
Research Collection

Report

Symbolic Test Case Generation for Primitive Recursive Functions

Author(s):
Brucker, Achim D.; Wolff, Burkhart

Publication Date:
2004-06

Permanent Link:
https://doi.org/10.3929/ethz-a-006744541

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-006744541
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH Technical Report 449

Symbolic Test Case Generation for
Primitive Recursive Functions

Achim D. Brucker∗ Burkhart Wolff†

June 1, 2004

Information Security
ETH-Zentrum

CH-8092 Zürich
Switzerland

We present a method for the automatic generation of test cases for HOL
formulae containing primitive recursive predicates. These test cases may be
used for the animation of specifications as well as for black-box-testing of
external programs.

Our method is two-staged: first, the original formula is partitioned into
test cases by transformation into a Horn-clause normal form (CNF). Second,
the test cases are analyzed for ground instances satisfying the premises of
the clauses. Particular emphasis is put on the control of test hypothesis’ and
test hierarchies to avoid intractability.

We applied our method to several examples, including AVL-trees and the
red-black implementation in the standard library from SML/NJ.

Keywords: symbolic test case generations, black box testing, theorem prov-
ing, Isabelle/HOL

∗brucker@inf.ethz.ch
†bwolff@inf.ethz.ch

1

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/
mailto:brucker@inf.ethz.ch
mailto:bwolff@inf.ethz.ch

2

1 Introduction

Today, essentially two validation techniques for software are used: software verification
and software testing. Whereas verification is rarely used in “real” software develop-
ment, testing is widely-used, but normally in an ad-hoc manner. Therefore, the attitude
towards testing has been predominantly negative in the formal methods community,
following what we call Djikstra’s verdict [10, p.6]:

“Program testing can be used to show the presence of bugs, but never to
show their absence!”

More recently, three research areas, albeit driven by different motivations, converge and
result in a renewed interest in testing techniques:

• Abstraction Techniques: model-checking raised interest in techniques to abstract
infinite to finite models. Provided that the abstraction has been proven sound,
testing may be sufficient for establishing correctness [5, 9].

• Systematic Testing: the discussion over test adequacy criteria [23], i.e. criteria
solving the question “when did we test enough to meet a given test hypothesis”,
led to more systematic approaches for partitioning the space of possible test data
and the choice of representatives. New systematic testing methods and abstraction
techniques can be found in [13, 11].

• Specification Animation: constructing counter-examples has raised interest also in
the theorem proving community, since combined with animations of evaluations,
they may help to find modeling errors early and to increase the overall productiv-
ity [22, 15, 8, 1].

The first two areas are motivated by the question “are we building the program right?”,
the latter is focused on the question “are we specifying the right program?”. While
the first area shows that Dijkstra’s Verdict is no longer true under all circumstances,
the latter area shows, that it simply does not apply in practically important situations.
In particular, if a formal model of the environment of a software system (e.g. based
among others on the operation system, middleware or external libraries) must be reverse-
engineered, testing (“experimenting”) is without alternative (see [7]).

Following standard terminology [23], our approach is a specification-based unit test. In
general, a test procedure for such an approach can be divided into:

• Test Case Generation: for each operation of the pre/post-condition relation is
divided into sub-relations. It assumes that all members of a sub-relation lead to a
similar behavior of the implementation.

• Test Data Selection: for each test case (at least) one representative is chosen so
that coverage of all test cases is achieved. From the resulting test data, test input
data processable by the implementation is extracted.

3

2 Symbolic Test Case Generation: A Guided Tour

• Test Execution: the implementation is run with the selected test input data in
order to determine the test output data.

• Test Result Verification: the pair of input/output data is checked against the
specification of the test case.

This paper has been inspired by [12], which follows the line of specification animation
works. In contrast, we see our contribution in the development of techniques mostly
on the first and to a minor extent on the second phase. Building on QuickCheck [8],
the work presented in [12] performs essentially random test, potentially improved by
hand-programmed external test data generators. It is well-known that random test
can be ineffective in many cases; in particular, if pre-conditions of a program based
on recursive predicates like “input tree must be balanced” or “input must be a typable
abstract syntax tree” rule out most of randomly generated data. In our approach, we will
exploit these predicates and other specification data in order to produce adequate data.
As a particular feature, the automated deduction-based process can log the underlying
test hypothesis made during the test; provided that the test hypothesis are valid for
the program and provided the program passes the test successfully, the program must
guarantee correctness with respect to the specification.

We proceed as follows: we will introduce to our implementation (built on top of
the theorem prover Isabelle/HOL [19]) by a tiny, but classical example (Sec. 2). This
demonstration serves as a means to motivate concepts like testing normal form, test
cases, test statements, test animations and test scripts. In Sec. 3, we will discuss the test
case generation, in Sec. 4 the (structured) test statement generation. Finally, we apply
our technique to a number of non-trivial examples (Sec. 5) involving recursive datatypes
and recursive functions over them.

