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Geometric Ad-Hoc Routing: Of Theory and Practice∗

Fabian Kuhn, Roger Wattenhofer, Yan Zhang, Aaron Zollinger

{kuhn,wattenhofer,yzhang,zollinger}@inf.ethz.ch
Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

Abstract

All too often a seemingly insurmountable divide between

theory and practice can be witnessed. In this paper we try

to contribute to narrowing this gap in the field of ad-hoc

routing. In particular we consider two aspects: We propose

a new geometric routing algorithm which is outstandingly

efficient on practical average-case networks, however is also

in theory asymptotically worst-case optimal. On the other

hand we are able to drop the formerly necessary assump-

tion that the distance between network nodes may not fall

below a constant value, an assumption that cannot be main-

tained for practical networks. Abandoning this assumption

we identify from a theoretical point of view two fundamen-

tamentally different classes of cost metrics for routing in

ad-hoc networks.

Keywords: Mobile computing, ad-hoc networks,
routing, cost metrics.

1 Introduction

An ad-hoc network consists of mobile nodes equipped
with radio devices. If the source and the destination of
a message are not within mutual transmission range,
the message can be relayed by intermediate nodes, a
process known as ad-hoc routing. In this paper we
study geometric routing, which assumes a) that each
network node is informed about its own and about its
neighbors’ positions and b) that the source of a mes-
sage knows the position of the destination. The em-
ployment of position information becomes more and
more realistic with increasing availability of inexpen-
sive positioning systems. The same goal could also
be achieved by local information exchange with fixed
beacon nodes. Similarly the location of the destina-
tion could be learned via an overlay (e.g. peer-to-peer

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant
number 5005-67322.

[21, 27]) information system. But also a scenario is
conceivable, where a message needs to be sent to any
node in a given area (also called “geocasting” [16, 22]).
Since none of the intermediate nodes is required to
maintain routing lists, geometric routing can be con-
sidered a lean version of source routing [14].

Our geometric routing algorithm GOAFR+ (pro-
nounced as “gopher-plus”) combines—similarly to ear-
lier proposals [4, 6, 15, 20]—two concepts called greedy
routing and face routing. In greedy routing mode the
algorithm forwards the routed message at each net-
work node to the neighbor closest to the destination.
Already in simple configurations, the message can how-
ever reach a “dead end”, a node without any “better”
neighbor. Such cases are overcome by the employment
of face routing, which explores the boundaries of faces
of the planarized network graph. GOAFR+ uses an
“early fallback” technique to return to greedy rout-
ing as soon as possible. Our simulations show that—
additionally restricting its search to an adaptively re-
sized area—the algorithm is even more efficient than
similar algorithms analyzed earlier on average (ran-
dom) graphs. On the other hand our theoretical anal-
ysis proves that GOAFR+ is asymptotically optimal
in the worst case.

Theoretical analysis of routing algorithms often has
to make irritating or far-fetched assumptions, which
would hardly ever hold in practice. In this paper we
are able to drop one such assumption, the Ω(1)-model
introduced in [19], which assumes that the distance
between network nodes cannot fall beneath a constant
minimum bound. Graphs with this restriction have
also been called civilized [7] or λ-precision [13] graphs
in the literature. We introduce a general notion of
a cost metric, defined as a nondecreasing function of
the length of the edge over which a message is sent.
We show that the behavior of cost functions for edge
length approaching zero proves crucial for the cost of
routing. We observe that in theory cost metrics fall
into two classes: Linearly bounded cost functions are
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bounded from below by a linear function; for super-
linear functions such a bounding linear function does
not exist. With cost metrics from the former class, a
clustering technique allows the construction of a rout-
ing backbone, which extends GOAFR+’s asymptotic
optimality to networks with nodes of arbitrarily small
distance. With cost functions from the latter class on
the other hand an example graph can be constructed
for which there exists no geometric routing algorithm
whose execution cost is competitive with the cost of
the optimal path.

After giving an overview of related work in the fol-
lowing section, we state the model used in this paper in
Section 3. In Section 4 we introduce our routing algo-
rithm GOAFR+, prove its asymptotic optimality, and
present simulation results. Section 5 introduces a defi-
nition of general cost metrics for routing, identifies two
classes of metrics, linearly bounded and super-linear,
and describes the consequences of this classification on
the cost of routing. Section 6 finally summarizes the
paper.

2 Related Work

The early proposals of geometric routing—suggested
over a decade ago—were of purely greedy nature: At
each intermediate network node the message to be
routed is forwarded to the neighbor closest to the desti-
nation [8, 12, 23]. This can however fail if the message
reaches a local minimum with respect to the distance
to the destination, that is a node without any “better”
neighbors. Also a “least deviation angle” approach
(Compass Routing in [17]) cannot guarantee message
delivery in all cases.

The first geometric routing algorithm that does
guarantee delivery was Face Routing introduced in
[17] (called Compass Routing II there). Face Rout-
ing reaches the destination after O(n) steps, n be-
ing the number of network nodes. There have been
later suggestions for algorithms with guaranteed mes-
sage delivery [4, 6]; at least in the worst case, how-
ever, none of them outperforms original Face Rout-
ing. Yet other geometric routing algorithms have
been shown to reach the destination on special pla-
nar graphs without any runtime guarantees [2]. [3]
proposed an algorithm competitive with the shortest
path between source and destination on Delaunay tri-
angulations; this is however not applicable to ad-hoc
networks, since Delaunay triangulations may contain
arbitrarily long edges, whereas transmission ranges are

limited. Accordingly [10] proposed local approxima-
tion of the Delaunay Graph, however without improv-
ing performance bounds for routing. A more detailed
overview of geometric routing can be found in [24].

In [19] we proposed Adaptive Face Routing AFR.
The execution cost of this algorithm—basically en-
hancing Face Routing by the employment of an ellipse
restricting the searchable area—is bounded by the cost
of the optimal route. In particular, the cost of AFR is
not greater than the squared cost of the optimal route.
We also showed that this is the worst-case optimal re-
sult any geometric routing algorithm can achieve.

