
ETH Library

Lower and Upper Bounds for
Distributed Packing and Covering

Report

Author(s):
Kuhn, Fabian; Moscibroda, Thomas; Wattenhofer, Roger

Publication date:
2004

Permanent link:
https://doi.org/10.3929/ethz-a-006742100

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical reports 443

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006742100
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Lower and Upper Bounds for Distributed Packing and Covering

Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer
{kuhn@inf,moscibroda@student,wattenhofer@inf}.ethz.ch

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

Abstract

We make a step towards understanding the distributed
complexity of global optimization problems. We give
bounds on the trade-off between locality and achievable
approximation ratio of distributed algorithms for packing
and covering problems. We show that in k communica-
tion rounds, maximum matching and therefore packing
problems cannot be approximated better than Ω(nc/k2

/k)

and Ω(∆1/k/k) where c is a small constant and n and
∆ denote the number of nodes and the maximum de-
gree of the network graph, respectively. This means that
Ω(
√

log n/ log log n) and Ω(log ∆/ log log ∆) rounds
are needed to obtain a constant or polylogarithmic ap-
proximation. On the positive side, we prove that maxi-
mum matching and minimum vertex cover (the dual prob-
lem) can be approximated by O(∆1/k) in O(k) rounds,
showing that the given lower bound is almost tight. We
also give a distributed algorithm which approximates any
packing or covering LP by O(n1/k) in O(k) rounds.

1 Introduction

Computing a global objective based on local infor-
mation only lies at the heart of distributed com-
puting theory. In this paper we present the first
lower bounds for distributed packing problems such
as maximum matching. In addition we exhibit new
algorithms for packing (and also covering) problems
which almost match the lower bounds.

Throughout the paper we study the standard mes-
sage passing model for distributed computing. Pro-
cessors of a distributed system are represented by
nodes of an undirected graph. Two processors can
communicate directly if and only if they are con-
nected by an edge in the graph. We assume that the

processors operate in synchrony, that is, communi-
cation is round-based, and in each round each node
can send a message to all its neighbors in the graph,
and receive the messages sent by its neighbors. The
time complexity of a distributed algorithm is the max-
imum possible number of rounds needed until every
node has completed its computation. In the context
of emerging dynamic and mobile distributed systems
such as peer-to-peer, ad-hoc, or sensor networks, it
is often desirable to keep the time complexity as
small as possible even at the cost of somewhat non-
optimal global solutions. We are therefore interested
in the possible trade-off between time complexity
and approximation quality for various (combinato-
rial) packing and covering problems on the given net-
work graph. In particular, we are interested in algo-
rithms whose time complexity is polylogarithmic or
even constant (a.k.a. local algorithms).

In distributed systems the processors need to coor-
dinate themselves; many common coordination tasks
boil down to classic graph theory problems such as
coloring, dominating or independent set.1 In this pa-
per we first focus on graph packing problems. In
particular, we give lower bounds on the trade-off
between time complexity and approximation qual-
ity for maximum matching2 (MM). A matching in
a graph is a subset of edges such that no two edges
in the matching are adjacent. A maximum matching
is a matching of maximum cardinality.

The best known approximation algorithm for dis-
tributed maximum matching is due to Israeli and

1A coloring allows nodes in wireless networks to establish an
efficient frequency division multiplexing scheme. Dominating
sets are traditionally used for clustering, independent sets for
parallel execution.

2Matching for example allows nodes of a wireless network
to start non-interfering communication channels.

1

Itai [6]. Using a simple randomized mechanism,
a maximal matching3 is computed in O(log n) ex-
pected time. Since a maximal matching is a 2-
approximation of a maximum matching4 we have a
constant approximation in only a logarithmic number
of rounds.

Since no lower bounds are known, it is natural
to ask whether one could also achieve a constant
approximation in constant time only. Indeed for
special graphs such as trees constant-time constant-
approximation algorithms are known [19]. Also
for regular graphs a distributed randomized round-
ing technique will give a constant approximation in
constant time [10]. Fooling around with the usual
suspect graphs in distributed computing (e.g. ring,
mesh) indicates that a maximum matching approx-
imation is indeed simpler than a maximal matching,
which seems to require logarithmic time because of
symmetry breaking.

In this paper we show that in general this intuition
might be misleading. In particular we prove that in
k communication rounds, maximum matching (and
even its fractional version) cannot be approximated
within Ω(nc/k2

/k) and Ω(∆1/k/k) for some constant
c, n and ∆ denoting the number of nodes and the
largest degree in the graph, respectively. These re-
sults imply that a minimum of Ω(

√

log n/ log log n)
and Ω(log ∆/ log log ∆) communication rounds are
required in order to obtain a constant or polylogarith-
mic approximation. Since these lower bounds hold
even in the cases of unbounded message-size and
complete synchrony, they are a true consequence of
locality limitations, and not merely a side-effect of
congestion, asynchrony, or limited message-size. As
a consequence, a maximum matching approximation
is almost as difficult as maximal matching.

In addition, we present two novel algorithms for
the distributed approximation of packing and cover-
ing problems. The first one is a simple and efficient
(also w.r.t. messages sizes and local computations)
algorithm for minimum vertex cover (MVC) and
maximum matching (MM). In O(k) rounds, the al-

3A maximal matching is a matching which results from a
greedy edge-picking process; a maximal matching cannot be im-
proved by adding additional edges to the matching.

4Each edge in the maximal matching prevents at most two
edges in the optimal maximum matching.

gorithm computes O(∆1/k)-approximations for both
problems. Thus, in order to achieve a constant-
factor approximation, the algorithm needs O(log ∆)
rounds. This gives upper bounds which almost match
the respective lower bounds, showing that the estab-
lished time-approximation trade-off is close to opti-
mum.

The second algorithm is based on a network de-
composition algorithm by Linial and Saks [13] and
works for general packing and covering linear pro-
grams. In O(k) rounds, the algorithm produces
an O(n1/k)-approximation for all packing and cov-
ering LPs. Consequently, in O(log n) rounds, a
constant-factor approximation can be computed. The
algorithm works in the same model which is used
for the lower bounds. Therefore, although mes-
sages can be large, it proves a strong upper bound
for the distributed approximation of general packing
and covering problems which is tight up to a factor
O(

√
log n log log n).

The paper is organized as follows. Section 2 sum-
marizes related work and in Section 3 the model
of computation is defined. We derive the matching
lower bound in Section 4. Section 5 contains an al-
most tight upper bound. In subsequent Section 6, we
give a distributed algorithm for general positive LPs
and finally, Section 7 concludes the paper.