2 Symbolic Test Case Generation: A Guided Tour

Our running example for automatic test case generation is described as follows: given
three integers representing the lengths of the sides of a triangle, a small algorithm has
to check, whether these integers describe an equilateral, isosceles, scalene triangle, or no
triangle at all. First we define an abstract datatype describing the possible results in
Isabelle/HOL:

datatype Triangles := equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an auxiliary
predicate deciding if the three lengths are describing an triangle:

constdefs triangle :: [nat,nat,nat] → bool
triangle x y z ≡ (0 < x) ∧ (0 < y) ∧ (0 < z) ∧ (z < x + y)

∧(x < y + z) ∧ (y < x + z)

Now we define the behavior of the triangle program by initializing a Isabelle proof state
with the test specification TS :

4

prog(x, y, z) = if triangle x y z then
if x = y then

if y = z then equilateral else isosceles
else if y = z then isosceles

else if x = z then isosceles else scalene
else error

Note that the variable prog to is used to label an arbitrary implementation as the current
program under test that should fulfill the specification.

In the following we show how test package TestGen can be applied for the automatic
test data generation for the triangle problem. Our method proceeds in the following
steps:

1. By applying gen_test_case_tac we bring the proof state into testing normal
form (TNF). In this example, we decided to generate test-cases up to depth 0
(discussed later) and to unfold the triangle predicate by its definition (denoted by
triangle def):

gen test case tac 0 [triangle def] “prog”

In our example, this leads to a formulae with 26 clauses, among them:

[[0 < z; z < z + z]] =⇒ prog(z, z, z) = equilateral[[
x 6= z; 0 < x; 0 < z;

z < x + z;x < z + z; z < x + z

]]
=⇒ prog(x, z, z) = isosceles

[[y 6= z; z 6= y;¬z < z + y]] =⇒ prog(z, y, z) = error
[[y 6= z; z 6= y;¬z < z + y]] =⇒ prog(z, y, z) = error

We call each Horn clause of the proof state a symbolic test case. The result of
gen_test_case_tac is a test theorem describing the list of symbolic test cases.
We extract the test theorem of the proof state and insert it into a specific data
structure provided by TestGen, namely a test environment env, that captures all
data relevant to a test:

val env = (“prog”, topthm()) add test case mt testenv

Here, mt testenv is the empty test environment and add test case the (infix)
insertion operation. The Isabelle operation topthm() extracts the current proof
state as theorem of the form [[A1; . . . ;A26]] =⇒ TS where the Ai abbreviate the
above test cases.

All symbolic test cases for the triangle example are presented in Tab. 1. The result
is roughly equivalent to the one presented in [11] where a disjunctive normal form
(DNF) was used. The only difference is, that we allow 0 ∈ N as input whereas [11]
allowed specified triangle over the natural numbers excluding 0.

5

2 Symbolic Test Case Generation: A Guided Tour

1. Test Cases for equilateral triangle:

0 < z → prog(z, z, z) = equilateral

2. Test Cases for isosceles triangle:

[[x 6= z;x < z + z; 0 < x]] =⇒ prog(x, z, z) = isosceles
[[y 6= z; y < z + z; 0 < y]] =⇒ prog(z, y, z) = isosceles
[[y 6= z; z < y + y; 0 < z]] =⇒ prog(y, y, z) = isosceles

3. Test Cases for scalene triangle:

[[y 6= z;x 6= z;x 6= y;x < y + z; z < x + y; y < x + z]] =⇒ prog(x, y, z) = scalene

4. Test Cases for triangle :

a) At least one input is equal to 0 (note, Dick and Faivre are using: x, y, z ∈ N1):

z = 0 =⇒ prog(0, 0, 0) = error
[[0 < x; z = 0]] =⇒ prog(x, 0, 0) = error
[[0 < y; z = 0]] =⇒ prog(0, y, 0) = error
[[0 < z; y = 0]] =⇒ prog(0, 0, z) = error
[[0 < z;x = 0]] =⇒ prog(0, z, z) = error
[[0 < z; y = 0]] =⇒ prog(z, 0, z) = error
[[0 < y; z = 0]] =⇒ prog(y, y, 0) = error

[[0 < z; y 6= z; 0 < y;x = 0]] =⇒ prog(0, y, z) = error
[[x 6= z; 0 < z; 0 < x; y = 0]] =⇒ prog(x, 0, z) = error
[[0 < x; 0 < y;x 6= y; z = 0]] =⇒ prog(x, y, 0) = error

b) Input not satisfying triangle property:

[[x 6= z; z + z ≤ x]] =⇒ prog(x, z, z) = error
[[y 6= z; z + z ≤ y]] =⇒ prog(z, y, z) = error
[[y 6= z; y + y ≤ z]] =⇒ prog(y, y, z) = error

[[y 6= z;x 6= z;x 6= y;x + y ≤ z]] =⇒ prog(x, y, z) = error
[[y 6= z;x 6= z;x 6= y; y + z ≤ x]] =⇒ prog(x, y, z) = error
[[y 6= z;x 6= z;x 6= y;x + z ≤ y]] =⇒ prog(x, y, z) = error

Table 1: Test Cases for the Triangle Problem

6

2. Finally, we compute the concrete test data by grounding the symbolic test cases
for “prog” in the environment by genadd test data (the parameter 3 controls the
number of generated tests):

val env = genadd test data (“prog”, 3) env;
get test data(env, “prog”);

The latter operation selects the generated data from the test environment and
shows the list of the so-called test statements (excerpt):

prog(3, 3, 3) = equilateral
prog(4, 6, 0) = error

In the triangle example, standard simplification was able to eliminate the assumptions
of the (grounded) test cases automatically. In general, assumptions in test statements
(also called constraints) may remain. Provided that all test statements are executable,
clauses with constraints can nevertheless be interpreted as an abstract test program. For
its result, three cases may be distinguished: If one of the clauses evaluates to false, the
test is invalid, otherwise valid. A valid test may be successful, iff the evaluation of all
conclusions (including the call of prog) also evaluates to true; otherwise the test contains
at least one failure. Rephrased in this terminology, the ultimate goal of the test data
selection is to construct successful tests, which means that ground substitutions must
be found that make the remaining constraints valid.

