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Zusammenfassung

Die vorliegende Dissertationsschrift beschäftigt sich mit neuen Techniken
zur Erzeugung von starken konvexen Relaxierungen für gemischt-ganz-
zahlige nichtlineare Optimierungsprobleme (MINLP). Während lokale
Optimierungssoftware sehr schnell vielversprechende Betriebspunkte ei-
nes MINLPs bestimmen kann, liefert die Lösung der konvexen Relaxie-
rung eine globale Schranke für das MINLP, die dafür genutzt werden
kann, die Qualität der lokalen Lösung zu bewerten. Die Effizienz dieses
Bewertungsansatzes ist natürlich stark beeinflusst von der Stärke der
konvexen Relaxierung.

Konvexe Relaxierungen von allgemeinen MINLPs werden dadurch er-
zeugt, dass jede nichtlineare Funktion in der Modellbeschreibung durch
konvexe unter- und konkave überschätzende Funktionen ersetzt wird. In
diesem Zusammenhang ist es wünschenswert, immer die bestmöglichen
konvexen Unter- und konkaven Überschätzer einer Funktion über einem
vorgegebenen Definitionsbereich zu verwenden - die sogenannten kon-
vexen beziehungsweise konkaven Einhüllenden. Die Berechnung dieser
Einhüllenden kann allerdings sehr schwierig sein, so dass analytische
Ausdrücke nur für einige Klassen von wohl strukturierten Funktionen
bekannt sind.

Ein anderer Faktor, der die Stärke der Unter- und Überschätzer be-
einflusst, ist die Größe des zugrunde liegenden Definitionsbereichs: Je
kleiner der Definitionsbereich, desto stärker sind die Unter- und Über-
schätzer. In vielen Anwendungen werden die Definitionsbereiche aller-
dings zu konservativ gewählt, während kleinere Bereiche implizit durch
die Nebenbedingungen des MINLPs gegeben sind. Daher sind Techniken
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zur Verkleinerung des Definitionsbereichs, welche auf der Analyse der
Nebenbedingungen basieren, von entscheidender Bedeutung um Unter-
und Überschätzer zu verbessern und um globale Optimierungsalgorith-
men zu beschleunigen.

Der Schwerpunkt dieser Dissertationsschrift liegt auf der Entwick-
lung und rechnergestützten Analyse neuer konvexer Relaxierungen für
MINLPs, insbesondere für zwei Anwendungen aus der Verfahrenstechnik.
Hierbei handelt es sich einerseits um eine neue Technik zur Verkleinerung
des Definitionsbereichs für eine allgemeine Struktur, die zur Model-
lierung chemischer Prozesse genutzt wird. Anderseits werden unter-
schiedliche Ansätze zur Erzeugung starker konvexer Relaxierungen für
verschiedenste nichtlineare Funktionen präsentiert.

Zunächst liegt der Fokus auf der Bestimmung eines optimalen Designs
für hybride Destillations- und Schmelzkristallisationsprozesse, das heißt
einer neuartigen Prozesskonfiguration, die zur Auftrennung eines Stoff-
gemisches genutzt wird. Für die mathematische Beschreibung sowohl
dieses Prozesses als auch anderer Separierungsprozesse ist es entschei-
dend die Massenerhaltung innerhalb des Prozesses zu modellieren. Basie-
rend auf den analytischen Eigenschaften des entsprechenden Gleichungs-
systems wird eine Technik zur Verkleinerung des Definitionsbereichs der
dazugehörigen Variablen vorgestellt. Die Anwendung dieser Technik
ermöglicht es im Vergleich zu Standardsoftware, die Berechnung glo-
baler Lösungen von hybriden Destillations- und Schmelzkristallisations-
prozessen signifikant zu beschleunigen.

Danach liegt das Hauptaugenmerk der Arbeit auf der Erzeugung von
konvexen Relaxierungen für nichtlineare Funktionen. Als Erstes wer-
den bereits vorhandene Ergebnisse für zwei Klassen von interessanten,
bivariaten Funktionen genutzt. Zum einen wird ein Schnittebenenalgo-
rithmus ausgearbeitet, implementiert und analysiert, der sich für bivari-
ate Funktionen eignet, die konvex oder konkav in jeder Variable sind
und bei denen das Vorzeichen der Determinante der Hesse-Matrix über
dem gesamten Definitionsbereich immer das gleiche ist. Zum anderen
werden Relaxierungsstrategien für fortgeschrittene Gleichgewichtsfunk-
tionen in chromatographischen Separierungsprozessen untersucht und
angewendet, um die zulässigen Trennregionen dieser Prozesse komplett
zu beschreiben.

Als Zweites wird vorgeschlagen die konvexen Einhüllenden in einem
erweiterten Raum herzuleiten, um die kombinatorischen Schwierigkeiten
zu überwinden, die sich bei der Berechnung der Einhüllenden im Origi-
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nalraum ergeben. Insbesondere wird eine Klasse von Funktionen be
trachtet, die einen Großteil aller nichtlinearen Funktionen in häufig ver-
wendeten Problembibliotheken ausmacht. Diese Funktionen sind kom-
ponentenweise konkav in einem Teil der Variablen und konvex im ande-
ren Teil. Für diese allgemeine Klasse von Funktionen sind die konvexen
Einhüllenden bisher nicht bekannt. In dieser Arbeit werden explizite
Formeln für eine erweiterte Formulierung der konvexen Einhüllenden
dieser Funktionen hergeleitet, basierend auf einer simultanen Konvexifi-
zierung mit multilinearen Monomen. Durch diese Herleitung wird nicht
nur eine erweiterte Formulierung der konvexen Einhüllenden bestimmt,
sondern auch eine starke simultane Relaxierung der Funktion und der
multilinearen Monome. Etliche Beispiele zeigen, dass die simultane Re-
laxierung um Größenordnungen besser sein kann als die individuelle
Relaxierung der Funktionen.

Inspiriert durch die Stärke und den rechentechnischen Einfluss der
simultanen Relaxierung einer Funktion und multilinearer Monome wird
abschließend die simultane Relaxierung von mehreren Funktionen in
einem allgemeinen Kontext behandelt. Solch ein simultaner Ansatz er-
laubt eine bedeutend bessere Relaxierung eines MINLPs, dessen Formu-
lierung mehrere Funktionen in den gleichen Variablen beinhaltet, da die
gegenseitigen Abhängigkeiten zwischen den verschiedenen Funktionen
berücksichtigt werden. Dafür wird die simultane konvexe Hülle ver-
schiedener Funktionen studiert und es werden theoretische Resultate
bezüglich ihrer inneren und äußeren Darstellung mithilfe der Theorie
der konvexen Einhüllende hergeleitet. Weiterhin werden diese Resultate
ausgenutzt, um geschlossene Formeln für starke konvexe Relaxierungen
von mehreren univariaten konvexen Funktionen abzuleiten.

Für jede Konvexifizierungstechnik sind Implementierungen verfügbar,
die als Plugins für die open-source MINLP-Software SCIP genutzt werden
können. Die Rechenergebnisse verschiedenster Fallbeispiele demonstrie-
ren den Nutzen der vorgeschlagenen Techniken im Vergleich zu den heute
genutzten Methoden.
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Summary

This thesis deals with new techniques to construct a strong convex re-
laxation for a mixed-integer nonlinear program (MINLP). While local op-
timization software can quickly identify promising operating points of
MINLPs, the solution of the convex relaxation provides a global bound on
the optimal value of the MINLP that can be used to evaluate the quality of
the local solution. Certainly, the efficiency of this evaluation is strongly
dependent on the quality of the convex relaxation.

Convex relaxations of general MINLPs can be constructed by replacing
each nonlinear function occurring in the model description by convex un-
derestimating and concave overestimating functions. In this setting, it is
desired to use the best possible convex underestimator and concave over-
estimator of a given function over an underlying domain – the so-called
convex and concave envelope, respectively. However, the computation
of these envelopes can be extremely difficult so that analytical expres-
sions for envelopes are only available for some classes of well-structured
functions.

Another factor influencing the strength of the estimators is the size of
the underlying domain: The smaller the domain, the better the quality of
the estimators. In many applications the initial domains of the variables
are chosen rather conservatively while tighter bounds are implicitly given
by the constraint set of the MINLP. Thus, bound tightening techniques,
which exploit the information of the constraint set, are an essential in-
gredient to improve the estimators and to accelerate global optimization
algorithms.
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The focus of this thesis lies on the development and computational
analysis of new convex relaxations for MINLPs, especially for two appli-
cations from chemical engineering. In detail, we derive a new bound
tightening technique for a general structure used for modeling chemical
processes and provide different approaches to generate strong convex
relaxations for various nonlinear functions.

Initially, we aim at the optimal design of hybrid distillation/melt-crys-
tallization processes, a novel process configuration to separate a m ixture
into its component. A crucial part in the formal representation of this
process as well as other separation processes is to model the mass con-
servation within the process. We exploit the analytical properties of the
corresponding equation system to reduce the domains of the involved
variables. Using the proposed technique, we can accelerate the compu-
tations for hybrid distillation/melt-crystallization processes significantly
compared to standard software.

Then, we concentrate on the generation of convex relaxations for non-
linear functions. First, we exploit the existing theory for two interesting
classes of bivariate functions. On the one hand, we elaborate, implement,
and illustrate the strength of a cut-generation algorithm for bivariate
functions which are convex or concave in each variable and for which
the sign of the Hessian is the same over the entire domain. On the other
hand, relaxation strategies for advanced equilibrium functions in chro-
matographic separation processes are analyzed and finally applied to
completely describe the feasible separation regions of these processes.

Second, we suggest to derive the envelopes in an extended space to
overcome the combinatorial difficulties involved in the computation of the
convex envelope in the original space. In particular, we consider a class of
functions accounting for a large amount of all nonlinearities in common
benchmark libraries. These functions are component-wise concave in one
part of the variables and convex in the other part of the variables. For this
general class of functions the convex envelopes in the original variable
space have not been discovered so far. We provide closed-form expres-
sions for the extended formulation of their convex envelopes based on the
simultaneous convexification with multilinear monomials. By construc-
tion, this approach does not only yield an extended formulation for the
convex envelope of a function, but also a strong simultaneous relaxation
of the function and the involved multilinear monomials. Several exam-
ples show that this simultaneous relaxation can be orders of magnitude
better than the individual relaxation of the functions.
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Finally, inspired by the strength and the computational impact of the
simultaneous relaxation of a function and multilinear monomials, we
further focus on the simultaneous convexification of several functions. In
such an approach the relaxation of a MINLP involving several functions in
the same variables is much tighter because the interdependence between
the different functions is taken into account. We study the simultaneous
convex hull of several functions for which we derive theoretical results
concerning their inner and outer description by means of the rich theory of
convex envelopes. Moreover, we apply these results to provide formulas
for tight convex relaxations of several univariate convex functions.

Implementations of all convexification techniques are available as plu-
gins for the open-source MINLP solver SCIP. The computational results of
several case studies reveal the benefit of the proposed techniques com-
pared to state-of-the-art methods.
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CHAPTER 1

Introduction

This thesis presents new techniques to compute global optima of a mixed-
integer nonlinear program (MINLP) which can be most generally de-
scribed as

min f0(x, y) s. t. fi(x, y) ≤ 0, i = 1, . . . ,m,

(x, y) ∈ D = [l,u] ∩ (Rn−d
× Zd),

(MINLP)

where f0 and fi, i = 1, . . . ,m, are real-valued functions Rn−d
×Rd

→ R. This
adaptable framework provides a modeling language for a wide range of
topics and applications. On the one side, the nonlinearity of a MINLP
enables one to reflect many real-world concepts which often cannot be
described in a linear way. On the other side, the mixture of discrete and
continuous variables meets the demand of the growing complexity of
decision processes. In this way, structural and operational variables as
well as decision variables are integrated into one model. Practical prob-
lems which can be formulated as MINLP are, for instance, the design of
networks, trim-loss in the paper-industry, airplane boarding, production
planning, and facility location (cf. [BL12]). Further applications can be
found in chemical engineering (cf. [Flo95]).

Due to the expressive power of MINLPs it is not surprising that there
is a lack of computational methods to efficiently solve general MINLPs
to global optimality. A common tool to approach these problems are
deterministic algorithms (cf. [HT96]) whose two main components are
local optimization solvers and efficient algorithms to construct and solve
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1. Introduction

convex relaxations. While the local solvers determine a feasible solution
whose objective function value constitutes an upper bound on the prob-
lem, the solution of the convex relaxation corresponds to a lower bound.
Consequently, an optimal solution is found if the two bounds coincide.

The most popular deterministic algorithmic framework to solve MINLPs
is the branch-and-bound algorithm, which successively subdivides the orig-
inal problem into smaller subproblems until these subproblems can be
solved to global optimality (cf. [BL12, Vig12] and references therein). The
first step in this algorithm is to construct a convex relaxation over the
initial domain. Based on the solution of this relaxation, the domain is
divided into two subdomains and over each subdomain the same pro-
cedure is applied again. This branching step results in a branching tree
in which each subdomain represents a node. A node is removed from
the tree in the bounding step if the relaxation over the corresponding
subdomain is infeasible or its lower bound is greater than or equal to the
best known objective function value. Further deterministic algorithms
are the outer-approximation algorithms [DG86], Generalized Benders
decomposition (cf. [Flo95]), and a combinatorial approach introduced
in [GKH+06, HMSMW07, Mic07].

All deterministic algorithms have in common that their convergence
heavily depends on the strength of the convex relaxations. For example,
stronger relaxations allow to detect infeasibility of a node in the branch-
and-bound algorithm more easily so that the exploration of further child
nodes can be avoided. To construct strong relaxations, two main ap-
proaches are considered in this thesis, namely the convex underestimation
of a function fi over a given domain D and bound tightening techniques to
infer smaller domains D from the constraint set fi(x, y) ≤ 0, i = 1, . . . ,m.

The use of convex underestimators for nonconvex functions fi is a stan-
dard approach to construct a convex relaxation of a MINLP (cf. [BL12]).
For this, each function fi of the MINLP is replaced by a convex under-
estimating function f̃i(x, y) such that f̃i(x, y) ≤ fi(x, y) for all (x, y) of the
current subdomain D. This is illustrated in Figure 1.1 (a), where a non-
convex function fi is given in black while the convex underestimating
function f̃i is depicted in red. In this setting the strength of the overall
convex relaxation is defined via the strength of the individual convex un-
derestimating functions: The stronger the underestimators, the stronger
the relaxation. Therefore, it is desired to apply the best possible underes-
timator of a function fi over a domain D – the so-called convex envelope,
which is denoted by vexD[ f ]. The convex envelope of a function fi is
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displayed in Figure 1.1 (b) and its strength is apparent compared to the
underestimator in Figure 1.1 (a).

fi(x, y)

f̃i(x, y)

D

(a) A convex underestima-
tor.

D

fi(x, y)

vexD[ fi](x, y)

(b) The best possible convex
underestimator (convex en-
velope).

Figure 1.1.: Convex underestimators of a function f (x, y) over D.

In general, the computation of the convex envelope is extremely hard
so that closed-form expressions are only known for some classes of func-
tions (cf. [KS12b]). A common technique to overcome this problem is to
reformulate a given function fi into sums and products of functions for
which the convex envelope is known (cf. [McC76, TS04, BL12]).

Example 1.1. Consider the expression f (x1, x2) =
(x1x2)2

1+exp(x1x2) . A typical way
to reformulate this nonlinearity is to introduce four artificial variables
hi ∈ R, i = 1, 2, 3, 4, and require

h1 = h2 h3, h2 = h2
4, h3 = 1

1+exp(h4) , h4 = x1 x2.

One can check that the functions h2 and h3 are convex over R≥0, i.e., the best
convex underestimators are the functions itself. The best underestimator
of the product terms h1 and h4 is known due to McCormick [McC76].
Thus, the composition of the underestimators yields an underestimator
for the original function f . �

The underestimators generated by the reformulation technique are of-
ten not as strong as the convex envelope. As the speed of global opti-
mization algorithms is closely related to the strength of the estimators,
it is thus essential to derive further closed-form expressions for convex
envelopes.

Besides the explicit formulas for convex underestimators, the size of the
domain D is a crucial factor for the quality of a convex underestimator.

3



1. Introduction

In Figures 1.2 (a) and (b) we illustrate the convex envelope of a function
fi over a larger and a smaller domain, respectively. The smaller domain
in Figure 1.2 (b) leads to a significantly better underestimation of fi over
the concave part of fi than the domain in Figure 1.2 (a).

D

fi(x, y)

vexD[ fi](x, y)

(a) Large domain D.

fi(x, y)

D̄

vexD̄[ fi](x, y)

(b) Smaller domain D̄.

Figure 1.2.: Impact of the size of the domain on the relaxation quality of
the convex envelope of a function fi.

In many applications the domains of the variables are chosen rather con-
servatively and tighter bounds are implied by the constraint set fi(x, y) ≤
0, i = 1, . . . ,m. For instance, the concentration variables in a separation
process are assumed to be in the interval [0, 1] while the purity require-
ments and the equations modeling such processes restrict the variables
to be in much smaller intervals. This information is exploited by bound
tightening techniques which take advantage of the constraint set to derive
tighter bounds on the variables without losing any feasible or optimal so-
lution. The huge impact of these reduction techniques on the quality of
the relaxation made them an integral component of branch-and-bound al-
gorithms which are thus often referred to as branch-and-reduce algorithms
(cf. [RS96]).

Contributions and Structure of this Thesis This thesis deals with
novel techniques to construct convex relaxations for MINLPs and their ap-
plication in chemical engineering. In particular, we derive a new bound
tightening technique for a general structure used for modeling chemical
processes and provide various approaches to generate strong convex re-
laxations for nonconvex functions. For all techniques implementations
are presented and their computational impact is demonstrated in several
case studies, especially for two problems from chemical engineering.
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In Chapter 2 we consider a sophisticated process configuration to sep-
arate a mixture into its components, namely hybrid distillation/melt-
crystallization processes. Computationally, such processes are very chal-
lenging and even the global optimization of the distillation unit alone is
still an open issue [GAB05]. To overcome this, we analyze the mathemati-
cal description of the distillation unit which mainly consists of equilibrium
equations and material balance equations. Such equations model the course
of the concentration variables within the distillation unit and are a general
modeling tool for chemical processes.

We exploit the analytical properties of the equation system to propagate
the high purity requirements, which specify the bounds on the concen-
trations of the products, through the distillation unit. This leads to a
noticeable reduction of the domain and is used in two ways. On the one
hand, the new bounds are applied in the original, highly nonlinear model
to generate stronger relaxations. On the other hand, the course of the
concentration variables is relaxed by the derived bounds such that the
highly nonlinear system of equilibrium and material balance equations
can be neglected. Although this approach only leads to a relaxed model
formulation, it proves to be very efficient in order to determine infeasible
or nonoptimal subdomains.

Furthermore, a comprehensive case study shows that the proposed
techniques tremendously accelerate the computations of hybrid distilla-
tion/melt-crystallization processes compared to state-of-the-art software.
We show some representative results in Table 1.1 which indicate that our
proposed methods can enhance standard software by orders of magni-
tude. While the standard algorithms can only return lower bounds on
the processes, our approach can prove global optimality after 6 minutes
for the distillation unit and after 27 hours for the hybrid process.

Optimal Lower bounds and CPU time by
value Standard software Our approach

Distillation 306.3 255.0 (100 hours) 306.3 (6 minutes)
Hybrid 154.0 57.2 (100 hours) 154.0 (27 hours)

Table 1.1.: Representative computational results of standard software and
our approach for two chemical processes.

In Chapter 3 we utilize existing theory to compute strong underesti-
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1. Introduction

mators for two classes of interesting bivariate functions. Based on the
work of Jach et al. [JMW08] we develop a cut-generation algorithm for
the first class of bivariate functions exhibiting a fixed convexity behavior,
i.e., the functions are convex or concave in each variable, and the sign of
the determinant of the Hessian is the same over the entire domain. The
authors provide a constructive procedure to determine the value of the
convex envelope numerically which we exploit to construct supporting
hyperplanes on the graph of the convex envelopes. The cut-generation
algorithm is implemented in the open-source, mixed-integer nonlinear
optimization solver SCIP [Ach07, Ach09] and is available in its standard
distribution from version 2.1 onwards. Computational experiments re-
veal the strength of this new tool.

The second class of bivariate functions for which we investigate strong
convex underestimators are second-order isotherms. They are a special
type of equilibrium equations and are used to model the phase transition
in chemical processes. Compared to conventional equilibrium models,
second-order isotherms allow for more degrees of freedom in the model-
ing process so that certain chemical phenomena can be reflected. We an-
alyze several reformulation strategies of the second-order isotherms into
simpler functions for which the convex envelopes are known. Moreover,
a lifting technique is proposed to derive tight underestimators without
further reformulations and the additional introduction of artificial vari-
ables. The different underestimators are applied within the optimization
of a chromatographic separation process so that not only the performance of
the underestimators is evaluated, but further the behavior of chromato-
graphic separation processes with second-order isotherms is completely
described.

In Chapter 4 we continue the analysis of strong convex underestima-
tors and, in particular, of convex envelopes. In contrast to the standard
approach, we suggest to derive the convex envelope of a function f in an
extended space based on the simultaneous convexification with multilin-
ear monomials. The introduction of additional variables corresponding
to the multilinear monomials allows to reduce the combinatorial difficul-
ties involved in the analytical solution of the convex envelope. Although
the additional variables can be seen as a disadvantage, this simultaneous
relaxation can be orders of magnitude better compared to the individual
relaxation of the monomials and f .

Example 1.2. Let f (x) = x1x2/x3, x1 ∈ [−1, 1], x2 ∈ [0.1, 1], x3 ∈ [0.1, 1]. The
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convex envelope of this function was derived in [KS12a]. In our setting
we introduce additional variables z12, z13, z23, and z123 for the monomials
x1x2, x1x3, x2x3, and x1x2x3, respectively, to compute the extended formu-
lation of the convex envelope. In Table 1.2 we report the volumes of the
individual convexification of the monomials and f , and the simultane-
ous convexification by the extended formulation. This difference in the
volume accounts for a gap of 2120%. �

Individual envelopes Extended formulation

Volume 0.325 0.014

Table 1.2.: Individual convex envelopes vs. extended formulation.

Using the work of Sherali and Adams [SA90, SA94, AS05], we derive
extended formulations for the convex envelope of functions f : [lx,ux] ×
[ly,uy] ⊆ Rnx × Rny → R, (x, y) 7→ f (x, y), where f is component-wise
concave in the x-variables and further

• Class A: ny = 1 and for all vertices v of [lx,ux] it holds that f (v, y)
either is convex or concave in y over [ly,uy].

• Class B: For all vertices v of [lx,ux] it holds that f (v, y) is convex in
y over [ly,uy].

Note that Class A contains the case of f being component-wise concave
(edge-concave) in all variables for which the convex envelope is only known
up to dimension three [MF05]. Moreover, Classes A and B contain special
cases for which the convex envelope was recently derived by Khajavirad
and Sahinidis [KS12a, KS12b]. We relate our work to their findings and
discuss the advantages and disadvantages of the different approaches.
Furthermore, we remark that the considered classes of functions are not
only interesting from an academic point of view but also from a prac-
tical point of view. According to [KS12a] the two classes of functions
account for at least 30 % of all the nonlinearities in the problem libraries
GLOBALLib [GLO] and MINLPLib [BDM03] which contain many appli-
cations from engineering and science. Computational evidence of the
proposed relaxations is given by the results of an ad-hoc implementa-
tion for component-wise concave functions and of a separator which we
implemented for SCIP.

7



1. Introduction

In Chapter 5 we explicitly study the simultaneous convexification of
functions. In detail, we analyze the simultaneous convex hull of the
graph of a vector of functions f = ( f1, . . . , fm) : Rn

→ Rm over a continuous
domain D ⊆ Rn:

QD[ f ] := conv{(x, z) ∈ Rn+m
| (x, z) = (x, f (x)), x ∈ D}.

We show that this concept has the potential to significantly improve the
convexification even of univariate convex functions.

Example 1.3. Consider f1(x) = x2 and f2(x) = x3 over the domain [l,u] =
[1, 2]. The individual convexifications of f1 and f2 lead to a relaxation with
a volume of 0.1500 while the simultaneous convexification due to [KS53]
yields a volume of only 0.0055. Thus, the gap between the two objects is
2627 %. �

General investigations of the simultaneous convex hullQD[ f ] over con-
tinuous domains just started recently by Tawarmalani [Taw10] who ana-
lyzes the extreme points of QD[ f ]. In contrast to Tawarmalani’s work, we
establish a link between the simultaneous convex hull QD[ f ] ⊆ Rn+m and
the individual convex hulls QD[

∑m
i=1 αi fi] = QD[αᵀ f ] ⊆ Rn+1 with α ∈ Rm

via the relation

QD[ f ] =
⋂
α∈Rm

{(x, z) ∈ Rn+m
| (x, αᵀz) ∈ QD[(αᵀ f )]}

=
⋂
α∈Rm

{(x, z) ∈ Rn+m
| vexD[αᵀ f ](x) ≤ αᵀz, x ∈ D}.

(1.1)

This representation implies that the high dimensional objectQD[ f ] ⊆ Rn+m

can be described by the lower dimensional objects QD[αᵀ f ] ⊆ Rn+1 and,
in particular, by the convex envelopes vexD[αᵀ f ](x). In other words this
allows to exploit the knowledge of the well-studied concept of convex
envelopes in order to derive QD[ f ].

In this framework, we apply Equation (1.1) to characterize the ex-
treme points of QD[ f ] (inner description) and to determine necessary
and sufficient subsets of α ∈ Rm to describe QD[ f ] via the constraints
vexD[αᵀ f ](x) ≤ αᵀz (outer description). In particular, we show that the
union of the extreme points of QD[αᵀ f ] over all α ∈ Rm is dense in the
set of extreme points of QD[ f ] w.r.t. the x-components. As QD[αᵀ f ] can
be described by the convex envelopes vexD[αᵀ f ] and vexD[−αᵀ f ], we can
thus take advantage of the existing theory of their “extreme points” to
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describe the extreme points of QD[ f ].
Regarding the α ∈ Rm needed for QD[ f ] in Equation (1.1), we identify

two classes of cones whose interior points are not needed in the descrip-
tion of QD[ f ]. These cones are then explicitly derived for vectors of two
and three univariate convex functions. Although the consideration of
such “simple” functions may seem rather restrictive, strong relaxations
for these vectors can have a significant impact on computations. For in-
stance, higher dimensional functions, whose convex envelopes are not
known, are often reformulated as sums and products of univariate (con-
vex) functions as illustrated in Example 1.1. In such a setting the use of
a simultaneous relaxation is clearly advantageous as indicated in Exam-
ple 1.3.

Based on our analysis of the necessary α ∈ Rm in the representation of
QD[ f ], we propose only a few α ∈ Rm whose corresponding constraints
vexD[αᵀ f ](x) ≤ αᵀz constitute a strong basic relaxation of QD[ f ]. For
the vector of two univariate convex functions we can further provide
a separation result which identifies for any (x̄, z̄) < QD[ f ] an α ∈ Rm

such that the corresponding constraint vexD[αᵀ f ](x) ≤ αᵀz cuts off (x̄, z̄).
To demonstrate the computational impact, we show the results of an
ad-hoc implementation applied to an instance from GLOBALLib [GLO].
Motivated by the excellent computational results, we also implemented
a separator in SCIP which is based on our proposed relaxations. This
implementation clearly outperforms state-of-the-art global optimization
solvers applied to a test set of 800 randomly generated instances.
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CHAPTER 2

Bound Tightening for
Material Balance Equations

In the process of modeling applications from chemical engineering, prac-
titioners impose rather weak bounds on the variables in order to capture
a large range of operating points. However, tighter bounds are often
given implicitly by the constraint set. Thus, convex relaxations con-
structed over the original domains are unnecessarily weak and lead to
long running times for global optimization solvers. To avoid this, most
solvers apply bound tightening techniques to reduce the initial domains,
e.g., BARON [TS05] and SCIP [Ach07].

This chapter introduces a bound tightening technique for a system
of material balance equations which naturally occur in process modeling
of multi-stage counter-current separation processes, as e.g., distillation,
(melt-)crystallization, flotation, extraction, and membrane separations
[CPW00]. The goal of such separation processes is to separate a given
mixture into its components by means of a counter movement of two
phases which posses different chemical and/or physical properties. Due
to the different characteristics of the components they move with one of
the phases, so that the separation takes place. Material balance equations
ensure material conversation, that is, they require the material of one
component to be the same for the different stages of the operational unit.

Material balance equations can be formally modeled as follows. Con-
sider an operational unit consisting of N stages and two phases which are
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2. Bound Tightening for Material Balance Equations

called X and Y. Then, the material balance equations in the inner stages
of the operating unit are given by

LY yi,l+1 − LX xi,l = LY yi,l − LX xi,l−1, l = 2, . . . ,N − 1, (2.1)

where LX and LY denote the flow-rates of the corresponding phases, and
xi,l and yi,l denote the composition or concentration of component i at
stage l in phase X and Y, respectively. To establish a link between the
concentrations in the two phases, equilibrium functions are used in which
yi,l is a function of xl = (x1,l, . . . , xk,l), i.e., yi,l = yi,l(xl). The concept of
material balance equations is illustrated in Figure 2.1. The box represents
the i-th stage of a separation unit and indicates the phase transition of the
components. The arrows indicate the resulting incoming and outgoing
material flows.

LY, yi,l+1

LX, xi,l LX, xi,l−1

LY, yi,l

Figure 2.1.: Principle of material balance equations.

Computationally, optimization problems from chemical engineering,
whose model formulations contain systems of material balance equations,
are usually difficult to handle for global optimization solvers. Table 2.1
illustrates this for the two applications discussed in this thesis. The first
application is a hybrid distillation/melt-crystallization process considered in
this chapter, cf. instance T0 in Table 2.7. The second application is a true
moving bed process introduced in Chapter 3, cf. Section 3.3.3. Both pro-
cesses correspond to cost-intensive real world applications. For instance,
in 2009 distillation columns consumed 6% of the overall U.S. energy pro-
duction [Cah12]. Although the computations in Table 2.1 were accom-
plished by the state-of-the-art global optimization software BARON [TS05]
(with default settings), the computational results are not satisfying and
motivate further research in this area.

Two main reasons for the expensive computations can be identified.
On the one hand, there is a large number of material balance equations
resulting in a sparse model structure with respect to the occurrence of
certain variables and functions. For instance, the composition variables
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2.1. Overview of Bound Tightening

Application Lower / upper bound Gap

Distillation/Crystallization 12.69 / 154.00 168 %
True Moving Bed process 0.23 / 6.05 2530 %

Table 2.1.: Computational results after at least 100 hours.

xi,l and yi,l appear only in the material balance equations around stage l.
The same is true for product terms like LXxi,l and LY yi,l, and the equilibrium
functions yi,l(xl). On the other hand, the domains for the concentration
variables xi,l and yi,l are often rather weak.

In this chapter we present a bound tightening technique for material
balance equations in the framework of hybrid distillation/melt-crystalliza-
tion processes that reduces the domains significantly and thus accelerates
the computations. Our approach leads to boundary intervals for the com-
position variables xi,l of the distillation column which contain at least all
feasible solutions of the original model. This forms the core of a small
MINLP program used to relax the original problem. The small, relaxed
MINLP formulation allows to check efficiently whether a given structure
and domain can contain optimal solutions and thus reduces the domain of
the original problem while guaranteeing that no globally optimal solution
is lost. With the reduced domain at hand, the original problem is solved
for global optimality. The computational results show that our approach
considerably reduces the solution time. In particular, if the optimization
of a stand-alone distillation column is considered, the solution time can
be decreased by orders of magnitude.

This chapter is structured as follows. Initially, a review on existing
bound tightening techniques is given in Section 2.1. In Section 2.2 we de-
scribe the basics of hybrid distillation/melt-crystallization processes and
discuss a process model. In Section 2.3 we introduce the bound tighten-
ing technique for material balance equations and prove its computational
impact in Section 2.4. This chapter is based on [BKK+] and [BKK+11].

