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Abstract

The need for information access and processing in mobile computing environments presents
great challenges to database researchers. Apart from advances in wireless communications
and device technology, new data management techniques are needed to provide a trans-
parent interaction between fixed and mobile devices in global information systems. A key
aspect is to provide a flexible and powerful transaction processing infrastructure that takes
into account the peculiarities of mobile computing. Mobile transaction processing shall be
able to transparently deal with frequent disconnections and occasional movements of mo-
bile devices. This paper surveys the mobile transaction models proposed in academia and
outlines the state-of-the-art of transaction processing in commercial mobile databases.

1 Introduction

Mobile devices such as laptops, palmtops, and smart phones have nowadays become more
widespread than desktop computers. The possibility they give us to access and process infor-
mation on the move, everywhere and at any time, has been one of the most prominent reasons
for their huge acceptance and success.

Accenture [Acc01] states that by 2005 500 million mobile devices will offer Internet access,
a number that outstrips personal computers. Globally, the market for small wireless Internet-
capable devices, including handheld computers, basic micro-browser phones, smart phones
and next generation multimedia phones, is set to grow from 10 billion USD in 2000 to 73 billion
USD in 2005”. More than 137 million business users worldwide will be involved in some form
of remote work. Every kind of job, in every industry can be affected by remote work. Remote-
ready jobs are sales and service, executive travel, banking and brokerage, help desk, marketing,
medical, programming, shipping and delivery, customer relations, supply bid and order. These
estimates show us the importance and need of a move from a static to a mobile information
processing environment.

It is undisputed that mobility raises several new challenges to the information systems com-
munity [Wei93, AK93, IB94, PS99, JHE99, Fra01]. Mobile computing introduces new variables
that must be taken into proper consideration: dynamically changing location of mobile devices,
varying connection quality of the link used to access the fixed network, frequent disconnections
caused by bad connections or device switch-offs, and limited resources of mobile devices which
tend to have low computing power, little batteries, and small screens. Besides, mobile comput-
ing has to cope with all the problems peculiar to heterogeneous information systems [SL90],
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such as semantic and syntactic heterogeneity [GSC96], database integration [BLN86], conflict
resolution [KCGS95], and global transaction management [BGS92].

In this paper, we focus on mobile transaction management. Due to the inherent nature of mo-
bile computing, transaction processing must especially deal with the issue of frequent discon-
nections. Long-lived transactions started by a mobile host that disconnects for a long time can
lead to unacceptable long locking times of data. In such circumstances, applications running on
top of disconnected or weakly connected hosts need to be designed to improve data availabil-
ity and minimize conflict between updates in order to avoid high abort rates. Although a pure
flat transaction approach to mobile processing seems to be inappropriate, certain transactional
guarantees shall be ensured always and everywhere.

Mobile transaction management must cope with the uncertainties of mobile computing en-
vironments while providing a viable way of concurrently accessing and processing data in net-
works consisting of heterogeneous static and mobile components. As we will see in this paper,
there is a significant gap between academic and commercial approaches to transaction support
in mobile computing environments. Current commercial approaches focus on rather simple
applications like single-user palmtop applications managing address or phone books. There
available solutions are based on “primitive” data synchronization techniques while neglecting
the transactional semantics of the applications.

A number of papers [Mad98, Bar99, CFHR01, SRA01] have already attempted to survey
the transaction models for mobile computing. Unfortunately, these papers consider only a few
models and often do not provide a comparative overview. Furthermore, none of these papers
considers the current offers of commercial mobile database suppliers. With our contribution we
provide a more comprehensive overview of the state-of-the-art of mobile transaction models
appeared in literature up to now. We compare and discuss those models with regards to mo-
bility requirements and transaction properties. We additionally examine available approaches
of all major commercial mobile databases.

The paper is organized as follows: Section 2 compiles the main characteristics and restric-
tions that mobile computing environments put on global transaction management, briefly sum-
marizing the basic concepts of transaction models and data replication. Section 3 reviews the
advanced transaction models proposed for mobile computing. Section 3.11 provides some re-
lated approaches that however do not provide a mobile transaction model per se. Section 4
explores the current commercial approaches to mobile computing undertaken by the major
mobile database suppliers. Section 5 concludes the necessity of further research by pointing
out the deficiencies of current proposals.

2 Preliminaries

2.1 Characteristics of Mobile Environments

Figure 1 depicts the reference model for mobile computing environments. Terminals, desktop
computers, servers are the fixed hosts (FH) that are interconnected by means of a fixed network.
Large databases run on servers that guarantee efficient processing and reliable storage of data.

Mobile hosts (MH) like palmtops, laptops, notebooks, or cellular phones are, of course, not
always connected to the fixed network. They may be disconnected for different reasons. Mo-
bile hosts may differ in their capabilities with respect to computing power and storage space.
While notebook computers can run databases as desktop computers, other mobile devices have
more limited computational resources. For instance, palmtops have much less memory than
a notebook computer. Still, it is possible to use small footprint databases that allow data pro-
cessing even on mobile devices with very restricted resources. After having uploaded data
from the FH to their MHs, mobile users can disconnect from the fixed network. While moving
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Figure 1: Reference Model of a Mobile Computing Environment

(physically), they might want to run some queries and update their local data copies.
The connection between mobile and fixed hosts is performed by means of mobile support

stations (MSS). MSSs are dedicated fixed hosts that provide the link between a MH and any FH
via wireless LAN connections (using protocols like Bluetooth), cells (like in the GSM cellular
phone system), or connections to the network using standard modems.

Wireless communication technology gives users the possibility to reconnect to the fixed
network anytime and anywhere to share the results of their work. The possible mobility poses
some difficulties to the task:

• Bandwidth variability occurs as the MH changes location, for instance, due to different
traffic loads or changing networks that interface with the MH.

• When the information is location-specific, it becomes necessary for the MSS to track the
location of the MH.

• Due to a change in the physical location, an MH can switch its supporting MSS when
moving to a different cell. This leads to the need for a hand-off procedure to enable the
new MSS involved to support and maintain the connection with the MH.

• Unreliability can be introduced by local interruptions in signal strength or by MH’s hard-
ware failures or switch-offs that cause a disconnection of the MH from the network.

• Tariff policies can make it uneconomical to be connected at certain times and/or in certain
locations. For example, it would be preferable to execute an e-commerce transaction only
when I reenter my home country in order to save connection costs.
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• Security and authentication must also be taken into proper account since moving to a
new MSS can be prevented if local MSS requirements about security are failed to be met.

Mobile devices also introduce issues:

• MHs tend to have less internal computational resources than FHs.

• Small screens limit the man-machine interaction capabilities of some mobile devices.

• Battery life is limited causing devices to limit their connections.

• Due to power limitations it is cheaper to receive than transmit and the transmission band-
width of the mobile device tends to be lower than the transmission bandwidth of the
MSSs. This is often referred to as communication asymmetry.

• MHs are inherently less secure and reliable due to the possibility of being damaged or
even stolen.

It is worth pointing out that not all of these characteristics are directly affecting mobile trans-
action computing.

2.2 Basic Notions of Transaction Models

Before we can discuss the proposals for mobile transaction models, we have to introduce some
basic notions of transaction models that will be needed in the remainder of the paper. For
detailed explanations see [BHG87, GR93, CR90].

A transaction is a unit of operations that changes a database from a consistent state into
another consistent state. A database is in a consistent state if it satisfies all defined semantic
integrity constraints and all (previous and current) database states are achieved by performing
correct database transitions. A transaction model defines the framework for the definition and
execution of transactions. A traditional flat transaction satisfies the well-known ACID prop-
erties (Atomicity, Consistency, Isolation, Durability), meaning that a transaction is an atomic,
consistent and recoverable unit that does not interfere with other transactions that are executed
concurrently [Gra78].

In some application scenarios, ACID properties must be relaxed. This is true not only for
transaction models in fixed networked environments but also to a greater extent when mo-
bility is considered. Mobile transaction models has to cope with the characteristics of mobile
environments that have been outlined in the previous subsection.