Coming back to our example, there is a viable alternative for the proceeding above:
instead of unfolding triangle and trying to generate ground substitutions satisfying
the constraints, one may keep triangle in the test theorem, treating it as a building
block for new constraints. It turns out that an own test theorem and test data (like
“triangle(3, 4, 5) = True”) can be generated “once and for all” and inserted before the
test data selection phase. Thus, the main state explosion (leading to 26 test cases for
this tiny example) is shifted from the test case generation to the test data selection step.
We will discuss this approach to modularized test data generation in Section 4.

Having generated a sequence of test statements, the question remains if it is executable,
i.e. if the underlying Isabelle code-generator [4] can convert it to SML code. This ques-
tion boils down to a purely syntactic one: a specification is executable iff all constants
(except the name the program under test) occurring in the test statements must be
either constructors or functions for which primitive or well-founded recursive definitions
are available; thus, the Hilbert-operator or unbounded quantifiers are excluded in the
test statements.

Further, for executable test statements the TestGen-module provides additional meth-
ods for:

• Test Harness Generation: the gen_testscript method generates an SML-based
test script where the name of the program under test is mapped to external proce-
dure calls. This allows for testing real implementations. Programs written in other

7

3 Concepts of Test Case Generation

languages (e.g. Java or C) can be tested by linking them as “external functions”
to the SML environment. Our test harness generator is mainly a specific setup of
the Isabelle code-generator.

• Animation: the animate method allows for the evaluation of the test statements in
a test environment on a stepwise basis. This may be an alternative way to debug
definitions early.

3 Concepts of Test Case Generation

As input of the test case generation phase, namely the test specification, one might
expect a special format like pre(x) → post x (prog(x)). However, this would rule out
trivial instances such as 3 < prog(x) or just prog(x) (meaning that prog must evaluate
to True for x). Therefore, we do not impose any other restriction on a specification other
than being executable.

Processing this test specification, our method gen_test_case_tac can be separated
into the following conceptual phases (in reality, these phases were performed in an inter-
leaved way):

• Tableaux Normal Form Computation: via a tableaux calculus (see Tab. 2), the
current specification is transformed into Clause Normal Form (CNF).

• Rewriting Normal Form Computation: via the standard rewrite rules the current
specification is simplified.

• TNF Computation: by re-ordering of the clauses, the calls of the program under
test are re-arranged such that they only occur in the conclusion, where they must
occur at least once.

• TNF Minimization: redundancies, e.g. clauses subsumed by others are eliminated.

• Exploiting Uniformity Hypotheses: for free variables occurring in recurring argu-
ment positions of primitive recursive predicates, a suitable data separation lemma
is generated and applied (leading to a test hypothesis labeled by THYP).

• Exploiting Regularity Hypothesis: for all Horn-clauses not representing a test-
hypothesis, a uniformity hypothesis is generated and exploited.

After a brief introduction into concepts and use of Isabelle in our setting, we will follow
the sequence of these phases and describe them in more detail in the subsequent sections.
We will conclude with a discussion of coverage criteria.

3.1 Concepts and Use of Isabelle/HOL

Isabelle [19] is a well-known generic theorem prover system of the LCF prover family;
as such, we use the possibility to build on top of the logical core engine own programs
performing symbolic computations over formulae in a logically safe (conservative) way:

8

3.2 Normal Form Computations

this is what TestGen technically is. Throughout this paper, we will use Isabelle/HOL,
the instance for Church’s higher-order logic. Isabelle/HOL offers support for data types,
primitive and well-founded recursion, and powerful generic proof engines based on rewrit-
ing and tableaux provers.

Isabelle’s proof engine is geared towards Horn clauses (called “subgoals”): A1 =⇒
. . . =⇒ An =⇒ An+1, written [[A1; . . . ;An]] =⇒ An+1, is viewed as a rule of the form
“from assumptions A1 to An, infer conclusion An+1”. A proof state in Isabelle contains an
implicitly conjoint sequence of Horn-clauses φ1,. . . ,φn and a goal φ. Since a Horn-clause:

[[A1; . . . ;An]] =⇒ An+1

is logically equivalent to
¬A1 ∨ · · · ∨ ¬An ∨An+1,

a Horn-clause normal form is a conjunctive normal form. Note, that in order to cope
with quantifiers naturally occurring in specifications, we generalize the idea of a Horn-
clause to Isabelle’s format of a subgoal, where variables may be bound by a built-in
meta-quantifier: ∧

x1, . . . , xm.[[A1; . . . ;An]] =⇒ An+1

Subgoals and goals may be extracted via topthm() (see previous section) to the theo-
rem [[φ1; . . . ;φn]] =⇒ φ; this mechanism is used to generate test theorems. The meta-
quantifier

∧
is used to capture the usual side-constraints “x must not occur free in the

assumptions” for quantifier rules; meta-quantified variables can be considered as free
variables. Further, Isabelle supports meta-variables (written ?x, ?y, . . .), which can be
seen as “holes in a term” that can still be substituted. Meta-variables were instantiated
by Isabelle’s built-in higher-order unification.

