a livenesstrace

property, while functionality is not a trace property: It concerns exis-

tence of particular traces in the system.
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• No-duplication: The total number of instances of

any non-idempotent itemv is never increased in

the system (i.e. in theVX sets collectively main-

tained by TDs).

The scenario in which issuerI injects new vouchers to

the system is here considered to occur out-of-band. We

remark that assigning unique (serial) numbers to non-

idempotent items does not in general address the prob-

lem of ensuring no-duplication.

We recall the following theorem from [18].

Theorem 1. Four messages in the main sub-protocol

is sufficient and necessary for secure fair exchange of

idempotent items, using non-trusted computing devices.

Remark1. The four-message FE protocol that is given

in [18] as a witness has the resolve patternπin =

(q, a, r, r). It can easily be verified thatπin is the

only resolve pattern suitable for secure fair exchange

of idempotent items using non-trusted devices.

3 A formal model for optimistic

FE using TDs

We introduce a minimal formal system for reasoning

about FE protocols. The formalization mostly follows

the knowledge-based approach of [2], see also [8].

A formal model for protocols. For finite setΣ we

write Σ∗ for the set of all finite sequences of elements

of Σ, containing the empty sequenceǫ. Concatenation

of sequencesx andy is denotedxy. For two sequences

x, y ∈ Σ∗, we writex ≤ y iff x is a prefix ofy, i.e.

∃z ∈ Σ∗. xz = y; we writey−x for z. We writex < y

if x ≤ y andx 6= y. Theprefix closureof setY ⊆ Σ∗

is defined asY = {x ∈ Σ∗ | ∃y ∈ Y. x ≤ y}. SetY is

prefix closediff Y = Y .

We define the set of actions asAct = S ∪ S̄ ∪ I,

whereS, S̄ andI are pairwise disjoint, and respectively

contain the set of send, receive and internal actions. We

assume there is a bijective function.̄ : S → S̄ such that

∀s ∈ S. ā ∈ S̄. Intuitively, a ∈ S denotes the event

of sending a message, andā ∈ S̄ stands for the corre-

sponding receive event. Aprocessis a prefix closed

subset ofAct
∗. A protocol P is a finite number of

processes. We assume the set of actions appearing in

different processes are disjoint. This makes it possi-

ble to associate a unique process to each action. Let

x ∈ Act
∗, and writexp for the sequence of actions that

results fromx after erasing all the actionsnotperformed

by processp. We sayx is acomputationof protocolP

iff (1) for all p ∈ P, xp belongs to processp, and (2) any

ā ∈ S̄ which appear inx is preceded bya in x. It fol-

lows that computations of protocols are prefix closed.

That is, any protocol can be seen as a process in itself.

We writea ∈ x, with a ∈ Act , x ∈ Act
∗, if a appears

in x.

Let us fix a finite nonempty set of propositionsΦ, and

an interpretationfunction I : Act
∗ → Φ → {tt,ff}

which assigns truth values to the elements ofΦ, given a

computation. We augment the set of propositions with

the standard negation and disjunction operators, and

also a knowledge-based operatorE , in order to define

the syntax of our knowledge-based logicEL: (1) Every

element ofΦ is anEL formula; (2) If e is anEL for-

mula andp a process, thenEp(e) is anEL formula; (3)

If e ande′ areEL formulas, then so are¬e ande ∨ e′.

ReadEp(e) as “p knowse”.

In the following we introduce the notion ofisomor-

phism: Two computationx andy are isomorphic w.r.t.

processp iff xp = yp. Clearly the isomorphism relation

is an equivalence relation on the set of all computations.

Isomorphism is the core ofEL’s semantics: Processes

have only local views, and cannot therefore distinguish

computations which are isomorphic in their view [2].

Models ofEL formulas are computations.4 For com-

putationx andEL formulae, the relationx |= e is in-

ductively defined as:

• x |= e with e ∈ Φ iff I(x)e = tt.

4Executions of a protocol yield a Kripke structure, and we could

have defined the semantics ofEL based on these structures. This is

however unnecessary for our analyzes. We have thus opted forthe

simpler setting of computations as models ofEL formulas.
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• x |= Ep(e) iff y |= e for all computationsy that

are isomorphic tox w.r.t. p.

• x |= ¬e iff ¬(x |= e).

• x |= e ∨ e′ iff x |= e or x |= e′.

A formal model for fair exchange protocols using
TDs. Below, TDs are referred to as processes. We as-

sume that any processp which finishes the optimistic

sub-protocol successfully executes an internal action

⊤(p) and terminates: (Recall that the set of computa-

tions ofp is prefix closed.)