2 Related Work

The issue of locality in distributed computing has
been of great interest for a long time. Besides being
fundamental when designing fast distributed algo-
rithms [18], locality has been exploited for improv-
ing fault-tolerance and the local detection of illegal
global configurations [1].

There is a great variety of papers studying local
algorithms. Most notable in the context of this work
are algorithms which compute approximations for
packing and covering problems. The distributed ap-
proximation of packing and covering LPs based on
local information only, has been started by Papadim-
itriou and Yannakakis [17]. In the model of [17],
distributed agents have to solve a given LP without
communicating with each other. The first distributed
algorithm achieving a constant approximation in a
polylogarithmic number of rounds is found in [2].

2

The algorithm of [2] needs log3n rounds in order
to achieve a constant approximation. This has re-
cently been improved to log2n in [10]. Distributed
algorithms targeted for specific covering and packing
problems include algorithms for the minimum domi-
nating set problem [4, 7, 9] as well as algorithms for
maximum (weighted) matching [6, 19].

Most of the described algorithms have a time com-
plexity which is at least logarithmic. Not many have
studied what happens if the number of rounds is re-
stricted to a constant. Of the above, exceptions are
found in [9, 10, 17]. We would also like to mention
the influential work of Naor and Stockmayer who
show that there are locally checkable labelings which
can be computed in distributed constant time [16].

Closely related to packing and covering are maxi-
mal independent sets and matchings. Maximal inde-
pendent sets and maximal matchings can be found in
logarithmic time by simple and elegant randomized
algorithms [14, 6]. For rings and rooted trees, a max-
imal independent set can even be constructed in only
O(log∗n) rounds [3].

However, in spite of the rich literature in the field,
not much is known about the fundamental limitations
of locality-based approaches. Fich and Ruppert de-
scribe a whole bunch of lower bounds and impossi-
bility results in distributed computing [5]. However
most of them apply to other computational models
where locality is no issue or there are additional more
restrictive limiting factors. There have been virtually
no nontrivial lower bounds for local computation, be-
sides Linial’s pioneering O(log∗n) time lower bound
for constructing a maximal independent set on a ring
[12]. Recently, we have shown that minimum vertex
cover and thus covering problems cannot be approx-
imated better than Ω(nc/k2

/k) and Ω(∆1/k/k) in k
communication rounds [8].

3 Model

As mentioned in the previous section, we consider
the classic message passing model in which the net-
work is modeled by a graph G = (V,E). We assume
that in each communication round, each node of the
network graph can send an arbitrarily long message
to each of its neighbors. Local computations are for
free. Each node has a unique identifier and initially,

nodes have no knowledge about the network graph.
Note that this is the strongest possible model when
proving lower bounds on local computation since it
focuses entirely on locality and does not consider
other aspects arising in the design of distributed com-
putation (unbounded message size, free local compu-
tation, . . .).

In k communication rounds, a node v may col-
lect the IDs and interconnections of all nodes up to
distance k from v. Tv,k is defined to be the topol-
ogy seen by v after these k rounds, i.e. Tv,k is the
graph induced by the k-neighborhood of v. The la-
beling (i.e. the assignment of IDs) of Tv,k is denoted
by L(Tv,k). For randomized algorithms, we use the
standard trick of determining all random bits at the
beginning of the algorithm. In this case, a node v
additionally knows about the random bits R(Tv,k) of
all nodes in Tv,k. The view of an edge e = (u, v) is
the union of views of its incident nodes

Ve,k := (Tu,k,L(Tu,k),R(Tu,k)) ∪
(Tv,k,L(Tv,k),R(Tv,k)).

Because message size does not matter, the best an
algorithm can do in time k, is to collect an edge’s k-
neighborhood and base its decision on Ve,k. Hence,
a randomized algorithm is a deterministic function
which assigns a valid output value to each view Ve,k.

The model presented is standard and has for ex-
ample been used in [12, 16] and in textbooks [18].

4 Lower Bound

4.1 Overview

In this section, we derive time lower bounds for dis-
tributed maximum matching. More precisely, we
prove lower bounds for the more general fractional
maximum matching problem (FMM). Let Ei denote
the set of edges incident to node vi. FMM is the nat-
ural LP relaxation of MM and defined as

max
∑

ej∈E

yj

subject to
∑

ej∈Ei

yj ≤ 1 ∀vi ∈ V

yj ≥ 0 ∀ej ∈ E.

(FMM)

3

Before dealing with the details of the proof, we
give a broad, intuitive outline. As stated in the pre-
vious section, the outcome of an edge’s decision in
a k-local computation is based entirely on the infor-
mation gathered within its k-neighborhood Ve,k. The
underlying idea for the lower bound is to construct
a graph family Gk in which, for a large number of
edges, the information available in Ve,k is not suffi-
cient to distinguish between adjacent edges within k
communication rounds. This yields suboptimal local
decisions and hence, a suboptimal approximation.

Particularly, we create a graph Gk = (V,E) which
contains a subgraph S = (S0 ∪ S1, E

′). Each
node v0 ∈ S0 has δ neighbors in S1, and each
node v1 ∈ S1 has δ2 neighbors in S0, such that
|S0| = |S1| · δ. Additionally, each node has exactly
one neighbor in its own set of nodes. It follows that
|E′| = 1

2(|S0| + |S1|) + δ|S0|. By showing that all
nodes in S see the same local topology Tv,k within
distance k, we will prove the claim that all edges
e ∈ E′ have the same distribution of Ve,k. This im-
plies that the expected value E [yj] of the fractional
value yj must be equal for all edges ej ∈ E′. Be-
cause |S0| � |S1|, an optimal matching consists of
all edges within S0, leading to a matching with car-
dinality S0/2. In expectation, on the other hand, ev-
ery algorithm will assign equal fractional values yj

to the edges in E ′. In order to obtain a feasible so-
lution, E [yj] is bounded by E [yj] ≤ 1/δ2, because
each node in S1 has δ2 such incident edges. By lin-
earity of expectation, the fractional matching in S is
of size at most |E ′|/δ2 ∈ O(|S0|/δ).

In the sequel, S0, S1, and E′ denote the sets as
described above. The construction of Gk is a two
step process. First, the general structure of Gk is de-
fined using the concept of a cluster-graph CGk in
Section 4.2. Secondly, in Section 4.3 we construct
an instance of Gk obeying the properties imposed by
CGk. Section 4.4 proves that all edges in E ′ have
the same view Ve,k and finally, Section 4.5 derives
the lower bounds for FMM.