2.1. Overview of Bound Tightening

The goal of bound tightening (BT) techniques is to reduce the domains
of the variables. With this, tighter relaxations can be constructed over
the resulting, smaller domains as indicated in Figure 2.2. This potentially
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2. Bound Tightening for Material Balance Equations

accelerates branch-and-bound algorithms, which is reflected by the var-
ious implementations of BT in several global optimization solvers, e.g.,
BARON [TS05], SCIP [Ach07], and COUENNE [BLL+09]. BT is also known
as bound propagation, constraint propagation, domain filtering, domain
reduction, and range reduction, cf. Section 1 in [BCLL12].

x

f (x)

ul

(a) Large domain.

x

f (x)

l̂ û

(b) Smaller domain.

Figure 2.2.: Impact of bound tightening on the relaxation quality. The blue
shaded areas represent the convex relaxation of the graph of
a function (bold black line).

In general, there are two classes of BT techniques [CL10]. Given an
optimization problem min{ f0(x) | x ∈ F ∩ [l,u]}, where f0 : Rn

→ R,
F = {x | fi(x) ≤ 0, i = 1, . . . ,m} ⊆ Rn is a closed convex set, and [l,u] ⊆ Rn

is a box. Feasibility Based Bound Tightening (FBBT) aims at shrinking [l,u]
without excluding any feasible solution, i.e., determining the smallest box
[l̂, û] with

F ∩ [l,u] = F ∩ [l̂, û].

Optimality Based Bound Tightening (OBBT) shrinks [l,u] without excluding
any optimal solution. Let f?0 be an upper bound (corresponding to the
best known solution) on the problem. Then, the box [l̂, û] obtained by
OBBT satisfies

{x ∈ F | f0(x) ≤ f?0 } ∩ [l,u] = {x ∈ F | f0(x) ≤ f?0 } ∩ [l̂, û],

and excludes all solutions with an objective function value larger than f?0 .
While FBBT uses the constraint set F to tighten the bounds, most OBBT
methods rely on dual information and often solve auxiliary subproblems
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2.1. Overview of Bound Tightening

to draw inferences on the domains, cf. [Sah03, BCLL12].

Feasibility Based Bound Tightening

The tightest bounds [l̂, û] containing all feasible solutions can be computed
by

l̂i = min{xi | x ∈ F ∩ [l,u]} and ûi = max{xi | x ∈ F ∩ [l,u]}, (2.2)

for all i = 1, . . . ,n. However, these auxiliary problems may be as hard as
the original problem, cf. [BCLL12], so that this technique is rarely used in
global optimization. In general, there are two main approaches to reduce
the problem complexity and yet get improved bounds: (i) Relaxations of
the optimization problems in (2.2) and (ii) BT by interval arithmetic.

The idea of the relaxation approach is to relax the set F by an easier
description F such that the resulting optimization problems min /max{xi |

x ∈ F ∩ [l,u]} are efficiently to solve. One possibility is to use an arbitrary
linear relaxation F which is discussed in [Kea06, LMR05] and applied in
the software BARON. This approach works with the complete model and
thus captures the overall problem characteristics. Yet, it requires to solve
auxiliary optimization problems and relies on good linear relaxations.

BT by interval arithmetic exploits the dependencies among the variables
imposed by each single constraint, cf. [Mes04]. Each constraint is decom-
posed into its basic algebraic operations and the variables are replaced
by their intervals. The basic operations of interval arithmetic [Moo66] are
defined as follows:

[a, b] + [c, d] = [a + c, b + d],

[a, b] − [c, d] = [a − d, b − c],

[a, b] · [c, d] = [min{a · c, a · d, b · c, b · d},max{a · c, a · d, b · c, b · d}],
[a, b]/[c, d] = [a, b] · [1/d, 1/c], if 0 < [c, d].

While this approach might neglect some dependencies between the
constraints, it needs only the cheap evaluation of interval arithmetic.
Consider, for instance, a set F = {x ∈ R2

| x1 + x2 = 2} and [l,u] =
[0, 2] × [1, 3]. We want to check if this system implies tighter bounds on
x1. For this, we solve the constraint for x1, i.e., x1 = 2 − x2, substitute x2

by its given interval [1, 3], and intersect the resulting interval of x1 with
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2. Bound Tightening for Material Balance Equations

its given interval [0, 2] which leads to

[l̂1, û1] = ([2, 2] − [1, 3]) ∩ [0, 2] = [−1, 1] ∩ [0, 2] = [0, 1].

Similarly, we obtain [l̂2, û2] = [1, 2]. This approach is well-known in
the linear programming community and sometimes referred to as “poor
man’s linear programs”. See [Sah03, Mes04, BCLL12] for details. An
analogous procedure can be applied for nonlinear constraints, i.e., a given
nonlinear constraint is solved for a variable and it is checked if better
bounds are implied by means of interval arithmetic. See [Mes04] for a
detailed discussion.

In optimization software BT by interval arithmetic is usually handled
by expression trees [BGGP99, Mes04, BCLL12, Vig12] which is illustrated
in the next example. In Section 2.3.1 we compare this standard approach
to our developed BT technique.

Example 2.1. Let F = {(x1, x2) ∈ R2
| x1x2 − x1 = 2} and [l,u] = [1, 2]2. The

expression tree for the constraint is given in Figure 2.3. Each mathematical
operation is represented by a node and the leaves of the tree correspond to
the variables. In the forward propagation step the bounds on the variables

−

x1 x2

∗

[1, 2]

[1, 2]x1

[1, 2]

= [1, 4]
[1, 2] · [1, 2]

[1, 4] − [1, 2]
= [−1, 3]

(a) Forward propagation (up).

−

x1

x1

∗

[3, 4]/[1, 2]x2[3, 4]/[1, 2]

([2, 2] + [1, 2])

∩[1, 2] = [3/2, 2]∩[1, 2] = [3/2, 2]

[−1, 3] ∩ [2, 2] = [2, 2]

∩[1, 2] = [1, 2]
([1, 4] − [2, 2])

∩[1, 4] = [3, 4]

(b) Backward propagation
(down).

Figure 2.3.: Expression tree evaluation for the constraint x1x2−x1 = 2 with
(x1, x2) ∈ [1, 2]2.

are propagated upwards through the tree by means of interval arithmetic
to obtain bounds on the constraints, cf. Figure 2.3 (a). In the backward
propagation the computed bounds on the constraints are intersected with
the original bounds at the root node of the expression tree. This bound is
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2.1. Overview of Bound Tightening

then propagated downwards to the leaves of the expression tree using the
inverse arithmetic operations, cf. Figure 2.3 (b). For instance, the bounds
on the expression x1x2 are computed to be [3, 4] and (x1, x2) ∈ [1, 2]2. By
interval arithmetic we obtain tighter bounds on x1, x2 via [3, 4]/[1, 2] =
[3, 4] · [1/2, 1] = [3/2, 4] which needs to be intersected with the original
intervals [1, 2] leading to the domains [3/2, 2] for both x1 and x2. �

The example shows how BT by interval arithmetic can be easily au-
tomatized by expression trees. Nevertheless, it cannot be guaranteed that
the tightest possible bounds are obtained by this procedure. One reason
is the representation of the constraints and the conservativeness of the
approach. For example, the expression x − x with x ∈ [0, 1] is replaced
by [0, 1] − [0, 1] = [−1, 1] while x − x = 0. To avoid these problems, some
authors recently started to utilize the particular structure of a constraint,
e.g., quadratic constraints [DN10, BHV09, Vig12]. Another reason is the
individual and consecutive treatment of the constraints so that not all
interactions within the constraint set are exploited. As BT by interval
arithmetic is computationally cheap, the procedure is often applied in a
loop. Yet, this procedure does not necessarily converge to the tightest
box, see e.g., [BCLL12].

Optimality Based Bound Tightening

In optimization one is often not interested in all feasible solutions but in
an optimal solution. Therefore, local information regarding the objective
function value can be used to cut-off regions with a worse objective func-
tion value. For instance, consider the problem min{x1 + x2 | x2

1x2 + x2 ≥

3, (x1, x2) ∈ [0, 3]2
} with the feasible solution (x1, x2) = (2, 0.6) correspond-

ing to the objective function value of 2.6. One could add the constraint
x1 + x2 ≤ 2.6 to the constraint set and apply FBBT which in this case
tightens the upper bounds on the two variables to 2.6.

Ryoo and Sahinidis [RS95, RS96] developed an OBBT technique which
is not based on FBBT but on information from the dual solution of a
convex relaxation.

Corollary 2.2 (cf. Corollary 2 in [RS95]). Given a minimization problem
P. Let R be a convex programming relaxation of P with an optimal objective
function value of L and consider a range constraint x j ≤ u j that is active at the
solution of Problem R with a dual multiplier value λ j > 0. Let U be a known
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2. Bound Tightening for Material Balance Equations

upper bound for problem P. Then, the following constraint is valid for P.

x j ≥ max{l j,u j − (U − L)/λ j}.

An analogous result can be used to tighten the upper bound on variables
x j.

Corollary 2.2 is only applicable to variables whose solution in the re-
laxed program is attained at their lower or upper bound. But this idea
can be extended to other variables by probing (cf. [RS95]). Here, a variable
is fixed to one of its bounds and then the convex relaxation is solved and
Corollary 2.2 can be applied.

Remark 2.3. Some authors use the terms FBBT and OBBT but refer to
different concepts, e.g., [BLL+09, BCLL12]. They distinguish between
techniques which require the solution of auxiliary optimization problems
(OBBT) and techniques which use only the available information about
the constraint set or current solutions (FBBT).

2.2. Hybrid Distillation/Melt-Crystallization Processes

Separation of closely boiling mixtures is a challenging problem in pro-
cess synthesis and design. A typical example is the separation of mix-
tures of isomers like n/iso-aldehyde mixtures arising from oxo-synthesis.
Standard distillation is often not favorable due to high process costs, in
particular for long-chain molecules [MBR+11]. A more energy and cost
efficient separation process for such closely boiling mixtures is thus de-
sirable and may be obtained by an optimal combination of distillation and
melt-crystallization taking advantage of both processes (see [FNN+08]).

Distillation is a separation process which exploits the different boiling
temperatures of the single components of a mixture. Distillation columns
are used to perform this separation. The liquid mixture is fed into the
distillation column, where it is heated up. The components with the lower
boiling temperature evaporate and move upwards with the vapor phase
while the components with the higher boiling temperatures remain in the
liquid phase and are withdrawn at the bottom of the distillation column.

Melt-crystallization is based on the different composition properties of
the components in their liquid and solid (crystal) state. When cooling a
mixture down to a certain temperature, some components start to form

18



2.2. Hybrid Distillation/Melt-Crystallization Processes

relatively pure crystals. The crystal grow depends on the composition of
the components in the mixture and requires a continuous supersaturation
of the specific components. As crystal structures are highly complex, the
atoms of the other components do often not fit into the crystal structure
of the supersaturated components and stay in the melt. After the growth
of the crystals the melt is withdrawn from the operation unit and only
the pure crystals remain, leading to the separation of the components.
See [CPW00] for further details on both techniques.

The optimal design of hybrid distillation/melt-crystallization processes
with structural and operational degrees of freedom can be modeled as a
mixed-integer nonlinear program, which is usually difficult to solve due
to nonconvex nonlinearities and integrality conditions on some variables.
Over the last years several methods for the local optimization of stand-
alone distillation column models have been established and extended
to more complex superstructures (e.g., see [VG90, VG93, YG00, BA02,
BA03, KKM09]). For the preprocessing these methods usually make use
of shortcut procedures to rank different design alternatives, provide good
initial solutions, and give improved bounds on key variables. For a com-
prehensive list of different shortcut evaluation methods for distillation
columns, we refer to the work [LAT08] and the references therein.

Several studies show that rigorous optimization with a good prepro-
cessing, e.g., good initial solutions and a reduced search space, can de-
termine locally optimal solutions efficiently. However, Grossmann et
al. [GAB05] conclude that global optimization of such processes is still a
major challenge (see also [GKH+06, GHJ+08a, BGSA08]).

An example for the optimization of hybrid distillation/melt-crystalli-
zation processes for separating ternary mixtures is given in Franke et
al. [FNN+08]. Therein, the authors first apply heuristics to determine dif-
ferent process configurations that are then evaluated by shortcut methods
with respect to their energy requirements. Finally, only the most promis-
ing process configurations are rigorously optimized with respect to an
economic objective function. The authors apply a modified Generalized
Bender’s Decomposition algorithm (cf. [Flo95]) which cannot generally
prove global optimality.

The discussion above shows that the global optimization of hybrid
distillation/melt-crystallization processes as well as their individual op-
erations is still an open issue in the process engineering community. The
aim of the remaining section is to introduce a suitable model description
which is investigated in Section 2.3.
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2. Bound Tightening for Material Balance Equations

Process Model

Subsequently, we describe a simple model for a binary separation com-
bining distillation and melt-crystallization. This is a first step to develop
methods suitable for more realistic hybrid separation process models with
more detailed objective functions.

Distillation Column

As a starting point we use a MINLP model formulation for a continu-
ous, counter-current distillation in the line of Viswanathan and Gross-
mann [VG93] and we refer to it as reference model formulation. The
model assumes steady-state, simple thermodynamics with constant rel-
ative volatilities, a total condenser and reboiler, a single saturated liquid
feed flow and constant molar overflows. The basic concepts of this model
are introduced with the help of Figure 2.4. The liquid mixture is fed into

F, xFeed
i

D, xDist
i

B, xBot
i

βRecycle
l

βFeed
l

Figure 2.4.: Model structure with variable positions of feed and condenser
recycle flow.

the column with a certain flow F and a composition xF
i for each compo-

nent i ∈ {A,B}. The mixture is then heated up and the component with the
lower boiling point evaporates and moves upwards in the vapor phase
with flow V and composition yi,l, where the index l denotes the tray of the
column. The trays are labeled downwards, i.e., the top (condenser) is la-
beled l = 1 and the bottom (reboiler) is labeled l = Nmax

trays. The component
with the higher boiling point remains in the liquid phase, whose flow
and composition are denoted by Ll and xi,l, respectively. The enriched
product streams are withdrawn at the top and bottom of the column with
a flow and a composition of D and xDist

i , and B and xBot
i , respectively. The
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2.2. Hybrid Distillation/Melt-Crystallization Processes

binary variables βF
l and βRecycle

l indicate whether the feed or the reflux is
introduced at tray l or not. The latter condition determines the number of
active trays, i.e., the column length. The model of the distillation column
is given as follows.

Component material balance with the reflux flow R:(
yi,l+1 − yi,l

)
V + xi,l−1Ll − xi,lLl+1 + xF

i F βF
l + xDist

i R βRecycle
l = 0. (2.3)

Total material balance:

Ll+1 = Ll + FβF
l + RβRecycle

l with L1 = 0. (2.4)

Condenser and column total material balance:

0 = V −D − R and 0 = F −D − B. (2.5)

Vapor-liquid equilibrium with given relative volatilities αi:

yi,l =
αixi,l

Ncomp∑
j=1

α jx j,l

. (2.6)

Single recycle and feed location, and feed below recycle location:

Nmax
trays∑
l=1

βRecycle
l = 1,

Nmax
trays∑
l=1

βF
l = 1,

Nmax
trays∑
l=1

l βF
l ≥

Nmax
trays∑
l=1

l βRecycle
l . (2.7)

Total condenser and reboiler:

xDist
i = yi,1, xBot

i = yi,Nmax
trays+1 = xi,Nmax

trays
. (2.8)

Summation conditions:

Ncomp∑
i=1

xi,l = 1,
Ncomp∑

i=1

yi,l = 1. (2.9)
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2. Bound Tightening for Material Balance Equations

It follows from the definition of the binary variables that the column
length, i.e., the number of active trays Nactive, is given by

Nactive := Nmax
trays + 1 −

Nmax
trays∑
l=1

l βRecycle
l . (2.10)

Crystallizer Model

The crystallizer model incorporates ideal behavior of a binary, eutectic
system. The liquid mixture is fed into the crystallizer with flow F and
composition zi, i ∈ {A,B}. See Figure 2.5 (a). We assume an eutectic

CrystF, zi

S,wi

L, xeut
i

(a) Principle of a crystallizer. (b) Phase diagram.

Figure 2.5.: (a) Input and output streams of a crystallizer. (b) A qualitative
phase diagram for a binary, eutectic system. The point E is
called eutectic point, and represents the eutectic temperature
and eutectic composition xeut

i .

system, i.e., the crystallization is done at the eutectic temperature, and
depending on the relation of the input composition zi to the given eu-
tectic composition xeut

i either component A or component B forms a pure
crystal. See Figure 2.5 (b). Consequently, we have one outlet stream with
pure crystals and composition wi ∈ {0, 1}, and another outlet stream of
remainder liquid with eutectic composition xeut

i .
The crystallizer is then modeled by the following equation.

Fzi = Swi + Lxeut
i , i = A,B, where wi =

{
1, if zi ≥ xeut

i ,

0, if zi < xeut
i .

(2.11)
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2.2. Hybrid Distillation/Melt-Crystallization Processes

Superstructure

We consider hybrid distillation/melt-crystallization processes consisting
possibly of two crystallizers and one distillation column for a binary sepa-
ration task as layouted in Figure 2.6. A set of binary variables determines
the existence of connections between the process units (dashed lines). Ad-
ditional constraints are added to enforce that output flows are transferred
completely to a single target.

Cryst

Cryst
D
is
ti
lla
ti
o
n

Figure 2.6.: Process structure consisting of a distillation column (vertical
tube) and two crystallizers (squares). The dashed lines reflect
possible material flows which can be enabled or disabled by
binary variables. The black lines correspond to streams which
are always enabled.

The presented superstructure contains ten meaningful process configu-
rations, which are listed in Figure 2.7. For instance, Figure 2.7 (c) displays
a process configuration of one crystallizer and the distillation column,
where the mixture is fed into the distillation column. The product stream
withdrawn at the reboiler (bottom) is enriched with component B such
that it is satisfies the purity requirements. The product stream at the
condenser (top) is recycled into the crystallizer, where pure crystals of
component A are generated. The remaining liquid mixture is withdrawn
from the crystallizer, mixed with the feed mixture, and fed into the distil-
lation column in a continuous process.

Process Costs

A simplified cost function is used accounting for essential cost factors.
The overall annual costs of the general process consist of annualized
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2. Bound Tightening for Material Balance Equations

(a) PC01 (b) PC02 (c) PC03

(d) PC04 (e) PC05 (f) PC06

(g) PC07 (h) PC08 (i) PC09

(j) PC10

Figure 2.7.: List of possible process configurations.

investment costs and operating costs. The investment costs k1 of the
column are proportional to the column length Nactive and also to the vapor
flow V since higher flows require a larger column diameter. The operating
costs k2 are proportional to the desired vapor flow V. For the crystallizer,
investment and operating costs are proportional to the feed flow F jCr and
both are covered by k3 since the crystallizer size is fixed here. Thus, the
objective function evolves to

cost = (k1 Nactive V + k2V) + k3

2∑
jCr=1

F jCr . (2.12)
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2.3. Global Optimization Techniques for Distillation Columns

Evaluation of the Process Model from an Optimization Point of View

The mathematical formulation of the process model involves two main
types of nonlinearities: Product terms of two or three variables, that ap-
pear in the material balance equations (2.3) and the cost function (2.12),
and fractions of linear terms in the vapor-liquid equilibrium in Equa-
tion (2.6). As we consider only binary mixtures the vapor-liquid equi-
librium can be reduced to univariate convex or concave functions via
the summation condition xA,l + xB,l = 1 in Equation (2.9), e.g., yA,l =
(αAxA,l)/(αAxA,l + αB(1 − xA,l)) is convex. For both types of nonlinearities
explicit formulas for the best convex under- and concave overestimators
are known (e.g., see [McC76, MF03]) and state-of-the-art global optimiza-
tion software can handle each single nonlinearity of such type very well.
However, a main factor influencing the relaxation quality of these esti-
mators is given by the underlying domain of the involved variables. It
is therefore desirable to work with the tightest possible bounds on each
variable. The initial bounds on all composition variables xi,l and yi,l are
given by zero and one even though tighter bounds are induced by the
constraint set, as we show in the following section.

2.3. Global Optimization Techniques for Distillation
Columns

For our new approach to globally optimize hybrid distillation/melt-crys-
tallization processes we proceed as follows. In Section 2.3.1 we present a
BT technique for the composition variables related to a binary distillation
column. In contrast to general purpose BT techniques, we explicitly
exploit the analytical properties of material balance equations. Based on
the proposed technique, a relaxed MINLP model for the distillation column
is defined in Section 2.3.2. We apply this model in our computations to
identify infeasible or nonoptimal process configurations and/or operating
subdomains. In Section 2.3.3 we use the relaxed MINLP model to derive an
alternative model formulation for distillation columns, which allows us
to assign the improved bounds from the proposed BT technique directly
to the composition variables.
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2. Bound Tightening for Material Balance Equations

2.3.1. Bound Tightening

Distillation columns are applied to produce highly enriched product
streams which are withdrawn at the top (condenser) and bottom (re-
boiler) of the column. Thus, the compositions of the product streams
usually have to satisfy high purity requirements, this is, there are tight
bounds on the corresponding composition variables. Given these bounds
at the top and bottom of the distillation column, we use tray-to-tray cal-
culations to propagate the bounds through the distillation column for a
given range of specifications. A similar procedure can be applied to im-
prove initial bounds on concentration variables for MINLPs arising from
true moving bed processes and is discussed in Chapter 3.

We investigate binary distillation processes and assume that the initial
lower and upper bounds on the composition variables xi,l and yi,l are the
trivial bounds zero and one, respectively. Our point of departure is a
distillation column with a fixed column length and a fixed position of
the feed stage, i.e., the binary variables βRecycle

l and βF
l are fixed. These

assumptions simplify the component material balance equations (2.3) to

DxDist
i = Vyi,l+1 − Rxi,l, l = 1,

Vyi,l − Rxi,l−1 = Vyi,l+1 − Rxi,l l = 2, . . . , lF − 1,
Vyi,l − Rxi,l−1 = Vyi,l+1 − (R + F)xi,l + FxF

i , l = lF,
Vyi,l − (R + F)xi,l−1 = Vyi,l+1 − (R + F)xi,l, l = lF + 1, . . . ,Nmax

trays − 1,
Vyi,l − (R + F)xi,l−1 = −BxBot

i , l = Nmax
trays,

(2.13)

which reveal the structure of the general material balance equations
presented in Equation (2.1). Figure 2.8 illustrates the material flow de-
scribed in Equation (2.13) and depicts also the three parts of a distillation
column: The rectifying section (l = 1, . . . , lF

− 1), the feed section (l = lF),
and the stripping section (l = lF + 1, . . . ,Nmax

trays). Note that the enriched
phases are withdrawn at the end of the rectifying and stripping section,
i.e., the composition variables xDist

i and xBot
i have to satisfy the desired

purity requirements so that their bounds are tight. The structure of the
material balance equations allows us to propagate these tight bounds
through the distillation column.

We now consider the rectifying and the stripping section separately, as
if both sections constitute independent operational units. In Section 2.3.2
and 2.3.3 we show how the two units can be coupled again. We introduce
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V, yi,l R, xi,l−1

R, xi,lV, yi,l+1

1

Nmax
trays

F, xFeed
i

D, xDist
i

B, xBot
i

Rectifying section

Stripping section

Figure 2.8.: Schematic representation of a distillation column with fixed
feed position and fixed length.

the composition variables xrect
i,l , yrect

i,l and xstrip
i,l , ystrip

i,l for the rectifying and
stripping section, respectively. The total material balance equations (2.5)
state R = V − D and F = B + D so that F + R = V + B and thus, the
component material balance equations for the two sections can be derived
from Equations (2.13)

D xDist
i = V yrect

i,l+1 − (V −D) xrect
i,l , l = 1, . . . , lrect

max − 1,
B xBot

i = (V + B) xstrip
i,l+1 − V ystrip

i,l , l = 1, . . . , lstrip
max − 1,

(2.14)

where lrect
max and lstrip

max denote the length of the two column sections. The
trays of the rectifying section are numbered from the condenser down-
wards while the trays of the stripping section are numbered upwards.
Thus, given the bounds from the purity requirements on the product
compositions xDist

i and xBot
i we obtain bounds on the composition variables

xrect
i,1 ,yrect

i,1 and xstrip
i,1 ,ystrip

i,1 by the initial conditions corresponding to Equa-

tion (2.8), i.e., xDist
i = yrect

i,1 and xBot
i = xstrip

i,1 . These bounds are propagated
through the column sections via the following tray-to-tray calculations
which are a reformulation of Equation (2.14) (cf. Equations (1a) and (1b)
in [LVD85]):

yrect
i,l+1 = xrect

i,l + D
V (xDist

i − xrect
i,l ) =: Φ

y
i,l+1

(
xrect

i,l , x
Dist
i ,D,V

)
,

xstrip
i,l+1 = 1

V+B (Vystrip
i,l + BxBot

i ) =: Φx
i,l+1(ystrip

i,l , xBot
i ,B,V).

(2.15)
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2. Bound Tightening for Material Balance Equations

for l = 1, . . . , lrect
max − 1 and l = 1, . . . , lstrip

max − 1.
Subsequently, we present the bound propagation for component A

which is enriched in the vapor phase and withdrawn at the top of the
distillation column. The bounds for component B can be derived in an
analogous procedure. As Φ

y
A,l+1 is monotonous in its variables, we can

use the bounds on the variables xDist
i ,D,V to compute lower bounds “lb”

and upper bounds “ub” on yrect
A,l+1. To obtain bounds on xrect

A,l+1, we exploit
the summation condition for binary mixtures xrect

A,l+1 + xrect
B,l+1 = 1 and write

the vapor-liquid equilibrium yrect
A,l+1 as a univariate and monotonously

increasing function in xrect
A,l+1, namely yrect

A,l+1 = αAxrect
A,l+1/((αA−αB)xrect

A,l+1 +αB).

Proposition 2.4 (BT for the rectifying section). Given nonnegative domains
for the variables xDist

i ,D, a positive domain for V, and ub(D) ≤ lb(V). Then, for
l = 1, . . . , lrect

max − 1

lb(yrect
A,l+1) = min

{
0 , Φ

y
A,l+1

(
lb(xrect

A,l ), lb(xDist
A ), lb(D),ub(V)

) }
,

ub(yrect
A,l+1) = max

{
1 , Φ

y
A,l+1

(
ub(xrect

A,l ),ub(xDist
A ),ub(D), lb(V)

) }
.

(2.16)

If yrect
A,l = αAxrect

A,l /((αA − αB)xrect
A,l + αB), then for l = 1, . . . , lrect

max − 1

lb(xrect
A,l+1) =

αB lb(yrect
A,l+1)

αA − (αA − αB) lb(yrect
A,l+1)

,

ub(xrect
A,l+1) =

αB ub(yrect
A,l+1)

αA − (αA − αB) ub(yrect
A,l+1)

.

(2.17)

Proof. The first partial derivatives of Φ
y
A,l+1

(
xrect

A,l , x
Dist
A ,D,V

)
read

∂Φ
y
A,l+1

∂xrect
A,l

= V−D
V ,

∂Φ
y
A,l+1

∂xDist
A

= D
V ,

∂Φ
y
A,l+1
∂D =

xDist
A −xrect

A,l
V ,

∂Φ
y
A,l+1
∂V = −

D(xDist
A −xrect

A,l )

V2 .

Note that (i) V − D ≥ 0 if lb(V) ≥ ub(D), (ii) D ≥ 0,V > 0, and (iii)
(xDist

A − xrect
A,l ) ≥ 0. The first two conditions hold in general while the third

condition holds only for component A. It reflects the monotonicity in
the extreme components, i.e., the composition of component A decreases
while moving from top to bottom of the column which guarantees that
(xDist

A − xrect
A,l ) ≥ 0 for all l = 1, . . . , lrect

max. See [FK]. Then, the first three partial
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2.3. Global Optimization Techniques for Distillation Columns

derivatives are nonnegative while the fourth is nonpositive. This implies
monotonicity in all variables and leads to Equation (2.16).

The equilibrium function yrect
A,l = αAxrect

A,l /((αA − αB)xrect
A,l + αB) is monoto-

nously increasing in xrect
A,l because

∂yrect
A,l

∂xrect
A,l

=
αAαB

((αA−αB)xrect
A,l +αB)2 ≥ 0 as αA, αB ≥ 0.

Hence, lb(yrect
A,l ) = yrect

A,l (lb(xrect
A,l )) and ub(yrect

A,l ) = yrect
A,l (ub(xrect

A,l )). Using the
inverse function (yrect

A,l )−1 = xrect
A,l = (αB yrect

A,l )/((αA − (αA − αB)yrect
A,l ), Equa-

tion (2.17) is implied. �

The BT technique for the stripping section is based on the same ideas but
does not rely on the explicit description of the vapor-liquid equilibrium
functions but rather on their monotonicity properties.

Proposition 2.5 (BT for the stripping section). Given nonnegative domains
for the variables xBot

i ,B and a positive domain for V. Then, for l = 1, . . . , lstrip
max −1

lb(xstrip
A,l+1) = min

{
0 , Φx

A,l+1

(
lb(ystrip

A,l ), lb(xBot
A ),ub(B), lb(V)

) }
,

ub(xstrip
A,l+1) = max

{
1 , Φx

A,l+1

(
ub(ystrip

A,l ),ub(xBot
A ), lb(B),ub(V)

) }
.

(2.18)

If ystrip
A,l+1 is monotonously increasing in xstrip

A,l+1 and monotonously decreasing in

xstrip
B,l+1, then for l = 1, . . . , lstrip

max − 1

lb(ystrip
A,l+1) = ystrip

A,l+1

(
lb(xstrip

A,l+1), 1 − lb(xstrip
A,l+1)

)
,

ub(ystrip
A,l+1) = ystrip

A,l+1

(
ub(xstrip

A,l+1), 1 − ub(xstrip
A,l+1)

)
.

(2.19)

Proof. The first partial derivatives of Φx
A,l+1(ystrip

A,l , x
Bot
A ,B,V) read

∂Φx
A,l+1

∂ystrip
A,l

= V
V+B ,

∂Φx
A,l+1

∂xBot
A

= B
V+B ,

∂Φx
A,l+1
∂B =

V(xBot
A −ystrip

A,l )

(V+B)2 ,
∂Φx

A,l+1
∂V = −

B(xBot
A −ystrip

A,l )

(V+B)2 .

Similar to the proof of Proposition 2.4 it holds that (i) B ≥ 0,V > 0 and (ii)
(xBot

A −ystrip
A,l ) ≤ 0. Therefore, Φx

A,l−1 is monotonously increasing in ystrip
A,l , xBot

i ,
and V, and monotonously decreasing in B which implies Equation (2.18).

For the bounds on ystrip
A,l+1 we exploit monotonicity of ystrip

A,l+1 and the sum-

mation condition 1 = xstrip
A,l+1+ystrip

B,l+1. For clarity, we skip some indices. Then,
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2. Bound Tightening for Material Balance Equations

yA(xA, xB) = yA(xA, 1 − xA), whose first partial derivative with respect to
xA is nonnegative. �

To summarize, Formulas (2.17) and (2.18) represent the boundary in-
tervals for the composition variables in the two column sections for given
lower and upper bounds on the variables xDist

i , xBot
i ,D,B,V. In contrast to

general BT techniques, we take advantage of the analytical properties of
the underlying constraints, namely the mass balance equations, to derive
tighter bounds on some variables. Moreover, we make use of the knowl-
edge of the distillation processes, i.e., we start the bound propagation at
the outlet ports and move from one tray to the next whereas general BT
technique choose the constraints and variables rather randomly.

Illustration For the purpose of illustration consider a distillation column
with specifications as given in Table 2.2. From the relations F = D + B and
FxF

i = DxDist
i + BxBot

i , we can derive strong bounds on D, B, xrect
A,1 ,yrect

A,1 , xstrip
A,1

and ystrip
A,1 (see Table 2.2).