Face Routing and also AFR are not applicable for
practical purposes due to their strict employment of
face traversal. There have been proposals for practical
purposes to combine greedy routing with face rout-
ing [4, 6, 15], however without competitive worst-case
guarantees. In [20] we suggested, to the best of our
knowledge, the first algorithm to combine greedy and
face routing in a worst-case optimal way; in order to
remain asymptotically optimal, this algorithm could
however not include falling back as soon as possible
from face to greedy routing, an obvious improvement
for the average case performance.

In this paper we use a clustering technique in order
to drop the Ω(1)-model assumption from [19]. Clus-
tering for the means of ad-hoc routing has been pro-
posed by various researchers [5, 18]. A closely related
approach is the construction of connected dominating
sets as routing backbones [11, 26].

3 Model and Preliminaries

In this paper we assume that network nodes are placed
in the Euclidean plane

� 2 . In order to represent ad-
hoc networks we adopt the widely used model, where
every node has the same transmission range, without
loss of generality normalized to 1. The resulting graph,
having an edge between two nodes u and v iff the Eu-
clidean distance |uv| ≤ 1, is a unit disk graph.

To measure the quality of a routing algorithm, we
attribute to each edge e a cost which is a function of
the Euclidean length of e.

Definition 3.1. (Cost Function) A cost function
c: ]0, 1] 7→ � + is a nondecreasing function, which maps
any possible edge length d (0 < d ≤ 1) to a positive real
value c(d) such that d′ > d =⇒ c(d′) ≥ c(d). For the
cost of an edge e ∈ E we also use the shorter form
c(e) := c(d(e)).
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Note that ]0, 1] really is the domain of a cost func-
tion c(·), i.e. c(·) has to be defined for all values in
this interval and in particular, c(1) < ∞. The cost
model defined by such cost functions includes all pop-
ular cost measures such as the link distance metric
(c(d) :≡ 1), the Euclidean distance metric (c(d) := d),
energy (c(d) := dα for α ≥ 2), as well as hybrid mea-
sures which are positive linear combinations of the
above metrics.

For convenience we also define the cost of paths, a
sequence of contiguous edges, and algorithms. The
cost c(p) of a path p is defined as the sum of the costs
of its edges. Analogously, the cost c(A) of an algorithm
A is defined as the sum of the costs of all edges which
are traversed during the execution of an algorithm on
a particular graph.

For our routing algorithm the network graph is re-
quired to be planar, that is without intersecting edges.
For this purpose we employ the Gabriel Graph. A
Gabriel Graph (on a given node set in the Euclidean
plane) is defined to contain an edge between two nodes
u and v iff the circle having uv as a diameter does not
contain a witness node w. This graph features two im-
portant properties: a) It can be computed locally (each
node merely inspecting its neighbors’ positions) and
b) its construction on G preserves an energy-minimal
path between any pair of network nodes, which—by
equivalence of cost metrics (Section 5.1)—entails that
the construction of the Gabriel Graph on G’s nodes
also preserves G’s distance properties up to constants.

In our analysis we use the concept of a unit disk
graph whose nodes do not have more than a constant
number of neighbors. A unit disk graph G is a bounded
degree unit disk graph with parameter k if none of its
nodes has degree greater than k.

We consider geometric routing algorithms [19]. The
aim of the algorithm is to forward a message from a
given source s to a given destination t over the edges of
the network graph while complying with the following
rules:

- Each node knows its own and its neighbors’ posi-
tions.

- The source s is informed about the destination t’s
position.

- A node is allowed to store only local information
or temporarily present packets in transit.

- A packet may contain control information about
at most O(1) nodes.

According to these rules geometric routing algorithms
are inherently of local nature.

Finally we assume routing to take place much faster
than node movement: A routing algorithm executes
on temporarily stationary nodes.

4 GOAFR+

In this section we introduce the GOAFR+ (pronounced
as “gopher-plus”) algorithm. We prove that the algo-
rithm is asymptotically optimal if the network graph
is a bounded degree unit disk graph. The construction
of a bounded degree unit disk graph from a general
unit disk graph will be discussed in Section 5.2.1. Our
simulation results show that GOAFR+ is also efficient
on average case graphs.

4.1 The GOAFR+ Algorithm

The GOAFR+ algorithm is a combination of greedy
routing and face routing. Whenever possible the algo-
rithm tries to route greedily, that is by forwarding the
message at each intermediate node to the neighbor lo-
cated closest to the destination t. Doing so, however,
the algorithm can reach a local minimum with respect
to the distance from t, that is a node um none of whose
neighbors is located closer to t than um itself.

In order to overcome such a local minimum,
GOAFR+ applies a face routing technique, borrowing
from the Face Routing algorithm originally introduced
in [17]. Face Routing proceeds towards the destination
by exploring the boundaries of the faces of a planarized
network graph, employing the local right hand rule (in
analogy to following the right hand wall in a maze).
Additionally the algorithm restricts itself to a search-
able area occasionally being resized during algorithm
execution. With this approach the algorithm becomes
asymptotically optimal with respect to its execution
cost compared with the cost of the optimal path. A
similar concept was introduced in [19].

Having escaped the local minimum, the algorithm
continues in greedy mode. Since greedy forwarding
is—above all in dense networks—more efficient than
face routing in the average case, the algorithm should
for practical purposes fall back to greedy mode as soon
as possible. In [20] we studied a family of similar
algorithms combining greedy and face routing. We
observed that algorithm variants with heuristics em-
ployed for early fallback to greedy mode (such as the
“First Closer” heuristic having the algorithm resume
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Figure 1: The GOAFR+ algorithm starts from s in greedy
mode. At node u it reaches a local minimum, a node with-
out any neighbors closer to t. GOAFR+ switches to face
routing mode and begins to explore the boundary of face
F (in clockwise direction). At node v the algorithm hits
the bounding circle C and turns back to continue the ex-
ploration of F ’s boundary in the opposite direction. After
each step the counters p and q are updated. At node w
the fallback condition p > σ q holds (p = 2, q = 4 with the
assumption 1/4 ≤ σ < 1/2); GOAFR+ falls back to greedy
mode and continues to finally reach t. (Gradual reduction
of C’s size during GOAFR+’s execution is not shown.)

greedy routing as soon as meeting a node closer to the
destination than where the current face routing phase
started) lose their asymptotic optimality with respect
to the shortest path. It appeared that, once in face
routing mode, an algorithm is required to explore the
complete boundary of the current face in order to be
asymptotically optimal.