4.2 The Cluster Graph

We construct the graph Gk = (V,E) featuring the
properties described in the previous section. The
nodes v ∈ V are grouped into disjoint sets which

are linked to each other as bipartite graphs. For the
purpose of describing the structural properties of Gk,
we will use a directed cluster graph CGk = (C,A)
with doubly labeled arcs ` : A → � × �

.. A node
C ∈ C represents a cluster, i.e. one of the disjoint
sets, of nodes in Gk. An arc a = (C,D) ∈ A with
`(a) = (δc, δd) denotes that the clusters C and D are
linked as a bipartite graph in which each node u ∈ C
has degree δc and each node v ∈ D has degree δd. It
follows that |C| · δc = |D| · δd.

The cluster graph consists of two equal subgraphs,
so-called cluster-trees CTk as defined in [8]. In
CGk, we additionally add an arc `(Ci, C

′

i) := (1, 1)
between two corresponding nodes of the two cluster
trees. Formally, CTk and CGk are defined as fol-
lows. For the first definition, we call clusters adja-
cent to exactly one other cluster leaf-clusters, and all
other clusters inner-clusters.

Definition 4.1. [8] For a given δ and a positive inte-
ger k, the cluster tree CTk is recursively defined as
follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

`(C0, C1) := (δ, δ2), `(C0, C2) := (δ2, δ3),

`(C1, C3) := (δ, δ2)

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-
cluster C ′

i with `(Ci, C
′

i) := (δk+1, δk+2).

• For each leaf-cluster Ci with (Cp, Ci) ∈ A
and `(Cp, Ci) = (δp, δp+1), add new leaf-
clusters C ′

j with `(Ci, C
′

j) := (δj , δj+1) for
j = 1 . . . k + 1, j 6= p + 1.

Definition 4.2. Let Tk and T ′

k be two instances of
CTk. Further, let Ci and C ′

i be corresponding clus-
ters in Tk and T ′

k, respectively. We obtain the cluster
graph CGk by adding an arc `(Ci, C

′

i) := (1, 1)
for all clusters Ci ∈ CTk. Further, we define
n0 := |C0 ∪ C ′

0|. This uniquely defines the size of
all clusters.

Figure 1 shows CT2. The shaded subgraph cor-
responds to CT1. Figure 2 depicts CG2, the dashed

4

δ

δ2

4δ

4δ3δ 3δ

δ3 δ4

δ2

δ2δ

δ δ2δ

δ δ2δ3

δ2 3

C

2C

3

C

0C

1

Figure 1: Cluster-Tree CT2.

0C0 C’

Figure 2: Cluster-Graph CG2.

lines representing the links `(Ci, C
′

i) := (1, 1). Note
that neither CTk nor CGk define the adjacency on
the level of nodes. They merely prescribe for each
node the number of neighbors in each cluster. In the
following, we define Si := Ci ∪ C ′

i and hence, the
sets S0 and S1 as referred to in Section 4.1 corre-
spond to C0 ∪ C ′

0 and C1 ∪ C ′

1, respectively. The
layer of a cluster is the distance to C0 in the cluster
tree. We write Tk and T ′

k to denote the two cluster
trees which constitute CGk. Further, paying tribute
to Figure 2, we call the arcs `(Ci, C

′

i) := (1, 1) hor-
izontal links and all other arcs vertical links.

4.3 The Lower Bound Graph Gk

Having defined the cluster graph CGk, it is now our
goal to obtain a realization of Gk which has the struc-
ture imposed by CGk and features the additional
property that there are no short cycles. As we must
prove that the topologies seen by nodes in S0 and S1

are identical, the absence of short cycles is of great
help. Particularly, if there are no cycles of length
2k + 1 and less, all nodes see a tree, and we can ne-
glect the difficulty that nodes may see different cy-
cles. The girth of a graph G, denoted by g(G), is the

length of the shortest cycle in G. Lemma 4.1 states
that it is indeed possible to construct Gk as described
above.

Lemma 4.1. If k + 1 ≤ δ/2, Gk can be constructed
such that the following conditions hold:

1. Gk follows the structure of CGk.

2. The girth of Gk is at least g(Gk) ≥ 2k + 1.

3. Gk has n ≤ 42kδ4k2

nodes.

Proof. See Appendix A.1.

4.4 Equality of Views

In this section, we want to prove our claim that all
nodes in S0 and S1 have the same view and conse-
quently, all edges in E ′ see the same topology. This
task is greatly facilitated since we can use the follow-
ing result from [8]. For the rather intricate proof, we
refer to the original paper.

Lemma 4.2. [8] Let Gk be an instance of a cluster
tree CTk with girth g(Gk) ≥ 2k + 1. The views of
all nodes in clusters C0 and C1 are identical up to
distance k.

Because Gk has girth at least 2k+1 by Lemma 4.1,
the two cluster-trees Tk and T ′

k constituting Gk must
have girth 2k + 1 as well. It follows from Lemma
4.2 that the desired equality of views holds for both
Tk and T ′

k. Based on this fact, we now show that
equality of views holds in Gk, too.

Lemma 4.3. Let Gk be an instance of a cluster
graph CGk with girth g(Gk) ≥ 2k + 1. The views
of all nodes in clusters S0 and S1 are identical up to
distance k.

Proof. Let the view-tree VT v of a node v be the
view of v in CGk. Particularly, let VT 0 and VT 1

be the view-trees of nodes v0 ∈ S0 and v1 ∈ S1,
respectively. Now, consider a path of length k, P =
(δ1, δ2, . . . , δr, . . . , δk) and let δr be its first horizon-
tal link. Let R0 and R1 be the subtrees of VT 0

and VT 1, seen after following the first r − 1 hops
of P . By Lemma 4.2, these subtrees are equal with
regard to all paths which do never use a horizontal
link. By the definition of CGk, there is such a link

5

`(Ci, C
′

i) in both R0 and R1. Hence, we can write
R0 = β0 ∪ B0 and R1 = β1 ∪ B1 where βi denotes
the subtrees seen upon using a vertical link and Bi

the subtree seen upon using the horizontal link.
By Lemma 4.2, taking a link in Bi does not violate

equality. Because the graph is completely symmetric
with regard to the subgraphs Tk and T ′

k and because
the link `(Ci, C

′

i) always connects two equal clus-
ters, the subtrees Ri and Bi are equivalent. In other
words, by taking a horizontal link, we can never cre-
ate a difference in the view-trees. The remaining
such steps easily follow by induction.

