
ETH Library

Optimization of a Railway Hub-
and-Spoke System
Routing and Shunting

Report

Author(s):
Gatto, Michael; Jacob, Riko; Nunkesser, Marc

Publication date:
2006

Permanent link:
https://doi.org/10.3929/ethz-a-006776604

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 477

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006776604
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Optimization of a Railway Hub-and-Spoke System:
Routing and Shunting

Technical Report 477, Department of Computer Science, ETH Zurich

Michael Gatto∗ Riko Jacob∗ Marc Nunkesser∗

Abstract

We consider the hub-and-spoke setting of the railway product “Cargo Express” of SBB Cargo, where
freight cars are hauled over night from many sources to many destinations. To this aim, trains collect the
cars from the source stations, along a route to the hub. The hub is a shunting yard with a hump, where the
cars are rearranged and routed to their delivery stations in new trains.

We provide some basic theoretical analysis of the problem, and report first experiments with real-
world data.

More precisely, we consider the routing and shunting component of the problem separately. We reduce
the routing problem to a distance constrained vehicle routing problem, and derive efficient separation
heuristics for a branch and cut approach. We show that the problem of sequencing the incoming and
outgoing trains with the goal of minimizing the hub’s capacity is NP-hard. Finally, we give a dynamic
program for minimizing the makespan of shunting operations given a predefined sequence of incoming
trains.

1 Introduction

Railway systems pose a multitude of interesting optimization problems. Apart from passenger railway sys-
tems also freight railway systems lend themselves well to combinatorial optimization approaches. In this
paper we address interconnected algorithmic problems related to fast overnight freight transportation in a
freight railway hub-and-spoke system.

Our running example is the Swiss "Cargo Express" service [19], but our results apply also to any other
freight railway system that is designed similarly. Favored by the Swiss ban on night-time truck driving, the
overnight transportation of mainly perishable products by freight trains has become a successful and widely
used service offered by Swiss federal railways SBB Cargo Ltd. Almost 50 Swiss stations are connected to
the Cargo Express railway net. At these stations, customers can deposit goods in the evening or pick up
goods in the morning, provided they have signed up for this service in advance. The network is designed as a
hub-and-spoke system, the hub being the central shunting yard in Däniken and the spokes the other stations.
Currently, a further shunting yard (Olten) close to Däniken is used because of capacity reasons.

This short description already reveals major optimization tasks in such a system:

• Minimize the number of trains necessary to fulfill all demands in one night and also the total distance
traveled.

• Minimize the shunting capacity needed at the hub.

In our model we decompose the problem into two main parts: Therouting of trains to and from the hub
and theshuntingat the hub. We present each model together with its results in a separate section, beginning
with the routing. In the shunting part we explain how the two parts are connected. The paper is structured
as follows: In the next section we give a detailed description of the train routing problem. Next, we give

∗Department of Computer Science, ETH Zürich, {gatto,rjacob,nunkesser}@inf.ethz.ch

1

a mathematical programming model for it and present a branch and cut solution approach. Then, we show
how the shunting problem is related to a minimum cut linear arrangement problem and also consider a
mathematical programming formulation. Finally, we analyze good groupings of shunting operations and
present experimental results for our routing approach.

1.1 Problem Description

In this section, we describe the mode of operation of Cargo Express. The mathematical formulation of the
optimization tasks we consider are described in later sections. First of all, the timetable and the served
stations are fixed for longer time periods and reflect fixed customer demands. This means that customers
might buy a daily transport of 50 tons of goods from A to B during six months, for example1. The schedules
are repeated daily with the exception of Sundays where a different schedule is used.

After the goods have been placed at a station they need to be transported to the central shunting yard,
the hub. In a first phase shunting engines transport the goods at small stations to nearby larger stations.
Mostly, it is clear what the nearby larger station of a small station is. As the routing of these shunting engines
is predetermined, we consider the problem after this phase, i.e., when all goods have been placed at larger
stations. At some of these larger stations freight trains collect the deposited goods and start their trip to the
hub. On their trip they may stop at other stations and collect the cars of these stations. More precisely, freight
cars that wait at these stations are coupled to the freight trains. The process of coupling these cars takes a
non negligible time2 hence referred to ascouple time. The length of a freight train is limited.

At the hub the freight trains are shunted. This means roughly that the incoming trains are decomposed
into the cars and outgoing trains are composed from cars of incoming trains. In particular an outgoing train
can only depart after all its cars have arrived at the shunting yard. A shunting yard has a limited capacity:
It can only accommodate a limited number of cars respectively trains and only a limited number of shunting
operations can be performed in a given time period.

1.2 Related Work

There is an enormous wealth of publications on the relatedvehicle routing problem. The vehicle routing
problem itself has been studied in many variants, the closest in spirit to our problem being the distance con-
strained vehicle routing problem, which has received comparatively little attention. Most of the publications
of exact algorithms date back to the 80ies [4, 11, 12]. There are several implementations for the general
vehicle routing problem, commercial as well as free ones, see [9, 17] for surveys. One of the few free and
open ones is the code by Ralphs et al. [18], on which we base our implementation. Ralphs’ implementation
is itself based on his SYMPHONY branch and cut framework [17]. Another branch and cut implementation
for the vehicle routing problem is by Blasum and Hochstättler [3]. More on the vehicle routing problem can
be found in the book edited by Toth and Vigo [20].

There are also some publications on shunting, for example [2]. Here it is necessary to check which type
of shunting yard was modeled. In [2] the authors consider shunting of trams which is different from shunting
freight trains. It seems that only a few contributions consider a shunting yard with a hump [6, 7]. We are not
aware of any publication, in which both routing and shunting are addressed together.

2 Routing

In this section we first present our mathematical model of the routing problem, then present our solution
approach.