Contrarily to this conjecture, the GOAFR+ algo-
rithm does not necessarily explore the complete face
boundary in face routing mode and yet does conserve
asymptotic optimality. For this purpose the algorithm
employs two counters p and q to keep track of how
many of the nodes visited during the current face rout-
ing phase are located closer (p) and how many are not
closer (q) to the destination than the starting point of
the current face routing phase; as soon as a certain
fallback condition holds, GOAFR+ directly falls back
to greedy mode. Besides being asymptotically opti-
mal, however, simulations show that in the average
case GOAFR+ even outperforms the best (not asymp-
totically optimal!) algorithms considered in [20].

In particular GOAFR+ consists of the following
steps:

GOAFR+ The algorithm parameters ρ0, ρ, and σ
are chosen prior to algorithm start and remain con-

stant throughout the execution. For the algorithm to
work correctly, they have to comply with the condi-
tions 1 ≤ ρ0 < ρ and 0 < σ.1

0. Begin at s. Initialize C to be the circle centered
at t with radius rC := ρ0 |st|.

1. (Greedy Routing Mode) Repeat taking greedy
steps until either reaching t or a local minimum.
In the former case the algorithm terminates, in
the latter case continue with step 2. Whenever
possible, reduce C’s radius (rC := rC/ρ) as long
as the currently visited node stays within C.

2. (Face Routing Mode) Let ui be the cur-
rently visited local minimum. Start exploring the
boundary of Fi, the face containing the connect-
ing line uit in the immediate environment of ui.
When completing Fi’s exploration and returning
to ui, advance to the node visited so far closest to
t and continue with step 1. If no visited node is
closer to t than ui, report graph disconnection to s
(using GOAFR+). During the exploration of Fi’s
boundary use two counters p and q to keep track
of the number of nodes visited on Fi’s boundary:
p counts the nodes closer to t than ui and q the
nodes not located closer to t than ui. Take a spe-
cial action if one of the following conditions holds:

2a. Hitting C for the first time, turn back and
continue exploring Fi’s boundary in the op-
posite direction.

2b. C is hit for the second time: If none of the
visited nodes is closer to t than ui, enlarge
C (rC := ρ rC) and continue with step 2 as
if started from ui. Otherwise advance to the
node visited so far closest to t and continue
with step 1.

2c. If p > σ q, that is, we have visited (up to a
constant factor σ) more nodes on Fi’s bound-
ary closer to t than nodes not closer to t,
advance to the node seen so far closest to t
(if this is not the currently visited node) and
continue with step 1.

4.2 GOAFR+ is Asymptotically Optimal

In the following we prove that GOAFR+ is asymp-
totically optimal on bounded degree unit disk graphs.

1In our simulations ρ0 = 1.4, ρ =
√

2, and σ = 1
100

proved to
be good choices for practical purposes.
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In Section 5.1 we will prove that on bounded degree
unit disk graphs all cost metrics (defined according
to Definition 3.1) are equivalent up to constants. In
Section 5.2 we will show that such a graph can be
constructed from a general unit disk graph (that is of
unbounded degree). By these means GOAFR+ can be
extended to perform asymptotically optimally on gen-
eral unit disk graphs for a certain class of cost metrics.

The GOAFR+ algorithm runs on a planar graph.
As mentioned in Section 3 we employ the Gabriel
Graph for this purpose. In our analysis we therefore
assume GOAFR+ to run on GGG, the intersection of
the bounded degree unit disk graph G and the corre-
sponding Gabriel Graph.

We begin the analysis of GOAFR+ by stating a fact
on the number of nodes in a given two-dimensional
region:

Lemma 4.1. Let R ⊂ � 2 be a two-dimensional convex
region with area A(R) and perimeter p(R). Further,
let V ⊂ R be a set of points inside R. If the unit disk
graph of V is a bounded degree unit disk graph with
parameter k (all degrees are at most k), the number of
points in V is bounded by

|V | ≤ (k + 1)
8

π
(A(R) + p(R) + π) .

Proof. Cf. Appendix A.

GOAFR+ uses a circle C centered at t to restrict
itself to a searchable area. During the algorithm exe-
cution the radius rC is adapted in predefined steps ac-
cording to the current distance from t. In particular,
the values potentially assumed by rC form a geometric
sequence rCi

= rmax (1
ρ )i, i = 0...k, where rmax de-

pends on the length and the shape of the optimal path
from s to t (cf. proof of Theorem 4.5) and ρ is one
of GOAFR+’s predefined constant algorithm parame-
ters. Since rC can both increase and decrease during
algorithm execution, the steps taken in a circle Ci with
radius rCi

need not occur consecutively. In the follow-
ing we consider the steps taken by the algorithm in a
fixed circle Ci.

Lemma 4.2. If s and t are connected within the circle
Ci, GOAFR+ reaches t. If s and t are not connected,
GOAFR+ reports so.

Proof. Cf. Appendix B.

For the following lemma we define a round according
to the algorithm to be either a) a greedy step, b) a

face routing phase terminated by early fallback, or c)
a face routing phase terminated after exploration of the
complete boundary of the current face and advancing
to the node closest to t. In Appendix B we show that
after each round the algorithm is strictly closer to t
than before that round.

Lemma 4.3. Let c′F (GOAFR+) be the cost of all face
routing steps taken when exploring the boundary of face
F within the circle Ci. c′F (GOAFR+) is less than γ cF

for a constant γ and cF being the total cost of travers-
ing F ’s boundary once.