4.5 Analysis

We now derive the lower bounds on the approxima-
tion ratio for k-local FMM algorithms. Let OPT be
an optimal solution for FMM and let ALG be the
solution computed by any algorithm. The main ob-
servation is that all nodes in S0 and S1 have the same
view and therefore, every edge in E ′ sees the same
topology Ve,k. This leads to the sub-optimality ex-
plained in Section 4.1.

Lemma 4.4. When applied to Gk = (V,E) as con-
structed in Subsection 4.3, any distributed, possi-
bly randomized algorithm which runs for at most
k rounds computes, in expectation, a solution of at
most ALG ≤ |S0|/(2δ2) + (|V | − |S0|).

Proof. The fractional value assigned to ei = (u, v)
by an algorithm is denoted by yi, Yi is the random
variable describing the distribution of yi. The deci-
sion of which value yi is assigned to edge ei depends
only on the view Vei,k, containing the topologies Tu,k

and Tv,k, the labelings L(Tu,k) and L(Tv,k) and the
randomness R(Tu,k) and R(Tv,k), which ei can col-
lect during the k communication rounds. Assume an
adversary which cooses the labels of the nodes. One
possible adversarial strategy is to choose the labeling
in Gk uniformly at random. In this case, the labeling
L(Tu,k) for an arbitrary node u is chosen uniformly
at random, too.

We are now looking at the edges connecting nodes
in S0 and S1. Clearly all of them see the same topol-
ogy. If the labels are chosen uniformly at random, it
follows that the distribution of the views is the same
for all those edges. Let u ∈ S1 be a node of S1. The

node u has δ2 neighbors in S0. Therefore, for edges
ei between nodes in S0 and S1, by linearity of expec-
tation, E [Yi] ≤ 1/δ2 because otherwise there exist
labelings for which the calculated solution is not fea-
sible. By Lemma 4.3, edges ej with both end-points
in S0 have the same view as edges between S0 and
S1. Hence, also for the value yj of ej , E [Yj] ≤ 1/δ2

must hold. There are |S0|/2 such edges and therefore
the exected total value contributed by edges between
two nodes in S0 is at most |S0|/(2δ2).

All edges which do not connect two nodes in S0,
have one end-point in V \ S0. In order to get a fea-
sible solution, the total value of all edges adjacent
to a set of nodes V ′, can be at most |V ′|. This can
for example be seen by looking at the dual problem,
a kind of minimum vertex cover where some edges
only have one end node. Clearly, taking all nodes of
V ′ (assigning 1 to the respective variables) yields a
feasible solution for this vertex cover problem. The
claim then follows by LP duality and the lemma by
adding up |S0|/(2δ2) and |V \ S0|.

Lemma 4.5. If k + 1 < δ, the number of nodes n of
Gk is

n ≤ |S0|
(

1 +
k + 1

δ − (k + 1)

)

.

Proof. See Appendix A.2.

We are now ready to derive the lower bound.
Lemma 4.4 gives an upper bound on the number of
nodes chosen by any k-local FMM algorithm. We
do not know OPT , but choosing all horizontal edges
within S0 is certainly feasible. Hence, the optimal
solution is lower bounded by |OPT | ≥ |S0|/2.

Theorem 4.6. There are graphs G, such that in k
communication rounds, every distributed algorithm
for FMM on G has approximation ratios at least

Ω
(

nc/k2

k

)

and Ω
(

∆1/k

k

)

for some constant c ≥ 1/4,

where n and ∆ denote the number of nodes and the
highest degree in G, respectively.

Proof. Assuming k + 1 ≤ δ/2, we have n ≤ 2n0 by
Lemma 4.5, where n0 = |S0|. Using Lemma 4.1, we
have n0 ≤ n ≤ 42kδ4k2

. Using Lemmas 4.4 and 4.5

6

the approximation ratio α is at least

α ≥ n0/2
n0

2δ2 + (n−n0)
=

δ2n0

n0 + 2δ2(n−n0)

≥ δ3 − δ2(k+1)

δ − (k+1) + 2δ2(k+1)
≥ δ

2(k+2)

≥ n
1/(4k2)
0

41/(2k) · 2(k+2)
∈ Ω

(

n1/(4k2)

k

)

.

The second lower bound follows from ∆ = δk+2.

Theorem 4.7. In order to obtain a polylogarithmic
or constant approximation ratio, every distributed

algorithm for FMM requires at least Ω
(√

log n
log log n

)

and Ω
(

log ∆
log log ∆

)

communication rounds. The same

lower bounds hold for the construction of maximal
matchings and maximal independent sets.

Proof. See Appendix A.3.

Remark 1: Choosing the degrees in the cluster
graph CGk in a different way, the approximation
lower bounds of Theorem 4.6 for k rounds can be
slightly improved to Ω(nc/k2 − k) and Ω(∆1/k − k).
However, this does not affect the asymptotic results
of Theorem 4.7.

5 Local Maximum Matching

In order to show that the lower bounds derived in
Section 4 are almost tight, we give a simple, syn-
chronous distributed algorithm which achieves an
approximation ratio of O(∆1/k) in O(k) rounds and
requires O(log ∆) rounds for a constant approxima-
tion.

FMM is the dual problem of the fractional mini-
mum vertex cover (FMVC) problem defined as

min
∑

vi∈V

xi

s.t. xi + xj ≥ 1 ∀(vi, vj) ∈ E

xi ≥ 0 ∀vi ∈ V.

(FMVC)

Algorithm 1 MVC-FMM-Algorithm
1: xi := 0; ∀ej ∈ Ei : zj := 0;
2: for ` := k − 1 to 0 by −1 do
3: δ̃i := |{uncovered edges e ∈ Ei}| = |Ẽi|;
4: δ̃

(1)
i := maxi′∈Ni

δ̃i′ ;

5: if δ̃i ≥ (δ̃
(1)
i)`/(`+1) then

6: xi := 1;
7: ∀ej ∈ Ẽi : zj := zj + 1/δ̃i;
8: end if
9: Zi :=

∑

ej∈Ei
zj ;

10: if (xi = 0) and (Zi ≥ 1) then
11: xi := 1;
12: ∀ej ∈ Ei : zj := zj · (1 + 1/Zi);
13: end if
14: end for
15: Zi :=

∑

ej∈Ei
zj ;

16: ∀ej = (vi, vi′) ∈ Ei : yj := zj/max{Zi, Zi′};

Algorithm 1 approximates both FMM and FMVC.
The idea is to compute a feasible solution for mini-
mum vertex cover (MVC) and while doing so, dis-
tribute the dual values zj among the incident edges
of each node. Note that we consider FMVC as the
primal and FMM as the dual problem. Whenever a
node vi sets its xi to 1, the sum of the incident zj

values is increased by 1 as well. Hence, at the end of
each iteration of the main loop, the invariant

∑

vi∈V

xi =
∑

ej∈E

zj

holds. Let Ei be the set of incident edges of node vi.
We will show that for all nodes vi,

∑

ej∈Ei
zj ≤ α

for α = 3 + ∆1/k and that consequently, dividing all
zj by α yields a feasible solution for FMM. By LP
duality, α is an upper bound on the approximation
ratio for FMM and FMVC.