1As it turns out SBB Cargo is much more flexible in accommodating for changing/new demands, but we describe the general
concept of the Cargo Express product.

2The reason for this is that after coupling the cars, the brakes of every newly coupled car have to be tested.

2

2.1 Model

In the routing problem we search for short routes from the stations to the hub. We treat the transport from the
stations to the hub and the transport from the hub to the stations separately. Obviously, these two problems
are symmetric, therefore it is sufficient to analyse only one direction. Here we consider the transport from
the stations to the hub. This model implies that we do not use the detailed information about point to point
transports that would be given by a(n× n) supply and demand matrix but rather the row and column totals
(depending on the direction) in this matrix. This is expressed by a supply (demand) value that is associated
with each node. This value is the total amount of goods (in freight cars) that is to be transported from the
station to the hub, or vice versa depending on the setting. The following definition gives a formalization of
the problem.

Definition 2.1 (Train Routing Problem with fixed train fleet (TRP)). We are given a train networkG =
(V,E) with a specified hub nodeH ∈ V , a length functionc : E → R+ and suppliess(v) for each node
v ∈ V \ {H}, a couple timetcouple, an average speed̄v, a maximum train lengthCTRP, a maximum traveled
distanceDTRP and the number of available freight trainsK. A feasible solutionS consists ofK routes
R = {r1, . . . , rK}, i.e. paths in the network having one endpoint inH and an association of each node
v ∈ V \ {H} in the network with a router = ρ(v) such that the following properties hold:

1. No route is longer thanDTRP. The length of a router is defined as the length of the path plus|{v ∈
V |ρ(v) = r}| · tcouple · v̄ .

2. No train is longer thanCTRP. Thelength of a trainfor a router is
∑

v:ρ(v)=r s(v) .

3. All nodes are associated with some route.

The cost of a solution is the sum of the lengths of the routes. The train routing problem is to find a minimum
cost solution.

The restriction to a fixed train fleet is not very limiting. In practice, one wants to minimize a weighted
sum of the number of used trains and the traveled distance. Reasonable values for the number of used trains
are usually in a very small interval so that the optimization can be done for all of these values.

2.2 Branch and Cut Approach

In general there are many different possibilities to tackle the train routing problem, even after one has decided
to use an exact approach. Out of these possibilities we could only evaluate a small subset. Natural candidates
are those based on formulations that proved successful for the vehicle routing problem, i.e.vehicle flow
models with the classical two- or three index formulations,commodity flowmodels orset partitionmodels,
see [20] for an excellent overview. We only tried the two and the three index formulation, out of which the
two index formulation proved more successful and will be presented in the following. For convenience, we
restate the distance-constrained capacitated vehicle routing problem.

Definition 2.2 (Distance Constrained Capacitated Vehicle Routing Problem (DCVRP)).Given a network
G = (V,E), a cost functionc : E → R find K circuits with minimum total cost, such that

1. Each circuit visits the depot vertex

2. Each customer vertex is visited by exactly one circuit

3. The sum of the demands on each circuit does not exceed the allowed capacityCDCVRP.

4. The sum of the edge lengths on each circuit does not exceed the distance constraintDDCVRP.

3

2.2.1 DCVRP ILP-Formulation

The two index formulation of the DCVRP uses Boolean variablesxe to indicate if a given edgee ∈ E is
chosen. We give it for undirected graphs, and explain it below.

DCVRP: min
∑
e∈E

cexe

s.t.
∑

e={i,j}∈E

xe = 2 ∀i ∈ V \ {H} (2.1a)

∑
e={H,j}∈E

xe = 2K (2.1b)

∑
e={i,j}∈E,i∈S,j /∈S

xe ≥ 2r(S) ∀S ⊂ V \ {H}, S 6= ∅ (2.1c)

xe ∈ {0, 1} ∀e ∈ E (2.1d)

Equations (2.1a) enforce that each node except for the hub has degree two, (2.1b) enforces that the hub has
degree2K. Inequalities (2.1c), thecapacity cut constraints, enforce that the graph is connected and that the
capacity and length constraints are met. Note that every vehicle contributes two to the number of edges of the
cut. Here,r(S) is the maximum of two valuesc(S) andd(S): c(S) is the minimum number of vehicles that
have enough capacity to serve the setS. This value can also be interpreted as the solution of a bin packing
problem with binsizeCDCVRP. The valued(S) is the minimum valuek ∈ N such that the objective value
vk
TSP of ak-TSP problem onS divided byDDCVRP and rounded up equalsk:

d(S) = min
{

k ∈ N
∣∣∣k =

⌈
k-TSP(S)
DDCVRP

⌉ }
. (2.2)

2.2.2 Adapting the Model

Although not identical, the train routing problem defined above has many similarities with DCVRP. In the
following, we give a transformation3 such that the optimal solution of any TRP instanceITRP can be derived
from the optimal solution of the corresponding transformed DCVRP instanceΨ(ITRP). This approach allows
us to directly use existing software packages.

Given an instanceITRP of TRP with networkGTRP the transformationΨ applies the following three types
of modifications to it: First it adds all missing edges toGTRP. The length of such a new edgee = (u, v) is
set to the length of the shortestu, v path inGTRP. In the next step it addstcouple · v̄ to the weight of each
edge of the network. Finally, it puts a gadget on top of the network. Figure 2.1 shows how the TRP-instance
after the first two modifications, represented by the circular nodes is transformed into a DCVRP instance by
adding extra nodes and edges. The extra nodes are shown as rectangular nodes. The underlying idea is to
allow each vehicle to "jump" from the depot to a start point in the network. To that purpose, we addK extra
nodes{ve

1, . . . , v
e
K} to the network. These nodes are all connected to the depotH with edges of length−M ,

with M � d(e) ∀e ∈ E. The extra nodes are connected to the rest of the network via the complete bipartite
graph. The length of each such edge is zero. The extra nodes are not interconnected. Each extra node has an
associated demand ofM ′, with M ′ >

∑
v∈V s(v) ∀v ∈ V . We set the capacityCDCVRP of the vehicles in

the DCVRP instance toCDCVRP = M ′ + CTRP, finally we setDDCVRP = −M + DTRP. The correctness of
this transformation is established in the following lemma.

