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† Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene–Oligocene
(E–O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of
South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these
climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic
is investigated by using the worldwide sapindaceous clade as a case study.
† Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeog-
raphy) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification
analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are ana-
lysed in the context of past climatic fluctuations.
† Key Results An increase in the numberof dispersal events at the E–O boundary is recorded, which intensified during
the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed
in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts
between areas and additional speciation across landmasses derived from Laurasia and Gondwana.
† Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence
of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E–O climate change that shifted
the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade.

Key words: Biogeography, climate change, diversification, Eocene–Oligocene boundary; Sapindaceae; South-
East Asia.

INTRODUCTION

Although not considered as one of the ‘Big five’ mass extinctions
(Jablonski, 2001), the abrupt cooling near the Eocene–
Oligocene (E–O) boundary, approx. 33.7 million years ago
(Ma), had great impacts on biodiversity (Katz et al., 2008;
Zhonghui et al., 2009). During this period, Earth’s climate
shifted from a relatively ice-free world to one with glacial condi-
tions in polar regions characterized by substantial ice sheets
(Bowen, 2007). In a relatively short time span, high-latitude
(45–70 8 in both hemispheres) temperatures decreased from
approx. 20 8C to approx. 5 8C (Zhonghui et al., 2009).
Explanations for this cooling include changes in ocean circula-
tion due to the opening of Southern Ocean gateways, a decrease
in atmospheric CO2 and a decrease in solar insulation (see
Zhonghui et al., 2009, and references therein). This period also
coincided with drought in southern regions (especially in
Australia and Africa; Bowen, 2007) and subsequent reduction
of the tropical belt (see Morley, 2003; Lohman et al., 2011).
As a consequence, this abrupt cooling seemed to be related to a
decrease in species diversity as shown, for instance, in the
decline of the Neotropical floras (Jaramillo et al., 2006). In add-
ition, Coetzee and Muller (1984) advocated that this event
(whose effects lasted until the Miocene) disrupted previous

phytogeographical connections between the southern hemi-
sphere landmasses that were assembled during the Cretaceous
(for more details on fossils from Antarctica, see also Cantrill
and Pool, 2005).

During the same geological period, intensive volcanic activ-
ities were recorded in South-East (SE) Asia as a result of the col-
lision of the Eurasian and Australian plates (Metcalfe, 1998;
Hall, 2009). Although the western part of SE Asia (also known
as Sundaland and referred to as proto-SE Asia by Buerki et al.,
2011a) already formed a large emergent land area by the Late
Cretaceous (including, for example, the older parts of Malaysia
and Southwest Borneo), most of the islands at the margin of
Sundaland and New Guinea, known as Wallacea (Hall, 2009),
were created from this period onwards, with a peakof tectonic ac-
tivity during the Miocene (Hall, 2009). Wallacea is at present a
region of high endemism for plants and animals (for a review,
see Richardson et al., 2012).

Currently, little is known about the consequences of the abrupt
change in abiotic factors – the combination of climate change
and intense tectonic/volcanic activities, especially in SE Asia –
that occurred from the E–O boundary onwards on angiosperm
biodiversity. Did sapindaceous lineages follow the same trend
as marine biota (Rohde and Muller, 2005; Mayhew et al., 2012)
and neotropical flora (Jaramillo et al., 2006) in declining in
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species diversity during this period? Alternatively, could
the establishment of SE Asia have acted as a refugium for
tropical angiosperms and triggered their diversification? In this
study, we propose to investigate this topic by focusing on
four closely related families – Xanthoceraceae, Aceraceae,
Hippocastanaceae and Sapindaceae, hereafter referred to as the
sapindaceous clade (Buerki et al., 2010). Recently, the authors
have focused their effort in circumscribing generic entities
within the worldwide sapindaceous clade and proposing a new fa-
milial classification based on molecular and morphological data
(see, for example, Buerki et al., 2009, 2010). This clade was
also used as a case study to assess the performance of various bio-
geographical methods and propose a worldwide stratified paleo-
geographical model (from Late Cretaceous to the present) to
constrain biogeographical inference (Buerki et al., 2011a).
Moreover, the four families within the sapindaceous clade are
characterized by several features making them an ideal case
study to investigate the effect of past climateand geomorphologic-
al change on the diversification and biogeography of flowering
plants: (1) worldwide distribution (centres of diversity in South
America and SE Asia); (2) available plastid and nuclear phyl-
ogeny at the generic level (Buerki et al., 2009); (3) occurrence
of reliable fossils dating back to the Eocene (Buerki et al.,
2011a); (4) fairly good taxonomic knowledge (see references in
Buerki et al., 2009, 2010); and (5) a temporal framework compat-
ible with the examination of processes that occurred at the E–O
boundary (i.e. the clade originated during the Late Cretaceous;
Buerki et al., 2011a).