A way to relax the ACID properties is to go beyond the flat transaction approach by ex-
tending it with models that allow a transaction to be divided into several other subtransactions
that can be nested [Mos85]. A subtransaction can be the child of another subtransaction and
be the parent of another one. When transactions are nested, subtransactions can be classified
according to the following characteristics [ST97]:

• Open vs. Closed: These properties are used to distinguish whether the results of a sub-
transaction are made visible to all transactions or only to the parent transaction.

• Vital vs. Non-Vital: A parent transaction may be dependent on the abortion of the child
transaction. If a vital transaction aborts, the parent transaction must abort, too. A non-
vital transaction abortion does not lead to the parent transaction’s abortion.

• Dependent vs. Independent: Analogously, the termination of a child can be dependent on
the abortion of the parent transaction. A dependent child transaction will have to abort if
the parent transaction aborts.
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• Compensatable vs. Non-Compensatable: Transactions can further be distinguished whether
their effects are compensatable. A transaction is compensatable if there exists another trans-
action, called compensating transaction, that semantically undoes its effects.

• Substitutable vs. Non-substitutable: Transactions can also be distinguished whether they
can be substituted by another transaction. A transaction is called substitutable if there ex-
ists another transaction, called contingency transaction, that can be executed on its behalf.

• Temporal: These are transactions that have to observe temporal constraints, such as a given
termination deadline.

2.3 Basic Notions of Data Replication

Mobile computing requires the ability to continue information processing on the MH while
disconnected from the fixed network. To be able to process information on the MH in the dis-
connected mode, data must be replicated on the MH. Data replication [GHOS96, Bur97] is the
process of maintaining a defined set of data in more than one location. It involves copying
designated changes from one location (source or master) to another (target or remote), and syn-
chronizing the data in both locations. An MH has its own complete or partial copy of the master
database (that resides on the FH) so that it can process data locally. In general, data replication
provides:

• Data availability: Data is made available locally to the remote databases, thus avoiding the
need to connect to a single central database through less reliable and slow connections,
or when a connection to the central server is impractical.

• Faster response times: Replication improves response times for data requests since requests
are processed on a local server and because local processing decreases workload from the
central database server.

The increased flexibility permitted by replication introduces several challenges.

• Transactional integrity: A difficulty of any replication system is ensuring that each database
retains transactional integrity at all times. Some replication systems replicate portions
of the transaction log in such a way that transactions are replicated atomically: either
a whole transaction is replicated, or none of it is replicated. This ensures transactional
integrity at each database. Other technologies replicate data by consolidating changes
made by different transactions that have committed. Then the changes are applied to
another database in a single transaction.

• Data consistency: Data consistency must be enforced on all databases. In practice, all
changes are replicated to each site over time in a consistent manner, but at the same time,
different sites may store different copies of data.

Whenever an update is performed on any of the databases, the update must be propagated
to the other databases in order to maintain a consistent state in all databases. A strategy to
propagate the update can be based on time. In this case, replication can be:

• Eager: All replicas are updated synchronously as part of the originating transaction. This
approach is often also called synchronous replication.

• Lazy: One replica is updated by the originating transaction and propagation to other repli-
cas is asynchronous, typically as a separate transaction for each replica. This approach is
often also called asynchronous replication.
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Also, update propagation can be controlled by means of data ownership:

• Master: Each data object has a master node. Only the master can update the primary copy
of the data object on its local and remote databases.

• Group: Any replica with a copy of a data item can update it.

In case of a group update, the chances for conflicting updates are higher than in case of a master
update.

3 Overview of Mobile Transaction Models

All subsections on mobile transaction models will follow the same schema. After a brief descrip-
tion of the model, we will discuss how it handles transaction mobility and disconnection. We will
sketch how the model deals with transaction execution and data management, describing where
the transactions run (on the MH, the MSS and/or the FH) and if the model considers data
replication, caching or other techniques. Finally, we will outline the properties of transactions
supported in the different models. Our overview will include the following models:

• Reporting and Co-Transactions [Chr93],

• Isolation-Only Transactions [LS94],

• Multi Database System Transaction Processing Manager [YZ94b, YZ94a],

• Weak-Strict Transactions [PB94, PB95, Pit96, PB99],

• Two-Tier Replication [GHOS96],

• Kangaroo Transactions [DHB97, DK99],

• Pro-Motion [WC97, WC99],

• Toggle Transactions [DG98],

• Moflex Transactions [KK00].

3.1 Reporting and Co-Transactions

Description. [Chr93] extends the open nested transaction model [WS92] by addressing cell
migration issues. The proposed mobile transaction model is devised for MHs constantly con-
nected to the network but moving through different cells, i.e., every MH is always connected
to an MSS but shifts from one MSS to another when it moves from one to another cell.

The top-level transaction, which is responsible for the overall computation, has the ability
to spawn four types of subtransactions (termed component transactions) that are expected to run
on both MH and FH:

• Atomic transactions are compensatable transactions.

• Non-compensatable transactions cannot publish their results at commit time. They give over
the responsibility for committing or aborting to the top-level transaction.

• Reporting Transactions can share their partial result with the top-level transaction any time
during the computation. They can be associated to compensating transactions depending
on whether or not they delegate the commit of the results to the top-level transaction.
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• Co-Transactions are reporting transactions that cannot execute concurrently but behave
like co-routines. When their results are passed back to top-level transaction they stop their
execution. They restart where they were as soon as they are resumed, retaining their state
across executions.

Transaction Mobility and Disconnections. Reporting transactions and co-transactions are
able to exchange messages one another. They are also able to relocate their execution to dif-
ferent MSS following the path of the MH, aiming at minimizing bandwidth occupation. The
details of transaction relocation are not reported in the cited paper. Since MHs are assumed to
be always connected to the network, disconnection handling is not considered in the model.

Transaction Execution and Data Management. This model provides the ability to split a mo-
bile computation into a set of transactions that are partly executed on the MH and partly on
the FH (see Figure 2). No details are given on data management, although some sort of data
replication must be considered in order to cater for some transaction processing capability on
the MH.

MH
Level

MSS
Level

FH
Level

MSS1

Reporting or
Co-transactions

Reporting or
Co-transactionsmove

Transaction Transaction Transaction Transaction

Top Level
Starting
Transaction

MSS2

Figure 2: Reporting and Co-Transactions

Transaction Properties. Based on open nested transactions [WS92], this model considers se-
mantic atomicity [MRKS92] by using compensating transactions. Non-compensatable, reporting
and co-transactions delegate the decision whether or not to commit to the top-level transaction.
Isolation is maintained through serialization ordering.

3.2 Isolation-Only Transactions

Description. The Isolation-Only Transaction Model (IOT) [LS94] has been developed for reading
and writing UNIX files by means of remote MHs. The IOT model, developed within the context
of the CODA file system [SKK+90], enables disconnected operations through disk caching.

The transaction execution is entirely performed on the MH with a cached copy of the files
of the server. The results are not made visible to the server before they are validated. When
reconnected, the results are validated. If validation is confirmed, the MH commits its results into
the FH. Otherwise, if validation is not confirmed, the conflict must be solved automatically or
manually by the MH before it can be submitted again for validation.
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To guarantee data consistency, two kinds of transactions are introduced:

• First-Class Transactions are not executed on partitioned data. They are guaranteed to be
serializable with all committed transactions.

• Second-Class Transactions are executed on partitioned data. They are locally serializable
with the other local second class transactions.

If second-class transactions are serializable with all other committed transactions on the server,
their results can be committed. Such transactions are called global-serializable. One of the criteria
for validation is hence the global-serializability of second-class transactions. If validation fails,
then one of the following four actions can take place:

• the transaction re-executes,

• an application-specific resolver is started,

• a user notification is sent, or

• the transaction is aborted.

To guarantee isolation, the Global Certification Order criterion may be selected for second-class
transactions. This criterion ensures that a second-class transaction is serializable not only with
but also after all the committed transactions.

