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Abstract Objective Function Graphs on the ��cube �

A Classi�cation by Realizability

Bernd G�artner� Volker Kaibely

Abstract

We call an orientation of the graph of a simple polytope P an abstract objective function
�AOF� graph if it satis�es two conditions that make the simplex algorithm �e�g� with the
Random�Facet pivot rule of Kalai ��� and Matou�sek	 Sharir	 and Welzl �
��� work
 it has
to be acyclic and it has to induce a unique sink in every subgraph that corresponds to a face
of the polytope� For the graph of the ��dimensional cube we investigate the question which
among all possible AOF graphs are realizable in the sense that they are induced by some
linear program �with a polytope of feasible solutions that is combinatorially a ��dimensional
cube�� It turns out that �up to isomorphism� precisely two AOF graphs are not realizable�

� Introduction

Many combinatorial generalizations of linear programming �LP� have been developed and studied
in the past� mostly in connection with the simplex algorithm �see ��� for an excellent introduction
to LP and the simplex method�� Among them are abstract polytopes �	�� completely unimodal

numberings �	
�� LP�type problems �	��� abstract optimization problems ���� and abstract objective

functions �
�� Such �abstractions� on the one hand allow to argue on a completely combinatorial
level� without having to worry about concrete coordinates� On the other hand� they are able
to isolate exactly the properties of LP that are needed in a speci�c context� In many cases�
arguments become simpler �see �
� for a striking example� and results more general �here� �	��
is not less striking�� A well�studied application of generalized LP frameworks is the analysis of
randomized simplex variants for linear and more general optimization problems ��� �� 
� 	�� 	
��

In this paper we introduce the notion of AOF graphs� a concept closely related to Kalai�s
abstract objective functions �AOF�� An AOF orders the vertices of a simple polytope P by �height�
in such a way that every face F of P has a unique vertex v of smaller height than all its neighbors
in the face F � Equivalently� v is at the same time a local and a global height minimum within
the face F � a property that allows to check for optimality by considering only the local situation�
In fact� the possibility of such a local optimality check is the foundation of the simplex method�
and it is also the basis of all the abstract frameworks mentioned above�

An AOF induces an orientation of G�P � � the graph of vertices and edges of P � in a natural
way� a directed edge �v� w� exists between adjacent vertices if and only if v has larger height
than w� In considering AOF graphs� we identify AOFs which lead to the same edge orientation
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in G�P �� This is motivated by the fact that the behavior of many pivot rules for the simplex
algorithm only depends on the edge orientations in the polytope graph induced by the objective
function� Well�known rules of this type are Bland�s rule �
�� Zadeh�s Least Entered rule �	��� and
many randomized rules� see e�g� ����

As already indicated� results that are obtained within abstract frameworks can in many cases
directly be applied to LP� For example� an upper bound on the runtime of a simplex variant
for generalized linear programming problems is also a bound for linear programming itself �	���
On the other hand� consider a generalized linear program on which a certain simplex variant
is provably slow �such examples have been constructed for Random�Facet by Matou�sek �		���
then we have a priori no clue whether a linear program with a similar property exists� In this
case� one needs to attack the realizability question� is a particular instance of an abstract class
also an instance of linear programming� or more general� can one identify the linear programming
instances among the abstract examples�

In this paper� we solve the realizability question for all AOF graphs on the ��cube� although
this is a problem of constant size only� its solution is quite unexpected and has already led to
further insights concerning the realizability question related with Matou�sek�s above mentioned
slow examples for Random�Facet ����

The rest of the paper is organized as follows� in Section 
 we classify the AOF graphs on the
��cube according to a simple criterion� in order to reduce the number of cases to be considered
later� Realizations for the realizable AOF graphs on the ��cube are given in Section �� Finally�
in Section � the only two �up to isomorphism� non�realizable AOF graphs on the ��cube are
exhibited�

Before we get started� let us make the notions that we will use more precise� Let G�P � �
�V �P �� E�P �� be the graph of vertices and edges of a simple polytope P � A map � � E�P � �
V �P � � V �P � with ��fv� wg� � f�v� w�� �w� v�g is called an orientation of G�P �� The directed
graph arising from the orientation � of G�P � is denoted by G��P �� We usually write v � w if
��fv� wg� � �v� w� and w� v otherwise� G��P � is called an AOF graph on P if it is acyclic and
for every non�empty face F of P � the subgraph G��F � induced by the vertices of F has precisely
one sink� Note that this does not necessarily imply that every non�empty face has also a unique
source� However� in case of the �combinatorial� d�cube Cd this is true �for edges and 
�faces it is
obvious� and for k � �� it is not hard to see that two sources in a k�face imply a directed cycle if
there is no �k � 	��face with two sources��

An AOF graph G��P � on P is called realizable if there is some polytope P � � R
d �combinato�

rially equivalent to P � and a linear functional � � Rd � R with ��v� �� ��w� for any two distinct
vertices v and w of P �� such that G��P � is isomorphic to the directed graph G���P ��� where

���fv� wg� �

�
�v� w�� if ��v� � ��w��
�w� v�� otherwise

�

In other words� an AOF graph on P is realizable if and only if it is induced by a linear
functional on some combinatorially equivalent polytope P �� In particular� if two AOF graphs are
isomorphic then either both of them are realizable or none of them can be realized�

� A Preparatory Classi�cation

An AOF graph G��C
�� is called separable if there are two opposite facets F� and F� of C� such

that in G��C
�� all arcs between F� and F� have their sink in the same facet� Despite the intuition






that the separable AOF graphs are the �nice� ones� it will turn out that both non�realizable AOF
graphs on C� are actually separable� one of them even with respect to two pairs of opposite
facets�

This section intends to show that �up to isomorphism� all AOF graphs on C� are separable�
except one� Building on this classi�cation� we will answer the realizability question separately
for the separable cases in Subsection ��	 and Section �� and for the single non�separable case in
Subsection ��
�

Let us label the vertices of the ��cube C� as shown in Figure 	� and for simplicity identify
the AOF graph G��C

�� with its generating orientation ��
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Figure 	� The graph of C� with vertices labelled A� � � � �H�

Theorem �� Let �� be the AOF graph depicted in Figure �� Up to isomorphism� the only non�

separable AOF graph on C� is ���
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A B

Figure 
� The AOF graph ���

Proof� Let � be a non�separable AOF graph on C�� inducing sink vmin and source vmax� We
distinguish three cases�

�i� vmin and vmax are contained in one edge�

�ii� vmin and vmax are contained in one facet but not in one edge�

�iii� vmin and vmax are not contained in one facet�

�



Let us start with case �i�� We can assume vmin � A and vmax � D� which implies H � E and
C � B� Since � is non�separable� we can even conclude F � G� If fE�Fg is oriented E � F �
then this enforces H � G as well as F � B� which �nally implies G � C� and thus � � ���
If fE�Fg is oriented F � E� then we must have G � H� C � G� and B � F � i�e�� � looks as
shown in Figure �� Hence � is isomorphic to �� via exchanging C and H as well as B and E �in

CD

E F

GH

A B

Figure �� An AOF graph that is isomorphic to ���

the standard unit�cube� this corresponds to a re�ection at the hyperplane through D�A�G and
F ��

In case �ii� we can assume vmin � A and vmax � C� If fF�Gg is oriented G � F � then we
must have E � H �since � is non�separable�� which enforces H � D� therefore G� H� and thus
F � E� contradicting the fact that � is non�separable� Thus� fF�Gg must be oriented F � G�
This yields B � F � which then implies F � E� Since � is non�separable we then must have
H � G� but this means that G is a second sink� a contradiction�

Finally� we consider case �iii�� We can assume vmin � A and vmax � G� Let us �rst suppose
that fC�Dg is oriented D � C� implying C � B and H � D� Since � is non�separable one
deduces both E � H and B � F � and the latter condition enforces F � E� But now we have
an oriented cycle D�C�B� F�E�H�D� which is a contradiction� Thus fC�Dg must be oriented
C � D� Since � is non�separable this implies E � F � from which F � B follows� yielding
D � H �since � is non�separable�� �From the latter� one deduces H � E and from this B � C
�again� because � is non�separable�� constituting another oriented cycle C�D�H�E� F�B�C�

� The Realizable Cases

In this section� we prove realizability for all but two of the separable AOF graphs �Subsection ��	�
and the single non�separable one �Subsection ��
�� We do this by explicitly constructing realiza�
tions�

��� Separable AOF Graphs

We may assume that vertex A is the global sink and that the facet fA�B�C�Dg is the �lower�
facet� meaning that the incident arcs are all incoming� It is easy to see that any such AOF graph
is obtained by combining an arbitrary AOF graph for the upper facet with one for the lower
facet in which A is the sink� Let us enumerate the possibilities� In the lower facet we can have
three situations� see Figure ��

�
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Figure �� Possible orientations in the lower facet�

Consequently� in the upper facet we must consider twelve situations� depending on where the
sink of that facet is�

In the following we present realizations for almost all combinations of these upper and lower
facet orientations� All the realizations will have the same �vertical walls� induced by the inequal�
ities

�x� � x�� �x� � x�� 
x� � x� � 
� x� � 
x� � 
�

so that the cube projects onto the plane x� � � in form of the �gadget� shown in Figure ��

	�� �


	�� �


	�� �


	�� �


Figure �� Realization gadget�

Moreover� the objective function will be ��x� � x� in all cases� so vertices are ordered by
height� In this setup� we are still free to choose the planes for the top and bottom facet� The
possible edge orientations we can �independently� obtain in both facets are exactly the ones
induced by linear functionals �� � R� 	� R acting on the projection depicted in Figure �� For
example� the functional ���x�� x�� � x� � x� induces the orientation of Figure �� and by choosing
the plane x� � ���x�� x�� � c �c some constant� for one of the facets� we can �lift� this orientation
in such a way that it is induced by ��

It is easy to see that the other two orientations of the lower facet as given in Figure � are also
obtainable in this way� namely with ���x�� x�� � x� resp� ���x�� x�� � x� �and the vertices named
as in Figure ���

Let�s consider the upper facet� If the orientation is such that no directed path of length � exists
�as in the leftmost case of Figure ��� we are done� because all four such orientations are realizable
via ���x�� x�� � 
x�
x� and can be combined with the lower facet realizations discussed before�
By interchanging the roles of upper and lower facet� we also see that the leftmost case of Figure
� need not be considered anymore for the lower facet�

In the remaining eight cases for the upper facet� there are two orientations for every possible
sink� distinguished by whether the source is the next vertex in clockwise or in counterclockwise

�
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Figure �� Possible facet orientation�

direction� We can restrict to the cases where the source is the next vertex in clockwise direction�
because the other cases are isomorphic to these via interchanging the pairs of vertices B and D
as well as F and H�

This means� we are left with one orientation per sink in the upper facet �for a total of four
orientations�� and the possible combinations with the two remaining orientations of the lower
facet are summarized in Figures  and !� where realizations to all but two combinations are
given� For the remaining two one indeed does not �nd a realization using the gadget� for a good
reason� they are not realizable at all�
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Figure  � Realization table for lower facet orientation D � C � B � A� The respective linear
functionals are always ���x�� x�� � 
x� or ���x�� x�� � 
x��

��� Non�Separable AOF Graphs

Theorem 	 shows that there is �up to isomorphism� only one AOF graph �� on the ��cube that
is not separable� see Figure 
�

Theorem �� The AOF graph �� is realizable�

�
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Figure !� Realization table for lower facet orientation B � C � D � A� Again� the respective
linear functionals are always ���x�� x�� � 
x� or ���x�� x�� � 
x��

Proof� To �nd a realization of the AOF graph ��� we slightly modify the gadget of Subsection ��	
to the two�dimensional polytope P� that is shown in Figure 
� Consider the �combinatorial� ��

D � ��� ��

A � ���� 	�

C � �	� ���

B � �
� 
�

Figure 
� The modi�ed gadget P��

cube P� � ��� 
���� where we label the vertices of the lower facet as shown in Figure 
� and the
ones in the upper facet �as in the previous sections� by letting E be above A� F above B� G
above C� and H above D� It su"ces to rotate some of the de�ning halfspaces �such that the
polytope stays a combinatorial ��cube� suitably until the order of the vertices with respect to
their x��coordinates is D� H� E� F � G� C� B� A� The linear functional that induces �� then is
��x�� x�� x�� � �x��

This procedure was extremely simpli�ed by the software tool polymake �written by Ewgenij
Gawrilow and Michael Joswig � �� that enabled us to �nd the correct rotations by �try and
error�� We start by rotating �all upcoming rotations will be directed towards the interior of the
current polytope� the facet fA�B� F�Eg around fA�Bg� as well as fB�C�G� Fg around fB�Cg�

 



Then the upper facet becomes smaller� and the �top view� of the resulting polytope is shown
in Figure 	� �a�� Next� we have to push G and F to the right of E� which can be achieved by
rotating the facet fE�F�G�Hg around fE�Hg� Figure 	� �b� shows that we are basically done
now� The only thing that remains to be done is to bring H� which is still above D� to the right
of D� Rotating the facet fD�H�G�Cg around fD�Cg yields this �see Figure 	� �c���

We �nally give the exact coordinates of the realization� After the rotations the facets of the
polytope are described by the following inequalities�

fD�H�G�Cg � ����x� ����x� �
��x� � �

fA�E�H�Dg � ���x� ����x� � �

fA�B� F�Eg � ���x� �	��x� �	���x� � ����

fB�C�G� Fg � 	��x� ����x� �	���x� � ����

fA�B�C�Dg � �x� � �

fE�F�G�Hg � �
	x� ���x� �	��x� � 
��

The rotations of fA�B� F�Eg and fB�C�G� Fg were obtained by adding a multiple of 	��� times
the equation x� � � �describing the lower facet fA�B�C�Dg� to the respective de�ning inequality�
Similarly� rotating facet fD�H�G�Cg was done �here� we used a multiple of 
���� The rotation
of the upper facet fE�F�G�Hg was achieved by adding the