Here, our aim is to (1) investigate the effect of the abrupt
change in abiotic conditions at the E–O boundary on the spatio-
temporal history of sapindaceous lineages and (2) examine how
the evolutionary history of the clade was influenced by the geo-
morphological history of SE Asia. Although some work has been
done on the sapindaceous clade, its spatio-temporal history was
never properly investigated. To achieve this goal, we entirely re-
analyse the plastid and nuclear data set of Buerki et al. (2011a) by
performing a BEAST dating analysis (vs. a penalized-likelihood
approach in the previous study) and running Lagrange (Ree et al.,
2005; Ree and Smith, 2008) inferences on 100 randomly selected
trees (vs. only one tree in the previous study). The biogeograph-
ical inferences are also constrained according to the same paleo-
geographical model as in Buerki et al. (2011a). This approach
allows phylogenetic and dating uncertainty as well as paleogeog-
raphy to be taken into account and therefore improves the estima-
tion of the effect of abiotic factors on the evolution of the
sapindaceous clade. We also propose an approach to extract
major biogeographical trends in the sapindaceous clade by
inspecting the genera stem ages in light of their current distribu-
tion. Finally, we estimate for the first time the diversification rate
(i.e. speciation rate minus extinction rate) per genus within the
sapindaceous clade using the estimator of Magallon and
Sanderson (2001) [i.e. eqn (3)].

MATERIALS AND METHODS

Data set and divergence time estimation

The data set used to estimate lineage divergence times and ances-
tral ranges in the sapindaceous clade is based on Buerki et al.
(2011a) and contains seven plastid regions and the nuclear ITS

(internal transcribed spacer) region. This data set includes
.60 % of the generic diversity of the group (147 samples) and
one outgroup taxon, Harrisonia abyssinica (Simaroubaceae;
for more details, see Buerki et al., 2009). We have included
only one outgroup taxon based on previous phylogenetic infer-
ences that strongly supported the monophyly of the sapindaceous
clade (e.g. Gadek et al., 1996; APG III, 2009; Buerki et al.,
2011b).

A partitioned Bayesian inference approach implemented in
the package BEAST v.1.5.4 (Drummond and Rambaut, 2007)
was used to infer a temporal framework for the evolution of the
sapindaceous clade. Two partitions (plastid and nuclear) were
defined following Buerki et al. (2011a) with an uncorrelated
relaxed molecular clock assuming a log normal distribution of
rates and a Yule speciation model. Two runs of 20 × 106 genera-
tions were performed, sampling one tree every 1000th gener-
ation. Average branch lengths and 95 % confidence intervals
on nodes were calculated using TreeAnnotator v.1.5.4
(Drummond and Rambaut, 2007) after burn-in and reported on
a majority rule consensus tree. Six calibration points based on
fossil records (see Buerki et al., 2011a) were used to constrain
the BEAST analysis (see below). With the exception of the cali-
bration point associated with the root, all points were modelled as
follows: log normal distribution, mean ¼ 0, s.d. ¼ 1, offset ¼
fossil age (see below). In the case of the root calibration point,
(a) a normal distribution was applied with the mean fixed at
125 million years and s.d. ¼ 1. The calibration points are
depicted in Supplementary Data Fig. S1 and the offset values
fixed as follows: (b) the stem group of Acer, Aesculus and
Dipteronia was constrained with an offset of 55.8 Ma; (c) the
stem group of Dodonaea and Diplopeltis was constrained with
an offset of 37.2 Ma; (d ) the stem group of Koelreuteria was con-
strained with an offset of 37.2 Ma; (e) the stem group of Pometia
was constrained with an offset of 5.33 Ma; and ( f ) the stem
group of Cardiospermum, Paullinia and Serjania was con-
strained with an offset of 37.2 Ma; see Buerki et al. (2011a)
for more details on fossil records.