Transaction Mobility and Disconnections. Disconnected operation is supported via disk caching
and transaction validation. Transaction mobility, however, is not supported.

Transaction Execution and Data Management. Transactions are performed entirely on the
MH using a cached local copy of the server data. Serializability for first-class transactions is
achieved by an optimistic replica approach [KS91].

Transaction Properties. The IOT model represents a flat transaction model. Hence all opera-
tions are “closed” and “vital-dependent” with respect to the running transaction. As the name
of the model indicates, only the isolation criterion is satisfied.

3.3 Multi-Database System Transaction Processing Manager (MDSTPM)

Description. The MDSTPM approach of [YZ94b, YZ94a] sketches an architecture for submit-
ting transactions from MHs and allowing MHs to be disconnected while the transactions are
executed on the underlying multi-database system.

An MH has a pre-assigned MSS to which the MH sends a request message. Once a trans-
action request has been submitted, the corresponding MSS schedules and coordinates the ex-
ecution of the transaction on behalf of the MH. Messages are handled by the MSS in an asyn-
chronous way so that the MH can disconnect. Both MSSs and FHs are expected to be able
to perform data processing. When an MH reconnects, it retrieves the results of its computa-
tion request from the corresponding MSS. All communication between MH and MSS happens
through message passing.

The MSS acts as a Global Transaction Manager Coordinator (GTMC). Depending on the data
requested, a transaction may run on several MSSs. Such MSSs are denoted as Global Transaction
Manager Participants (GTMP) (see Figure 3). The global transaction is terminated following the
two-phase commit protocol.
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Figure 3: MDSTPM Architecture [YZ94b]

Transaction Mobility and Disconnections. This model does not explicitly considers transac-
tion mobility. There is no description on whether the MH can perform a hand-off between
MSS. The MH submits a computation to an assigned MSS and then disconnects. To retrieve the
results, the MH must reconnect to the assigned MSS and upload its relevant data.

Transaction Execution and Data Management. Transactions are performed entirely on the
MSS and FHs and it is up to the underlying multi-database system to guarantee the correctness
of invoked operations. No data management techniques like data replication on the MH are
discussed.

Transaction Properties. Since transactions are running completely on the underlying multi-
database system, the properties of the mobile transaction completely relies on the transaction
model that is provided by the multi-database system.

3.4 Weak-Strict Transactions (The “Clustering” Model)

Description. [PB94, PB95, Pit96, PB99] propose a mobile transaction model that enables trans-
action processing on an MH in the disconnected mode. To provide the MH with the capability
to operate on data while disconnected, data is replicated locally on the MH via clusters. A
cluster groups semantically related data together into units of consistency.

An MH can be considered as a cluster in its own right. After having performed discon-
nected operations on locally cached data, the MH must reconnect to reconcile its changes.
When reconnected, the MH performs the usual operations that an always-connected device
would be able to carry out. To be able to achieve such distinct modes of operation, two kinds
of transactions are introduced by the clustering model:
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• Weak (or loose) transactions read and write on a local copy during disconnections. They
are committed in their associated cluster only (through a local-commit procedure) and are
accepted by the rest of the clusters only after reconciliation (global-commit).

• Strict transactions read and write data on any cluster while the MH is connected.

Transaction Mobility and Disconnections. The model introduces the notion of transaction mi-
gration to support mobility aiming at improving performance by moving computation close to
the MH. No details about the implementation are given in the paper.

The concept of weak transactions is the cornerstone to support transaction processing in the
disconnected mode. As mentioned above, weak transaction may commit locally. Their results
need to be reconciled later within the global clusters since they can conflict with the results of
a strict transaction.

Transaction Execution and Data Management. Due to data replication, a transaction can take
place on the MH when disconnected, or both on MH and FHs when connected. To deal with
the frequent disconnections or even with fatal damages that can happen to an MH, the model
makes use of a transaction proxy, namely a subtransaction that runs on the MSS and backups
the transaction running on the MH.

Transaction Properties. To maintain atomicity in all clusters, weak transactions are commit-
ted globally if and only if they do not conflict with strict transaction updates. If weak transac-
tions conflict, they must be compensated. Weak transactions are hence useful when handling
private or seldom accessed data, or data that can be processed with an acceptable degree of
imprecision such as in statistical or data-mining applications.

Isolation is ensured by a locking protocol especially introduced for weak transactions. Read
and write operations can be weak or strict. Lock compatibility between strict and weak opera-
tions is checked using conflict tables which depend on the semantics of the application require-
ments.

3.5 Two-Tier Replication

Description. [GHOS96] proposes a data replication and transaction processing method de-
vised for occasionally disconnected MHs. Every MH replicates two versions of the accessed
data items:

• Master Version: The most recent value received from the FH. These are values that have
not been yet processed by local transaction.

• Tentative Version: The most recent value due to local updates made by local transactions.
These values are considered tentative and will be subject to validation upon reconnection.

After every reconnection, data on the MH are updated so they are consistent with the base
version.

Two transaction types can run on MSS:

• Base Transactions: Run only on master data and can produce only master data. They are
performed only by connected MHs.

• Tentative Transactions: Process data when the MH is disconnected. These transactions are
local to the MH and create new tentative versions of the replicated data.
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The two-tier replication scheme works as follows. MHs store a replica of the database on the
FH. When disconnected, an MH accumulates tentative transactions that run against the ten-
tative database stored at the MH. Tentative transactions are then re-run as base transactions
when the MH reconnects to the fixed network. The base transactions generated by tentative
transactions are checked for consistency by means of application-specific acceptance criteria
and may fail when reprocessed. In case a tentative transaction fails, the originating MH and
the person who generated it are informed about the failures and the reason why it failed. The
tentative transactions are aborted and the tentative data on the MH are replaced by the original
data of the master version.

Transaction Mobility and Disconnections. Tentative transactions can be executed and com-
mitted locally on disconnected MHs. Upon reconnection, those transactions are re-processed
and validated on the FH. Transaction mobility is not considered in this approach.

Transaction Execution and Data Management. As described before, each MH replicates data
to execute tentative transactions in the disconnected mode. Furthermore, each MH must be
equipped with transaction management capabilities in order to correctly coordinate tentative
transactions.

Transaction Properties. Base transactions are atomic because they process master data and
use commit algorithms during connection. Tentative transactions commit locally. They can
be aborted afterwards during the re-processing on the FH if they fail to meet their acceptance
criteria. Isolation is enforced locally on the MH by means of locking mechanisms. Results of
tentative transactions are made visible locally on the MH. Durability of tentative transactions
is provided only after successful validation on the FH.

3.6 Kangaroo Transactions

Description. The Kangaroo Transaction Model [DHB97, DK99] incorporates the ability of trans-
actions to migrate from one MSS to another as the MH moves through cells. This model
builds on the concepts of the open nested transaction model [WS92] and the split transaction
model [PKH88].

Each MSS is equipped with a Data Access Agent (DAA) to which the MHs connect to through
a wireless link. A DAA serves as a mobile transaction manager. It keeps track of the transaction
execution flow and coordinates the movement of transaction from one MSS to another.

When an MH requests a transaction, the corresponding DAA starts a Kangaroo Transaction
(KT) and instantiates a subtransaction, called Joey Transaction (JT). A JT is local to the corre-
sponding MSS (see Figure 4). It can nest one or more subtransactions. These subtransactions
can be local or global transactions which are managed by the underlying multi-database sys-
tem. When the MH moves to another cell, the control of the KT moves over to the DAA at the
MSS controlling the new cell. During the hand-off procedure, the DAA at the new MSS starts a
new JT. The previous JT is then committed independently of the new JT.

There are two different modes for processing a KT:

• Compensating Mode: The abort of a JT causes the entire KT to be undone by performing
compensating transactions.

• Split Mode: The abort of a JT requires to the termination of the KT but not the undo of
previously committed JTs. Currently running subtransactions are committed or aborted
upon decision of the local DBMSs.
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Figure 4: Kangaroo Transactions [DHB97]

Transaction Mobility and Disconnections. Transaction mobility is managed by splitting JTs
and executing the new JT at the MSS level. Disconnections and replication techniques are
disregarded.