Proof. We first show that the lemma holds for the link
distance metric, c(e) ≡ 1 for any edge e: The total
number of edges traversed by GOAFR+ when explor-
ing F is less than γc`F

, where c`F
is the number of

edges traversed when traveling around F once.
We introduce directed edges or arcs and say that

the algorithm traverses the arc from u to the target v
whenever the algorithm traverses an edge from node u
to node v. We denote the target node of an arc e by
et. We assume that the boundary of face F is involved
in k face routing rounds, and that for 1 ≤ j ≤ k, sj is
the node where round j is started. Tj is the set of all
arcs visited in round j. Furthermore we define Pj :=
{e ∈ Tj : |ett| < |sjt|} and Qj := {e ∈ Tj : |ett| ≥
|sjt|} (cf. counters in GOAFR+ algorithm). Finally
Oj is the set of “old” edges already traversed (in either
direction) in any of the earlier rounds and Nj is the set
of edges newly traversed (again in either direction) in
round j. Since after each round—a greedy step or the
exploration of a face—the algorithm is strictly closer to
t than before that round, all old edges are not adjacent
to a target closer to t than sj: |Oj | ≤ |Qj|. Since
all arcs in Pj have not been taken before, we have
|Pj | ≤ 5 |Nj |. (The constant 5 is introduced, since
a) an undirected edge in Nj can be traversed for a
second time after the algorithm has hit Ci, b) the same
face F can lie on both sides of an edge, and c) the
edge can be traversed once more during the algorithm’s
advancing to the node seen so far closest to t after the
fallback condition holds.) According to the fallback
condition in the algorithm, we have |Pj | > σ |Qj|. In
summary we can conclude |Oj | ≤ |Qj| < |Pj |/σ ≤
5 |Nj |/σ. With |Tj | ≤ 5 (|Oj | + |Nj|) (the constant
5 appears for the same reason as above) we obtain
for the total cost of the algorithm on F :

∑k
j=1 |Tj| ≤

∑k
j=1 5 (|Oj |+|Nj |) < 5

∑k
j=1(5 |Nj |/σ+|Nj |) = 5 (1+

5/σ)
∑k

j=1 |Nj | ≤ 5(1+5/σ)c`F
, the last step following

from
∑k

j=1 |Nj | ≤ c`F
. (A smaller constant could be
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obtained by a more intricate analysis.)

If the fallback criterion never holds during F ’s explo-
ration (which is only possible in the final round for F ),
the algorithm traverses F ’s complete boundary and ad-
vances to the node closest to t, which incurs additional
cost less than 2 cF .

The lemma holds for the link distance metric. Since
the algorithm is assumed to run on a bounded degree
unit disk graph, the lemma also holds for any other
cost metric (cf. Section 5.1).

Lemma 4.4. The total cost of the steps taken by
GOAFR+ within the circle Ci with radius rCi

is in
O

(

r2
Ci

)

.

Proof. According to the previous lemma we have
c′F (GOAFR+) ≤ γ cF for all steps performed in face
routing mode. Summing up over all faces in Ci

we obtain
∑

F∈Ci
c′F (GOAFR+) < γ

∑

F∈Ci
cF ≤

γ · 2
∑

e∈Ci
c(e), the last step following from the fact

that each edge e is adjacent to at most two faces.
To account for the greedy steps we add another
∑

e∈Ci
c(e), since any edge can be traversed at most

once in greedy mode (each round—a greedy step or
the exploration of a face—taking the algorithm strictly
closer to t). Since we employ a planar graph, with the
fact that (in a graph with more than three edges) each
face is adjacent to at least three edges and using the
Euler polyhedral formula we obtain that |Ei| ∈ O(|Vi|),
where |Ei| is the number of edges and |Vi| the num-
ber of nodes in Ci. The lemma finally follows with
∑

e∈Ci
c(e) ∈ O(|Ei|)—resulting from the equivalence

of the link distance metric with any other metric on
bounded degree unit disk graphs (cf. Section 5.1)—and
Lemma 4.1.

As described above, GOAFR+ employs a set of
bounding circles whose radii form a geometric se-
quence. This together with the fact that the maximum
radius is bounded by the Euclidean length of an opti-
mal path from s to t, leads to the following theorem.

Theorem 4.5. Let p∗ be an optimal path from s to t.
On a bounded degree unit disk graph GOAFR+ reaches
t with cost O

(

c2(p∗)
)

, if s and t are connected, which
is asymptotically optimal. If s and t are not connected,
GOAFR+ reports so to the source.

Proof. Let c`(p
∗) be the Euclidean length of a short-

est path from s to t. If s and t are connected,
the circle centered at t and with radius c`(p

∗) com-
pletely contains p∗. Since GOAFR+ only enlarges the
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Figure 2: Performance of routing algorithms in critical net-
work density range around 4.5 nodes per unit disk. Mean
performance values for GOAFR+ (solid line), GOAFRFC

(dashed), GOAFR (dash-dotted), and GPSR (dotted) plot-
ted against the left y axis. The network connectivity and
greedy success rate are plotted for reference (in gray against
right y axis).

bounding circle if it does not contain a path from
s to t, and according to GOAFR+’s radius update
policy with the constant factor ρ, the maximum ra-
dius reached is smaller than ρ c`(p

∗). In order to
compute the total cost of the algorithm we add up
the cost expended in each used circle. According to
Lemma 4.4 and Lemma 4.1 it is sufficient to consider
the areas of all employed circles. Let rmax be the
radius of the largest used circle. For some k ≥ 0
the areas of all used circles sum up to

∑k
i=0 π(rmax ·

1
ρi )

2 = 1−1/ρ2(k+1)

1−1/ρ2 πr2
max < 1−1/ρ2(k+1)

1−1/ρ2 π(ρ c`(p
∗))2 ∈

O
(

c`(p
∗)2

)

. With the equivalence of cost metrics—
including the Euclidean metric—on bounded degree
unit disk graphs, this holds for any metric. Asymp-
totic optimality follows from the lower-bound example
in [19, Figure 8].