Diversification analyses

Major trends in diversification and biogeographical patterns
were first investigated by extracting the stem age of every
genus from a set of 900 randomly selected trees from the
BEAST analysis. A 3-D barplot showing the stem age of the
genera as a function of their distribution and occurrence was
built based on these data. This graph allowed the extraction of
major biogeographical trends in the sapindaceous clade using a
simple visual representation of the raw data.

To avoid any bias in the diversification analyses due to uneven
taxon sampling between lineages (here genera), we pruned the
900 BEAST trees at the generic level (one species per genus)
and assigned species richness to each genus based on data pre-
sented in Buerki et al. (2009; see table 1 in this publication).
Over the set of 900 BEAST trees, the expected diversification
rate for each genus was inferred using the estimator proposed
by Magallon and Sanderson (2001), i.e. expected diversification
rate ¼ log(species richness of a given genus)/stem age. A 3-D
barplot was also constructed to display the age of the genera as
a function of their expected diversification rates, distribution
and occurrence. Finally, a set of two graphs showing the
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relationship between the generic species richness of a lineage
and (1) its mean expected diversification rate or (2) its average
age (in Ma) were built.

Biogeographical inferences

Seven geographical areas were used (as in Buerki et al., 2011a;
Supplementary Data Fig. S2): (A) Eurasia, from Western Europe
to Indochina; (B) Africa; (C) Madagascar, including Comoros
and Mascarene islands; (D) SE Asia, including India, the
Malaysian Peninsula, Philippines, Sumatra, Borneo and the
Inner Banda Arc, as well as the Pacific Islands (e.g. Hawaii);
(E) Australia, including New Guinea, New Caledonia and New
Zealand; (F) North America; and (G) South America, including
Central America and the West Indies. The numbers of genera per
area have been estimated based on recent literature (e.g. Buerki
et al., 2009). These values provide a first insight into the
current spatial generic richness and will serve as a basis for the
biogeographical discussion. In this study, we have included
India in area D due to the low taxonomic richness of the sapindac-
eous clade in this area (Buerki et al., 2009). In addition, no genera
are endemic to India and most of the species are shared with SE
Asia (Buerki et al., 2009). For these reasons and to avoid an un-
necessary over-parameterization of the model, we have not con-
sidered India as an independent biogeographical area, but we
would like to redirect the reader to another more complete paleo-
geographical model including India as an area (Buerki et al.,
2013). The paleogeographical model used in this study was sub-
divided into four time slices as follows: (1) Early to Late
Cretaceous (120–80 Ma); (2) Late Cretaceous to Early
Paleocene (80–61.7 Ma); (3) Middle Paleocene to Late
Eocene (61.7–33.9 Ma); and (4) Early Oligocene to the
present (33.9–0 Ma) (for more details, see Buerki et al.,
2011a, 2013).

The dispersal–extinction–cladogenesis (DEC) likelihood
model implemented in Lagrange v. 2.0.1 (Ree et al., 2005; Ree
and Smith, 2008) was used to investigate the biogeographical
history of the sapindaceous clade following Buerki et al.
(2011a) and constraining the reconstruction with a paleogeo-
graphical model. To also take phylogenetic and dating uncer-
tainty into account while inferring the biogeographical
scenario, the analysis was run on 100 randomly selected
BEAST trees (using a collection of R scripts developed in
Espindola et al., 2012). The biogeographical scenario was subse-
quently summarized on the dated majority rule consensus tree of
BEAST using pie charts. Finally, the effect of past climate
change on range changes was investigated by plotting the
number of dispersals through time together with the variation
of isotopic O18 composition in the last 60 million years
(Zachos et al., 2001).

RESULTS

Phylogenetic inference and divergence time estimation

The BEAST majority rule consensus tree with 95 % confidence
intervals on nodes is shown in Supplementary Data Fig. S1.
All the informal groups within Sapindaceae were retrieved
monophyletic (for more details, see Buerki et al., 2009;
Supplementary Data Fig. S1). As shown previously,
familial relationships between Xanthoceraceae, Aceraceae +

Hippocastanaceae and Sapindaceae are not well resolved (for
a full discussion, see Buerki et al., 2010). The tempo of
divergence between lineages is highly congruent with the
penalized-likelihood estimation provided in Buerki et al.
(2011a). The origin of the sapindaceous clade is estimated to
have occurred during the Cretaceous, with a differentiation of
the four families later during this period (Supplementary Data
Fig. S1). Most of the genera within Sapindaceae, for the most
part belonging to the Cupania and Paullinia groups, originated
from the Eocene onwards, with a peak in the Miocene (Fig. 1,
Supplementary Data Fig. S1).