Transaction Execution and Data Management. The MH just initiates the KT. The remaining
executions are completely performed on the MSS and the FHs running the local DBMSs. Hence,
this model does not except much computational resources on the MH.

Transaction Properties. The split operation mode guarantees neither atomicity nor isolation.
The compensating mode at least ensure semantic atomicity by executing compensating trans-
actions in case a JT was committed before the abortion of the KT.

3.7 Pro-Motion

Description. The Pro-Motion approach [WC97, WC99] focuses on ensuring data consistency
under disconnections and mobility. It is centered on the concept of a compact. A compact is
an abstraction that encapsulates data, methods (to operate on data), consistency rules (guar-
anteeing data consistency), obligations (i.e. deadlines), information on the current state of the
compact, and interface methods to allow interaction between compacts and the MH. It serves
as a replication and consistency unit that represents an agreement between the MH and the
local DBMSs.

Figure 5 depicts the architecture of Pro-Motion. The compact agent is responsible for process-
ing transactions on the MH. It handles disconnections and manages storage on the MH. The
compact agent communicates with the mobility manager running at the MSS of the correspond-
ing cell to retrieve the data needed for elaboration. The mobility manager interacts between
the MH and the FH, in order to implement mobility transparency by performing automatic
hand-offs when the MH moves from one cell to another. The mobility manager works together
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with a compact manager on the FH to coordinate the flow of data among the components of the
system. The compact manager creates a compact and transmits it back to the compact agent,
while recording a copy of the compact in its compact store. When the MH receives the compact,
the compact agent saves it in the compact registry, which is used to manage location and status
of all compacts accessed by the MH.

Figure 5: The Pro-Motion Architecture [WC97]

The compact manager is not aware of what the MH will do with the compact data. It only
receives back updates of those data when the computation on the MH is ready to be reported.
The MH must comply with the methods and obligations specified in the compact.

The transaction model of Pro-Motion relies on a combination of the open nested and the
split transaction model. The local DBMS sees the compact manager as a client executing a
single long-lived transaction. The subtransactions are executed on the MH. Every subtransac-
tion on the MH can be a root transaction nesting other subtransactions running on the same
MH. The compact agent is responsible for transaction management on the MH guaranteeing
concurrency and recovery control.

Upon reconnection, the MH recognizes which compacts are ready to be submitted to the
FH. On the FH, the compact manager then creates a split-transaction to handle the compact
updates. This split-transaction is eventually committed by the compact manager and the re-
sults are made visible to all other transactions.

Transaction Mobility and Disconnections. When disconnection occurs, transactions can pro-
ceed on the MH if the compacts on which they operate have been correctly obtained and repli-
cated in the local compact registry. A transaction operating in the local mode can locally com-
mit, and thus make its results visible to other local transactions on the MH. The commit of a
transactions that is not operating in the local mode is delayed until the MH reconnects.

Transaction mobility is not investigated in the paper although it is mentioned that the mo-
bility manager can perform hand-offs between MSSs.
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Transaction Execution and Data Management. Pro-Motion requires relative powerful MHs
to be able to executed nested transaction computations on the MH. Transactions are executed
locally on the MH even in the connected mode. Beside transaction processing capabilities, the
MH must provide mechanisms for caching compacts. The flexibility of the notion of compact
allows a wide range of semantics in sharing data. For instance, depending on information
needs of the MH, which may change during lifetime, the compact agent can renegotiate the
compact with the compact manager. Furthermore, a lease semantics can be adopted [GC89],
and compacts can be sent to several MHs with an expiration date. Read is then allowed to all
MHs, update is conditional upon the agreement of every other compact agent. If the expiration
deadline is reached, the compact is sent back to the compact manager that regains full control
over the data. Also other semantics-based caching techniques [WC95] can be adopted, (e.g.
escrow [O’N86] and fragmentable items) to achieve an adaptable granularity of data, which can
prove to be especially helpful in mobile computing. The hoarding of data can be tailored based
on user-profile enabling the possibility to participate in broadcasting protocols.

Transaction Properties. Local commit on an MH is performed using a two-phase commit
protocol. During reconnection of the MH, the locally committed compacts are validated and
synchronized with the master copies by the compact manager. Semantic atomicity is achieved
by compensating transactions which are attached to each local commit procedure. A compen-
sating transaction is started if a locally committed transaction will not be able to commit on the
FH. An abort will lead the compact to reload a logged consistent state.

To guarantee the correctness of a transaction execution, Pro-Motion uses a ten-level scale
loosely based on the degree of isolation defined in ANSI SQL standard as in [BBG+95]. Each
method in the compact is assigned an isolation level and a mode that categorizes it as a READ
or WRITE operation. Isolation is thus enforced by checking the level of every operation that
participates in the transaction.

3.8 Toggle Transactions

Description. The Toggle Transaction Management Technique [DG98] relies on the Multi-level
Transaction Model [Wei91]. It provides extensions to deal with predicted disconnections as
well as with transaction migrations. Similar to the MDSTPM approach, a multi-database sys-
tem environment is assumed where the local databases are independent from each other.

As depicted in Figure 6, a service interface layer is provided on top of each local DBMS.
This layer provides the services that can be invoked by transactions. A Site Transaction Manager
(STM) supervises the transactions executed on a node. A global transaction is started by the MH.
It may include service calls that have to be executed on different nodes. A Global Transaction
Coordinator (GTC) resides on each MSS. Its task is to handle disconnections and migrations of
the MH as well as to submit the service request to the corresponding STM.

Disconnections are dealt with by introducing two new transaction states in addition to the
usual ones (active, committed, and aborted):

• Disconnected: If a predicted disconnection occurs, then the transaction is disconnected. In
this state, the transaction is allowed to continue later when reconnected.

• Suspended: If the disconnection stems from a failure, the transaction is suspended. How-
ever, suspended transactions will not be aborted until they hinder the execution of other
transactions. In this way, needless abortions are minimized.

When a global transaction manifests its willingness to commit, the respective GTC initiates a
commit algorithm based on a Partial Global Serialization Graph. If a cycle is detected, the al-
gorithm attempts at breaking those cycles by aborting its non-vital subtransactions and also
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Figure 6: The Toggle Transaction Model Architecture [DG98]

suspended subtransactions of other global transactions. If a cycle cannot be resolved, then
the global transaction is aborted. Otherwise, it is committed or toggled. Toggling means pre-
committing the results of a transaction. A toggled transaction can start only non-vital sub-
transactions, and it is only aborted in case of a non-predicted disconnection.

Transaction Mobility and Disconnections. The GTM provides the ability to move transac-
tions between different MSS by maintaining information on suitable entry tables.

The disconnected and suspended transaction states allows to treat disconnection as a pos-
sible legal state rather a failure.

Transaction Execution and Data Management. Most of the computation runs on the FHs and
the MSSs, so the model is suitable for use in resource-limited devices. No data replication
techniques are discussed in the paper.

Transaction Properties. Atomicity is based on the concept of semantic atomicity allowing
non-vital subtransactions. Isolation is maintained on each node using the ticket method [GRS91].

3.9 Moflex Transactions

Description. The Moflex Transaction Model [KK00] generalizes the Flex Transaction Model
[ELLR90] to support location-dependent subtransactions in heterogeneous multi-database en-
vironments. It supports hand-offs between MSS when the MH moves from one cell to another.

The MH creates a Moflex transaction and submits it to the Mobile Transaction Manager (MTM)
residing on the corresponding MSS. The MTM sends the steps of the Moflex transaction to the
respective local database systems and coordinates their global commitment (see Figure 7). The
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Figure 7: The Moflex Architecture [KK00]

Local Execution Monitor (LEM) acts as an interface between MTMs and LDBSs in order to detect
global conflicts.

A Moflex transaction has a built-in set of dependencies, acceptable goals and rules. The set of
dependencies considers:

• Success: A subtransaction is executed only if a related subtransaction successfully com-
pletes.