3.2 Normal Form Computations

In this section, we describe the tableaux, rewriting and testing normal form computations
in more detail. In Isabelle/HOL, the automated proof procedures for HOL formulae
heavily depend on tableaux calculi [14] presented as (derived) natural deduction rules.
The core tableaux calculus is shown in Tab. 2 in the Appendix. Note, that with the
notable exception of the elimination rule for the universal quantifier (see Tab. 2(c)), any
rule application leads to a logically equivalent proof state: therefore, all rules (except ∀
elimination) are called safe. When applied bottom up in backwards reasoning (which
may introduce meta-variables explicitly marked in Tab. 2), the technique leads in a
deterministic manner to a Horn-clause normal form.

Horn-clauses can be normalized by a number of elementary logical rules (such as
False =⇒ P = True), the usual injectivity and distinctness rules for constructors implied
by datatypes and computation rules resulting from recursive definitions. Both processes
together bring an original specification into Rewriting Horn-clause normal form.1

1Both processes were covered by the standard Safe_tac procedure.

9

3 Concepts of Test Case Generation

However, these forms do not exclude clauses of the form:

[[¬(prog x = c);¬(prog x = d)]] =⇒ An+1

where prog is the program under test. However, this clause can be transformed equiva-
lently into:

[[¬(An+1)]] =⇒ prog x = c ∨ prog x = d

We call this form of Horn-clauses testing normal form (TNF). More formally, a Horn-
clause is in TNF (F) for program under test F, iff:

• F does not occur in the constraints,

• F does occur in the conclusion.

Note that not all specifications can be converted to TNF. For example, if the speci-
fication does not make a suitably strong constraint over program F , in particular if F
does not occur in the specification. In such cases, gen_test_case_tac stops with an
exception.

3.3 Minimizing TNF

A TNF computation as described so far may result in a proof state with several redun-
dancies. Redundancies in a proof state may result in superfluous test data and should
therefore be eliminated. A proof state may have:

1. several occurrences of the identical clauses

2. several occurrences of clauses with subsuming assumption lists; this can be elimi-
nated by the transformation:

[[P ;R]] =⇒ A; [[P ;Q;R]] =⇒ A;
==========================

[[P ;R]] =⇒ A;

3. and in particular, clauses that subsume each other after distribution of ∨; this can
be eliminated by the transformation:

[[P ;R]] =⇒ A; [[¬P ;Q]] =⇒ B; [[R;Q]] =⇒ A ∨B;
===

[[P ;R]] =⇒ A; [[¬P ;Q]] =⇒ B;

The notation above refers to logical transformations on a subset of clauses within a proof
state and not, as usual, on formulae within a clause. Since in backward proof the proof
state below is a refinement of the proof state above, the logical implication goes from
bottom to top.

We implemented a couple of new tactics that order premises and meta-quantifiers in
a clause and erase subsumed clauses. Amazingly, Isabelle 2003 provides only for some
rudimentary cases a standard tactic; our normalizations of proof states are therefore
reusable for other logics than HOL, too.

10

3.4 Exploiting Uniformity Hypothesis for Recursive Predicates

3.4 Exploiting Uniformity Hypothesis for Recursive Predicates

In the following, we address the key problem of test case generation in our setting, i.e.
recursive predicates occurring in preconditions of a program. As a introductory example,
we consider the membership predicate of an element in a list:

primrec x mem [] = False
x mem (y#ys) = if y = x thenTrue elsex mem ys

(1)

which occurs as precondition in an (abstract) program specification:

[[x mem S]] =⇒ prog x S

Gaudel suggested in [13] for the testing of recursive data structures the introduction of
a uniformity hypothesis as one possible form of a test hypothesis in our sense, a kind of
weak induction rule:

[|x| < k]··
P x

P x
This rule formalizes the hypothesis that, provided a predicate P is true for all data x
whose size, denoted by |x|, is less then a given depth k, it is always true. The original
rule can be viewed as a meta-notation: In a rule for a concrete data-type, the premises
|x| < k can be expanded to a number of premises enumerating constructor-terms. Using
uniformity hypothesis’ is related to bounded model-checking [5].

For all variables in Horn-clauses that occur as (recurring) arguments of primitive
recursive functions, we will use a testing hypothesis of this kind — called data separation
lemma — in a little exercise in poly-typic theorem proving [21] described in the following.

