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Hunting for Functionally Analogous Genes

M� T� Hallett�� � J� Lagergren�

� Computational Biochemistry Research Group
Dept� of Computer Science� ETH Z�urich� Z�urich� Switzerland

hallett�inf�ethz�ch
� Dept� of Numerical Analysis of Computing Science� KTH� Stockholm� Sweden

jensl�nada�kth�se

Abstract� Evidence indicates that members of many gene families in the genome of an organism
tend to have homologues both within their own genome and in the genomes of other organisms�
Amongst these homologues� typically only one or a few per genome perform an analogous function
in their genome� Finding subsets of these genes which show evidence of performing a common
function is an important �rst step towards� for instance� the creation of phylogenetic trees� multiple
sequence alignments and secondary structure predictions�
Given a collection of taxa P � fP�� P�� � � � � Pkg where Pi contains genes fpi��� pi��� � � � � pi�ni

g� we
ask to choose one gene from each of the taxa Pi such that these chosen vertices most agree� We
de�ne most agreeing in four distinct ways� most tree�like� pairwise closest� pairwise most similar�
and smallest most tree�like�

We show these problems to be computationally hard from almost every angle via classical� param�
eterized and approximation complexity theory� However� on the positive side� we give randomized
approximation algorithms following ideas from 	GGR
�� for the pairwise closest and pairwise most
similar variants�

� Introduction

Given a new nucleo� or peptide sequence� the standard ��rst step� of any inquiry into the deter�
mination of the evolution� chemical properties� and �ultimately	 function of this biomolecule is
to align it against every entry in a large molecular dataset such as EMBL
S��� or SwissProt
BA��
Since properties such as function are extremely complex and still largely unknown� no sim�
ple search of a dataset can answer these questions directly� The standard alignment tools

AGMWL��PL��� only return entries which show statistically signi�cant signs of pairwise

evolutionary relationships� The end result is that many of the returned sequences will belong
to gene families other than the family of our new sequence�

There are many reasons why this is the case� We discuss three such causes below�

��	 Domain Agreement� Often� only a few short subsequences of one gene are homolo�
gous with other members of the gene family� These common subsequenes typically correspond
to domains� modules or motifs that have travelled through evolution as packages� Although
these subsequences are long enough and the alignments good enough as to indicate sign�cant
similarity� the gene may perform a wildly di�erent function�

��	 �Long Distance Homology�� As evolutionary distances between sequences increase�
it becomes increasing harder to distinguish between sign�cant ancestral relationships between
sequences and simply noise� At extremely far evolutionary distances�� pairwise alignments are
typically between two sequences in di�erent protein super�families� Although these protein
super�families share broad macro similarities� the speci�c proteins in di�erent super�families
will perform extremely di�erent functions�

��	 Parology� Two homologous genes are said to be orthologous if they evolved from a single
gene existing in the genome of their lowest common ancestor taxa� Two genes are paralogous

� Parts of this paper were submitted to SODA ���
� For example� percent identity below ��� or PAM distances greater than ����



if their lowest common ancestor can be traced back to an evolutionary event which is not a
speciation� Paralogues are the result of genome level evolutionary events such as duplications�
In essence� these events copy a contiguous strand of DNA in the genome of a taxa� any genes
located along this strand are copied and proceed through evolution independently of each other�
Historical reconstructions for gene lineages are typically represented as gene trees� The historical
reconstruction of the relationships between taxa is termed a phylogenetic or evolutionary tree�
The two will not necessarily agree on topology� When a gene is duplicated� one of several
possibilities may occur� Firstly� it may be the case that the organism simply does not need a
second copy of the gene� The gene� freed from any functional constraints in the organism� may
begin to drift towards randomness� changing from a potentially active gene to a pseudogene to
�nally a random sequence� Secondly� as above� the organism does not require a second copy of
the gene and the gene drifts towards randomness� However� after a suitable period of evolution�
the gene �or more speci�cally� parts of the gene	 may be recruited for a new function �see

SM��� for a good �rst treatment of how often this has happened	� Thirdly� it may be the
case that a second copy of the gene provides some bene�t to the organism� Since it is under
functional constraints� the gene is not allowed to drift towards randomness and retains an
analogous function� In both of the �rst two cases� we are no longer interested in the resultant
sequences�

In any study of evolution� chemical properties� or function� care must be taken to use
sequences that are all pairwise homologous �all related by a common evolutionary ancestor	
and that all perform an analogous function� in their respective genome� When such care is not
taken in the selection of sequences� gene trees will not re�ect the true evolutionary relationships
of the species� multiple sequence alignments will not display regions of conservation and change�
and predictions of secondary structure will be inaccurate 
B���BDDEHY���F����

We introduce the following model of the above selection problem� A collection of sets
P � fP�� P�� � � � � Pkg is given where Pi corresponds to taxa i and contains the homologues
fp��i� p��i� � � � � pni�ig found in the genome of taxa i� The goal is to choose one gene from each of
the Pi such that these genes agree the most� Such a subset is refered to as a core of the weighted
k�partite graph� We introduce four distinct de�nitions of most agreeing� most tree�like� pairwise
closest� pairwise most similar� and smallest most tree�like�

Most Tree Like Assuming that the taxa under study all possess exactly one gene performing
an analogous function to the gene family� we arrive at the following problem�

Most Tree Like in a k�Partite Graph �Core�Tree�
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�
output� A set P � � fp�� p�� � � � � pkg where pi � Pi such that jjD�P �	 � A�D�P �		jjz is

minimized where D�P �	 is the distance matrix formed in the obvious way from P �

and A�D�P �		 is the closest additive approximation to D�P �	 under the Lz norm for
some z � f�� �� � � � ��g�

That is� one vertex �one gene	 is selected from each partition �each genome	 such that the
distance matrix formed from the pairwise comparisons of the genes is as close to additive �as
close to �tree�like�	 as possible� The assumption behind this optimization criteria is that genes�
which have a di�erent function �hence� a signi�cantly di�erent underlying sequence	 than the
gene family� should introduce non�additivity when placed into a distance matrix consisting of
genes from the gene family�

Consider point ��	 above� Sequences not in the gene family will likely possess sub�regions
donated from other gene families� These subregions will likely have a phylogeny much di�erent