We call an edge covered if at least one of its end-
points has joined the vertex cover, i.e. the corre-
sponding xi is set to 1. The set of uncovered edges
incident to a node vi is denoted by Ẽi, and we define
δ̃i := |Ẽi|. The maximum δ̃i′ among all neighbors

vi′ of vi is called δ̃
(1)
i . We call δ̃(vi) the dynamic

degree of v.

Lemma 5.1. At the beginning of each iteration, we
have δ̃(vi) ≤ ∆(`+1)/k for all vi ∈ V .

7

Proof. The proof is by induction over the main
loop’s iterations. For ` = k − 1, the lemma follows
from the definition of ∆. For subsequent iterations,
we show that all nodes having δ̃i ≥ ∆`/k set xi := 1
in line 6. In the algorithm, all nodes with δ̃i ≥
(δ̃

(1)
i)`/(`+1) set xi := 1. Hence, we have to show

that ∀i : (δ̃
(1)
i)`/(`+1) ≤ ∆`/k. By the induction

hypothesis, we know that δ̃i ≤ ∆(`+1)/k at the be-
ginning of the loop. Since δ̃

(1)
i represents δ̃i′ of some

node vi′ , we have ∀i : δ̃
(1)
i ≤ ∆(`+1)/k and the claim

follows because (δ̃
(1)
i)`/(`+1) ≤ ∆

`+1
k

·
`

`+1 .

The following lemma bounds the sum of z values
in Ei for an arbitrary node vi. For that purpose, we
define Zi :=

∑

ej∈Ei
zj .

Lemma 5.2. At the end of the algorithm, for all
nodes vi ∈ V , Zi =

∑

ej∈Ei
zj ≤ 3 + ∆1/k.

Proof. Let Φh denote the iteration in which ` = h.
First, consider a node vi which does not join the ver-
tex cover. Until Φ0, we have Zi < 1 since otherwise,
it would have set xi := 1 in line 11 of a previous iter-
ation. In Φ0, δ̃i = 0 because all nodes with δ̃i ≥ 1 set
xi := 1 in Φ0. Therefore, all adjacent nodes vi′ have
set xi′ := 1 before Φ0 and Zi does not change any-
more. Hence, Zi < 1 for nodes which do not belong
to the vertex cover constructed by the algorithm.

Next, we consider a node vi joining the vertex
cover in line 6 of an arbitrary Φ`. With the same
argument as above, we know that Zi < 1 at the be-
ginning of Φ`. Since vi sets xi := 1, Zi increases
by one. In the same iteration, neighboring nodes vi′

may also join the vertex cover and thereby increase
Zi. By the condition in line 5, those nodes have
δ̃i′ ≥ (δ̃

(1)
i′)`/(`+1) ≥ δ̃

`/(`+1)
i . Further, by Lemma

5.1, δ̃i ≤ ∆(`+1)/k and therefore

δ̃i

δ̃i′
≤ δ̃i

δ̃
`/(`+1)
i

≤ δ̃
1/(`+1)
i ≤ ∆1/k.

Thus, edges which are also covered by a neighboring
node vi′ get additional increase of the z-value which
is at most by a factor ∆1/k larger. The increase of Zi

in line 6 of Φ` is then at most 1+∆1/k. In line 6, the
values are distributed only among uncovered edges.
Hence, the only way Zi increases in subsequent iter-
ations is when neighboring nodes set xi := 1 in line

11. The sum of the zj of all those edges which are
covered only by vi (and are therefore eligible to be
increased in this way) is at most 1. In line 12, these
zj can be at most doubled. Putting all together, we
have Zi ≤ 3 + ∆1/k for nodes joining the vertex
cover in line 6.

For the last case, we analyze nodes vi joining the
vertex cover in line 11 of Φ`. Again, we know that
a(vi) < 1 at the beginning of Φ`. Further, using
an analogous argument as above, Zi is increased by
at most ∆1/k due to neighboring nodes joining the
vertex cover in line 6 of Φ`. Through the joining
of vi, Zi is further increased by 1. Because the zj

are increased proportionally, no further increase of
Zi is possible. Thus, in this case we have Zi ≤ 2 +
∆1/k.

Theorem 5.3. The MVC-FMM-Algorithm achieves
an approximation ratio of O(∆1/k) in k communi-
cation rounds. In order to obtain a constant approx-
imation, it requires O(log ∆) rounds.

Proof. We first prove that the algorithm computes
feasible solutions for MVC and FMM. For MVC,
this is clear because in the last iteration Φ0 all nodes
having δ̃i ≥ 1 set xi := 1. The y-values form a fea-
sible solution because in line 16, the zj of each edge
ej is divided by the larger of the Zi of the two nodes
corresponding to ej . By Lemma 5.2, each zj is di-
vided by at most α = 3 + ∆1/k and therefore, the
objective functions of the primal and the dual prob-
lem differ by at most a factor α. By LP duality, α is a
bound on the approximation ratio for both problems.
Setting k = β log ∆ for an appropriate constant β
leads to a constant approximation ratio and therefore
proves the second claim.

Remark 1: There is a simple distributed random-
ized rounding protocol which converts the FMM
solution into a matching of essentially the same
size. Each edge ej goes into the matching
with probability yj/3. If adjacent edges in the
matching are removed, we achieve a 27/4 · α-
approximation where α is the approximation ratio
achieved for FMM.

Remark 2: For polylogarithmic approximations,
our lower bounds for FMM and MVC are tight

8

because with the given algorithm, a polyloga-
rithmic approximation ratio can be achieved in
O(log ∆/ log log ∆) rounds.

6 Fast Distributed LP Algorithm

In the previous section, we presented a distributed al-
gorithm to efficiently approximate maximum match-
ing and minimum vertex cover, two classic combi-
natorial optimization problems. As illustrated, these
problems can be formulated as positive LPs. In this
section, we broaden our view and give a fast algo-
rithm which computes a solution to general positive
LPs of the form

min cTx

subject to A · x ≥ b

x ≥ 0.