Diversification rate analyses

The 3-D barplot displaying the stem age of genera according to
their distribution (Fig. 1A) and together with the dated phylogen-
etic inference (Supplementary Data Fig. S1) supported (1) an
origin of the sapindaceous clade in Eurasia during the
Cretaceous [i.e. most recent common ancestor (MRCA) of
Xanthoceras plus the rest of the sapindaceous clade]; (2) the oc-
currence of genera of Aceraceae + Hippocastanaceae in North
America during the Cretaceous; (3) the dispersal of the MRCA
of the Paullinia group to South America during the Eocene;
and (4) the origin of almost all the genera from the E–O boundary
onwards. This analysis also supported Eurasia as a secondary
centre of diversification during the last 30 Ma. Although most
of the genera are restricted to one area, the barplot indicated an
origin of the widespread genera between 20 and 10 Ma and
showed that they are generally occurring in SE Asia and shared
with either Eurasia or Australia and to some extent Africa.
Taxonomically, these genera mainly belonged to the Litchi,
Schleichera and Cupania groups (Supplementary Data Fig. S1,
and see below for more details). The barplot showing the stem
age of the genera through time (in black in Fig. 1B) supported
a rise in the number of genera from the Paleocene onwards,
with a substantial increase in their occurrence after the E–O
boundary. When diversification analyses were applied, most of
the expected diversification rates per genus were retrieved with
low values (,0.2) and they were mainly distributed after the
E–O boundary (Fig. 1B). This pattern suggested a constant
rate of speciation through time, with some young genera
(during the Miocene onwards) having increased rates of diversi-
fication (Fig. 1B). In fact, if the diversification rate is constant, we
expect a plot of stem age vs log(species richness) to be a straight
line, with the slope revealing the diversification rate. However,
our data clearly deviate from a straight line, with young genera
having substantially more species than expected (Fig. 2). As a
consequence, applying a standard diversification model (either
with a birth–death or a Yule speciation process) with diversifica-
tion rate changes affecting all lineages in the tree equally (e.g.
Morlon et al., 2011; Stadler, 2011; Etienne et al., 2012) is not
suitable here, as such models predict that older clades will have
more species. In contrast, a scenario with clade-specific diversi-
fication rate changes where young genera have accelerated diver-
sification rates is compatible with the data.

Biogeographical inferences

Most genera in the sapindaceous clade are restricted in distri-
bution; of the 142 currently described genera, 96 are restricted to
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one area as defined here, 33 are distributed in two areas, seven in
three areas, two in four areas and three in five areas. The current
generic richness for each area is represented in Supplementary
Data Fig. S2. The highest generic richness within the sapindac-
eous clade is found in SE Asia (45 genera, but only seven
endemic genera), whereas the lowest occurred in North
America (four genera; Supplementary Data Fig. S2). South
America had the highest percentage of endemism (32 genera),
with 34.4 % of monotypic genera (Supplementary Data Fig. S2).

Results from the biogeographical analysis (encompassing the
100 Lagrange analyses) is presented on the BEAST majority rule
consensus tree (Fig. 3). Dating uncertainty did not influence an-
cestral area reconstructions. The highest number of dispersals
took place during time slice 4 (with 53 dispersals out of 69),
whereas only one dispersal event was inferred during time
slice 1. The 44 extinction events inferred by Lagrange are distrib-
uted as follows: zero in time slice 1, five in time slice 2, 11 in time

slice 3 and 28 in time slice 4. Africa and SE Asia have the highest
number of inferred extinctions, with 12 and ten extinctions, re-
spectively, whereas only one extinction event was estimated in
North America.