∀x ∈ p. ⊤(p) ∈ x =⇒ ¬∃y ∈ p. x < y

Since communications with the TTP are over reli-

able channels, and the TTP is indeed always correct,

we choose to model these communications as internal

actions for processes. We writeR(p) andA(p), with

p ∈ P, for receiving the recovery and abort tokens byp.

NotationQ(p) denotesp quiting the exchange. Imme-

diately after executing any of these actions, the process

terminates:

∀x ∈ p. A(p) ∈ x ∨ R(p) ∈ x ∨ Q(p) ∈ x

=⇒ ¬∃y ∈ p. x < y

This condition in particular implies that only one of

A(p), R(p) or Q(p) can appear in any executionx.

When a processp crashes it simply executes⊥(p)

and terminates:

∀x ∈ p. ⊥(p) ∈ x =⇒ ¬∃y ∈ p. x < y

Since any processp (except TTP) may crash at any mo-

ment (before terminating) we assume:

∀x ∈ p. ⊤(p) 6∈ x ∧ ⊥(p) 6∈ x ∧ A(p) 6∈ x

∧R(p) 6∈ x ∧ Q(p) 6∈ x =⇒ x⊥(p) ∈ p

The consistent behavior of the TTP is captured via

considering onlyTTP-consistentcomputations, as de-

fined below. Computationx of an FE protocol is TTP-

consistent iff

• If R(p) appears inx for processp, thenA(q) does

not appear inx for anyq ∈ P.

We also need to assert that if a correct process has the

choice to, e.g., contact the TTP in computationsx, then

the computationsx also allows (or, covers) this possi-

bility. That is, we confine only tomaximalcomputa-

tions. For a computation of protocolP like x, we sayx

is maximal iff

• For anyp ∈ P, for all y ∈ p such thatxp < y

and⊥(p) 6∈ y − xp, we havex(y − xp) is not a

computation inP.

This constraint, intuitively, implies that computationx

is considered maximal only if no processp can progress

further in computationx except by crashing. Note that

since processes are prefix closed, ifp can progress fur-

ther thanxp, then there exists ay ∈ p such thaty − xp

contains only one action.

TTP-consistence and maximality can be seen asfair-

ness constraintson protocol computations, cf. [10].

From this point on, by a computation we mean a TTP-

consistent and maximal computation, unless otherwise

stated.

Fair exchange security requirements. A protocolP

is a secure fair exchange protocol iff it satisfies the fol-

lowing properties. Here,x : P stands for “computation

x belongs to protocolP”.

• Functionality:

∃x : Prot.∀p ∈ P. ⊤(p) ∈ x

• Timeliness:

∀x : P.∀p ∈ P. Q(p) ∈ x ∨ A(p) ∈ x

∨R(p) ∈ x ∨ ⊤(p) ∈ x ∨ ⊥(p) ∈ x

• Fairness:

∀x : P.∀p, q ∈ P.

(R(p) ∈ x ∨ ⊤(p) ∈ x) =⇒

(R(q) ∈ x ∨ ⊤(q) ∈ x ∨ ⊥(q) ∈ x)
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The following theorem is the main technical result of

our formalization that relates fairness to knowledge.

For a computationx andp ∈ P, we writeI(x)G(p) =

tt iff ⊤(p) ∈ x ∨ R(p) ∈ x.

Theorem 2. For any computationx in a protocol be-

tweenp andq that satisfies fairness,x |= G(p) only if

x |= Ep(G(q) ∨ ⊥(q)).

Proof. Letx |= G(p), and assumey is any computation

in the protocol such thatxp = yp. We need to show that

y |= G(q) ∨ ⊥(q). Fromxp = yp we concludey |=

G(p). As the protocol is assumed to satisfy fairness we

gety |= G(q) ∨ ⊥(q).

Intuitively, the theorem states thatp can add an item

iq to Vp iff p knowsthat a correctq would addiq to Vq.

3.1 Three-message protocols for FE using
TDs

In this section we determine the resolve pattern of any

three-message FE protocol that satisfies functionality,

timeliness and fairness. Figure 2 shows a generic three

message protocol. Our focus in this section is onopti-

mistic non-redundantprotocols, as defined below. A

protocol is optimistic iff it satisfies functionality and

π1 6∈ {r, a}. The intuition behind this definition is that

by functionality the protocol has at least one successful

computation without contacting the TTP, and the condi-

tion π1 6∈ {r, a} implies that in case the receiver of the

first message, say Bob, in the protocol does not receive

this message he can either wait, or quite the exchange,

but may not contact the TTP. In other words, if no mes-

sages are exchanged in Bob’s view, then he does not

contact the TTP.