If s and t are not connected, GOAFR+ detects so
(case c) in proof of Lemma 4.2) and reports back to
the source using the same algorithm.

4.3 Average-Case Efficiency

The GOAFR+algorithm includes greedy routing and
an early fallback mechanism intended to reduce the al-
gorithm cost on average case graphs. In order to assess
the algorithm’s average case performance we employed
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the custom simulation environment introduced in [20].
The simulations were carried out on graphs generated
by randomly and uniformly placing nodes on a square
field of side length 20 units and by randomly choosing a
source-destination pair. In [20] we identified a critical
network density range around 4.71 (≈ 1.5π) nodes per
unit disk. Situated between low densities, where only
in trivial cases s and t are connected at all, and high
densities, where in most cases greedy routing will suc-
ceed in finding a good path, this density range forms a
challenge to routing algorithms: Generally the length
of the shortest path from the source to the destination
is significantly longer than their (Euclidean) distance.

Figure 2 depicts the measured performance values
of four routing algorithms around this critical network
density. For each simulated network density the plot-
ted performance value is the mean of the ratios be-
tween the algorithm cost and the cost of the shortest
path (with respect to the link distance metric) mea-
sured on 2000 generated (network, source, destination)
triples: Low performance values are rated good. The
network connectivity rate—showing in how many of
the generated networks s and t are connected—and
the greedy success rate—representing how often the
algorithm reaches t by employment of greedy routing
alone—are depicted for reference and identification of
the critical density range.

Figure 2 contains the performance values for the
GPSR algorithm [15], for GOAFR and GOAFRFC [20],
as well as for GOAFR+. The GPSR algorithm com-
bines greedy and face routing, including early fallback,
does however not employ the concept of a bound-
ing searchable area. Making use of this concept, the
GOAFR algorithm becomes asymptotically worst-case
optimal, yet is not efficient in practice, since—once in
face routing mode—always complete face boundaries
are explored. In order to avoid this effect, an early fall-
back heuristic is applied by the GOAFRFC algorithm.
This algorithm showed best average-case performance
in [20], is however not asymptotically worst-case opti-
mal. GOAFR+ in contrast shows clearly better perfor-
mance values for the critical density range—exploiting
successive reduction of the bounding area size—and at
the same time is also asymptotically optimal in the
worst case.

5 Cost Metric

In this section we discuss the properties of cost met-
rics defined according to Definition 3.1 in the context

of geometric routing. We first show that all possible
such cost metrics are equivalent up to constant fac-
tors on bounded degree unit disk graphs. In a sec-
ond part we prove that when considering general unit
disk graphs (without bounded degree) the cost func-
tions are divided into two classes, linearly bounded and
super-linear. We show that employing a backbone
construction GOAFR+’s optimality can be extended
to general unit disk graphs for linearly bounded cost
functions. With super-linear cost metrics on the other
hand, a lower bound graph proves that there exists
no geometric routing algorithm whose cost is bounded
with respect to the shortest path.

5.1 Bounded Degree Unit Disk Graphs

For the proof of GOAFR+’s asymptotic optimality on
bounded degree unit disk graphs in Section 4.2 we
employed the equivalence of all cost metrics on such
graphs. This equivalence up to a constant factor is
shown in the following lemma.

Lemma 5.1. Let c1(·) and c2(·) be cost functions as
defined in Definition 3.1 and let G be a bounded degree
unit disk graph with node set V and maximum node
degree k. Further let p be a path from s ∈ V to t ∈ V
on G such that no node occurs more than once in p,
i.e. p is cycle-free. We then have

c1(p) ≤ αc2(p) + β

for two constants α and β, i.e. c1(p) ∈ Θ(c2(p)).

Proof Sketch. The proof for this lemma exploits the
fact that p is cycle-free and therefore, starting at a
node u, we leave the disk with radius 1 around u af-
ter traversing at most k + 1 edges. Thus any metric
c(p) can be bounded (up to constants) from above by
the Euclidean metric cd(p). With a similar argument
c(p) can also be bounded from below by the Euclidean
metric. Consequently we obtain c(p) ∈ Θ(cd(p)). The
exact proof can be found in Appendix C. �

As an application of Lemma 5.1 we obtain the fol-
lowing lemma.

Lemma 5.2. Let G be a bounded degree unit disk graph
with node set V . Further let s ∈ V and t ∈ V be two
nodes and let p∗1 and p∗2 be optimal paths from s to t
on G with respect to the metrics induced by the cost
functions c1(·) and c2(·), respectively. We then have

c1(p
∗

2) ∈ Θ(c1(p
∗

1)) and c2(p
∗

1) ∈ Θ(c2(p
∗

2)),
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i.e. the costs of optimal paths for different metrics only
differ by a constant factor.

Proof. Cf. Appendix D.

5.2 General Unit Disk Graphs

In this section we consider the problem of geometric
ad-hoc routing on general unit disk graphs (i.e. of un-
bounded degree). As shown in the following the be-
havior around 0 divides the cost functions defined ac-
cording to Definition 3.1 into two natural classes. The
cost functions lower-bounded by a linear function are
called linearly bounded cost functions, the cost
functions not bounded by a linear function are called
super-linear cost functions.

linearly bounded: ∃m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1],

super-linear:
�

m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1].

Of the standard cost measures the link distance and
the Euclidean metric are linearly bounded, whereas the
energy metric is super-linear. The lower bound exam-
ple of Section 5.2.2 exploits the property that with
super-linear cost functions it is possible to construct
chains with nodes of distance approaching zero which
allow to cover a finite Euclidean distance “for free” in
the limit.

We now give an algorithm which is asymptotically
optimal for linearly bounded cost functions. We subse-
quently show that there is no geometric ad-hoc routing
algorithm whose cost is bounded by the cost of an op-
timal path for super-linear cost functions.