Figure 4 depicts the biogeographical scenario for the four time
slices plotted on paleogeographical maps, and dispersals are pro-
vided in Fig. 5. The biogeographical reconstruction supported an
origin of the sapindaceous clade in Eurasia in the Early
Cretaceous (Figs 1A and 4). With the exception of one dispersal
event that was inferred before 80 Ma (corresponding to the dis-
persal of the MRCA of Aceraceae + Hippocastanaceae in
North America), the sapindaceous lineages remained in
Laurasia until the Late Paleocene (Figs 1A and 4A). After mi-
grating to proto-SE Asia during time slice 2, a first colonization
event of the southern hemisphere from this area (that only
included the Malay Peninsula and part of Borneo at that time)
took place during time slice 3 (Fig. 4). This region acted as an im-
portant catalyser during the evolutionary history of the sapindac-
eous clade, by connecting northern and southern hemispheres,
especially during time slice 4 (Fig. 4C, D). This pattern was
also suggested by only taking into account the stem age of the
genera and their current distribution (Fig. 1A). During time
slice 3 a single long dispersal from Australia to South America
(via Antarctica) gave rise to the radiation of the speciose
Paullinia group (Fig. 4C). During time slices 3 and 4, the spread
of sapindaceous lineages has been favoured by the Gondwanan
break-up: for instance, the collision of the African and Eurasian
plates and the northern drift of India that occurred during time
slice 3, as well as the emergence of SE Asian islands, mainly
resulting from the collision of the Australian and Eurasian
plates during time slice 4 (Fig. 4). In the latter case, SE Asia
acted as a bridge between Australia and Eurasia (Fig. 4). In add-
ition, the establishment of the West Wind Drift (WWD) and equa-
torial currents might also have mediated long-distance dispersal
(LDD) events during time slice 4 (Fig. 4D). When the number
of dispersals through time is compared with the variation of iso-
topic O18 composition from the last 60 million years, a trend is
observed shortly after the abrupt climate change at the E–O
boundary, followed by a progressive increase of dispersals, espe-
cially during the Miocene onwards (Fig. 5).

DISCUSSION

Laurasian origin of the sapindaceous clade with subsequent
dispersals into the southern hemisphere mediated by proto-SE Asia
and the Gondwanan break-up

Our results suggest an origin of the sapindaceous clade in Eurasia
sometime during the Late Cretaceous, with subsequent disper-
sals into the southern hemisphere during the Late Paleocene
mediated by the Gondwanan break-up and the emergence of
proto-SE Asia (Figs 1A, 3 and 4). Currently, .80 % of the
generic diversity of this clade (corresponding to Sapindaceae)
is restricted to tropical and sub-tropical ecosystems of the south-
ern hemisphere. Three main routes of dispersals were used by
sapindaceous lineages to colonize the southern hemisphere
(Fig. 4C): (1) a first route of dispersal connected Eurasia with
Africa and resulted from the collision of the African and
Eurasian plates; (2) a second route was established between
proto-SE Asia, Africa and Madagascar, and resulted from the

1 10 100

20

40

60

80

100

0

Species richness per genus

A
ve

ra
ge

 g
en

us
 a

ge
 (

M
a)

B

0

0·5

1·0

1·5

2·0

A
ve

ra
ge

 e
xp

ec
te

d 
di

ve
rs

ifi
ca

tio
n 

ra
te

pe
r 

ge
nu

s 
(b

irt
h–

de
at

h 
m

od
el

)
A

FI G. 2. (A) Average expected diversification rate (based on a birth–death
model) per genus of the sapindaceous clade displayed according to the generic
species richness based on the 900 BEAST trees. Linear correlations (in grey)
are also represented. (B) Average genus stem age (in Ma) as a function of
species richness per genus. Error bars indicate 95 % confidence intervals on the

node. For both panels the species richness per genus was log-transformed.