�
� �

���

�
�fold multiple of the equation

���x� � ���x� � � that de�nes fA�E�H�Dg to the inequality de�ning fE�F�G�Hg�
The vertices of the resulting polytope are� A � �	�� �� ��� B � �
� 
� ��� C � ��� 	�� ��� D �

��� �� ��� E � ����	!� 		��� ��
�� F � ����	�� ���	�� 	
������ G � �	���

� 	

�

� 	���	���� and
H � �	
�����  ����� ��
��

	a
 	b
 	c


Figure 	�� Constructing a cube on which �� can be realized

� The Non�Realizable Cases

In the preceding sections we have shown the realizability of all AOF graphs on C� except for ��
and �� �see Figure 		�� These two AOF graphs are the ones corresponding to the question marks
in Figures  and !�

!
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Figure 		� The AOF graphs �� �a� and �� �b��

Theorem �� The AOF graphs �� and �� are not realizable�

Proof� Suppose we have a realization of �� by some combinatorial ��cube that is the intersection
of the halfspaces H�

� � � � � �H
�
� and by some linear function �� � R

� � R�

Let H�
� be the halfspace that de�nes the facet fD�C�G�Hg� Consider the polytope P ��

H�
�
� � � � � H�

�
� Suppose that P has more vertices than A� B� F � and E� Then the graph of

P arises from the graph of our ��cube either by contraction of the whole facet fD�C�G�Hg�
or by contraction of fH�Dg and fG�Cg� or by contraction of fH�Gg and fD�Cg� �To see
this note that P has at most six vertices by the Upper Bound Theorem �see e�g� �	���� four
of which �namely A�B� F�E� are of degree exactly three and form a quadrangle in the Schlegel
diagram of P based at fA�B� F�Eg� Since the remaining at most two vertices have degree at
least three� it easily follows that this Schlegel diagram of P is one of the three graphs in Figure
	
� corresponding to the three di#erent kinds of contractions�� In the AOF graph induced by ��

B

E
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F

B

E

A

F

B

E

A

F

Figure 	
� Possible Schlegel diagrams of P based at fA�B� F�Eg�

on P �� the orientations of the edges that are incident to A�B� F or E stay the same as in ���
But then there are two adjacent edges fG�Cg and fG�Hg in the facet fD�C�G�Hg de�ned by
H� whose contraction each gives a directed cycle �with respect to ���� Thus each of the three
cases leads to a contradiction� and hence� A� B� F � and E must be the only vertices of P �

Let the halfspace H�
� de�ne the facet fA�B� F�Eg which is opposite to fD�C�G�Hg� Since

the contractions of the two adjacent edges fA�Bg and fA�Eg of the facet fA�E� F�Bg each

�Note that in case of two �new� vertices V and W we can always achieve that �� assigns di�erent values to V
and W by slightly perturbing ��� so that the edge fV�Wg actually has an orientation with respect to ���






give directed cycles �with respect to ��� as well� it follows that analogously the polytope P � ��
H�

� � � � � � H
�
� has no more vertices than D� C� G� and H�

But then� the polytope H�
� � � � � � H

�
� has no vertices at all� and hence the edges fH�Eg�

fD�Ag� fC�Bg� and fG�Fg are pairwise parallel �otherwise two of their supporting lines would
intersect and de�ne a vertex�� which is impossible� since this would imply that the objective
function �� induces the same orientation on all of them� Thus� �� cannot be realizable�

The proof for �� is similar� P and P � are now de�ned with respect to the opposite facets
fA�D�H�Eg and fB�C�G� Fg� with P �resp� P �� being the intersection of the halfspaces corre�
sponding to the facets di#erent from fA�D�H�Eg �resp� fB�C�G� Fg�� Again� we want to show
that P and P � have no more than the obvious four vertices each� from which we get a contra�
diction as before� So� assume that P has additional vertices� in which case its graph arises from
the cube graph by contracting fA�Dg and fE�Hg� or fA�Eg and fD�Hg� or both� If fA�Dg
gets contracted� then we obtain a directed cycle �recall that edges incident to B�C�G or F keep
their orientations�� Otherwise� fA�Eg and fD�Hg get contracted� If the new edge fD�H�A�Eg
is oriented A�E � D�H then we have a directed cycle again� and if it is oriented D�H � A�E�
we obtain a second global source D�H� which cannot happen if the orientation comes from a
linear objective function ��� It follows that P cannot have more vertices� � The corresponding
statement for P � is derived analogously� using the fact that the contraction of fG�Fg yields a
directed cycle� while contracting fC�Gg and fB�Fg either gives a directed cycle �if the new edge
fC�G�B�Fg is oriented C�G � B�F � or a second global sink C�G �if fC�G�B�Fg is oriented
B�F � C�G�
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