An optimistic protocol with ℓ messages is non-

redundant iff the protocol has no computation of length

less that2ℓ + 2 which contains both⊤(p) and⊤(q).

Here,2ℓ counts all themi andm̄i for 1 ≤ i ≤ ℓ, and

then two actions⊤(p) and⊤(q) are added to the result.

Intuitively, this implies that all the messages of the pro-

tocol are required to be exchanged in order to success-

fully complete the protocol, with no TTP interventions.

A B

m1 1

2 m2

3m3

Figure 2: Generic three message protocol.

Below, in order to capture the intuitive meaning of re-

solve patterns we require that given resolve patternπ =

(π1, π2, π3) and any computationx in which only, say

p, contacts the TTP at a point corresponding toπi, the

TTP answer withR if πi = r and the TTP will answers

with A if πi = a. This is in accordance with the descrip-

tion of TTP logic in section 2. The proof of the follow-

ing theorem relies on theorem 2, and can be found in

appendix A.

Theorem 3. The resolve pattern of any three-message

optimistic FE protocol betweenp and q that satis-

fies fairness, timeliness and functionality, is necessarily

π = (q, a, r).

The resolve pattern determined in theorem 3 is a nec-

essary, but not generally sufficient, condition for satis-

fying fairness, timeliness and functionality. In case pro-

cesses are not trusted, there is no three-message proto-

col for secure FE, cf. theorem 1.

4 Optimistic FE of non-

idempotent items between TDs

Below, we focus on exchanging non-idempotent items

between TDs. In section 4.1 we give a four-message FE

protocol for exchanging non-idempotent items between

TDs with limited storage capacity. It is worth mention-

ing that the resolve pattern of the protocol of section 4.1

8



is different fromπin (see remark 1); usingπin would

require TDs with unlimited storage capacity. In sec-

tion 4.2 we show that four messages in the optimistic

sub-protocol are necessary by giving a generic replay

attack on any three-message FE protocol between TDs

with limited storage capacity. Protocols with one or

two messages in the optimistic sub-protocol are not dis-

cussed, due to their trivial inadequacy. In section 4.3 we

give a three-message FE protocol for exchanging non-

idempotent items between TDs with unlimited storage

capacity.

4.1 A four-message FE protocol between
TDs with limited storage

It can be easily verified that the resolve patternπin

is not suitable for exchanging non-idempotent items.

Namely, there exists a generic replay attack on proto-

cols with resolve patternπin which can be countered

only if the TDs have access to an unlimited amount of

secure storage. The attack is due to the no-duplication

requirement. The proof of the following proposition is

given in appendix A.

Proposition 1. The resolve patternπin = (q, a, r, r) is

not secure for fair exchange of non-idempotent items,

using TDs with limited storage capacity.

Next, we present a protocol with resolve pattern

(q, q, a, r) for exchanging non-idempotent items using

trusted devices with limited storage capacity. This pro-

tocol is inspired by a protocol of Terada et al. [21].5

In order to give a detailed description of the protocol,

we relax the integrity, authenticity and confidentiality

assumptions on communication channels (cf. section 2)

for proving theorem 4, and also theorem 6. Below,

[M ]X denotes messageM signed by participantX; and

M can be extracted from[M ]X . We write h(M) for

the hash value ofM , whereh is a one-way secure hash

function. A secure PKI infrastructure is also assumed to

5Terada et al. first presented a similar, but flawed, protocol in[20].

We have spotted the flaw, and upon contacting the authors, realized

the protocol has been patched in [21].

be in place. The cryptographic apparatus are assumed

to beideal, as in [5].

Theorem 4. Resolve patternπ = (q, q, a, r) can be

used for secure fair exchange of non-idempotent items,

using TDs with limited storage capacity.

Proof. Consider an instantiation of the 4-message pro-

tocol and the TTP logic of figure 1, with resolve pat-

ternπ. Initially v ∈ VA, v′ ∈ VB, andA andB want to

exchangev for v′. We assume that

1. A temporarily removesv from VA when starting

the exchange. IfA receives tokenA, it putsv back

into VA. Upon a successful exchange withB, or

receiving tokenR, A addsv′ to VA and destroysv.

A similar assumption is made forB.