5.2.1 Linearly Bounded Cost Functions

First we describe our algorithm as it can be applied
to an arbitrary unit disk graph G and for all linearly
bounded costs. In a precomputation phase a routing
backbone GBG is calculated. GBG is a subgraph of G
such that a) GBG is a bounded degree unit disk graph
and b) the nodes of GBG form a connected dominating
set of G. Consequently, all nodes of G have at least
one neighbor in GBG. The distributed construction of
a subgraph of G with properties a) and b) is described
in a number of publications (e.g. [1, 9, 25]).

As the backbone contains a dominating set of the
underlying graph, every regular node (a node not in
the backbone) can be associated to one of its domi-
nators. Since this can be regarded as a clustering of
all regular nodes around their dominators, we call this
graph the Clustered Backbone Graph GCBG. In order

to route a message from a regular node s to a regular
node t, the message will first be sent to s’s associ-
ated dominator and then routed along the Backbone
Graph to t’s associated dominator before finally being
forwarded to t itself. Note that while the Backbone
Graph is bounded in degree, this is not the case for
the Clustered Backbone Graph, since a dominator can
have arbitrarily many dominatees.

The following lemma shows that a route over the
backbone is competitive with the optimal route for the
link metric.

Lemma 5.3. The Clustered Backbone Graph is a
spanner with respect to the link metric, i.e. a best path
between two nodes on the Clustered Backbone Graph
is longer than a path between the same nodes in the
underlying unit disk graph by a constant factor only.

Proof. Follows from [25, Lemma 5].

This property of the Clustered Backbone Graph
does not only hold for the link distance metric, but
for all linearly bounded cost functions.

Lemma 5.4. The Clustered Backbone Graph GCBG

is a spanner with respect to any linearly bounded cost
metric c(·), i.e. the cost of an optimal path on GCBG

is only by a constant factor greater than the cost of an
optimal path on the underlying unit disk graph G.

Proof. Let c`(·) be the link distance metric. By Lemma
5.3, we have a path p′` on GCBG such that c`(p

′

`) ∈
Θ(c`(p

∗

`)) where p∗` is an optimal link distance path
on G. Let p∗ denote an optimal path with respect
to the cost c(·) on G. We then have to show that
c(p′`) ∈ O(c(p∗)). The Euclidean length of p∗ is cd(p

∗)
where cd(·) denotes the cost function of the Euclidean
distance metric. We partition p∗ into maximal sub-
paths of length at most 1. Because two consecu-
tive such subpaths have a total length greater than
1, we get at most d 2 cd(p

∗)e subpaths. We define
the path p′ by replacing each subpath with a direct
edge. Note that all edges of p′ have length at most 1.
The link distance cost c`(p

′) of p′ is upper-bounded by
c`(p

′) ≤ 2cd(p
∗) + 1. By the optimality of p∗` , we also

have c`(p
′) ≥ c`(p

∗

`) ∈ Θ(c`(p
′

`)). And because with
respect to the metric c(·), each edge of p′` has cost at
most c(1), we have c(p′`) ≤ c(1)c`(p

′

`). Together, we
get

c(p′`) ∈ O(cd(p
∗)) . (1)

Note that c(1) is a constant because c(x) has to be
defined for all x∈ ]0, 1]. Since c(·) has to be a linearly
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bounded cost function, we have c(x) ≥ m · cd(x) for a
constant m > 0. Therefore also c(p∗) ≥ m · cd(p

∗), and
combined with Equation (1) we obtain

c(p′`) ∈ O(c(p∗)) .

Our routing algorithm GOAFR+ works on planar
graphs. There are several standard approaches to ob-
tain a planar subgraph of the unit disk graph, one of
which is the Gabriel Graph (GG). We will now show
that the Gabriel Graph has all required properties. It
is well known that the intersection between the Gabriel
Graph and the unit disk graph (GG ∩ UDG) is con-
nected iff the UDG is connected. It is also well known
that GG ∩UDG contains an energy optimal path (see
Figure 7 in [19]). This leads to the next lemma.

Lemma 5.5. Let G be a bounded degree unit disk graph
with node set V and let GGG be the intersection of G
and the Gabriel Graph of V . Further, we fix two nodes
s ∈ V and t ∈ V . Let c(·) be a cost function and p∗

and p∗GG be optimal paths with respect to the metric
c(·) on G and on GGG, respectively. We then have

c(p∗GG) ∈ Θ(c(p∗)),

i.e. GGG is a spanner for all cost functions.

Proof. As already mentioned, it is well known that
GGG contains an optimal path with respect to the met-
ric corresponding to the cost function c(d) := d2 (in
fact, this also holds for exponents α > 2). By apply-
ing Lemma 5.2, we now see that the optimal energy
path p∗E is competitive for all cost functions c(·), i.e.
c(p∗E) ∈ Θ(c(p∗)).

We are now ready to apply GOAFR+ on general unit
disk graphs. In a precomputation phase the Clustered
Backbone Graph and its intersection with the Gabriel
Graph are constructed. Then the routing from source
s to destination t works as follows.

- If s and t are neighbors in G (the unit disk graph),
the message is directly sent from s to t; otherwise,
s sends the message to one of its dominators if s
is not a dominator itself.

- Then we use GOAFR+ to route the message along
the Gabriel Graph edges of the Clustered Back-
bone Graph. As soon as we arrive at a node whose
Euclidean distance to t is at most one, the mes-
sage is directly sent to t. Note that there has to
be such a node on the boundary of one of the faces
we visit.

w’
t

d

d
u1 w s

1

v1
1<D<2<

Figure 3: Lower bound graph for super-linear cost func-
tions

Theorem 5.6. Let the cost of the best path be-
tween a given source-destination path with respect to
a given linearly bounded cost metric be c. The cost of
GOAFR+ as described above with respect to the same
metric then is O(c2). This is asymptotically optimal
among all possible geometric ad-hoc routing algorithms
for linearly bounded cost metrics.