Given specifications Implied bounds

F 1 D [0.24,0.25]
(xF

A, x
F
B) (0.25,0.75) B [0.74,0.75]

(αA, αB) (1.3,1) xrect
A,1 [0.98,1.00]

purA : xDist
A = yrect

A,1 ≥ 0.99 yrect
A,1 [0.99,1.00]

purB : xBot
B = xstrip

B,1 ≥ 0.99 xstrip
A,1 [0.00,0.01]

(lrect
max, l

strip
max ) (75,75) ystrip

A,1 [0.00,0.02]
V [2,5]

Table 2.2.: Specifications for a distillation column and implied bounds.

Figure 2.9 (a) displays the impact of the BT technique for the com-
position variables associated with component A assuming the setting of
Table 2.2. The original bounds on all xA,l are given by zero and one. These
bounds are indicated in Figure 2.9 (a) by the rectangle within the distil-
lation column. The improved bounds on the xA,l-variables obtained by
applying the recursive formulas are given by the light gray lines and the
dark gray lines. The two dashed lines at the intersection of the boundary
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2.3. Global Optimization Techniques for Distillation Columns

intervals represent the range for a possible feed position if 75 trays are
active.

F, xFeed
i

D, xDist
i

B, xBot
i

0 1

(a) Parameters and do-
mains according to Ta-
ble 2.2.

F, xFeed
i

D, xDist
i

B, xBot
i

0 1

(b) Stronger bounds:
3 ≤ V ≤ 4, xA,1 ≤ 0.99,
xA,N ≥ 0.005

F, xFeed
i

D, xDist
i

0 1
B, xBot

i

(c) Shorter column: The
BT technique yields a
conflict at the feed tray.

Figure 2.9.: The impact of the BT technique for component A: Initially, the
bounds for the composition variables are 0 and 1. The light
gray lines correspond to bounds obtained from the top-down
propagation whereas the dark gray lines indicate the bounds
from the bottom-up propagation.

Figure 2.9 (b) shows that imposing stronger bounds on V, xrect
A,1 , and

xstrip
A,1 results in tighter bounds on the composition variables and a reduced

range for the feed position indicated by the dashed lines. Besides that,
the BT technique can be helpful to detect infeasible column designs very
fast. For instance, Figure 2.9 (c) illustrates that if we reduce the length
of the column sections from 75 trays to 60 trays, we get a conflict at the
feed tray. Thus, the given range of specifications cannot lead to a feasible
separation and can be excluded from the search space.

Comparison to BT by Interval Arithmetic The discussion above il-
lustrates the potential of the proposed BT technique which we subse-
quently compare to standard BT. As displayed in Section 2.1 one of the
most commonly used approaches is to use expression trees for the con-
straints together with interval arithmetic. For this, we can either use
the material balance equations in Equation (2.14) or their equivalent rep-
resentation in Equation (2.15). Depending on the formulation different
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bounds are obtained. We observed that tighter bounds can be obtained
via Equation (2.15). For l = 1 and i = A, Equation (2.15) evaluates to
yrect

A,2 = xrect
A,1 + D

V (xDist
A −xrect

A,1 ). As the expression is already solved for the de-
sired variable yrect

A,2 , we can omit the expression tree and just apply interval
arithmetic. Substituting each variable in xrect

A,1 + D
V (xDist

A −xrect
A,1 ) by its interval

from Table 2.2 we obtain [0.98, 1] + [0.24, 0.25]/[2, 5]([0.99, 1] − [0.98, 1]) =
[0.9815, 1] while our approach yields yrect

A,2 ∈ [0.9834, 1] indicating a small
advantage.

In order to reveal the strength of our approach, we further computed
the bounds over the entire column. In Figures 2.10 (a) and (b) we show
the boundary intervals obtained by the two methods for the rectifying
section. The bold black lines correspond to bounds from interval arith-
metic while the light gray lines depict bounds from our approach. In
Figure 2.10 (b) the area between the boundary intervals from interval
arithmetic is about 6.5 times larger than the area obtained by our BT tech-
nique. For ease of presentation we do not give the boundary intervals
for the stripping section in Figures 2.10 (a) and (b). Note, however, that
the bounds for the stripping section obtained from interval arithmetic
are acceptable. They are 1.5 times worse than the bounds corresponding
to our approach. Nevertheless, BT by interval arithmetic is not able to
detect infeasibility when only 60 stages are active while our approach is
able to do so. Compare Figure 2.10 (c) and Figure 2.9 (c), respectively. The
horizontal dashed lines in Figure 2.10 (c) represent the area of possible
feed positions.

Remark 2.6. We remark that shortcut methods (e.g., [LVD85, BWM98])
can also be used to compute bounds on some key variables, e.g., the
minimal energy demand. These bounds reduce the overall domain but
are usually rather weak when subdomains are investigated. This is a
particular disadvantage for branch-and-bound based global optimization
algorithms, where the domain is successively refined. The presented BT
technique fits into this concept as it computes stronger bounds for smaller
subdomains of xDist

i , xBot
i ,D,B,V.

The next two subsections show how global optimization of distillation
columns can benefit from the proposed BT technique.

32



2.3. Global Optimization Techniques for Distillation Columns

F, xFeed
i

D, xDist
i

B, xBot
i

0 1

0 1

(a) Parameters and do-
mains according to Ta-
ble 2.2.

F, xFeed
i

D, xDist
i

B, xBot
i

0 1

0 1

(b) Stronger bounds:
3 ≤ V ≤ 4, xA,1 ≤ 0.99,
xA,N ≥ 0.005

F, xFeed
i

D, xDist
i0 1

0 1
B, xBot

i

(c) Shorter Column: BT
by interval arithmetic
does not yield a conflict.

Figure 2.10.: Comparison between the results of a BT by interval arith-
metic (bold black lines) and the proposed BT technique (light
gray lines). In (a) and (b) only the rectifying section is con-
sidered. In (c) the boundary intervals for both sections are
given according to BT by interval arithmetic.

2.3.2. A Relaxed MINLP Formulation

The illustration of the BT technique showed that BT does not only im-
prove the bounds on the composition variables, but it can also indicate
infeasibility of a certain range of variable specifications without using the
complete model formulation. See Figure 2.9 (c). Therefore, we adopt the
BT technique derived in the previous section such that it can be used as a
search space reduction scheme.

Our approach extends the ideas of the McCabe-Thiele diagram and
the boundary value method introduced by Levy et al. [LVD85], which
can be summarized as follows. Given some fixed values for the product
composition and the flow rates, the composition profiles of the rectifying
and stripping section can be computed by tray-to-tray calculations using
Formula (2.15). The separation is only feasible if the composition profiles
intersect. The point of intersection is the feed tray. To determine the
global optimal solution, all reflux ratios have to be checked (which is an
infinite procedure due to the continuous domains).

We propose to analyze the column profiles not for fixed values of prod-
uct compositions and flow rates but for intervals. Thus, extreme profiles
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can be computed using the BT technique from the previous section which
enclose all possible profiles. The extreme profiles lead to boundary inter-
vals for the composition variables of the rectifying and stripping section.
If the boundary intervals intersect for some choice of the column section
lengths, the separation can be feasible. The point of intersection rep-
resents a possible feed tray (cf. Figures 2.9 (a) and (b)). If the column
section lengths cannot be chosen such that the intervals intersect, there
can be no successful separation for the given range of specifications (cf.
Figure 2.9 (c)). Hence, the range of specifications can be excluded from the
search space. These insights can be gained without the use of the material
balance equations for the trays between the inlet and outlet trays.

We come up with the following smaller MINLP model which is a re-
laxation of a binary distillation column, and refer to it as relaxed MINLP
model. It only consists of three material balance equations that corre-
spond to the rectifying section, the feed tray, and the stripping section
in order to model the incoming and outgoing streams. The course of
the composition variables within the sections is relaxed by the boundary
intervals instead of using all material balance equations.

DxDist
i = Vyi,lF − (V −D)xi,lF−1,

−(DxDist
i + BxBot

i ) = Vyi,lF+1 − Vyi,lF ) + (V −D)xi,lF−1

−(V + B)xi,lF ,

BxBot
i = (V + B)xi,lF+1 − Vyi,lF ,

(2.20)

with the phase equilibrium

yi,l =
αixi,l

αAxA,l + αBxB,l
, l = lF, lF + 1. (2.21)

In order to couple the different sections with each other and also to as-
sociate the bounds obtained from BT with the variables, we introduce
further the following coupling conditions

(βrect
l − 1) + lb(xrect

i,l ) ≤ xi,lF−1 ≤ (1 − βrect
l ) + ub(xrect

i,l ),

(βrect
l − 1) + lb(xrect

i,l+1) ≤ xi,lF ≤ (1 − βrect
l ) + ub(xrect

i,l+1),

(βstrip
l − 1) + lb(xstrip

i,l+1) ≤ xi,lF ≤ (1 − βstrip
l ) + ub(xstrip

i,l+1),

(βstrip
l − 1) + lb(xstrip

i,l ) ≤ xi,lF+1 ≤ (1 − βstrip
l ) + ub(xstrip

i,l ),

(2.22)
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where βrect
l ∈ {0, 1}, l ∈ {1, . . . , lrect

max}, is a binary variable which is active
if and only if the length of the rectifying section is l, and βstrip

l ∈ {0, 1},
l ∈ {1, . . . , lstrip

max }, is a binary variable which is active if and only if the
length of the rectifying section is l. To ensure that the lengths of the
stripping and rectifying sections are uniquely determined, we demand

lrect
max∑
l=1

βrect
l = 1 and

lstrip
max∑
l=1

βstrip
l = 1. (2.23)

Finally, we bound the number of active trays from above by

Number of active trays =

lrect
max∑
l=1

βrect
l l +

lstrip
max∑
l=1

βstrip
l l + 1 ≤ Nmax

trays.

(2.24)

For illustration, assume βrect
s = 1 for s ∈ {1, . . . , lrect

max} and βstrip
t = 1 for

t ∈ {1, . . . , lstrip
max }. Then, the sections are of length s and t, respectively,

and the coupling condition (2.22) ensures that max{lb(xrect
i,s+1), lb(xstrip

i,t+1)} ≤

xi,lF ≤ min{ub(xrect
i,l+1,ub(xstrip

i,s+1))} which links the two sections. If it holds

that max{lb(xrect
i,s+1), lb(xstrip

i,t+1)} > min{ub(xrect
i,l+1,ub(xstrip

i,s+1))}, separation cannot
be achieved.

The relaxed MINLP formulation for the distillation column allows us to
define a relaxed MINLP model for the complete hybrid distillation/melt-
crystallization processes by simply replacing the part of the distillation
column by the formulas given in Equations (2.20) through (2.24) in the
model. Note that the resulting relaxed model is still a mixed-integer
nonlinear program. However, it can be solved more efficiently by avail-
able solvers due to its reduced problem size in terms of constraints and
variables. If the relaxed model is infeasible, this proves that the cor-
responding subdomain cannot contain any feasible solution and can be
excluded from the search space. Otherwise, the solution gives a lower
bound on the minimization problem and helps to evaluate known lo-
cal solutions. In Section 2.4 we make use of the relaxed MINLP model
formulation within a comprehensive case study.
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2.3.3. A Fixed Sections Modeling Approach

The relaxed MINLP model formulation can be extended to a complete
MINLP model for distillation columns so that the improved bounds can
be directly assigned to their corresponding variables yielding tighter con-
vex relaxations. Note that this is not possible for the reference distillation
column model (see Section 2.2), where the material conservation is mod-
eled by the component material balance equations (2.3), i.e.,(

yi,l+1 − yi,l
)

V + xi,l−1Ll − xi,lLl+1 + xF
i F βF

l + xDist
i R βRecycle

l = 0. (2.25)

If a distillation column with fixed length and fixed feed position is con-
sidered, i.e., the values of the binary variables βF

l and βRecycle
l are fixed, it

is clear where the stripping and rectifying sections start and end so that
the improved bounds can be assigned directly to the variables. How-
ever, the length of a distillation column and the feed position are design
parameters and are usually determined within the optimization process.
Thus, assignment of a variable xi,l in Equation (2.25) to a specific tray
in the stripping or rectifying section is highly dependent on the binary
variables which makes it difficult to exploit this model structure for our
BT technique. We extend the relaxed MINLP model such that the assign-
ment of the variables to a column section is independent from the binary
variables.

To complete the relaxed MINLP model, material balance equations are
introduced for each tray of the rectifying and stripping section. The
distillation column is divided in three independent, structurally constant
sections, namely the rectifying, stripping, and feed section which are
coupled by binary variables. The basic concept of such a fixed sections
modeling approach (FSMA) is shown in Figure 2.11.

The mathematical description of the FSMA model is given by the mate-
rial balance equations for the rectifying and stripping section

D xDist
i = V yrect

i,l+1 − (V −D) xrect
i,l , l = 1, . . . , lrect

max,

B xBot
i = (V + B) xstrip

i,l+1 − V ystrip
i,l , l = 1, . . . , lstrip

max ,
(2.26)

the material balance equation for the feed section

−(DxDist
i + BxBot

i )

= V yi,lF+1 − V yi,lF + (V −D) xi,lF−1 − (V + B) xi,lF ,
(2.27)
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Figure 2.11.: Fixed sections modeling approach with rectifying section
(left), feed section (middle), and stripping section (right)
which can be coupled at variable positions. The feed stream
and the product streams are not shown for better clarity of
the figure.

the phase equilibrium corresponding to Equation (2.6), and the coupling
conditions

(βrect
l − 1) + xrect

i,l ≤ xi,lF−1 ≤ (1 − βrect
l ) + xrect

i,l ,

(βrect
l − 1) + xrect

i,l+1 ≤ xi,lF ≤ (1 − βrect
l ) + xrect

i,l+1,

(βstrip
l − 1) + xstrip

i,l+1 ≤ xi,lF ≤ (1 − βstrip
l ) + xstrip

i,l+1 ,

(βstrip
l − 1) + xstrip

i,l ≤ xi,lF+1 ≤ (1 − βstrip
l ) + xstrip

i,l .

(2.28)

Moreover, Equations (2.23) and (2.24) regarding the binary variables are
required as well as the following improved bounds on the composition
variables

lb(xrect
i,l ) ≤ xrect

i,l ≤ ub(xrect
i,l ), l = 1, . . . , lstrip

max ,

lb(xstrip
i,l ) ≤ xstrip

i,l ≤ ub(xstrip
i,l ), l = 1, . . . , lstrip

max ,
(2.29)

which are obtained by our BT technique in Equations (2.17) and (2.18).
Note that Equations (2.28) and (2.29) imply the bounds on the variables
xi,l, l ∈ {lF

− 1, lF, lF + 1}.

We remark that the presented BT technique and its use in a relaxed
MINLP formulation is not restricted to the presented FSMA model. It can,
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for instance, also be used for the GDP model formulations introduced by
Yeomans et al. [YG00].

2.4. A Case Study for Hybrid
Distillation/Melt-Crystallization Processes

In this section we apply the presented approach to determine a cost-
optimal process design of hybrid distillation/melt-crystallization pro-
cesses for binary mixtures as introduced in Section 2.2. We begin with
a brief description of our test instances in Section 2.4.1. In Section 2.4.2
we present three solution strategies. Two solution strategies are based
on the different distillation column models, i.e., the reference and FSMA
model, that are solved by state-of-the-art global optimization software.
The third strategy makes use of the relaxed MINLP problem. Finally, we
discuss the computational results obtained for each test instance by ap-
plying the solution strategies to both the stand-alone distillation processes
(see Section 2.4.3) and the hybrid processes (see Section 2.4.4).

2.4.1. Test Instances

For our test instances we investigate the superstructure illustrated in Fig-
ure 2.6. It includes ten different process configurations (PC). Each process
configuration consists of a distillation column that is combined with up
to two crystallizers (see Figure 2.7). We consider this superstructure for
fifteen different parameter sets. The specifications for our reference in-
stance T0 are given in Table 2.3.

(xeut
A , xeut

B ) (0.50,0.50) (purA,purB) (0.99,0.99)
(xF

A, x
F
B) (0.25,0.75) (αA, αB) (1.3,1.0)

F [mol s−1] 1 Nmax
trays 75

(k1, k2, k3) [mol−1 s] (1.0,6.00,50.0)

Table 2.3.: Parameter specifications for the reference instance T0.

For each composition variable we assume the natural interval [0, 1],
while each variable representing a molar flow is bounded by 30 mol s−1

from above. The further test instances are derived from the reference
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instance T0 by varying one key parameter. They are described in Table 2.4.

Test series Modified parameter Instance a Instance b

T1 (xeut
A , xeut

B ) (0.25, 0.75) (0.75, 0.25)
T2 (xF

A, x
F
B) (0.10, 0.90) (0.40, 0.60)

T3 k3 [mol−1 s] 60 75
T4 F [mol s−1] 0.50 2.00
T5 (k1, k2) [mol−1 s] (1.0, 0.6) (1.0, 60.0)
T6 (purA,purB) (0.90, 0.90) (0.95, 0.95)
T7 (αA, αB) / Nmax

trays (1.15, 1.0) / 150 (1.45, 1.0) / 50

Table 2.4.: Specifications for further test instances.

2.4.2. Solution Strategies

In order to find the cost-optimal designs, we apply the following three
solution strategies to each test instance.

(S1) The variable process structure is formulated as a MINLP, where the
distillation column is modeled by the reference distillation column
model (see Section 2.2). The resulting MINLP is then solved by the
global optimization software BARON.

(S2) We use the FSMA model for the distillation column (see Section 2.3.3)
and solve the MINLP by BARON.

(S3) The third solution strategy consists of two steps. In a first step, we
apply a heuristic to each process configuration (time limit: 10 CPU
seconds per each of the ten PC) in order to find feasible solutions.
The objective function value of the best solution provides an upper
bound on the optimal cost.

The second step is based on three subroutines. Given a subdomain
D, the first subroutine Relaxed Model(D) constructs and solves the
relaxed MINLP model overD (see Section 2.3.2). The second subrou-
tine Complete Model(D) uses the complete, but computationally
expensive model onDwhere the distillation column is modeled us-
ing the FSMA formulation from Section 2.3.3. The two subroutines

39



2. Bound Tightening for Material Balance Equations

ε ∆ τ BF(V) BF(D) BF(B) BF(xDist
i ) BF(xBot

i )

10−5 0.50 0.25 1 1 1 4 4

Table 2.5.: Parameter specification for the modified branch-and-bound al-
gorithm given in Algorithm 1 and used in solution strategy
(S3).

are incorporated in a branch-and-bound framework that handles
a successive refinement of the domains of xDist

i , xBot
i , V, B, and D.

Here, subroutine Relaxed Model(D) is used as long as the weighted
interval length of the current branching variable is above a pre-
determined value τ. Otherwise, subroutine Complete Model(D)
is applied. The advantage of this combined method is that the
first subroutine can detect infeasible or nonoptimal configurations
and subdomains very fast. This reduces the number of calls of the
computationally expensive second subroutine.

In addition, a third subroutine Struct Reduction(D) is used if the
weighted interval length of the current branching variable is be-
low a pre-determined value ∆. This routine checks which of the
fixed process configurations can still contain a global optimal so-
lution over D and which of them can be already excluded from
further considerations. For this, the binary variables indicating the
existence of connections between the distillation column and the
crystallizers (see Section 2.2) are minimized and maximized over
the constraint set of the relaxed MINLP model. If possible, they are
then fixed to either zero or one. Solution approach (S3) is formalized
in Algorithm 1.

For our computations we use the parameter setting as given in
Table 2.5 and the software package BARON to solve all subproblems
constructed in the second step to global optimality. To find initial
solutions in the first step of (S3), we apply the multi-start heuristic
solver provided by BARON.

Discussion of Solution Strategy (S3) Solution strategy (S3) utilizes
several ideas from BT (see Section 2.1). First, the BT technique presented
in Section 2.3.1 is used in the Subroutines Relaxed Model(D) and Com-
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Algorithm 1 Modified B&B for hybrid separation processes.

Input: Specifications from Tables 2.3 and 2.4, the overall domain D0 =
[l,u], parameters ∆, τ, ε > 0, and a branching factor BF(var) > 0 for
each var ∈ VAR := {V,D,B, xDist

i , xBot
i }. Q := {D0

}.
1: Local Search: Apply a heuristic to each of the ten possible substruc-

tures separately for ten CPU seconds. Set UB to the objective function
value corresponding to the best local solution (or to +∞).

2: Bound Tightening: Min/max each variable from VAR over the relaxed
model and update initial bounds (if possible).

3: Root node relaxation: Solve the relaxed MINLP overD0 and setLB(D0)
to its optimal objective function value (or to +∞).

4: if LB(D0)= +∞ then
5: return Problem is infeasible.
6: else
7: Set D̄ := D0.
8: while UB − LB(D̄) > ε do
9: Branching variable selection: For all var∈ VAR compute the

weighted interval length Lvar := (ub(var) − lb(var)) · BF(var).
Choose var ∈ VARwith Lvar maximal.

10: Child nodes: Bisect the interval of var yieldingD′ andD′′.
11: forD ∈ {D′,D′′} do
12: if Lvar < ∆ then
13: Struct Reduction(D): Min/Max all 0/1-variables determin-

ing the superstructure to fix their values (relaxed model).
14: if Lvar < τ then
15: Complete Model(D): Solve the complete model overD and

set LB(D) to the optimal obj. func. value (or to +∞).
16: if UB − LB(D) > ε then
17: Set UB = LB(D).
18: else
19: Relaxed Model(D): Solve the relaxed MINLP and set LB(D)

to the optimal objective function value (or to +∞).
20: if UB − LB(D) > ε then
21: Q := Q

⋃
{D}

22: Q := Q \ {D̄}.
23: Look up D̄ ∈ Q with the worst lower bound LB(D̄)
24: return UB
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plete Model(D) to determine the bounds on the composition variables
associated to the relaxed MINLP model for the distillation column and the
FSMA model, respectively. Second, certain key variables are minimized
and maximized over a relaxed model formulation which is a known con-
cept in the BT area. Third, the objective function values corresponding to
the feasible solutions are used as upper bounds on the objective function.
Thus, all further BT techniques may exclude feasible operating points
which fits into the concept of OBBT.

Computational Settings Solution strategies (S1) and (S2) use the soft-
ware BARON 9.0.7 [TS05] (with default settings, CPLEX as LP-subsolver
and SNOPT as NLP-subsolver) in the GAMS 23.6.2 environment [GAM09].
Solution strategy (S3) as displayed in Algorithm 1 was implemented in the
programming language C. All subproblems constructed in (S3) are mod-
eled with SCIP 1.2.0 [Ach07] and solved by BARON 9.0.7 [TS05] (with
default settings, CPLEX as LP-subsolver and SNOPT as NLP-subsolver).

Remarkably our local search heuristic in (S3), where each of the ten
possible process configurations is considered separately, computes often
better initial solution than (S1) and (S2). Note that good feasible solutions
have a potential impact on the generation of lower bounds on the problem.
Therefore, we also provide the initial solution found by (S3) to (S1) and
(S2) in a second test run. We observed that both runs almost lead to the
same result for (S1) and (S2). The symbol ‘∗′ in the subsequent tables
indicates that the better lower bound was obtained using the provided
initial solution.

All computations are carried out on a 2.67 GHz INTEL X5650 with 96
GB RAM and are stopped, if necessary, after 100:00 hours.

Remark 2.7. We further tested modifications of the distillation column
models used in (S1) and (S2). For (S1) we simplified some nonlineari-
ties in the reference distillation column model using a Big-M formula-
tion. For (S2) we reduced the number of binary variables in the FSMA
distillation column model using the modeling technique of Vielma and
Nemhauser [VN11]. Some preliminary tests of the two modifications
showed similar or worse performance so that we decided to work with
the two presented model formulations (see Table A.1 in Appendix A).
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2.4.3. Computational Results for a Distillation Column

The computational results of our solution strategies applied to a stand-
alone distillation column are summarized in Table 2.6. Note that the
results for the test instances T1a, T1b, T3a, and T3b are neglected as the
design problems for the underlying stand-alone distillation columns are
all identical to the one of our reference instance T0. This is due to the
fact that the parameters specifying these test instances only concern the
crystallizers. We can first observe that solution strategy (S2) cannot solve

Opt. Lower bounds and CPU time (hh:mm) Initial
cost (S1) (S2) (S3) cost (S3)

T0 306.3 255.0 (100:00) 243.5∗ (100:00) 306.3 (00:06) 308.5
T2a 254.3 228.6 (100:00) 235.3 (100:00) 254.3 (00:07) ∞

T2b 326.1 281.1 (100:00) 232.5 (100:00) 326.1 (00:06) 326.1
T4a 153.1 130.0 (100:00) 111.2∗ (100:00) 153.1 (00:07) 154.2
T4b 612.7 524.3 (100:00) 506.4 (100:00) 612.7 (00:11) ∞

T5a 282.0 255.1 (100:00) 223.3∗ (100:00) 282.0 (00:07) 285.4
T5b 531.1 448.9∗ (100:00) 425.7∗ (100:00) 531.1 (00:04) 531.1
T6a 106.2 89.2 (100:00) 74.1 (100:00) 106.2 (00:06) 106.2
T6b 175.1 152.5 (100:00) 128.4∗ (100:00) 175.1 (00:05) 175.1
T7a 1056.4 227.3 (100:00) 638.8 (100:00) 1056.4 (02:51) ∞

T7b 155.5 155.5 ( 94:35) 132.8 (100:00) 155.5 (00:02) 156.3

Table 2.6.: Stand-alone distillation column: Optimal cost in comparison
with the lower bounds of the solution strategies (S1) to (S3) after
100 hours or the time needed to solve the problem globally. The
last column provides the initial cost determined in the first step
of (S3) or∞ if no feasible solution was found. Bounds that are
labeled by the symbol ‘∗′ in Column 3 and 4 are obtained by
the second test run that uses the initial cost of (S3).

the underlying MINLP within the time limit of 100:00 hours and (S1) is
only able to guarantee global optimality of test instance T7b after 94:35
hours. Solution strategy (S3) can solve all but one test instance globally
within a few minutes.

For (S3) there are two important issues that need to be discussed,
namely the impact of the initial cost of (S3) and the problem size of
test instances T7a and T7b. For test instances T2a, T4b, and T7a, no local
solution is found by the preprocessing step of (S3) which requires to set
the initial cost to infinity. In these cases (S3) needs more computation
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time. In fact, if we provide the optimal solutions as the local solutions,
the computation time reduces to 00:05 hours, 00:07 hours and 00:33 hours,
for T2a, T4b, and T7a, respectively.

Another reason for the large computation time of (S3) to solve test
instance T7a is due to the large underlying problem. Recall that for test
instance T7a the constant relative volatilities (αA, αB) have been changed
from (1.3, 1) to (1.15, 1), which requires to consider a larger distillation
column for which the maximum number of trays is increased from 75 to
150. Thus, the problem size of the corresponding MINLP is significantly
larger. In addition, the higher the number of possible trays, the worse
becomes the quality of the improved bounds obtained by our tray-to-tray
calculation (see Formulas (2.17) and (2.18)). This may also explain why
test instance T7b, that includes a distillation column with a length of at
most 50 trays, can be solved much faster.

Summing up, both (S1) and (S2) cannot determine the cost-optimal
design of a stand-alone distillation column in reasonable time while so-
lution strategy (S3) is able to solve the design problem and to reduce the
computation time by orders of magnitude. It benefits heavily from the
techniques introduced in Section 2.3.

2.4.4. Computational Results for Hybrid Processes

Our computational results for hybrid distillation/melt-crystallization pro-
cesses are summarized in Table 2.7 and Table 2.8. The results in Table 2.7
show that the underlying MINLPs of solution strategies (S1) and (S2)
cannot be solved within 100:00 hours by BARON. Thus, both strategies
only provide lower bounds on the optimal cost which, in addition, are
extremely poor. Using the modified branch-and-bound algorithm of so-
lution strategy (S3), we are able to solve all but test instance T7a to global
optimality within at most 66 hours. To solve T7a to global optimality, our
solution approach (S3) needs a computation time of 113:42 hours. After
the time limit of 100:00 hours (S3) nevertheless computes a lower bound
of 233.25 for T7a which clearly outperforms the bounds 9.83 and 26.12
obtained by (S1) and (S2). Again, this test instance is computationally
more expensive than the other test instances due to its larger problem
size. Furthermore, the gap between its initial solution of 324.35 and its
optimal solution of 239.22 is much larger compared to the other test in-
stances. In fact, if we use the optimal solution as starting local solution,
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Opt. Lower bounds and CPU time (hh:mm) Initial
cost (S1) (S2) (S3) cost (S3)

T0 154.0 12.6 (100:00) 57.2 (100:00) 154.0 ( 26:17) 154.0
T1a 203.3 16.2∗ (100:00) 51.7∗ (100:00) 203.3 ( 55:53) 203.3
T1b 120.8 11.4∗ (100:00) 58.3∗ (100:00) 120.8 ( 60:00) 142.9
T2a 86.7 3.9 (100:00) 24.7∗ (100:00) 86.7 ( 17:15) 86.7
T2b 203.5 17.9 (100:00) 61.0∗ (100:00) 203.5 ( 34:00) 203.5
T3a 173.4 14.1 (100:00) 57.2∗ (100:00) 173.4 ( 23:37) 173.4
T3b 201.1 11.5∗ (100:00) 50.2∗ (100:00) 201.1 ( 32:06) 201.1
T4a 77.0 6.3∗ (100:00) 7.3∗ (100:00) 77.0 ( 43:03) 82.5
T4b 308.0 24.8 (100:00) 172.6 (100:00) 308.0 ( 46:21) 308.0
T5a 140.4 28.1∗ (100:00) 53.1 (100:00) 140.4 ( 19:56) 140.4
T5b 271.3 66.9∗ (100:00) 88.3 (100:00) 271.3 ( 65:52) 281.2
T6a 93.6 11.0 (100:00) 16.2 (100:00) 93.6 ( 2:37) 93.6
T6b 127.4 2.1 (100:00) 43.9 (100:00) 127.4 ( 8:00) 127.4
T7a 239.2 9.8∗ (100:00) 26.1∗ (100:00) 233.2 (100:00) 324.3
T7b 120.7 31.1∗ (100:00) 56.1∗ (100:00) 120.7 ( 9:40) 126.4

Table 2.7.: Hybrid processes: Optimal cost in comparison with the lower
bounds of the solution strategies (S1) to (S3) after 100 hours
or the time needed to solve the problem globally. The last
column provides the initial cost determined in the first step of
(S3). Bounds labeled by the symbol ‘∗′ in Column 3 and 4 are
obtained by the second test run that uses the initial cost of (S3).

the computation time of strategy (S3) decreases to 101:49 hours.
It is noticeable that the computation time of (S3) varies significantly for

the different test instances. To understand these large deviations, we focus
on the optimal process configurations given in Column 2 of Table 2.8. We
observe that the computationally less expensive test instances T2a, T6a,
T6b, and T7b lead to the optimal process configurations PC05 or PC09
while the computationally expensive test instances T1a, T1b, T4a, T4b,
T5b, and T7a lead to optimal process configurations PC04 or PC10.

Hence, we conjecture that the optimal process configuration has a sig-
nificant impact on the computation time of (S3). To give evidence for this,
we additionally solved the models corresponding to each fixed process
configuration of the reference instance T0. These models are derived from
the model of the variable process structure by simply fixing the binary
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Process Distillation column Feed of crystallizer
config. Length/ Vapor Condenser A B

Feed pos. flow reflux
mol s−1 mol s−1 mol s−1 mol s−1

T0 PC10 17/8 2.4091 1.9165 0.4926 1.4791
T1a PC04 17/8 4.6095 3.9240 0.6854 1.2612
T1b PC10 16/8 1.7057 1.2763 0.4294 1.2379
T2a PC09 25/8 0.8955 0.7159 0.1796 1.0000
T2b PC04 17/10 4.6330 3.8763 0.7566 1.1825
T3a PC10 18/9 2.4424 1.9879 0.4545 1.4598
T3b PC09 34/10 2.3829 1.9720 0.4109 1.0000
T4a PC10 17/8 1.2111 0.9677 0.2434 0.7394
T4b PC10 17/8 4.8154 3.8269 0.9885 2.9563
T5a PC10 15/7 2.6349 2.1309 0.5039 1.4829
T5b PC10 22/10 2.0587 1.5206 0.5381 1.5123
T6a PC05 24/16 1.4545 1.2670 0 1.0000
T6b PC09 21/7 2.0932 1.6755 0.4177 1.0000
T7a PC10 17/8 4.5668 3.7107 0.8562 1.8275
T7b PC09 26/8 1.6222 1.2465 0.3757 1.0000

Table 2.8.: Characteristics of the optimal operating points found by solu-
tion strategy (S3).

variables indicating the connections between the distillation column and
the crystallizers. For each process configuration we bound the cost func-
tion of the underlying model in (S3) by the globally optimal cost. For
solution strategies (S1) and (S2) we solved each MINLP twice, with and
without bounding the cost function by the globally optimal cost. The
results are shown in Table 2.9. Again, the MINLP models cannot be solved
within our computation time limit of 100:00 hours when solution strategy
(S1) or (S2) is used.