2. A andB are programmed such that once they start

the resolve sub-protocols, they will ignore all the

messages from the main sub-protocol.

These assumptions are tenable, sinceA and B are

trusted devices.

Algorithm 1 Specification of initiatorA in theorem 4

VA := VA \ {v}

sendm1 to B

recvm2 from B

if recv times outthen
quit

sendm3 to B

recvm4 from B

if recv times outthen
send recovery requestr to TTP

if recv abort tokenA from TTPthen
VA := VA ∪ {v}

else if recv recovery tokenR from TTPthen
VA := VA ∪ {v′}

else
VA := VA ∪ {v′}

The specifications for initiatorA and responderB are

given in algorithm 1 and algorithm 2, respectively. We

assume that confidentiality of the vouchersv andv′ is

9



Algorithm 2 Specification of responderB in theorem 4
recvm1 from A

if recv times outthen
quit

VB := VB \ {v′}

sendm2 to A

recvm3 from A

if recv times outthen
send abort requesta to TTP

if recv abort tokenA from TTPthen
VB := VB ∪ {v′}

else if recv recovery tokenR from TTPthen
VB := VB ∪ {v}

else
sendm4 to A

VB := VB ∪ {v}

not a concern (otherwise, communications betweenA,

B and the TTP have to be encrypted in the following).

The message contents for the protocol (referred to in

algorithms 1 and 2) are described below. We recall

that messages are communicated over resilient chan-

nels, andA andB are TDs.

• m1 := [v, v′, B, n]A, wheren is a fresh nonce

generated byA.

• m2 := [h(v, v′, A,B, n), h(n′)]B , wheren′ is a

fresh nonce generated byB.

• m3 := [h(n′)]A

• m4 := n′

We assume upon receiving a message, the TDs check

the integrity of the message, and its conformance to the

protocol. A bogus message is destroyed, and considered

as not having been received. For contacting the TTP, the

following messages are used:

• a := [f1, A,B, v, v′, n, h(n′)]B

• r := [f2, A,B, v, v′, n, h(n′)]A

• A := [ack(f1), A,B, v, v′, n, h(n′)]TTP

• R := [ack(f2), A,B, v, v′, n, h(n′)]TTP

Heref1, f2 andack(f1) andack(f2) are unique flags

respectively denoting an abort request, a resolve re-

quest, an abort token, and a recovery token. Notice that

in this protocol, the TTP can readily extractv andv′

from m1 andm2. In fact, to recover to a fair state, the

participants do not require the contents of their oppo-

nent’s item, but rather the permission to add the item to

their local voucher set.

A complete security analysis of the protocol is omit-

ted due to space constraints. We however note that as-

sumption (1) in the beginning of this proof, and fairness

imply that during exchanges no items are duplicated.

A subtlety here is to ensure that replay attacks are not

possible. Note thatabort option forB (that isπ3 = a)

thwarts the replay attack described in proposition 1.

4.2 Four messages are necessary for FE
between TDs with limited storage

Theorem 3 maps out the resolve pattern of any three-

message FE protocol that satisfies fairness, timeliness

and functionality; namely,π = (q, a, r). Below, we

use this result to show that any three-message protocol

that is used for exchanging non-idempotent items be-

tween TDs with limited storage capacity is susceptible

to a generic replay attack.

Theorem 5. There is no three-message protocol for se-

cure exchange of non-idempotent items between TDs

with limited storage capacity.

Proof. Assume there exists a three-message FE proto-

col for secure exchange of non-idempotent items. The

resolve pattern of the protocol needs to be(q, a, r), due

to theorem 3. Now, assume the protocol is repeatedly

executed between processesp andq. Let computationx

be one of these computations which has completed suc-

cessfully without resorting to the TTP. Such a computa-

tion exists due to the functionality property. Let

x = m1m̄1m2m̄2m3m̄3⊤(p)⊤(q)

10



Since the processes have limited storage capacity,

there exists a point in timeθ, when all the information

about computationx is erased from the storage ofp

and q. Note that at timeθ, the adversary can replay

m1. Now the computationy = m1m̄1m2R(q) is a valid

computation: It is maximal, and indeed TTP-consistent.

Note thatp has no actions to perform in this computa-

tion, and is in fact not even “aware” that the exchange is

happening. Clearlyy violates the no-duplication prop-

erty of non-idempotent items. It is worth mentioning

that fairness is not violated in computationy.