• Failure: A subtransaction is executed only if a related subtransaction fails.

• External conditions: A subtransaction is executed only if an external condition is verified.
An external condition can concern time, cost, and/or location.

The set of acceptable goals is the set of the final subtransaction execution states that the user
considers proper for his application. There are two set of rules closely related to each other.
Hand-Over Control rules determine the subtransaction execution policy when the MH changes
from a cell to another. Depending on whether or not the subtransaction is compensatable and
location-dependent, four different execution policies can take place, as dictated by Table 1:

Compensatable Non-Compensatable
Location-Independent SplitResume Continue
Location-Dependent Restart, SplitRestart Restart

Table 1: Hand-Over Control Rules [KK00]

• SplitResume: The subtransaction is split. The already executed portion of the subtransac-
tion is committed. The remaining execution is continued as a new subtransaction on the
new MSS.
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• Restart: This is the default operation. The subtransaction is restarted on the new MSS.

• SplitRestart: The executed portion of the subtransaction is committed on the old MSS and
the subtransaction is restarted as a whole on the new MSS.

• Continue: The execution continues on the new MSS without interruption.

To be able to combine the executions of the split subtransactions, a set of acceptable join rules
is defined. It is up to the user to define whether the concatenated partial results of two split
subtransactions are valid and computationally equivalent to the original subtransaction if it
had executed without a split. If the users approves, then the results are committed.

Transaction Mobility and Disconnections. The possibility to split a transaction from one MSS
to another gives the model the possibility to let an MH switch between different locations
without having to interrupt its computations.

Transaction Execution and Data Management. Transactions take place on MH as well as on
FHs but tailored to run mostly on FHs so to give the model suitability to be implemented on
resource-limited devices like palm-tops. No data replication technique is considered.

Transaction Properties. Semantic atomicity is enforced by the use of compensating transac-
tions. Isolation of Moflex transactions is based on that of the flex transaction model.

3.10 Summary of Transaction Model Characteristics

Table 2 summarizes the characteristics of the (sub)transactions supported in the various ap-
proaches types. Since all transaction models support subtractions that are vital, dependent,
non-compensatable, and non-substitutable, these characteristics are not denoted in this table.

We see that only two models, Pro-Motion and Moflex, provide a broader range of transac-
tion properties that grant greater flexibility and power to transaction processing than the other
models.1

Transaction Models Open Closed Non-Vital Indep. Subst. Comp. Temporal
Reporting/Co† X X — — X X —
Isolation-Only * * * * — — —
MDSTPM ** ** ** ** — — —
Weak/Strict ** ** ** ** — X —
Two-Tier Replication * * * * — — —
Kangaroo X — — — — X —
Pro-Motion X X — — X X X
Toggle X — X — — — —
Moflex X X X — X X X

Table 2: Overview of Mobile Transaction Characteristics

Table 3 2 outlines the compliance with the requirements for mobile computing for the same
transaction models.

1†Non-compensatable, Reporting and Co-transactions are closed. * says that the approach relies on the flat trans-
action model; ** stands for “it depends on the transaction model used in the underlying multi-database system”.

2L stands for ”low resource usage”, meaning that the model is suitable for low-resource devices like palm-tops,
while H stands for ”high resource usage”, meaning that the model would only be usable on laptop computers with
substantial computational capabilities (including transaction processing).
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Transaction Models Mobility Disconnections MH Load MT Execution Profiling
Reporting/Co X — H MH/MSS —
Isolation-Only — X H MH —
MDSTPM — X L MSS —
Weak/Strict — X H MH X
Two-Tier Replication — X H MH —
Kangaroo X — L MSS —
Pro-Motion (X) X H MH X
Toggle X (X) L MSS —
Moflex X — L MSS —

Table 3: Overview of Mobility Characteristics

By joining the results from both Tables, it appears that Pro-Motion is, in principle, one
of the more complete frameworks for mobile transaction processing between all the models
considered. Apart from mobility and disconnection support, it indeed provides user-profiling
capabilities that other models fail to even consider. Pro-Motion and Moflex, if the latter was
extended with some user-profiling support functions, could therefore be good candidates for
further research and development. Pro-Motion needs MHs with good processing capabilities:
compacts are collected and processed locally by the MH so that a large part of the computation
runs on the mobile device. Conversely, Moflex is suitable to be implemented on MHs with low
computing resources: most of the computation indeed runs on the FHs.

3.11 Further Approaches

In the recent years, further methods and protocols have been developed for mobile transac-
tional processing. In the following, we briefly sketch some of these approaches which contain
some interesting issues which were not considered so far.

Timeout-based. [Kum00] present a non-blocking commit protocol based on timeouts as a
way of minimizing wireless message costs and grant decision-making capabilities to MHs and
FHs. MHs are assumed to be always connected. Hence, no disconnection handling takes place.
Hand-off procedures are supported.

A timeout is a duration within which a transaction is declared or assumed to be completed
by the transaction coordinator. The coordinator is the MSS. A transaction admits subtransactions
that can be processed on MHs or FHs. Two types of timeout are defined:

• Execution timeout (Et): The time value within which a subtransaction is completed. The
coordinator will assume that the MH or FH will complete the subtransaction before the
timeout.

• Shipping timeout (St): The time value within which the data resulting from a subtransac-
tion execution are shipped and logged on the FH database.

A subtransaction can be aborted only before Et expires. After Et expires, the subtransaction can
only be compensated. After the duration Et+St, data is available to the other subtransactions.

The coordinator decides to commit a transaction only if it has received the updates before
the expiration of the timeout. If the coordinator does not receive updates from all members
(MHs and FHs), it aborts the transaction. Since the procedure is limited by a timeout, the
coordinator will never enter into an infinite wait.

Finding a correct value for a timeout is difficult although a good estimate can be reached if
an appropriate number of system characteristics are considered.
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Alternating Client Host. [BZSH00] sketches a model that allows transactions to be started on
one host and then later resumed on another host. The model assumes that MHs are always
reachable by the communication system. Therefore, hand-offs are not taken into consideration.

The architecture is based on a classical Client-Agent-Server approach, where the agent is a
middleware component residing on the FH. The agent routes all queries from a client (the MH)
to the data resource (on the FH) and manages transactions.

Transaction processing is done by the MH. The agent keeps a replica of the transaction
execution state. A failure of the MH does not lead to a rollback since the execution can be
resumed on another MH using the information stored by the agent.

To reduce the communication workload, the copy saved on the agent is not updated at any
change on the MH but only during checkpoints. After a failure a new client will resume the
transaction from the last checkpoint.

Planned Disconnections. [HAE00] proposes a method to support operations of mobile teams
using databases residing on team members’ MHs without the support of any FH.

Transaction processing may run locally to every MH if disconnected. Locally, a concur-
rency control mechanism like 2PL is employed. A pre-commit record is propagated to other
MHs through an epidemic-like exchange of messages. All MHs then perform the needed syn-
chronization and communicate their actions again through epidemic messages.

Two or more MHs can also process transactions while connected to one another. It can
happen that one MH needs to disconnect while the other MHs continue to process transactions.
In this case, a sign-off procedure, which takes advantage of such planned disconnection, is used.

If a MH decides to disconnect, it grants to another MH the rights to act as his proxy. The
proxy-MH represents that MH in the transaction processing that continues between the remain-
ing MHs. The MH that has disconnected can now solely run read-only transactions. When this
MH reconnects, it will directly call its proxy MH in order to retrieve the updates and get back
into the processing network of MHs.

Pre-write. [MB01] aims at reducing the computational burden placed on the MH and the
wireless network traffic between the MH and the FH. The model also increases data availability
on the MH during its disconnected operations.

A pre-write operation is introduced. Differently from standard write operations, the pre-
write does not perform any update, rather it makes visible the future state that the data will
hold after the transaction will have committed on the FH. After a transaction has declared all
its pre-writes, it pre-commits on the MH and makes the results visible to both MH and FH.