� We say analogous function here and not simply function to stress that the role a speci�c gene in a family plays
is almost never exactly the same between organisms�



than the phylogeny of our �xed gene family� Consider point ��	 above� Since paralogous genes
which are not needed by the organism drift faster than genes under functional constraints and
since paralogues are allowed to drift in a random direction �possibly in and out of pseudo�gene
status	� their sequences will likely mutate in a random direction away from the gene family� no
longer following the phylogeny of the gene family� However� genes which are truly in the gene
family should display �close to	 �tree�like� behaviour� See Figure ��
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Fig� �� The Core�Tree Problem and Paralogy� The species phylogeny for the four genomes A�B�C�D is the
shaded region� Black lines represent the evolutionary history of the active orthologues whilst wavy lines protray
the evolutionary history of the parologues and�or functionally inactive genes� It is assumed here that the wavy
lines represent distance measurements which are �a� much larger and �b� induce distance matrices which are
much further from additivity than the black lines since they are allowed to mutate quickly and in arbitrary
directions�

Pairwise Closest� Pairwise Most Similar If functionally inactive genes drift quickly in a
random direction through the amino acid sequence �space� and functionally active genes in our
family mutate relatively slowly� then the genes performing analogous function are identi�able by
being mutually more similar or closer in distance than any another homologues� Furthermore�
sequences which have domains foreign to the gene family will also induce distance measures
signi�cantly greater than pairwise measurements between members of the gene family� Figure �
graphically shows the idea here�

We arrive at our second and third notions of most agreeing�

Minimum Weight Clique in a k�Partite Graphs �Core�Clique�
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�
output� A set P � � fp�� p�� � � � � pkg such that pi � Pi and ���i�j�kw�pi� pj	 is mini�

mum�

Note that the edges between vertices in di�erent partitions could correspond to either ��	
an estimate of the distance between the two genes� or ��	 a statistical measure of similarity
�eg� a maximum likelihood score	� The �rst variant induces a minimization problem whilst the
second variant induces a maximization problem� In most cases� the behaviour of either problem
is the same and thus we focus attention on the former� Note also that the gene family is not
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Fig� �� A two�dimensional view of closeness� We have four genomes �black� white� grey and checkered� and
we have laid out the genes in two dimensions so that topological distance is proportional to pairwise distance
between the sequences� The Core�Clique problem tries to �nd this �core� set of mutually agreeing genes
�vertices�� Here we have choosen a�� b�� c�� d��

assumed to have any sort of nice �tree�like� behavior� This problem may be particularly suited
to studying microbial taxa as it is becoming clear that gene and species phylogenies are often
tentative at best�

Small�Good�Core�Tree� Suppose all of the genes represented in our k�partite graph have
evolved from a common ancestor through a sequence of duplications and speciations� That is� all
the entries in our matrix are orthologues or paralogues with each other �point ��	 above	� Then�
theoretically� this distance matrix could still be close to additive� Furthermore� suppose that
paralogoues �presumably functionally inactive	 drift much faster than orthologues �presumably
functionally active	� Then the orthologues should be identi�able by being members of the
smallest tree in the k�partite graph� if in fact the gene and species tree agree�

Small Tree in a k�Paritite Graph �Small�Core�Tree�
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�
output� A set P � � fp�� p�� � � � � pkg such that the closest additive approximation of P �

induces a tree T such that ��e�ET
w�e	 is minimum�

We do not optimize on the error between the distance matrix induced by P � and its closest
additive approximation� so if the distances in G are not additive� certain degenerate conditions
may occur� Note that the Core�Clique problem and the Small�Core�Tree problem do not
necessarily agree� It is easy to construct two matrices D and D� such that w�D	 � w�D�	 but
w�T �D		 � w�T �D�		 where w�D	 is the sum of the entries in the upper triangle of the matrix
and w�T �D		 is the weight of the edges in the tree� With this in mind� we opt to combine our
notion of �close to additive� and minimum weight tree to form the following problem�

Small Good�Fitting Tree in a k�Partite Graph �Small�Good�Core�Tree�
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�

� � IR�
output� A set P � � fp�� p�� � � � � pkg such that jjA�D�P �		 � D�P �	jj� � � and

��e�ET
w�e	 is minimum�

In the remainder of this paper we show that choosing cores under any of these optimization
criteria is hard from the classical� parameterized and approximation complexity frameworks�



That is� the general versions of these problems are NP �complete and hard for complexity class
W 
�� for versions of the problem when the number of partitions� the size of each partition�
the maximum weight of an edge� or the overall weight of the core are parameters� We also
show that all of these problems are not approximable within a polynomial function of n in
polynomial time� On the positive side� we give a randomized approximation algorithm using
ideas from 
GGR���RS��� for these last two problems� For a con�dence parameter � and a
accuracy parameter 	� this algorithm will correctly �nd a core�clique of weight opt�	
 �k� with
probability � � ���� where opt is the optimal weight core clique in the input graph� k is the
number of partitions and 
 is the maximum di�erence between the weight of two edges adjacent
to the same vertex� We also give a heuristic for the Ortho�Tree and Small�Ortho�Tree
problem which performs very well in practice�

A Note Concerning De�nitions and Previous Work in the Literature� Recently� much
�due	 attention has been focused on problems regarding the identi�cation of paralogues in
datasets 
F���GCMRM���GMS���MLZ���MMS���P���� Observing that gene trees and species
tree need not agree on topology when duplications and losses take place� Goodman et� al�

GCMRM��� proposed the Duplication�Loss Model� Here they are attempting to �nd
the species tree which requires the fewest number of postulated events needed to rectify the
observed gene trees� See also 
FHKS���FHS��� amongst others� Implicitly� this model assumes
that duplication and subsequent loss events are the major cause of this disagreement� It seems
almost certain that this is not the only cause �we cite point ��	 above and 
SM���	 and it
remains unclear whether duplications and losses would even be the major cause of disagreement
between gene and species tree� In 
YEVB���� the authors develop a system based on BLAST�
the concept of the universal tree of life� and the duplication�loss model to identify orthologues
in the results of a one�vs�all match� Our algorithms here could be used as an important �pre�
processing� step to their software as follows� Firstly� note that no matter how many duplications
and losses take place� gene histories are still �tree like� even if they are not in agreement with
the theoretical species tree� Therefore� our Core algorithms will return sequences participating
in the same gene tree� This will remove bad sequences such as those discussed in points ��	
and ��	 above� In fact� if the gene and species tree do agree �or are close in agreement	� then
the Core algorithms will return the orthologues� Figure � provides a graphical description of
these de�nitions and concepts� The power here is that� unlike the duplication�loss model�
we are using important distance estimates between sequences and we are placing constraints
on the quality of the tree� Figure � provides a graphical description of these de�nitions and
concepts�

� Background

De�nition 	 
Trees and Graphs�� A phylogenetic tree T � �V�E	 is a binary connected

acyclic graph� A leaf in T has degree � and LT is used to denote the subset of V which contain the

leaves of T � For S � T � we let T 
S� represent the subtree of T induced by S� A weighted phyloge�
netic tree is a phylogenetic tree with a weight function associated with the edges� T � �V�E�w	
where w � ET � 
��	� A complete k�partite graph is �k � �	�tuple P � �P�� P�� � � � � Pk� E	
where Pi contains vertices fpi��� pi��� � � � � pi�nig for some ni where Pi 	 Pj � � and where E�

the edge set� contains edges between every two vertices in two di�erent partitions Pi and Pj�
Weighted k�partite graphs are de�ned similarly� A clique of size t in a graph G is a set of t
distinct vertices which are mutually adjacent� The weight of an edge is written w�x� y	 as a

short hand for w��x� y		 for some edge �x� y	�

De�nition � 
DistanceSimilarity Matrices�� A distance matrix D is a  diagonal� sym�

metric� nonnegative matrix� indexed by the set of taxa LT for a phylogenetic tree T where the
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Fig� �� The basic concepts� The extant genomes here are A � fa�� a�g� B � fb�� b�� b�g� C � fc�� c�� c�g� and
D � fd�g� The solid lines represent the evolutionary history of the functionally active genes whilst the dotted
lines represent the history of the functionally inactive ones� The duplication directly before the ancestor C�D
created a new gene that was recruited for a new function� The duplication below this vertex created a gene
that was loss �either through drift or through a deletion event�� Notice here that the gene and species tree do
not agree � ��A�C�� �B�D�� and ��A�B�� �C�D�� resp� The functionally active genes in this con�guration are
fa�� b�� b�� c�� d�g� Note that genome B has two such genes due to the very recent duplication event�

entry Dij is the distance �an estimated distance� between taxa i and taxa j� An n
 n distance

matrix D is additive� if there exists a weighted phylogenetic tree T with n leaves such that

entry Dij equals to the sum of the edge weights in the tree along the path connecting i and j� A
similarity matrix S is the same as a distance matrix except that diagonal elements have value

� and entry Sij is a similarity score between taxa i and j�

Theorem 	 
�B�	��� A matrix D is additive if and only if for all i� j� k� l �not necessarily

distinct�� the maximum of Dij�Dkl�Dik�Djl� Dil�Djk is not unique� The edge weighted tree

�with positive weights on internal edges and non�negative weights on leaf edges� representing

the additive distance matrix is unique among the trees without vertices of degree two�

De�nition � 
Error Measurements�� The Lk norm between distance matrices D and D��

written jjD �D�jjk� is de�ned as jjD �D�jjk � ��i�j

����Dij �D�
ij

����k	 �k for k � �� For k ���

the L� norm is de�ned as jjD �D�jj� � maxi�j

���Dij �D�
ij

���
De�nition � 
Approximation Ratios�� An approximation algorithm is said to achieve an

approximation ratio of � for a maximization problem � if for each input x� it computes a

solution y of cost at least OPT�� where OPT is the cost of the optimum� For a minimization

problem� the algorithm must return a solution y of cost at most � �OPT � Note that � � ��

Theorem � 
Hoe�ding Bound �H����� If X be the sum of n independent and bounded
random variables Xi � 
ai� bi� and let �X � Xn� then for t � �

Pr
 �X �E
 �X � � t� � exp

�
�

�n�t�

�n
i���bi � ai	�

�



or� equivalently�

Pr
X �E
X� � t� � exp

�
�

�t�

�n
i���bi � ai	�

�

��	 Parameterized Complexity

We refer the reader to 
DF��� for a complete description of parameterized complexity�

Parameterized computational complexity� introduced by Downey and Fellows 
DF���� is
founded on the observation that the overwhelming majority of problems take as input two
or more parameters� They are concerned with languages L � �� 
 �� and if hx� ki is in a
parameterized language L� we call k the parameter� In the interests of readability and with
no loss of generality to the theory� we assume that the parameter k has domain IN� that is�
L � �� 
 IN� For �xed k� we call Lk � fxjhx� ki � Lg the k�th slice of L�

The primary intention is to study languages that are tractable by this �slice�� This theory
was motivated by the observation that for many problems only a small range of values for some
input parameters capture most instances arising in practice�

De�nition � 
The Good � FPT �� For a parameterized language L� we say that L is �uni�
formly	 �xed parameter tractable �FPT � if there exists a constant � and an algorithm � such

that � decides if hx� ki � L in time f�k	jxj� where f � IN� IN is an arbitrary function�

Although f may be exponential �or worse	� such an algorithm for recognizing a language
may provide a perfectly feasible �exact	 solution to the problem in practice� However� many
languages seemingly do not admit such behaviour and require time ��nf�k�	 with f�k	�� for
a size n problem with a solution set of size k� The notion of the bad is intuitively associated with
trying to beat the naive algorithms of trying all

�
n
k

�
� ��nk	 subsets or using k dimensional

dynamic programming� The Clique Problem� which asks if there is a set of k mutually
adjacent vertices in the graph of size n� is one such example with the best known algorithms
using time ��n��k	� where � is the constant for matrix multiplication� Completeness frameworks
typically consist of a notion of a set of languages at least as hard as all other languages in the
class and a notion of complexity preserving reduction� Theorem � and De�nition � provide
these two concepts resp��

Theorem � 
The Bad � W 
�� completeness� citeDF���� k�Clique� parameterized by the

clique set size k� is complete for complexity class W 
���

De�nition � 
Parameterized many�	 reductions�� We say that L reduces to L� by a

standard parameterized m	reduction if there is an algorithm � which transforms hx� ki into

hx�� g�k	i in time f�k	jxj�� where f� g � IN � IN are arbitrary functions and � is a constant

independent of k� so that hx� ki � L if and only if hx�� g�k	i � L��

It follows that k�Clique can not be solved in FPT time� unless W 
�� � FPT � This seems
rather unlikely and there now exists a volume of evidence supporting this conjecture� A problem
that is hard for W 
�� is at least as hard as all problems in W 
���

� Complexity Results

��	 Core�Clique

We begin with an analysis of the Core�Clique problem�



Core�Clique
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�

r � IR�

decision� question� Does there exist a set P � � fp�� p�� � � � � pkg such that pi � Pi

and ���i�j�kw�pi� pj	 � r�

optimization� output� P � � fp�� p�� � � � � pkg such that P

� minimizes���i�j�kw�pi� pj	�

We restrict our attention to the L� norm throughout the following analysis� but note that
our reductions also work for the other norms� The decision version of this problem takes as
input a parameter r � IR and answers �yes� i� the core�clique has weight � r� Theorem � below
states that even when the number of candidate genes per genome bounded by �� an extremely
simple weighting function is used� and a bound of  is placed on the size of the core�clique�
the problem remains NP �complete� Theorem � states that a modi�ed �easier to approximate	
version of Core�Clique cannot be approximated within any function of n �the number of
vertices of the input graph	 in polynomial time� Both these theorems follows easily from the
following lemma�

Lemma 	� Let f�n	 be a function such that f�n	 �  for all n � �� then Core�Clique
restricted to partitions of size � and with a weighting function w which assigns an edge either

 or f�n	� and r �  is NP �complete� where n is the size of the input graph�

Proof� The problem is in NP � To show hardness� we reduce from �SAT�

�SAT
input� A formula � in ��CNF over a set of variables X � fx�� x�� � � � � xtg�
question� Is there a truth assignment to X such that each clause of � has at least one

literal is true�

Let X � fx�� x�� � � � � xtg be the set of variables and C � fC�� C�� � � � � Ckg be the set of
clauses of an arbitrary instance of this problem� To construct an instance of the Core�Clique
problem �G�w� r	� we create k partitions P�� P�� � � � � Pk and associate Pi with clause Ci� The
� vertices in Pi are labeled by the literals in Ci� The weight of an edge between two vertices
in di�erent partitions corresponding to two negated literals xj and �xj is f�n	� Otherwise� the
weight is �
Claim G has a weight  core�clique if and only if � is satis�able�

��	 Let p�� p�� � � � � pk be the set of vertices which induce a core�clique of weight � Now there
can be no weight f�n	 edges between any pi and pj which implies that it is never the case that
pi is some literal x whilst pj is the negated literal �x� Hence� we may set the literal pi to be true�
Since we may do this for all k of the partitions� we have a truth assignment for � with at least
one true literal in each clause�

�	 Let T � X � ftrue� falseg be a truth assignment to � such that at least one literal x
in each clause Ci is true� Consider any two distinct such literals xi and xj which are true in
clauses Ci and Cj � Then the vertex lapelled xi in Pi and the vertex lapelled xj in Pj have no
weight f�n	 edge between them� since T is a satisfying assignment for � and there is an edge
of weight f�n	 only if two literals are negations of each other� Hence� we may place xi and xj
in the core�clique�

Theorem �� Core�Clique restricted to partitions of size � and with a weighting function w
which assigns an edge either  or �� and r �  is NP �complete�

No minimization problem for which it is NP �complete to distinguish between instances
with  minimum cost and instances with cost c �  can be approximated within any ratio



in polynomial time� Since this comment applies to the Core�Clique problem� we formu�
late a slightly modi�ed version of the optimization form �Modified�Core�Clique	 of the
problem which asks for the P � which minimizes � � ���i�j�kw�pi� pj	� for which non�trivial
non�approximability results can be proved�

Theorem �� If P �� NP � thenModified�Core�Clique is not approximable within any func�

tion of n in polynomial time� where n is the size of the input graph�

Proof� Assume that Modified Core�Clique can be approximated in polynomial time ap�
proximated to within a function g�n	� It follows immediately that g�n	 � � for all n � �� By
Lemma �� it is NP�hard to distinguish between instances of Modified Core�Clique with a
minimum of � and those with a minimum of �� g�n	� However� using the assumed approxima�
tion algorithm it is possible to distinguish between such instances� From this contradiction the
theorem follows�

Next we examine the Core�Clique problem from the perspective of parameterized com�
plexity �see x � and 
DF���	� The main principle here is that� although the general form of
the problem is NP �complete� our reduction does not disclose exactly where the source of in�
tractability lies� We see at least the following four possible parameterizations of the problem�
��	 m � max�ijPij� the maximum size of a partition�
��	 k� the number of partitions�
��	 r� the total weight of the core�tree� and
��	 �� the maximum weight of a distance between two leaves�
Note� Theorem � shows that any subset of parameters �� � and � are not enough as the problem
remains NP �complete� Our next theorem rules out the possibility of an FPT algorithm for
any subset of parameters �� �� and ��

Theorem �� �� �� ��Core�Clique is hard for W 
���

Proof� Let �C � �V�E	�K	 be an instance of the K�Clique Problem� We construct an
instance of the Core�Clique problem �G � �P�� P�� � � � � Pk� E	� w� r	� where r� �� and k are
functions depending only on K and show that �C�K	 is a �yes� instance if and only if �G�w� r	
is a �yes� instance�

Let the vertices in VC be labeled by �� �� � � � � jVC j � m� Let r �
�K
�

�
� We create partitions

P�� P�� � � � � PK�k and include vertices labeled pi�j for � � j � m in partition Pi� We place an
edge between all vertices in G which are not in the same partition� for all i� j� � � i � j � k�
and for all q� q�� � � q � q� � m� �pi�q� pj�q�	 � EG� If �u� v	 �� EC � then w�pi�u� pj�v	 � c for

all � � i � j � k� c is an arbitrarily large constant at least as big as
�K
�

�
� �� If �u� v	 � EC �

then w�pi�u� pj�v	 � � for all � � i � j � k� For all edges of the form �pi�u� pj�u	 � EG� let
w�pi�u� pj�u	 � c�
��	 Let V � � fv�� v�� � � � � vKg be the clique set in C� By the construction� there must ex�
ist edges in G of the form �pi�vi � pj�vj 	 with weight �� Hence� the core�clique consisting of

fp��v� � p��v� � � � � � pK�k�vKg in G has weight
�K
�

�
�

�	 Let P � be the core�clique consisting of vertices fp�� p�� � � � � pkg with weight bound r �
�K
�

�
�

where pi � pi�v is a vertex in Pi� Since edges have either weight � or weight c �
�K
�

�
in G� all

edges induced by P � must have weight �� Therefore� by the construction� all edges �pi�v� pj�v�	
are contained in EC � Hence� these vertices form a clique in C�

Observation 	 �� ��Core�Clique is �xed parameter tractable with an algorithm running in

time O�nk	�

Proof� Simply try all O�nk	 valid sets of k vertices�



Theorem � shows that the problem remains hard for partition size � with constant edge
weight functions and a constant bound on the core�clique� Our next theorem shows that re�
stricted to partition size � and constant edge weight functions it still stays hard�

We reduce from the Maximum �SAT problem�

Maximum ��Satisfiability
GareyJ���
input� A formula � in CNF over a set of variables X � fx�� x�� � � � � xmg such that each

of the l clauses c � �� jcj � �� K � ZZ�
question� Is there a truth assignment for � that simultaneously satis�es at least K of

the clauses�

Theorem �� �� ��Core�Clique is NP �complete even when the number of vertices in each

partition is at most � and the edges are assigned a weight of either  or ��

Proof� Clearly� the problem is in NP �

Let ���K	� where � consists of clauses C�� C�� � � � � Cl be an instance of the Maximum ��
Satisfiability problem� We construct an instance �G � �P�� P�� � � � � Pk� E	� w� r	 of the Core�
Clique problem as follows� for each variable xi � X� we construct a partition Pi consisting
of two vertices labelled pi and �pi �corresponding to a postive and negative truth assignment
to xi	� Hence� k � jXj � m and max�ijPij � �� For each clause Ci � �� where Ci consists
of literals �xu� xv	� where xu is either xu or �xu and xv is either xv or �xv� we assign an edge
of weight � between the two vertices of Pu and Pv corresponding to �xu and �xv� the negated
literals� All other edges have weight � Let r � l �K�

Claim� �G�w� r	 is a �yes� instance of the Core�Clique problem if and only if ���K	 is a
�yes� instance of the Maximum ��Satisfiability problem�

��	 Let P � � fp�� p�� � � � � pkg be the core�clique in G which has weight � r � l �K� Since
edges of weight � only occur between partitions Pi and Pj where x

i and xj appear together in
a clause of �� we have exactly l edges of weight � in G and P � must be such that the core�clique
has at most l�K � r of these edges� This implies the existence of at least K distinct pairs of
partitions �Pi� Pj	 such that �pi� pj	 has a weight  edge� By the construction� pi �resp� pj	 is
either pi or �pi �resp� pj or �pj	 and corresponds to assigning literal xi �xj	 true or false� Since no
edge of weight � exists between pi and pj� the corresponding clause in � is satis�ed� Therefore�
there are at least K clauses in � which are satis�ed�

�	 Let T � X � ftrue� falseg be a truth assignment to � satisfying at least K clauses
fC�� C�� � � � � CKg� By the construction� for each Ci consisting of literals �xu� xv	� the partitions
Pu and Pv contain one edge between them of weight �� Ci is satis�ed so T �xu	 � T �xv	 is not
false� If T �xu	 � true �resp� T �xv	 � true	� we place pu �pv	 in the core�clique� Otherwise� we
place �pu ��pv	 in the core�clique� The edge between these two parititions has weight � Since
there are at least K such Ci�s and there are exactly l edges of weight � only appearing between
partitions with variables simultaneously in a clause of �� the overall weight of the core�clique
is less than or equal to l �K � r�

��� Most Tree Like

Best Tree in a k�Partite Graph �Core�Tree�
input� A complete k�partite graph G � �P�� P�� � � � � Pk� E	� edge weights w � E � IR�
output� A set P � � fp�� p�� � � � � pkg where pi � Pi such that jjD�P �	�A�D�P �		jj� is

minimized where D is the distance matrix formed in the obvious way from P � and
A�D�P �		 is the closest additive approximation to D under the L� norm�



Clearly� the decision version of theCore�Tree problem� which asks if there is a P � such that
jjD�P �	 � A�D�P �		jj� � � for input parameter � � IR� is NP �complete since Numerical
Taxonomy 
ABFNPT��� � is simply a restricted version �speci�cally� all partitions having
size �	 of it� We begin our analysis with a sub�version of the problem where we ask if there
exists a choice of one leaf from each partition in the input graph that induces an additive tree�
Furthermore� we are given the unweighted topology of the tree� so the problem reduces to just
choosing one vertex per partition so that the pairwise distances �t to the tree� This problem�
when each partition just has a single vertex� is not NP �complete 
F����

Exact Tree in a k�Partite Graph �Exact�Core�Tree�
input� As with Core�Tree but also an unweighted leaf�labeled tree T with each leaf

receiving a distinct label from fP�� P�� � � � � Pkg�
question� Does there exist a set P � � fp�� p�� � � � � pkg where pi � Pi such that D�P �	

is additive� where D�P �	 is the distance matrix formed from P �� and such that the
corresponding tree T �D�P �		 is isomorphic to T and for u � T �D�P �		� u � Pi� the
corresponding leaf in T has label Pi�

Again� we analyze this problem from the perspective of parameterized complexity� Our
parameters remain the same� ��	 m � max�ijPij� the maximum size of a partition� ��	 k� the
number of partitions� ��	 r� the total weight of the core�tree� and ��	 �� the maximum weight
of a distance between two leaves� Our �rst theorem shows that no FPT algorithms are possible
for any subset of parameters �� �� or �� unless W 
�� � FPT �

Theorem �� �� �� ��Exact�Core�Tree is hard for W 
���

Proof� Given an instance of the K�Clique Problem �C � �V�E	�K	� we create an instance
of the �� �� ��Exact�Core�Tree problem �G�T 	 and show that �C�K	 is a �yes� instance if
and only if �G�w� T 	 is a �yes� instance�

We construct K � ��� k	 partitions fA�B�C�D� P�� P�� � � � � PKg� Partition A contains one
vertex a� B contains b� C contains c� and D contains d� Each partition Pi contains jVC j � m
vertices labeled pi��� pi��� � � � � pi�m� Our tree T is created as in Figure �� the caterpillar with �A�B	
and �C�D	 as its �head� and �tail�� That is� our tree has internal vertices fh� t� n�� � � � � nKg
with edges f�h�A	� �h�B	� �t� C	� �t�D	� �h� n�	� �t� nK	g and f�ni� ni��	 � � � i � Kg�

Let Da�b � Dc�d � �� Da�c � Da�d � Db�c � Db�d � � � �K � �	� Let Dx�pi�j � � � i for
x � fa� bg� � � i � K and � � j � m� Let Dy�pi�j � � � �K � i � �	 for y � fc� dg� � � i � K
and � � j � m� Let Dpi�j �pi��j � �K � � for all � � i �� i� � K and � � j � m� If �u� v	 �� EC �
then Dpi�u�pi��v � �K � � for all � � i �� i� � K� If �u� v	 � EC � then for � � i � j � K�
Dpi�u�pj�v � � � j � i�

��	 Let V � � fv�� v�� � � � � vKg where vi � VC a clique in C� We show how to choose one
vertex from each of the Pi in G such that the distance matrix formed from these vertices
alongside with a� b� c and d is additive� Note that we must choose a� b� c and d� and that the
distance matrix these four vertices induce is additive �see Theorem �	 and agrees with the
topology T �

Now consider the set of vertices fp��v� � p��v� � � � � � pK�vKg � P � in G� From the construction�
Dpi�vi �pj�vj

� �� j� i as any two distinct vertices pi�vi � pj�vj from this set are mutually adjacent�
We must show how weights can be applied to the edges of T such that the distances in T between
pi�vi and pj�vj � d�pi�vi � pj�vj 	 are equal to the entries Dpi�vi �pj�vj

� This can be accomplished by
assigning � to every edge on the path between pi�vi and pj�vj in T � It is easy to verify that
dT �x� pi�vi	 � Dx�pi�vi

� for x � fa� b� c� dg and that the matrix can be realized as a tree�

� Numerical Taxonomy� input� An n�n distance matrix D� a bound � � IR� question� Is jjA�D��Djj� �
��



�	 Let P � � fa� b� c� d� p�� p�� � � � � pKg be the set of vertices from G which induces a tree
with topology T � By Theorem �� the underlying distance matrix D is additive� For a leaf
vertex x� let n�x	 be the unique neighbour of x in T � Focus on the four vertices fa� b� c� dg� By
Theorem �� the edge weights in this subtree must be � for edges of the form �x� n�x		 where
x � fa� b� c� dg� The weight of the path between �a� b	 and �c� d	 receives weight � � �K � �	�
We now analyze the �choice� of vertices fp�� p�� � � � � pKg�

Claim �No Fit�� P � does not contain two vertices pi�j and pi��j� i �� i��

�By contradiction	 Suppose there exist pi�j� pi��j � P � simultaneously �w�l�o�g� i � i�	� Then�
by the construction� Dpi�j �a � �� i� Dpi�j �c � ���K� i��	� Da�b � � and Dpi�j �pi��j � �K���
Focus on the quartet formed by fa� b� pi�j � cg� It is easy to verify that the edge �pi�j� n�pi�j		
must have weight �� Furthermore� the path from vertex �AB	 to n�pi�j	 must have total weight
i and the path from vertex �CD	 to n�pi�j	 must have weight K � i � �� The same argument
holds for the edge weights in the quartet fa� b� pi��j� cg� that is� the edge weight of �pi��j� n�pi��j		
is also �� Allowing n�x	 to denote the unique neighbor of a leaf vertex x in T � it is easy to verify
that the weight of the path from n�pi�j	 to n�pi��j	 must be i

� � i� Since i� � i � � � �K � ��
we reach a contradiction since we can not assign edge weights to T so that they agree with
the distance matrix induced by fa� b� c� d� pi�j � pi��jg� Hence� by Theorem �� this matrix is not
additive�

Claim� P � does not contain two vertices pi�j and pi��j� � i � i�� j �� j� such that �vj � vj�	 �� EC �

This claim can be proved in the same way as Claim No Fit above� Simply note we assigned
Dpi�j �pi��j� to be �K � � when �vj � vj�	 �� EC �

The previous two claims establish the fact that we must include K distinct vertices in G
which correspond to pairwise adjacent vertices in C� Hardness for W 
�� follows from the fact
that our construction required only K �� partitions� all edge weights are a function only of K
and the overall weight of the clique�tree is also a function only of K�
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Fig� �� Construction for the �� �� ��Exact�Core�Tree�

Our second theorem shows that this problem is NP �complete even when the number of
candidate homologous genes per genome is at most ��

Theorem �� ��Exact�Core�Tree restricted to partitions of size � is NP �complete�

Proof� We reduce for �SAT� Let � be a formula in �CNF form over variablesX � fx�� x�� � � � � xmg
and clauses C�� C�� � � � � Ck� We construct an instance of the Exact�Core�Tree �G�w� T 	 as
follows� Let there be k � � partitions in G �P�� P�� � � � � Pk� A�B�C�D	 where A contains the
single vertex a� B contains b� C contains C� and D contains d� Pi contains three vertices



pi��� pi��� pi�� associated with the three literals in clause Ci of �� Our topology T is again
the catepillar from Theorem �� �����A�B	� P�	� P�	� � � � � Pk	� �C�D		� Let Da�b � Dc�d � ��
Da�c � Da�d � Db�c � Db�d � � � �k � �	� Let Dx�pi�j � � � i for x � fa� bg� � � i � k and
� � j � �� Let Dy�pi�j � � � �k � i � �	 for y � fc� dg� � � i � k and � � j � �� For pi�s and
pj�t� where i �� j and literal s in � is the negation of literal t� let Dpi�s�pj�t � �k��� When s is
not the negation of literal t� let Dpi�s�pj�t � � � j � i�

Claim� �G�w� T 	 contains an additive core�tree with topology T if and only if � is satis�able�

�	 Let T � X � ftrue� falseg be a truth assignment to � such that at least one literal
x in each clause Ci is true� We show how to choose one vertex from each Pi in G such that
the distance matrix formed from these choices alongside with a� b� c� and d are additive� Note
that we must choose a� b� c and d and they are additive with a topology in agreement with T
�see also Theorem � and Figure �	� Let x�� x�� � � � � xk� xi � Ci be true literals in the clauses
of �� Since all such literals are true� it is never the case that xi � �xj� By the construction�
Dp

i�xi
�p
j�xj

� � � j � i�

Consider the set P � � fp��x� � p��x� � � � � � pk�xk � We need only show how to apply edge weights
to T so that the distances in T between pi�xi and pj�xj equal the entries in the distance matrix�
This can be accomplished by assinging weight � to every edge on the path between pi�xi and
pj�xj � It is easy to verify the tree distances agree with the distance matrix�

��	 Let P � � fa� b� c� d� p�� p�� � � � � pkg be the set of vertices in G which induces a tree with
topology T � By Theorem �� the underlying distance matrix D is additive� Focus on the four
vertices fa� b� c� dg� By Theorem �� the edge weights in this subtree must be � for edges of
the form �x� parent�x		 where x � fa� b� c� dg� The weight of the path between �a� b	 and �c� d	
receives a weight � � �k � �	� We now analyze the �choice� of vertices fp�� p�� � � � � pkg�

Claim� P � does not contain two vertices pi�j and pi��j� i �� i��

�By contradiction	 Suppose there exist pi�j� pi��j � P � simultaneously �w�l�o�g� i � i�	� Then�
by the construction� Dpi�j �a � �� i� Dpi�j �c � �� �k � i� �	� Da�b � � and Dpi�j �pi��j � �k � ��
Focus on the quartet formed by fa� b� pi�j � cg� It is easy to verify that the edge �pi�j� parent�pi�j		
must have weight �� Furthermore� the path from vertex �AB	 to parent�pi�j	 must have total
weight i and the path from vertex �CD	 to parent�pi�j	 must have weight k � i� �� The same
argument holds for the edge weights in the quartet fa� b� pi��j� cg� that is� the edge weight of
�pi��j � parent�pi��j		 is also �� It is easy to verify that the weight of the path from parent�pi�j	
to parent�pi��j	 must be i� � i� Since i� � i � � � �k � �� we reach a contradiction since
we can not assign edge weights to T so that they agree with the distance matrix induced by
fa� b� c� d� pi�j � pi��jg� Hence� by Theorem �� this matrix is not additive�

Claim� P � does not contain two vertices pi�j and pi��j� � i � i�� j �� j� such that xj � �xj� where
xj � Ci and xj� � Cj�

This claim can be proved in the same way as Claim ��� above� Simply note we assignedDpi�j �pi��j�

to be �k � � when xj and xj� appear in two distinct clauses as complements of each other�

The previous two claims establish the fact that we must include k distinct vertices from G
which correspond to con�ict free choices for true literals in ��

Parameterizing on both the number of partitions k and the size of each partition m leads
to a trivial FPT algorithm for �� ��Core�Tree with a running time of O�mk	�

Observation � �� ��Core�Tree is FPT and solvable in time O�nk	�



Consider the relaxation of Exact�Core�Tree to the optimization version which asks for
the core�set P � which best �ts to the topology T and we modify this optimization criteria so
that it is always � � we can prove the following non�approximation results via Theorem ��

Theorem 	�� The always positive� optimization version of Exact�Core�Tree is not ap�

proximable within any function of n in polynomial time� where n is the size of the graph G�

unless P � NP �

Proof� Similar to Theorem ��

��� A Heuristic for the Core�Tree Problem

Given the complexity results of Theorems � and �� there does not exist polynomial or FPT
algorithms for this problem even for the very restricted case when the topology of the species
tree is known and at least one of the core�sets induce an additive distance matrix� unless
extremely unlikely complexity collapses occur� Hence� we must be satis�ed at this stage to
accept a heuristic solution� The algorithm given here combines the randomization techniques
used in Core�Clique with the Neighbour Joining technique �NJ	 
SN���� The NJ method
will reconstruct the correct topology if the amount of non�additivity in the distance matrix
does not exceed half the length of the smallest edge�

Theorem 		 
�A����� NJ returns the correct topology for a phylogenetic tree when jjA�D	�
Djj� � x

� where x is the smallest edge in A�D	�

Our algorithm computes all possible NJ trees from a randomly choosen small �S where
jSj � ��log k		 set of partitions� Each tree is scored via the least squares �L� norm	 �t
between the distance matrix and the NJ tree� This �kernel� set is extended greedly partition
by partition� again computing the optimal error via the least squares algorithm for the new NJ
tree�

Core�Tree Algorithm
We repeat the following O�n�	 times�

�� Randomly choose a sample set S � fs�� s�� � � � � sjkjg� S � f� � � � kg of ��log k	 distinct
partitions�

�� Compute LS�NJ�D�ps� � ps� � � � � � psjSj		� D�ps� � ps� � � � � � psjSj		 for all psi � Pi where

D�S	 is the distance matrix induced by vertex set S� NJ�D	 is the tree topology
returned by the Neighbour Joining algorithm 
SN��� on distance matrix D� and
LS�T�D	 is an algorithm which returns the optimal �t of the distance matrix D to
the tree topology T under the L� norm� Let T � fT�� T�� � � � � T�S

i��jPsi j
g �

�� for each Ti � T do
for Pi� i �� S� do

Let Ti � Ti � v where v � Pi minimizes
LS�NJ�D�VTi � v		� D�VTi � v		

S � S � i
do do

In practice� we compute the optimal core�tree exhaustively when the input graph is small
enough�



� A Randomized Approximation Algorithm for the Core�Clique Problem

Following 
GGR���� we will now give a randomized approximation algorithm for the Core�
Clique problem� The algorithm runs in linear time if each Pi has size bounded by a constantm�
and polynomial time in the general case� Let 
�G�w	 denote the maximum di�erence between
the weights of two edges adjacent to a vertex v� over all vertices v of G and its adjacent edges�

Theorem 	�� For any 	� � � �� �	� there is a randomized algorithm for the Core�Clique
problem that for a given instance G�w with probability � � � � in polynomial time �nds a

solution of cost � c� � 	
�G�w	k�� where c� is the cost of the minimum cost core�clique�

Consider a given Core�Clique instance G�w and let 
 � 
�G�w	� Let 	� our distance param�

eter� be such that  � 	 � � and �� our con�dence parameter� be such that  � � � �� We use

k� to denote the set f�� �� � � � � kg�

Let l � d�	e and t � �� �
��
log �

�� 	� Consider a partition of 
k� into l sets A�� � � � � Al of
approximately equal size� Let Vj � �i�Aj

Pi and Wj � V �G	 n Vj � For U � U�� � � � � Ul where
Uj � 
k� n Aj � let X�Uj	 be the family of all X �Wj such that jX 	 Pij � � for all i � Uj and
X 	 Pi � � for i � Uj� and let X�U	 � f�X�� � � � � Xl	 � Xj � X�Ui	g�

Algorithm Randomized A

�� Choose U � U�� � � � � Ul where Uj has size t and is chosen uniformly in 
k� nAj �
�� For each X � X�U	
�� Let

OX � fargminv�Piw�v�Xj	 � � � j � l� i � Ajg�

�� Output the core�clique OX which has minimum weight over all X � X�U	�

We will denote the minimum cost core�clique by O��

Lemma �� With probability � � �� over the choice of U there is an X � X�U	 such that

w�OX	 � w�O�	 � 	
k���

Proof� For any sequence of samples U�� � � � � Ul and �X�� � � � �Xl	 � X�U�� � � � � Ul	� let S�� � � � � Sl
be de�ned by

Sj � fargminv�Piw�v�Xj	 � i � Ajg�

We de�ne a sequence of hybrid core�cliques as follows�

Oj � �ji��Si � ��li�j��Vi 	O
�	�

A set Xj �Wj is representative for Pi� where i � Aj if for all v � Pi�

w�v�Xj	t� w�v�Wj 	Oj��	jWj 	Oj��j � 	
���

A set Pi is homogeneous if for all vertices v � Pi

w�v�Wj 	Oj��	� min
u�Pi

w�u�Wj 	Oj��	 � 	
��

a heterogeneous set is of course a non�homogeneous set� A set Xj �Wj is representative if for
all but at most 	k�l sets Pi where i � Aj � Xj is representative for Pi or Pi is homogeneous�
We shall show that with probability �� ��l over the choice of Uj there is an Xj � X�Uj	 such
that

w�Oj	 � w�Oj��	 � 	
k�l� ��	

This immediately implies the lemma� We �rst show that if Xj � X�Uj	 is representative� then
��	 holds� We then show that the probability that there is a representative Xj � X�Uj	 is
�� ��l�

Assume that there is an Xj � Uj which is representative and let Sj be de�ned as above�
Notice the following�



�� The weight of edges between Wj and vertices of sets Pi such that Xj is representative for
Pi cannot increase by more than �

�

k
l k�

�� The weight of edges betweenWj and vertices of Vj belonging to homogeneous sets Pi cannot
increase by more than �

�

k
l k�

�� The weight of edges between Wj and vertices of Vj belonging to heterogeneous sets Pi for
which Xj is not representative cannot increase by more than �

�

k
l k� since there are at most

�k
�l such heterogeneous sets Pi�

�� The weight of edges between pairs of vertices of Vj cannot increase by more than 
�kl 	
� �

�
�


k�

l �

By Hoe�ding�s Bound 
H���

PrUj 
w�v�Xj	t� w�v�Wj 	Oj��	jWj 	Oj��j � 	
��� � ��	���t� � 	���l�

Hence� by Markov�s inequality� with probability �� ��l the sample set Uj is representative�

Algorithm Randomized B

�� Choose U � U�� � � � � Ul where Uj has size t and is chosen uniformly in 
k� nAj �

�� Uniformly chose a subset C � fc�� � � � � crg of even size �� lt logm�log��
��
��

	 from

k��

�� For each X � X�U	

�� For each i � C� let

vXi � argminv�Pi���j�l�i�Aj
w�v�Xj	�

�� Output the tuple X which minimize

r
�X
i��

w�vX�i��� v
X
�i 	

over all X � X�U	�

The �nal version of our algorithm does the following� It computes a tupleX using Algorithm
Randomized B and then outputs the core�clique O � fargminv�Piw�v�Xj	 � � � j � l� i � Ajg�
Since

�

r
�X
i��

w�vX�i��� v
X
�i 	r

has expected value w�OX	k�� it follows that

PrC 
j�

r
�X
i��

w�vX�i��� v
X
�i 	r � w�OX	k�j � 	
�� � e�	���r� � O��m�lt	�

Since jX�U	j � mlt� it follows that

PrC 
�X � X�U	� j�

r
�X
i��

w�vX�i��� v
X
�i 	r � w�OX	k�j � 	
�� � �� ���



� Discussion

This paper has examined a problem from computational biology which arises when one is
attempting to perform� for instance� evolutionary studies on molecular sequences� Typically�
we are given a large set of homologous sequences partitioned into taxa and we would like to
know if there is any evidence of evolutionary relationships between subsets of these taxa� We
have also looked at the case where one is given a tree and asked which core�set of vertices from
a partite graph best �t to this topology �Exact�Core�Tree	�

All of these formulations display computational hardness for all reasonable parameteriza�
tions and approximation criteria� However� we present a randomized approximation algorithm
which tests for min� weight cliqueness inside of the k�partite graphs� for a given level of con��
dence and accuracy� All of the algorithms mentioned in this paper have been implemented and
tested� We note that our randomized approximation algorithm performs best when the input
graph is quite large� We have also tried a number of greedy and randomized greedy heuristics
for these problems and we have found that these simple heuristics �like the heuristic forOrtho�
Tree in x ��� tend to out�perform our randomized approximation algorithm in practice� There
are a number of ways that ideas in the approximation algorithms can be used to derive more
advanced heuristics �dominating the simpler ones	 and possibly more practical algorithms with
proven performance bounds� This is certainly a very challenging line of research that needs
further consideration�
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