Remark that simply assigning sequence numbers to

different transactions between TDsA andB doespre-

vent the replay attack described in theorem 5. How-

ever, such sequence numbers must be of an unbounded

length, in order to prevent repetition. That is, TDs re-

quire an unbounded storage capacity to store the se-

quence numbers in general.

4.3 A three-message FE protocol between
TDs with unlimited storage

In this section, we give a three-message FE proto-

col with resolve pattern(q, a, r) for exchanging non-

idempotent items between TDs with unlimited storage

capacity. The main idea of the protocol is that TDs can

use their unlimited storage to counter the replay attack

described in theorem 5.

Theorem 6. Resolve patternπ = (q, a, r) can be used

for secure fair exchange of non-idempotent items, using

TDs with unlimited storage capacity.

Proof. Consider the 3-message protocol of figure 2

with the TTP logic of figure 1 and resolve patternπ.

Initially v ∈ VA, v′ ∈ VB , andA andB want to ex-

changev for v′. We assume

1. A temporarily removesv from VA when starting

the exchange. IfA receives tokenA, it putsv back

into VA. Upon a successful exchange withB, or

receiving tokenR, A addsv′ to VA and destroysv.

A similar assumption is made forB.

2. A andB are programmed such that once they start

the resolve sub-protocols, they will ignore all the

messages from the main sub-protocol.

These assumptions are tenable, sinceA and B are

trusted devices.

Algorithm 3 Specification of initiatorA in lemma 6

VA := VA \ {v}

sendm1 to B

recvm2 from B

if recv times outthen
send abort requesta to TTP

if recv abort tokenA from TTPthen
VA := VA ∪ {v}

else if recv recovery tokenR from TTPthen
VA := VA ∪ {v′}

else
sendm3 to B

VA := VA ∪ {v′}

The specifications for initiatorA and responderB are

given in algorithm 3 and algorithm 4, respectively. We

assume that confidentiality of the vouchersv andv′ is

not a concern (otherwise, communications betweenA,

B and the TTP have to be encrypted in the following).

The message contents for the protocol (referred to in

algorithms 3 and 4) are described below. We recall

that messages are communicated over resilient chan-

nels, andA andB are TDs.

• m1 := [v, v′, B, h(n)]A, wheren is a fresh nonce

generated byA.

• m2 := [h(v, v′, A,B, h(n))]B

• m3 := [n]A

We assume upon receiving a message, the TDs check

the integrity of the message, and its conformance to the

protocol. A bogus message is destroyed, and considered

as not having been received. For contacting the TTP, the

following messages are used:

• a := [f1, A,B, v, v′, h(n)]A, wheref1 is a unique

flag denoting an abort request.

11



Algorithm 4 Specification of responderB in lemma 6
REQUIRES: History of previous exchanges ofB, called

HB

recvm1 from A

if m1 ∈ HB or recv times outthen
quit

VB := VB \ {v′}

HB := HB ∪ {m1}

sendm2 to A

recvm3 from A

if recv times outthen
send recovery requestr to TTP

if recv abort tokenA from TTPthen
VB := VB ∪ {v′}

else if recv recovery tokenR from TTPthen
VB := VB ∪ {v}

else
VB := VB ∪ {v}

• r := [f2, A,B, v, v′, h(n)]B , wheref2 is a unique

flag denoting a recovery request.

• A := [ack(f1), A,B, v, v′, h(n)]TTP

• R := [ack(f2), A,B, v, v′, h(n)]TTP

Hereack(f1) andack(f2) are unique flags respectively

denoting an abort and a recovery token. A complete

security analysis of the protocol is omitted due to space

constraints. We however note that assumption (1) in the

beginning of this proof, and fairness imply that during

exchanges no items are duplicated. A subtlety here is to

ensure that replay attacks are not possible. Note that the

history setHB in deviceB is used prevent the replay

attack described in theorem 5.

Remark2. Micali has proposed [16] a three-message

protocol for fair exchange of idempotent items be-

tween non-trusted devices, which has the resolve pat-

tern (q,−, r). That is, A cannot run the abort sub-

protocol (A’s access to abort jeopardizes fairness ifA

is non-trusted). AsA is not provided with any means

to contact the TTP in Micali’s protocol, in caseA does

not receivem2, timeliness is violated (as observed in

[1]), sinceA can terminate the protocol only whenB

takes actions. The resolve pattern(q, a, r) of theorem 6

has also been used in [19] and [24] for secure fair ex-

change of the so-calledrevocabledigital contents; intu-

itively the TTP’s testimony is necessary for the validity

of (some of) the exchanged items in these protocols.

