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Abstract� Given an expression E using ���� �� �� with operands from Z and
from the set of real roots of integers� we describe a probabilistic algorithm that
decides whether E 	 
� The algorithms has a one�sided error� If E 	 
� then the
algorithm will give the correct answer� If E �	 
� then the error probability can be
made arbitrarily small� The algorithm has been implemented and is expected to
be practical�
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� Introduction

In this paper we consider the following problem� Given a real radical expression with�
out nested roots� that is� an expression E de�ned with operators ���� �� �� with integer
operands and operands of the form d

p
n� d � N� n � Z� d

p
n � R� We want to decide

whether the expression E is zero� We describe an e�cient� probabilistic algorithm to solve
this problem� If the expression is zero� the algorithm will give the correct answer� If E
is non�zero� the probability that the algorithms declares E to be zero� can be made arbi�
trarily small� The algorithm is not based on root separation bounds� Unlike algorithms
based on root separation bounds� the algorithm has a worst�case running time that does
not depend exponentially on the number of input roots� Similarly� the algorithm improves
the algorithm in ���� In that paper expressions are restricted to sums of roots� Of course�
turning an arbitrary expression with k input roots into a sum of roots� creates a sum with
up to �k terms� Again� the new algorithms avoids this behavior�

Tests in computer programs often can be reduced to determining the sign of a radical
expression as described above� This is particularly true for problems in computational
geometry �see for example ��������� ����������� Computing the sign of a radical expression
E obviously is a harder problem than deciding whether the expression is zero� Currently�
any sign detecting algorithm is based on root separation bounds� That is� the algorithm
�rst computes a bound b such that if E is non�zero then jEj � ��b �see �������� for the
best bounds currently available�� In a second step� it approximates E with absolute error
less than ��b � However� experiments often show that if the expression E is close to
zero� then E actually is zero� Here� by �close to zero� we mean that computing E with
ordinary �oating�point arithmetic does not allow to infer the sign of E� In these situations
an e�cient zero�test can be used as follows� To determine the sign of an expression E�
�rst compute E using machine�provided �oating�point arithmetic� If this allows you to
detect the sign� stop� Otherwise� use the zero�test to determine whether E is zero� If
this is the case� stop� Otherwise� approximate E with accuracy ��b to detect the sign
of E� Here ��b is the accuracy required by the root separation bound� As mentioned�
experiments indicate that in many situations the most expensive� third step hardly ever
will be necessary�

A second application for a zero�test is in detecting degeneracies in geometric con�gu�
rations� Here one needs to distinguish between two di�erent types of degeneracies� One is
caused by the use of �nite�precision arithmetic� These degeneracies one usually wants to
remove� The other degeneracies are problem�inherent degeneracies which one may want
to keep� The problem�inherent degeneracies can often be detected by a zero�test as pro�
vided by the algorithm described in this paper� Degeneracies caused by �nite�precision
arithmetic then can be removed by some perturbation scheme�

Let us brie�y outline the algorithm described in this paper� The basic idea� which
originates in ���� is as follows� If � is an algebraic integer and �i are its conjugates� then
either � 	 
 or � and all its conjugates are non�zero� Therefore� rather than testing
whether � �	 
� we may choose any conjugate �i of � and check whether �i �	 
� The
simple but fundamental observation of ��� is� that although j�j �	 
 may be small� with
high probability the absolute value of a random conjugate �i of � is not too small� Hence a
moderately accurate approximation to �i will reveal that �i� and therefore �� is non�zero�

Let us apply this idea to a radical expression E� For the sake of simplicity� we restrict
ourselves to division�free expressions E involving only square roots

p
n�� � � � �

p
nk� To
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apply the method described above we need to be able to generate a random conjugate
E of E� It is well�known that the conjugates of E can be obtained be replacing the
roots

p
n�� � � � �

p
nk by roots ��

p
n�� � � � � �k

p
nk� where �j 	 ��� Unfortunately� not all

sign combinations lead to a conjugate� To see this� consider the following toy example�
E 	

p
�
p
��p�� Interpreting all square roots as positive real numbers� we see that E 	 
�

However� choosing the sign combination�������� leads to
p
�
p
��

p
� �	 
� In particular�

this sign combination does not lead to a conjugate of E� Of course� this combination fails
to generate a conjugate because

p
�
p
� 	

p
�� In general� we need to �nd multiplicative

dependencies between the input roots� To determine these multiplicative dependencies
we use a well�known procedure called factor�re�nement �see for example ����� Its running
time is O�log��n��� where n 	

Q
ni� Once the dependencies have been determined and a

random conjugate E has been generated� the algorithm to check whether E 	 
 simply
approximates E�

What is the accuracy required for this approximation in order to guarantee an error
probability less than ���� say� By the result of ��� the approximation needs to have
accuracy ��B � where �B is an upper bound on the absolute value of the conjugates of E�
To obtain such an estimate we use a bound u�E� �rst introduced in ���� A similar� but
slightly worse bound is obtained in ����� u�E� is easy to compute and� in the worst case�
is the best possible upper bound on jEj itself� Summarizing� except for an overhead of
O�log��n��� the running time of our algorithm will be the time needed to compute E with
absolute error ��u�E�� Since E and E di�er only in the signs of the input radicals� in the
worst case this is the time needed to compute E with absolute error ��u�E��

As mentioned above� this compares favorably to algorithms based on separation bounds�
Take the bounds in ���� which are the best bounds currently available� To decide whether
an expression E as above is zero� an approximation to E with absolute error less than
���ku�E� is computed� where k is the number of input square roots� Hence the quality of
the approximation required by the algorithm in ��� di�ers by a factor of �k from the quality
required by our algorithm� We achieve this reduction by a preprocessing step requiring
time O�log��n��� Even for moderately small values of k this is time well spent�

This leads to the main question this paper raises� The bounds in ��� not only apply to
expressions as de�ned above� these bounds also apply to expressions with nested roots��
That is� in the expression we not only allow the operations ���� �� �� we also allow opera�
tors of the form d

p� Although we feel that the class of expressions the algorithm described
in this paper can handle is the most important subclass of the expressions dealt with in
���� it would be very interesting to generalize the algorithm to the class of nested radi�
cal expressions� Note that denesting algorithms as in ��
������ and � � implicitly provide
a zero�test for these expressions� But denesting algorithms solve are a far more general
problem than testing an expression for zero� Accordingly� denesting algorithms� if used as
zero�tests� are less e�cient than algorithms based on roots separation bounds�

The algorithm described in this paper has been implemented� So far no e�ort has
been made to optimize its running time� but the algorithm seems to be practical� The
main objective of the implementation was to compare the probabilistic behavior observed
in practice with the probabilistic guarantees provided by the theory� The data set is still
rather small� As expected� the algorithms performs better than predicted by theory� To
give some speci�c numbers� we tested the algorithms on the determinant of �� � matrices

�It should be noted� that it is unknown whether the bounds in ��� can be improved� if nested roots are
not allowed�
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whose entries are sums of square roots� The integers involved are ��digit integers� We
generated matrices whose determinant is less than �
��� Random conjugates of these
determinants consistently fell in the range from �
� � �
�� We never found an example
where the random conjugate of a determinant was smaller than the determinant itself�

The paper is organized as follows� In Section � the main de�nitions are given� and we
formally state the main result� In Section � we describe the algorithm for division�free
expression and analyze its running time� In Section  we analyze the error probability of
the algorithm� In Section � we show how to generalize the algorithm to expressions with
divisions�

� De�nitions and statement of results

Throughout this paper� we only deal with roots of integers d
p
n� d � N� n � Z� The symbol

d
p
n does not specify a unique complex number� However� when we use this symbol� we

will always assume that some speci�c d�th root of n is referred to� How this particular
root is speci�ed is irrelevant� except that the speci�cation must allow for an e�cient
approximation algorithm� Usually we will require that a root d

p
n is a real number� In this

case� we assume that n is positive�
Our de�nition of a radical expression is the same as the de�nition of a straight�line

program over the integers� except that we allow roots of integers as inputs� To be more
speci�c� for a directed acyclic graph �dag� the nodes of in�degree 
 will be called input

nodes� The nodes of out�degree 
 will be called output nodes� Nodes that are not inputs
are called internal nodes�

De�nition ��� A depth � radical expression E over the integers is a directed acyclic graph
�dag� with a unique output node and in�degree exactly � for each internal node� Each input

node is labeled either by an integer or by a root of an integer� Each internal node is labeled

by one of the arithmetic operations ���� �� �� If no internal node is labeled by �� then E
is called a division�free radical expression� If the inputs are labeled by integers and real

roots of integers� then the expression is called a real radical expression� In either case� the

input labels that are integers are called the input integers and the remaining input labels

are called the input radicals�

These expressions are called depth � expressions� since we do not allow operators of the
form d

p for the internal nodes� Hence there are no nested roots in the expression� In this
paper all expressions are depth � expression� In the sequel� we will omit the pre�x �depth
��� Similarly� the su�x �over the integers� will be omitted�

For a radical expression E with e edges and with input integers m�� � � � �mk and input
radicals d�

p
n�� � � � � dl

p
nl the size of E� denoted by size�E�� is de�ned as

e�
kX

i��

log jmij�
lX

j��

log jnjj�
lX

j��

dj �

where the logarithms are base � logarithms� Remark that size�E� depends linearly on di
rather than on log�di��

To each node v of a radical expression we can associate a complex number� called the
value val�v� of that node� The value of an input node is the value of its label� If v is an

 



internal node labeled with � � f���� �� �g and edges from nodes v�� v� are directed into
v� then val�v� 	 val�v�� � val�v��� The value val�E� of a radical expression is the value of
the output node of E�

It is easy to construct an expressions withO�n� edges whose value is double�exponential
in n� This shows that in general one cannot even write down val�E� in time polynomial in
size�E�� One way to avoid this problem is to restrict expressions E to trees� In this case�
log�jval�E�j� is bounded by a polynomial in size�E�� In this work we follow a di�erent
approach� For a radical expression E we de�ne an easily computable bound u�E� such
that for a division�free expression u�E� is an upper bound on jval�E�j� Later we will see
that arbitrary expressions E can be written as the quotient of two division�free radical
expressions E�� E� such that jval�E��j � u�E�� The de�nition of the bound u�E� follows
����

Let E be a radical expression and let v be a node of E� For an input node v the bound
u�v� is the absolute value of its label� l�v� is de�ned to be �� If v is an internal node and
edges from v�� v� are directed into v� then u�v�� l�v� are de�ned as follows�

u�v� 	 u�v��l�v�� � u�v��l�v��
l�v� 	 l�v��l�v��

if v is labeled with ���

u�v� 	 u�v��u�v��
l�v� 	 l�v��l�v��

if v is labeled with �

u�v� 	 u�v��l�v��
l�v� 	 u�v��l�v��

if v is labeled with ��

Finally� we de�ne u�E� as the corresponding value of the output node of E� If E is
division�free� then jval�E�j � u�E�� With these de�nitions we can state the main result of
this paper�

Theorem ��� Let E be a real radical expression� There is a probabilistic algorithm with

one�sided error ��� that decides whether val�E� 	 
� If the algorithm outputs val�E� �	 
�
then the answer is correct� The running time of the algorithm is polynomial in size�E� �
log u�E��

We did not state the running time explicitly� because the running time depends on the way
speci�c values for the input radicals are represented� As will be seen later� the running time
of the algorithm is usually dominated by the running time of an algorithm approximating
E with absolute error ��dlog u�E�e�

By running the algorithm e times with independent random bits� the error probability
can be reduced to � 	 ��e� We will see later that there is a better way to achieve this
error probability� if e is small�

� The algorithm for division�free expressions

In this section we will describe a probabilistic algorithm that decides whether a division�
free radical expression is zero� We will also analyze the running time of the algorithm� In
the following section we will analyze the error probability of the algorithm�
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Before we describe the algorithm recall that a d�th root of unity� d � N� is a solution of
Xd � � 	 
� The d�th roots of unity are given by exp�ik��d�� k 	 
� � � � � d� �� Therefore�
a random d�th root of unity corresponds to a random number between 
 and d� ��

Algorithm Zero�Test

Input� A real division�free radical expression E with input radicals d�
p
n�� � � � � dk

p
nk�

Output� �zero� or �non�zero�

Step �� Compute m�� � � � �ml � Z� such that gcd�mi�mj� 	 � for all i �	 j� i� j 	 �� � � � � l�
and such that each ni can be written as ni 	