Transaction execution is divided between the MH and the FH. Part of the execution is sent
to the FH where eventually all the time-consuming writes on the database will be performed.
Delegating the database chores to the FH ensures less message passing and reduces computa-
tion on the MH.

4 Overview of Commercial Approaches

This section gives an overview of the current commercial mobile database solutions:

• IBM DB2 Everyplace,

• Informix Cloudscape,

• Microsoft SQL Server CE,

• Oracle Lite,

19



• Sybase Anywhere.

We will briefly describe the above products and we will discuss how transactions are per-
formed on the database running on the MH. A description of data management, synchroniza-
tion and conflict resolution will follow.

Commercially available mobile databases employ nearly the same data replication architec-
ture: one or more remote databases on the MHs have replicas of the master database stored in
the FH; flat transactions can be performed on both remote and master databases. Changes are
captured locally to each database. When reconnected to the fixed network, the MH may initi-
ate a synchronization that reconciles the copies of the databases by creating a unique consistent
database state on remote and master databases.

Synchronization can be performed basically in two ways:

• Session-based: An MH database directly connects to the FH database. During connection,
the synchronization takes place. Only when synchronization is complete, the MH and
the FH can disconnect. When disconnecting, both MH and FH have a consistent database
state. This approach is also referred to as connection-based synchronization.

• Message-based: A messaging system (such as e-mail) transfers the information needed to
perform the reconciliation. Synchronization is performed when the MH and the FH are
disconnected. This strategy is also known as store-and-forward or file-based synchroniza-
tion.

4.1 An Excursion: SyncML and HotSync

Due to the importance synchronization in mobile computing, and especially on palm-like de-
vices, an industry consortium of several major software firms has defined an industry-standard
synchronization protocol called SyncML [Syn00]. The goal of this protocol is to provide cross-
format and cross-platform synchronization capabilities between MHs and FHs. SyncML works
with a standard set of messages represented as XML documents. SyncML defines seven differ-
ent synchronization modes:

• Two-way Sync: MH and the FH exchange information about modified data in these de-
vices. The MH sends the modifications first.

• Slow sync: All items are compared with each other on a field-by-field basis. In practice,
this means that the MH sends all its data to the FH and the FH does the sync analysis
(field-by-field).

• One-way sync from MH only: MH sends its modifications to the FH but the FH does not
send its modifications back to the MH.

• Refresh sync from MH only: MH sends all its data from a database to the FH (i.e., exports).
The FH is expected to replace all data in the target database with the data sent by the MH.

• One-way sync from FH only: MH gets all modifications from the FH but the MH does not
send its modifications to the FH.

• Refresh sync from FH only: FH sends all its data from a database to the MH. The MH is
expected to replace all data in the target database with the data sent by the FH.

• FH Alerted Sync: FH alerts the MH to perform sync. That is, the FH informs the MH to
starts a specific type of sync with the FH.
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Palm’s HotSync [CFZ01a] is an example of a widely used synchronization protocol (that shares
a lot of ideas with SyncML). HotSync supports a two-way synchronization that enables updates
to be performed on the MH and the FH. Every record of data on the MH has a set of status bits
that indicate if the record has been created, modified or deleted after last synchronization. The
FH maintains a copy of each MH that connected to that FH to perform synchronization. The
synchronization process is initiated by the MH. Two synchronization modes are distinguished:

• Fast, if the MH was last synchronized with the FH. The MH sends to the FH only the
records that have changed from last synchronization depending on the value of the status
bits. The FH updates its copy and sends updates to the MH.

• Slow, if the last synchronization time of the MH and FH does not match. In this case, the
synchronization software performs a field by field comparison to capture the changes.

Depending on the status bit values, HotSync determines which actions to perform (see Table 4).

Status on MH Status on FH Action
Created Not Present Send to FH
Not Present Created Send to MH
Deleted No Change Delete from FH
Deleted Updated Send to MH
No Change Updated Send to MH
Updated Updated Conflict Resolution

Table 4: HotSync Logic

When updates are in conflict, conflict resolution is performed. For instance, a row in a
database table, present in the master and some remote databases, could be modified by two
different users, one working on its MH copy, another working on the master copy residing on
the FH. The two users would request a modification to the master database, hence causing a
dilemma: which of the two updates is the one that should be saved to the FH and propagated
to the other database replicas?

Several conflict resolution techniques can be devised. For instance, Intellisync for PalmPilot
by Pumatech (www.pumatech.com) implements five options:

• Add all conflicting items. This option creates whole new records on both the MH and the
FH for the conflicting fields.

• Ignore all conflicting items. This option ignores any difference between fields in the MH
and the FH.

• A user notification is sent.

• MH wins and overrides data on the FH.

• FH wins and overrides data on the MH.

Further data management techniques have been proposed. Data Dissemination [Fra96] is the
distribution of data from a set of producers to a large number of users. Dissemination can
be performed through publish and subscribe, notification systems or by broadcasting information
in a way that a number of devices can connect and download the portion of those data that
are relevant to them. For MHs, this option is convenient because they could tune up to a
cellular/radio transmission and download the data they need to refresh. The convenience
stems from the fact that receiving is less energy-consuming than transmitting and transmission
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bandwidth from FHs to MHs is generally higher than from MHs to FHs (the aforementioned
communication asymmetry). This way of sending information from a small number of FHs to
a large number of client MHs is often referred to as push-based. Broadcast Disks [AAFZ95] have
been proposed as a way of efficiently pushing information to MHs.

Alongside with the push approach, also a pull approach can be considered. For instance, a
push could be used for data that are not needed urgently on the MH. In case of more important
(”hot”) data, the MH could transmit a request and be satisfied by the FH responsible for data
broadcasting, hence ”pulling” the data it needs. This is a hybrid solution called Interleaved Push
and Pull [AAFZ95].

Another advancement in the field of data management is Data Recharging [CFZ01b]. The
idea is to combine synchronization with data dissemination. The process is similar to battery
power recharging when notebook plugs are connected to the electrical power outlet. Likewise,
by connecting the MH to a network plug where data is streaming, information can be uploaded
to the MH. The more the MH maintains its connection to the network, the better the data gets,
until all information is uploaded. In data recharging, user profiling is an important issue since
only the information that is relevant to the user should be ”charged”. Different mobile users
might have different data needs. For instance, a businessman may need contact information
updates, restaurant and hotel pricing guides for his travel destinations while students would
need information about lecture notes and exams date. In contrast to simple database queries,
data recharging techniques must cope with partial data recharges that can occur if the MH has
not been connected to the data source long enough.

4.2 IBM DB2 Everyplace

Description. The IBM DB2 solution [IBM00, IBM01] for mobile computing consists of DB2
Everyplace, a relational database residing on the MH and DB2 Everyplace Sync Server, a middle-
tier component that handles a two-way data synchronization between the MH and FH database
under a message-based protocol. Synchronization is based on SyncML.

Transaction Mobility and Disconnections. Transactions are executed only on the MH during
disconnections.

Transaction Execution and Data Management. DataPropagator is the software component that
manages data replication. Data is replicated on the MH and updates are propagated through
the publish and subscribe technique, so MHs can only synchronize the subset of data and files
which they are subscribed to.

Replication is asynchronous. It is possible to control how frequently the changes are applied
to the target by specifying time intervals, events, or both. But for mobile environments that
have occasionally connected clients, data is replicated on demand.

It is possible to replicate entire tables, subsets of columns, subsets of rows, views, joins
and unions. Replication can be achieved through refresh propagation, when all data is sent to
subscribers, or incremental propagation, when only changes are propagated to the subscribing
MHs.