Lemma 2.3. Given an optimal solutionSDCVRPof costc to DCVRP onΨ(ITRP) for a TRP instanceITRP, the
cost of an optimal solutionSTRP to ITRP is c + K ·M andSTRP can be reconstructed fromSDCVRP in linear
time.

3Note that the common transformationc{i,j} ←− c{i,j} − c{H,i} − c{H,j} by Clarke and Wright savings [5] only works in the
other direction, in the sense that it transforms a problem with cycles into a problem with paths.

4

M ′

M ′

−M

−M
Hub

Figure 2.1: Transformation from TRP to DCVRP for two trains. The new square nodes have demandM .
The original graph consists of all circular nodes together with the solid edges. The dashed edges have length
zero. The dotted edges are introduced in an earlier phase of the transformation.

Proof. We first show thatSTRP has the following form: It consists ofK cycles, such that theith cycle can be
written as(H, ve

i , vi,j1 , . . . , vi,jli
,H). The reason for this is that the supply ofM of each extra node together

with the capacity constraints enforce that exactly one extra node is on each circuit. The negative lengths of the
edges(H, ve

i) enforce that the extra nodes must be directly after (or before)H on the circuits. To construct
STRP we simply set theith route to(vi,j1 , . . . , vi,jli

,H). From the description of the transformation it follows
that the feasibility ofSDCVRP guarantees thatSTRP is feasible. Note that we assume a couple time also at the
stations where trains start their journey. As for the optimality, assumeSTRP is not an optimal solution. Then
let S′ be the optimal solution to the TRP consisting ofK routes. This solution can be transformed intoK
cycles by reverting the above construction. It is straight-forward to check that these cycles form a cheaper
feasible solution for the DCVRP instance.

Note that the bipartite component of the gadget can be slimmed down: All we need is that there is a
perfect matching between each subsetS ⊂ V of sizeK and the extra nodes. Thus, it is enough to insert, for
K nodes inN , only the edges(vi, v

e
i), i ∈ {1, . . . ,K} in the bipartite component.

2.2.3 Separation Heuristics

The core part of every branch and cut algorithm is the design of a separation algorithm that effectively
separates a given fractional point from the convex hull of integer solutions. The general separation problem
is NP-complete and this still holds for most known classes of valid inequalities including the ones of type
(2.1c), see [1]. For this reason we focus on effectiveseparation heuristicsthat try to find violated inequalities
of type (2.1c). These inequalities comprise two subtypes, capacity and distance constraints, depending on
which of the valuesd(S) andc(S) is larger.

We have based our implementation on the branch and cut code by Ralphs et al. [18] for the capacitated
vehicle routing problem. All separation heuristics dealing with capacity constraints are described in [18].
Therefore, we focus on our separation heuristics for the new distance constraints.

Let x̂ be a fractional solution, and denote bŷG = (V \ {H}, Ê), Ê = {e : x̂e > 0} thesupport graph
corresponding tôx. The general idea of the inserted cuts is as follows: If the length` of the route required
to serve a connected componentS ∈ Ĝ exceedsDTRP the component must be served by more vehicles. In
this case we introduce a constraint of type (2.1c). This proceeding remains valid if` is a lower bound on the
length of the route.

Given a fractional solution̂x and a connected componentS ∈ Ĝ, the length of the fractional route is
computed as the sum over all weights of edges inS, weighted bŷx, excluding edges of weight−M . If this
length exceedsDTRP, we introduce a valid inequality of type (2.1c) forS. Let c be the value of the (graph
theoretic)(S, {H})-cut. Then, settingr(S) to b c

2c+1 gives a locally valid cut. Next, we apply the shrinking
heuristic described in [18] to enforce stronger cuts if the previous search was unsuccessful. All these cuts

5

have only local validity in the branch-and-cut search tree, because the branching decisions enforce or forbid
some edges.

Given an integral solution, the length̀of a route is computed in the obvious way by summing up the
length of the edges in the route, but neglecting edges of weight−M . If the route length exceedsDTRP, we
introduce a cut (2.1c) with right-hand-side2κ(S). The valueκ(S) is a global lower bound on the number of
vehicles needed to serveS, and is explained later in the section. Similarly to [18], we try to enforce stronger
cuts by considering only parts of each route: we sequentially add edges along a route until the distance-
constraint is violated, and enforce a cut on this smaller subset of vertices. Next, we shorten the route from its
source, and add a cut for each subset violating the distance constraint. This procedure is iterated by adding
one edge to the previous prefix of the route. As before, these cuts useκ(S) as lower bound on the number of
vehicles.