Ql
j��m

eij
j � eij � N� Compute this

representation for each ni�

Step �� For all �i� j�� i 	 �� � � � � k� j 	 �� � � � � l� compute the minimal dij � N such that
di
p
mj

dij � Z� For j 	 �� � � � � l� compute tj 	 lcm�d�j � � � � � dkj��

Step �� Compute d 	 lcm�d�� � � � � dk� and choose l d�th roots of unity 	�� � � � � 	l uniformly
and independently at random�

Step �� In E replace the radical di
p
ni by

lY
j��

	
d�eij�tjdi
j

di
p
mj

eij 	

�
�

lY
j��

	
d�eij�tjdi
j

�
A di

p
ni�

Call this new radical expression E�

Step �� Compute u�E�� Approximate val�E� with absolute error less than ��dlog�u�E��e���
If in absolute value this approximation is less than ��dlog�u�E�e��� output �zero��
otherwise output �non�zero��

In the remainder of this section we will analyze the running time of this algorithm� For
Step � we can use a well�known procedure called factor�re�nement� At any time during its
execution factor�re�nement maintains a list of integersmj such that each ni can be written
as a product of the mjs� Initially the list contains the nis� If there are two list elements
ms�mt that are not relatively prime� factor�re�nement computes d 	 gcd�ms�mt�� replaces
ms andmt byms�d andmt�d� respectively� and adds d to its list� It is clear that eventually
the list will contain integers that are relatively prime� An amortized analysis of factor�
re�nement was given by Bach et al� ����

Lemma ��� Let n�� � � � � nk be integers and denote their product by n� In time O�log��n�
integers m�� � � � �ml can be computed such that

�i� gcd�mi�mj� 	 � for all i �	 j� � � i� j � l�

�ii� Each ni can be written as ni 	
Ql

j��m
eij
j � eij � N�

Within the same time bound the factorizations ni 	
Ql

j��m
eij
j � eij � N� can be computed�

�



Observe that l� the number of mjs� can not be bounded by a function depending only on
k� the number of input radicals� However� l is bounded by

Pk
i�� log�jnij� � size�E��

In Step � we are asked to compute for each di
p
mj the smallest dij such that di

p
mj

dij �
Z� For �xed i and j this can done in time polynomial in di and logmj as follows� For
e 	 �� � � � � di � � �rst approximate di

p
mj

e with absolute error less than ��� to obtain the

unique integer m with j di
p
mj

e �mj 
 ���� Then check whether mdi 	 me
j�

Step � and Step � can clearly be done in time polynomial in size�E�� To analyze Step
� observe that although we change the input radicals� the corresponding input radicals in
E and E have the same absolute value� Therefore u�E� 	 u�E�� By de�nition of u�E�� this
is an upper bound for val�v� of each internal node v of the expression E� A straightforward
error analysis shows that approximating the input radicals of E with absolute error less
than ��w� where

w 	 �size�E� � �dlog�ju�E�j�e � ��

leads to an approximation of val�E� with absolute error less than ��dlog�u�E��e��� as re�
quired in Step � of Algorithm Zero�Test� We assume that the radicals di

p
ni are repre�

sented in a way that allows for e�cient approximation algorithms� The input radicals in
E di�er from the input radicals in E by powers of roots of unity� It follows from Brents
approximation algorithms for exp� log� and the trigonometric functions �see ���� that these
powers of roots of unity can be e�ciently approximated� Hence� the input radicals of
E can be approximated with absolute error ��w� w 	 �size�E� � �dlog�ju�E�j�e � �� in
time polynomial in size�E� and log�ju�E�j�� As mentioned� this implies that val�E� can
be approximated with absolute error ��dlog�u�E��e�� in time polynomial in log�ju�E�j� and
size�E�� Summarizing� we have shown

Lemma ��� On input E the running time of Algorithm Zero�Test is polynomial in size�E�
and log�jval�E�j��

� The error analysis

In this section we will analyze the error probability of Algorithm Zero�Test� We recall
some basic facts and de�nitions from algebraic number theory� For readers not familiar
with algebraic number theory we recommend ����� A number � � C is called algebraic� if
� is the root of some polynomial f�X� � Q�X�� A polynomial f�X� 	