Solution strategy (S3) can solve each problem in less than 14:05 hours
of computation time when we use the corresponding optimal solutions
as initial cost for (S3). We can, however, observe that the computation
time differs significantly for different types of process configurations. The
hardest problems leading to computation times between 05:12 hours and
14:05 hours correspond to process configurations where two crystallizers
are involved and both output streams of the distillation column are fed to
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Opt. Lower bounds and CPU time (hh:mm) Initial
cost (S1) (S2) (S3) cost (S3)

PC01 306.3 256.3 (100:00) 247.1∗ (100:00) 306.3 (00:05) 306.3
PC02 213.8 55.4 (100:00) 126.7 (100:00) 213.8 (00:31) 213.8
PC03 265.6 46.9 (100:00) 84.8∗ (100:00) 265.6 (01:04) 265.6
PC04 181.8 70.9 (100:00) 86.2 (100:00) 181.8 (07:46) 181.8
PC05 197.2 166.3 (100:00) 141.1∗ (100:00) 197.2 (00:06) 197.2
PC06 187.4 87.6 (100:00) 111.0∗ (100:00) 187.4 (00:44) 187.4
PC07 452.2 143.8 (100:00) 243.8 (100:00) 452.2 (01:03) 452.2
PC08 362.0 153.7 (100:00) 250.4 (100:00) 362.0 (14:05) 362.0
PC09 165.0 83.0 (100:00) 85.4 (100:00) 165.0 (00:35) 165.0
PC10 154.0 86.1∗ (100:00) 96.3 (100:00) 154.0 (05:12) 154.0

Table 2.9.: Single process configurations of T0: Optimal cost in compar-
ison with the lower bounds of (S1) to (S3) after 100 hours or
the time needed to solve the problem globally. Bounds that are
labeled wit ‘∗′ in are obtained by the second test run that uses
the initial cost of (S3). The optimal cost is used as initial cost.

the crystallizers, i.e., PC04, PC08, PC10. The second type of process con-
figurations is characterized by the fact that one component is withdrawn
from one of the outlet trays of the distillation column while the second
output stream is fed into a crystallizer (PC02, PC03, PC06, PC07, PC09).
The computation time for problems underlying this type of process con-
figurations ranges from 31 minutes to 1:05 hours. The easiest problems
with a computation time of five and six minutes are given by the process
configurations PC01 and PC05, respectively. The two process configura-
tions have in common that both components A and B are withdrawn at
the outlet trays of the distillation column.

The different computation times can be explained by the characteris-
tics of the BT technique introduced in Section 2.3.1. If a column outlet
also forms an overall system outlet, the purity requirement conditions
provide tight bounds on the composition variables corresponding to the
outlet tray. These bounds are then propagated through the column sec-
tion leading to tighter bounds on the other composition variables of the
distillation column and hence to a stronger relaxed MINLP formulation
(cf. Section 2.3.2). On the other hand, if a column outlet is fed back into the
system then the bounds obtained by the BT technique can be rather weak.
Thus, we can conclude that the modified branch-and-bound algorithm of
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our solution strategy (S3) works best when the BT technique proposed in
Section 2.3.1 can exploit tight bounds on the outlet trays of the distillation
column.

This section showed that the global optimization techniques developed
in Section 2.3 and applied in (S3) are reliable tools to detect the optimal
design of hybrid distillation/melt-crystallization processes. Solution strat-
egy (S3) determines the globally optimal design or at least strong bounds,
while the bounds of solution strategies (S1) and (S2) which are based on
standard optimization software are very poor. The average gap between
the bounds of (S3) and the best bound of (S1) and (S2) is about 290%.
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CHAPTER 3

Underestimation of
Bivariate Functions

The quality of a convex relaxation of the graph of a function does not only
depend on the underlying domain as discussed in the previous chapter
but also on the specific under- and overestimators of the function. In
Figure 3.1 two different convex underestimators of a function f over a
domain [l,u] are compared. The underestimator in Figure 3.1 (b) is the
best possible convex underestimator of the function f over the domain
[l,u] – the so-called convex envelope.

g1(x)

f (x)

l u x

(a) Convex underestimator
g1(x).

g2(x)

f (x)

l u x

(b) Convex envelope g2(x).

Figure 3.1.: Convex underestimators of a function f (x) over [l,u].

In Section 3.1 we discuss the fundamental concepts of convex en-
velopes. In particular, we emphasize that the evaluation of the convex
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envelopes at a given point generally requires solving a highly noncon-
vex problem. We review some classes of functions whose structure can
be exploited to determine the convex envelope. Nevertheless, there are
still many functions whose convex envelope is not known, even in the
uni- and bivariate case. Motivated by this, we implement a cut-generation
algorithm for bivariate functions with certain structural properties in Sec-
tion 3.2 to compute their convex envelopes numerically. This section is
based on [BMV13].

Practical applications usually involve functions for which the envelopes
are not at hand. In such cases it is important to find strong alternative
relaxations. This is essential both from a practical and theoretical point
of view as one can often find similar structures in different problems. In
Section 3.3 we investigate a chromatographic separation process involving
second-order isotherms which are functions of the form

f (x1, x2) =
qsx1(b1,0 + 2b2,0x1 + b1,1x2)

1 + b1,0x1 + b0,1x2 + b2,0x2
1 + b1,1x1x2 + b0,2x2

2

(3.1)

with qS, b1,0, b0,1, b2,0, b1,1, b0,2 ≥ 0. The convex envelope of this function is
not known and the function does not fit into our cut-generation algorithm.
We analyze several relaxation strategies for second-order isotherms based
on the concepts presented in Section 3.1. This section is an extension of
[BMSMW10].

3.1. Convex Envelopes

Closed-form expressions for convex envelopes are only known for partic-
ular classes of functions over particular domains. In this work we mainly
focus on the most common domain for global optimization issues, namely
boxes D = [l,u] ⊆ Rn. Over these box domains the functions, for which
convex envelopes are available, can be partitioned into functions with
polyhedral and nonpolyhedral convex envelopes (cf. [KS12a]). Func-
tions with polyhedral convex envelopes include bilinear [McC76], tri-
linear [MF03, MF04], three dimensional edge-concave [MF05], submod-
ular and edge-concave [TRX12], and some classes of multilinear func-
tions [She97]. Nonpolyhedral convex envelopes are known for fractional
terms x/y [TS01], some classes of (n-1)-convex functions with indefinite
Hessian [JMW08], functions whose convex envelopes are generated by
pairwise complementary convex combinations [Taw10], and functions
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which are the product of convex and component-wise concave func-
tions [KS12a, KS12b].

After a general introduction to the concept of convex envelopes, we
focus on functions with polyhedral convex envelopes in Section 3.1.1, (n-
1)-convex functions with indefinite Hessian in Section 3.1.2, and products
of convex and component-wise concave functions in Section 3.1.3. Explicit
convex envelopes are given for functions which occur in the application
in Section 3.3.

We start with a formal definition of convex and concave envelopes.

Definition 3.1 ([HT96]). Let D ⊆ Rn be a convex, compact subset and f :
D→ R be a real-valued function. The tightest convex underestimator of f
over D is called the convex envelope, denoted by vexD[ f ], while the tightest
concave overestimator of f over D is called concave envelope, denoted by
caveD[ f ]. The envelopes are defined pointwise:

vexD[ f ](x) = max{η(x) | η : D→ R ∪ {±∞} with

η(x) ≤ f (x) for all x ∈ D, and η convex},

caveD[ f ](x) = min{η(x) | η : D→ R ∪ {±∞} with

η(x) ≥ f (x) for all x ∈ D, and η concave}.

Remark 3.2. In general, we focus on convex envelopes since the same
arguments can be applied for the concave envelope using the relation
vexD[ f ] = − caveD[− f ].

The definition of the convex envelope does not give any suggestion
for its computation. Another more constructive characterization can be
obtained by the following definitions:

Definition 3.3.

1. Consider a function f : D → R with D ⊆ Rn. The epigraph of a
function f over a domain D ⊆ Rn is defined as epiD[ f ] = {(x, µ) ∈
Rn+1

| µ ≥ f (x) ∀ x ∈ D}.

2. The convex hull of a set M ⊆ Rn is defined as

conv(M) =

x ∈ Rn
| x =

∑
k

λkxk, λk ≥ 0,
∑

k

λk = 1 and xk
∈M ∀ k

 .
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3. Underestimation of Bivariate Functions

With these definitions, the convex envelope of a function f can be
represented as a kind of “minimization” problem, as stated in [Roc70,
HT96]:

vexD[ f ](x) = inf
{
µ | (x, µ) ∈ conv(epiD[ f ])

}
. (3.2)

Subsequently, we assume that f : D ⊆ Rn
→ R is a continuous function

and the domain D is a polytope. These assumptions reflect the general
setting of most optimization problems. As the domain D is compact
and f is continuous, the Extreme Value Theorem implies that the infimum
of Problem (3.2) is attained at a point x ∈ D. Therefore, the convex
envelope of a function at a given point x can be computed by the following
nonconvex optimization problem

min
∑

k λk f (xk)
s. t. x =

∑
k λkxk,

1 =
∑

k λk,

λk ≥ 0, xk
∈ D, for all k.

(VEX)

In order to simplify (VEX), two aspects of this problem can be considered:
(i) An upper bound on the number of summands and (ii) a subset D̃ of D
with vexD[ f ](x) = vexD̃[ f ](x) for all x ∈ D. A natural upper bound on the
number of summands is given by Carathéodory’s Theorem (cf. [Roc70]).
As the point (x,vexD[ f ](x)) is an element in the boundary of the convex
set conv(epiD[ f ]) ⊆ Rn+1, we are in an n dimensional subspace and thus,
the point can be written as convex combination of at most n + 1 points.
The minimal subset D̃ of D with vexD[ f ](x) = vexD̃[ f ](x) for all x ∈ D is
called the generating set of vexD[ f ](x).

Definition 3.4 ([Rik97]). Let f : D ⊆ Rn
→ R be a continuous function

on a convex, compact domain D. Then, the generating set of the convex
envelope of f over D is defined as

Gvex
D [ f ] =

{
x | (x,vexD[ f ](x)) is an extreme point of conv(epiD[ f ])

}
.

A sufficient condition that helps to determine whether a point x ∈ D
does not belong to the generating set Gvex

D [ f ] is given by the next statement.

Observation 3.5 ([TS02a]). Let f : Rn
→ R be restricted to a convex, compact
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subset D ⊆ Rn. If there is a line segment s ⊆ D such that x ∈ D is contained in
the relative interior ri(s) and f is concave over ri(s), then x < Gvex

D [ f ].

The convex envelope over a domain D can be related to the convex
envelope over a face of D. This allows us to consider lower dimensional
spaces in order to investigate the generating set, for example.

Observation 3.6 ([TS02a]). Let f : Rn
→ R be restricted to a convex, compact

subset D ⊆ Rn. Consider a nonempty face D′ of D. Then, vexD[ f ](x) =
vexD′ [ f ](x) for all x ∈ D′.

Example 3.7. Let f (x, y) := x0.3 y2 be restricted to D := [1, 2] × [3, 4]. The
function is concave along each segment connecting the points (lx, y) and
(ux, y), y ∈ [3, 4]. Observation 3.5 implies Gvex

D [ f ] ⊆ {1, 2} × [3, 4]. The
function f is strictly convex restricted to the faces D′ = {1} × [3, 4] and
D′′ = {2} × [3, 4]. The generating set of strictly convex functions over a
domain equals the domain. By Observation 3.6, Gvex

D [ f ] = {1, 2}× [3, 4]. �

3.1.1. Polyhedral Convex Envelopes

Functions with a polyhedral convex envelope are intensively studied in
the literature as they exhibit nice combinatorial properties due to the
character of their generating set.

Definition 3.8 ([Tar03, Tar08]). Let f : D→ R, where D ⊆ Rn is a polytope.
The convex envelope of f is called polyhedral if its generating set Gvex

D [ f ] is
finite. It is called vertex polyhedral if Gvex

D [ f ] = vert(D).

Equivalently, polyhedral convex envelope can be defined to be the
maximum of a finite collection of affine functions. For continuously
differentiable functions it is sufficient to consider the vertices of D in
order to check if the convex envelope is polyhedral.

Theorem 3.9 ([Rik97]). Let f : D → R be a continuously differentiable func-
tion, where D ⊆ Rn is a polytope. The convex envelope of f is polyhedral if and
only if it is vertex polyhedral.

There is no necessary condition on functions which guarantees poly-
hedral convex envelopes and is easy to check (cf. [Tar08]). The following
class of functions satisfies, however, a sufficient condition for polyhedral
convex envelopes.
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Definition 3.10 ([Tar03]). Let f : D→ R, where D ⊆ Rn is a polytope. The
function f is called edge-concave over D if f is concave along all directions
parallel to the edges of D.

Functions like −x2 y3 restricted to boxes [l,u] ⊆ R2
≥0 belong to this class.

Observation 3.5 implies the next result.

Theorem 3.11 ([Tar03]). Let f : D → R, where D ⊆ Rn is a polytope. If f is
edge-concave on D, then vexD[ f ] is vertex polyhedral.

The domain D is always assumed to be a box [l,u] in the remainder
of this chapter. In this case edge-concave functions are equivalent to
component-wise concave functions, i.e., f (x) is concave in xi, i = 1, . . . ,n,
for all fixed values of x j ∈ [l j,u j], j ∈ {1, . . . ,n}, j , i. The next example
verifies that Theorem 3.11 provides only a sufficient condition for vertex
polyhedral convex envelopes.
Example 3.12. Consider f (x) := x3 restricted to D = [−2, 1]. This function is
not component-wise concave in x. Yet, its convex envelope is polyhedral
and given by vexD[ f ] = 3x − 2. �

The evaluation of polyhedral convex envelopes at a given point x̄,
i.e., problem (VEX), and the determination of the corresponding affine
function defining the convex envelope are the primal and dual version of
a linear program (see [BST09, TRX12]):

P(x̄) : minλ f (V)ᵀλ
s. t. Vλ = x̄, eᵀλ = 1,

λ ≥ 0,

D(x̄) : max(a,b) aᵀx̄ + b
s. t. Vᵀa + be ≤ f (V),

(a, b) ∈ Rn+1,

where V = (v1, . . . , v2n ) corresponds to the set of vertices of a given box
[l,u] ⊆ Rn, and f (V) = ( f (v1), . . . , f (v2n ))ᵀ. If the affine function aᵀx + b is
irredundant in the description of vexD[ f ], then (a, b) is the optimal solu-
tion of the dual program D(x) for all x of a specific polyhedral subdomain
of [l,u]. According to [TRX12] each subdomain can be refined into a trian-
gulation by simplices. The union of such simplices over all irredundant
affine functions defining the convex envelope forms a triangulation of the
box. Therefore, a vertex polyhedral convex envelope over a box corresponds to
a certain triangulation of the box. This allows to use combinatorial software
to “enumerate” all triangulations and to determine the convex envelope,
e.g., QHull [BDH96], PORTA [CL07], or polymake [GJ00]. However, such
an approach is too expensive to be incorporated into global optimization
software. See Section 4.4, for computational evidence.
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Closed-form expressions for the convex envelope of component-wise
concave functions or procedures to efficiently compute them are known
up to dimension three. The idea is to determine the triangulation of
the box which is associated with the convex envelope. Hence, the more
possible triangulations the harder the computation of the convex enve-
lope. In dimension one the function is concave and there is only one
possible triangulation so that the convex envelope is simply the secant
of the graph of the function (cf. [FS69]). In dimension two there are two
possible triangulations of an arbitrary box whose vertices are denoted
by v1, v2, v3, and v4 as indicated in Figure 3.2. The two triangulations
are T1 = {{v1, v2, v3

}, {v1, v3, v4
}} and T2 = {{v1, v2, v4

}, {v2, v3, v4
}}, which are

given in Subfigures 3.2 (a) and (b), respectively. To determine the trian-
gulation corresponding to the convex envelope of f , the two possible un-
derestimators can be compared at the midpoint x∗ = 1

2 v1 + 1
2 v3 = 1

2 v2 + 1
2 v4

of the box, cf. Subfigure 3.2 (c). If 1
2 f (v1) + 1

2 f (v3) ≤ 1
2 f (v2) + 1

2 f (v4), then
T1 generates the convex envelope. Otherwise, it is generated by T2.

v1

v2 v3

v4

(a) Triangulations
T1.

v1

v2 v3

v4

(b) Triangulations
T2.

v1

v2 v3

v4

x∗

(c) Intersection.

Figure 3.2.: Triangulations of a two dimensional box.

The above considerations lead to the following closed-form expressions
for vertex polyhedral convex envelopes of bivariate functions.

Proposition 3.13 (cf. [McC76, Tar03, Ben04, KS12a]). Let f : [l,u] ⊆ R2
→

R, (x, y) 7→ f (x, y), be a function with a vertex polyhedral convex envelope. If
f (lx, ly) + f (ux,uy) ≤ f (lx,uy) + f (ux, ly), then

vex[l,u][ f ](x, y) =

 α1x + β1 y + γ1, if y0 ≤
uy−ly
ux−lx

(x0 − lx) + ly,

α2x + β2 y + γ2, if y0 >
uy−ly
ux−lx

(x0 − lx) + ly,

55



3. Underestimation of Bivariate Functions

where

α1 =
f (ux ,ly)− f (lx ,ly)

ux−lx
, β1 =

f (ux ,uy)− f (ux ,ly)
uy−ly

,

γ1 =
ux(uy−ly) f (lx ,ly)−(ux−lx)ly f (ux ,uy)+(uxly−lxuy) f (ux ,ly)

(ux−lx)(uy−ly) ,

α2 =
f (ux ,uy)− f (lx ,uy)

ux−lx
, β2 =

f (lx ,uy)− f (lx ,ly)
uy−ly

,

γ2 =
(ux−lx)uy f (lx ,ly)−lx(uy−ly) f (ux ,uy)+(lxuy−uxly) f (lx ,uy)

(ux−lx)(uy−ly) .

Otherwise,

vex[l,u][ f ](x, y) =

 α1x + β1 y + γ1, if y0 ≤
ly−uy
ux−lx

(x0 − lx) + uy,

α2x + β2 y + γ2, if y0 >
ly−uy
ux−lx

(x0 − lx) + uy,

where

α1 =
f (ux ,ly)− f (lx ,ly)

ux−lx
, β1 =

f (lx ,uy)− f (lx ,ly)
uy−ly

,

γ1 =
(uxuy−lxly) f (lx ,ly)−lx(uy−ly) f (ux ,ly)−(ux−lx)ly f (lx ,uy)

(ux−lx)(uy−ly) ,

α2 =
f (ux ,uy)− f (lx ,uy)

ux−lx
, β2 =

f (ux ,uy)− f (ux ,ly)
uy−ly

,

γ2 =
(lxly−uxuy) f (ux ,uy)+ux(uy−ly) f (lx ,uy)+(ux−lx)uy f (ux ,ly)

(ux−lx)(uy−ly) .

Example 3.14 (Bilinear functions [McC76]). Consider the bilinear term
f (x, y) = xy restricted to the box [l,u] ⊆ R2. The test f (lx, ly) + f (ux,uy) ≤
f (lx,uy)+ f (ux, ly) in Proposition 3.13 is equivalent to lxly +uxuy ≤ lxuy +uxly

and thus to uy(ux−lx) ≤ ly(ux−lx), which is false for full dimensional boxes.
The envelopes, displayed in Figure 3.3, are given by

vex[l,u][xy](x, y) = max
{
lyx + lx y − lxly , uyx + ux y − uxuy

}
,

cave[l,u][xy](x, y) = min
{
uyx + lx y − lxuy , lyx + ux y − uxly

}
.

�

Meyer and Floudas [MF05] generalized the two dimensional criterion
to three dimensional boxes. Up to symmetry there are 6 triangulation
types of a box in dimension three. For each pair of vertices vi, v j, i , j,
of the box which are not adjacent it is to check if the connecting line
λ f (vi) + (1 − λ) f (v j) is non-dominated by another line or triangle at the
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(a) f (x, y) = xy. (b) Convex envelope. (c) Concave envelope.

Figure 3.3.: Bilinear functions and their envelopes taken from [Lin05].

intersection of the two objects, i.e., it is to check whether

λ f (vi) + (1 − λ) f (v j) ≤ µ1 f (vk1 ) + µ2 f (vk2 ) + (1 − µ1 − µ2) f (vk3 ),

where λvi + (1 − λ)v j = µ1vk1 + µ2vk2 + (1 − µ1 − µ2)vk3 , λ, µ1, µ2 ≥ 0, and
vkl , l = 1, 2, 3, are distinct from vi and v j. This leads to a set of subsets
of non-dominated vertices of V. For instance, in Subfigure 3.2 (a) the
set of non-dominated subsets is given by {{v1, v3

}} while it is {{v2, v4
}} in

Subfigure 3.2 (b). The non-dominated subsets are then used to determine
the triangulation type which leads to the convex envelope. See [MF05]
for further details.

Example 3.15 (Trilinear functions [MF03, MF04]). Consider the trilinear
product term f (x, y, z) = xyz restricted to the nonnegative box [l,u] ⊆ R3

≥0.
The appropriate triangulation can be determined by mapping the pairs
{lx,ux}, {ly,uy}, and {lz,uz} onto {l1,u1}, {l2,u2}, and {l3,u3} in such a way that
the following relations hold:

u1l2l3 + l1u2u3 ≤ l1u2l3 + u1l2u3, u1l2l3 + l1u2u3 ≤ u1u2l3 + l1l2u3.
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The convex envelope of x1x2x3 is the maximum of the following equalities:

ω1 =l2l3x1 + l1l3x2 + l1l2x3 − 2l1l2l3,

ω2 =u2u3x1 + u1u3x2 + u1u2x3 − 2u1u2u3,

ω3 =l2u3x1 + l1u3x2 + u1l2x3 − l1l2u3 − u1l2u3,

ω4 =u2l3x1 + u1l3x2 + l1u2x3 − u1u2l3 − l1u2l3,

ω5 =
θ1

u1 − l1
x1 + u1l3x2 + u1l2x3 +

(
θ1l1

u1 − l1
− u1u2l3 − u1l2u3 + l1u2u3

)
,

where θ1 = u1u2l3 − l1u2u3 − u1l2l3 + u1l2u3,

ω6 =
θ2

l1 − u1
x1 + l1u3x2 + l1u2x3 +

(
θ2u1

l1 − u1
− l1l2u3 − l1u2l3 + u1l2l3

)
,

where θ2 = l1l2u3 − u1l2l3 − l1u2u3 + l1u2l3.

The concave envelope is the minimum of the equalities given by

Ω1 =l2l3x1 + u1l3x2 + u1u2x3 − u1u2l3 − u1l2l3,

Ω2 =u2l3x1 + l1l3x2 + u1u2x3 − u1u2l3 − l1u2l3,

Ω3 =l2l3x1 + u1u3x2 + u1l2x3 − u1l2u3 − u1l2l3,

Ω4 =u2u3x1 + l1l3x2 + l1u2x3 − l1u2u3 − l1u2l3,

Ω5 =l2u3x1 + u1u3x2 + l1l2x3 − u1l2u3 − l1l2u3,

Ω6 =u2u3x1 + l1u3x2 + l1l2x3 − l1u2u3 − l1l2u3.

�

For larger dimensions a constructive approach similar to the one for
dimension three is, in principle, possible. One obstacle is the a priori
knowledge of all possible triangulations and the analysis of their prop-
erties. For instance, already in dimension four we have an explosion
in the number of possible triangulations. The 4-cube exhibits 92,487,256
triangulations which can be partitioned into 247,451 symmetry classes
[Pou13, HSYY08]. These huge numbers show that even the analysis of
the triangulation classes is expensive and its implementation would be
tedious.

Tawarmalani et al. [TRX12] consider component-wise concave func-
tions f , whose restriction to the vertices of the box is submodular, i.e.,

f (v ∧ v′) + f (v ∨ v′) ≤ f (v) + f (v′)
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for all vertices v and v′, where v ∧ v′ and v ∨ v′ denote the component-
wise minimum and maximum of v and v′, respectively (cf. [KS12a]).
For this subclass of component-wise concave functions the appropriate
triangulation for the convex envelope is given by Kuhn’s triangulation
(cf. [TRX12]) and the convex envelope is known for any dimension. Note
that in dimension four Kuhn’s triangulation is only one of the 247,451
symmetry classes of possible triangulations. In Chapter 4 we return to
component-wise concave functions and provide an extended formulation
for their convex envelopes in arbitrary dimensions.

3.1.2. Indefinite and (n-1)-Convex Functions

The first work concerning functions with nonpolyhedral convex enve-
lopes was accomplished by Tawarmalani and Sahinidis [TS02a, TS01].
They use disjunctive programming techniques to derive convex formu-
lations for the epigraph of functions f (x, y) which are component-wise
concave in x ∈ R and convex in y ∈ Rn. In particular, they derive the
convex envelope of fractional terms x/y restricted to a box from the posi-
tive orthant. This function is not convex but component-wise convex in x
and y, and it thus also belongs to the class of (n-1)-convex and indefinite
functions investigated by Jach et al. [JMW08] and summarized in this
subsection.

Definition 3.16 ([JMW08]). Let f : Rn
→ R be a twice differentiable

function restricted to a convex domain D ⊆ Rn.

• The function f is said to be (n-1)-convex over Rn if and only if for all
i ∈ {1, . . . ,n} the function f |xi=x̄i : Rn−1

→ R is convex for each fixed
value x̄i.

• The function f is called indefinite (over D) if and only if for each
x ∈ D the Hessian H f (x) is indefinite.

An example of indefinite (n-1)-convex functions is f (x, y) = x2 y2 over
the box [1, 2]2, whose Hessian exhibits the negative determinant −12x2 y2.
For indefinite (n-1)-convex functions Problem (VEX) simplifies consider-
ably due to a geometrical property of their concave directions.

Definition 3.17 ([JMW08]). Let f : Rn
→ R be a twice differentiable func-

tion and H f (x) the Hessian matrix of f . The set of all concave directions
of f at a point x ∈ D is denoted by γ f (x) := {y ∈ Rn

| yᵀH f (x)y < 0}.
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3. Underestimation of Bivariate Functions

In terms of Observation 3.5 concave directions correspond to segments
s over which f is concave such that all x in the relative interior of s can
be excluded from the possible generating set. Jach et al. [JMW08] show
that the set of concave directions of indefinite (n-1)-convex functions are
always contained in one pair of opposite orthants.

Lemma 3.18 ([JMW08]). Let f : D → R, D = [l,u] ⊆ Rn, be a twice
differentiable function, and let the collection {O1, . . . ,O2n } be the system of open
orthants of the space Rn. Then, the function f is (n-1)-convex and indefinite if and
only if γ f (x) is nonempty for each x ∈ D and there exists an index i ∈ {1, . . . , 2n

}

such that

∀x ∈ D : γ f (x) ⊆ Oi ∪ (−Oi).

This result can be used to bound the number of points in (VEX) from
above by two and to shrink the possible set of points contained in the
generating set Gvex

D [ f ] to the boundary of the box D.

Theorem 3.19 ([JMW08]). Let f : Rn
→ R be an (n-1)-convex and indefinite

function over D := [l,u] ⊆ Rn, and denote the boundary of D by B. Then,

vexD[ f ](x) = vexB[ f ](x) = min{(1 − λ) f (x1) + λ f (x2) | xi
∈ B, i = 1, 2,

(1 − λ)x1 + λx2 = x, 0 ≤ λ ≤ 1}.

In fact, this implies that the convex envelope of indefinite (n-1)-convex
functions is the union of segments. More precisely, let x̄1 and x̄2 be
the points used in Theorem 3.19 for a given point x̄. Then, the convex
envelope is affine along the segment connecting x̄1 and x̄2. See [JMW08]
for further details.

The theory of indefinite (n-1)-convex functions is illustrated for frac-
tional terms x/y in Example 3.20 and for bivariate quadratic functions in
Example 3.21.

Example 3.20 (Fractional terms [TS01, TS02a, JMW08]). Let f (x, y) = x/y
be restricted to a box [l,u] := [lx,ux] × [ly,uy] ⊆ R≥0 × R>0. Its Hessian
reads

H f (x, y) =

 0 −
1
y2

−
1
y2

2x
y3

 .
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3.1. Convex Envelopes

The concave directions corresponding to f have to fulfill ξᵀH f (x, y)ξ ≤ 0
which is equivalent to 2ξ2(ξ2x−ξ1 y)

y3 ≤ 0 and hence to ξ2(ξ2x − ξ1 y) ≤ 0. For
instance, if ξ2 ≥ 0, then ξ1 needs to satisfy ξ2x−ξ1 y ≤ 0 which is equivalent
to ξ2

x
y ≤ ξ1 and thus, (ξ1, ξ2) ∈ R2

≥0. The set of concave directions γ f (x) is
contained in (R2

≤0∪R2
≥0) for all x ∈ [l,u], which corresponds to Lemma 3.18.

Lemma 3.18 and Theorem 3.19 applied to x/y reveal three regions with
different expressions for the convex envelope indicated by Figure 3.4 (a).
This subdivision reflects the orientation of the concave directions. Note
that the region R3 vanishes if

√
ux/lxly ≥ uy and

√
lx/uxuy ≤ ly.

uy

ly

R1

R2

lx ux

R3

√
ux/lxly

√
lx/uxuy

(a) Fractional term x/y.

Figure 3.4.: Fractional term x/y: Subdivision of the domain into three
regions w.r.t. different expressions of the convex envelope.

The description of vex[l,u][x/y](x, y) over the regions R1,R2, and R3 is
given by:

R1 :
ux − x
ux − lx

·
lx

ly
+

x − lx

ux − lx
·

ux
y−ly
x−lx

(ux − x) + y
,

R2 :
ux − x
ux − lx

·
lx

uy−y
ux−x (lx − x) + y

+
x − lx

ux − lx
·

ux

uy
,

R3 :
ux − x
ux − lx

·
lx

y
√

lx(ux−lx)
(ux−x)

√
lx+(x−lx)

√
ux

+
x − lx

ux − lx
·

ux
y
√

ux(ux−lx)
(ux−x)

√
lx+(x−lx)

√
ux

=

(
x +
√

lxux

)2

y
(√

lx
√

ux

)2 .

�
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3. Underestimation of Bivariate Functions

Example 3.21 (Bivariate quadratic functions [JMW08]). Let f := a1x+a2 y+
2a12xy + a11x2 + a22 y2 + c be a bivariate quadratic function restricted to a
box [l,u] ⊆ R2 with a12, a11, a22 , 0. An analysis of the Hessian H f leads to
three different cases with respect to the convexity of f :

Case 1: H f is positive or negative semidefinite. Then, f is convex or
concave and the envelopes are straight forward to derive.

Case 2: H f is indefinite and a11a22 ≤ 0. Assume a11 > 0 ≤ a22, i.e., f
is convex in x and concave in y. Otherwise, consider − f . The convex
envelope reads

vex[l,u][ f ](x, y) =
uy−y
uy−ly

f (w1, ly) + (1 − uy−y
uy−ly

) f (w2,uy), where (3.3)

w1 = min
{

a12
a11

(1 − uy−y
uy−ly

)(uy − ly) + x,ux,
x−lx
y−uy

(ly − y) + x
}
,

w2 = max
{

a12
a11

uy−y
uy−ly

(ly − uy) + x, x−ux
y−ly

(uy − y) + x, lx

}
.