The valueκ(S) is computed by adapting two standard relaxations of the TSP to our needs, the relaxation
to 1-trees and the one to the assignment problem, see [13] for details. Given an integral connected component
S, we compute the minimum weight spanning tree onS. If the cost of the spanning tree exceedsDTRP, we
introduce a cut. In order to find the best possible bound onr(S), we proceed as follows. Letw be the weight
of the tree,r = 1. As long as w

DTRP
> r, we increaser by one, decreasew by the weight of the heaviest edge

in the tree and increase it by the weight of the cheapest not yet considered edge fromS to the depot nodeH.
The idea is to subdivide the component in many components, each served by one vehicle. The updated value
of w provides a lower bound on the length of the route needed to serve these new components. Hence, the
final value ofr is a global lower bound on the number of vehicles needed to serve the nodes inS. Should this
procedure fail and not lead tor > 1, we apply a final heuristic based on the TSP-relaxation to an assignment
problem. We build a bipartite graph by duplicating the nodes inS intoA andB. For every original edge(u, v)
we introduce the two edges(uA, vB) and(uB, vA) with the weight of(u, v). Furthermore, we introduce a
new node for each partition. This node represents the depot node. We connect the depot node of partitionA to
all nodes inB excluding the depot node with edges of weight as in the original graph. These edges represent
the trip from the last node to the depot. Similarly, we connect the depot node of the partitionB to all vertices
in A (excluding the depot) with edges of weight zero. These edges represent a zero cost edge from the depot
to the start of the path. The weight of the minimum weight bipartite matching is a lower bound on the length
of the minimum route needed to serve the nodes inS. Hence, if the weight of the bipartite matching exceeds
DTRP, at least two vehicles are needed to serve the nodes inS.

These two relaxations lead to the valueκ(S).

3 Shunting

At the center of the operation in a hub-and-spoke setting of a railway system, there is the shunting operation
at the hub. So far we have only a very basic understanding of this process. It seems that the problem is not
very well studied in the literature, only a few contributions consider a shunting yard with a hump [6, 7].

As a first and most simplistic modeling of the hub we focus on the capacity of the shunting yard. Assum-
ing that the composition of incoming and outgoing trains is given, it remains to be decided in which sequence
the trains should be scheduled to arrive and depart, such that the capacity of the shunting-yard at the hub is
not exceeded. In this section we first show that this problem is NP-complete, even in a very restricted set-
ting. Next we discuss how to solve the problem in practice by an ILP-formulation. Finally, we consider the
problem of optimally grouping the shunting operations in the shunting yard.

3.1 Hardness of Directed Minimum Cut Linear Arrangement

The sequencing problem for incoming and outgoing trains turns out to be NP-hard, already in a very simple
version.

Corollary 3.1 (of Theorem 3.3). It is NP-hard to decide if a collection of incoming and outgoing trains can
be sequenced such that the capacity of the shunting yard is sufficient, even if every incoming train consists of
precisely 3 cars, and every outgoing train of precisely 2 cars.

6

7 5321

5

1

1
1

1

6 1

4

9 3

1

74

5

T in
1 T in

8

T out
7T out

1

· · ·

· · ·

(a) in-out graphGio

e

ve

(b) the transformation of an undi-
rected edge to a pair of directed
edges to a new vertex

(c) a small “U-wall” of [14, 15]. The square ver-
tices connect to other square vertices of U-walls

Figure 3.1: Illustrations for Minimum Cut Linear Arrangement

Given the composition of the incoming trainsT in = {T in
1 , . . . , T in

m} and the outgoing trainsT out =
{T out

1 , . . . , T out
n }, the sequencing task at hand can be depicted by the bipartite graphGio = (U ∪ V,E)

in Figure 3.2(a), thein-out graph. The incoming trains correspond to vertices inU , the outgoing trains to
vertices inV . We model precedence constraints by directed edges, for every car from its arriving train to
its departing train, expressing that a car needs to arrive (with its train) before it can depart. We callGio a
uniformly directed bipartite graph, because all edges are directed fromU to V . An in-out graph is allowed
to have parallel edges, or alternatively it can have weightsc on the edges, indicating how many cars of an
incoming train an outgoing train receives. The sequencing task corresponds to finding alinear arrangement
of the graphG, i.e., an embedding of the graph onto the horizontal line, such that all edges are directed
from left to right. For such an arrangement, the maximal number of edges crossing any vertical line is the
(cut-) width, and it corresponds to the maximal number of cars residing in the shunting-yard. The width of
a graphG is given by the minimal width of a linear arrangement ofG. Conversely, any uniformly directed
bipartite graph can be understood as an in-out graph. Hence Corollary 3.1 follows indeed from Theorem 3.3
below.

Let L : U ∪ V → {1, . . . , n} be an optimal linear arrangement of the uniformly directed bipartite
graphG = (U ∪ V,E). We can assume that inL every outgoing train departs as early as possiblethat
is, as soon as all its cars are available. Conversely, there is no use in scheduling an incoming train to arrive
before some of its cars are needed. Together this means that given the sequence of the incoming trains it is
easy to compute an optimal sequence of the outgoing trains, and vice versa.

Without the directions and the restriction to bipartite graphs, this problem is known as the “minimum cut
linear arrangement”, a well studied NP-complete problem [8, GT44] that was shown to remain NP-hard for
graphs of degree 3 [14], and even planar graphs of degree 3 [15]. We extend these results in the following
way.

Lemma 3.2. For any constantc > 0 it is NP-hard to approximate minimum cut linear arrangement with an
absolute error ofc, even on planar graphs with degree 3.

Proof. By reduction from the NP-hard problem “minimum cut linear arrangement for planar graphs” [15].
We follow closely the reduction presented in [15]. LetG be a planar graph, and̀the bound on its width.
We constructG′ by taking a U-wall (see Figure 3.1(c)) of nodes with degree 3 for every vertex ofG. G′ has
the property that no two U-walls can significantly overlap in any linear arrangement. (This idea goes back
to [14].) The edges ofG are replaced by edges inG′ connecting vertices of the inner parts of the two U-walls,
the square vertices in Figure 3.1(c). As limitL for the width ofG′ we use the height of the U-walls plus
the bound̀ on the width ofG. Now from any linear arrangement that obeys this limitL we can reconstruct
an arrangement of the original graphG that has width̀ . To extend the result in the sense of the lemma, we
“multiply” the construction by a factorc, i.e., we usec-times bigger U-walls, and replace every original edge
by c new edges. If there is a linear arrangement of the original graph of width`, the constructed graphG′ has
width cL. Conversely, even from an arrangement of the new graph of widthcL + c− 1, we can reconstruct

7

a linear arrangement because the U-walls still cannot overlap significantly, and this linear arrangement has
width c` + c− 1. Because every original edge is represented byc parallel edges, every cut is divisible byc,
and hence this linear arrangement actually has widthc`, hence the original graphG has width̀ .