Pn
i�	 fiX

i � Q�X�
is called monic� if fn 	 �� An algebraic number � � C is called an algebraic integer� if it
is the root of a monic polynomial with coe�cients in Z� The minimal polynomial of an
algebraic number � � C is the smallest degree monic polynomial in Q�X� with root �� If
f�X� is the minimal polynomial of �� then the roots �	 	 �� � � � � �n�� of f are called the
conjugates of �� Product and sum of algebraic integers are algebraic integers� Product�
sum� and quotients of algebraic numbers are algebraic numbers� Since arbitrary roots of
integers are algebraic integers� we see that the value of an arbitrary radical expression is an
algebraic number and that the value of a division�free algebraic expression is an algebraic
integer�

The error analysis for Algorithm Zero�Test is based on the following two lemmas� The
�rst one was originally formulated and used by Chen and Kao in ����

Lemma ��� Let � be an algebraic integer with conjugates �	 	 �� ��� � � � � �n��� Assume

that j�ij � �B � B � N� For b � N� with probability at most B��b�B� a random conjugate

�i of � satis�es j�ij � ��b�

�



Lemma ��� Let E be a real division�free expression with input radicals d�
p
n�� � � � � dk

p
nk

and let E be constructed as in Algorithm Zero�Test� Then val�E� is a random conjugate

of val�E� chosen according to the uniform distribution�

Both lemmas will be proven below� Let us show that they imply

Corollary ��� Let E be a real division�free expression with input radicals d�
p
n�� � � � � dk

p
nk�

If val�E� 	 
� then on input E Algorithm Zero�Test will output �zero	� If val�E� �	 
�
then Algorithm Zero�Test will output �non�zero	 with probability at least ����

Proof� By Lemma  �� Algorithm Zero�Test generates an expression E whose value is
a random conjugate of val�E�� We already noted that u�E� 	 u�E� �see page ��� In
particular� the conjugates of val�E� are bounded in absolute value by u�E��

If val�E� 	 
 then its only conjugate is 
 itself� Hence the approximation in Step �

will result in a number bounded in absolute value by ��dlog�u�E��e��� Therefore� the answer
of Algorithm Zero�Test will be �zero��

If val�E� is non�zero� then the approximation to val�E� can be bounded in absolute
value by ��dlog�u�E��e�� if and only if val�E� is a conjugate of val�E� that is bounded in
absolute value by ��dlog�u�E��e� Applying Lemma  �� to val�E� with B 	 b 	 dlog�u�E��e
proves that this happens with probability at most ����

Together with Lemma ���� Corollary  �� proves Theorem ��� for division�free real radical
expressions�

We mentioned earlier �see page �� that if the required error probability � 	 ��e is
not too small� in practice we can do better than run Algorithm Zero�Test e times with
independent random bits� We now want to make this statement more precise�

Set b 	 d���e � �� Assume that in Step � of Algorithm Zero�Test instead of ap�
proximating val�E� with absolute error ��du�E�e�� we approximate it with absolute error
��bdu�E�e��� Furthermore� we output �zero� if and only if the approximation is in absolute
value less than ��bdu�E�e��� With these parameters a non�zero val�E� will be declared 

by Algorithm Zero�Test if and only if jval�E�j � ��bdu�E�e� By Lemma  �� this happens
with probability less than ��

The running time of this algorithm will be polynomial in ��� rather than log ���� But
for small � it should be more practical than running log ��� times Algorithm Zero�Test with
error probability ���� Moreover� with this approach we save on the number of random
bits �see ��� for a more detailed discussion�� Of course� a hybrid approach may also be
interesting� that is run Algorithm Zero�Test several times with independent random bits�
but each time with guaranteed error probability ��

In the remainder of this section we prove Lemma  �� and Lemma  ���
Proof of Lemma ���	 Let d be the number of conjugates that are at most ��b in absolute
value� jQn

i�	 �ij is the absolute value of the constant term of the minimal polynomial of
�� Hence the product is at least �� Together with the upper bound �B on j�ij we obtain