The upper half of Figure 8 depicts the data synchronization flow when the MH database
submit changes to the FH database. After a change has been done on the MH database, the user
selects the synchronization from the device display. Synchronization is indeed decoupled from
the transactions on the MH because it is explicitly initiated by the user. The synchronization
request, holding the data to be synchronized, is saved in an input queue on the FH, waiting for
a reply from the FH database. After the request is acknowledged, the request data is written
in a Staging Table, where data waits for other updates to be completed. Then, data is copied in
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the Mirror Table, where possible conflicts are resolved. Changes to the mirror table are recorded
in the DB2 Log files. The DataPropagator capture program records all the changes in the mirror
table and sends them to a Change Data Table where the FH database collects its updates. The
Administration Control database performs checks about authentication and subscriptions.

Figure 8: IBM DB2 Everyplace Synchronization [IBM01]

The reverse process is represented in the lower half Figure 8, where we see the data syn-
chronization flow when the FH database submits its changes to the MH databases. We do not
describe again all the steps that are straightforward to understand when looking at the figure.
It is worth pointing out though that the synchronization server sends to a MH database only
the data to which the MH is subscribed.

Conflicts are handled by the Sync Server running on the FH. This component logs and checks
the version of each record in each table in the replication subscription for the FH and MH
databases. The Sync Server can therefore determine whether or not a MH is trying to update a
row based on an obsolete version of the data for that row. In such cases, the update is rejected.
The conflict resolution is performed when data is staged to the mirror table.

Transaction Properties. DB2 Everyplace implements a subset of the standard SQL:1999, but
the SAVEPOINT statement is not included. Also transaction nesting is not possible.
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4.3 Informix Cloudscape

Description. The Informix solution [Inf99] for mobile computing consists of Cloudscape, a
lightweight object-relational database residing on the MH and the FH, Cloudconnector, a server
framework supporting connection residing on the FH, and Cloudsync, a component handling
the synchronization between the MH and FH.

Transaction Mobility and Disconnections. Transactions are executed only on the MH during
disconnections.

Transaction Execution and Data Management. Cloudscape uses the common architecture
where the FH holds the master (also called source) database, and the MHs keep replicas (called
target) of the master database. A source database can have many targets, while a target database
has only one source database.

Replication can manage database objects such as complete tables or only selected columns
and rows, views and indexes, schemata and Java code (JAR) files, stored prepared statements
foreign keys, triggers, and user-defined aggregates.

Cloudscape uses a synchronization technique (see Figure 9) that sends data out from the
FH database, and moves business events back from the MH databases. This technique is called
by Informix ”LUCID”, meaning Logic Up, Consistent Information Down.

Figure 9: Informix Cloudscape Synchronization [Inf99]

The FH database lists the objects to synchronize in the publication using statements very sim-
ilar to a view definition. The MH processes the data over its database using calls to database-
hosted Java methods. Such methods are each called a Work Unit.

The Logic Up phase happens any time the MH application is connected to the network. At
this time, the MH performs the synchronization with the FH by forwarding its Work Units to
the FH. The FH database re-executes the Work Units performed at the MHs, although the code
that executes at the FH may now take advantage of interfacing with other systems, such as ERP
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packages, or perform additional integrity checks that were not feasible when the application
was running on the disconnected MH database. After the Work Units have successfully re-run
in the FH database, the FH publishes its results to the MH databases, thus initiating the Con-
sistent Information Down phase. This phase updates all the MH databases. A single consistent
database state is thus achieved.

Re-processing the logical operations of the Work Units on the FH database allows to run
business rules. This permits to resolve possible conflicts between different Work Units submit-
ted by several MHs. All conflicts are resolved at the source. All transactions running on the
targets are conditional upon successful application at the source during the connection. If the
transaction is accepted at the source, it becomes durable. If the transaction is rejected on the
source database, it is rolled back on the target.

Transaction Properties. Its native interface is JDBC. It implements the SQL-92 standard plus
some extensions [WC01]. No savepoints are available and neither transaction nesting is possi-
ble.

4.4 Microsoft SQL Server CE

Description. The Microsoft SQL Server CE (SSCE) [Mic01] is the database running on the MH;
it is the mobile version of the SQL Server database running on the FH. Figure 10 shows its
architecture. The Client Agent on the MH connects (through HTTP) to the Internet Information
Server (IIS) residing on the FH. The Server Agent acts as the interface on the FH for the client
running on the MH.

Figure 10: Microsoft SQL Server CE Synchronization [Mic01]

Transaction Mobility and Disconnections. Transactions are executed only on the MH during
disconnections.
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Transaction Execution and Data Management. Replication in SQL Server CE is based on Mi-
crosoft SQL Server 2000 merge replication.

SQL Server CE can replicate entire tables, subset of rows and columns, but not views and
user-defined functions. The replication is always initiated and controlled by the Windows CE
application.

Data replication and synchronization are achieved through a publish and subscribe model
with a message-based communication protocol. The publication (namely a collection of articles
where an article is a table enabled for replication), is created at the FH. An application on a MH
subscribes to the publication through the SQL Server CE Replication Object. Updates from the
subscribers are sent to the publisher that merges these updates with the updates from all the
other subscribers. Eventually, the publisher propagates the updates back to the subscribers to
achieve consistency in the MH replicated databases. Publications are tailored to specific groups
of users, so a MH will receive only the updates it is subscribed to.

The SQL Server CE Client Agent is the interface that applications call to control replication.
When synchronization occurs, the Client Agent extracts all modifications to data records and
sends them to the Server Agent through HTTP. Conversely, when the Server Agent propagates
data changes at the publishing FH database back to the subscribing MH, it is the Client Agent
that applies these changes to the subscribing database.

When synchronization occurs, the SQL Server CE Server Agent creates a new input message
file on the IIS server and writes the data modification requests sent by the Client Agent. When
the input message file has been written, the Server Agent initiates the SQL Server Reconciler
process and waits for it to complete.

The SQL Server Reconciler detects and resolves conflicts. Conflict resolution can be devised
to behave with simple strategies. The default conflict resolver is priority-based. A subscriber
can be set to have priorities. The reconciler then checks update priorities and choose the update
with the highest priority. Other strategies can consider that the first change to propagate to the
publisher software always wins the conflict. More complex conflict-resolution rules can be cus-
tomized by the application programmer. In addition, an interactive resolver is also supplied.

SQL Server CE Replication Provider is invoked by the Server Reconciler when synchronization
is performed. It reads the input message file to inform the Server Reconciler about changes
made to the MH subscriber database that must be applied to the publication. Vice versa, the
Server Reconciler informs the Server CE Replication Provider about changes made at the FH
publishing database that must be applied to the subscription database on the MH. The SQL
Server CE Replication Provider writes these changes to the output message file.

When the Server Reconciler process is completed, the Server Agent reads the output mes-
sage file and transmits it back to the Client Agent on the MH.

Transaction Properties. SSCE allows the use of savepoints and nested transactions. Transac-
tions can be nested up to a depth of five levels. Updates made within the nested transaction
are not visible to the top-level transaction. Results become visible to the parent subtransaction
after the nested subtransaction has committed. Changes are not visible outside the top-level
transaction until that transaction commits. Transactions are closed and are executed sequen-
tially.

4.5 Oracle Lite

Description Oracle Lite [Ora00] uses a client-server architecture, depicted in Figure 11, for
both session and message based replication.
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Figure 11: Oracle Lite Synchronization [Ora00]

Transaction Mobility and Disconnections. Transactions are executed only on the MH during
disconnections.

Transaction Execution and Data Management. Data replicated on a MH database are copied
from the master site database on the FH. The MH databases are called snapshot sites. Oracle Lite
database can only work as a snapshot site, supporting two types of snapshots:

• Read-only: Used only for local queries so no changes can be done by local processing.
Only changes on the FH database can be written to the snapshot. This is a uni-directional
replication.

• Updatable: Used for both queries and updates. Changes to this kind of snapshot are prop-
agated back to the FH database. Changes on the FH database can be written to the snap-
shot. This is a two-way or bi-directional replication.

A snapshot is simple if it does not have distinct or aggregate functions, GROUP BY or CON-
NECT BY clauses, sub-queries, joins, or set operations. Otherwise it is called complex. Updat-
able snapshots can only be simple.