Theorem 3.3. It is NP-hard to decide if a uniformly directed bipartite planar graph of out-degree 3 and
in-degree 2 admits a linear arrangement of width`.

Proof. By reduction from the problem of approximating the width of a planar graph with an additive error
of 7 of Lemma 3.2. LetG be the undirected planar graph andL be the width limit defining an instance of
that problem. ThenG either has width≤ L or ≥ L + 7, and it is NP-hard to distinguish these two cases.
We construct a graphG′ by replacing every edgee with a pair of edges directed toward a new vertexve, see
Figure 3.1(b). This graphG′ is also known as the node-edge incidence graph with the links directed from
nodes to edges (or vice-versa, this is just symmetric). We set the width limit` = L + 6.

Any optimal linear arrangement ofG′ will place all the edge-verticesve as far left as possible, because
not doing so can only increase the width. The vertices ofG are also vertices ofG′, such that the above
observation allows us to directly map arrangements ofG to arrangements ofG′ and vice versa. Then directly
to the left of an original vertexv, the width ofG′ is the same as the width ofG. Only to the right of it, it is
increased by twice the number of neighbors ofv in G that are arranged left ofv: For a neighboru of v in G
that is arranged left ofv, the directed edge(u, ve) continues up tove, and there is the additional edge(v, ve).

Concluding we see that ifG has width≤ L, thenG′ has a linear arrangement of width≤ ` = L + 6, but
if the width ofG is≥ L + 7 > `, thenG′ has width≥ L + 7 > `.

This hardness result is complemented by the following consideration.

Theorem 3.4.Every uniformly directed bipartite graph with maximum degree 2 admits a linear arrangement
of width 4, and it takes linear time to determine the minimal width of such a graph.

Proof. A graph of maximum degree 2 decomposes into cycles and paths. A single edge has width 1, two
directed edges have width 2, a path has width 3, and a cycle has width 4 (consider the last incoming train, it
adds 2 cars to a shunting-yard containing two cars).

3.2 Solving the Arrangement Problem in Practice

As the instances of the arrangement problem that arise in our setting are not too large, we can solve them by
a simple ILP formulation.

For this formulation we discretise the time horizon intotmax points in timeZ = {0, . . . , tmax − 1}.
We model the problem by Boolean variablesaT,t anddT ′,t that model arrival (and departure) of the trains
T ∈ T in (T ′ ∈ T out, respectively) at timet ∈ Z. Here, we assume that it takes a constant numberσ of time
units to compose an outgoing train after its last cars have arrived at the shunting yard. We refer toE as the
edge set of the in-out graphGio.

Equations (3.1a), (3.1b) and (3.1h) impose that, for every edgee, the variablesae,· andde,· form a mono-
tone sequence starting with 0 and ending with 1. The idea is that the train arrives (or departs, respectively) at
the time when the 0-1 transition takes place. Constraints (3.1c) and (3.1d) enforce that an outgoing train can
only depart if all its cars have arrived and thatσ time units are needed for shunting those cars. Constraints
(3.1e) enforce the capacity constraints. Constraints (3.1f) and (3.1g) introduce time constraints for the earliest
arrival / latest departure of trains.

The constraints (3.1f) and (3.1g) allow us to construct a solution to the entire problem as follows: First
construct, by the methods of Section 2, the optimal routings to and from the hub. Then inspect the length of
the routes. These lengths together with the earliest possible departure times (latest possible arrival times) at
the stations yield earliest possible arrival times (latest possible departure times) at the hub.

Our experiments show that for our problem instances we can calculate a shunting schedule for a given
routing to and from the hub in a few minutes.

8

ARR: Find (a, d)
s.t. aT,t ≤ aT,t+1 ∀T ∈ T in, t ∈ Z (3.1a)

dT,t ≤ dT,t+1 ∀T ∈ T out, t ∈ Z (3.1b)

aT,t ≥ dT ′,t+σ ∀t ∈ {0, . . . , tmax − σ}, e = (T, T ′) ∈ E (3.1c)

dT ′,t = 0 ∀T ∈ T out, t ∈ {0, . . . , σ − 1} (3.1d)∑
e=(T,T ′)∈E

ce(aT,t − dT ′,t) ≤ C ∀t ∈ Z (3.1e)

aT,ti = 0 ∀T ∈ T in s.t.T must arrive afterti (3.1f)

dT ′,ti = 1 ∀T ′ ∈ T out s.t.T ′ must depart beforeti (3.1g)

aT,0 = 0, aT,tmax−1 = 1, dT ′,0 = 0, dT ′,tmax−1 = 1 ∀T ∈ T in, T ′ ∈ T out (3.1h)

all a·, d· ∈ {0, 1} (3.1i)

3.3 Optimal Grouping of Shunting Operations

In this section, we take a closer look at the shunting operation. Assume that we have already found a good
order for the trains to arrive at the central shunting yard. More precisely, let us assume that we have computed
targeted arrival timesI = {ι1, . . . , ιm} of the incoming trainsT in, for example by the methods of the last
section.