(LP)

where all aij , bi and ci are non-negative. The dual
LP for (LP) has the form

max bTy

subject to AT · y ≤ c

y ≥ 0.

(DLP)

Let the number of the primal and dual variables be
n and m, respectively. Analogously to [2, 17], we
consider the following distributed setting. The linear
program is bound to a network graph G = (V,E).
Each primal variable xi and each dual variable yj is

associated with a node v
(p)
i ∈ V and v

(d)
j ∈ V , re-

spectively. There are communication links between
primal and dual nodes wherever the respective vari-
ables occur in the corresponding inequality. Thus,
(v

(p)
i , v

(d)
j) ∈ E if and only if xi occurs in the jth in-

equality of (LP). Formally, this means that v
(p)
i and

v
(d)
j are connected if and only if aji > 0.5 Again, we

assume a purely synchronous communication model,
but the same approximation ratio can be achieved in
an asynchronous environment at the cost of higher
message complexity.

5Note that in order to solve such a problem in a real network
setting where only primal values correspond to nodes, the dual
variables may be simulated by the nodes as well.

In [13], Linial and Saks presented a randomized
distributed algorithm to decompose a graph into sub-
graphs of limited diameter. We use their algorithm
to decompose the linear program into sub-programs
which can be solved locally. Intuitively, the output of
the algorithms are connected components of G with
the following properties.

(I) Different components are far enough from each
other such that we can define a local linear pro-
gram for each component in a way in which the
LPs of any two components do not interfere.

(II) Each node belongs to one of the components
with probability at least p, where p depends on
the diameter we allow the components to have.

Because of the limited diameter, the LPs of each
component can then be computed locally. We apply
the decomposition process in parallel often enough
such that w.h.p. each node has been selected a loga-
rithmic number of times.

For the decomposition of (LP) and (DLP), we
need the following lemma.

Lemma 6.1. Let {x′

1, . . . , x
′

n′} be a subset of the
primal variables of (LP) and let y′

1, . . . , y
′

m′ be the
dual variables which are adjacent to the given sub-
set of the primal variables. Further let LP′ and
DLP′ be LPs where the matrix A′ consists only of the
columns and rows corresponding to the variables in
x′ and y′. Every feasible solution for LP′ makes the
corresponding primal inequalities in (LP) feasible
and every feasible solution for DLP′ is feasible for
(DLP) (variables not occurring in LP′ and DLP′

are set to 0). Further, the values of the objective
functions for the optimal solutions of LP′ and DLP′

are smaller than the the optimal values for (LP) and
(DLP).

Proof. The feasibilities directly follow from the def-
inition of LP′ and DLP′. The optimal values for the
objective functions of LP′ and DLP′ are smaller than
the optimal values for (LP) and (DLP) because of
the (DLP)-feasibility of a dual feasible solution for
DLP′.

We call LP′ and DLP′ the sub-LPs induced by the
subset {x′

1, . . . , x
′

n′} of primal variables. We apply

9

the graph decomposition algorithm of [13] to ob-
tain LP′ and DLP′ (as in Lemma 6.1) which can be
solved locally. For a general graph G = (V, E) with
n nodes, the algorithm yields a subset S ⊆ V of V
such that each node u ∈ S has a leader `(u) ∈ V and
such that the following properties hold.6

(I) ∀u ∈ S : d(u, `(u)) < k

(II) ∀u, v ∈ S : `(u) 6= `(v) −→ (u, v) 6∈ E .

(III) S can be computed in k rounds.

(IV) ∀u ∈ V : P [u ∈ S] ≥ 1
en1/k .

d(u, v) denotes the distance between two nodes u
and v on G. For the decomposition of the linear pro-
gram, we define G such that the node set V is the set
of primal nodes of the graph G and the edge set E is

E :=
{

(u, v)
∣

∣ u, v ∈ V ∧ dG(u, v) ≤ 4
}

.

By this, we can guarantee that non-adjacent nodes
in G do not have neighboring dual nodes in G whose
variables occur in the same constraint of (DLP). Fur-
ther, a message over an edge of G can be sent in 4
rounds on the network graph G. The basic algorithm
for a primal node v to approximate (LP) and (DLP)
then works as follows:

1: Run graph decomposition of [13] on G;
2: if v ∈ S then
3: send IDs of dual neighbors to `(v).
4: end if;
5: if v = `(u) for some u ∈ S then
6: compute local LP/DLP (cf. Lemma 6.1)

of variables of u ∈ S for which v = `(u).
7: send resulting values to nodes holding the

respective variables.
8: end if

The dual nodes only forward messages in steps 1, 3,
and 7 and receive the values for their variables in step
7. We now have a closer look at the locally computed
LPs in line 6. By Property (II) of the graph decom-
position algorithm, primal variables belonging to dif-
ferent local LPs cannot occur in the same primal con-
straint (otherwise, the according primal nodes had to
be neighbors in G). The analogous fact holds for dual

6We use p = 1/n1/k in the algorithm of Section 4 of [13],
the properties then directly follow from Lemma 4.1 of [13].

variables since primal nodes belonging to different
local LPs have distance at least 6 on G and thus dual
nodes belonging to different local LPs have distance
at least 4 on G. Therefore, the local LPs do not inter-
fere and together they form the sub-LPs induced by
S (cf. Lemma 6.1).

The complete LP approximation algorithm now
consists of N independent parallel executions of
the described basic algorithm. The variables of
the N sub-LPs are added up and in the end, pri-
mal/dual nodes divide their variables by the maxi-
mum/minimum possible value to keep/make all con-
straints they occur in feasible.7 The following theo-
rem states how N must chosen such that the obtained
approximation ratio is optimized.

Theorem 6.2. Let N = αen1/k lnn for α ≈ 4.51.
Executing the basic algorithm N times, summing up
the variables of the N execution and dividing these
sums as described, yields an αen1/k approximation
of (LP)/(DLP) w.h.p. The algorithm needs O(k)
rounds to complete.

Proof. See Appendix A.4

Collorary 6.3. Using the network decomposition al-
gorithm of [13], in only O(k) rounds (LP) and
(DLP) can be approximated by a factor O(n1/k)
w.h.p. For k ∈ Θ(log n), this gives a constant factor
approximation in O(log n) rounds.