Case 3: In the last case we consider f as 1-convex function with an indef-
inite Hessian. Assume a11, a22 > 0 and that the eigenvector to the negative
eigenvalue has positive and negative entries such that the concave direc-
tions of f are contained in the pair of orthants (R≤0 ∪ R≥0) ∪ (R≥0 ∪ R≤0).
Otherwise, consider f (x, ly + uy − y) which satisfies the later property. For
the given orientation of the concave directions two subdivisions of the box
are possible w.r.t. the description of the convex envelope (see Figure 3.5).
If it holds that

uy

ly

lx ux

R2

R1

R3

v

(a) Subdiv. 1 (v = (−
√

a22,
√

a11)).

ly

lx ux

uy

R1

R2

R3

(b) Subdivision 2.

Figure 3.5.: Bivariate quadratic function: Subdivision of the domain into
three regions with respect to different expressions of the con-
vex envelope.
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3.1. Convex Envelopes

f (lx,uy) +
∂ f
∂y (lx,uy)(ly − uy) ≥ f (ux, ly) +

∂ f
∂x (ux, ly)(lx − ux),

the subdivision in Figure 3.5 (a) yields the convex envelope. The formula
for the convex envelope in region R3 is given by Equation (3.3) while the
expression for R1 and R2 are

vex[l,u][ f ](x, y)|(x,y)∈R1 = λ f (ω1, ly) +(1 − λ) f (lx, ω2),
vex[l,u][ f ](x, y)|(x,y)∈R2 = µ f (ω3,uy) +(1 − µ) f (ux, ω4),

where λ = x−lx
ω1−lx

, µ = x−ux
ω3−ux

, and

ω1 = −
√

a22
a11

(ly − y) + x, ω2 = −
√

a11
a22

(lx − x) + y,

ω3 = −
√

a22
a11

(uy − y) + x, ω4 = −
√

a11
a22

(ux − x) + y.

Region R3 may vanish depending on the box size and the vector v in
Figure 3.5 (a). �

Remark 3.22. Note that the convex envelopes for bivariate fractional and
bivariate quadratic functions are not given by one algebraic expression
which is valid over the entire box but by three expressions, each of which
is valid over a subdomain of the box (cf. Figures 3.4 and 3.5). This
subdivision of the box into three regions w.r.t. the expressions of the
convex envelopes is the general case for bivariate, indefinite (n-1)-convex
functions and follows from the orientation of the concave directions (cf.
[JMW08]).

3.1.3. Products of Convex and Component-Wise Concave
Functions

Recently, Khajavirad and Sahinidis [KS12b, KS12a] deduced the convex
envelope of functions φ(x, y) = f (x)g(y), where f (x) is a univariate convex
function and g(y) is a multivariate component-wise concave function
over boxes [l,u] := [lx,ux] × [ly,uy] ⊆ R × Rn. The authors argue that
Problem (VEX) is equivalent to a convex problem in this case. For special
classes of functions f closed-form expressions for the convex envelope
are derived.

The generating set of vex[l,u][φ] can be reduced to Gvex
[l,u][ f ] ⊆ {(x, v) |

x ∈ [lx,ux], v ∈ V}, where V := vert([ly,uy]), because φ is component-wise
concave in y. Problem (VEX) is further simplified by substituting zi = λixi
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3. Underestimation of Bivariate Functions

in order to obtain the following convex optimization problem

min
zv ,λv

∑
v∈V

λv f (zv/λv)g(v)

s. t.
∑
v∈V

λvv = y,
∑
v∈V

zv = x,
∑
v∈V

λv = 1,

λvlx ≤ zv
≤ λvux, λv ≥ 0, ∀v ∈ V.

(CX1)

The termλv f (zv/λv) is the perspective function of the convex function f (zv)
and thus convex itself (see [HUL01]). In order to solve (CX1) explicitly,
the solution of Problem (VEX) for the component-wise concave function
g(y) is exploited. Problem (VEX) for g(y) reads

min
λv

∑
v∈V

λv g(v)

s. t.
∑
v∈V

λvv = y,
∑
v∈V

λv = 1,

λv ≥ 0, ∀v ∈ V.

(CCV)

Khajavirad and Sahinidis prove that for special classes of functions
f (x) and g(y) the optimal multipliers λv in (CX1) are independent of x
and coincide with the optimal multipliers in (CCV). Thus, (CX1) is re-
duced to the computation of the multipliers λv in (CCV) which is equiva-
lent to the determination of the convex envelope of the component-wise
concave function g(y). For arbitrary dimensions the convex envelope
of a component-wise concave function g(y) is only known for functions
whose restriction to the vertices of the box is submodular [TRX12] (see
Section 3.1.1). In this case the multipliers λv, v ∈ V, are available which
allows to compute the convex envelope of φ(x, y) = f (x)g(y).

Theorem 3.23 (Theorems 1 and 3 in [KS12b], Theorem 1 in [KS12a]). Let
φ(x, y) = f (x)g(y) be restricted to the box [l,u] := [lx,ux] × [ly,uy] ⊆ R × Rn,
where

• f (x) is a nonnegative convex function of one of the two forms (i) f (x) = xa,
a ∈ R \ [0, 1] or (ii) f (x) = ax, a > 0,

• g(y) is a component-wise concave function such that its restriction to the
vertices is submodular and has the same monotonicity in every argument,
and
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3.1. Convex Envelopes

• f (x) is monotone or g(y) is nonnegative.

Then, the values of the optimal multipliers in (CX1) are independent of x and
correspond to the Lovász extension of g(y) restricted to the vertices of the box. If
g(y) is nonnegative, the univariate variable x in f (x) can be replaced by cᵀx + d,
where x is multivariate.

Khajavirad and Sahinidis remark that functions g(y) which are not sub-
modular or monotone may satisfy these assumptions after an affine trans-
formation T of the variables. In this case the relation vexD[ f (x)g(y)](x, y) =
vexD[ f (x)g(T(y))](x,T(y)) can be employed. Moreover, the assumption of
g(y) being a component-wise concave function can be relaxed to functions
which exhibit a vertex polyhedral convex envelope over [ly,uy].

Special attention is paid to univariate and bivariate functions g(y) in
order to relax some assumptions on f and g. In the univariate case the
authors exploit that the domain is an interval so that the multipliers λv

are unique. For bivariate functions Proposition 3.13 states the convex
envelope of g(y) which induces the multipliers λv. This is used for the
next result.

Proposition 3.24 (Lemma 4, Propositions 3 and 5 in [KS12a] and Proposi-
tion 3 in [KS12a]). Let f and g be defined as in Theorem 3.23 with g : R2

→ R.
Denote by ĝ(y) the restriction of g(y1, y2) to vertices of [ly,uy]. Then, the optimal
multipliers in the description of vex[ly ,uy ][g] are also optimal for the convex enve-
lope of φ(x, y) = f (x)g(y) over [lx,ux]× [ly,uy] if one of the following conditions
is satisfied for ĝ(y):

(i) It is submodular and nondecreasing (or nonincreasing) in both arguments.

(ii) It is supermodular, nondecreasing in y1 and nonincreasing in y2.

(iii) It is nonmonotone in at least one argument or is constant over any edge of
[ly,uy].

The discussion of convex envelopes is completed by functions whose
convex envelope is described by pair-wise complementary convex com-
binations. See [Taw10]. An example for these functions is f (x, y) :=
exp(−xy) restricted to [l,u] = [−1, 1] × [−2, 0], i.e., functions which are
nondecreasing and convex for x = lx, and nonincreasing and convex for
x = ux.

We emphasize that this brief summary of convex envelopes covers
the major part of available convex envelopes over box domains. For
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3. Underestimation of Bivariate Functions

many classes of functions the convex envelope is not known, e.g., xyz2

or second-order isotherms given in Equation (3.1). Nevertheless, tight
convex relaxations are essential for optimization issues. Therefore, we
briefly name three alternative relaxation methods in order to conclude
this section. First, Maranas and Floudas propose a method for twice con-
tinuously differentiable functions, where the nonconvex characteristics of
the function over a box are overpowered by the addition of a nonpos-
itive convex quadratic term [MF94, ADFN98, AF04a, AF04b]. Second,
McCormick [McC76] suggests a bounding strategy for the compositions
of functions f := g(h(x)), where h : D ⊆ Rn

→ R and g : R → R which is
based on the convex envelope of the univariate function g. A third alter-
native is given by the lifting technique which we discuss in Section 3.2.2.

3.2. A Cut-Generation Algorithm for Bivariate
Functions

In this section we present the results of a cut-generation algorithm for
bivariate, twice continuously differentiable functions f : [l,u] ⊆ R2

→ R,
(x, y) 7→ f (x, y), with a fixed convexity behavior, i.e., the signs of the second
partial derivatives w.r.t. each of the variables and the determinant of
the Hessian are independent of a given point (x, y) ∈ [l,u]. For this, we
elaborate and implement the results of Tawarmalani and Sahinidis [TS01],
and Jach et al. [JMW08] (see Section 3.1.2). Their findings allow us to
compute the value of the convex envelope at a given point numerically
and then to construct supporting hyperplanes on the convex envelopes
which are used to cut-off solutions of a current relaxation. The cut-
generation algorithm is implemented in the open-source, mixed-integer
nonlinear optimization solver SCIP [Ach07, Ach09] and it is available in
its standard distribution from version 2.1 onwards. The results in this
section are a summary of the technical report [BMV13].

In general, the convexity behavior of a function depends on the un-
derlying domain. This makes it hard to determine whether a given
function has a fixed convexity behavior. For bivariate quadratic func-
tions f (x, y) = ax,xx2 + ax,yxy + ay,y y2 + bxx + by y + c and monomial func-
tions f (x, y) = xp yq, p, q ∈ R, the convexity behavior can be checked
easily. The Hessian of a bivariate quadratic function has only constant
entries so that the function has the same convexity behavior at any point
(x, y) ∈ R2. The Hessian of a bivariate monomial function can also have
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3.2. A Cut-Generation Algorithm for Bivariate Functions

nonconstant entries. Nevertheless, if we restrict such a function to non-
negative domains, the convexity behavior is fixed. In Table 3.1 we state
the five fixed convexity behaviors needed to determine the convex en-
velope and the corresponding criteria for bivariate quadratic and mono-
mial functions. The concave envelope can be derived analogously as
cave[lx ,ux ]×[ly ,uy][ f ] = −vex[lx ,ux ]×[ly ,uy ][− f ].

Convexity of f ax,xx2 + ax,yxy + ay,y y2 xp yp , (x, y) ∈ R2
≥0

+bxx + by y + c

1. convex ax,x ≥ 0, ay,y ≥ 0, p2
− p ≥ 0, q2

− q ≥ 0,
ax,xay,y − a2

x,y ≥ 0 pq(1 − p − q) ≥ 0

2. concave in x, y ax,x ≤ 0 , ay,y ≤ 0 p2
− p ≤ 0 , q2

− q ≤ 0

3. strictly convex ax,x > 0 , ay,y ≤ 0 p2
− p > 0 , q2

− q ≤ 0
in x, concave in y

4. concave in x, ax,x ≤ 0 , ay,y > 0 p2
− p < 0 , q2

− q ≤ 0
strictly convex in y

5. not convex, but ax,x > 0, ay,y > 0, p2
− p ≥ 0, q2

− q ≥ 0,
strictly convex in x, y ax,xay,y − a2

x,y < 0 pq(1 − p − q) < 0

Table 3.1.: Classes of fixed convexity behavior and criteria for bivariate
quadratic and bivariate monomial functions. The latter func-
tions are restricted to [l,u] ⊆ R2

≥0.

For functions with a convexity behavior corresponding to cases 1 and
2 in Table 3.1, explicit formulas for the convex envelopes are known. For
general functions belonging to cases 3, 4, and 5, only structural results
are available: Locatelli and Schoen [LS10, Loc10] provide a framework
in which supporting hyperplanes on the convex envelopes can be com-
puted directly. Their approach is based on the capability to solve a series
of three-dimensional convex problems. In contrast to this, we apply the
results of [TS01, JMW08] which do not directly yield supporting hyper-
planes but the value of the convex envelope. However, this approach
only requires solving one-dimensional convex problems corresponding
to Problem (VEX) whose solutions can be used to construct support-
ing hyperplanes on the convex envelope. We implement the ideas of
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[TS01, JMW08] in a way that we numerically solve the one-dimensional
convex optimization problems and exploit the solutions to generate sup-
porting hyperplanes in a separation algorithm.

The remainder of this section follows the structure of our cut-generation
algorithm which consists of two subroutines. The first subroutine is
based on the evaluation of the convex envelope of f and is discussed
in Section 3.2.1. Let (x0, y0) be the solution of the current relaxation. If
(x0, y0) is in the interior of the box [l,u], we solve (VEX) at (x0, y0). The
solution of this problem can be used to construct a maximally touching,
underestimating hyperplane, i.e., a hyperplane which is not dominated by
another underestimating hyperplane. If (x0, y0) is in the boundary of the
box, the solution of (VEX) may only provide an underestimator which is
valid over a facet of the box. In Section 3.2.2 we apply a lifting technique
in the second subroutine to extend this locally valid underestimator to
the entire box. The presented ideas are implemented in the constraint
handler “cons bivariate” in SCIP. In Section 3.2.3 a computational case
study illustrates the performance of the new constraint handler compared
to state-of-the-art solvers.

3.2.1. Cuts from the Convex Envelope

Consider a bivariate function f : [l,u] ⊆ R2
→ R, (x, y) 7→ f (x, y), with a

fixed convexity behavior over [l,u] ⊆ R2 according to Table 3.1. We deal
with each of the 5 convexity patterns separately to deduce maximally
touching hyperplanes on the convex envelope of f . Assume [l,u] :=
[lx,ux] × [ly,uy] ⊆ R2 with lx < ux and ly < uy.

Case 1: f (x, y) is convex

The convex envelope of a convex function is the function itself. Thus, the
best possible linear underestimator of f at (x0, y0) is given by the tangent
plane:

f (x, y) ≥ ∇ f (x0, y0)>
(
(x, y) − (x0, y0)

)
+ f (x0, y0).

Case 2: f (x, y) is concave in x and y

According to [McC76, Tar03, KS12a], the convex envelope of a bivariate
component-wise concave function f is given by Proposition 3.13.
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For the remainder of Subsection 3.2.1 we assume that the given point
(x0, y0) is in the interior of [l,u]. The cases where (x0, y0) is in the boundary
of [l,u] are discussed in Subsection 3.2.2.

Case 3: f (x, y) is strictly convex in x and concave in y

We can infer from Observations 3.5 and 3.6 that Gvex
[l,u][ f ] = [lx,ux]× {ly,uy}.

The minimization problem (VEX) corresponding to the evaluation of
the convex envelope at a given point (x0, y0) can be thus simplified to
(cf. [TS01, JMW08]):

vex[l,u][ f ](x0, y0) = min t f (r, ly) + (1 − t) f (s,uy)

s. t.
(
x0

y0

)
= t

(
r
ly

)
+ (1 − t)

(
s

uy

)
,

0 ≤ t ≤ 1, r, s ∈ [lx,ux].

(3.4)

As lx < x0 < ux and ly < y0 < uy, we can use the identities r(s) =
ly−uy
y0−uy

x0 −
ly−y0
y0−uy

s and t =
y0−uy
ly−uy

to rewrite Problem (3.4) into the following
univariate convex problem:

min vred(s) s. t. max
{
lx,

y0−uy
ly−y0

[ ly−uy
y0−uy

x0 − ux
]}
≤ s ≤ min

{ y0−uy
ly−y0

[ ly−uy
y0−uy

x0 − lx
]
,ux

}
,

(3.5)

where vred(s) reads

vred(s) := y0−uy
ly−uy

f
( ly−uy

y0−uy
x0 −

ly−y0
y0−uy

s, ly

)
+

ly−y0
ly−uy

f (s,uy),

and the constraints in Problem (3.5) result from lx ≤ s ≤ ux and lx ≤

r(s) ≤ ux. To solve the convex Problem (3.5), we use a Newton’s method
to determine a root of the first derivative of vred(s). If the root is not
contained in the feasible region of Problem (3.5), the minimum is attained
at the lower or upper bound of s. Let s∗ denote an optimal solution of
the reduced Problem (3.5). Then, the point (s∗, r∗, t∗), with r∗ = r(s∗) =
ly−uy
y0−uy

x0−
ly−y0
y0−uy

s∗ and t∗ =
y0−uy
ly−uy

, is an optimal solution of Problem (3.4), i.e.,
vex[l,u][ f ](x0, y0) = vred(s∗).

It remains to compute a maximally touching hyperplane h(x, y) on the
convex envelope. By construction, vex[l,u][ f ](x, y) is linear over the seg-
ment connecting (r∗, ly) and (s∗,uy) which contains the point (x0, y0), i.e.,
the maximally touching hyperplane and vex[l,u][ f ](x, y) coincide along the
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3. Underestimation of Bivariate Functions

segment. A maximally touching hyperplane on the graph of vex[l,u][ f ]
at (x0, y0) is therefore defined by the points p1 = (r∗, ly, f (r∗, ly)), p2 =
(s∗,uy, f (s∗,uy)), and a direction vector q. To determine q, we consider
the restriction of f (x, y) and h(x, y) to the facets ȳ ∈ {ly,uy}, where f is
convex. Thus, h(x, ȳ) needs to underestimate the tangents on f at (r∗, ly)
and (s∗,uy) over [lx,ux]. If r∗, s∗ ∈ (lx,ux), the only underestimating and
touching hyperplane is the tangent on the convex function f (x, ȳ). This
implies q = (1, 0, ∂ f

∂x (r∗, ly)) = (1, 0, ∂ f
∂x (s∗,uy)) (see [JMW08]).

If, for instance, r∗ = lx and lx < s∗ < ux (cf. Figure 3.6 (a)), there are several
underestimating and touching hyperplanes at (r∗, ly) along the x-direction
while the touching hyperplane at (s∗,uy) is unique and equivalent to the
tangent on f at this point (cf. Figure 3.6 (b)). Figure 3.6 (c) indicates
that a parallel shift of the tangent at (s∗,uy) to (r∗, ly) leads also to a valid
underestimator along y = ly. Thus, q = (1, 0, ∂ f

∂x (s∗,uy)).

ux

ly

lx

(r?, ly)

(s?,uy)
uy

(a) Subdivision (bold).

uxlx

lx

f (x, ly)

f (x,uy)

(b) Underest. (red).

uxlxx′

lx

f (x, ly)

f (x,uy)

(c) Shifted underest.

Figure 3.6.: Figure (a) depicts the subdivision of the box if s∗ = lx. Fig-
ures (b) and (c) show different valid underestimators (red) for
a function (black).

In general, the direction vector is given by q = (1, 0, ∂ f
∂x (x̄, ȳ)), where the

point (x̄, ȳ) ∈ {(r∗, ly), (s∗,uy)} has to be chosen as follows. If s∗ ∈ (lx,ux), set
(x̄, ȳ) = (s∗,uy). If s∗ ∈ {lx,ux} and r∗ ∈ (lx,ux), set (x̄, ȳ) = (r∗, ly). Otherwise,
both points (x̄1, ȳ1) = (r∗, ly) and (x̄2, ȳ2) = (s∗,uy) yield valid inequalities.

Case 4: f (x, y) is concave in x and strictly convex in y

Switch the variables and apply the procedure in the previous case.
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3.2. A Cut-Generation Algorithm for Bivariate Functions

Case 5: f (x, y) is not convex, but strictly convex in x and y

With Theorem 3.19 the value of the convex envelope of f over [l,u] at
(x0, y0) is given by

min t f (x1, y1) + (1 − t) f (x2, y2)

s. t.
(
x0

y0

)
= t

(
x1

y1

)
+ (1 − t)

(
x2

y2

)
,

0 ≤ t ≤ 1, (x1, y1), (x2, y2) ∈ B,

(3.6)

where B denotes the boundary of the box [l,u], i.e., x1 ∈ {lx,ux} or y1 ∈

{ly,uy}, and x2 ∈ {lx,ux} or y2 ∈ {ly,uy}. A case distinction can be used to
simplify Problem (3.6) which assigns (x1, y1) and (x2, y2) to different facets
of the box. We obtain six simplified optimization problems because two
assignments to parallel facets and four assignments to orthogonal facets
of the box have to be considered. The minimum of all 6 cases yields
the value of the convex envelope. According to Lemma 3.18 this case
distinction can be avoided because the concave directions of indefinite (n-
1)-convex functions are contained in a pair of orthants of R2. To determine
this pair for a given function, we can compute the eigenvector to the
negative eigenvalue of the Hessian H f (x̄, ȳ) of f at the midpoint of the
box, for example. If the eigenvector has entries with different signs, the
concave directions of f at any point in [l,u] are contained in the union
(R≥0 × R≤0) ∪ (R≤0 × R≥0) [pattern A]. Otherwise, the concave directions
are contained in the union (R≥0 × R≥0) ∪ (R≤0 × R≤0) [pattern B].

In Remark 3.22 we pointed out that the convex envelope of bivariate,
indefinite (n-1)-convex functions is described by at most three expressions
which correspond to a specific subdivision of the box. Each pattern of the
concave directions leads to two possible structures for the subdivision
of the box w.r.t. the description of the convex envelope as depicted in
Figure 3.7.

We concentrate on pattern A in the following, as the structures of pattern
B correspond to the ones of A if they are mirrored along a vertical line.
Formally this can be described as follows. Define f̃ (x, y) := f (x, ly +
uy − y) and note that (ly + uy − y) ∈ [ly,uy] for all y ∈ [ly,uy]. The set
of concave directions f̃ (x, y) matches pattern A. Then, using relations
f (x, y) = f̃ (x, ly + uy − y) and vex[l,u][ f ](x, y) = vex[l,u][ f̃ ](x, ly + uy − y), the
convex envelope of a function f belonging to pattern B can be determined
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3. Underestimation of Bivariate Functions

A2

A3
A1

(lx, ly)

(ux,uy)(lx,uy)

(ux, ly)

(a) Pattern A: Subdiv 1

(lx, ly)

(ux,uy)(lx,uy)

(ux, ly)

A1

A3

A2

(b) Pattern A: Subdiv 2

(lx, ly)

(ux,uy)(lx,uy)

(ux, ly)

A1

A3
A2

(c) Pattern B: Subdiv 1

(lx, ly)

(ux,uy)(lx,uy)

(ux, ly)

A3

A2

A1

(d) Pattern B: Subdiv 2

Figure 3.7.: Possible subdivisions of a box w.r.t. the description of the
convex envelope.

by the arguments for pattern A.
Assuming pattern A the shape of the subdivision of the box w.r.t. the

description of the convex envelope can be determined according to the
next result. This further reduces the number of possible assignments of
the endpoints (x1, y1) and (x2, y2) of the minimizing segment to the facets.

Lemma 3.25 (cf. Example 5 in [JMW08]). The structure for the subdivision of
the convex envelope corresponds to Figure 3.7 (a) if f (lx,uy)+(ly−uy) ∂ f

∂y (lx,uy) ≥

f (ux, ly) + (lx − ux) ∂ f
∂x (ux, ly). Otherwise, the structure follows Figure 3.7 (b).

Subsequently, we discuss the convex envelope with a subdivision as
in Figure 3.7 (a). The formulas corresponding to the subdivision in Fig-
ure 3.7 (b) are derived analogously by interchanging x and y.

Note that Lemma 3.25 only provides information about the general
shape of the subdivision but not about the concrete shape of the domains
A1,A2, and A3 in Figure 3.7 (a). To determine a minimizing segment for
a given point, we solve two auxiliary problems. The minimal value of
the two problems is then equivalent to the value of the convex enve-
lope. The first auxiliary problem corresponds to subdomain A3, where
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3.2. A Cut-Generation Algorithm for Bivariate Functions

the endpoints of the possible minimizing segment are contained in the
parallel facets given by y = ly and y = uy. The second auxiliary problem
corresponds to the subdomains A1 and A2 depending on the position of
the point (x0, y0). If the point (x0, y0) is below the diagonal of the box
connecting (lx,uy) and (ux, ly), the endpoints of the possible minimizing
segment are contained in the orthogonal facets x = lx and y = ly (subdo-
main A1). Otherwise, the endpoints of the possible minimizing segment
are contained in the orthogonal facets x = ux and y = uy (subdomain A2).

Auxiliary Problem 1: Parallel Facets In this case we have (x1, y1) =
(r, ly) and (x2, y2) = (s,uy) in Problem (3.6) which then reduces to

%(x0, y0) := min t f (r, ly) + (1 − t) f (s,uy)

s.t.
(
x0

y0

)
= t

(
r
ly

)
+ (1 − t)

(
s

uy

)
,

0 ≤ t ≤ 1, r, s ∈ [lx,ux].

(3.7)

This subproblem is identical to the case considered in Subsection 3.2.1.

Auxiliary Problem 2: Orthogonal Facets If (x0, y0) is below the diag-
onal, i.e., y0 ≤

ly−uy
ux−lx

(x0 − lx) + uy, we set (x1, y1) = (lx, r) and (x2, y2) = (s, ly)
in Problem (3.6) and obtain

ω1(x0, y0) := min t f (lx, r) + (1 − t) f (s, ly)

s.t.
(
x0

y0

)
= t

(
lx

r

)
+ (1 − t)

(
s
ly

)
,

0 < t < 1, r ∈ [ly,uy], t ∈ [lx,ux].

(3.8)

Following [JMW08] the transformations s(t) = (x0 − lxt)/(1 − t) and r(t) =
(y0−(1−t)ly)/t can be used to reformulate Problem (3.8) into the following
univariate convex problem

min t f
(
lx,

y0−(1−t)ly
t

)
+ (1 − t) f

(
x0−lxt

1−t , ly

)
s.t. t ∈

[ y0−ly
uy−ly

, ux−x0
ux−lx

]
, (3.9)

where the constraint is induced by lx ≤ s(t) ≤ ux and ly ≤ r(t) ≤ uy.
Numerical methods can be applied to determine an optimal solution of
Problem (3.9). Let t∗ ∈ (0, 1) be such an optimal solution. Then, the point
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3. Underestimation of Bivariate Functions

(t∗, s∗, r∗) with s∗ = s(t∗) and r∗ = r(t∗) is an optimal solution of Problem (3.8).
If the point (x0, y0) is above the diagonal, i.e., y0 >

ly−uy
ux−lx

(x0 − lx) + uy, we
set x1 = ux and y2 = uy in Problem (3.6) and obtain the problem

ω2(x0, y0) := min t f (ux, r) + (1 − t) f (s,uy)

s.t.
(
x0

y0

)
= t

(
ux

r

)
+ (1 − t)

(
s

uy

)
,

0 < t < 1, r ∈ [ly,uy], s ∈ [lx,ux].

(3.10)

Problem (3.10) can be solved analogously to Problem (3.8).

Thus, the value of the convex envelope is the minimum of the optimal
value %(x0, y0) of Problem (3.7) corresponding to the parallel case and
of either ω1(x0, y0) or ω2(x0, y0) of Problems (3.8) and (3.10), respectively,
corresponding to the orthogonal case:

vex[l,u][ f ](x0, y0) =

 min{%(x0, y0), ω1(x0, y0)}, if y0 ≤
ly−uy
ux−lx

(x0 − lx) + uy,

min{%(x0, y0), ω2(x0, y0)}, if y0 >
ly−uy
ux−lx

(x0 − lx) + uy.

To construct supporting hyperplanes, we thus need to consider three
cases:

(i) vex[l,u][ f ](x0, y0) = %(x0, y0): A minimizing segment is given by the
optimal solution of Problem (3.7). The formulas for a linear under-
estimator can be derived as in Case 3, where f is convex in x and
concave in y.

(ii) y0 ≤
ly−uy
ux−lx

(x0 − lx) + uy and vex[l,u][ f ](x0, y0) = ω1(x0, y0): Let (t∗, s∗, r∗)
denote an optimal solution of Problem (3.8). A touching hyperplane
on the graph of the convex envelope at the point (x0, y0) is given by
the two points p1 = (lx, r∗, f (lx, r∗)), p2 = (s∗, ly, f (s∗, ly)), and a direc-
tion vector q. Similar to the arguments in case 4 for convex/concave
functions, the vector q can be determined as follows. If s∗ , ux, then
q = (1, 0, ∂ f

∂x (s∗, ly)). If s∗ = ux and r∗ , uy, then q = (0, 1, ∂ f
∂y (lx, r∗)). If

s∗ = ux and r∗ = uy, then q = (1, 0,min{ ∂ f
∂x (s∗, ly), ∂ f

∂x (lx, r∗)}).

(iii) y0 >
ly−uy
ux−lx

(x0 − lx) + uy and vex[l,u][ f ](x0, y0) = ω2(x0, y0): This case
can be handled analogously to (ii).
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3.2. A Cut-Generation Algorithm for Bivariate Functions

3.2.2. Cuts from the Lifting Technique

In the previous subsection we presented valid cuts for convex functions
and functions being concave in each variable (cases 1 and 2 in Table 3.1).
For cases 3, 4, and 5 we computed supporting hyperplanes for a given
point (x0, y0) in the interior of the domain [l,u]. If (x0, y0) is in the boundary
of [l,u], the segment connecting the optimal solutions of Problems (3.4)
and (3.6) is contained in a facet of [l,u]. Thus, the resulting underestimat-
ing hyperplane may only be valid over this facet. In this subsection we
apply a lifting technique to extend such a locally valid underestimator to
the entire box.

The concept of lifting techniques was introduced by Padberg [Pad75]
to compute tight linear inequalities for linear zero-one problems. It was
adopted in [GKH+06, GHJ+08b] to derive linear and convex underes-
timators for concrete examples of nonlinear functions over continuous
domains. Some first general results in the field of continuous programs
can be found in [RT10].

In our setting the key idea of the lifting procedure is the following
[GHJ+08b]. Given a bivariate function f : R2

→ R, (x, y) 7→ f (x, y), over
a box [l,u] := [lx,ux] × [ly,uy] ⊆ R2. We first fix one variable to one of
its bounds, e.g., x = lx. The univariate function f (lx, y) over [ly,uy] is
either convex or concave in our context so that its best underestimator
g : R → R is a tangent or a secant, respectively. Our aim is to determine
a best possible lifting coefficient µ ∈ R such that

f (x, y) ≥ µ(x − lx) + g(y) for all (x, y) ∈ [l,u].

This gives rise to the following nonlinear optimization problem

µ := inf
{

f (x,y)−g(y)
x−lx

| x ∈ (lx,ux], y ∈ [ly,uy]
}
. (3.11)

On the other hand, if we fix x to its upper bound ux and assume that
h : R → R is an underestimating function for f (ux, y) over [ly,uy], we
determine a best possible number τ ∈ R with

f (x, y) ≥ τ(x − ux) + h(y) for all (x, y) ∈ [l,u].

Using that x − ux ≤ 0 for x ∈ [lx,ux], we end up with the following
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3. Underestimation of Bivariate Functions

optimization task

τ := sup
{

f (x,y)−h(y)
x−ux

| x ∈ [lx,ux), y ∈ [ly,uy]
}
. (3.12)

In general, Problems (3.11) and (3.12) can be extremely difficult to solve.
We exploit the specific structure of our bivariate functions to determine
appropriate lifting coefficients.

To complete our cut-generation algorithm from the previous section,
we have to investigate the lifting

1. from a facet over which the function is concave into a direction in
which the function is convex (cases 3 and 4 in Table 3.1),

2. from a facet over which the function is convex into a direction in
which the function is concave (cases 3 and 4 in Table 3.1), and

3. from a facet over which the function is convex into a direction in
which the function is convex (case 5 in Table 3.1).

For this, we use elementary arguments that were also exploited in the
papers [GKH+06, GHJ+08b].

Lifting from a facet over which the function is concave into a
direction in which the function is convex

Let f : [l,u] → R be a bivariate function that is convex in x and concave
in y. Consider the point (x0, y0) with x0 ∈ {lx,ux} and ly ≤ y0 ≤ uy. As f
is concave in y, the best linear underestimator for f (x0, y) over [ly,uy] is
given by the secant g : R→ R on the graph of f (x0, y) through the points
(x0, ly, f (x0, ly)) and (x0,uy, f (x0,uy)), i.e.,

g(y) :=
f (x0,uy) − f (x0, ly)

uy − ly
(y − ly) + f (x0, ly).