From this, we can compute the earliest possible departure timesO = {ω1, . . . , ωn} of the outgoing trains
T out as follows. The earliest possible departure timeωi of an outgoing trainT out

i is the latest arrival time
ιj of an incoming trainT in

j that has cars forT out
i : ωi = maxj:(T in

j ,T out
i)∈E ιj with respect to the edge setE

of the in-out graphGio. Note that these earliest possible departure times do not include the time needed for
shunting in contrast to the actual departure time that are calculated by the algorithm the we present in this
section. It follows that the earliest possible departure times are a subset of the arrival times (O ⊆ I), see
Figure 3.2(a). We denote the total number of cars ofT out

j by |(T out
j)|. The trains are indexed w.l.o.g. in the

order of their arrival times/earliest possible departure times.
The literature addresses the task of static shunting [10, 16, 6, 7], i.e., the situation where all trains arrive

before the shunting operation starts, and leave only after it has been completed. The dynamic aspect of the
situation where the shunting operation can (and has to) start with only some of the incoming trains available,
seems not to have been investigated. Here, we consider a simple model, thegrouped shunting, in which we
periodically shunt the outgoing trains for which all cars have arrived at the shunting yard. At timet all cars
that are in the shunting yard correspond to a subgraphGt of Gio, see Figure 3.2(b) for an example. If we start
a shunting phase at timet, the set of all carsOt in the shunting yard at timet belonging to complete outgoing
trains are composed. In Figure 3.2(b) the setOt corresponds to all nodes in the bottom partition that have

ι1 ι2 ι3 ι4 ι5ι6ι7 ι8

ω1 ω2 ω3 ω4 ω5 ω6 ω7

t

(a) time line with times of incoming
and departing trains

T in
1

T out
7

T in
8

T out
1

· · ·

· · ·

(b) Gt ⊂ Gio represents a possible
configuration of cars in the shunt-
ing yard at timet (solid edges), cf.
Fig. 3.1(a).

Figure 3.2: grouped shunting example

9

all their adjacent edges inGt, i.e T out
2 . The remaining cars are left in the shunting yard. We further assume

that the time needed for shuntingOt depends on the number of cars inOt, denoted by|Ot|. We assume that
the shunting time is given by a monotone concave functionf : N → R+, wheref(n) is the time needed to
shuntn cars. Note that the concavity just states that a static shunting task for some set of cars cannot take
longer than breaking this set up into subsets and sequentially perform the static shunting on these subsets.
This property trivially holds for all sensible static shunting methods. Given a shunting operation starting at
time t, the outgoing trains are composed in the time interval[t, t + f(|Ot|)], and during that time no other
shunting operation can take place.

Our task is to decide how to group the shunting operations, i.e., at which points in time we should start to
shunt. Observe that the cars that are in the shunting yard at timet depend on the grouping decisions beforet.
For the objective of makespan minimization(Cmax) we call the problem theoptimal grouping problem with
makespan objective. It can be solved by dynamic programming as follows:

For eachωi ∈ O, the algorithm maintains a stateW (ωi) = (t′, v′) with the following properties. Timet′

is a point in time within the intervalIi = [ωi, ωi+1) andv′ represents the minimum number of cars available
for shunting att′. Together, the pair(t′, v′) represents apartial solution until (interval)i, that is, a solution
to the problem restricted to the intervals up toIi, which has ended shunting before or at timet′ and hasv′

cars available for shunting. The interval for the last pointωmax ∈ O is defined asImax = [ωmax,∞). For
convenience, we writet = W t(ω) andv = W v(ω) for W (ω) = (t, v).

The key idea of the algorithm is that it suffices to store a single state for each interval. We express this
by a dominance rule for two states of the same interval. The state(t, v) dominates(t′, v′) if and only if
t + f(v) < t′ + f(v′).

Procedure DOMINANCE(t,v,t’,v’)
if t + f(v) < t′ + f(v′) then return (t, v) else return (t′, v′)

The following lemma makes the usefulness of dominance precise.

Lemma 3.5 (Dominance Rule).Consider a solutionS with makespanCS
max which starts a shunting phase

with v cars at timet of interval Ii. Assume further that a state(t′, v′), t′ ∈ Ii exists that dominates(t, v).
Then, a solutionS′ exists, which starts shunting withv′ cars at timeT ′ and has a makespan of less than or
equal toCS

max.

Proof. As (t′, v′) dominates(t, v), we can construct a solutionS′ as follows. The existence of(t′, v′) guar-
antees that a partial solutionP until i exists. We buildS′ by usingP up tot′. At t′ we start a shunting phase
that ends ate′ = t′ + f(v′), i.e., beforee = t + f(v), where the corresponding shunting phase inS ends (by
definition of dominance). Ift is the start of the last shunting phase inS we already have a complete solution
with a shorter makespan. Otherwise, the rest of the new solution consists of the grouping decisions inS at
or aftere′. Let snext be the start of the first shunting phase at or aftere′. Note thatsnext≥ e > e′ since(t′, v′)
dominates(t, v). At snext, S′ has exactly the same number of cars available for shunting asS has, sincet and
t′ are in the same interval. The cars available atsnext in S andS′ are just the weights of outgoing trains in the
interval from[t, snext) resp.[t′, snext). These two values are identical.

A solutionS induces a set of states in the intervals in which it starts and ends shunting and in the intervals
in which it waits. For the starting and ending phases this is the exact time at which the shunting starts or ends
together with the number of cars available for shunting at these times. A solution that waits in an intervalIi

induces the state(ωi, v), wherev is the number of cars available for shunting atωi. We say that asolution
dominates a state sif it induces a states′ in the interval ofs that dominatess. Similarly, we say that a
solutionS dominates a solutionS′ if S induces a state that dominates a state ofS′. Because of Lemma 3.5,
it is sufficient to consider undominated solutions when searching for an optimal solution. We introduce the
same notation for partial solutions untili, which only induce states in intervalsIj , j ≤ i.