The Isabelle/HOL datatype package generates from datatype definitions a couple of
definitions of poly-typic functions (like case-match and recursors) and derives a number of
theorems over them (like induction, distinctness of constructors, etc.). In particular, for
any datatype, we can assume the size function and reduction rules allowing to compute∣∣[a, b, c]

∣∣ = 3, for example. Moreover, there is an exhaustion-theorem, which for example
has for lists the form:

[[y = [] =⇒ P ;
∧

x xs.y = x#xs =⇒ P]] =⇒ P

Now, since we can separate any data x belonging to a datatype τ into:

x ∈ {z :: τ.|z| < d} ∨ x ∈ {z :: τ.d ≤ |z|}

i.e. x is either in the set of data smaller d or in the remaining set. Note that both sets are
infinite in general; the bound for the size produces “data test cases” and not just finite
sets of data. Consequently, we can derive for each given type τ and each d a destruction
rule that enumerates the data of size 0, 1, . . . , k − 1. For lists and d = 2, 3, it has the
form:

x : {z :: α list.|z| < 2} → x = [] ∨ (∃a.x = [a])
x : {z :: α list.|z| < 3} → x = [] ∨ (∃a.x = [a]) ∨ (∃ab.x = [a, b])

11

3 Concepts of Test Case Generation

Putting the lemma3.4 together with the destruction rule for d = 2, instead of the unsafe
uniformity hypothesis in the sense of Gaudel we get the (safe) data separation lemma of
the form:[

x = []
]

··
P (x)

∧
a.

[
x = [a]

]
··

P (x)
∧

ab.

[
x = [a, b]

]
··

P (x) THYP(2 ≤ |x| → P (x))

P (x)

The purpose of this rule in backward proof is to split a statement over a program into
several cases, each with an additional assumption that allows to “rewrite-away” the x
appropriately. Here, the constant THYP :: bool → bool (defined as the identity function)
is used to label the test hypothesis in the proof state. Since we do not unfold it, formulas
labeled by THYP are protected from decomposition by the tableaux rules.

The introduced equalities by this rule of depth d = 2 allows for the simplification of
the primitive recursive predicate mem which leads to further decompositions during the
TNF computation. Thus, for our little example:

x mem S → prog x S

executing gen test case tac 3 [] “prog” results in the following TNF (prog):

1. prog x [x]

2.
∧

b.prog x [x, b]

3.
∧

a.a 6= x → prog x [a, x]

4. THYP(3 ≤ |S| → x mem S → prog x S)

The simplification of the mem predicate along its defining rules (1) leads to nested
“if thenelse” constructs. Their decomposition during CNF computation results in the
constraint that the lists fulfilling the precondition must have a particular structure. Even
the simplest “generate-and-test”-method for test data selection will now produce ade-
quate test statements, while it would have produced mostly test failures when applied
directly to the original specification!

The handling of quantifiers ranging over datatypes can be done analogously: since
∀x.P (x) is equivalent to ∀x : UNIV .P (x) and since UNIV = {z :: τ.|z| < d} ∪ {z :: τ.d ≤
|z|}, the universal quantifier can be decomposed in a finite conjunction for the test cases
smaller d and a test hypothesis THYP for the rest.

From the above example it follows that the general form of a test theorem (to be
extracted by topthm()) is [[A1; . . . ;An; THYP(H1); . . . ; THYP(Hm)]] =⇒ TS . Here the Ai

represent the test cases, the Hi the test hypothesis and TS the testing specification.

3.5 Exploiting Regularity Hypothesis

After introducing the regularity hypothesis and computing a TNF (except for clauses con-
taining THYP’s), we use the Horn-clauses to construct another form of testing hypothesis,

12

3.6 Coverage Criteria: A Discussion

namely the regularity hypothesis [13] (sometimes also called partitioning hypothesis) for
each test case. This kind of hypothesis has the form:

THYP(∃x.P (x) → ∀x.P (x))

This means that whenever there is a successful test for a test case, it is assumed that
the program will behave correctly for all data of this test case.

Using a uniformity hypothesis for each (non-THYP) clause allows for the replacement
of free variables by meta-variables; e.g. for the case of two free variables, we have the
following transformation on proof states:

[[A1 x y; . . . ;An x y]] =⇒ An+1 x y
===
[[A1 ?x ?y; . . . ;An ?x ?y]] =⇒ An+1?x ?y; THYP((∃xy.P x y) → (∀xy.P x y));

where P x y ≡ A1 x y ∧ . . . ∧ An x y → An+1 x y. This transformation is logically
sound.2 Moreover, the construction introduces individual meta-variables in each clause
for the ground instances to be substituted in the test data selection; this representation
also paves the way for structured test data reuse (see Sec.4).

3.6 Coverage Criteria: A Discussion

In their seminal work Dick and Faivre [11] propose to transform the original specification
into disjunctive normal form (DNF), followed by a case splitting phase converting the
disjunctions A∨B into A∧B, ¬A∧B and A∧¬B and further (logical and arithmetic)
simplifications and minimizations on the disjunctions. The resulting cases are also called
the partitions of the specification or the (DNF) test cases. The method suggests the
following test adequacy criterion: a set of test data is partition complete, iff for any test
case there is a test data. Consequently, a program P is tested adequately to partition
completeness with respect to a specification S, if it passes a partition complete test data
set.

