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Faster Algorithms for Integer Lattice Basis Reduction

Arne Storjohann

Eidgen�ossische Technische Hochschule

CH����� Z�urich

storjoha�inf�ethz�ch

July ��	 
���

Abstract

The well known L��reduction algorithm of Lov�asz transforms a given integer lattice basis b�� b�� � � � � bn �
ZZ

n

into a reduced basis� The cost of L��reduction is O�n� logBo� arithmetic operations with integers
bounded in length by O�n logBo� bits� Here� Bo bounds the Euclidean length of the input vectors�
that is� Bo � jb�j

�� jb�j
�� � � � � jbnj

�� We present a simple modi�cation of the L��reduction algorithm that
requires only O�n� logBo� arithmetic operations with integers of the same length� We gain a further
speedup by combining our new approach with Sch	onhage
s modi�cation of the L��reduction algorithm
and incorporating fast matrix mutliplication techniques� The result is an algorithm for semi�reduction
that requires O�n����� logBo� arithmetic operations with integers of the same length�

� Introduction

A subset L of row vectors in ZZ n�

is an n�dimensional integer lattice precisely if there exists some rank n

integer matrix A � ZZ n�n�

such that L is equal to the set of all integer linear combinations of rows of A�

Conversely� the row vectors of a rank n matrix A � ZZ n�n�

comprise a basis for some n�dimensional lattice

L� The rows of a second matrix B � ZZ n�n�

form a basis for the same lattice as that of A if and only if A
and B are left equivalent� that is� if and only if A and B are related by a unimodular matrix U with A � UB
and B � U��A� �Recall that a square matrix U over ZZ is unimodular if det�U � � ��	 such a matrix has
the property that U�� is over ZZ �� An integer lattice basis reduction algorithm takes as input a full row rank
integer matrix such as

A �

�
������
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and returns a new integer matrix that is left equivalent to A but consists of �typically� shorter basis vectors�
Here� the length jbj of an integer vector b is the Euclidean length� that is� jbj� � hb� bi where h�� �i denotes the
usual inner product� The L��reduction algorithm presented in ���� guarantees to return a basis with initial
vector at most �n�� times the length of the shortest vector in the lattice� In practice� the performance of
the L��reduction algorithm is much better� For example� the L��reduction algorithm returns� with the above
input matrix A� the left equivalent matrix

R �

�
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Integer lattice basis reduction has many applications including� for example� diophantine approximation
����� �nding integer relations among real numbers ���� computing other bases for integer lattices such as the
Hermite and Smith normal form �����
In this paper we present algorithms for the reduction and semi�reduction of integer lattice basis� We

prove asymptotic running time bounds for our algorithms that improve on those of the original L��reduction
algorithm presented in Lenstra� Lenstra � Lov�asz ���� and the semi�reduction algorithm of Sch�onhage �����
Before summarizing our complexity results we de�ne precisely what we mean by reduction and semi�reduction

� to do this we need to recall the Gram�Schmidt orthogonalization process� Let b�� b�� � � � � bn � ZZ
n�

be an integer lattice basis� Gram�Schmidt orthogonalization determines the associated orthogonal basis
b��� b

�
�� � � � � b

�
n together with elimination factors �ij �� � j � i � n� de�ned inductively by

b�i � bi �
i��X
j��

�ijb
�
j ���

and
�ij � hbi� b�ji�jb�j j�� ���

Following Sch�onhage in ���� we de�ne some di�erent meanings of reduced� A vector bk �or the whole basis� is
called size�reduced if j�kij � ��� holds for all i � k �so for all k�� A basis is called ��reduced if jb�kj� � �jb�k��j�
for � � k � n� As in ����� �reduced� is used to mean ��reduced and reduced in size� Our �rst reduction

algorithm is a modi�cation of the L��reduction algorithm� Let b�� b�� � � � � bn � ZZ n�

be an integer lattice basis
with n� � O�n� and jbij� � Bo for � � i � n� Our algorithm requires O�n����logBo����� bit operations
�where � � �� to produce a reduced bases� This complexity result improves by a factor of O�n� the running
time proven for the L��reduction algorithm in ����� Note that we have also improved on the modi�cation of
the L��reduction algorithmproposed by Schnorr ��
� which requires O�n����n����logBo�

���� bit operations�
For some applications a complete ��reduction of the input bases is not required� A bases b�� b�� � � � � bn is

called semi�reduced if
jb�r j� � �n�s�rjb�sj� for � � r � s � n� �
�

Sch�onhage has given a modi�cation of the L��reduction algorithm that requires O�n����logB����� bit op�
erations to return a semi�reduced bases� By combining our modi�cation of the L��reduction algorithm with
Sch�onhage�s and incorporating fast matrix multiplication techniques we are able to prove a running time
of O�n��������	���logBo����� bit operations for semi�reduction� This complexity result assumes a pre� and
post�conditioning step which requires O�n������logB
����� bit operations � about the same time as re�
quired to compute the determinant of the input lattice� Here 	 is the exponent for matrix multiplication
over rings� two n � n matrices over a ring R can be multiplied in O�n�� ring operations� Using standard
matrix multiplication 	 � 
 whereas 	 � ��
� using the algorithm of Coppersmith and Winograd ���� In
any case� we achieve a speedup for semi�reduction ranging from O�n��� for the case 	 � 
 to O�n
����� for
the case 	 � ��
�� We also present a version of our semi�reduction algorithm which uses standard integer
and matrix multiplication� Under these assumptions we prove a running time of about O�n������logB
���
bit operations �ignoring logarithmic terms��
The rest of this paper is organized as follows� In Section � we de�ne some notation and discuss the

complexity model used throughout the paper� In Section 
 we present an asymptotically fast algorithm for
fraction free Gaussian elimination over ZZ � We require this to compute the initial Gram�Schmidt orthogo�
nalization of the input basis� In Section � we present our modi�cation of the L��reduction algorithm and in
Section � our asymptotically fast algorithm for semi�reduction�

� Preliminaries

In this section we discuss the complexity model used throughout the paper� Our main goal is to rigorously
prove asymptotically fast complexity results for the algorithms in question � to this end we call upon pseudo�
linear integer arithmetic and frequently incorporate fast matrix multiplication techniques in our algorithms�
However� our secondary goal is always the development of fast practical algorithms � to this end we don�t
assume� for example� that integer multiplication will always be pseudo�linear� Whenever possible� we develop
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our algorithms to use homomorphic imaging schemes which greatly reduce the number of operations on large
integers�

Integer Arithmetic Using an algorithm of Sch�onhage � Strassen ����� two dte�bit integers can be multi�
plied in O�t�log t��log log t�� bit operations� For brevity� we prefer to write this complexity result as O�t����
where � is understood to be some positive constant� For example� algorithms of Karatsuba � Ofman ����
allow � � log� 
 � ����� or � � log� � � ����� In the case of standard integer arithmetic we have � � �� Each
of the following operations can also be performed in O�t���� bit operations� multiplying two dte�bit integers	
computing the division with remainder of two dte�bit integers	 computing the the greatest common divisor of
two dte�bit integers	 and computing either direction of the homomorphism implied by the Chinese remainder
algorithm where the product of the modulii is bounded by dte bits �see� for example� Aho� Hopcroft �
Ullman ����� In particular� a single �eld operation �including division� from ZZ p� the �eld of integers modulo
a prime p� costs O��log p����� bit operations�
Note that we will not �sweep under the rug� other logarithmic terms in complexity results with an �	 the

parameter � is reserved as the exponent for integer multiplication� This will lead to some inelegancies in the
statements and proofs of some complexity results� but the extra e�ort will prove worthwhile� For example�
the algorithms we give for Gram�Schmidt orthogonalization and size�reduction of integer lattices basis are
the currently fastest known� not only asymptotically assuming � � � and 	 � ��
�� but also in the case of
standard integer and matrix multiplication�

Matrix Arithmetic Let M�n� k�m� be a bound on the number of ring operations required to multiply an
n� k by a k �m matrix over a principal ideal ring R� We assume that

M�n� n� n�� n�

where � � 	 � 
� The current record on 	 is 	 � ��
� using the algorithm of Coppersmith � Winograd ����
Using the obvious block decomposition we also have

M�n�m� n��
�

n�m��� for n 	 m
nm��� for n � m

We will also use the fact that the problem of computing the determinant of an n� n matrix� computing the
inverse of a nonsingular n � n matrix� and multiplying two n � n matrices over a �eld have been shown to
be computationally equivalent �see� for example� Winograd ���� or Aho� Hopcroft � Ullman �����
For a real matrix A we write Aij to denote the entry in row i column j� jjAjj to denote the absolute

value of the largest magnitude entry� and At to denote the transpose� Given two integers a and M with
M positive� we write mods�a�M � to mean the unique integer r congruent to a moduloM in the symmetric
range� that is� with �b�M � ����c � r � bM��c� The closest integer to a real number x is denoted by �x�
�in case of ambiguity choose the smallest��
We will make free use of the following results throughout the paper�

Lemma � �Giesbrecht ���� Let x 	 
 and l �  � log logx� Then there exist at least �ddlog���x�e��l � ��e
primes p such that �l�� � p � �l�

Theorem � Let A � ZZ n�k and B � ZZ k�n and let �
 � ���� be a bound on the magnitudes of entries in A�
B and AB� Then the matrix product C � AB can be computed in
O�M�n� k�m��log
��log log 
�� � �nm � kn� km���log 
����� bit operations�

Proof� For p a prime� let Ap � A mod p be the matrix obtained fromA by replacing each integer entry with its
image mod p	 we consider Ap to be over the �eld ZZ p of integers modulo p� The algorithm computes C � AB
using the standard homomorphic imaging scheme� Compute Cp � �AB�p over ZZ p for su ciently many
primes p to allow recovery of the integer coe cients appearing in C via the Chinese remainder algorithm�
Since entries in C are bounded by 
� an application of Lemma� shows that we can choose all our primes to be
l � �log log
 bits in length� It follows that we can choose a list of s � �dd�log �
�e��l���e � !��log 
��l�






distinct primes �pi���i�s that are bounded in length by l bits and that satisfy
Q

��i�s pi � 
� The algorithm

can now be described as follows� ��� Find the images �Api � Bpi���i�s at a cost of O��nk � km��logB�����
bit operations	 ��� For � � i � s� compute Cp � ApBp over ZZ p at a cost of O�s � M�n� k�m� � l���� �
O�M�n� k�m��log
��log log 
��� bit operations	 �
� Apply Chinese remaindering to recover modulo

Q
��i�s pi

in the symmetric range the O�nm� integer coe cients of C a cost of O�nm�log 
����� bit operations�

Corollary � Let A � ZZ n�k and B � ZZ k�n and let �
 � ���� be a bound on the magnitudes of entries in
A� B and AB� Then the matrix product C � AB can be computed in O�M�n� k�m�� arithmetic operations
with integers bounded in length by O�log 
� bits�

Proof� Let Ad� Bd and Cd be the the matrices A� B and C respectively with entries considered embedded
in the principal ideal ring ZZ d where d � d
e� The matrix C is recovered from Cd by reducing modulo d
�symmetric range� all entries� Cd is computed in M�n� k�m� ring operations from ZZ d�

� Asymptotically Fast Fraction Free Gaussian Elimination

Let R be a principal ideal domain� A key step in the algorithm of the next section is to compute� for a
given A � R

n�n� a lower triangular matrix F � R
n�n such that the matrix T � FA is upper triangular

with i�th diagonal entry the determinant of the principal i�th submatrix of A for � � i � n� If A is de�nite
�all principal submatraces of A are nonsingular� then F is unique and T is precisely the matrix obtained by
applying fraction free Gaussian eliminationwithout row pivoting to A� �For a thorough discussion of fraction
free Gaussian elimination see� for example� Geddes� Czapor � Labahn �� or the original articles by Bareiss
��� 
��� In this section we de�ne explicitly the entries of the matrices F and T and give an asymptotically
fast algorithm for their computation for the case R � ZZ � First recall some basic de�nitions and facts from
linear algebra� For a matrix A � R

n�n� the minor Mij of entry aij is de�ned to be the determinant of
the submatrix obtained by deleting the i�th row and j�th column of A and the cofactor Cij is given by
Cij � ����i�jMij� In general� an i� i minor of A is the determinant of an i� i submatrix of A� For brevity�
we will sometimes write A����i�����j� to indicate the submatrix comprised of the �rst i rows and �rst j columns
of A� and row�A� k� �respectively col�A� k�� to denote the k�th row �respectively column� of A�

De�nition � For an n� n matrix A over a principal ideal domain R� we de�ne F � FF�A� to be the n� n
lower triangular matrix over R with Fij equal to the cofactor of the element in the j�th row� i�th column of
the i�th principal submatrix of A for � � j � i � n�

Fact � Let A be an n � n matrix over R with adjoint Aadj� Entries of Aadj are given by Aadj
ij � Cji for

� � i � n and � � j � n and the determinant of A can be written according to the j�th column expansion as

det�A� � a�jC�j � a�jC�j � � � �� anjCnj�

Lemma � Given an A � Rn�n let F � FF�A�� Then� the matrix T � FA will be upper triangular with Tij
equal to the minor formed from rows �� �� � � �� i and columns �� �� � � �� i� �� j of A for � � i � j � n�

Proof� Follows from Fact � by noting that the entries of FA are the claimed entries for T � which are
minors of A � written according to their cofactor column expansion�

Remark � The �rst k entries in row�FF�A�� k� are precisely those in the last row of the adjoint of the
principal k�th submatrix of A �for � � k � n��

When A is de�nite� we can relate the matrices F and T to the well known LU decomposition which
expresses A as the product of a unit lower triangular L and an upper triangular U � �To do this we need to
work over the quotient �eld of R�� In particular� F � DL�� and T � DU where D is the n�n diagonal matrix
with i�th diagonal entry the determinant di�� of the �i� ���th principal submatrix of A �with d
 � ��� Note
that di �� � i � n� can also be recovered as the product of the �rst i diagonal entries in U � However� while
the LU decomposition is de�ned only when A is de�nite� the matrices F and T of Lemma � are well de�ned
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even when A is non�de�nite� This is an important observation since our algorithm for computing FF�A�
for an integer matrices uses a homomorphic imaging scheme which may map a de�nite A to a nonde�nite
image� �If we knew in advance that A was de�nite� we could recover FF�A� from the LU decomposition of
A which can be computed using the asymptotically fast triangularization algorithm of Bunch � Hopcroft
����� The main purpose of this section is to give an algorithm for computing FF�A� that is robust even when
A is nonde�nite� Our algorithm hinges on the following two somewhat technical results�

Lemma � Let A be an n� n matrix over a principal ideal ring R and let P be an n� n matrix over R with
det�P � � �� If P can be written in block diagonal form as diag�P �� In�m� for some m with � � m � n� then
row�FF�A��m � i� � row�FF�PA�P�m� i� for � � i � n�m�

Proof� Fix some index i with � � i � n�m and letA� and P� be the principal �m�i���m�i� submatrices ofA
and P respectively� Because of the special structure of P � and since by de�nition entries in row�FF�A��m�i�
are determined entirely from entries in the principal �m � i��th submatrix of A� the �rst m � i entries in
row�FF�A��m�i� and row�FF�PA�P�m�i� will be given by row�FF�A���m�i� and row�FF�P�A��P��m�i�
respectively� Thus it will su ce to show that row�FF�A���m � i� � row�FF�P�A��P��m � i�� Keeping in
mind Remark ���� we get

row�FF�P�A��P��m� i� � row�FF�P�A���m� i�P�

� row��P�A��
adj�m� i�P�

� row��Aadj
� P adj

� �m� i�P�

� row�Aadj
� �m� i�P adj

� P�

� row�Aadj
� �m� i�

� row�FF�A���m� i�

as required�

Lemma � Let A be an n�n matrix over a �eld F and let F � FF�A�� Fix indices m and k with � � m � n
and � � k � n � m� If A����m�k�����m� has rank less than m� then entries in row�F�m � i� are all zero for
� � i � k�

Proof� If k � � then the claim is vacuously true so assume that the condition of the lemma holds for some
k 	 �� Fix some i with � � i � k� By de�nition� entries in row�F�m�i� are multiples of �m�i�����m�i���
minors ofA����m�i�����m�i���� Thus� it su ces to show that the rank ofA����m�i�����m�i��� is less thanm�i���
Now� A����m�i�����m�i��� can have full column rank only if all columns in A����m�i�����m�i��� are linearly
independent� But the submatrix comprised of the �rst m columns of A����m�i�����m�i��� is a submatrix of
A����m�k�����m�� which� by assumption� has rank less than m� This shows that the rank of A����m�i�����m�i���

must be less than m � i� ��

Lemma 	 There exists a deterministic algorithm that takes as input an n�m matrix A over a �eld F� with
m � n and with principal m�th minor singular� and returns as output the largest index k �� � k � n �m�
such that the submatrix comprised of the �rst m � k rows of A has rank less than m� The cost of the
algorithm is O�nm��� logn� �eld operations from F� In the case of standard matrix multiplication� the cost
of the algorithm is O�m� � nm� �eld operations�

Proof� By augmenting A with at most n � m rows of zeros� we may assume� without loss of generality�
that n �m � �p for some integer p 	 �� We show how to determine k by computing the rank of at most
log��n�m� submatrices of A� Each of these rank computations requires at most O�nm���� �eld operations
so the claimed complexity bound will follow� To begin� we have � � k � n�m	 a range with width n�m�
Our approach is to do a binary search of this range � each step will reduce the width of the possible range
for k by half so that the total number of steps is bounded by p � log��n�m�� The entire procedure can be
understood by considering the �rst step� which proceeds as follows� Let n� � �n � m��� and compute the
rank r of the submatrix comprised of the �rst m � n� rows of A� If r � m then k must satisfy � � k � n��
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If r � m then k must satisfy n� � � � k � n� In both cases we have halved the width of the possible range
for k�
The result for standard matrixmatrixmultiplication is obtained more easily� Triangularize using Gaussian

elimination� for i � �� �� �� � � �� n �m in succession� the submatrix A����m�i�����m� and let k be the largest i
for which A����m�i�����m� has rank less that m� The triangularization of A����m�����m� requires at most O�m

��
�eld operations� Each additional submatrix A����m�i�����m� for � � i � n�m can be computed within O�m�
�eld operations for a maximum of O��n�m�m� � O�nm� �eld operations�

Theorem 
 There exists a deterministic algorithm that takes as input an n � n matrix A over a principal
ideal domain R and returns as output the matrices F � FF�A� and T � FA� The cost of the algorithm is
O�n� logn� ring operations from R� In the case of standard matrix multiplication� the cost of the algorithm
is O�n�� ring operations�

Proof� The presentation of the algorithm is greatly simpli�ed if we assume we are working over a �eld� We
can do this without loss of generality by working over the quotient �eld of R� the de�nition of which we recall
now� De�ne an equivalence relation 
 on the set of ��tuples �a� b� of elements of R with b �� � by

�a�� b�� 
 �a�� b�� if and only if a�b� � a�b��

The quotient �eld "R of R is this set of equivalence classes� with addition and multiplication de�ned by

��a�� b��� � �a�� b��� � ��a�b� � a�b�� b�b���

��a�� b��� � ��a�� b��� � ��a�a�� b�b���

so that a single �eld operation in "R requires a constant number of ring operations from R� The entries in
FF�A� are de�ned uniquely in terms of minors of A and so can be recovered from the entries in FF� "A�
where "A is the matrix A considered embedded into "Rn�n� This shows that without loss of generality we may
assume our input matrix A to be over some �eld F�
Let C�n� be the number of �eld operations from F required to compute� for an A � Fn�n� the matrix

F � FF�A�� By augmenting A with at most n� � rows and columns of zeros we may assume� without loss
of generality� that n is a power of �� We claim that

C�n� � 
C�n��� � cn� logn ���

for some absolute constant c� To prove ��� we give a conquer and divide algorithm which requires at most
three recursive calls on �n��� � �n��� matrices and additional work at most one call to the algorithm of
Lemma  plus a constant number of matrix operations �determinant� inversion� multiplication and addition�
involving matrices bounded in dimension by n�
To begin� write A using a block decomposition as

A �

�
A� A�

A� A�

	
���

where each block is m � m with m � n��� The principal m�th submatrix of F is given by F� � FF�A��
which we compute recursively� To compute the remaining rows of F we have two two cases depending on
whether or not d � det�A�� is zero� Note that d can be recovered as the m�th diagonal entry of F�A��
Case � �d �� ��� Compute A�

� ��A�A
��
� A� �A� so that

�
Im

�A�A
��
� Im

	 �
A� A�

A� A�

	
�

�
A� 

A�
�

	
��

with each blockm�m� Compute F �
� � FF�A

�
�� recursively� Multiply equation �� on the left by diag�F�� dF

�
��

to obtain �
F�

�dF �
�A�A

��
� dF �

�

	 �
A� A�

A� A�

	
�

�
T� 

dT �
�

	
���





Since the premultiplier matrix on the left of equation �� was unit lower triangular� the matrix on the left
of ��� is FF�A�� This completes case ��
Case � �d � ��� Using the algorithm of Lemma �� compute the largest index k �� � k � n�m � m� such

that A����m�k�����m� has rank less than m� By Lemma � row�F� i� contains only zeros for � � i � k� If k � m
we are �nished so assume k � m� It remains to compute the last n�m�k rows of F � Using the asymptotically
fast triangularization algorithm of Hafner � McCurley ���� compute� at a cost of O�n�� �eld operations� an
�m � k � �� � �m � k � �� unimodular �i�e� nonsingular� matrix P� over F such that P�A����m�k�������m�

is upper triangular� By the assumption on k� the principal m�th submatrix of P�A����m�k�������m� will be
nonsingular� Let P �

� be the matrix obtained from P� by multiplying row � of P� by �� det�P��� and set

P �

�
P �
�

In�m�k��

	

so that det�P � � � and PA has nonsingular principal m�th submatrix� By Lemma � the last n�m� k rows
of F can be recovered as the last n�m� k rows of FF�PA�P � Since the principal m�th submatrix of PA is
nonsingular we can now proceed as in case �� Let B � PA and write B using a block decomposition as in
���� Compute B�

� ��B�B
��
� B� � B� so that

�
Im

�B�B
��
� Im

	 �
B� B�

B� B�

	
�

�
B� 

B�
�

	
� ���

Compute F �
� � FF�B

�
�� recursively� The last n�m� k rows of F are given by the last n�m � k rows of


 �d�F �
�B�B

��
� d�F �

�

�
P

where d� � det�B��� T is recovered by computing the matrix product FA� This completes case �� and proves
���� Iterating ��� yields

C�n� � 
C�n��� � cn� logn

� �C�n��� � c�logn��n��

� �C�n��� � c�logn��n� � ��n�����

���

� �log� nC��� � cn��logn�

log
�
nX

i�


������i

� n�C��� � n� logn�

The result now follows by noting that C��� can be computed in O��� �eld operations�
The result in terms of standard matrix multiplication uses exactly the same algorithm� From Lemma 

we now get
C�n� � 
C�n��� � cn� ���

for some absolute constant c� Iterating ��� now yields C�n� � O�n�� �eld operations�

Theorem � There exists a deterministic algorithm that takes as input an n � n integral matrix A and
returns as output the matrices F � FF�A� and T � FA� The cost of the algorithm is O�n��log 
���� �
n��logn��log 
��log log 
��� or the simpler bound of O�n��logn��log 
����� bit operations where 
 is a bound
on the magnitudes of entries in A� F and T � In the case of standard matrix multiplication� the cost of the
algorithm is O�n��log
���� � n��log
��log log
��� bit operations�

Proof� For p a prime� let Ap � A mod p be the matrix obtained from A by replacing each integer coe cient
with its imagemod p	 we consider Ap to be over the �eld ZZ p of integers modulo p� The algorithm exploits the
standard homomorphic imaging scheme� Compute Fp and Tp � FpAp over ZZ p for su ciently many primes p
to allow recovery of the integer coe cients appearing in F and T via the Chinese remainder algorithm� Since

�



entries in F and T are bounded by 
� an application of Lemma � shows that we can choose all our primes to
be l �  � log log
 bits in length� It follows we can choose a list of s � �dd�log �
�e��l � ��e � !��log 
��l�
distinct primes �pi���i�s that are bounded in length by l bits and that satisfy

Q
��i�s pi � 
� The algorithm

can now be described as follows� ���� Find the images �Api ���i�s	 ���� For � � i � s� compute �Fpi � Tpi�
at a cost of O�s � n� logn � �log l����� � O�n��logn��log 
��log log
��� bit operations using the algorithm of
Theorem �	 �
�� Apply Chinese remaindering to recover the O�n�� integer coe cients of F and T at a cost of
O�n� � �log
����� bit operations� Note that the complexity of step ���� will be bounded by that of step �
���
which� in turn� is bounded by that of step ���� Assuming standard matrix multiplication� step ���� requires
O�n��log 
��log log 
��� bit operations�

Corollary �� There exists a deterministic algorithm that takes as input an n�dimensional lattice of integer

vectors b�� b�� � � � � bn � ZZ n�n�

� and returns as output the corresponding Gram Schmidt orthogonalized bases
b��� b

�
�� � � � � b

�
n� The cost of the algorithm is O�n����logBo���� � n������logn��logB
��log logB
��� or the

simpler bound of O�n����logn��logBo����� bit operations where Bo 	 jbij� for � � i � n� In the case of
standard matrix multiplication� the cost of the algorithm is O�n����logBo�����n������logB
��log logB
���
bit operations�

Proof� Let A be the n � n� integral matrix with i�th row bi for � � i � n� Then the corresponding Gram
Schmidt orthogonalized basis is given by A� � D��FA where F � FF�AAt�AAt and D is the n�n diagonal
matrix with D�� � � and Dii � Fi�� i�� for � � i � n� �Note that D��F will be unit lower triangular��
By Hadamard�s inequality� entries in F and D will be bounded in length by O�n logB
� bits � this will
bound the bit length of entries in FA� The result follows by noting that the matrix product D���FA� can
be computed within the stated complexity�

� An Improved L

�Reduction Algorithm

In this section we assume some familiarity with the L��reduction algorithm as presented in ����� Let an

integer lattice basis of row vectors b�� b�� � � � � bn � ZZ
n�

be given in the form of an n � n� matrix A� that
is� with row�A� i� � bi for � � i � n� Before beginning with the basis reduction we require the quantities
di � jb��j� jb��j� � � � jb�i j� and the elimination factors �ij corresponding to the associated orthogonal basis
b��� b

�
�� � � � � b

�
n � these can be computed directly from the de�nitions ��� and ���� In practice� we simply

triangularize the positive de�nite symmetric matrixAAt �where At denotes the transpose ofA� using fraction
free Gaussian elimination without row pivoting to obtain the triangular integer matrix

T � FF�AAt�AAt �

�
������

d� "��� "��� "�n�
d� "��� � � � "�n�

d� "�n�
� � �

���
dn

�
������

����

where "�ij � dj�ij for � � i � j � n� Throughout the algorithm we work with the integer valued "�ij�s and
di�s� The L

� algorithm does not keep track of the orthogonal basis vectors b�i of ���	 all that is required is
the quantities Bi � hb�i � b�i i and these are given by Bi � di�di�� �for � � i � n and where d
 � ���
The key to our approach is to consider the L� algorithm as a matrix algorithm� that is� we consider steps

in the L� algorithm as corresponding to certain operations on the matrices T and A� At each stage in the
algorithm the upper triangular matrix T �i�e� the di�s and "�ij�s� is related to the current A as in ����� The
L� algorithm works by applying unimodular row operations to the basis matrix A and then updating the
entries in T � There are two types of operations � ��reduction and size�reduction � with size�reduction
being the simpler of the two�
The unimodular row operation corresponding to size�reduction consists of adding an integer multiple of

row r to row k of A for some choice of r and k with � � r � k � n� The "�ij �s and di�s are updated by adding
the same multiple of column r to column k of T � We get the following �trivial� subroutine which requires
O�n� arithmetic operations�

�



SubtractRow�A� T� k� r� q�
# Subtract q times row r from row k of A and update T �

row�A� k�� row�A� k�� q row�A� r�	
col�T� k�� col�T� k� � q col�T� r�	

The unimodular row operation corresponding to ��reduction consists of switching rows k � � and k in A
for some choice of k with � � k � n� It is easiest to explain with a picture what needs to be updated in the
matrix T after a row switch in A� We can write T in block form as

T �

�
����������������

d� � � � "�k��� "�k��� "�k � "�k��� � � � "�n �

� � �
���

���
���

���
���

dk�� "�k��k�� "�k k�� "�k��k�� � � � "�nk��

dk�� "�k k�� "�k��k�� � � � "�nk��

dk "�k��k � � � "�nk

dk�� � � � "�nk��

� � �
���
dn

�
����������������

����

where the centre block is �� �� It is precisely the entries inside� above and to the right of this centre block
that need to be updated	 all other entries in T remain unchanged� We recast the update formulas for these
entries� which are given in detail in ����� in terms of row and column operations on the matrix T � There are
three steps� �i� �backtrack� fraction free Gaussian elimination at row k � �	 �ii� switch rows$columns k � �
and k	 �iii� �forwardtrack� fraction free Gaussian elimination at row k� �� The following subroutine� which
requires O�n� arithmetic operations� gives precisely this procedure�

SwitchRow�A� T� k�
# Switch rows k � � and k in A and update T �
switch rows k � � and k in A	
row�T� k�� ���Tk��k����Tk��k�� row�T� k� � Tk��k row�T� k � ���	
switch rows k � � and k of T 	
switch columns k � � and k of T 	
row�T� k�� ���Tk��k����Tk��k�� row�T� k�� Tk��k row�T� k � ���	

We now give the L� reduction algorithm in terms of our subroutines SubtractRow and SwitchRow� In
what follows� we write �x� to mean the nearest integer to a real number x �if nonunique then choose the
candidate with smallest magnitude�� and as in ����� we write Bi to denote the quantity hb�i � b�i i� The quantities
Bi and �ij are recovered from the di�s and "�ij�s� which are entries in the matrix T � Recall that Bi � di�di��

and �ij � "�ij�dj for � � i � j � n�

�



ReductionL
��A�

# Inplace ��reduce and size�reduce the n�dimensional integer lattice A�
�����Fraction free Gaussian elimination��

T � FF�AAt�AAt	
�������reduce and size�reduce��

k � �	
do

SubtractRow�A� T� k� k � �� ��kk����	
if Bk � �

�
� � ��k k���Bk�� then

# Case ��
SwitchRow�A� T� k�	
if k � � then k� k � � �	

else
# Case ��

� for j from k � � by �� to � do SubtractRow�A� T� k� j� ��kj�� od	
if k � n then terminate else k� k � � �	

�	
od	

On termination of algorithm ReductionL
� the output basis b�� � � � � bn �where bi � row�A� i�� is both

��reduced and size�reduced� that is� satis�es the properties

�i� jb�i � �i i��b
�
i��j� � �

� jb�i��j� for � � i � n�

�ii� �ij � �
� for � � j � i � n�

Theorem �� �A� K� Lenstra� H� W� Lenstra� Jr� and L� Lov�asz ����� For an input basis b�� b�� � � � � bn �
ZZ

n�

with n� � O�n� and bound Bo 	 jb�j�� jb�j�� � � � � jbnjn� algorithm ReductionL
� requires O�n� logBo�

arithmetic operations with integers bounded in length by O�n logBo� bits�

It is useful at this point to give a sketch of the proof of Theorem �� � at least the bound on the number
of arithmetic operations required by step ����� For convenience� let B be a bound on the magnitudes of initial
diagonal entries in T � At the start of the algorithm jb�i j� � jbij� � Bo� The i�th diagonal entry di of T is given
by di � jb��j� jb��j� � � � jb�i j� � Bi

o� so so we can take B � Bn
o � Consider the two cases of the conditional inside

the do loop in step ����� Case � corresponds to a ��reduction step which costs O�n� operations� and case �
to a vector size�reduction �line �� which costs O�n�� operations� Because k is always incremented in case �
�except when k � n which implies termination�� the number of occurrences of case � will be at most n�� more
than the number of occurrences of case �� so it will be su cient to bound the number of ��reduction steps	 to
this end� the quantityD �

Qn��
i�� di is considered� Initially� logD � O�n logB� and throughout the algorithm

D 	 � �see ���� for details�� D changes only when a ��reduction step is performed� ��reduction is performed
at index k only if Bk � �

�
� � ��k k���Bk�� and� in this case� ��reduction has the e�ect of decreasing dk�� by

a factor of � 
�� while the other di�s remain unchanged �again� see ���� for details�� This shows that the
number of iterations is bounded by O�logD� � O�n logB�� and hence step ���� admits a complexity bound
of O�n� logB� arithmetic operations� Since B � O�Bn

o �� this becomes O�n
� logBo� arithmetic operations as

claimed� Note that the dominant step as far as the arithmetic complexity is concerned is line ��
We now give a simple modi�cation of step ���� of algorithm ReductionL

� that requires only O�n� logB�
arithmetic operations� Our idea hinges on the following observation� The vector size�reduction step in line �
of case � is not integral to the correctness of the algorithm� In particular� a close inspection of the proof given
in ���� �which we have sketched above� reveals that algorithm ReductionL

� terminates within O�n logB�
iterations of the loop in step ���� even if line � is omitted� By omitting line � we get a mathematically
correct algorithm for ��reduction �but not size reduction� that by our complexity analysis above now requires
only O�n� logB� arithmetic operations� To complete the basis reduction we include a third step after step
���� �nishes which size reduces the basis � this third step essentially executes line � for k � �� 
� � � � � n� We
remark �without proof� that the modi�ed reduction algorithm just described will return exactly the same
reduced basis as algorithm ReductionL

��

��



Now that we have reduced by a factor of O�n� the number of arithmetic operations we turn our attention
to bounding the bit complexity� A careful analysis in ���� shows that intermediate expressions in algorithm
ReductionL

� �namely the entries in A and T � remain bounded in length by O�n logBo� bits� Crucial to
the derivation of this size bound is that row k is size�reduced before incrementing k in the loop in step �����
Certainly� this size bound does not carry over to our modi�ed algorithm described above which omits line ��
Our method of bounding the length of intermediate integers is completely di�erent� We need the following
result�

Lemma �� Let b�� b�� � � � � bn be an input basis to algorithm ReductionL
�� If at any point in the algorithm

we have numbers Bo and B such that the basis satis�es

Bi � Bo and di � B for � � i � n ����

then �	�� will remain satis�ed for the remainder of the algorithm� and upon termination

jbij� � nBo for � � i � n�

Proof� See �����

Let A � ZZ n�n�

be an input matrix to algorithm ReductionL
� with Bo 	 jb�j�� jb�j�� � � � � jbnj�� To avoid

confusion� we write A� to mean the original input matrix �since A is modi�ed inplace during the course of the
algorithm�� After step ����� and for the remainder of the algorithm� entries in the work matrix A are never
used as intermediate values for subsequent computations� In particular� instead of applying unimodular row
operations to A� we could record all row operations in an n� n unimodular matrix U � initially set to be the
identity matrix at the start of step ����� At the end of the algorithm� the reduced basis can be computed
as UA�� Let M � �d�nBo����e � � so that by Lemma �� entries in the reduced basis matrix returned by
the algorithm will be bounded in magnitude by �M � ����� Our modular approach hinges on the following
simple idea� If "U is the matrix obtained by reducing moduloM all entries in U � then UA� will be equal to
the matrix obtained by reducing moduloM �symmetric range� all entries in "UA�� Equivalently� after step
���� and for the remainder of the algorithm� we can arbitrarily reduce modulo M entries in the the work
matrix A� At the end of the algorithm� the reduced matrix is recovered by reducing moduloM �symmetric
range� all entries in A�
So far� we have shown how to keep all intermediate entries in the work matrix A bounded byM � O�Bo��

Lemma �� has already bounded the diagonal entries di of T throughout the algorithm� The following lemma
shows how we bound the o�diagonal entries "�ij of T �

Lemma �� Let T be the matrix of �	
�� M a positive integer� and i and j indices with � � i � j � n�
There exists a unit upper triangular integer matrix V such that TV is identical to T except with the entry
in the i�th row j�th column reduced modulo didi��M � Furthermore� V can be chosen so that "V � the matrix
obtained by reducing modulo M the entries in V � will be the identity matrix�

Proof� The proof rests on some elementary facts from linear algebra� First� recall that T � FA where
F � FF�AAt� is a lower triangular integer matrix� Since AAt is a positive de�nite symmetric matrix� we
have

TF t � FAAtF t �

�
������

d�
d�d�

d�d�
� � �

dndn��

�
������
�

�To see this� note that FAAtF t must be symmetric and upper triangular at the same time�� Take Vo be the
n�n strictly upper triangular matrix with column j equal to column i of F t and all other entries zero� Now�
let q � �Tij��didi��M �� so that Tij � q didi��M � mods�Tij� didi��M �� The matrix qMVo will be strictly
upper triangular with TqMVo equal to the zero matrix except for the entry in the i�th row j�th column
which is qdidi��M � The matrix V � �qMVo � In has the desired properties�

��



It follows from Lemma �
 that during the reduction of the lattice basis A we can arbitrarily reduce
modulo didi��M entries to the right of the diagonal in row i of T for � � i � n � �� For example� consider
the entry "�ji in row i column j of T for some choice of i and j with � � i � j � n� Let V and "V be the unit
upper triangular integer matrices of Lemma �
� Premultiplying A by V t and reducing entries modulo M
will have no e�ect since "V t is the identity matrix� Nonetheless� we are still �required� to update the entries
in T corresponding to this row transformation on A� this update proceeds by postmultiplying T by V � but
this has precisely the desired e�ect of reducing modulo didi��M the entry in row i column j of T � We get
the following modi�ed lattice basis reduction algorithm� the correctness of which follows from the previous
discussion�

ModSubtractRow�A�T�M� k� r� q�
# Subtract q times row r from row k of A and update T �

SubtractRow�A� T� k� r� q�	
for i to k � � do Ti�k � mods�Ti�k� didi��M � od	
for j to n� do Ak�j � mods�Ak�j�M � od	

ModSwitchRow�A� T�M� k�
# Switch rows k � � and k in A and update T �
SwitchRow�A� T� k�	
for i to k � � do Ti k�� � mods�Ti k��� didi��M � od	
for i to k � � do Ti k � mods�Ti k� didi��M � od	
for j from k to n do Tk�� j � mods�Tk�� j � dk��dk��M � od	
for j from k�� to n do Tk j � mods�Tk j � dkdk��M � od	

ModReductionL
��A�

# Inplace ��reduce and size�reduce the n�dimensional integer lattice A�
�����Fraction free Gaussian elimination��

T � FF�AAT �AAT 	
�������reduction��

M � �d�nmax�jb�j�� � � � � jbnj������e � �	
k � �	
do

ModSubtractRow�A� T� k� k� �� ��kk����	
if Bk � �

�
� � ��k k���Bk�� then

ModSwitchRow�A� T� k�	
if k � � then k� k � � �	

else
if k � n then break else k� k � � �	

�	
od	

�
���Size�reduction��
for k from � to n do
for j from k � � by �� to � do ModSubtractRow�A� T�M� k� j� ��kj�� od	

od	

In analysing the bit complexity of our new algorithm ModReductionL
� we prefer to follow the approach

of Sch�onhage and assume we have a bound B such that the input basis satis�es

jbij� � B� di � B for � � i � n� and �n � B� ��
�

Note that B 	 Bo� Since the initial basis satis�es di � Bi
o� we can take B � Bn

o in case B is not explicitly
given� The point of assuming a bound B satisfying ��
� is that for some basis reduction problems the input
basis admits a certain structure and satis�es jbij � O�Bo� rather than the worst case bound jbij � O�Bi

o��

Theorem �� Algorithm ModReductionL
� is correct� For an input basis b�� b�� � � � � bn � ZZ

n�n�

with n� �
O�n� and bound B satisfying �	��� the algorithm requires O�n� logB� arithmetic operations with integers

��



bounded in length by O�logB� bits� If only a bound Bo 	 jb�j�� jb�j�� � � � � jbnj� is known� then the running
time of the algorithm is O�n� logBo� arithmetic operations with integers bounded in length by O�n logBo�
bits�

Proof� The correctness of the algorithm follows from the earlier discussion� To determine the complexity of
computing T � FF�AAt�AAt in step ����� we need to bound the magnitudes of entries in C � AAt and T �
For C� we have Cij � hbi� bji � max�hbi� bii� hbj� bji� � B� By assumption� diagonal entries of T �the di�s�
are bounded by B� For � � j � i � n we have

Tji � dj�ij � dj hbi� b�j i�jb�j j� � djB � B��

Thus� T can be computed within O�n��logB����� bit operations using the algorithm of Theorem �� By
assumption B 	 �n so that O�n��logB����� � O�n��logB������ We now bound the complexity of steps
���� and �
��� We have already shown that the number of arithmetic operations required for step ���� is
bounded by O�n� logB�� Step �
�� requires O�n�� calls to subroutine ModSubtractRow and so will require
O�n�� arithmetic operations� By assumption B 	 �n so that O�n�� � O�n� logB�� Thus� it will su ce to
show that all intermediate entries of T and A during step ���� and �
�� remain bounded by O�logB� bits

in length� Entries in A are kept reduced moduloM where M � �B���
o � � � 
B� and entries in row i of T

are kept reduced modulo didi��M � didi���
B�� which by Lemma �� will remain bounded by 
B�� The
complexity result in terms of Bo follows by noting that the choice B � Bn

o satis�es ��
��

��� Practical Considerations

For clarity� algorithm ModReductionL
� was presented in a form which di�ered from the orignial L��reduction

algorithm as little as possible� In particular� ModReductionL� will return exactly the same reduced basis as
the original L��reduction algorithm� In practice� it is more e cient to implement the algorithm di�erently�
We mention here three heuristics that can have signi�cant impact on the running time�
Heuristic �� The goal of reduction is to transform the basis so as to satisfy j�ijj � ��� for � � j � i � n

and
�
� jb�i��j� � jb�i � �i i��b

�
i��j� for � � i � n�

Since �i i�� may be as large as ���� the best that can be concluded from the above conditions is that jb�i��j� �
�jb�i j�� which is equivalent to d�i�� � �didi��� Thus� we can replace the conditional Bk � �

�
� � ��k k���Bk��

in the loop in step ���� with the simpler check d�k�� � �dkdk��� This change also dispenses with the need to
call ModSubtractRow�A� T� k� k� �� ��kk���� at the start of the loop�
Heuristic �� The original L� algorithm �and ModReductionL

�� always picks the smallest possible row
index k at which to perform a ��reduction� In the L� algorithm this choice was required to properly bound
the size of intermediate integers but in our case we are at liberty to take a more global approach� The rate
of progress of ��reduction is related to the quantity d�d� � � �dn��� If d�k�� � �dkdk�� for some � � k � n�

then a ��reduction step performed at row k will reduce dk�� by reduction factor of �k �
�
� while leaving the

other di�s unchanged� Since ��reduction at row k replaces b�k�� with b
�
k � �k k��b

�
k�� �where �k k�� has �rst

been reduced to satisfy �k k�� � ����� the actual reduction factor �k is given by

�k � jb�k � ��k k�� � ��k k����b
�
k��j��jb�k��j�

� �Bk � ��k k�� � ��kk����
�Bk����Bk��

� Bk�Bk�� � ��k k�� � ��kk����
� ����

� Bk�Bk�� �
�
� ����

The idea is to apply the greedy algorithm� at each step through the loop� choose the row index k which
guarantees the most progress� The reduction factors �k for � � k can be computed exactly using ���� or
approximated using ����� In many cases� we have observed this greedy approach to approximately halve the
number of ��reduction steps required to ��reduced the basis�
Heuristic 
� By Lemma ��� at any point in the algorithm we have the bound

p
nmax�jb��j�� � � � � jb�nj�����

on the magnitudes of entries in the �nal basis matrix� In practice� we have observed that this bound decreases

�




rapidly after only a few iterations of the loop in step ����� This leads to the idea of recomputing the bound
each time through the loop and resetting the modulus M accordingly� Of course� we must ensure that the
new M is an integer factor of the old M � This condition is easily met by choosing M to be a power of ���
for example�
For completeness� we give a modi�cation of step ���� which incorporates all three of the heuristics

discussed in this section�

�������reduction with heuristics��
do

e� d�� log�
�nmax�jb��j�� � � � � jb�nj���e� �	
M � ��e	
k� �	
for i from 
 to n do
if Bi�Bi�� � Bk�Bk�� then k� i �	

od	
if Bk�Bk�� 	 �

� then break �	
ModSubtractRow�A� T� k� k� �� ��kk����	
ModSwitchRow�A� T� k�	

od	

� Asymptotically Fast Semi�Reduction

In this section we combine our modi�cation ModReductionL� of Section � with Sch�onhage�s ���� modi�cation
of the L��reduction algorithm� The result is an asymptotically fast algorithm for semi�reduction� A bases
b�� b�� � � � � bn is called semi�reduced if

jb�r j� � �n�s�rjb�sj� for � � r � s � n� ���

Sch�onhage�s algorithm for semi�reduction requires O�n��logB����� bit operations where B is a bound satis�
fying ��
�� In Subsection ��� we present an asymptotically fast three step algorithm for semi�reduction�

���� Compute the Gram�Schmidt orthogonalization of the input basis�

���� Semi�reduce the basis�

�
�� Size�reduce the basis�

We consider steps ���� and �
�� to be pre� and post�conditioning steps since we prove the running time
for these steps is bounded by O�n��logB����� bit operations � we consider this to be near optimal since
this is about the same time required to compute the determinant of the input lattice� For step ���� we
prove a running time of O�n��������	�logB����� bit operations� If we take 	 � ��
� than this becomes
O�n������logB����� bit operations and this bounds the cost of steps ���� and ���� as well� We follow this
with an analysis of our semi�reduction algorithm which assumes standard integer and matrix multiplication�
Under these assumptions we are able to prove a running time of O�n������logB���log logB�� bit operations
for steps ����� ���� and �
���
Our algorithm requires a number of results and subroutines for performing operations on the upper

triangular matrix T of di�s and "�ij�s	 We present these separately in Subsection ���� Presenting the results
of Subsection ��� separately has a dual purpose� First� the presentation of the semi�reduction algorithm
is greatly simpli�ed� Secondly� the the semantics of the entries in T �namely the di�s and "�ij�s� are an
orthogonal issue�

��



��� Subroutines for Positive De�nite Symmetric Matrices

In this section we give a number of asymptotically fast algorithms for e�ecting certain transformations on
an n� n upper triangular integral matrix

T � FF�AAt�AAt �

�
������

t�� t�� t�� t�n
t�� t�� � � � t�n

t�� t�n
� � �

���
tnn

�
������

where A � ZZ n�n�

� rank�A� � n ����

Note that AAt is both symmetric and positive de�nite� that is� with principal i�th minor positive for � � i � n�
By Lemma �� the i�th diagonal entry of T will be the i�th principal minor of A�
For the statment of the following theorem we need some de�nitions� For a positive integer M � an

o�diagonal entry tij in the matrixT is said to be size�reducedmoduloM if and only if tij mod �tiiti�� i��M � �
tii��� The entire matrix T is said to be size�reduced moduloM if and only if all o�diagonal entries are size�
reduced modulo M � It will be convenient to consider a matrix of the form T in ���� to have a zeroeth
diagonal entry� which� unless otherwise stated will be assumed to be ��

Theorem �� There exists a deterministic algorithm that takes as input an n � n upper triangular matrix
T as in �	�� together with a positive integer M � and produces as output an n � n unit upper triangular
integer matrix V such that TV will be size�reduced modulo M � If diagonal entries in T are bounded in
magnitude by B� odiagonal entries by B�M � and B 	 n�M � then entries in V will be bounded in magnitude
by BM and the cost of the algorithm is O�n��logB��log logB�� � n��logn��logB����� or the simpler bound
of O�n��logB����� bit operations�

Proof� By working with the matrix diag�T� Ip�� were p is at most n � �� we may assume without loss of
generality that n is a power of two� We prove the theorem for a special type of input matrix which can be
written in block form as

T �

�
���������

t�� � � � t� k t� k�� � � � t�n
� � �

���
���

���
tj j tp p�� � � � tp n

�
� � �

�

�
���������

����

where j and n are powers of � and where the trailing �n� j�� �n� j� submatrix is the identity� The general
case will follow by taking j � n� We �rst summarize the algorithm before making the argument precise� �i�
Compute a V� such that rows j�� � �� j�� � �� � � � � j of TV� are size�reduced modulo M 	 �ii� Compute V�
such that rows �� �� � � � � j�� of TV�V� are size�reduced modulo M 	 �iii� Paste V� and V� together to get a V
such that TV�V� is size�reduced moduloM � We get the following diagram

T�
���������

 � � �   � � �   � � � 
� � �

���
���

���
���

���  � � �   � � �  � � �   � � � 
� � �

���
���

���  � � � 
�
�� �
�

�
���������

V��
����������

�
� � �
�
� � � �   � � � 
� � �

���
���

���
�  � � � 
�
�� �
�

�
����������

V��
����������

� � � �   � � �   � � � 
� � �

���
���

���
���

���
�  � � �   � � � 
�
�� �
�
�
�� �
�

�
����������

where each of the �rst two blocks in each matrix is comprised of j�� rows� For k and n powers of �� let
C�n� k� be the number of bit operations required to compute� for an input matrix which can be written as in

��



���� with j � k� a matrix V which satis�es the requirements of the theorem and has trailing �n� j�� �n� j�
trailing submatrix the identity� We claim that

C�n� k� � �C�n� k��� � cnk����log 
��log log 
�� � cnk�log 
���� ����

for some absolute constant c and where 
 � �nB�m� � �� To prove ���� let T be an n � n input matrix
which can be written as in ���� with j � k� We give a conquer and divide algorithm that computes a V
satisfying the requirements theorem with input T that requires two recursive calls on matrices which can
be written as in ���� with j � k�� and additional work at most O�nk����log 
��log log
�� � nk�log 
�����
bit operations� Let T� be the trailing �n � k��� � �n � k��� submatrix of T so that the block diagonal
matrix diag�T�� Ik��� can be written as in ���� with j � k�� and zeroeth diagonal entry now dk����� At a
cost of C�n� k��� bit operations� recursively compute a V �

� satisfying the requirements of the theorem with
input matrix diag�T �

�� Ik���� and set V� to be the n � n block diagonal matrix with principal �k��� � �k���
submatrix the identity and trailing �n�k�����n�k��� trailing submatrix the principal �n�k�����n�k���
submatrix of V �

� � By assumption� entries in T and V� will be bounded by B
�M and BM respectively so that

entries in TV� will be bounded by nB�M�� Because of the block structure of T and V�� we can compute the
matrix product TV� at a cost of O�nk

����log 
��log log 
���� � nk�log
����� bit operations� At a cost of
O�nk�log
����� bit operations� compute that matrix "T from TV� by reducing modulo tiiti�� i��M entries
in row i of TV� for � � i � k� At this point� the trailing �n � k���� �n� k��� trailing submatrix of "T has
the correct form and all o�diagonal entries in "T are bounded in magnitude by B�M � Let T� be the matrix
obtained from "T by replacing the trailing �n � k��� � �n � k��� submatrix of "T with the identity matrix�
At a cost of C�n� k��� bit operations compute a matrix V� which satis�es the requirements of the theorem
with input matrix T�� Set V to be the matrix with �rst k�� rows those of T�� rows k�� � �� � � � � k those of
T�� and trailing �n� k�� �n� k� submatrix the identity� Then V satis�es the requirements of the theorem
for input matrix T � This proves ����� Iterating ���� with k � n yields

C�n� n� � �C�n� n��� � cnn����log
��log log
�� � nn�log
����

� �C�n� n��� � cn�log
��log log
���n��� � ��n������� � n�log
�����n� ��n����

���

� nC�n� �� � cn��log
��log log 
��
log

�
nX

i�


��������i � n�log
����

log
�
nX

i�


n

� nC�n� �� � n��log 
��log log 
�� � n��logn��log 
����

For an input matrix T which can be written as in ���� with j � �� the matrix V � set to be the n�n identity
except with the entry in the �rst row j�th column equal to ��t�j��t��t

M �� for � � j � n� will satisfy the
requirements of the theorem� This shows C�n� �� � n�log 
���� bit operations� The result now follows by
noting that 
 � O�B� since B 	 n�M �

In Subsection ��� we will need to �backtrack� fraction free Gaussian elimination on the trailing m �m
submatrix of the matrix T of ���� for some � � m � n� To make this idea precise� let C � AAt so that
T � FF�C�C and� for � � i � n let TT�C� i� denote the matrix obtained by applying fraction free Gaussian
elimination on C up to and including column i� Note that TT�C� �� � C and TT�C� n� �� � TT�C� n� �
FF�C�C� To see what TT�C� n�m� looks like� write C� T and F � FF�C� using a block decomposition as

F�
F�

F� F�

	 C�
C� C�

C� C�

	
�

T�
T� T�

T�

	
����

where F�� C� and T� are m �m� Then

TT�C� n�m� �

�
T� T�

�C�C
adj
� C� � dC�

	
with d � tn�mn�m�

�



So� what we want is an m�m matrix U such that

�
In�m

U

	 T�
T� T�

T�

	
�

TT�C� n�m��
T� T�

�C�C
adj
� C� � dC�

	
� ����

For a nonsymmetric input matrix �but with �n � m��th principal minor nonsingular� we would have to
compute U as

U � ��C�C
adj
� C� � dC��T

��
� ����

but the following lemma shows that this is much too expensive in the special case where the matrix C is
symmetric� Recall that we assume our input matrix T to have a zeroeth diagonal entry with the value ��

Lemma �� For an index m with � � m � n let the matrix C � AAt and T � FF�C�C of �	�� be written as
in ��
� and let D be the m �m diagonal matrix with i�th diagonal entry tn�m�i�n�m�itn�m���i�n�m���i�

Then the matrix U � dT t
�D

�� will satisfy UT� � �C�C
adj
� C� � dC� where d � tn�m�n�m�

Proof� From ���� we have

�T��
� �tU � �T��

� �t��C�C
adj
� C� � dC��T

��
� � ��
�

Note that we will be �nished if we show that the matrix on the right hand side of ��
� is equal to dD���

Since C� � Ct
� and C� is symmetric we must have �C�C

adj
� C� � dC� symmetric and hence also the matrix

on the right hand side of ��
� is symmetric� Now note that U is lower triangular since

��
In�m

U

	 �
In�m

F� F�

	�
C� C�

C� C�

	
�

�
C� C�

O �C�C
adj
� C� � dC�

	

together with �
In�m

�C�C
adj
� dIm

	 �
C� C�

C� C�

	
�

�
C� C�

�C�C
adj
� C� � dC�

	
����

implies UF� � dIm so that we must have U � dF��
� where F��

� is lower triangular� But then the matrix on
the left hand side of ��
�� the product of two lower triangular matrices� must be lower triangular� But then
the matrix on the right hand side of ��
� is symmetric and lower triangular whence diagonal� The result
now follows by noting that the principal minors of the matrix d�T��

� �tF��
� on the left hand side �and hence

also right hand side� of ��
� are the same as those of dD��� whence �T��
� �tU � dD���

We will also need to �forwardtrack� fraction free Gaussian elimination on the trailing m �m submatrix
of T for some � � m � n� In other words� we want to compute an m �m matrix G such that

�
In�m

G

	 TT�C� n�m��
T� T�

�C�C
adj
� C� � dC�

	
�

T�
T� T�

T�

	

where C and T are written as in ����� Comparing the above with ���� shows that G is given by U�� where
U is the m�m backtrack matrix for the trailing m�m submatrix of T � We get the following�

Corollary �	 For an index m with � � m � n let the matrix C � AAt and T � FF�C�C of �	�� be written
as in ��
� and let D be the m�m diagonal matrix with i�th diagonal entry tn�m�i�n�m�itn�m���i�n�m���i�

Then the matrix G � ���d�D�T��
� �t will satisfy G��C�C

adj
� C� � dC�� � T� where d � tn�m�n�m�

��� The Semi�Reduction Algorithm

Recall the essential idea of step of the L��reduction algorithm� We have the basis matrix A being reduced
together with the corresponding upper triangular matrix T � FF�AAt�AAt which contains the di�s and
"�ij�s� The algorithm determines from the di�s and "�ij�s exactly what unimodular row operation should be
performed on the basis matrix A	 this row operation is then performed on A and the quantities in T are

��



updated to coincide with the new A� This process repeats until the basis is ��reduced� Sch�onhage�s idea is
to apply L��reduction to certain blocks of rows of the matrix A being reduced� For example� in algorithm
ModReductionL

� we always applied ��reduction to a block of � rows� namely rows bk��� bk of A for some
k with � � k � n� Sch�onhage�s semi�reduction algorithm applies ��reduction to a block of m � � rows
bp�m� bp�m��� bp of A for some choice of p and m with � � m � p � n� �How this choice is made will be
discussed later�� We can best see with a picture exactly what happens during a block�reduction� Write T
using a block decomposition as

T �

�
����������������������

d� � � � "�p�m��� "�p�m � � � � "�p� "�p�� � � � � "�n �

� � �
���

���
���

���
���

dp�m�� "�p�mp�m�� � � � "�p p�m�� "�p�� p�m�� � � � "�np�m��

dp�m � � � "�p�p�m "�p�� p�m � � � "�n p�m

� � �
���

���
���

dp "�p�� p � � � "�np

dp�� � � � "�np��

� � �
���
dn

�
����������������������

����

A block�reduction at row p of size m is a unimodular transformation of rows p � m� p � m � �� � � � � p of A
such that the matrix T � after being updated corresponding to the transformation on A� will have the centre
block of ���� both ��reduced and size reduced� In particular� T will satisfy

jb�i � �i i��b
�
i��j� � �

� jb�i��j� for p�m � � � i � p ���

and
�ij � �

� for p�m � j � i � p� ����

Following Sch�onhage� the total cost in bit operations required to compute a block�reduction can be
partitioned into two parts� First� there is the cost of ��reducing the �p�m � ��� �p�m � �� centre block
of the matrix in ����� Secondly� there is the overhead cost of updating the entries above and to the right of
the centre block in T and in rows p�m� p�m� �� � � � � p of A� Sch�onhage has shown that a block reduction
at row p of size m can be accomplished using O�tm��logB����� bit operations where t is the number of
��reduction steps� plus an overhead cost of O�n�m�logB����� bit operations �Proposition 
�� in ������ In our
case� we get the following�

Theorem �
 Let T be the matrix of ���� and m and p indices with � � m � p � n� If diagonal entries
of T are bounded by B� odiagonal entries are bounded by B�M where M � B� and entries in the basis
matrix A are being kept reduced modulo M � then a block�reduction at row p of size m can be performed at
cost of O�tm�logB����� bit operations where t is the number of ��reduction steps� plus an overhead cost of
O�nm����logB��log logB�� � �nm �m��logm���logB����� bit operations�

Proof� We divide our algorithm for block�reduction into three parts� For each part we prove a bit complexity
bounded by that claimed by the theorem� Throughout� the submatrix of T comprised of rows and columns
p�m� p�m� �� � � � � p will be referred to as the �centre block of T��
Part I� The �rst step is to size�reduce the entries in the centre block of T � that is� we want to satisfy �����

To do this� we compute an �m � ��� �m � �� upper triangular integer matrix V such that the matrix

T

�
� Ip�m��

V
In�p

�
� ����

��



will have entries in the centre block size�reduced modulo M � By Theorem ��� we can compute a suitable
V with jjV jj � BM within O�m��logB��log log�� � m��logm��logB����� bit operations� Then we have
jjTV jj � njjT jj jjV jj � nB�M� � O�B� so that we can compute the matrix product of ���� at a cost of
O�nm����logB��log logB���nm�log����� bit operations� Replace T with the new matrix obtained from the
matrix in ���� by reducing modulo didi��M entries in row i column j for � � i � p and p�m � j � p� This
costs O�nm�logB����� bit operations� Finally� at a cost of O�nm����logB��log logB���� � nm�log����� bit
operations� replace A with the matrix obtained from

�
� Ip�m��

V t

In�p

�
�A

by reducing moduloM entries in row j for p�m � j � p� Up to this point we have used O�nm�logB�����
nm����logB��log log��� bit operations to e�ect a transformation of the work matrices A and T so that T
will satisfy �����
Part II� The next step is to reduce the centre block

T� �

�
�����

dp�m "�p�m�� p�m � � � "�p p�m

dp�m��

���
� � � "�p p��

dp

�
�����

of T � For clarity� let T� be a copy of T� so that T� will always refer to the size�reduced �but not ��reduced�
centre block of T � In other words� T� denotes the centre block of T after part I has completed� The reduction
of T� proceeds in two steps�

ModBlockReductionL
��T��

���� ��reduce T� using a variation of step ���� of algorithm ModReductionL
�� which� instead of applying

unimodular row operations to the appropriate block of m � � rows of A� records row operations in a
matrix U � initially set to be the �m � ��� �m � �� identity�

���� Size reduce T� by post�multiplying by the �m�����m��� unit upper triangular V computed using the
asymptotically fast size�reduction algorithm of Theorem ��� The transformation matrix U is updated
by pre�multiplying by V t�

The following lemma from Sch�onhage ���� shows that during the reduction of T� we can record all row
transformation in U mod 
 �symmetric range� where 
 � ��m � ����
���mB � � � O�B�� We remark that
in order to apply the following result the input matrix T� to ModBlockReductionL� must be size�reduced on
input and on output� In particular� the whole purpose of part I was to satisfy this condition�

Lemma �� �Lemma 
�� in ���� � Upon termination of ModBlockReductionL�� entries in U will be bounded
in magnitude by �m � ����
���mB�

Note that during the course of ModBlockReductionL� we use 
 � ��m�����
���mB�� in place of the mod�
ulus M � Then� entries of T� during step ���� of ModBlockReductionL� are kept bounded by B�
� and the
V computed in step ���� will satisfy jjV jj � B
� Since 
 � O�B�� the total cost of ModBlockReductionL� is
bounded by O�t�logB����� bit operations for step ���� andO�m��logB��log logB���m��logm��log logB�����
bit operations for step �����
Part III� We already have the correct form of the centre block T� of T � namely T�� The last step is to

update the entries above and to the right of the centre block in T and in rows p�m� p�m� �� � � � � p of A�
For A� this is accomplished by pre�multiplying the centre block comprised of rows p�m� p�m� �� � � � � p of
A by U followed by reduction moduloM � For the entries above the centre block in T � this is accomplished
by post�multiplying this �p �m � �� � �m � �� block by U t and reducing modulo didi��M entries in row i
column j for � � i � p�m�� and p�m � j � p� By the bounds established on jjU jj� we can accomplish this

��



update of A and �rst p�m�� rows of T within O�nm����logB��log log b�����nm�logB����� bit operations�
Finally� we give the procedure to update the entries to the right of the centre block in T � For convenience�
let E denote this �m���� �n�p� block� Also� let d � dp�m�� and let D� be the �m���� �m��� diagonal
matrix with i�th diagonal entry dp�m���idp�m���i for � � i � m��� and D� the �m���� �m��� diagonal
matrix with �D���� � �T����dp�m�� and �D��ii � �T��ii�T��i�� i�� for � � i � m � �� �Note that the
diagonal entries of T� will give the new di�s for p�m � i � p�� Then we need to perform the following three
transformation on E� �i� bactrack fraction free Gaussian by pre�multiplying by dT t

�D
��
� �see Lemma ��	

�ii� pre�multiply by the basis transformation matrix U 	 �iii� forwardtrack fraction free Gaussian elimination
by pre�multiplying by ���d�D��T

��
� �t �see Corollary ���� Thus� the transformed block "E is given by

"E � QE where Q � D��T
��
� �tUT t

�D
��
� ����

We need to establish a bound on the magnitudes of integers in "E� To bound jjT��
� jj� let S be the �m �

�� � �m � �� diagonal matrix with i�th diagonal entry �T��ii for � � i � m � � so that S��T� is unit
upper triangular with all o�diagonal entries � ���� �Recall that T� is size�reduced�� In particular� entries in
�S��T���� are m�m minors of �S��T���� which� by Hadamard�s inequality� will be bounded in magnitude
by mm��� It follows that entries in T��

� � �S��T��
��S will be bounded by Bmm��� We get

jj "Ejj � jjQEjj � �m � ��jjQjj jjEjj
� �m � ���jjD�jj jjT��

� jj jjU jj jjT t
�jjB�M

� �m � ���B Bmm�� �m � ����
���mBB B�M

� �m � ���mm���
���mB�M

� O�B�

where the last inequality follows from the assumptions on B� namely B 	 �n�M � We now compute the
matrix "E using the homomorphic imaging scheme of Theorem �� We need to choose a basis of s primes
�pi���i�s with

Q
��i�s pi 	 
 where 
 � ��m� ���mm���
���mB�M � �� Care needs to be taken so as not

to choose primes which divide diagonal entries of T� or D� since the formula for Q involves the inverse of
these matrices� The product of all diagonal entries in T� and D� will be bounded by B��m��	 so that by
Lemma � we can choose our primes to be bounded in length by l �  � log log�
B��m��	� � O�log logB�
bits in length� Since entries in D�� D�� T�� T� and U are bounded by 
 as well� we can compute "E within
O�nm����logB��log logB�� � nm�logB����� bit operations� Finally� replace the block to the right of the
centre block in T by "E and reduce modulo didi��M �now using the new di�s� all entries in row i column j
of T for p�m � i � p and p� � � j � n� This ends the proof of Theorem ���

We now discuss how to choose the parameters p and m which decide exactly what block of T to reduce�
We follow closely the presentation in Sch�onhage ����� which we sketch now� Progress of the ��reduction of T
is related to the quantity

n��Y
i��

di �
n��Y
j��

jb�j j��n�j	 resp� � �
n��X
j��

�n � j� log jb�j j��

The quantity � is initially satis�es � � � � �n � �� logB and never increases during the algorithm� On
the other hand� each ��reduction step decreases � by at least log���
� thus bounding the total number of
��reduction steps by O�n logB�� All ��reduction steps will therefore not require more than O�nm
�logB�����
bit operations� We need the following pair of lemmas from Sch�onhage �����

Lemma �� Lemma ��� in ����� A block reduction at row p of size m will decrease the value of � to some
�� such that

� � �� 	 Sp�m �
mX
i�


�i�m����p� i� logdp�i � log dp�i��� �
��

��



Lemma �� Lemma ��� in ����� For given n 	 �� let  � �� m
 � n� � be such that



�
� �

���n�m
 � ��
�m
 � ���m
 � ��


� � �
��

holds� Then any basis b�� b�� � � � � bn � ZZ
n�n�

satisfying Sp�m � mn for all admissible pairs p�m with
m � m
 is semi�reduced�

The semi�reduction algorithm is now easily described� The algorithm takes as input an index m
 which
bounds the maximum block size m throughout the algorithm� The idea is to restrict block�reductions to
those cases with Sp�m � mn as per Lemma ��� We present here only the semi�reduction phase�

ModSemiReductionL�A� T�M� n�m
�
# Inplace semi�reduce the n�dimensional integer lattice A and F � FF�AAt�AAt�
# The input should satisfy n 	 � and � � m
 � n � ��
 �

�
� � ���n�m���	

�m���	�m���	

���

	

p� �	
while p � n do
%ag �� true	
for m to min�m
� p� �� do
if Sp�m � mn then
perform block reduction at row p of size m	
p� p�m	
%ag �� false	
break	

�	
od	
if %ag then p� p� � �	

od	

The main idea of Sch�onhage�s algorithm is to balance the overhead cost of all block reductions with the
cost of all ��reductions� In the case of the algorithm presented in ����� it was optimal to have  constant and
choose m
 such that m�


 � O�n�� In our case� we get the following�

Lemma �� With a choice of m
 � dn������	e� ModSemiReduction requires O�n��������	�logB����� bit
operations�

Proof� First note that for any n and 	 with n 	 � and � � 	 � 
� the choice of the lemma for m
 satis�es the
conditions of Lemma ��� that is� m
 will satisfy � � m
 � n� � for any 	 with � � 	 � 
� The total cost for
all ��reduction steps will be bounded by O�nm
�logB����� � O�n��������	�logB����� bit operations� Since
m � m
 � n�� we have m��logm� � nm� From Theorem �� the overhead cost of a block reduction of size
m is seen to be bounded by

cnm����logB��log logB�� � cnm�logB���� �
��

bit operations for absolute constant c� A block reduction of size m reduces the quantity � �
Pn��

j�� �n �
j� log jb�j j� by at least nm so that the overhead cost C�m� per unit reduction for a block of size m is given
by dividing the quantity �
�� by nm� We get

C�m� � �cm����logB��log logB�� � c�logB�����

�
� �

���n�m
 � ��
�m
 � ���m
 � ��


�

�

� �cm���

 �logB��log logB�� � c�logB������� � ��n�m�


�

� �c�n����	�����	 � ���logB��log logB�� � c�logB������� � ��n��������	�

� n������	�logB��log logB�� � n����	�����	�logB���� �
��

��



Since � � O�n logB� initially� the total cost for all block reductions is bounded by

O��n logB� � �n������	�logB��log logB�� � n����	�����	�logB����� � O�n��������	�logB�����

bit operations as required�

Under the assumption of standard integer and matrix multiplication� we get the following�

Lemma �� With a choice of m
 � dn���e� ModSemiReduction requires O�n������logB���log logB�� bit
operations using standard integer and matrix multiplication�

Proof� First note that for any n with n 	 �� the choice of the lemma for m
 satis�ed � � m
 � n � ��
By Theorem ��� the total cost of all ��reduction steps will be bounded by O��n logB� � �m
�logB���� �
O�n������logB��� bit operations� From �

�� the overhead cost per unit reduction for a block of size m is
given by

C�m� � �cm�logB��log logB� � c�logB���

�
� �

���n�m
 � ��
�m
 � ���m
 � ��



� �cm
�logB��log logB� � c�logB����� � ��n�m�

�

� �c�n��� � ���logB��log logB� � c�logB����� � ��n����

� n����logB���log logB��

so that the total overhead cost becomes O��n logB� � �n����logB���log logB��� �
O�n������logB���log logB�� bit operations as required�

Theorem �� There exists a deterministic algorithm that takes as input a integer lattice L in the form

of a basis b�� b�� � � � � bn � ZZ
n�

and returns as output a semi�reduced and size�reduced basis for L� If
n� � O�n� then the cost of the algorithm is O�n��������	�logB����� bit operations where B is a bound
satisfying �	��� If only a bound Bo 	 jb�j�� jb�j�� � � � jbnj� is known� then the running time of the algorithm
is O�n��������	���logBo�

���� bit operations� In the case of standard integer and matrix multiplication� the
cost of the algorithm is O�n������logB���log logB�� or O�n������logBo���logn�log logBo�� bit operations�

Proof� There are three steps� ���� Compute T � FF�AAt�AAt at a costs of O�n��logn��logB����� bit oper�
ations using the algorithm of Theorem �	 ���� ��reduce the lattice using the algorithm ModSemiReductionL

� by Lemma �� this costs O�n��������	�logB����� bit operations	 �
�� Size�reduce the lattice at a cost
of O�n��logB����� using the algorithm of Theorem ��� Since 	 � � � �� � ���� � 	�� for 	 � ��
�� and
logB 	 �n� the complexity of steps ���� and �
�� simpli�es to O�n��������	�logB����� bit operations as
required� The complexity result in terms of Bo follows by noting that the choice B � Bn

o will satisfy ��
��
In the case of standard integer and matrix multiplication� steps ����� ���� and �
�� cost O�n��logB�� �

n��logB��log logB��� O�n������logB���log logB�� and O�n��logB��log logB� � n��logn��logB��� bit op�
erations respectively� �This follows from Theorem �� �� and Lemma �
 respectively�� Since B 	 �n and
logn � O�log logB� the complexity of steps ���� and �
�� will be bounded by that of �����

� Conclusions

The key to our approach in this paper was to consider the L��reduction algorithm as a matrix algorthm� In

particular� we consider the input basis b�� b�� � � � � bn � ZZ n�

to be given in the form of an n�n� integer matrix
A� The L��reduction process can then be stated as� Find a unimodular transformation of A such that A is
��reduced and size�reduced� This approach led to the discovery of a simple modi�cation of the L��reduction
algorithm which returns exactly the same reduced basis but requires a factor of O�n� fewer arithmetic �and
bit� operations than that of the origninal algorithm presented in �����

��



We have also presented a modi�cation of the semi�reduction algorithm of Sch�onhage ���� which improves
the asymptotic running time bound by a factor of O�n
����� bit operations� Under the assumption of stan�
dard integer and matrix multiplication� we have improved the running time bound for semi�reduction by a
factor of O�n
����� bit operations�

For the following problems�

�� Gram�Schmidt orthonormalizing A�

�� Size�reducing A�

we have given algorithms with asymptotic running times that are within a logarithmic factor of that required
to compute the determinant ofA �when A is square�� In the case of standard integer and matrixmultipliation�
we give algorithms for these problems that use a homomorphic imaging scheme to avoid much of the large
integer arithemetic � their cost is comparable to that of computing the adjoint of the input matrix� Finally�
we mention that the asymptotically fast fraction�free Gaussian elimination algorithm presented in Section

 should prove useful for many other applications� for example� computing Smith normal forms of matrices
over polynomial domains ����
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