The dynamic program proceeds as follows, see Algorithm 2 for a precise formulation. First, we initialize
prefix sumsS(ω) for each event point. These sums stand for the cumulated number of cars of all outgoing

10

trains up to timeω. Then we iterate over the events chronologically and update theW values. The crucial
observation is that shunting at timet = W t(ω) means that we keep the shunting yard busy for at least
σ = f(W v(ω)) time. Letω′ be the event point directly beforet′ = t + σ. To find this eventω′, we need
a dictionary onO that supports predecessor queries. If we decide to start a shunting phase att, then there
is a feasible solution with state(t′, S(ω′) − S(ω)) in the interval ofω′. We use the dominance rule to find
out if this state should replace the current state in the interval ofω′. In order to account for the possibility of
not shunting directly aftert′, we also have to update all states in intervals afterω′, which we do implicitly in
line 2 before accessingW (ω). After the last iteration, the valuesW reflect an optimal solution. In order to
find the minimum makespan, we need to add one extra state after the last event. In this state we calculate the
finish time after the additional shunting operation at the end, i.e. the makespan.

Algorithm 2 : Optimal grouping
//Initialize Prefix Sums (in linear time in the obvious way)
forall ω ∈ O do S(ω)←−

∑
i:ωi≤ω, |T out

i |
//Initialize States
W (ω1)←− (ω1, |T out

1 |)
Cmax ←−∞, vold ←− 0
//Iterate
forall ω ∈ O in chronological orderdo1

(t, v)←−W (ω)←− DOMINANCE
(
(ω, vold + |T out

i |),W (ω)
)

2

t′ ←− t + f(v)
if t′ < ωmax then3

ω′ ←− PREDECESSOR(t′)4

W (ω′)←− DOMINANCE
(
W (ω′),

(
t′, ω + f(S(ω′)− S(ω))

))
5

else
Cmax ←− min

{
Cmax, t

′ + f(S(ωmax)− S(ω))
}

6

vold ←− v
return Cmax

Theorem 3.6. Algorithm 2 solves the grouping problem with makespan objective inO(n log n) time.

Proof. We prove the correctness of the algorithm by the following invariant:
At the end of thei-th iteration of the forall loop 1 the following two properties hold:

INV 1(i) For all intervalsIj , with j ≤ i the state(t, v) = W (ωj) is not dominated by any partial solution
until i.

INV 2(i) No undominated partial solution untilk which starts to shunt the last time beforeωi and ends the
shunting in intervalIk, k > i exists which dominatesW (ωk).

Note that dominance for the last interval[ωmax,∞) is equivalent to a better makespan. Therefore, the
correctness of the invariant implies the correctness of the algorithm.

To prove the invariants, consider iterationi and the corresponding state(t, v) = W (ωi). For INV1(i) we
have to set(t, v) to a state that is not dominated. Such a state corresponds to a specific partial solution untili.
If that solution ends a shunting phase inIi thenW (ωi) is already set correctly by INV2(i−1). If this is not the
case, then this solution ends a shunting phase beforeIi and waits inIi. In this case(ωi,W

v(ωi−1) + |T out
i |)

is a non dominated state and it is assigned toW (ωi) in line 2. This makes use of the fact thatW v(ωi−1) is
calculated correctly because of INV1(i − 1). After line 2 the stateW (ω) cannot be dominated by another
state and INV1(i) holds.

Line 5 creates the state that corresponds to a start of a shunting phase ini and updates the interval in
which the phase ends. After this update INV2(i) holds: We have to check the property for all undominated
partial solutions untilk that start a shunting phase inIi, for the others it is clear from INV2(i− 1). We know

11

from INV1(i) that in Ii the stateW (ωi) cannot be dominated. Therefore, any undominated solution that
starts shunting inIi has to end this shunting phase in the interval ofω′, see Lines 4,5. This implies that we
do the only necessary update to preserve the second property.

We can use a balanced search tree for the predecessor queries which guarantees a running time of
O(n log n).

4 Experiments

We implemented our routing approach to evaluate whether we can solve practical instances with it. To that
purpose, we created test instances that are based on the real SBB Cargo network and on their supply-demand
matrix. The couple time was set to a realistic value, the distance constraints were set to the maximum
distance from the hub increased by a specific percentage. As for the other parameters, we could not set
all of them to their real values. The major deviation from the actual problem setting was in the capacity
constraint. Currently we do not consider that a single supply can be collected by two trains if it exceeds the
train capacity. Hence we had to choose a high excess capacity, i.e. the total available capacity exceeds the
total necessary capacity. This choice is partially justified because the emphasis on fast transportation usually
makes the Cargo Express freight trains much shorter than normal freight trains. On the other hand, note that
for a prescribed subdivision of a big supply it is possible to incorporate this feature by splitting nodes in the
graph. We did not exploit that some supply points can be discarded due to the transport to other stations with
the shunting engines. Without this assumption, we would have to set the capacity constraint to completely
unrealistic values. On the other hand, the created instances become bigger than the instances with shunting
engines.

We implemented the branch and cut approach of Section 2.2 in SYMPHONY 5, and extended the existing
VRP module by Ralphs et al. [17]. We used CPLEX 9 as LP solver for SYMPHONY, and LEDA 4.5 for
computing the minimum spanning trees and the assignment problems. It allowed us to carry out experiments
on a linux workstation running a 3 GHz Pentium 4 processor with 2 GB RAM.

The SBB Cargo network has 46 stations. We used the supply data for testing our implementation. After
discarding the stations with zero supply (at these stations there are only demands), the remaining network
has 38 stations. We generated smaller instances by taking only a subset of the nodes (in no particular order).