Proof. The case where s and t are direct neighbors
follows from the fact that the cost function has to be
linearly bounded. For the other cases we use that the
intersection of the Gabriel Graph and the Clustered
Backbone Graph is a spanner for linearly bounded cost
functions (Lemmas 5.4 and 5.5) and that GOAFR+

has the given worst case cost on all bounded degree
unit disk graphs (Theorem 4.5). Optimality follows
from Theorem 4.5, since the Ω(c2) lower bound graph
is also a Clustered Backbone Graph.

5.2.2 Super-Linear Cost Functions

For the remainder of this section we consider geometric
ad-hoc routing on general unit disk graphs for super-
linear cost functions. Unlike for linearly bounded cost
functions, the cost of a geometric ad-hoc routing al-
gorithm cannot be bounded by the cost of an optimal
path in this case.

Theorem 5.7. Let the best route with respect to a
super-linear cost function c(·) for a given source desti-
nation pair be p∗. Then, there is no (deterministic or
randomized) geometric ad-hoc routing algorithm whose
cost is bounded by a function of c(p∗).

Proof. We construct a family of unit disk graphs in
the following way (see Figure 3). We choose a positive
integer n and place n + 1 nodes on a straight (say
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horizontal) line such that two neighboring nodes have
distance 0 < d < 1. Starting with the first node, we
mark every b2/dcth node. For every marked node ui

we then place a node vi such that uivi has length 1
and such that all the new nodes lie on a line which
is parallel to the line where we put the first n + 1
nodes. This yields k vertical edges of length one. The
distance between two such edges is D = b2/dcd. Note
that 1 < D ≤ 2 because we have chosen d to be smaller
than 1. The number of marked nodes (i.e. the number
of such edges) k is then bounded by

k =

⌊

dn

D

⌋

≥
⌊

dn

2

⌋

>
dn

2
− 1. (2)

Now we choose an arbitrary marked node (we call it w)
and the corresponding vi. At vi we add two other ver-
tical edges and arrive at node w′ which has distance 3
from the line with the original n+1 nodes. Symmetri-
cally to the original n+1 nodes, we now place another
row of n + 1 nodes (including w′) on a horizontal line
with distance 3. Figure 3 illustrates this construction.
We choose an arbitrary node of the top n+1 nodes for
the source s. The destination t is chosen arbitrarily
from the bottom n + 1 nodes. The optimal route p∗

from s to t then first goes from s to w, then from w
to w′ and finally from w′ to t. The cost of p∗ can be
bounded by c(p∗) ≤ 2nc(d) + 3c(1).

We want this cost to be constant and therefore
choose c(d) = 1/n, yielding d = c−1(1/n). Note that
since c(·) has to be nondecreasing, c−1(·) is well-defined
as long as there are no intervals where c(·) is constant.
For those intervals we define c−1(·) to take any of the
possible values. For the cost of the optimal path c(p∗)
we now get a constant value (c(1) is a constant!), i.e.
c(p∗) ∈ Θ(1). In order to get the cost of a geometric
ad-hoc routing algorithm A, we observe that A has
no information about the location of w and therefore
has to test all possible nodes by using the k edges of
length 1. For a deterministic A we can always place
w such that it is the last marked node which is tried.
For a randomized A we can place w such that the ex-
pected number of needed trials is at least k/2. For the
cost c(A) of any geometric ad-hoc routing algorithm
we therefore get c(A) ∈ Ω(k)c(1) = Ω(k). Plugging
d = c−1(1/n) into Equation (2), we get

k >
1

2
nc−1(1/n) − 1,

and for n approaching infinity we then obtain

lim
n→∞

k ≥ lim
n→∞

1

2
nc−1(1/n) − 1

=
1

2
lim
y→0

c−1(y)

y
− 1

=
1

2
lim
x→0

x

c(x)
− 1 = ∞,

where we substituted y := 1/n in the first step and
x := c−1(y) in the second step. The last limit is ∞
by the definition of c(·), a super-linear cost function,
which implies that limx→0 c(x)/x = 0 if this limit ex-
ists. (For convenience we assume that the limit ex-
ists. Otherwise the same result can be achieved by
“tuning” the graph more closely to the cost function.)
Therefore, the cost of any algorithm A is unbounded
with respect to the best path p∗, which has constant
cost.

6 Conclusion

Trying to help bridging the chasm between theory and
practice in the field of ad-hoc routing, we proposed in
this paper the geometric routing algorithm GOAFR+,
which is more efficient than any previously studied al-
gorithm on average case graphs, while being also in
the worst case asymptotically optimal. We defined a
general cost model for routing algorithms and observed
that all possible cost functions fall into two classes, lin-
early bounded and super-linear. For linearly bounded
cost functions GOAFR+ could be extended such that
the formerly necessary Ω(1)-model restriction on node
distances could be dropped. With super-linear cost
functions an example graph was presented, for which
there exists no geometric routing algorithm of cost
competitive with the shortest path.

Of the most popular cost metrics—link distance
(hop), Euclidean distance. and energy metric—the
first two are linearly bounded, whereas the energy
metric is super-linear. In practical wireless ad-hoc
networks, however,—also in systems with adaptable
transmission power—the energy required for the trans-
mission of a message will never drop below a certain
base energy even for minimum transmission distance.
Consequently also for power-adaptive transmission the
cost function will be linearly bounded. For all practical
cost metrics it is therefore possible to drop the Ω(1)-
model assumption and still remain asymptotically op-
timal by employment of the backbone construction.
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Appendix

A Proof of Lemma 4.1

Proof. In order to prove Lemma 4.1, we first consider the
disks with diameter 1. All nodes inside such a disk are
less than 1 apart and are therefore adjacent in the unit
disk graph. Since the number of neighbors of each node is
bounded by k, each disk with diameter 1 contains at most
k + 1 nodes. In order to give a bound on the number of
nodes inside the region R, we therefore have to find an up-
per bound on the number of disks with diameter 1 needed
to completely cover R. We can cover the whole plane with
disks of diameter 1 by placing the disks on an orthogonal
grid such that the horizontal and the vertical distances be-
tween the centers of two neighboring disks are 1/

√
2 (see

Figure 4). By counting the number of disks intersecting R,
we get a bound on the number of disks needed to cover R.
We see that all disks intersecting R are completely inside
the region R′, where R′ is defined as the locus of all points
whose distances from R are at most 1, i.e. we add a border
of width 1 to R. Let A′ be the area covered by R′. The num-
ber of disjoint disks with diameter 1 which can be placed
inside R′ is bounded by 4A′/π (the area of a disk with di-
ameter 1 is π/4) and since in the above defined grid of disks
no point in � 2 is covered by more than 2 disks, the number
of disks needed to cover R can be bounded by 8A′/π. Thus,
the number of nodes in V is at most (k + 1)8A′/π.