Our notion of successful test, see Sec. 2, is a CNF based adequacy criterion; similar
criterion are also used e.g. in [16]. DNF and CNF based adequacy result in the same
partitioning in many practical cases, as in the triangle-example, while having no clear-cut
advantage in others. Since the DNF technique has the disadvantage to produce a double
exponential blow-up (the case splitting phase can produce an exponential blow-up in it
its own) while CNF computation is simply exponential, and since DNF-computation can
be more directly and efficiently implemented in the Isabelle proof engine, we chose the
latter.

Interestingly, CNF adequacy subsumes another interesting adequacy criterion under
certain conditions, namely path coverage with respect to the specification. Path coverage
means that in any (mutual) recursive system of functions, all reachable paths, e.g. of the
if P then A else B statements, were activated at least once. For a mutual recursive
system consisting only of primitive recursive functions, (i.e. with each call the size of
data will decrease exactly by one), it can be concluded that if the testing depth d is

2It consists of subgoals_tac and a number of steps re-arranging the quantifiers.

13

4 Structured Test Data Selection

chosen larger than the size of the maximal strong component of the call graph of the
recursive system, each function is unfolded at least once. Since the unfolds results in
conditionals that were translated to (P → A) ∧ (¬P → B), any branch will lead to a
test case.

Thus, while gen_test_case_tac often produces reasonable results for arbitrarily re-
cursive functions, only for primitive recursions we can assure that the underlying CNF
adequacy of our method subsumes path coverage.

4 Structured Test Data Selection

The motivations to separate test data selection from test case generation are both con-
ceptual and technical. Conceptually, test data selection is a process where we would
like to admit also more heuristic techniques like random data generation or generate-
and-test with the constraints. Test data selection yields sequences of ground theorems
(no meta-variables, no type variables); this paves the way for more efficient inference
techniques such as evaluation by code generation desperately needed in the unavoidable
blow-up in the late stages. Last but not least, there is a purely technical reason to sep-
arate test cases from test data statements: since both were represented by the Isabelle
data structure thm, and since the scope of polymorphic variables is limited to a thm, a
test case can not be further refined to a conjunction with the type variables differently
instantiated.

The generation of a multitude of ground test statements from one test theorem con-
taining the test cases and the test hypothesis is essentially based on a random-procedure
followed by a test of the satisfaction of the constraints (thus: generate and test). For each
type, this default procedure may be overwritten in TestGen specific generators that may
be user defined; thus, the usual heuristics like trying [0, 1, 2,maxint ,maxint + 1] can be
easily implemented, or the counter-example generation of integrated in Isabelle’s arith-
metic procedure can be plugged in (which is difficult to control in larger examples in our
experience).

Now we will discuss the issue of structured test data generation. Similar to theorem
proving, the question of “how many definitions should be unfolded” is crucial: exploiting
the structure and organization of a specification is the major weapon against complexity.
Our approach of structured test data generation is best described at our running triangle-
example. It contains a auxiliary predicate triangle; our previous attempt shown in Sec. 2
to generate a test theorem was based on simply unfolding it. The test case generation
resulted in 31 cases, which was acceptable since the test theorem had still a reasonable
size and since the output was acceptable for an automated test procedure. If we do not
unfold it, i.e. just call:

gen test case tac 2 [] “prog”

the resulting test theorem had only 6 test cases. Thus, a substantial part of the blow-up
could be shifted into the test data selection, if we could generate a test theorem for
triangle as such, generate the test data separately and feed test statements for it into
the process for the global computation. The trick can be done as follows: we define a

14

trivially true proof goal for:

prog(x, y, z) = triangle x y z =⇒ prog(x, y, z) = triangle x y z

unfold triangle and compute TNF(prog). When folding back triangle via the assumption
we get the following test cases:

¬0 < x =⇒ ¬triangle x y z ¬z < x + y =⇒ ¬triangle x y z
¬0 < y =⇒ ¬triangle x y z ¬x < y + z =⇒ ¬triangle x y z
¬0 < z =⇒ ¬triangle x y z ¬y < x + z =⇒ ¬triangle x y z[[

0 < x; 0 < y; 0 < z;
z < x + y;x < y + z; y < x + z

]]
=⇒ triangle x y z

which can be inserted into the current test environment. The resulting test data state-
ments (e.g. ¬triangle 0 3 5) can now be resolved directly into the global test theorem for
prog. Thus, the test cases of previously developed theories can be reused when building
up larger units. Of course, when building up test data in a modular way, this comes
at a price: since the “local test theorems” are more abstract and have not the same
logical information available as their application context in a more global test theorem,
the instantiation may result in unsatisfiable constraints. Nevertheless, since the criterion
for success of a decomposition is clear — at the very end we want constraint-free test
statements achieving a full coverage of the TNF— the implementor of a test has several
choices here that can lead to success even in larger problems. In our example, there
is no loss at all: the auxiliary predicate is just the right abstraction for the whole test
data generation: test data for the local predicate is valid for the global goal, and by
construction, the set of test statements is still partition complete.

5 Examples

In this section we will demonstrate TestGen on two widely used variants of balanced
binary search trees: AVL trees and red-black trees. These case studies were performed
using Isabelle 2003 compiled with SML of New Jersey running on Linux with 512 MByte
of RAM and an Intel P4 processor with 1.6 GHz.