As a first set of tests, we compared instance sizes to running times. Given a set of nodesS to be served by

K trains, we set the capacity of the trains toC = 3.8
P

v∈S d(v)

K . The excess capacity of 280% is the smallest
for which all these instances are feasible for the reasons explained above. The proportional increase makes
all different size instances similarly tight from the point of view of the capacity constraints. We set four
different length constraints of each route: 1, 1.1, 1.25 and 1.5 times the longest distance from a supply point
to the depot, respectively. Note that these bounds become tighter as the instance becomes bigger (since the
total traveling time increases). Figure A.1(a) plots instance size versus running time with zero couple time.
Figure A.1(b) plots instance size versus running time with a couple time equivalent of 12km and a length
constraint with factor 1.25.

The experiments show that already instances of size 38 are challenging to solve. Usually, simple VRP
instances of the same size are relatively easy to solve. The added complexity stems from the additional
length constraints and the additional flexibility to choose a starting point. We are currently considering a
more involved preprocessing and the addition of more problem specific separation heuristics.

In the second experiment we choose a fixed network of size 33 and calculate the solution cost depending
on the number of employed freight trains. As the total solution cost depends both on the total traveled
distance and on the number of trains, we plot this cost for realistic assumptions on both train and route costs.
For these instances we chose a constant maximum capacity such that for the minimum number of trains (6)
we have 100% excess capacity. For the couple time we choose an equivalent of 12 km.

This experiment shows how to minimize the total operational routing costs. Due to the high capacity
constraints a solution with only six trains has the minimum cost. Because of the high costs of operating a
train, we expect that in general the feasible solution using the least trains has the minimum cost.

12

5 Conclusion and Outlook

In this paper, we describe different aspects of freight transportation and identify challenging combinatorial
problems. Our solution approach for the routing problem seems promising, both in terms of formulating
it as an ILP, and also in the choice of the software platform. Nevertheless, our current version needs to
be improved in order to solve the real SBB Cargo network to optimality, but the real world instances are
within the reach of the approach. To that aim, it is necessary to analyze the combinatorial structure of the
problem further, for example to derive more effective separation heuristics. At this stage it is unclear, how
our approach scales to significantly bigger instances.

Additionally, we provide new theoretical insight in some aspects of the shunting operation. These aspects
only consider the sequence of the shunting operations with respect to the capacity of the shunting yard, but
do not consider the detailed operation at the shunting yard.

So far, we separate the shunting problem from the routing problem. The combination of the shunting
aspects may change the solution of the routing aspect considerably, and vice versa. Hence, the next step is to
integrate both aspects into one approach.

6 Acknowledgment

We thank the team from SBB Cargo Basel for their great support in providing us with data and answering
all conceivable questions about freight rail systems. Further, we thank Ted Ralphs for his kind support on
SYMPHONY related issues.

References

[1] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán, and D. Naddef. Computational results with a branch
and cut code for the capacitated vehicle routing problem. Research Report 949-M, Université Joseph Fourier,
Grenoble, 1995.

[2] U. Blasum, M. R. Bussieck, W. Hochstättler, C. Moll, H. H. Scheel, and T. Winter. Scheduling trams in the
morning.Mathematical Methods of Operations Research, 49(1):137–148, 1999.

[3] U. Blasum and W. Hochstättler. Application of the branch and cut method to the vehicle routing problem. Tech-
nical Report zpr2000-386, Zentrum für angewandte Informatik, Köln, 2000.

[4] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for vehicle routing.Mathematical Programming,
20:255–282, 1981.

[5] G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number of delivery points.Operations
Research, 12:568–581, 1964.

[6] E. Dahlhaus, P. Horák, M. Miller, and J. F. Ryan. The train marshalling problem.Discrete Applied Mathematics,
103(1-3):41–54, 2000.

[7] E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial problems related to train mar-
shalling. InProceedings of AWOCA 2000, In Hunter Valley, pages 7–16, July 2000.

[8] M. R. Garey and D. S. Johnson.Computers and Intractability. Freeman, 1979.
[9] R. Hall. On the road to recovery.OR/MS Today, June 2004. available athttp://www.lionhrtpub.com/

orms/orms-6-04/frsurvey.html .
[10] W. Hiller. Rangierbahnhöfe. Transpress VEB Verlag für Verkehrswesen, 1983.
[11] G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for the distance-constrained vehicle routing

problem.Networks, 14:161–172, 1984.
[12] G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and distance restrictions.Operations

Research, 33:1050–1073, 1985.
[13] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys.The Travelling Salesman Problem. Wiley, 1985.
[14] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth.SIAM Journal on Algebraic

and Discrete Methods, 6(3):418–444, July 1985.
[15] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees.Theor. Comput. Sci., 58(1-

3):209–229, 1988.
[16] G. Potthoff. Verkehrsströmungslehre, Betriebstechnik des Rangierens, volume 2. Transpress VEB Verlag für

Verkehrswesen, 1977.
[17] T. K. Ralphs. Symphony 5.0.http://www.branchandcut.org .

13

[18] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter. On the capacitated vehicle routing problem.
Mathematical Programming, 94(2–3):343–359, 2003.

[19] SBB. Cargo express.http://www.sbbcargo.com/en/index/ang_produkte/ang_produkte_
express.htm .

[20] P. Toth and D. Vigo.The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 2002.

14

A Plots and Network of the Experiments

10 11 13 15 19 21 23 25 28 31 34

1.
51.
251.

1
1

0.01

0.1

1

10

100

1000

10000

100000

(a) Running times vs. number of trains for 380% capacity instances

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40

(b) Running times vs. number of trains for 380% capacity and 12km couple distance

Figure A.1: Running Times

15

Figure A.2: The SBB Cargo Express network. All but one node (central light colored round node) are
supply/demand points for Cargo Express.

1420

1470

1520

1570

1620

1670

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

Figure A.3: Solution cost as a function of the number of trains, once as driven distance, and once as combined
costs assuming an extra train is as expansive as 100km driving. The vertical bars show the gap between lower
and upper bound found by our program.

16