Next, we determine the lifting coefficient µ according to Equation (3.11).

Case (a): x0 = lx. We will argue that

µ =
∂ f
∂x (lx, ȳ), where ȳ :=

{
ly, if ∂ f

∂x (lx,uy) ≥ ∂ f
∂x (lx, ly),

uy, otherwise.
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3.2. A Cut-Generation Algorithm for Bivariate Functions

The underestimator and the function coincide at x = lx and y ∈ {ly,uy},
so that µ ≤ ∂ f

∂x (lx, ȳ) since we lift into a direction in which the function
is convex. Along the line y = ȳ the lifting coefficient ∂ f

∂x (lx, ȳ) is best
possible. The resulting linear underestimator is valid for f over [l,u]
because (i) it underestimates f along the lines y = ly and y = uy and (ii) it
underestimates f along each segment from (x, ly) to (x,uy) for all x ∈ [lx,ux]
as it is linear in y while f is concave in y.

Case (b): x0 = ux. Analogously to case (a), the best lifting coefficient is
given by

τ =
∂ f
∂x (ux, ȳ), where ȳ :=

{
ly, if ∂ f

∂x (ux,uy) ≤ ∂ f
∂x (ux, ly),

uy, otherwise.

Lifting from a facet over which the function is convex into a
direction in which the function is concave

Let f : [l,u] → R be a bivariate function that is convex in x and concave
in y and consider the point (x0, y0), where lx ≤ x0 ≤ ux and y0 ∈ {ly,uy}. As
f is convex when y is fixed, the best linear underestimator is given by the
tangent t : R→ R on the graph of f (x, y0) at x0

g(x) :=
∂ f
∂x

(x0, y0)(x − x0) + f (x0, y0).

We extend g(x) to a globally valid underestimator of the form f (x, y) ≥
g(x) + µ(y − y0).

Case (a): y0 = ly. For every fixed x ∈ [lx,ux] the segment connecting the
points (x, ly, g(x)) and (x,uy, f (x,uy)) underestimates f (x, y) over [ly,uy]
as g(x) ≤ f (x, ly) and f is concave for every fixed x. The slope of each

segment is given by γ(x) =
f (x,uy)−g(x)

uy−ly
. A valid lifting coefficient µ ∈ R

is the minimal slope γ(x) over x ∈ [lx,ux]. Note that the function γ(x)
is convex because f (x,uy) is convex and g(x) is linear. This means that
each critical point x̄ satisfying the following first-order condition forms a
global minimum of γ:

∂γ

∂x
(x) = 1

uy−ly

(∂ f
∂x

(x,uy) − g′(x)
) !

= 0.
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Therefore, µ =
f (x̄,uy)−g(x̄)

uy−ly
as long as a critical point x̄ exists which is con-

tained in the domain [lx,ux]. In case such a point does not exist, set x̄ = lx

if γ(lx) ≤ γ(ux), and x̄ = ux otherwise.

Case (b): y0 = uy. Similar to case (a), the segment connecting the points
(x, ly, f (x, ly)) and (x,uy, g(x)) underestimates f (x, y) over [ly,uy] for every
fixed x ∈ [lx,ux]. A valid lifting coefficient τ ∈ R is given by the maximal
slope γ(x) =

f (x,ly)−g(x)
ly−uy

over x ∈ [lx,ux]. As ly − uy < 0 and f is convex
in x, it follows that γ is concave. Let x̄ be a critical point satisfying the
first-order condition of γ(x), provided such point exists and is contained
in [lx,ux]. If such point does not exist, we set x̄ = lx if γ(lx) ≥ γ(ux), and
x̄ = ux otherwise. Then, τ =

f (x̄,ly)−g(x̄)
ly−uy

.

Lifting from a facet over which the function is convex into a
direction in which the function is convex

Let f : [l,u] → R be a bivariate function that is strictly convex in both x
and y but its Hessian is indefinite. Consider a point (x0, y0) ∈ [l,u] and
assume, w.l.o.g., that x0 ∈ {lx,ux} and ly ≤ y ≤ uy. As f is convex in y, the
best convex underestimator for f (x0, y) is the function f (x0, y) itself, i.e.,
g(y) = f (lx, y) and h(y) = f (ux, y). We define the term

µ(x, y) :=
f (x, y) − f (x0, y)

x − x0
,

which is minimized and maximized in Problems (3.11) and (3.12) to com-
pute the best lifting coefficient.

Case (a): x0 = lx. The best possible lifting coefficient µ corresponds to
the infimum of µ(x, y) over [l,u]. As already mentioned in [GHJ+08b],
µ(x, y) is the differential quotient of f in x for fixed y. By convexity of f
in x, it follows that µ(x, y) ≥ ∂ f

∂x (lx, y) for all (x, y) ∈ [l,u]. We can exploit
the assumptions on f to show monotonicity of ∂ f

∂x (lx, y) in y. Formally, the
assumptions on f are

•
∂2 f
∂x2 (x, y) > 0, ∂2 f

∂y2 (x, y) > 0 for all (x, y) in the interior of [l,u],

•
∂2 f
∂x2 (x, y) ∂

2 f
∂y2 (x, y)− [ ∂

2 f
∂x∂y (x, y)]2 < 0 for all (x, y) in the interior of [l,u].
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Therefore, [ ∂
2 f

∂x∂y (x, y)]2 > ∂2 f
∂x2 (x, y) ∂

2 f
∂y2 (x, y) > 0 for all (x, y) in the interior of

[l,u]. As we assume f to be twice continuously differentiable, it follows

that ∂2 f
∂x∂y (x, y) is either nonpositive or nonnegative over [l,u] which implies

monotonicity of ∂ f
∂x (lx, y) in y. Thus, µ(x, y) ≥ ∂ f

∂x (lx, y) ≥ ∂ f
∂x (lx, ȳ) = µ for

all (x, y) ∈ [l,u], where

ȳ :=
{

ly, if ∂ f
∂x (lx, ly) ≤ ∂ f

∂x (lx,uy),
uy, otherwise.

Case (b): x0 = ux. The best possible lifting coefficient τ corresponds to
the supremum of µ(x, y) over [l,u] which is given by ∂ f

∂x (ux, ȳ) with

ȳ :=
{

ly, if ∂ f
∂x (ux, ly) ≥ ∂ f

∂x (ux,uy),
uy, otherwise.

3.2.3. Computations

We now proceed with a detailed computational study of the described
cut-generation algorithm.

Implementation

The cut-generation algorithm is implemented as a new constraint handler
in the constraint integer programming framework SCIP [Ach07, Ach09]
which has recently been extended to handle general MINLPs [BHV09,
Vig12]. SCIP solves MINLPs by a branch-and-bound algorithm. The prob-
lem is recursively split into smaller subproblems. In this process a search
tree is created and all potential solutions are implicitly enumerated. At
each subproblem, standard tools like bound tightening or primal heuris-
tics are employed.

A constraint handler in SCIP defines the semantics and the algorithms
to process constraints of a certain class. An enforcement method has to
be implemented in each constraint handler, where it is decided whether
the optimal solution of the linear relaxation satisfies all of its constraints.
If the solution violates one or more constraints, the handler may resolve
the infeasibility by adding linear inequalities, performing a domain re-
duction, or a branching.
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Our constraint handler deals with bivariate constraints of the form
` ≤ f (x, y) + cz ≤ r, where f : [l,u] ⊆ R2

→ R is a bivariate function with
fixed convexity behavior, c ∈ R, ` ∈ R ∪ {−∞}, and u ∈ R ∪ {∞}. The
function f (x, y) has to be passed to the constraint handler in the form of
an expression tree (see Section 2.1). Additionally, the convexity behavior
of the function has to be specified. Currently, the convexity behavior of
bivariate quadratic and monomial functions is recognized automatically
according to Table 3.1. However, users can specify the convexity behavior
of arbitrary bivariate functions manually using the callable library of SCIP.

For enforcement and during separation rounds the constraint handler
generates a linear inequality from under- or overestimators of f (x, y) (as
described in the previous sections). If the generated inequality does not
cut off the optimal solution of the linear relaxation, spatial branching
is applied on either x or y. For instance, if f (x, y) is convex in x and
concave in y and the current relaxation’s optimum (x0, y0, z0) violates the
inequality f (x0, y0) + cz0 ≤ r, then variable y is proposed as branching
candidate to SCIP. From all branching candidates that are registered by
all constraint handlers SCIP selects a branching variable and a branch-
ing point according to a pseudo-costs based variable selection rule, see
[BLL+09, BHV09, Vig12] for details. Further, a feasibility-based bound
tightening (FBBT) rule is applied to deduce tighter variable bounds for x,
y, or z from the constraint and the bounds on these variables, see [Vig12]
for details.

During presolve SCIP reformulates a MINLP into a form which allows
to construct a linear relaxation. The reformulation mainly consists of
introducing new auxiliary variables and nonlinear constraints for subex-
pressions of nonlinear functions. For example, a general monomial func-
tion xp yq has so far been reformulated by SCIP into a product w1w2 and
two new constraints w1 = xp and w2 = yq because SCIP knows how to
compute linear under- and overestimators for these functions. With the
new constraint handler for bivariate functions there is no more need for
reformulating monomials xp yq with lx ≥ 0 and ly ≥ 0.

Test set

Initially, we considered the problem libraries GLOBALLib [GLO] and
MINLPLib [BDM03]. However, they contain only a few instances with
bivariate quadratic terms or monomials, mainly of the form x/y. To in-
vestigate the computational benefit of having a convex underestimator
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for bivariate functions at hand, we created a set of nonlinear optimization
problems, where bivariate functions occur in form of quadratic functions
and monomials, e.g., 3x2

1 + x1x2 − x2
x + 2x0.3

1 x1.5
2 − 4x1.2

2 x2.5
3 .

The random generation of problems with constraints can lead to infea-
sibility. As the proposed constraint handler aims at strong bounds on the
problem, feasible problems are required in order to compare the quality
of the bounds. We designed the following problem class to meet these
demands, where we vary the number of variables Nvars and constraints
Ncons, and the maximum degree Deg over all constraints:

min ρ

s. t.
Deg−1∑

i=1

Deg−i∑
j=1

Nvars∑
k=1

Nvars∑
l=k+1

ai, j,k,l,c x
pi, j,k,c

k x
qi, j,l,c

l +

Nvars∑
k=1

bk,cx2
k ≤ ρ,

∀ c ∈ {1, . . . , Ncons} and x ∈ [l,u],

where:

• pi, j,k,c: If i = j = 1, then pi, j,k,c = 1. Otherwise, pi, j,k,c is uniformly
random set to a value in {(i − 1) + 0.2, (i − 1) + 0.4, . . . , (i − 1) + 1}.

• qi, j,l,c: If i = j = 1, then qi, j,l,c = 1. Otherwise, qi, j,l,c is uniformly
random set to a value in {( j − 1) + 0.2, ( j − 1) + 0.4, . . . , ( j − 1) + 1}.

• ai, j,k,l,c: If i = j = 1, k odd, and l = k + 1, then ai, j,k,l,c is uniformly
random in {−4,−3, . . . , 3, 4}. If i > 1 or j > 1, then ai, j,k,l,c is with
probability 2/Nvars in {−4,−3, . . . , 3, 4}. Otherwise, we set ai, j,k,l,c = 0.

• bk,c: The coefficient bk,c is chosen uniformly at random from the set
{−4,−3, . . . , 3, 4}.

• [l,u]: For each k ∈ {1, . . . , Nvars} the lower bound lk is uniformly
at random set to a value in {0, 1, 2, 3, 4}. The upper bound uk is the
sum of lk + 1 and a value which is chosen uniformly at random
from {0, 1, 2, 3, 4}. To avoid numerical inconsistencies, we check that
uDegk ≤ 2000.

The condition i = j = 1 deals with the quadratic case. It ensures that
integer exponents leading to quadratic terms xix j are generated. The
condition (l = k +1), l odd, leads to bivariate quadratic terms x1x2, x3x4, . . .

81



3. Underestimation of Bivariate Functions

and thus, the univariate quadratic terms x2
k can be associated to a unique

bivariate quadratic monomial.
The implemented methods are of particular interest if the optimal or

intermediate solutions are attained in the interior of the underlying boxes
[l,u]. Otherwise, only the lifting procedures are executed. Thus, the
following ellipsoid constraint is optionally added to the problems which
cuts off the boundary of the box

Nvars∑
k=1

(
xk −midpointk

interval-lengthk/2

)2

=

Nvars∑
k=1

(
xk − (uk + lk)/2

(uk − lk)/2

)2

≤ 1. (3.13)

The following settings are considered:

• Nvars ∈ {10, 20, 30},

• Deg ∈ {2, 3, 4, 5},

• Ncons ∈ {1, 2, 3, 5, 10},

• Enable/Disable the ellipsoid
constraint (3.13).

Hence, there are 3 · 5 · 4 · 2 = 120 different settings. For each setting we
generate 10 random instances leading to 1,200 instances in total.

Experimental Setup

We compared SCIP 3.0.0 (with the new constraint handler enabled or
disabled) with BARON 11.1.0 [TS05] and COUENNE 0.4 [BLL+09]. SCIP
and BARON use CPLEX 12.4 for solving LP relaxations, COUENNE uses
CLP 1.14. SCIP and COUENNE use Ipopt 3.10 for finding local optimal
solutions to an NLP, BARON uses MINOS 5.51.

We run all experiments under openSuSE Linux 11.4 64bit on a Dell
PowerEdge M1000e blade with 48 GB RAM and two Intel Xeon X5672
CPUs running at 3.20 GHz. The timelimit is 30 minutes and the gap
tolerance is 0.01%.

Results

In Table 3.2 the results for performing all 1,200 instances by BARON,
COUENNE, SCIP, and SCIP(bivar) with the new constraint handler enabled
are summarized, where we exclude 17 instances for which one of the 4
algorithms aborted or failed. First, we report the number of instances
which are solved and solved fastest by an algorithm, and for which an
algorithm computes the best dual bound. An algorithm is marked fastest
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3.2. A Cut-Generation Algorithm for Bivariate Functions

SCIP SCIP(bivar) BARON COUENNE

#solved 369 966 643 711
#fastest 34 625 183 208
#best dual bound 370 1026 681 814

time (sh. geom. mean) 499.6 75.0 266.2 191.6
nodes (sh. geom. mean) 2166.7 391.6 1373.6 3818.2
dual gap (arith. mean) 30.07% 5.62% 20.31% 18.35%

Table 3.2.: Computational results for 1,200 randomly generated polyno-
mial instances.

if it is within one second of the minimal solution time for an instance.
Similarly, a dual bound for a solver is marked as best dual bound, if the
bound is within 0.01% of the best dual bound for that instance. The defini-
tions of fastest algorithm and best dual bound imply that two algorithms
can be marked fastest/best for one instance. Second, for each solver we
calculated mean values of the solution time in which unsolved instances
are accounted for with the time limit, the number of processed nodes, and
the dual gap at termination. The mean values are computed according to
[Ach07, Section A.3], where the shifted geometric mean, defined as∏

i∈[n]

max(ε, vi + s)


1/n

− s,

is calculated with ε = 1 and s = 10 for solution times and with ε = 1 and
s = 100 for node counts. The dual gap [ABH12] for a problem with dual
bound v and best known objective value v∗ is defined as

dual gap := min
(
1,
|v∗ − v|

max(1, |v∗|)

)
.

Bounding the gap from above by 1 reduces the impact of outliers and
results in meaningful arithmetic means.

The results in Table 3.2 allow for an overall ranking of the four algo-
rithms as the tendency is the same for all the individual performance
parameters. SCIP(bivar) clearly outperforms the other algorithms, fol-
lowed by COUENNE, BARON, and SCIP. SCIP(bivar) solves at least 200
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3. Underestimation of Bivariate Functions

instances more than the solvers BARON and COUENNE, which is also a
reason why its dual gap and its solution time is much better than the ones
of BARON and COUENNE. As SCIP performs worst, the results indicate
that the use of the new constraint handler within BARON or COUENNE
may even lead to better results.

To exclude the influence of unsolved instances, we restrict our attention
to the 529 instances which are solved by SCIP(bivar), BARON as well as
COUENNE. Table 3.3 depicts the results and shows that SCIP(bivar) is the
fastest algorithm for most instances. The mean of the computation times
shows that COUENNE is almost as fast as SCIP(bivar), but that BARON
needs two times more CPU time than SCIP(bivar). A possible explana-
tion for the speed of SCIP(bivar) is the low number of nodes processed
indicating the strength of the relaxations used in SCIP(bivar). This claim
is supported by the direct comparison of SCIP and SCIP(bivar) restricted
to the 357 instances solved by both algorithms. SCIP exhibits a mean of
19.7 seconds and 1276.4 nodes while SCIP(bivar) uses only 11.3 seconds
and 449.4 nodes. Thus, SCIP(bivar) can utilize the improved relaxations
to avoid branching steps and to prune nodes earlier, thus accelerating the
computations.

SCIP(bivar) BARON COUENNE

#fastest 235 170 125

time (sh. geom. mean) 16.5 30.5 18.3
nodes (sh. geom. mean) 390.3 485.7 550.7

Table 3.3.: Summary of 529 instances solved by SCIP(bivar), BARON as
well as COUENNE.

In Figure 3.8 we refine the analysis of the dual gaps for the 1,200 in-
stances w.r.t. the number of variables NVars, the number of constraints
Ncons, the maximal degree Deg of the polynomials, and the ellipsoid
constraint in Equation (3.13) dis- and enabled. Regarding the number
of variables, we observe that for 10 variables per instance SCIP(bivar),
BARON, and COUENNE have about the same dual gap close to zero. For
instances with more variables the dual gaps of BARON and COUENNE
grow tremendously up to a gap of more than 34% while the dual gap of
SCIP(bivar) increases modestly to 13%.
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SCIP SCIP(bivar) BARON COUENNE
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Figure 3.8.: Dual gaps (arithm. mean) of the solvers w.r.t. the number of
variables NVars, constraints Ncons, the maximal degree Deg,
and the ellipsoid constraint dis- and enabled.

An increase in the number of constraints leads only to a modest increase
in the dual gap for all solvers. SCIP(bivar)’s dual gap is about 2.5-7 times
better than the second best algorithm COUENNE.

In contrast to the number of constraints, the maximal degree has a
significant influence on the dual gap of all solvers. For a degree of two
BARON’s and COUENNE’s dual gaps are close to zero while SCIP(bivar)’s
gap is about 6%. For degrees of three and four the dual gaps of BARON
and SCIP increase heavily whereas SCIP(bivar)’s gap even decreases. The
reason for this can be found in the construction of the instances. For
degree two we construct only bivariate quadratic monomials like xy but
no monomials with fractional exponents like x0.2 y1.4 which is allowed for
larger degrees. As a consequence the programs corresponding to degree
two are quadratic programs for which solvers like BARON and COUENNE
apply well-suited, pre-defined relaxations while SCIP(bivar) solves a se-
ries of auxiliary problems to compute linear under- and overestimators.
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For instances with larger degrees there are monomials like x0.4 y1.4, which
are concave in one variable and convex in the other variable, and monomi-
als like x1.4 y2.2, which are 1-convex and indefinite. These cases are handled
by the presented constraint handler in SCIP(bivar). A proper relaxation
of these terms might compensate the more time consuming relaxation of
the bivariate quadratic terms which helps to explain the smaller dual gap
of SCIP(bivar) for degree 3 and 4.

The enabled ellipsoid constraint leads to an increase in the dual gaps
of SCIP, SCIP(bivar), BARON, and COUENNE by factors of about 4, 10,
4, and 6, respectively. The activation of the ellipsoid constraint forces
the optimal solution to be attained in the interior of the given domains
which obviously causes some problems for the algorithms due to weaker
relaxations. Yet, SCIP(bivar) returns a dual gap which is at least three
times better than the gap of the other algorithms. This shows that both
the lifting technique used to cut-off points at the boundary and the linear
underestimators based on the convex envelopes used to cut-off points in
the interior have a significant influence on the performance of SCIP(bivar).

In all tests so far we constructed monomials with fractional exponents
like x0.4 y1.8. A last comparison is now devoted to instances with inte-
gral exponents only, i.e., we round up the exponents such that we obtain
monomials like x1 y2. We compare the computational results of SCIP and
SCIP(bivar) applied to a test set of 1,200 instances with integral expo-
nents in Table 3.4. Compared to the instances with fractional exponents,
presented in Table 3.2, SCIP can solve about 300 instances more whereas
SCIP(bivar) solves about 300 instances less.

SCIP SCIP(bivar)

#solved 667 612
#fastest 497 194
#best dual bound 1075 734

time (sh. geom. mean) 205.2 254.6
nodes (sh. geom. mean) 1802.9 1039.9
dual gap (arith. mean) 22.57% 26.30%

Table 3.4.: Computational results for 1,200 randomly generated polyno-
mial instances with integral exponents.

To understand the clear improvement of SCIP, consider the monomials
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x0.4 y1.8 and x2.6 y1.6. SCIP introduces new variables v0.4, v2.6, and w2.6,w1.6

for the univariate convex or concave monomials x0.4, x2.6, and y1.8, y1.6,
respectively. Afterwards, it relaxes the univariate monomials and the
bilinear product terms v0.4w1.8 and v1.8w1.6 by their convex and concave
envelopes. If only integral exponents are allowed, these monomials now
read x1 y2 and x3 y2. Thus, less variables are introduced, namely v1, v3, and
w2, and the bilinear terms v1w2 and v3w2 have a common variable which
is helpful in the process of relaxation.

A possible explanation for SCIP(bivar)’s bad performance is the nonoc-
currence of monomials like x0.4 y1.8 which are strictly concave in one vari-
able and convex in the other one. We already indicated this in the discus-
sion of Figure 3.8 (c), where no monomials like x0.4 y1.8 occur for degree
two while this is the case for higher degrees. A further indication for
this conjecture is given in Table 3.5, where the dual gaps for SCIP and
SCIP(bivar) w.r.t. the maximal degree of the programs with fractional and
integral exponents are displayed. The numbers show an enormous in-
crease in the dual gap of SCIP(bivar) for integral exponents compared to
fractional exponents. Note that the instances with integral exponents also
contain indefinite (n-1)-convex monomial functions like x3 y2 which are
also covered by the new constraint handler. From the bad performance
of SCIP(bivar) we infer that the computation of the related cuts is not yet
efficient.

Max degree 2 3 4 5

SCIP Fractional 7.00% 26.83% 49.79% 52.00%
Integral 7.00% 18.88% 31.55% 32.84%

SCIP(bivar) Fractional 6.25% 3.33% 9.28% 14.54%
Integral 6.26% 23.72% 35.84% 39.36%

Table 3.5.: Dual gaps of SCIP and SCIP(bivar) for instances with fractional
exponents and instances with integral exponents.

To sum up, the new constraint handler used in SCIP(bivar) can reduce
the solution time and improve the dual bounds of programs containing
bivariate functions with a fixed convexity behavior. Excellent results are
obtained if the functions are strictly concave in one direction and convex
in the other direction. In these cases the algorithm SCIP(bivar) clearly

87



3. Underestimation of Bivariate Functions

outperforms standard algorithms w.r.t. dual bounds and running time.

An advantage of the presented constraint handler is its applicability to
general bivariate functions with a fixed convexity behavior. However, the
additional incorporation of explicit formulas for known convex envelopes
can help to reduce the computation of auxiliary problems in the cut-
generation algorithm. Examples are fractional terms from Example 3.20,
bivariate quadratic terms from Example 3.21, and the recently derived
envelopes for functions f (x, y) = g(x)h(y), where g(x) is an univariate
concave function and h(y) is an univariate convex function of the form ya

or ey (see Section 3.1.3). To handle more general bivariate functions by the
new constraint handler, the automatic detection of the convexity behavior
needs to be extended to further classes of functions in the future.

3.3. Chromatographic Processes with Second-Order
Isotherms

In the last section of this chapter we investigate novel concepts in chro-
matographic processes which are frequently used separation processes in
the biotechnology, the pharmaceutical, and the petrochemical industry.
The separation is achieved by passing a dissolved multicomponent mix-
ture in a mobile (liquid) phase through a stationary (solid) phase. As a
result of the different adsorption properties of single components towards
the stationary phase, the desired components are isolated.

A crucial part in the analysis and design of chromatographic processes
is to describe the adsorption behavior between the two phases by so-called
isotherms, i.e., equilibrium functions that reflect the relation between the
concentration of the components in the solid- and in the liquid-phase. For
rather simplified isotherms there are nowadays reliable design rules to
decide whether a separation is feasible and which operating parameters
should be used. These isotherms are, however, not sufficient for many ap-
plications, e.g., they do not allow to model inflection points in the course
of adsorption, a phenomena which is frequently observed for more re-
alistic adsorption isotherms. For more complex equilibrium functions
theoretical methods for the design of chromatographic processes are less
developed. In this work we analyze the design of chromatographic pro-
cesses with second-order isotherms which are capable to describe inflection
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points and are given by

f (x1, x2) =
qsx1(b1,0 + 2b2,0x1 + b1,1x2)

1 + b1,0x1 + b0,1x2 + b2,0x2
1 + b1,1x1x2 + b0,2x2

2

,

with nonnegative coefficients qS, b1,0, b0,1, b2,0, b1,1, b0,2 and variables xi re-
flecting the liquid-phase concentrations of component i.

In Section 3.3.1 we present the process engineering background and a
mathematical model for chromatographic processes. We briefly introduce
the conventional isotherm models and discuss the design rules for the
corresponding chromatographic processes.

Motivated by the rare information for processes with more compli-
cated isotherms, we investigate the behavior of chromatographic pro-
cesses based on second-order isotherms in this section. On the one hand,
a classical scanning technique is used to identify the region of applicable
operating parameters. On the other hand, an alternative approach is sug-
gested which verifies the existence and shape of the suitable parameter
region by infeasibility certificates. For this, we study several relaxation
strategies for second-order isotherms and computationally compare their
strength in Section 3.3.2. The relaxations are then used to determine
the shape of the separation regions of chromatographic processes with
second-order isotherms in Section 3.3.3.

This section is based on [BMSMW10] which extends the results in
[HMSMW07], where chromatographic processes with linear isotherms
are analyzed w.r.t. feasibility. Keep in mind that the paper was published
in 2010, so that the software and hardware used in this section have to be
put into the corresponding context.

3.3.1. Fundamentals of Chromatographic Processes

Continuous counter-current chromatographic processes can be well de-
scribed by the simplifying true moving bed (TMB) model [RPM09, RC89].
In this section we initially present the model formulation for TMB pro-
cesses used in this work. Then, adsorption models for isotherms are
presented and the corresponding separation regions are discussed.

The Principle of TMB Processes

In a chromatographic process the separation of a binary mixture A + B
is based on a different adsorption behavior of the components A and B
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w.r.t. a certain solid. We assume that component A is the less adsorbable
component while B denotes the more adsorbable component. A contin-
uously operated counter-current chromatographic unit consists of four
zones separated by two inlet plates (F), (D) and two outlet plates (R),
(E) (cf. Figure 3.9). Each zone i is further subdivided into a theoretical
number of plates Mi.

solid phase

liquid phase

Zone 3

Zone 2

Zone 4

Zone 1

A + B

A

B

(V̇R)

(V̇E)

(V̇F) (V̇D)
(V̇S)

(V̇i)

Figure 3.9.: A sketch of a true moving bed (TMB) process.

The separation of the mixture is achieved by a continuous counter-
current movement of a liquid-phase and a solid-phase through the system.
The binary mixture A + B is fed into the TMB unit at the feed plate (F). A
second inlet plate (D) is used to feed a solvent into the system. At the outlet
plates (R) and (E) the single components A and B (or enriched streams),
respectively, are withdrawn. The separation of the mixture takes place in
zones 2 and 3. The more adsorbable component B is enriched in zone 2
while the less adsorbable component A is enriched in zone 3. In zones 1
and 4 the solid and the solvent are purified, respectively. For a continuous
counter-current chromatographic process it is assumed that the solid-
phase moves continuously through the entire system with a flow-rate V̇s

while the internal volumetric liquid-phase flow-rates V̇i, i ∈ {1, 2, 3, 4}, may
differ between distinct zones. There are four external volumetric liquid-
phase flow-rates V̇ j, j ∈ {F,R,D,E}, which are linked to the chromatographic
system by the inlet and outlet plates. It is convenient to model the process
in terms of four dimensionless ratios of the liquid-phase flow-rates V̇i with
respect to the solid-phase flow-rate V̇s [MMM98, SMMC93]:

mi :=
V̇i

V̇s
, for all i ∈ {1, 2, 3, 4}.
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The relations between the internal and the external flow-rate ratios are
given by the following linear system of equations:

mF = m3 −m2, mR = m3 −m4, mD = m1 −m4, mE = m1 −m2. (3.14)

On every plate each component k is present with a certain concentra-
tion in both the liquid-phase and the solid-phase. In the following we
denote by ck

i, j (qk
i, j) the liquid-phase (solid-phase) concentrations of the kth

component, k ∈ {A,B}, in the jth plate of zone i, with j ∈ {0, . . . ,Mi}. The
relation between the liquid-phase and solid-phase concentrations ck

i, j, qk
i, j

is described by isotherms, i.e., qk
i, j can be seen as a function qk

i, j : R2
→ R,

(cA
i, j, c

B
i, j) 7→ qk

i, j(c
A
i, j, c

B
i, j). Special classes of isotherms are discussed in more

detail later in this section. The variables ck
i,0 (qk

i,0) represent the liquid-phase
(solid-phase) concentrations of the kth component in the plate connecting
zone i with the previous zone via plates (E), (F), (D), or (R), respectively.
The concentration of component k in the external liquid-phase streams are
abbreviated by ck

j , j ∈ {E,F,D,R}, where ck
F and ck

D are input parameters
and ck

2,0 = ck
E and ck

4,0 = ck
R are the output of the model.

To model a TMB unit, the classical equilibrium stage model is used
dividing the unit in a discrete number of theoretical plates (cf. [BHSM03,
RC89]). For all plates the steady state mass balance equations must be
fulfilled:

0 =

{
qk

i, j+1 + mick
i, j−1 −mick

i, j − qk
i, j, if j = 1, . . . ,Mi − 1,

qk
i+1,0 + mick

i,Mi−1 −mick
i,Mi
− qk

i,Mi
, if j = Mi.

(3.15)

Using the expression for the external flow-rate rations in Equation (3.14),
the mass balance equations for the inlet and outlet plates result in

(F) qk
3,1 + m2ck

2,M2
−m3ck

3,0 − qk
3,0 + (m3 −m2)ck

F = 0,
(R) qk

4,1 + m3ck
3,M3
−m4ck

4,0 − qk
4,0 − (m3 −m4)ck

4,0 = 0,
(D) qk

1,1 + m4ck
4,M4
−m1ck

1,0 − qk
1,0 + (m1 −m4)ck

D = 0,
(E) qk

2,1 + m1ck
1,M1
−m2ck

2,0 − qk
2,0 − (m1 −m2)ck

2,0 = 0.

(3.16)

Moreover, the total mass balance equation concerning the overall mass
conservation must be satisfied:

0 = (m3 −m4)ck
4,0 + (m1 −m2)ck

2,0 − (m1 −m4)ck
D − (m3 −m2)ck

F. (3.17)
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The goal of the separation process is to produce the components with a
certain purity purk

∈ [0, 1] which is reflected by the purity requirements:

cA
R

cA
R +cB

R
≥ purA,

cB
E

cA
E +cB

E
≥ purB. (3.18)

Isotherms Based on Statistical Thermodynamics

A main aspect of modeling a chromatographic separation process is to
find a suitable description of the relation between the liquid-phase con-
centrations ck

i, j and the corresponding solid-phase concentrations qk
i, j for

equilibrium conditions. A simple way to model such a relation is to use
linear isotherms which assume a linear relationship, i.e.,

qk
i, j = Hk ck

i, j, k ∈ {A,B},

where Hk stands for the Henry constant of the kth component that reflects
its adsorption behavior with respect to the solid. Linear isotherms are
often used to describe the equilibrium behavior of different sugars (see,
e.g., [CCHU92]). In contrast to linear isotherms, Langmuir isotherms can
reflect the often observed competitive behavior between the components
[GFSK06]:

qA
i, j =

qscA
i, j b1,0

1 + b1,0cA
i, j + b0,1cB

i, j

, qB
i, j =

qscB
i, j b0,1

1 + b1,0cA
i, j + b0,1cB

i, j

.