5.1 AVL Trees

In 1962 Adel’son-Vel’skĭı and Landis [2] introduced a class of balanced binary search
trees that guarantee that a tree with n internal nodes has height O(log n). This is done
by ensuring the invariant that for every node the height of the subtrees differs at most by
one. For ensuring this invariant the trees are rebalanced after each insertion by so called
rotations. After an insertion Θ(log n) rotations may be needed to assure the balancing
invariant.

We used an AVL-theory from the Isabelle library to test the following invariant: the
insert functions really inserts an element in a given tree. To be more precise: if an

15

5 Examples

element y is in the tree after insertion of x in the tree t then either x = y holds or y was
already stored in t. This can be stated as follows:

isin y (insert x t) = (y = x ∨ isin y t)

Based on the depth d = 3, this test specification leads to amazing 236 test cases which
were computed in less than 30 seconds.

5.2 Red-Black Trees

Another idea for balanced binary search trees was presented by Bayer [3]. In this data
structure, the balancing information is stored in one additional bit per node. This is
called “color of a node” (which can either be red or black). A valid Red-Black tree
assumes the following properties:

• Red Invariant: each red node has a black parent.

• Black Invariant: each path from the root to an empty node has the same number
of black nodes.

For our case study we used a formalization of the red-black trees of the standard library
of SML of New Jersey (based on version 110.44) presented in [18] and used the generated
test data to test the real implementation. The implementation of Red-Black trees is
mainly based on the following datatype declaration:

datatype color = R | B
α tree = E | T color (α tree) (α item) (α tree)

In this example we have chosen not only to check if keys are stored or deleted correctly
in the trees but also to check if the trees fulfill the balancing invariants. We formalize
the red and black invariant by recursive predicates:

consts
redinv :: (α item) tree ⇒ bool
blackinv :: (α item) tree ⇒ bool

recdef redinv“measure (λt.(size t))”
“redinv E = True”
“redinv (T B a y b) = (redinv a ∧ redinv b)”
“redinv (T R (T R a x b) y c)= False”
“redinv (T R a x (T R b y c))= False”
“redinv (T R a x b) = (redinv a ∧ redinv b)”

recdef blackinv“measure (λt.(size t))”
“blackinvE = True”
“blackinv(T color a y b) = ((blackinv a) ∧ (blackinv b)

∧((max B height a) = (max B height b)))”

16

2

5

6

8

(a) pre-state

5

2

6

(b) result of SML/NJ

6

5

2

(c) correct result

Figure 1: Test Data for deleting a node in a Red-Black tree

As test specification we state:

(isin x t ∧ redinv t ∧ blackinv t) → (redinv (delete x t) ∧ blackinv (delete x t))

In other words, for all trees the deletion operation maintains the red and black invariant.
The test case generation takes less than two minutes and results in 348 test cases. Test
data instantiating item with Integers revealed a major error in the standard library of
SML of New Jersey. Assuming the red-black tree presented in Fig. 1(a), deleting the
node with value 8 results in the tree presented in Fig. 1(b) which obviously violates the
black invariant (the expected result is the balanced tree in Fig. 1(c)).

This example shows that specification based testing can test invariants crucial for
efficiency; violations against them are hard to detect otherwise. Combinations of insert -
and delete operations of the SML implementation lead easily to trees that degenerate
to (still sorted) lists. In our case, the revealed flaw has not been detected in the last 12
years, although used, e.g, for implementing finite sets.

6 Conclusion

We have presented the theory and implementation of a test data generator for unit tests
of functional programs. It allows for exploiting the structure of specifications both on
the level of theories or testing theorems helping to control the case explosion inherent to
testing. In our view, test data generation is an activity that clearly needs user interaction
and that is therefore best supported by an integration into interactive theorem proving
environment such as Isabelle. Our structure exploiting approach offers also the advantage
to be applicable to regression testing.

The underlying rationale of our test case generation approach is to separate a specifi-
cation P into a part Pfin which can be shown by a finite evaluation and a test hypothesis
part THYP(Pfin → P). In this view, “The Art of Formal Testing” consists in finding
tractable methods for this separation, minimizing both the number of test cases, test
hypothesis and introducing as weak test hypothesis as possible. The kind of test hy-

17

References

pothesis admissible for a test case generation is of course a crucial point in any formally
founded systematic test method.

As a hidden agenda of this paper, we believe that there is another line of criticism
against Dijkstra’s verdict. A successful test together with explicitly stated test hypoth-
esis is not fundamentally different from any other scientific discipline, in particular pro-
gram verification itself: here, also all sorts of modeling assumptions were made over
the target machine (deterministic), the programming language (correctly implemented),
the verification logics (consistent) and its implementation (the prover is correct). The
nature and trustworthiness of these assumptions may be different, but a clear-cut line
between testing and verification does not exist.

6.1 Further Work

We see the following lines of extension of our work:

1. investigating test hypothesis: new test hypothesis (like congruence hypothesis on
data, for example) may dramatically improve the viability of the approach. Fur-
thermore, it should be explored if the verification of test hypothesis for a given
abstract program offers new lines of automation.

2. better control of the process: at the moment, our implementation can only be
controlled by very globally applied parameters such as depth. The approach could
be improved by generating the test hypothesis and the test data depending from
the local context within the test theorems.