7 Conclusions

The importance of locality stems from the desire
and necessity to achieve a global goal based on lo-
cal information. Algorithms based on local informa-
tion appear to be the choice at hand for numerous
problems related to large-scale distributed systems
and new networking fields, such as mobile comput-
ing. Unfortunately, with few exceptions [8, 12], the
impact of locality on distributed algorithms is not
thoroughly understood and we believe that there is
an urging need for a solid theoretical foundation on
which future work can be built. We hope and believe
that the lower bounds (as well as the method) given
in the present paper will be a step towards this goal.

7The primal and dual variables xi and yj are divided by
minj∈Ni

1

bj

�
` aj`x` and maxi∈Nj

1

ci

�
` a`iy`, respectively.

10

References

[1] Y. Afek, S. Kutten, and M. Yung. The Local
Detection Paradigm and its Applications to Self-
Stabilization. Theoretical Computer Science, 186(1-
2):199–229, 1997.

[2] Y. Bartal, J. W. Byers, and D. Raz. Global Optimiza-
tion Using Local Information with Applications to
Flow Control. In Proc. of the 38th IEEE Symposium
on the Foundations of Computer Science (FOCS),
pages 303–312, 1997.

[3] R. Cole and U. Vishkin. Deterministic Coin Tossing
with Applications to Optimal Parallel List Ranking.
Information and Control, 70(1):32–53, 1986.

[4] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakr-
ishnan, and A. Srinivasan. Fast Distributed Algo-
rithms for (Weakly) Connected Dominating Sets and
Linear-Size Skeletons. In Proc. of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
717–724, 2003.

[5] F. Fich and E. Ruppert. Hundreds of impossibility
results for distributed computing. Distributed Com-
puting, 16(2-3):121–163, 2003.

[6] A. Israeli and A. Itai. A Fast and Simple Random-
ized Parallel Algorithm for Maximal Matching. In-
formation Processing Letters, 22:77–80, 1986.

[7] L. Jia, R. Rajaraman, and R. Suel. An Efficient Dis-
tributed Algorithm for Constructing Small Dominat-
ing Sets. In Proc. of the 20

th ACM Symposium on
Principles of Distributed Computing (PODC), pages
33–42, 2001.

[8] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
Cannot Be Computed Locally! Technical Report
438, ETH Zurich, Dept. of Computer Science, 2004.

[9] F. Kuhn and R. Wattenhofer. Constant-Time Dis-
tributed Dominating Set Approximation. In Proc. of
the 22

nd Annual ACM Symp. on Principles of Dis-
tributed Computing (PODC), pages 25–32, 2003.

[10] F. Kuhn and R. Wattenhofer. Distributed Combi-
natorial Optimization. Technical Report 426, ETH
Zurich, Dept. of Computer Science, 2003.

[11] F. Lazebnik and V. A. Ustimenko. Explicit Con-
struction of Graphs with an Arbitrary Large Girth
and of Large Size. Discrete Applied Mathematics,
60(1-3):275–284, 1995.

[12] N. Linial. Locality in Distributed Graph Algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[13] N. Linial and M. Saks. Low Diameter Graph
Decompositions. Combinatorica, 13(4):441–454,
1993.

[14] M. Luby. A Simple Parallel Algorithm for the Max-
imal Independent Set Problem. SIAM Journal on
Computing, 15:1036–1053, 1986.

[15] A. Mayer, M. Naor, and L. Stockmeyer. Local Com-
putations on Static and Dynamic Graphs. In Proc. of
IEEE 3 rd Israeli Symp. on Theory of Computing and
Systems (ISTCS), pages 268–278, 1995.

[16] M. Naor and L. Stockmeyer. What Can Be Com-
puted Locally? In Proc. of the 25

th Annual ACM
Symp. on Theory of Computing (STOC), pages 184–
193, 1993.

[17] C. Papadimitriou and M. Yannakakis. Linear Pro-
gramming without the Matrix. In Proc. of the 25th
ACM Symposium on Theory of Computing (STOC),
pages 121–129, 1993.

[18] D. Peleg. Distributed Computing: A Locality-
Sensitive Approach. SIAM, 2000.

[19] M. Wattenhofer and R. Wattenhofer. Distributed
Weighted Matching. Technical Report 420, ETH
Zurich, Department of Computer Science, 2003.

11

A Appendix

A.1 Proof of Lemma 4.1

We give a constructive prove. We want to construct
Gk with girth at least 2k + 1. We start by creating
an arbitrary intermediate graph G̃k = (Ṽ , Ẽ) (with
ñ0 = |S̃0| and ñ = |Ṽ |), which may be of minimal
girth 4 and then construct Gk from G̃k.

No node in Gk has more than δk+1 neighbors in a
leaf-cluster of CGk. Hence, we can set the size of the
outermost clusters (on layer k+2) to δk+1. Since the
number of nodes increases by a factor of δ for each
level on the way to S0 and since there are k + 2 lev-
els (including S0), the size of a cluster on level l is
δ2k+3−l and consequently, ñ0 = 2δ2k+3. We con-
struct G̃k as follows: Let C̃i and C̃j be two adjacent
clusters with a vertical link (δi, δi+1). C̃i and C̃j can
be connected by as many complete bipartite graphs
Kδi,δi+1 as necessary. As for horizontal links (1, 1),
we connect the clusters with a K1,1 in the obvious
way, by connecting two arbitrary nodes from both
clusters. Since |C̃i| = |C̃ ′

i|, this is always possible.
The construction of Gk from G̃k is based on the

construction of the graph family D(r, q) as proposed
in [11] and follows a technique already used in [8].
For given r and q, D(r, q) defines a bipartite graph
with 2qr nodes and girth g(D(r, q)) ≥ r + 5. We
show that for appropriate r and q, an instance of Gk

is obtained by deleting some of the edges of D(r, q).
Since deleting edges cannot create cycles, g(Gk) ≥
r + 5 follows.