The Langmuir isotherm model can be considered as a special case of
more general isotherm models that can be derived from statistical thermo-
dynamics. One possibility to model isotherms based on statistical thermo-
dynamics is given by

qk
i, j : R2

→ R, (cA
i, j, c

B
i, j) 7→

qsck
i, j

∂P
∂ck

i, j
(cA

i, j, c
B
i, j)

P(cA
i, j, c

B
i, j)

, k ∈ {A,B},

where P is a real polynomial of degree d with constant term equal to one
[Hil60]. The higher the degree of the polynomial, the more phenomena
of the adsorption behavior can be modeled. Langmuir isotherms are
statistical isotherms of degree one.

In this section we focus on statistical isotherms, where P is of degree
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two (d = 2), so-called second-order isotherms. For a binary mixture the
isotherms appear as

qA
i, j =

qscA
i, j

(
b1,0 + 2b2,0cA

i, j + b1,1cB
i, j

)
1 + b1,0cA

i, j + b0,1cB
i, j + b2,0

(
cA

i, j

)2
+ b1,1cA

i, jc
B
i, j + b0,2

(
cB

i, j

)2 ,

qB
i, j =

qscB
i, j

(
b0,1 + 2b0,2cB

i, j + b1,1cA
i, j

)
1 + b1,0cA

i, j + b0,1cB
i, j + b2,0

(
cA

i, j

)2
+ b1,1cA

i, jc
B
i, j + b0,2

(
cB

i, j

)2 .

(3.19)

Compared to linear and Langmuir isotherms, second-order isotherms are
capable of describing inflection points that are frequently encountered in
real systems [GMNS60, DG91, ZSSM06, RPM09].

Separation regions

An important question in the design of continuous counter-current chro-
matographic processes is to find suitable values of the dimensionless
flow-rate ratios mi. Significant contributions in this direction have been
made for linear and Langmuir isotherms ([Maz06, SMMC93]). For linear
isotherms, complete separation (purk = 100%), and an infinite number
of plates, Storti et al. ([SMMC93]) developed the so-called triangle theory:
For given values of m1 and m4 the region for m2 and m3 allowing success-
ful separation is shaped like a triangle as illustrated in Figure 3.10 (a).
Migliorini et al. [MMM98] extended this result to Langmuir isotherms,
where a ‘triangle’-like separation region can be determined analytically,
cf. Figure 3.10 (b). Mazzotti [Maz06] presented an extended equilibrium
theory based analysis for a generalized isotherm model capable to de-
scribe convex and concave (Langmuir and anti-Langmuir) behavior.

Note that analytical solutions for a complete separation region as sum-
marized above can be derived only by assuming an infinite number of
plates. In practice one has to carry out separation processes with a finite
number of plates under specific (reduced) purity requirements, for which
analytical solutions are not known. A common approach to determine
the shape of the separation region is to apply a simple scanning technique.
The idea is to fix the key variables of the process, namely the four flow-
rate ratios mi, to points of a pre-defined grid. Then, numerical methods
are applied to search for a solution in the remaining variables for every
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(b)(a) (c)

Figure 3.10.: Complete separation regions for (a) linear and (b) Langmuir
isotherms [MMM98]. (c) Separation regions for Langmuir
isotherms under reduced purity requirements [KSMK07].

discrete grid point. Figure (3.10) (c) displays the results by Kaspereit et
al. [KSMK07] using a scanning technique for processes with Langmuir
isotherms under reduced purity requirements.

In the past scanning techniques were frequently used to analyze contin-
uous counter-current chromatographic processes with linear and Lang-
muir isotherms (cf. [BHSM03, KSMK07]. Up to now, the explicit incor-
poration of single solute and competitive isotherms exhibiting inflection
points has been rarely considered in both theoretical and computational
studies (cf. [MSMG04, RPM09]) which motivated the work in this section.

3.3.2. Relaxation of Second-Order Isotherms

Besides the scanning technique, we also apply a relaxation technique
based on ideas from global optimization (see, e.g., [HMSMW07, McC76,
TS04, BL12]) in order to determine the separation region. In contrast to the
scanning technique, the alternative relaxation approach does not focus on
the feasibility of a certain point but on the infeasibility of subdomains.
Therefore, this approach will lead to the negative image of the results
obtained by the scanning technique described above.

While feasibility of a point can be checked easily, it is generally hard
to prove infeasibility of a problem. However, if a problem is given by
a system of linear equations and/or inequalities, certificates are available
to prove infeasibility, e.g., the Farkas Lemma (cf. [Roc70]). In order to
construct a linear relaxation of the TMB model, we follow a standard
approach and substitute each nonlinear term by a new variable which is
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under- and overestimated by affine hyperplanes.

The TMB model in Section 3.3.1 consists of two classes of nonlinearities:
(i) the bilinear terms m·ck

i, j in the mass balance Equations (3.15), (3.16), and
(3.17), and (ii) the second-order isotherms in Equation (3.19). The bilinear
terms can be relaxed best possible by their convex and concave envelopes
presented in Example 3.14. To the best of our knowledge, the envelopes
of second-order isotherms are not known. Our aim is to analyze certain
relaxation strategies for second-order isotherms in order to determine
strong convex under- and concave overestimators. It is worthwhile to
study such under- and overestimators as second-order isotherms exhibit
a very general structure as a quotient of two bivariate polynomials. Note
that Langmuir isotherms are a special case of second-order isotherms for
which a characterization of the envelopes is at hand (cf. [JKMW08, TS01]).

We investigate four distinct relaxation strategies. The first three strate-
gies are based on a reformulation of the isotherms into structures for
which the convex envelope is known while the fourth strategy exploits
the lifting technique presented in Section 3.2.2. Note that the implemen-
tation of the first three strategies was already documented in [Bal08]. To
illustrate the relaxation strategies, we consider the isotherm for compo-
nent A from Equation (3.19) omitting some indices

qA(cA, cB) =
qs cA

(
b1,0 + 2b2,0cA + b1,1cB

)
1 + b1,0cA + b0,1cB + b2,0 (cA)2 + b1,1cAcB + b0,2 (cB)2 =:

r(cA, cB)
s(cA, cB)

.

Relaxation Strategy One (RS1): We multiply the expression by the de-
nominator and expand the terms to

qA + b1,0qAcA + b0,1qAcB + b2,0qA(cA)2 + b1,1qAcAcB + b0,2qA(cB)2

= qsb1,0cA + 2qsb2,0(cA)2 + qsb1,1cAcB,

where the variables are given in bold. The convex terms (cA)2 and (cB)2

are substituted by new variables and relaxed by their envelopes. Then,
only bilinear terms like qAcA and trilinear terms like qAcAcB remain which
are relaxed by their envelopes as given in Examples 3.14 and 3.15, respec-
tively.

Relaxation Strategy Two (RS2): We multiply the expression by the de-

95



3. Underestimation of Bivariate Functions

nominator but do not expand the terms such that we obtain

qAs′ = r′, s′ = s(cA, cB), r′ = r(cA, cB).

The bilinear term qAs′ and the bivariate quadratic terms s(cA, cB) and
r(cA, cB) are relaxed by their envelopes as given in Examples 3.14 and 3.21,
respectively.
Relaxation Strategy Three (RS3): We do not multiply the expression by
the denominator and relax the isotherms by

qA = r′
s′ , s′ = s(cA, cB), r′ = r(cA, cB).

The fractional term r′
s′ and the bivariate quadratic terms s(cA, cB) and

r(cA, cB) are relaxed by their envelopes as given in Examples 3.20 and
3.21, respectively.
Relaxation Strategy Four (RS4): Instead of performing the reformulation
step that requires the introduction of additional variables we apply the
lifting technique (see Section 3.2.2) directly to the isotherms to relax them.
Assume we want to determine an underestimator for qA(cA, cB) over the
domain [lA,uA] × [lB,uB]. The first step is to fix one of the variables to
its lower or upper bound, e.g., cB = lB. Obviously, the term qA(cA, lB) is
an underestimator for qA(cA, cB) along the line cB = lB. To extend this
underestimator to the entire box, we need a lifting coefficient µ ∈ R such
that qA(cA, cB) ≥ qA(cA, lB) + µ(cB

− lB) for all (cA, cB) ∈ [lA,uA] × [lB,uB], or
equivalently,

µ ≤ inf
{ qA(cA, cB) − qA(cA, lB)

cB − lB︸                     ︷︷                     ︸
=:µ(cA ,cB)

∣∣∣∣∣ (cA, cB) ∈ [lA,uA] × (lB,uB]
}

=: µ∗.

(3.20)

The best possible lifting coefficient is given by µ = µ∗.

Proposition 3.26. Let µ(cA, cB) be monotonously decreasing in cA over a given
domain [lA,uA] × [lB,uB]. Then,

µ∗ = min
{
∂qA

∂cB (uA, lB), µ(uA, (cB)+), µ(uA, (cB)−), µ(uA,uB)
}
,

where (cB)+ and (cB)− can be uniquely determined as roots of a quadratic equation
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corresponding to the numerator of ∂µ

∂cB (uA, (cB)±).

Proof. As the function µ(cA, cB) is monotonously decreasing in cA, it holds
thatµ(cA, cB) ≥ µ(uA, cB) for all (cA, cB) in the underlying domain. Thus, the
optimal cB is either attained at (i) the boundary of the interval [lB,uB], or

(ii) it is a root of ∂µ

∂cB (uA, cB). For case (i) we have that µ(uA, cB)→ ∂qA

∂cB (uA, lB)

if cB
→ lB . For case (ii) one can check that the numerator of ∂µ

∂cB (uA, (cB)±) is
given by qSuA(cB

− lB)2(a2(cB)2 +a1cB +a0), where a2, a1, and a0 are constants
depending on uA, lB, b1,0, b0,1, b2,0, b0,2, and b1,1. If a2 , 0, which is the
general case in our setting as a2 = b1,0b2

0,2 + 2b2,0uAb2
0,2 + b1,1lBb2

0,2, the

solution of the quadratic equation is given by (cB)± =
−a1±
√

a2
1−4a2a0

2a2
. �

The resulting underestimator qA(cA, lB) + µ∗(cB
− lB) is not necessarily

convex as qA(cA, lB) is not necessarily convex. With the help of the next
statement, we can apply standard analysis to compute its convex envelope
(e.g., see [McC76]).

Proposition 3.27. The univariate function qA(cA, lB) restricted to a nonnegative
interval [lA,uA] ⊆ R≥0 is either convex, concave, or it is first convex and then
concave.

Proof. To check convexity of qA(cA, lB) w.r.t. cA, we consider ∂2qA(cA ,lB)
∂(cA)2 . The

denominator of this term is given by (1+b1,0cA +b0,1lB +b2,0(cA)2 +b1,1cAlB +
b0,2(lB)2)3 and it is positive as all involved variables and coefficients are
nonnegative. The numerator is a cubic function of the form −2qS(a3(cA)3 +
a2(cA)2 + a1cA + a0), where

a3 :=b1,0b2
2,0 + b2

2,0b1,1lB,

a2 :=6b0,1lBb2
2,0 + 6b2

2,0 + 6b2
2,0b0,2(lB)2,

a1 :=3b2,0b1,1(lB)3b0,2 + (3b2,0b0,1b1,1 + 3b2,0b1,0b0,2)(lB)2

+ (3b2,0b1,1 + 3b2,0b1,0b0,1)lB + 3b2,0b1,0,

a0 :=(−2b2,0b2
0,2 + b2

1,1b0,2)(lB)4 + (b2
1,1b0,1 + 2b1,0b1,1b0,2 − 4b2,0b0,1b0,2)(lB)3

+ (2b1,1b0,1b1,0 + b2
1,1 − 2b2,0b2

0,1 − 4b2,0b0,2 + b2
1,0b0,2)(lB)2

+ (−4b2,0b0,1 + 2b1,0b1,1 + b2
1,0b0,1)lB

− 2b2,0 + b2
1,0.

97



3. Underestimation of Bivariate Functions

As the coefficient (−2qSa3) of (cB)3 is negative, the function qA(cA, lB) is

concave for all cB greater than the largest root of the numerator of ∂
2qA(cA ,lB)
∂(cA)2 .

If we can show that there is only one root in the positive real numbers,
the sign of the numerator changes at most once from positive to negative.
Thus, the function qA(cA, lB) is either convex, concave or it first convex
and then concave.

The roots of a cubic equation can be computed by Cardano’s Formula
for the normal form x3 + ax2 + bx + c (cf. [Sel70]). In our case a := a2/a3,
b := a1/a3, and c := a0/a3. Note that a and b are positive because a1, a2, and
a3 are positive. Furthermore, we introduce:

p := b −
a2

3
, q := c +

2a3
− 9ab
27

, D :=
q2

4
+

p3

27
. (3.21)

If D is positive, there is only one real root for which a formula is known.
If D is negative, which can happen in our setting, p is also negative and
the three real roots are

zk :=2
√
−p
3 cos

(
1
3 arccos

(
3q
2p

√
−3
p

)
− (k − 1) 2π

3

)
−

a
3 , k = 1, 2, 3.

We show that z2 and z3 are nonpositive. The range of the function arccos
is [0, π]. The domain of the cosine function is then given by 1/3[0, π]− (k−
1)2π/3 = [−2(k−1)/3π, 1/3π−(k−1)2π/3] according to interval arithmetic,
see Section 2.1. For k = 2 the domain of cos(x) is [−2/3π,−1/3π] and thus,
its range is [−1/2, 1/2] (see Figure 3.11). For z3 the domain of cos(x) is

[−4/3π,−π] and the range is [−1,−1/2]. This implies z3 ≤ z2 ≤ 2
√
−p
3

1
2 −

a
3

1

0.5

−1

−0.5

−1/3π−4/3π

0

π

Figure 3.11.: Graph of the cosine function.
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which is nonpositive as the following formula shows:√
−p
3 −

a
3 ≤ 0⇔

√
−p
3 ≤

a
3 ⇔

−p
3 ≤

(
a
3

)2
⇔ −

1
3 (b − a2

3 ) ≤ a2

9 ⇔ −
1
3 b ≤ 0.

The first equivalence is obvious, the second follows as p ≤ 0 and a ≥ 0, the
third from the definition of p in Equation (3.21), and the last from simple
algebra. The latter expression holds since b is nonnegative. This implies
that there is at most one positive root. �

An analogous argumentation can be used to derive further convex
underestimators by fixing cB to its upper bound or fixing cA to its lower
and upper bound. In a similar way concave overestimators for qA(cA, cB)
can be determined using the lifting technique.

Computational Comparison

To compare the different relaxation strategies, we focus on a hypothetical
but realistic set of parameters for the isotherms given by

qA
i, j = qA

i, j(c
A
i, j, c

B
i, j) =

5cA
i, j(1 + 4cA

i, j + 1cB
i, j)

1 + 1cA
i, j + 2cB

i, j + 2(cA
i, j)

2 + 3(cB
i, j)

2 + 1cA
i, jc

B
i, j

,

qB
i, j = qB

i, j(c
A
i, j, c

B
i, j) =

5cB
i, j(2 + 6cB

i, j + 1cA
i, j)

1 + 1cA
i, j + 2cB

i, j + 2(cA
i, j)

2 + 3(cB
i, j)

2 + 1cA
i, jc

B
i, j

.

(3.22)

The relaxation strategies are applied to these isotherms and compared for
the four test instances specified in Table 3.6. Test instance T1 can be seen
as reference instance while T2, T3, and T4 are designed to analyze the
influence of the purity requirements purk, the feed concentrations ck

F, and
the number of plates per zone Mi, respectively. The following computa-
tional results are not specific to the chosen parameters and domains but
can be observed in general.

We construct a linear relaxation for each test instance based on the differ-
ent relaxation strategies. One can verify numerically that the assumptions
of Proposition 3.26 are fulfilled so that the lifting technique in RS4 can
be applied. The linear relaxations are solved using CPLEX 9.10 [IBM12]
in a Scheme [KCR98] framework by Utz-Uwe Haus and Matthias Köppe
on a SUN FireV440 with 1.28 GHz-UltraSPARC-IIIi processors and 16 GB
RAM.
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(m1,m2,m3,m4) ∈ [15, 16] × [3, 5] × [8, 10] × [0.25, 1.25]

purk ck
F Mi cA

i, j cB
i, j

T1 0.995 0.1 30 [0.0, 0.2] [0.0, 0.1]
T2 0.950 0.1 30 [0.0, 0.2] [0.0, 0.1]
T3 0.995 0.2 30 [0.0, 0.4] [0.0, 0.2]
T4 0.995 0.1 60 [0.0, 0.2] [0.0, 0.1]

Table 3.6.: Parameters and domains for our test instances.

The objective in the preliminary tests is to maximize the system’s
throughput mF := m3 − m2. Natural bounds on this objective function
are given by the domains of the variables so that 3 ≤ m3 − m2 ≤ 7 (see
Table 3.6). In Table 3.7 the computational results are displayed which
indicate that RS4 generates the tightest relaxations. RS4 proves infeasi-
bility for T1, T3, and T4, and computes a bound for T2 which is about
50% better than the bounds of the other relaxation strategies. Interest-
ingly, the strength of RS4 is not a result of a larger problem formulation
in terms of variables and constraints, but rather it provides always the
smallest description. For instance, RS4 uses only one third of the number
of variables and one half of the number of constraints in the reduced LP
after preprocessing as RS1. The smaller problem size is one explanation
for the fast computations of RS4. It is at least twice as fast as the other
relaxations, especially for the larger problem T4.

Among the relaxation strategies RS1, RS2, and RS3, which are based on
a reformulation of the isotherms into structures for which the envelopes
are known, RS1 computes a slightly better bound than RS2 and RS3. Recall
that RS1 reformulates the isotherms into sums of bi- and trilinear terms
while RS2 and RS3 exploit larger structures, namely bivariate quadratic
terms. This results in a larger problem size of the relaxations in RS1. For
instance, the number of variables in RS1 is the double of the one in RS2
and RS3. The larger problem sizes may explain why it needs twice the
time to solve the LPs corresponding to RS1 compared to RS2 and RS3.

The faster computations of RS2 and RS3 suggest to consider refinements
of a given domain with the objective to derive better bounds than RS1
in less time. For instance, consider a subdivision of the m2-domain of
[3, 5] into [3, 4] and [4, 5] in T4. Table 3.8 shows the bounds obtained
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RS1 RS2 RS3 RS4

T1 bound 5.64 5.77 5.90 inf.
time 11.97 5.05 5.76 1.58
#var/#row 2364/6195 1123/4231 1123/4476 750/3168

T2 bound 6.06 6.10 6.14 4.15
time 11.89 6.90 5.55 3.00
#var/#row 2364/6404 1124/4347 1124/4565 751/3716

T3 bound 6.25 6.32 6.38 inf.
time 12.47 3.73 3.53 1.61
#var/#row 2364/6363 1123/4235 1123/4480 751/2418

T4 bound 5.64 5.77 5.90 inf.
time 48.25 18.95 22.18 2.70
#var/#row 4644/12195 2203/8341 2203/8864 1470/6258

Table 3.7.: Computational results of the relaxation strategies for the objec-
tive function max(m3 − m2) in terms of the upper bound, the
CPU time, and the number of variables and constraints in the
reduced LPs.

and the computational time with and without the subdivision. With
the subdivision, RS2 and RS3 are able to compute better bounds than
RS1 without the subdivision in less time. The computations indicate
that RS2 is slightly better than RS3 in terms of both the bound and the
computational time.

All in all, the computations show that RS4 is an appropriate relaxation
strategy for second-order isotherms. In contrast to the other relaxation
strategies, RS4 relaxes the second-order isotherms directly and thus, its
concept is closest to that of convex and concave envelopes. This shows
that the knowledge of envelopes can have a significant impact on compu-
tations and that the relaxation quality of the reformulation approach can
be poor. This motivates further research in the area of convex envelopes.
Among the relaxation strategies RS1, RS2, and RS3, which are based on a
reformulation of the isotherms, RS2 is a good trade-off between relaxation
quality and computational time.
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RS1 RS2 RS3 RS4

without subdivision bound 5.64 5.77 5.90 inf.
time 48.25 18.95 22.18 2.70

with subdivision bound 5.38 5.48 5.56 inf.
time 81.36 20.94 27.10 3.63

Table 3.8.: Upper bounds on T4 and the CPU time to solve the relaxations
with and without a subdivision of the m2 domain.

3.3.3. Computing Separation Regions

Relaxation strategies RS2 and RS4 are now applied to investigate the
shapes of the separation regions of continuous counter-current chromato-
graphic processes with second order isotherms in a computational case
study. Initially, we present our test set. Then, the computational methods
are summarized and finally we analyze the behavior of the separation
regions w.r.t. three design parameters.

Test set

We consider three series of symmetric 4-zone TMB test instances with
second-order isotherms as given in Equation (3.22) in order to analyze
the separation region as a function in three variables, namely the num-
ber of plates Mi per zone, the purity requirements purk, and the feed
concentrations ck

F:

• Test series TS1 is based on a TMB process with a relative small num-
ber of plates per zone (Mi = 50) and rather high purity requirements
(purk = 0.995).

• Test series TS2 focuses on the same purity requirements (purk =
0.995), but the unit is equipped with a higher number of plates per
zone (Mi = 100).

• Test series TS3 uses a TMB unit again with 100 plates per zone
(Mi = 100), but it is characterized by lower purity requirements
(purk = 0.900).

In order to incorporate the third control parameter, the feed concentra-
tion, each test series consists of eleven instances that are associated with
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different feed concentrations. The specifications of the test series are
summarized in Table 3.9.

Mi purk Feed concentrations ck
F

TS1 50 0.995


0.001, 0.01, 0.10, 0.15,
0.20, 0.25, 0.30, 0.40,
0.50, 1.00, 1.50

TS2 100 0.995
TS3 100 0.900

Table 3.9.: Specifications for the three test series, where the number of
plates Mi per zone, the purity requirement purk, and the feed
concentration ck

F are varied.

The goal of our computational study is to investigate the behavior of
the separation regions in the (m2,m3)-space w.r.t. different process speci-
fications. This requires to fix the flow-rate ratios m1 and m4 to reasonable
values. The fixings and domains of the variables are given in Table 3.10.
From an engineering point of view these values are chosen such that com-
plete regeneration of the liquid phase in zones 1 and 4 is achieved and
that the domains lead to efficient chromatographic systems.

Variable m1 m2 m3 m4 cA
i, j cB

i, j ck
D

Domain 15 [4,12] [4,12] 1.25 [0, 2cA
F ] [0, cB

F] 0

Table 3.10.: Realistic domains and fixings of the variables in the TMB
model.

We proved computationally that the monotonicity assumptions in Pro-
position 3.26 are satisfied for the isotherms in Equation (3.22) over the
domain

0 ≤ cA
i, j ≤ 0.7 and 0 ≤ cB

i, j ≤ 0.5, (3.23)

for all i, j, and for each fixing of the variables cA
i, j and cB

i, j to one of their
bounds. As specified in Table 3.10, cA

i, j and cB
i, j are bounded from above by

uA
i, j = 2cA

F and uB
i, j = cB

F , respectively. Monotonicity is therefore guaranteed
for cA

F = cB
F ≤ min{ 1

2 0.7, 0.5} = 0.35 according to Equation (3.23). Thus,
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we can employ the lifting technique of RS4 if ck
F ≤ 0.35, which is the case

in 7 of the 11 instances for each test series in Table 3.9. For larger feed
concentrations ck

F we apply RS2 to construct the linear relaxations.

Computational Methods

We approximate the shape of the feasible separation regions from two
sides. On the one hand, we use a conventional scanning technique to
evaluate if certain points fulfill the restrictions of the TMB model. On
the other hand, we derive infeasibility certificates for subregions with
the alternative relaxation approach in order to exclude the respective
subregions from the possible separation region.

Computing Operating Points by a Scanning Technique We define
an equidistant grid over the (m2,m3) domain [4, 12]2 with grid length 0.05.
Using m2 ≤ m3, such a grid consists of approximately 13.000 points. Each
grid point is tested for feasibility by checking whether there are feasible
solutions for qk

i, j and ck
i, j satisfying the mass balance equations (3.14), (3.15),

(3.16), (3.17), the isotherms as given in Equation (3.22) and the purity
requirements (3.18). The software SNOPT 7.2 (cf. [GMS06]) is used for this
procedure.

Proving Infeasibility Regions via Linear Relaxations The (m2,m3)
domain [4, 12]2 is divided into subdomains and for each subdomain a lin-
ear relaxation is constructed and infeasibility is checked using CPLEX 9.0
[ILO07]. If the linear relaxation is infeasible, we can conclude that the
original TMB model is infeasible over this subdomain. If the relaxation
is feasible over a subdomain, this subdomain is divided into two smaller
parts over which a new linear relaxation is constructed. The smallest size
of subdomains considered throughout our computations is 0.1 × 0.1.

Improving the Relaxations by Bound Tightening In Chapter 2 we
introduced a bound tightening technique for material balance equations
whose general form is given in Equation (2.1) by

LY yi,l+1 − LX xi,l = LY yi,l − LX xi,l−1, l = 2, . . . ,N − 1.

The mass balance equations (3.15) of the TMB model are also of this form
with LY = 1, yi,l = qk

i, j, LX = mi, and xi,l = ck
i, j. Analogously to the
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distillation process in Chapter 2, the mass balance equations of the TMB
process imply tighter bounds on the ck

i, j-variables than the initial bounds
in Table 3.10.

The idea is again to exploit tight bounds on the variables corresponding
to the outlet ports, where the liquid-phase concentration variables ck

2,0

and ck
4,0, k ∈ {A,B}, have to satisfy the purity requirements (3.18). In

order to illustrate our procedure, we present a bound tightening of the
ck

3, j-variables of zone 3. Improved bounds on the liquid-phase variables
ck

2, j of zone 2 can be derived by an analogous procedure. Consider the
mass balance equations (3.16) (R) and (3.15) starting at the raffinate port
and going to the feed port, i.e., from the beginning of zone 4 back to the
beginning of zone 3:

qk
4,1 −m4ck

4,0 − (m3 −m4)ck
4,0 = qk

4,0 −m3ck
3,M3

, (R),
qk

4,0 −m3ck
3,M3

= qk
3, j −m3ck

3, j−1, j = M3, . . . , 1.

Let Inputk
4,3 := qk

4,1 −m4ck
4,0 − (m3 −m4)ck

4,0 denote the input from zone 4 to
zone 3. Thus,

ck
3,M3

= 1
m3

(
qk

4,0(cA
4,0, c

B
4,0) − Inputk

4,3

)
,

ck
3, j−1 = 1

m3

(
qk

3, j(c
A
3, j, c

B
3, j) − Inputk

4,3

)
, j = M3 − 1, . . . , 1.

(3.24)

Similar to Proposition 2.5, we exploit that qA
3, j(c

A
3, j, c

B
3, j) is nondecreasing in

cA
3, j and nonincreasing in cB

3, j, and qB
3, j(c

A
3, j, c

B
3, j) is nondecreasing in cB

3, j and
nonincreasing in cA

3, j to deduce bounds on the variables ck
3, j, j = 0, . . . ,Mi.

This, for instance, yields the following bounds for ck
3,M3

lA
3,M3

= 1
um3

(qA(lA
4,0,u

B
4,0) − uA

Input4,3
), uA

3,M3
= 1

lm3
(qA(uA

4,0, l
B
4,0) − lA

Input4,3
),

lB
3,M3

= 1
um3

(qB(uA
4,0, l

B
4,0) − uB

Input4,3
), uB

3,M3
= 1

lm3
(qB(lA

4,0,u
B
4,0) − lB

Input4,3
).

Appropriate bounds on m3 are obtained from the respective subdivision
of the (m2,m3) domain. Implied bounds on ck

4,0 and Inputk
4,3 are obtained

by minimizing and maximizing the variables over the current linear re-
laxation.

Figure 3.12 shows the impact of the presented bound tightening tech-
nique used within RS4 on the instance from test series TS2 with feed
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3. Underestimation of Bivariate Functions

concentration ck
F = 0.25. The gray colored area, for which infeasibility is

proved, increases significantly if bound tightening is enabled.

11
10
9
8

m3

7
6

4
5 6 7 9 11 12

5

8 10
m2

4

12

(a) Bound tightening dis-
abled.

11
10
9
8

m3

7
6

4
5 6 7 9 11 12

5

8 10
m2

4

12

(b) Bound tightening en-
abled.

Figure 3.12.: The figures show the feasible operating points (black) and
the infeasible regions (gray) for test series TS2 with ck

F = 0.25.

Computational Results

Figures 3.13–3.15 display the computed separation regions for the un-
derlying processes with second-order isotherms. The black colored sep-
aration region is obtained by the scanning technique while infeasibility
for the gray colored region is proved by the relaxation method. Initially,
we show the results obtained for TMB processes and briefly discuss in-
teresting phenomena of the separation regions regarding second-order
isotherms. Then, the two approaches used to compute the separation
regions are compared. Finally, we show an example which illustrates the
potential of the proposed relaxation strategies in global optimization.

Phenomena Regarding Second-Order Isotherms The regions of the
black colored operating points in Figures 3.13 – 3.15 depict the influence
of different number of plates, different purity requirements, and different
selected feed concentrations. The following trends can be observed. First,
an increase in the number of plates per zone from 50 to 100 leads to an
increase in the size of the separation region. Second, a decrease in the
purity requirements from 99.5% to 90% increases the separation region,
as well. Third, the smaller the feed concentration is chosen, the larger and
the more triangular the separation region becomes. For the very small
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3.3. Chromatographic Processes with Second-Order Isotherms
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Figure 3.13.: Feas. points and infeas. regions for Mi = 50,purk = 0.995.
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Figure 3.14.: Feas. points and infeas. regions for Mi = 100, purk = 0.995.
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Figure 3.15.: Feas. points and infeas. regions for Mi = 100, purk = 0.900.

feed concentration ck
F = 0.001 all separation regions are similar to the ideal

case for linear isotherms and infinite plate numbers (cf. Figure 3.10 (a)).
For a feed concentration ck

F = 1.500 the separation region almost vanishes.
All these effects are consistent with results of previous investigations
[Maz06, SMMC93].

However, the shapes of the separation regions derived in our analysis
differ significantly from the well-known shapes obtained for linear and
Langmuir isotherms (cf. Figure 3.10): The separation regions for second-
order isotherms are characterized by severe deviations from a triangular
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3. Underestimation of Bivariate Functions

shape. In particular, the maximal feed stream mF, i.e., the maximal differ-
ence between m3 and m2, is not necessarily located at the turning point of
the separation region as for processes with linear and Langmuir isotherms
[Maz06]. For instance, in Figure 3.14 (c) the best known maximal feed
stream over the underlying grid is obtained at the point R := (7.35, 8.75),
i.e., m′F=1.40, while the turning point is given by S := (6.65, 7.35) with
m′F=0.70. The distinct location of the attractive operating point R, offering
twice as much feed flow, is directly related to the shapes of the adsorption
isotherms and a consequence of the inflection points. Its identification
with the conventional theoretical concepts used for linear and Langmuir
isotherms is not possible.

The presented analysis of the separation regions hints at the practi-
cal relevance of second-order isotherms. They reflect the general trends
of chromatographic processes and are capable to describe certain phe-
nomena, like the distinct location of the turning point and the maxi-
mal feed stream, which cannot be observed for other isotherm models.
More details regarding the process engineering discussion can be found
in [BMSMW10].