3. integration tests: integrating/combining our framework into behavioral modeling
leads to the generation of test sequences as in [17, 20],

4. generating test data for many-valued logics such as HOL-OCL [6] should make our
approach applicable to formal methods more accepted in industry.

References

[1] Programatica: Integrating programming, properties, and validation. http://www.
cse.ogi.edu/PacSoft/projects/programatica/.

[2] G. M. Adel’son-Vel’skĭı and E. M. Landis. An algorithm for the organization of
information. Soviet Mathematics Doklady, 3:1259–1263, 1962.

[3] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290–306, 1972.

[4] S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan, Z. Luo,
J. McKinna, and R. Pollack, editors, TYPES 2000, volume 2277 of LNCS, pages
24–40. Springer-Verlag, 2002.

18

http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/

References

[5] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking.
Number 58 in Advances In Computers. 2003.

[6] A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics in Isabelle/HOL.
In C. Muñoz, S. Tahar, and V. Carreño, editors, TPHOLs, volume 2410 of LNCS,
pages 99–114. Springer-Verlag, Hampton, VA, USA, 2002.

[7] A. D. Brucker and B. Wolff. A case study of a formalized security architecture.
In Electronic Notes in Theoretical Computer Science, volume 80. Elsevier Science
Publishers, 2003.

[8] K. Claessen and J. Hughes. Quickcheck: a lightweight tool for random testing of
haskell programs. In Proceedings of the fifth ACM SIGPLAN international confer-
ence on Functional programming, pages 268–279. ACM Press, 2000.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252. ACM Press, 1977.

[10] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming, volume 8
of A.P.I.C. Studies in Data Processing. Academic Press, London, 3 edition, 1972.

[11] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from
model-based specications. In J. Woodcock and P. Larsen, editors, FME 93, volume
670 of LNCS, pages 268–284. Springer-Verlag, 1993.

[12] P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in de-
pendent type theory. In D. Basin and B. Wolff, editors, TPHOLs, volume 2758 of
LNCS, pages 188–203. Springer-Verlag, Rome, Italy, 2003.

[13] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, editors, TAPSOFT 95, volume 915 of LNCS, pages 82–96. Springer-
Verlag, Aarhus, Denmark, 1995.

[14] R. Hähnle. Tableaux for many-valued logics. In M. D’Agostino, D. Gabbay,
R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 529–580.
Kluwer, Dordrecht, 1999.

[15] S. Hayashi. Towards the animation of proofs—testing proofs by examples. Theoret-
ical Computer Science, 272(1–2):177–195, 2002.

[16] R. M. Hierons. Testing from a z specification. The Journal of Software Testing,
Verification, and Reliability, 1(7), 1997.

[17] F. Huber, B. Schätz, A. Schmidt, and K. Spies. AutoFocus - a tool for distributed
systems specification. In FTRTFT 96, volume 1135 of LNCS, pages 467–470.
Springer-Verlag, 1996.

19

References

[18] A. Kimmig. Red-black trees of smlnj. Studienarbeit, Universität Freiburg, Freiburg,
2003.

[19] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[20] A. Pretschner. Classical search strategies for test case generation with constraint
logic programming. In E. Brinksma and J. Tretmans, editors, Proc. Formal ap-
proaches to testing of software, pages 47–60. BRICS, 2001.

[21] K. Slind and J. Hurd. Applications of polytypism in theorem proving. In D. Basin
and B. Wolff, editors, TPHOLs, number 2758 in LNCS, pages 103–119. Springer-
Verlag, Rome, Italy, 2003.

[22] The ZETA system, 2001. http://uebb.cs.tu-berlin.de/zeta/.

[23] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, 1997.

20

http://uebb.cs.tu-berlin.de/zeta/

Appendix

P ?x

∃x.P x

∧
x.P x

∀x.P x

(a) quantifier introduction rules

t = t True

P Q

P ∧Q

[¬Q]··
P

P ∨Q

[P]··
Q

P → Q

[P]··
False

¬P

[P]··
Q

[Q]··
P

P = Q

(b) safe introduction rules

∀x.P x

[P ?x]··
R

R

∀x.P x

[∀x.P x; P ?x]··
R

R

(c) unsafe elimination rules

∃x.P x
∧

x.

[P x]··
Q

Q

P ∧Q

[P Q]··
R

R

P ∨Q

[P]··
R

[Q]··
R

R

P → Q

[¬P]··
R

[Q]··
R

R

False

P

P = Q

[P Q]··
R

[¬P ¬Q]··
R

R

(d) safe elimination rules

if P then A else B = (P → A) ∧ (¬P → B)

(e) rewrites

Table 2: The Standard Tableaux Calculus for HOL

	Introduction
	Symbolic Test Case Generation: A Guided Tour
	Concepts of Test Case Generation
	Concepts and Use of Isabelle/HOL
	Normal Form Computations
	Minimizing TNF
	Exploiting Uniformity Hypothesis for Recursive Predicates
	Exploiting Regularity Hypothesis
	Coverage Criteria: A Discussion

	Structured Test Data Selection
	Examples
	AVL Trees
	Red-Black Trees

	Conclusion
	Further Work