For an integer r ≥ 1 and a prime power q, D(r, q)
defines a bipartite graph with node set P ∪ L and
edges ED ⊂ P × L. The nodes of P and L
are labeled by the r-vectors over the finite field � q ,
i.e. P = L = � r

q . In accordance with [11], we de-
note a vector p ∈ P by (p) and a vector l ∈ L by [l].
The components of (p) and [l] are written as follows
(for D(r, q), the vectors are projected onto the first r
coordinates):

(p) = (p1, p1,1, p1,2, p2,1, p2,2, p
′

2,2, p2,3, p3,2, . . .

pi,i, p
′

i,i, pi,i+1, pi+1,i, . . .) (1)

[l] = [l1, l1,1, l1,2, l2,1, l2,2, l
′

2,2, l2,3, l3,2, . . .

li,i, l
′

i,i, li,i+1, li+1,i, . . .]. (2)

Note that this admittedly somewhat confusing nota-
tion has been chosen in order to facilitate the follow-

ing system of equations. There is an edge between
two nodes (p) and [l], exactly if the first r − 1 of the
following equations hold (for i = 2, 3, . . .).

l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

li,i − pi,i = l1pi−1,i (3)
l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′

i,i

As shown in [11], D(r, q) has girth at least r + 5 for
odd r ≥ 3. We need the following helper lemma
which can be shown to be true [8] because the linear
system for the unknown coordinates defined by the
first r − 1 equations is a lower triangular matrix of
full rank and therefore posseses a unique solution.

Lemma A.1. [8] For all (p) ∈ P and l1 ∈ � q , there
is exactly one [l] ∈ L such that l1 is the first coor-
dinate of [l] and such that (p) and [l] are connected
by an edge in D(r, q). Analogously, if [l] ∈ L and
p1 ∈ � q are fixed, the neighbor (p) of [l] is uniquely
determined.

Observing that both Gk and G̃k are bipartite
graphs. One partition consists of all odd-layer clus-
ters in Tk and all even-layer clusters in T ′

k. The other
consists of the remaining clusters. The partitions are
of equal size, since the graph is completely symmet-
ric with regard to Tk and T ′

k. We choose q to be
the smallest prime power greater than or equal to
|Ṽ |/2 = ñ/2. In both partitions V1(G̃k) and V2(G̃k)
of G̃k, we uniquely label all nodes v with elements
c(v) ∈ � q .

Now, we choose q as described above and set r =
2k − 4 such that g(D(r, q)) ≥ 2k + 1. Let (p) =
(p1, . . .) and [l] = [l1, . . .] be two nodes of D(r, q).
(p) and [l] are connected by an edge in Gk if and
only if they are connected in D(r, q) and there is an
edge between nodes u ∈ V1(G̃k) and v ∈ V2(G̃k)
for which c(u) = p1 and c(v) = l1. Finally, nodes
without incident edges are removed from Gk. By
this process, each node in G̃k is replaced by q2k−5

new nodes in Gk. Further, a cluster Ci consists of all
nodes (p) and [l] which have their first coordinates
equal the labels of nodes in Ci. Therefore, the graph
Gk constructed as described is a cluster graph with

12

the degrees δi as in G̃k. Gk has ñq2k−5 nodes and
girth at least 2k + 1.

In order to bound the number of nodes, note that
because q is the smallest prime power greater than or
equal to ñ/2, we have q ≤ ñ. The sizes of clusters
decreases by a factor δ and the number of clusters
goes up by at most a factor k+1 per layer. Therefore,
if we assume that k + 1 ≤ δ/2, the number of nodes
on layer 0 is at least half of the total number of nodes,
i.e. ñ ≤ 2ñ0. As described above, we have ñ0 =
2δ2k+3 and therefore

n = ñq2k−5 ≤ 4δ2k+3
(

4δ2k+3
)2k−5

≤ 42kδ4k2

.

This concludes the proof. �
A.2 Proof of Lemma 4.5

The number of nodes per cluster decreases by a fac-
tor δ for each layer. A cluster on layer l contains
|S0|/δl nodes. By the definition of CGk, each clus-
ter has no more than k + 1 neighboring clusters on a
higher layer. Therefore, the number of nodes nl on
layer l is upper bounded by

nl ≤ (k + 1)l · |S0|
δl

.

Summing up over all layers l and interpreting the
sum as a geometric series, we obtain

n ≤ |S0| ·
k+1
∑

i=0

(

k + 1

δ

)l

≤ |S0| ·
∞
∑

i=0

(

k + 1

δ

)l

= |S0| + |S0|
(

k + 1

δ

)

(

1

1 − k+1
δ

)

= |S0|
(

1 +
k + 1

δ − (k + 1)

)

.

�
A.3 Proof of Theorem 4.7

We set k = β
√

log n/ log log n for an arbitrary con-
stant β > 0. Plugging this into the first lower bound
of Theorem 4.6, we get the following approximation
ratio α:

α ≥ γn
c log log n

β2 log n · 1

β

√

log log n

log n

where γ is the constant hidden in the Ω-notation. For
the logarithm of α, we get

log α ≥ c log log n

β2 log n
· log n − 1

2
· log log n − log β

=

(

c

β2
− 1

2

)

· log log n − log β.

and therefore

α ∈ Ω

(

log(n)

�
c

β2−
1
2 �) .

For every polylogarithmic term α(n), there is a con-
stant β such that the above expression is at least α(n)
and hence, the first lower bound follows.

The second lower bound follows from an analo-
gous computation by setting k = β log ∆/ log log ∆.

The lower bounds also hold for the construction of
maximal matchings because a maximal matching is
a 2-approximation for maximum matching. A max-
imal matching of a graph G = (V,E) corresponds
to a maximal independent set on the line graph of
G with node set E and edges between nodes corre-
sponding to edges with common end node in G.

�
A.4 Proof of Theorem 6.2

We begin the proof with the running time. The N
executions can be performed completely in parallel
and we therefore focus on one instance of the basic
algorithm. By Property (I), the topology collecting
and variable distribution in lines 3 and 7 can be per-
formed in O(k) time. The same holds for the graph
decomposition in line 1 by Property (III).

For the approximation ratio, we have to bound the
ratio of the factors by which the primal and the dual
variables are divided in the end. By Lemma 6.1, the
dual variables of each of the N sub-LPs constitute
a feasible solution for (DLP). Therefore, the sums
of the dual variables of the sub-LPs have to be di-
vided by at most N to obtain a feasible solution for
(DLP). For the primal variables, we have to count
the number occurrences in sub-LPs for each primal
constraint. This is lower-bounded by the number of
times each primal node has been chosen to be in S .
By (IV), for each primal node, the probability in each
of the N executions is at least 1/(en1/k). We use

13

Chernoff bounds to obtain an upper bound on the
probability that primal node v occurs in less than lnn
sub-LPs. Let X denote the number of times, v is cho-
sen by the graph decomposition algorithm:

P [X < lnn] <

(

α1/α

e1−1/α

)α lnn

=
eln α lnn

e(α−1) lnn
=

1

nα−1−ln α
<

1

n2

for α > 4.51. Thus, with probability at least 1−1/n
all primal variables can be divided by lnn. �

14