5 Concluding remarks

We analyze the efficiency of optimistic protocols for

fair exchange of non-idempotent items using trusted de-

vices. Four messages in the main sub-protocol is proved

to be necessary, given that the trusted devices have ac-

cess to a limited amount of storage. With an unlimited

non-volatile storage, this number can however be re-

duced to three.

If (some) non-idempotent items are only of tempo-

rary value, it is possible to identify and eliminate those

fingerprints of the previous exchanges which are obso-

lete, hence irrelevant, for the security of the protocol.

such “garbage collection” procedures can reduce the

amount of required secure storage on trusted devices.

Investigating this area is left for future work.

Also, it must be interesting to explore (the efficiency

of) the fair exchange protocols which guaranteeatomic-

ity for non-idempotent items, that is no-duplication and

also no-destruction. Atomicity is a typical requirement

for financial transactions [23].
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A Proofs omitted in the text

A.1 Proof of theorem 3

The results below concern optimistic non-redundant

protocols. We continue with a few auxiliary lemmas.

By abusing the notation, in the following we may write

πi(p) instead of TTP’s answer to requestπi sent by pro-

cessp.

Lemma 1. In any three-message protocol with resolve

pattern(π1, π2, π3) betweenp andq that satisfies time-

liness, we haveπi 6= −, for i = 1, 2, 3.

Proof. Let πi = − for somei. Consider the com-

putationx in which the process who has to sendmi

crashes:x = x1⊥(p) for somex1 ∈ Act
∗. Note

that x is maximal sinceq 6= p cannot progress (due

to πi = −) andp has already crashed. The computa-

tion x is a counterexample to timeliness if the protocol

is non-redundant.

Lemma 2. In any three-message protocol with resolve

pattern(π1, π2, π3) betweenp andq that satisfies fair-

ness, timeliness and functionality,π3 = r.

Proof. By lemma 1, π3 ∈ {q, a, r}. By func-

tionality and non-redundancy, computationx =

m1m̄1m2m̄2m3m̄3⊤(A)⊤(B) is a computation of the

protocol. Sincey = m1m̄1m2m̄2m3⊤(A)π3(B) is

isomorphic tox w.r.t. A, theorem 2 impliesπ3(B) =

R(B). That isπ3 = r.

Lemma 3. In any three-message protocol with resolve

pattern(π1, π2, π3) betweenp andq that satisfies fair-

ness, timeliness and functionality,π2 = a.

Proof. By lemma 1,π2 ∈ {q, a, r}. Consider compu-

tationsx = m1π2(A)π1(B) andy = ǫπ1(B). In y, B

quits the exchange, due to the protocol being optimistic.

Since computationsx andy are isomorphic w.r.t.B, we

haveπ1(B) = Q(B) in x. Then, fairness forx implies

that eitherπ2(A) = A(A) or π2(A) = Q(A). That is

π2 ∈ {a, q} (†). Below, we showπ2 6= q.

Consider the computation x′ =

m1m̄1m2π2(A)π3(B). Clearly x′ is a maximal

computation of the protocol. Assume towards a con-

tradiction thatπ2(A) = Q(A). Due to lemma 2, then

π3(B) = R(B), and indeed the computationx′ would

be TTP-consistent. This computation, however, clearly

violates the fairness property. Therefore,π2 ∈ {a, r}.

Given(†), we concludeπ2 = a.

Theorem 3 is now immediate by lemmas 1, 2 and 3.

A.2 Proof of proposition 1

The resolve pattern(q, a, r, r) is not secure for fair ex-

change of non-idempotent items, using TDs with lim-

ited storage capacity.

Proof. Consider the generic protocol of figure 1. Let us

assumeA sendsm1 to B, butm2 is intercepted. Next,

B runs the recovery sub-protocol and obtainsiA and

destroysiB (recall thatiA and iB are non-idempotent

items). When this session is terminated fromB’s point

of view (while A is still waiting), messagem1 is re-

played (by the adversary), andA andB finish this ex-

change session successfully. Suppose that at the begin-

ningA had one instance ofiA, andB had two instances

of iB . At the end of this scenario,A has one instance of

iB , while B has two instances ofiA. Therefore,iA is

duplicated, witnessing that the pattern is insecure. This

attack can be countered ifB does not reply to the re-

play of messagem1 (note that freshness the messages

is not guaranteed over reliable channels). Detecting re-

plays would however requireB to keep record of (fin-

gerprints of) all its previous exchanges, which is not

possible forB with a limited storage capacity.
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