The snapshot refresh process propagates updates to all the databases. It involves three steps:

1. Changes to updatable snapshots are sent to the master site.

2. The valid transactions are applied (in the same sequence as they were performed at the
snapshot).

3. Snapshots are synchronized with the data pulled from the FH site.

Refreshes can be:
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• Fast: When only the changes are transmitted (this option is only viable for simple snap-
shots).

• Complete: When the original snapshot is completely replaced by a new snapshot.

• Optimum: The refresh attempts to perform the fast option. If this is not possible (due for
instance to a snapshot being complex), the refresh executes as complete.

During a refresh operation, the snapshot site enters the Refresh-In-Progress mode. When in this
mode, attempts to update any updatable snapshots at that snapshot site are rejected. When the
refresh operation completes, the snapshot site returns to the normal mode.

It is possible to replicate entire tables, subsets of columns, subsets of rows. For a more ad-
vanced data setting, it is possible to specify a WHERE clause to qualify the snapshots defining
query, or a WHERE EXISTS clause to define a subquery.

The architecture that performs session-based replication consists of a component called Or-
acle Net to connect to the Oracle Enterprise server. Oracle Net is a remote data access software
product that enables bi-directional data replication over LAN and dial-up networks. REPAPI
is the replication engine. Message-based replication architecture requires a file transfer method
between the client and the server. Apart from HTTP connection and disk file exchange, an-
other method is used, called Oracle Mobile Agents Replication. Such component is a networking
communications middleware software that enables bi-directional data replication over LAN,
dial-up, and wireless networks. Client components include a Message Manager. The server
components include a Message Gateway and Agent Event Manager.

Conflicts are detected by the master site during synchronization. The following types of
conflicts can be handled:

• Update: When the snapshot old row values do not match the current FH row values.

• Uniqueness: Detected if a unique constraint is violated during an INSERT or UPDATE of
the replicated row.

• Delete: When a row is deleted from an updatable snapshot, and the old values of the
deleted row do not match the current values at the FH.

Transaction Properties. Oracle Lite has built-in Java components that enable support of save-
points but not nested transactions. Transactions are equivalent to closed, one-level, nested
transactions.

4.6 Sybase Anywhere

Description. Adaptive Server Anywhere (ASA) [Syb00a] is a relational database suitable to be
used on small devices. ASA is capable of both session and message-based synchronization.

Transaction Mobility and Disconnections. Transactions are executed only on the MH during
disconnections.

Transaction Execution and Data Management. Sybase Anywhere provides three replication
technologies:

• SQL Remote: Intended for a two-way message-based replication of transactions. It is de-
signed for two-way replication involving a consolidated data server and large number of
remote databases. Lag times for replication can be on the order of seconds, minutes, or
hours depending on the implementation.
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• MobiLink: Intended for a two-way session-based replication of data. It also supports non-
Sybase databases. It is designed for replication of data between a central consolidated
database and a large number of remote databases. At the end of each synchronization
session, the databases are consistent.

• Replication Server: Intended for a two-way connection-based replication of transactions. It is
suited to replicate data between a small number of enterprise databases connected by a
high-speed network. Lag times can be as low as a few seconds, providing near real-time
replication system.

The replication server is not suited for occasionally connected devices. On the contrary, Mo-
biLink and SQL provide more flexible solutions in environments where the remote machines
are mobile or are only occasionally connected. For these reasons, we will discuss only SQL
Remote and MobiLink because they are more suited to mobile computing needs.

In both replication technologies, replicated data can be tables, subsets of rows and subsets
of columns, joins, SQL queries.

SQL Remote (see Figure 12) uses a publish and subscribe process: synchronization data is
saved in publications at the FH database, where the administrator subscribes the MH databases
to the publications they need. The publications are sent to the relevant MHs, and the MHs, on
their turn, send their synchronization data to the FH to be incorporated in the FH database.

Figure 12: Sybase Anywhere Synchronization [Syb00a]

The SQL Remote synchronization process follows the next steps.

1. At MH and FH database, a Message Agent and a transaction log manage synchronization.
The transaction log tracks all committed changes to data.

2. Periodically, the message agent on the FH database scans the transaction log and sends,
by means of a messaging system, the relevant changes to MH databases that are sub-
scribed to those publications.
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3. The message agent at the MH accepts the messages sent from the FH and applies the
transactions to its own database.

4. At any time, the MH can run the message agent to collect and send to the FH database
the transactions made locally.

5. The message agent at the FH processes the messages received from the MH and applies
the transactions to its own database.

Conflict resolution is performed at the FH through the use of conflict triggers.
Session-based synchronization is performed by the software component called MobiLink,

which synchronizes data through four main steps (see Figure 12).

1. The MH application prepares and transmits to the FH a list of all rows that have been
modified since the last synchronization.

2. The synchronization server, running on the FH, prepares and transmits data changes from
the FH database to the MH application.

3. The MH application then sends a confirmation message to the synchronization server
confirming that the changes have been made to the data. The transaction is recorded in
the FH database.

4. The synchronization server sends the MH application a message confirming that syn-
chronization is complete. The connection between the MH application and the FH is shut
down.

In situations where data rarely change, MobiLink uses a timestamp technique to synchronize
only data that have changed since the last synchronization. It uses a snapshot technique when
a lot of changes are frequently carried out on data. In that case, the software synchronizes all
the data in the database.

To resolve conflicts, business rules must be implemented to determine which data is correct.
Conflict resolution is performed on the FH database, and then conflict resolution actions are
replicated to the remote databases.

Transaction Properties. Transactions can use savepoints. All savepoints are released when
a transaction ends. Transactions can be nested. Changes to the database are permanent only
after the uppermost transaction is committed.

Transactions can run on remote servers. In such case, savepoints are not considered on the
remote servers. Also in the case of nested transactions that involve remote servers, only the
statements belonging to the top-level transaction are processed.

The software UltraLite [Syb00b] is a deployment component of the Adaptive Server Any-
where database for very small, mobile, and embedded devices like cell phones and personal
organizers. Its footprint can be as small as 50 Kb, but the drawback is that it does not support
savepoints and nested transactions.

4.7 Brief Summary

Table 5 briefly summarizes the commercial mobile databases from the point of view of the
transaction models implemented. Only Microsoft SQL Server CE, Oracle Lite and Sybase Any-
where use savepoints, and only Microsoft SQL Server CE and Sybase Anywhere can run nested
transactions. The trade-off is that their memory footprint tends to be large (e.g. around 1 Mb
for Microsoft SQL Server CE).
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Commercial Mobile DB Savepoints Transaction Nesting
IBM DB2 Everyplace – –
Informix Cloudscape – –
Microsoft SQL Server CE X X
Oracle Lite X –
Sybase Anywhere X X

Table 5: Comparison of Commercial Approaches

5 Conclusions and Outlook

In this paper, we have surveyed both transaction models for mobile computing and current
solutions provided by major vendors in the field of mobile databases. Regarding mobile trans-
action models, we gave an overview of the approaches that deal with transaction movements
and disconnections. The presented mobile transaction models exploits a lot of the results of
previous research in the field of transaction models and processing, while adapting them to
mobile computing environments. The study of the approaches of current commercial mobile
databases shows that little of the theoretical advances developed in the ”academic” models
have been established in the products. Advanced nested transaction models are still missing.
Compensating and/or alternative transactions are also not available. Commercial products
still rely on basic data replication and synchronization techniques. Only few of them provide
the capability to use savepoints and restricted closed nested transactions. In some cases, even
basic transactional properties are not respected.

We state that more study in the field is still needed. We know that the use of mobile devices
will increase in the near future and that a lot of the work now carried out on fixed computers
will shift to portable devices. Some guarantees for improved transaction correctness and effi-
cient data management techniques will be needed when users will ask for more complex task
to be performed on their mobile devices. Therefore, advances in mobile transaction processing
are needed. For instance, a combination of concepts developed in the theoretical models out-
lined in Section 3 together with the ideas described in the Section 3.11, can form the basis upon
which to build new proposals and produce prototypes to be tested in real world applications.
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