Buerki et al. — Biogeography of sapindaceous lineages 155

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct106/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct106/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct106/-/DC1


Cretaceous

E L E M L E M L E L E M L
A

Ganophyllum falcatum

Euphorianthus longifolius
Eurycorymbus cavalerieri
Llagunoa nitida
Llagunoa mollis
Loxodiscus coriaceus
Harpullia arborea
Diplopeltis huegelii
Dononaea viscosa (Razafitsalama 956)
Dononaea viscosa (Merello 1077)
Dononaea viscosa (Yuan sn)
Delavaya yunnanensis
Koelreuteria paniculata (Yuan CN2006-3)
Koelreuteria paniculata (Harder 5668)
Koelreuteria sp
Paranephelium macrophyllum
Paranephelium xestophyllum
Schleichera oleosa.
Amesiodendron chinensis
Tristira triptera
Pseudima sp
Atalaya capense
Atalaya alata
Lepisanthes sambiranensis
Lepisanthes feruginea
Lepisanthes rubiginosa
Deinbollia oblongifolia
Deinbollia macrocarpa
Deinbollia pervillei
Nephelium lappaceum
Pometia pinnata (Chase 2135)
Pometia pinnata (Yuan sn)
Litchi chinensis
Xerospermum noronhianum
Dimocarpus australianus
Lecaniodiscus.fraxinifolius
Glenniea pervillei
Haplocoelopsis africana
Laccodiscus klaineanus
Chytranthus carneus
Pancovia golungensis
Eriocoelum microspermum
Eriocoelum kerstingii
Lepidopetalum fructoglabrum
Cubilia cubili
Blighia sapida
Tristiropsis acutangula
Dictyoneura obtusa
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break-up of India and Madagascar and the northern raft of India;
(3) a third route connected proto-SE Asia and Australia and was
facilitated by the existence of a myriad of archipelagos (see, for
example, Hall, 2009; Fig. 4C). From this period to the end of the
Eocene, the climate was warm (Bowen, 2007; Zhonghui et al.,
2009) and might have favoured the proliferation of sapindaceous
lineages in the southern hemisphere. Unlike Cucurbitaceae that
extended to South America from Asia (through Africa;
Schaefer et al., 2009), South American lineages of the sapindac-
eous clade (in this case, the MRCA of the Paullinia group) used
the third route of dispersal and further dispersed through
Antarctica (Fig. 4C). This dispersal was estimated to have oc-
curred during the Middle Eocene (approx. 44 Ma). The warm
climate during this period (with ice probably only occurring in
the Antarctic highlands and within and around the Arctic
Ocean in the north; e.g. Bowen, 2007; Zhonghui et al., 2009;
Figs 4 and 5) combined with specific tectonic configuration
mediated this LDD (Fig. 4C). Once established in South
America, the Paullinia group diversified shortly after the E–O
boundary and currently contributes to approx. 30 % of the
entire sapindaceous richness (approx. 600 species; Buerki
et al., 2009). This unique diversification within the sapindaceous
clade is associated with two morphological synapomorphies: the
development of zygomorphic flowers (vs. actinomorphic flowers
in most lineages) and a liana habit (vs. a shrub to tree habit in the
other lineages). As demonstrated by two studies, these synapo-
morphies are usuallyassociated with (1) an increase in successful
animal pollination (Sargent, 2004) and (2) higher species diver-
sities in liana clades compared with their sister tree clades
(Gianoli, 2004). These morphological features could therefore
explain the impressive success of the Paullinia group. Finally, al-
though most of the species within this group are restricted to
South America, taxa assigned to Allophylus subsequently colo-
nized the paleotropics, most probably during the Miocene
onwards mediated by the WWD and sub-equatorial currents
(e.g. Takayama et al., 2008).

Interestingly, 75 % of the sampled genera occurring in Africa
are found in the Litchi group (see also Blomia and
Macphersonia groups for the remaining genera; Supplementary
Data Fig. S2) and exhibit close relationships with taxa widely dis-
tributed over SE Asia and tropical Eurasia (e.g. Dimocarpus and
Litchi) and to some extent Madagascar (e.g. Deinbollia; Fig. 3).
These taxa originated sometime between the Late Paleocene
and Early Eocene, and seem to have colonized Africa either
using route 1 in the case of the endemic African genera (e.g.
Chytranthus and Pancovia) or using route 2 in the case of taxa
mainly shared with SE Asia and to some extent Madagascar
(e.g. Lepisanthes and Deinbollia) (Figs 3 and 4C). However,
further investigations on the Litchi group (based on an expanded
sampling in SE Asia and Africa) have to be conducted to confirm
these preliminary results.