� � j
nY
i�	

�ij � ��n�d�B��db�

This implies d�n � B��b�B��

�



To prove Lemma  �� we need a few more de�nitions and facts from algebraic number
theory� Again we refer to ���� for readers unfamiliar with algebra and algebraic number
theory� To prove Lemma  �� we need a few more de�nitions and facts from algebraic
number theory� Again we refer to ���� for readers unfamiliar with algebra and algebraic
number theory� For an algebraic number �eld F an isomorphism of F into a sub�eld of C
whose restriction to Q is the identity� is called an embedding of F � The basic fact about
embeddings is the following lemma�

Lemma ��� Let F be an algebraic number �eld and let � be an algebraic number whose

minimal polynomial f over F has degree n� Every embedding � of F can be extended in

exactly n di
erent ways to an embedding of F ���� An extension is uniquely determined by
the image of �� which must be one of the n distinct roots of ��f��

From this lemma one can deduce

Corollary ��
 Let � be an algebraic number and let F be an algebraic number �eld con�

taining �� If � is an embedding of F chosen uniformly at random from the set of em�

beddings of F � then ���� is a conjugate of � chosen uniformly at random from the set of

conjugates of ��

We specialize these facts to radical expressions� If E is a radical expression with in�
put radicals d�

p
n�� � � � � qk

p
nk� then val�E� is contained in Q� d�

p
n�� � � � � qk

p
nk�� that is the

smallest �eld containing d�
p
n�� � � � � qk

p
nk� It does not seem easy to directly generate a

random embedding of this �eld� However� we also have val�E� � Q� d
p
m�� � � � � d

p
ml��

where d 	 lcm�d�� � � � � dk� and the integers mj are as constructed in Step � of Algorithm
Zero�Test� For this extension we have

Lemma ��� Let m�� � � � �ml be positive integers that are pairwise relatively prime� As�
sume that the radicals d

p
m�� � � � � d

p
ml are real numbers� Let ti be the smallest positive

integer such that there is an integer ci with d
p
mi 	 ti

p
ci� Then ti divides d and the

minimal polynomial of d
p
mi over the �eld Q� d

p
m�� � � � � d

p
mi��� is given by Xti � ci�

Proof� It was shown by Siegel �� � that the minimal polynomial of d
p
mi over the �eld

Q� d
p
m�� � � � � d

p
mi��� has the form

Xti � qi

i��Y
j��

d
p
mj

eij � qi � Q� 
 � eij 
 tj � ti divides d�

Hence

mti
i 	 qdi

i��Y
j�	

m
eij
j �

Write qi 	 ci�pi� ci� pi � Z� gcd�ci� pi� 	 �� Since mti
i is an integer� pdi must divideQi��

j�	m
eij
j � Since the mj s are pairwise relatively prime� pdi 	

Qi��
j�	m

eij
j � Hence mti

i 	 cdi �
and the minimal polynomial of d

p
mi over Q� d

p
m�� � � � � d

p
mi��� is given by

Xti � ci�

The lemma follows�

For the embeddings of Q� d
p
m�� � � � � d

p
mi��� this translates to

�



Corollary ��� Let mi� d
p
mi� ti� ci be as above� An embedding � of Q� d

p
m�� � � � � d

p
ml�

is uniquely determined by l d�th roots of unity 	�� � � � � 	l such that �� d
p
mi� 	 	

d�ti
i

d
p
mi�

Moreover� if the 	i are chosen uniformly and independently at random� then � is chosen
uniformly at random�

Proof� By Lemma  �� and by Lemma  � � an embedding � ofQ� d
p
m�� � � � � d

p
ml� is de�ned

by mapping d
p
mi onto some root of Xti � ci� i 	 �� � � � � l� These roots are given by

i ti
p
ci 	 i d

p
mi� where i is an arbitrary ti�th root of unity� Since every ti�th root of unity

i can be written as 	
d�ti
i for a d�th root of unity 	i� the �rst part of the lemma follows�

To prove the second part� observe that for each ti�th root of unity i there are exactly

d�ti d�th roots of unity 	i such that 	
d�ti
i 	 i�

Proof of Lemma ���	 From the previous corollary we know that by choosing d�th roots
of unity 	j� j 	 �� � � � � l� uniformly and independently at random� we choose a random
embedding � of Q� d

p
m�� � � � � d

p
ml�� By choice of d every radical di

p
mj is an element of

this �eld� As before� tj is de�ned as the smallest integer such that there is an integer cj
with d

p
mj 	 tj

p
cj� Hence

di
p
mj 	 d

p
mj

d�di 	 tj
p
cj

d�di �

This implies

�� di
p
mj� 	 �� d

p
mj�

d�di 	 	
d��ditj
j

di
p
mj�

We need to show that Algorithm Zero�Test correctly computes tj� The algorithm computes
tj as tj 	 lcm�d�j � � � � � dkj�� where dij is the smallest integer such that di

p
mj

dij � Z� Let

mj 	
Q
p
ehj
h be the prime factorization of mj� Let ej be the greatest common divisor of

the exponents ehj � Any positive integer t with di
p
mj

t � Z must satisfy

ehjt

di
� N� for all h�

Hence t must be a multiple of di� gcd�ehj � di� for all h� Therefore dij is the least common
multiple of the integers di� gcd�ehj � di�� This least common multiple is given by

dij 	 di� gcd�di� ej� 	 lcm�di� ej��ej �

Similarly tj 	 lcm�d� ej��ej � We obtain

ej � lcm�d�j � � � � � dkj� 	 lcm�ejd�j � � � � � ejdkj�
	 lcm�lcm�d�� ej�� � � � � lcm�dk� ej�� 	 lcm�lcm�d�� � � � � dk�� ej� 	 lcm�d� ej��

Hence
lcm�d�j � � � � � dkj� 	 lcm�d� ej��ej 	 tj �

So far� we have shown that 	
d��ditj
j

di
p
mj � i 	 �� � � � � k� j 	 �� � � � � l� is the image of di

p
mj

under a random embedding of � of Q� d
p
m�� � � � � d

p
ml�� Then

�� di
p
ni� 	 �

�
�

lY
j��

di
p
mj

eij

�
A 	

�
�

lY
j��

	
d�eij�tjdi
j

�
A di

p
ni� i 	 �� � � � � k�

�




as constructed in Algorithm Zero�Test� is the image of di
p
ni under the random embedding

�� Hence� ��val�E�� 	 val�E�� Corollary  � shows that val�E� is a random conjugate of
val�E� chosen uniformly at random from the set of conjugates of val�E��

� Expressions with divisions

If a radical expression E contains divisions� Lemma  �� is not applicable� since val�E� need
not be an algebraic integer� However� if E contains divisions� then E can be transformed
into an expression E�� in which only the output node is labeled with �� This can be done
by separately keeping track of the numerator and denominator of E and applying the
usual arithmetic rules for adding� multiplying� and dividing quotients�

To be more speci�c� to obtain E� replace every internal node v in E by two nodes
v�n� and v�d�� If v is a node with edges from nodes v�� v� directed into v and if v is

labeled �� then v�n� and v�d� are labeled �� Edges from v
�n�
� and v

�n�
� are directed into v�n��

Analogously for v�d�� If v is labeled �� then v�n�� v�d� are labeled �� Edges from v
�n�
� � v

�d�
�

are directed into v�n�� and similarly for v�d�� If v is labeled � or �� then nodes w�� w��
both labeled �� are added to E�� v�n� is labeled � or �� v�d� is labeled � and edges are
constructed as in Figure �� Finally add a new output node w that is labeled �� If v is the
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v
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Figure �� Replacing an addition

output node of E� then there are edges from v�n� and v�d� directed into w�
The size of E� is O�size�E�� and val�E�� 	 val�E�� Furthermore� if v is the output

node of E�� and if w is the node where the numerator of v is computed� then val�E� 	 

if and only if val�w� of node w in E� is zero� Restricting E� to the subgraph induced by
the edges lying on paths from the input nodes to w� we obtain a division�free expression
D with val�D� 	 val�w�� To check whether val�E� 	 
� we can use Algorithm Zero�Test
with input D� By de�nition of u�E�� we get u�D� � u�E�� Since E� and D can easily be
constructed in time polynomial in size�E�� the analysis for Algorithm Zero�Test given in
the previous section proves Theorem ��� in the general case�
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