In order to get the area A′, it is sufficient to consider the
case where R is a convex polygon. The general case then
follows by limit considerations. We get A′ by adding A(R)
(the area of R) and the area of the border around R. As
illustrated in Figure 4, the border can be broken down into
rectangles and sectors of circles. For each side of the polygon
R we obtain a rectangle of width 1, and since all the angles
of the sectors add up to 2π, the sectors add up to a disk
of radius 1. For A′ we therefore get A′ = A(R) + p(R) + π
where p(R) denotes the perimeter of R. This concludes the
proof.

A smaller constant than 8/π could be obtained by placing
the disks on a hexagonal grid and considering the portion

Figure 4: Covering a convex region with a grid of equally
sized disks

of the area which is only covered by a single disk.

B Proof of Lemma 4.2

Proof. We first assume there is a connection from s to t
within Ci. For the definition of a round we distinguish
three cases: According to the current algorithm execution,
a round can be either a) a greedy step, b) a face routing
phase terminated by early fallback, or c) a face routing
phase terminated after exploration of the complete bound-
ary of the current face and advancing to the node closest to
t. We show that after every round the algorithm is closer
to t than before that round: This holds in case a), since a
greedy step can only reduce the distance to t, and in case
b), as the fallback condition can only hold immediately af-
ter incrementing the counter p (that is after visiting at least
one closer node) and since the algorithm then advances to
the node seen so far closest to t; in case c) the algorithm
approaches t, since the boundary of the currently explored
face—this face contains points closer to t than where this
round started—contains a point closer to t iff there is a con-
nection to t. (Note that graphs can be constructed, where
a face F ’s boundary contains points but not nodes that are
closer to t than a given boundary node, in which case the
algorithm could fail. Since we employ the Gabriel Graph,
such cases can however not occur: The algorithm can for-
ward to the a face boundary’s node closest to t.) Since the
algorithm reduces the distance to the destination with each
round, it finally reaches t.

If s and t are not connected within Ci, GOAFR+—in face
routing mode—either hits Ci twice without finding a node
closer to t (in which case the algorithm will continue on a
bigger circle, which is beyond the scope of this lemma), or
it explores the complete boundary of the current face (cf.
above case c)) without finding a node closer to t, which is
the case iff s and t are not connected at all.
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C Proof of Lemma 5.1

Proof. Let cd(x) := x be the cost function of the Euclidean
distance metric. We show that for any cost function c there
exist constants α1, β1, α2, and β2 such that

c(p) ≤ α1cd(p) + β1 and (3)

c(p) ≥ α2cd(p) + β2. (4)

This means that all cost functions are in Θ(cd(p)) and par-
ticularly c1(p) ∈ Θ(cd(p)) and c2(p) ∈ Θ(cd(p)), which
proves the lemma.

We start with Inequality (3). Let c`(x) :≡ 1 be the cost
function of the link distance metric. Now pick a node u
from the path p. Because u has at most k neighbors, we
leave the disk with radius 1 around u after at most k + 1
steps when starting at u and walking along p. Therefore,
the total Euclidean distance of any k + 1 subsequent edges
of p is at least 1. We then have

c`(p) < (k + 1)dcd(p)e < (k + 1)cd(p) + k + 1.

Because cost functions are monotone increasing, we have
c(e) ≤ c(1) for any edge e and any cost function c(·). There-
fore, we get

c(p) < c(1) · c`(p) ≤ (k + 1)c(1) (cd(p) + k + 1) ,

which proves Inequality (3). Note that as soon as the cost
function c(·) is fixed, c(1) is a constant since we required c(x)
to be defined for all x∈ ]0, 1]. In order to obtain Inequality
(4), we observe that a path p′ of length cd(p

′) ≥ 1 has at
least one edge e′ of length cd(e

′) ≥ 1/(k + 1): If p′ consists
of m < k+1 edges, the longest edge of p′ has at least length
1/m; if p′ consists of k+1 or more edges, we use the fact that
k + 1 subsequent edges of p have a total Euclidean length
of at least 1. We now partition p into maximal consecutive
subpaths of length smaller than 2. All but the last of these
subpaths have a Euclidean length which is at least 1 and
therefore we have

c(p) ≥ c

(

1

k + 1

)

·
⌊

cd(p)

2

⌋

> c

(

1

k + 1

)

·
(

cd(p)

2
− 1

)

,

which concludes the proof.

D Proof of Lemma 5.2

Proof. By the optimality of p∗2, we obtain

c2(p
∗

1) ≥ c2(p
∗

2). (5)

p∗1 and p∗2 are cycle free and therefore we can apply Lemma
5.1. We then obtain

c2(p
∗

1) ∈ Θ(c1(p
∗

1)) and c1(p
∗

2) ∈ Θ(c2(p
∗

2)). (6)

Combining Equations (5) and (6) yields c1(p
∗

2) ∈ O(c1(p
∗

1)).
But by the optimality of p∗1 we have c1(p

∗

2) ≥ c1(p
∗

1) and
therefore, c1(p

∗

2) ∈ Θ(c1(p
∗

1)) holds. The second equation of
the lemma then follows by symmetry.
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