Effect of the E–O boundary climate change and the emergence
of islands in SE Asia on the fate of sapindaceous lineages

The spatio-temporal history of sapindaceous lineages appears
to have been strongly linked with paleoclimatic changes and tec-
tonic movements that allowed recurrent events of dispersal and
isolation among neighbouring land masses. From the E–O
boundary to the Miocene, the biogeographical scenario strongly
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indicates that SE Asia has acted as a bridge allowing sapindac-
eous lineages (more specifically taxa of Sapindaceae) to
escape the effect of the abrupt climate change and remain
within the tropical belt (Fig. 4). Although a west to east route
of dispersal was identified in this region in other plant groups
[e.g. Alocasia (Araceae), Nauheimer et al. (2012); Aglaia
(Meliaceae), Muellner et al. (2008); Begonia (Begoniaceae),
Thomas et al., (2012); Margaritopsis (Rubiaceae), Barrabé
et al. (2012)], our studyshows that a majority of the sapindaceous
lineages initiated an important northward migration (14 disper-
sals from Australia to SE Asia and seven dispersals from SE
Asia to Eurasia; Fig. 4D) in response to the northwards shift of
tropical zones at the E–O boundary and the formation of
Wallacea (Morley, 2003; Hall, 2009). A similar pattern was
observed in several angiosperm families such as Monimiaceae
(Renner et al., 2010), Myrtaceae (Sytsma et al., 2004) and
Proteaceae (Barker et al., 2007). Despite the occurrence of
extinctions during this geological period (especially in Africa
and SE Asia; Fig. 4D), the abrupt climate change coupled with
the emergence of most SE Asian islands seems to have opened
up new routes of dispersals and appears to be associated with
the origin of several genera (especially in subfamily

Sapindoideae; Figs 1A and 4). The genera found in SE Asia
(and in the neighbouring areas) mainly belong to the Litchi,
Schleichera and Cupania groups (Fig. 3). Genera of the former
two groups originated in Eurasia and subsequently dispersed to
SE Asia, whereas the genera of the Cupania group used a north-
ern route of dispersal from Australia to SE Asia (Fig. 4).
Interestingly, all these genera reached SE Asia at the same time
during the Early Oligocene onwards (Figs 1A, 4D and 5). In
Borneo, these genera are found in sympatry, but recent fieldwork
conducted by the first author suggested that these genera do not
produce fruits during the same period: genera of the Litchi and
Schleichera groups (characterized by an indehiscent fruit with
a fleshy arillode, e.g. Litchi) are fruiting in August/September,
whereas the other genera (the Cupania group is mostly character-
ized bya dehiscent fruit with a dryarillode, e.g. Elattostachys; for
more details see Buerki et al., 2011a) are producing fruits much
earlier. This trend could be reminiscent of the different spatial
origins of these genera and has to be further investigated
(Fig. 3). Although taxa of the sapindaceous clade are mainly
restricted to humid tropical ecosystems (Sapindaceae), several
genera of subfamily Dodonaeoideae are currently mostly
found in dry Australian ecosystems (Dodonaea group; Buerki
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et al., 2009; Fig. 3). Our analysis suggests that the origin of some
of these genera (e.g. Diplopeltis) is concomitant with the creation
of new open habitats in Australia (associated with adaptation to
drought; Bowen, 2007).

Conclusions and perspectives

The increase in dispersal events and number of genera that ori-
ginated in the sapindaceous clade from the E–O boundary
onwards might be explained by two main factors: (1) the stable
tropical climate of SE Asia (Sohdi et al., 2004; Lohman et al.,
2011) and (2) the emergence of new islands suitable to offer
new niches for the establishment of sapindaceous lineages (espe-
cially in the Wallacea region; Hall, 2009; Richardson et al.,
2012). This pattern is in line with angiosperm fossil data indicat-
ing an increase in taxa diversity in this area during this period
(Morley, 2003). Unfortunately, there is currently very little reli-
able fossil evidence of Sapindaceae in this region and further
investigations are required. It is therefore highly likely that SE
Asia might have acted as a refugium during the E–O boundary
for taxa restricted to tropical ecosystems (see, for example,
Bush and Flenley, 2007; Fig. 4D). In addition to its role as a re-
fugium, the region might have provided new niches for angio-
sperm lineages to diversify, as suggested by the increase of
new genera at this period.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Figure S1: BEAST
majority-rule consensus tree of the sapindaceous clade. Figure
S2: generic diversity of the sapindaceous clade per area.
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