Scanning Technique vs. Infeasibility Regions The computational re-
sults obtained by the scanning technique (black colored region) and the
relaxation technique (gray colored region) lead to the same effects regard-
ing the shape of separation regions, even though there is a gap for some
instances. If high purities purk = 0.995 are requested, Figures 3.13 and
3.14 show that there is no significant gap between the computational re-
sults of the two approaches. For reduced purity requirements purk = 0.9
investigated with TS3, Figure 3.15 displays a considerable gap between
the computational results of the two approaches for ck

F = 0.25, k = A,B.
These gaps are due to weaker linear relaxations for the underlying TMB
models that are caused by the following two reasons: As a large feed
concentration leads to larger ck

i, j-domains, valid estimators for the in-
volved nonlinearities must be constructed over a larger domain yielding
a weaker relaxation. Moreover, the bound tightening technique gains a
lot from very high purity restrictions as they imply stronger bounds on
the ck

2,0- and ck
4,0-variables.

However, Figures 3.13 – 3.15 provide evidence that the relaxation ap-
proach is very exact for small feed concentrations that correspond to small
domains. Hence, in case of higher feed concentrations further subdivi-
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3.3. Chromatographic Processes with Second-Order Isotherms

sions of the domains would strengthen the relaxation.
The computational results demonstrate the general applicability of the

relaxation method to identify the separation regions. In contrast to the
scanning technique, the relaxation method derives statements which are
not only valid for discrete but for all points within a subdomain. The
scanning technique may fail to reflect all details of the separation regions
due to sparse scanning grids or, in a more dynamic scanning, wrong
search direction or step lengths of the search direction. The relaxation
method offers the possibility to overcome this risk. It gives clear certifi-
cates about the borders between feasible and infeasible operating points.
This is of value, in particular, for difficult border lines occurring in case
of complicated isotherm shapes (as studied in our work).

Relaxation and Global Optimization To conclude this section, the po-
tential of the proposed relaxation techniques in the field of global opti-
mization of chromatographic processes is briefly indicated. For the sake
of illustration let us consider the instance of TS2 with feed concentration
ck

F = 1.5 and the objective to maximize the feed stream mF = m3−m2, which
is an important performance indicator of chromatographic processes. The
best solution found by the scanning technique over the predefined grid
is m′F = 0.20 (cf. Figure 3.14 (d)). The local optimization solver CoinBon-
min 0.1 [BBC+08] computes a local optimum of m′F = 0.23.

To evaluate the quality of the local solution, upper bounds for the
maximization problem are required. The global optimization software
BARON 7.8.1 [TS04] computes an upper bound of 7.99 after 62 hours
on a 3GHz Dual-Core AMD Opteron(tm) Processor 8222 SE with 64 GB
RAM. After seven days, the upper bound computed by BARON is still
at 6.05. The trivial bound on the objective to maximize mF = m3 − m2

over the (m2,m3)-domain [4, 12]2 is given by 8.00 which shows that the
bounds derived are of low quality. Using the ad-hoc implementation
of the relaxation technique, an upper bound of 2 for mF can be derived
within 1:45 hours. After 24 hours the upper bound computed is 0.40
(cf. Figure 3.14 (d)).

Finally, note that the relaxation techniques presented can be easily
adopted to other interesting optimization issues like to determine maxi-
mal productivity or maximal yield. Thus, the presented relaxation tech-
niques can be very promising to determine optimal designs for chromato-
graphic processes.
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3. Underestimation of Bivariate Functions

In this chapter we presented several techniques to derive strong convex
under- and concave overestimators and illustrated their positive impact
on computations. The cut-generation algorithm in Section 3.2 exploits
the structural properties of bivariate functions with a fixed convexity
behavior to compute cuts based on the convex envelope of the functions.
The improved relaxation quality leads to a significant acceleration of the
computations for instances containing functions, which are convex in one
variable and concave in the other. For second-order isotherms satisfying
certain monotonicity assumptions we provide estimators based on the
lifting technique in Section 3.3 which clearly outperform the commonly
used reformulation approach. Using the derived estimators, we analyzed
chromatographic processes based on the advanced concept of second-
order isotherms and revealed important chemical phenomena.
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CHAPTER 4

Extended Formulations for
Convex Envelopes

In the previous chapter the concept of convex envelopes of a function
as best possible convex underestimator was introduced. The review of
existing closed-form expressions of convex envelopes in Section 3.1 re-
vealed that there are only a few classes of well-structured functions for
which the envelopes are explicitly known. This reflects the hardness of
the optimization problem corresponding to the convex envelope.

In this chapter we present convex underestimators for certain classes
of functions based on a simultaneous convexification with multilinear
monomials. In fact, additional constraints and variables corresponding
to the monomials are added to the optimization problem which allows us
to solve the problem explicitly. With this, extended formulations for the
convex envelope are obtained which are as tight as the convex envelopes.
The following classes of continuous functions are investigated:

Class 1: Component-wise concave (edge-concave) functions f : [l,u] ⊆
Rn
→ R, x 7→ f (x).

Class 2: Functions f : [lx,ux] × [ly,uy] ⊆ Rnx × Rny → R, (x, y) 7→ f (x, y),
ny = 1, which are component-wise concave in x and convex or
concave in y whenever x is fixed to one of the vertices of the box
[lx,ux].

Class 3: Functions f : [lx,ux] × [ly,uy] ⊆ Rnx × Rny → R, (x, y) 7→ f (x, y),
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4. Extended Formulations for Convex Envelopes

ny ∈ N≥1, which are component-wise concave in x and convex in y
whenever x is fixed to one of the vertices of the box [lx,ux].

All three classes have theoretical and practical importance which mo-
tivates their further analysis. Class 1 is actually a subclass of Class 2, but
due to its extensive study in the literature (cf. Subsection 3.1.1) and its
possible application in the relaxation of polynomial programs (see Sub-
section 4.2.1), we investigate this class separately. The functions of Class
1 exhibit vertex polyhedral convex envelopes so that the determination
of the convex envelope is equivalent to the analysis of the triangulations
of the box [l,u] (see Subsection 3.1.1 and [Tar08]). However, already
the cube in dimension four exhibits 92,487,256 triangulations which can
be partitioned into 247,451 symmetry classes [Pou13, HSYY08]. This is
why closed-form expressions for the convex envelope of Class 1 are only
known up to dimension three [MF05]. Only in the special case of sub-
modular functions explicit formulas are known for arbitrary dimensions
[TRX12].

Functions of Classes 2 and 3 are frequently used to model applications
in engineering and science, which among other instances are collected in
the problem libraries GLOBALLib [GLO] and MINLPLib [BDM03]. In fact,
Khajavirad and Sahinidis [KS12a] revealed that up to 45% of all the non-
linear functions in these benchmark libraries are products of component-
wise concave and nonnegative convex functions. Examples are functions
like xy2 over [−1, 1]2 (Class 2) and

√
x/(y1 y2) over [1, 2]3 (Class 3). Con-

sidering the frequent occurrence of these functions, the knowledge about
strong convex underestimators for them facilitates the computations of
real world problems.

Several results are known for subclasses. Tawarmalani and Sahini-
dis [TS01] deduced the convex envelope for x/y (cf. Subsection 3.1.2) and
generalized their idea to functions f (x, y) : R × R → R, i.e., nx = ny = 1.
Yet, their approach does not provide the convex envelope of functions f
but an equivalent disjunctive programming representation.

Recently, Khajavirad and Sahinidis [KS12b, KS12a] provided the con-
vex envelope of functions f which can be represented as f (x, y) = g(x)h(y)
and satisfy specific assumptions (see Subsection 3.1.3 for details). For
example, g is component-wise concave and submodular, and h is a uni-
variate convex function. This subclass of functions represents about 30%
of all nonlinear terms appearing in GLOBALLib and MINLPLib. Never-
theless, their methods cannot be used to determine the convex envelope
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of functions like x1x2 y2 as g(x) = x1x2 is supermodular, see Section 4.1
in [KS12a]. This function belongs to Class 2 and an extended formulation
for its convex envelope is derived in this chapter.

Our approach The discussion of the different classes shows that the
determination of the corresponding convex envelopes is generally hard.
The envelopes are either known for low dimensional cases (Class 1) or
when further assumptions on the functions are made (Classes 2 and 3).
This reflects the obstacles embedded in the analytical solution of the
optimization problem related to the convex envelope.

In this chapter we derive an alternative description for the convex
envelope of functions belonging to Classes 1, 2, and 3 by a simultaneous
convexification with multilinear monomials. For instance, let f : [l,u] ⊆
Rn
→ R be a continuous function of Class 1. We associate f with a new

variable µ ∈ R and introduce additional variables zJ for all monomials∏
j∈J x j with J ⊆ {1, . . . ,n}, J , ∅. The goal is to describe the following set

U f := conv({(z, µ) ∈ R2n
| µ ≥ f (x), zJ =

∏
j∈J

x j ∀∅ , J ⊆ {1, . . . ,n}, x ∈ [l,u]}),

where zJ = x j for all j ∈ {1, . . . ,n} and J = { j}.
It can be verified that the projection of U f onto the (x, µ)-space cor-

responds to the convex envelope vex[l,u][ f ], i.e., proj(x,µ)(U f ) = {(x, µ) ∈
Rn+1

| µ ≥ vex[l,u][ f ](x), x ∈ [l,u]}. Therefore, U f can be interpreted as
an extended formulation of vex[l,u][ f ]. On the one hand, this has the dis-
advantage of introducing additional variables. On the other hand, the
suggested approach allows us to exploit the Reformulation Linearization
Technique [SA90, SA94, AS05] in order to deduce closed-form expressions
for the convex underestimation of f . Furthermore, this underestimation
is obtained by a simultaneous relaxation of f and the multilinear mono-
mials which can be much stronger than the individual relaxation of the
functions by convex and concave envelope. Thus, the proposed relax-
ations do not only provide underestimators for f , but they are also of
interest if both f and the monomials appear in a problem formulation.

This chapter is structured as follows. In Section 4.1 we review the Re-
formulation Linearization Technique. In Section 4.2 Class 1 is analyzed
and the results are used to generate reduced relaxations for polynomial
programs based on the Reformulation Linearization Technique. In Sec-
tion 4.3 extended formulations for the convex envelopes of Classes 2 and
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3 are presented. Finally, we give some computational evidence for the
effectiveness of the proposed relaxations for Class 1 in Section 4.4. This
chapter is based on [BM].

4.1. The Reformulation Linearization Technique

We show in the following section that the closed-form description of the
extended space underestimators

U f = conv({(z, µ) ∈ R2n
| µ ≥ f (x), zJ =

∏
j∈J

x j ∀∅ , J ⊆ {1, . . . ,n}, x ∈ [l,u]})

is based on a description of the convex hull of all multilinear monomials,
i.e.,

S
(n)

[l,u] := conv
({

z ∈ R2n
−1
| zJ =

∏
j∈J

x j ∀∅ , J ⊆ {1, . . . ,n}, x ∈ [l,u]
})
.

(4.1)

For this, we review the Reformulation Linearization Technique (RLT) in
this section because one of its many implications is an explicit description
of S (n)

[l,u].
The RLT was introduced by Sherali and Adams for 0-1 linear programs

[SA90]. The concept was then continuously developed further for mixed-
integer 0-1 linear programs [SA94], mixed-integer linear programs [AS05],
and mixed-integer semi-infinite linear and convex programs [SA09]. We
will briefly summarize some of the aforementioned papers for which we
also refer to the overview paper by Laurent [Lau03]. We mainly follow
the notation of the mentioned papers.

Foundations of the RLT The RLT was originally developed to deter-
mine the convex hull of the following set:

Y = {x ∈ {0, 1}n : Ax ≤ b},

where A ∈ Rm×n and b ∈ Rm. Instead of adding cutting planes to the linear
relaxation to cut off fractional points, the RLT lifts the object into a higher
dimension and provides a compact extended description.

The key elements of this approach are the bound-factors (1 − x j) and
x j which form the bound-factor products or polynomial factors Fd[J1, J2](x),
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4.1. The Reformulation Linearization Technique

d = 1, . . . ,n. They are defined as

Fd[J1, J2](x) :=
∏
j∈J1

x j

∏
j∈J2

(1 − x j) for J1, J2 ⊆ N := {1, . . . ,n},

with J1 ∩ J2 = ∅ and |J1 ∪ J2| = d. Products over the empty set are defined
to be unity. By definition it is clear that for all d and all valid choices of
J1, J2 the polynomial Fd[J1, J2](x) is nonnegative for x ∈ [0, 1]. The term
Fd[J1, J2](x) can be equivalently written as

Fd[J1, J2](x) =
∑

J1⊆J⊆J1∪J2

(−1)|J\J1 |
∏
j∈J

x j. (4.2)

Substituting each product
∏

j∈J x j by a new variable zJ the linearized ver-
sion of Fd[J1, J2](x) is denoted by fd[J1, J2](z) :=

∑
J1⊆J⊆J1∪J2

(−1)|J\J1 |zJ, where
z{ j} = x j for all j ∈ N = {1, . . . ,n}. Note that we sometimes write (x, z)
to emphasize the difference between the original variables x and the ad-
ditional variables z for the non-univariate multilinear monomials while
sometimes we use only z to describe the entire vector.

The RLT constructs a relaxation Yd of Y for d = 0, . . . ,n in a two step
procedure:

Step 1 (Reformulation Step): Multiply each inequality in the description
of Y by each factor Fd[J1, J2](x) and substitute each term x2

j by x j.
Denote by D = max{d + 1,n} the largest degree of the resulting
polynomials. Add all constraints FD[J1, J2](x) ≥ 0.

Step 2 (Linearization Step): Substitute each product
∏

j∈J x j by zJ for each
J ⊆ N with |J| , ∅.

The resulting relaxation is denoted by Yd.

Example 4.1. Let Y = {(x1, x2) ∈ {0, 1}2 | x1 + x2 ≤ 1.2}. For d = 0, Y0 =
{(x1, x2) ∈ [0, 1]2

| x1 + x2 ≤ 1.2} is the linear programming relaxation of Y.
For d = 1 the four bound factor products F1[{1}, ∅](x), F1[{2}, ∅](x),

F1[∅, {1}](x), and F1[∅, {2}](x) are multiplied with the constraint (x1 + x2) ≤
1.2 in Step 1. For instance, F1[{1}, ∅](x) = x1 and its multiplication with
the constraint yields x2

1 + x1x2 ≤ 1.2x1. Substituting x2
1 by x1 leads to

−0.2x1 + x1x2 ≤ 0. Step 2 transforms this constraint into −0.2x1 + z{1,2} ≤ 0.
The same procedure is applied for the other bound factor products. More-
over, all constraints FD[J1, J2](x) ≥ 0 with D = 2 are added to the program,
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e.g., F2[{1, 2}, ∅](x) = x1x2 ≥ 0. The first order RLT relaxation is then given
by Y1 ⊆ R3 with

Y1 =


−0.2x1 + z{1,2} ≤ 0, −0.2x2 + z{1,2} ≤ 0, z{1,2} ≥ 0,

(x, z) 1.2x1 + x2 − z{1,2} ≤ 1.2, x1 + 1.2x2 − z{1,2} ≤ 1.2,
x1 − z{1,2} ≥ 0, x2 − z{1,2} ≥ 0, −x1 − x2 + z{1,2} ≥ −1

 .
For completeness we also state the second order RLT relaxation

Y2 =

 (x, z) ∈ [0, 1]3
z{1,2} ≤ 0, x1 + x2 − z{1,2} ≤ 1, −x1 + z{1,2} ≤ 0,
−x2 + z{1,2} ≤ 0, x1 − z{1,2} ≥ 0, x2 − z{1,2} ≥ 0,
−x1 − x2 + z{1,2} ≥ −1, z{1,2} ≥ 0

 .
�

Sherali and Adams show that Yd, d = 0, . . . ,n, constitute a hierarchy
of relaxations leading to the convex hull of the set Y. More precisely, for
the projection of Yd onto the x-space, denoted by projx(Yd), they prove the
following.

Theorem 4.2 (Theorems 1 and 3 in [SA90]).

Y0 ⊇ projx(Y1) ⊇ · · · ⊇ projx(Yn) = conv(Y).

The following example illustrates the increasing strength of the RLT
hierarchies.

Example 4.3 (Example 4.1 continued). One can easily check that Y =
{(0, 0), (1, 0), (0, 1)}. The constraints describing Y2 imply that z{1,2} = 0
and thus, Y2 can be written as Y2 = {(x, z) ∈ [0, 1]3

| z{1,2} = 0, x1 +
x2 ≤ 1,−x1 ≤ 0,−x2 ≤ 0} which equals conv({(0, 0, 0), (1, 0, 0), (0, 1, 0)}).
Hence, projx(Y2) = conv(Y). The projection of the other relaxations are
projx(Y0) = Y0 = conv({(0, 0), (1, 0), (0, 1), (1, 0.2), (0.2, 1)}) and projx(Y1) =
conv({(0, 0), (1, 0), (0, 1), (5/9, 5/9)}). The different RLT relaxations of Y are
shown in Figure 4.1. �

A central argument in the proof of Theorem 4.2 is that the vertices of the
set Yn correspond to points (x, z), where x ∈ {0, 1}n and zJ =

∏
j∈J x j for all

J ⊆ N, J , ∅. Thus, if the constraint set in Y is empty, the set Yn corresponds
to the simultaneous convex hull S (n)

D of the vector of all multilinear terms
up to degree n, as defined in Equation (4.1) with D = {0, 1}n.
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(0, 0) (1, 0)

(0, 1) (1, 1)

projx(Y0)

projx(Y2) =
conv(Y)

projx(Y1)

x1

x2

Figure 4.1.: Hierarchy of RLT relaxations for the set Y.

Theorem 4.4 (Theorem 2 in [SA90]). Let Y = {0, 1}n = {0, 1}. Then,

S
(n)
{0,1} = Yn = {z ∈ R2n

−1
| fn[J,N \ J](z) ≥ 0 for all J ⊆ N}.

Moreover, the following lemma is contained in the proof of Theorem 4.4.

Lemma 4.5. Let Y = {0, 1}n = {0, 1}. The set Yn is a simplex and can be linearly
transformed to the following simplex:

Sn = {y ∈ R2n
−1
|

∑
∅,J⊆I

yJ ≤ 1, and yJ ≥ 0 for all J ⊆ I, J , ∅}. (4.3)

In particular, S (n)
{0,1} is a simplex.

To prove Lemma 4.5 we follow Laurent [Lau03] and use the relation
between the bound factor product constraints fn[J,N \ J](z) and the Zeta
matrixZwhich is a square 0−1 matrix of dimension 2n

×2n withZJ1 ,J2 = 1
if and only if J1 ⊆ J2. Thus,Z is nonsingular and its inverse reads

Z
−1
J1 ,J2

= (−1)|J2\J1 |, if J1 ⊆ J2 and Z
−1
J1 ,J2

= 0, otherwise.

It holds that fn[J,N \ J](z) = Z−1(1, z) which is indicated in Equation (4.2).
This notation is useful in the proof of Lemma 4.5.

Proof of Lemma 4.5. This proof follows the proof of Theorem 2 in [SA90]
but uses the notation of Laurent [Lau03]. The factors Fn[J,N \ J](x), J ⊆ N,
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sum up to 1. The same is true for the linearized factors fn[J,N \ J](z) which
yields fn[∅,N](z) = 1 −

∑
∅,J⊆N fn[J,N \ J](z). Thus,

Yn =

z ∈ R2n
−1
| fn[J,N \ J](z) ≥ 0 for all ∅ , J ⊆ N, and

∑
∅,J⊆N

fn[J,N \ J] ≤ 1


=

z ∈ R2n
−1
| (Z−1(1, z))J ≥ 0 for all ∅ , J ⊆ N, and

∑
∅,J⊆N

(Z−1(1, z))J ≤ 1

 .
Then, apply the affine bijective transformation Z−1(1, z) = (y∅, y) which

leads to the set Sn = {y ∈ R2n
−1
| y ≥ 0 and

∑
∅,J⊆N yJ ≤ 1}. As Sn

is a simplex which can be transformed to Yn by a nonsingular affine
transformation, the set Yn is also a simplex, cf. Lemma 4 in [SA90]. �

Therefore, the RLT provides a description for S (n)
D if D = {0, 1}n. The

aim of the next paragraph is to obtain a description for D = [l,u] ⊆ Rn.

Extensions to Mixed-Integer Programs Sherali and Adams general-
ized their concept into various directions. In [SA94] they consider mixed-
integer 0-1 linear programs and in [AS05] general mixed-discrete linear
programs are studied, where a subset of variables is restricted to a finite
set of discrete variables. These concepts are then shown to be also valid
for programs with an infinite number of linear constraints in [SA09], e.g.,
convex mixed-discrete 0-1 programs. The first and second extension are
summarized in this paragraph since they generalize the set S (n)

D initially
to continuous boxes D = [0, 1]n and then to arbitrary continuous boxes
D = [l,u] ⊆ Rn.

For mixed-integer 0-1 linear programs Sherali and Adams analyze the
convex hull of the following set:

Y := {(x, y) ∈ {0, 1}n × [0, 1]m : Ax + By ≤ b}.

Similar to the pure 0-1 case all polynomial factors Fd[J1, J2](x) for d =
1, . . . ,n + m and J1, J2 ⊆ N = {1, . . . ,n + m}with J1 ∩ J2 = ∅, |J1 ∪ J2| = d, can
be used and for d = n + m the convex hull of Y in the extended space is
obtained. From this the following statement can be derived.

Corollary 4.6 (cf. [SA94]). Let Y = [0, 1]n = [0, 1]. Then,

S
(n)

[0,1] = Yn =
{
z ∈ R2n

−1
| fn[J,N \ J](z) ≥ 0 for all J ⊆ N

}
.
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4.1. The Reformulation Linearization Technique

The authors show, however, that it is sufficient to focus on polynomial
factors based on the integer variables, i.e., d = 1, . . . ,n and N = {1, . . . ,n}.
To this end, Step 1 of the RLT is modified such that the constraints
Fd[J1, J2](x) ≥ ykFd[J1, J2](x) ≥ 0, k = 1, . . . ,m, are added to the problem.

Sherali and Adams present the generalization of the RLT to mixed-
discrete programs in [AS05] corresponding to the following set

Y := {(x, y) ∈ Rn+m
| Ax + By ≤ b, y ∈ [0, 1]m, x j ∈ S j ∀ j ∈ N},

where N = {1, . . . ,n} and S j = {θ j1, . . . , θ jk j } ⊆ Rk j are finite discrete sets.
Recall that one reason for the strength of the original RLT relaxation is

due to the substitution of x2
j by x j for all binary valued variables in the

reformulation step. To obtain a similar construction for mixed-discrete
programs the authors make use of Lagrange interpolating polynomials

L jk(x j) =

∏
i∈(K j\{k})(x j − θ ji)∏

i∈(K j\{k})(θ jk − θ ji)
∀ k ∈ K j := {1, . . . , k j},

which can be seen as the counterpart to the 0-1 multipliers 1 − x j and x j

(cf. [AS05] and references therein). For instance, let S j = {l j,u j}. Then,
the Lagrange interpolating polynomials read L j1(x j) = (x j − u j)/(l j − u j)
and L j2(x j) = (x j − l j)/(u j − l j). The polynomials are multiplied with
polynomials that belong to another index j and are treated similar to the
factors Fd[J1, J2](x). Note that L jk(x j) = 1 if x j = θ jk and L jk(x j) = 0 if
x j ∈ S j \ {θ jk}. Thus, the following relation holds for each x j ∈ S j

L jk(x j) x j = L jk(x j)θ jk ∀k ∈ K j. (4.4)

Equation (4.4) is the key of the RLT for mixed-discrete sets. After lin-
earization they still enforce the linearized variables to take values of
their nonlinear counterparts. To illustrate this consider the 0-1 case, i.e.,
S j = {0, 1}. In this setting Equation (4.4) reads (1 − x j) · x j = (1 − x j) · 0 and
(x j) · x j = (x j) · 1. In both cases one obtains x2

j = x j. Thus, the polynomials
encode that x j ∈ S j.

Using the presented ideas, the RLT is then modified for mixed-discrete
sets Y as follows: (i) The Lagrange interpolating polynomials L jk(x j) sub-
stitute the bound factors (1 − x j) and x j and (ii) the identity x2

j = x j is
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4. Extended Formulations for Convex Envelopes

replaced by Equations (4.4). The modified RLT yields a hierarchy of
relaxations which leads to the convex hull of Y.

In order to obtain a description for S (n)
D , where D = [l,u] ⊆ Rn, we set

S j = {l j,u j} for all j ∈ N. We thus redefine the bound factor products as
Fd[J1, J2](x) :=

∏
j∈J1

(x j − l j)/(u j − l j)
∏

j∈J2
(x j − u j)/(l j − u j). Similar to The-

orem 4.5 and Corollary 4.6 we can describe S (n)
[l,u] with the corresponding

linearized bound factor product constraints fd[J1, J2](z).

Corollary 4.7 (cf. [AS05]). Let Y = {x ∈ [l,u] ⊆ Rn
}. Then,

S
(n)

[l,u]n
= Yn = {z ∈ R2n

−1
| fd[J,N \ J](z) ≥ 0 for all J ⊆ N}.

Corollary 4.7 completes the discussion about the convex hull of all
multilinear monomials over boxes [l,u] which enables us to derive an
extended formulation for certain classes of functions in the subsequent
sections.

4.2. Component-Wise Concave Functions

In this section we derive an extended formulation for the convex envelope
of component-wise concave functions f : [l,u] ⊆ Rn

→ R based on a
simultaneous convexification with the vector of all multilinear monomials
which is given by

F(n) :=
(
x1, . . . , xn, x1x2, . . . , xn−1xn, x1x2x3, . . . ,

n∏
i=1

xi

)
.

For this, we introduce for each monomial
∏

j∈J x j, J ⊆ N := {1, . . . ,n}, J , ∅,
a new variable zJ and associate f with a new variable µ. The simultaneous
convexification of the epigraph of f with the graphs of all monomials is
the following convex set

U f := conv({(z, µ) ∈ R2n
| µ ≥ f (x), z = F(n)(x), x ∈ [l,u]}).

By definition,U f provides a convex description for the underestimation
of f over [l,u] whose projection onto the (x, µ)-space equals the epigraph
of vex[l,u][ f ].

The facet-description of the simplex S (n)
[l,u] = conv({z ∈ R2n

−1
| z =

F(n)(x), x ∈ [l,u]}), which was discussed in Section 4.1, is essential for
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4.2. Component-Wise Concave Functions

a description of U f . The following elementary lemma implies that the
facets of S (n)

[l,u] are also facets ofU f .

Lemma 4.8. Let h, gi : D ⊆ Rn
→ R, i = 1, . . . ,m, be continuous functions

over a convex, compact domain D ⊆ Rn, and let g : D ⊆ Rn
→ Rm be

given by g(x) := (g1(x), . . . , gm(x))ᵀ. Furthermore, consider the two convex sets
S := conv({(x, z) ∈ Rn+m

| z = g(x), x ∈ D}) and U := conv({(x, z, µ) ∈
Rn+m+1

| z = g(x), µ ≥ h(x), x ∈ D}). Then, each facet-defining inequality of S
also induces a facet forU.

Proof. Let aᵀx + bᵀz ≤ γ be an arbitrary facet-defining inequality for S
with a ∈ Rn, b ∈ Rm, and γ ∈ R. Then, aᵀx + bᵀz ≤ γ is valid for U.
As aᵀx + bᵀz ≤ γ is facet-defining for S, there are n + m points xr

∈ D
such that the points

(
xr, g(xr)

)
, r = 1, . . . ,n + m, are affinely independent

and each point satisfies aᵀx + bᵀz ≤ γ with equality. Now, consider the
set of points (xr, zr, µr) :=

(
xr, g(xr), h(xr)

)
∈ U, r = 1, . . . ,n + m, and the

point (xn+m+1, zn+m+1, µn+m+1) :=
(
x1, g(x1), h(x1) + 1

)
. Then, aᵀxr + bᵀzr = γ

and (xr, zr, µr) ∈ U holds for all r = 1, . . . ,n + m + 1. Furthermore, the
points (xr, zr, µr), r = 1, . . . ,n + m + 1 are affinely independent since the set
{(xr, zr) − (x1, z1) | r = 2, . . . ,n + m + 1} is linearly independent. �

Thus, we can apply the results of the RLT theory by Sherali and
Adams [SA90, SA94, AS05] to describe S (n)

[l,u] and thus, U f . According
to Corollary 4.7 the facets of the simplex S (n)

[l,u] are given by the linearized
bound-factor product constraints, i.e., by

fn[J,N \ J](z) =

∏
i∈I

(xi − li)
∏
i∈N\I

(ui − xi)


L

(z) ≥ 0, for all I ⊆ N, (4.5)

where the operator [·]L(z) substitutes each monomial
∏

j∈J x j by a new
variable zJ, e.g., [−3x1 + 5x1x2]L = −3z{1} + 5z{1,2}. In expanded form, the
facet-defining system in Equation (4.5) yields

ev(z) ≥ 0, for all v ∈ vert([l,u]), (4.6)

where ev denotes the linear function ev : R2n
−1
→ R given by

z 7→ ev(z) :=
∑
J⊆N

(−1)α(v)+|J| F(n)
N\J(v) zJ, (4.7)
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4. Extended Formulations for Convex Envelopes

and α(v) denotes the number of components of v which attain their lower
bound, i.e., α(v) := # {i ∈ N | vi = li}. The individual inequalities of the
systems in Equation (4.5) and (4.6), which are defined by I ⊆ N and
v ∈ vert([l,u]), respectively, are identical if and only if vi = li for all i ∈ I
and vi = ui for all i < I.

A second ingredient for deriving a description forU f is the following
known lemma.

Lemma 4.9 (Corollary 6 in [TS02b]). Let f : [l,u] ⊆ Rn
→ R be a continuous

function. There exists a unique multilinear function m f : [l,u] ⊆ Rn
→ R

which coincides with f at each vertex of the box [l,u]. This multilinear function
reads m f (x) =

∑
J⊆N aJ

∏
j∈J x j with coefficients

aJ =

∑
v∈vert([l,u])(−1)α(v)+|J| F(n)(v)N\J f (v̂)∏

i∈N(ui − li)
. (4.8)

The vector v̂ denotes the vector opposite to v in the box, i.e., v̂ j = l j, if v j = u j,
and v̂ j = u j, otherwise.

The next statement provides a necessary and sufficient condition for f
such thatU f is a polyhedral set generated by the vertices of [l,u].

Theorem 4.10. Let f : [l,u] ⊆ Rn
→ R be a continuous function. Then,

U f = {(z, µ) ∈ R2n
| z ∈ S (n)

[l,u], µ ≥ [m f ]L(z) =
∑
J⊆N

aJzJ} (4.9)

with aJ according to Equation (4.8), if and only if f (x) ≥ m f (x) :=
∑

J⊆N aJ
∏

j∈J x j

for all x ∈ [l,u]. In particular, this condition is fulfilled for component-wise con-
cave functions f .

Proof. By Lemma 4.8, the facet-description of S (n)
[l,u] is irredundant forU f .

It remains to discuss the additional inequality µ ≥ [m f ]L(z). If f = m f ,
the description for U f in the theorem follows easily from the fact that
m f can be uniquely represented as a linear combination of all multilinear
monomials (see Lemma 4.9). If f (x) ≥ m f (x) for all x ∈ [l,u], then U f =
Um f as f and m f coincide at the vertices of the box which correspond to
the extreme points of the setU f .

To prove the converse direction, assume that there is an x̄ ∈ [l,u] with
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4.2. Component-Wise Concave Functions

f (x̄) < m f (x̄). Then, for (z, µ) = (F(n)(x̄), f (x̄)) ∈ U f , the relation

µ = f (x̄) < m f (x̄) =
∑
J⊆N

aJF(n)
J (x̄) =

∑
J⊆N

aJzJ

holds. This implies that (z, µ) < {(z, µ) ∈ R2n
| z ∈ S (n)

[l,u], µ ≥
∑

J⊆N aJzJ}.
Thus,U f is not given by Equation (4.9). �

Theorem 4.10 extends the work of Sherali [She97] who derived an equiv-
alent description ofU f for multilinear functions f . He further mentioned
that for general functions f it holds thatU f =Um f if f ≥ m f over [l,u]. We
also refer to [Taw10] in which this relation is indicated. Surprisingly, these
findings were never explicitly used to construct convex underestimators
of component-wise concave functions although the computational impact
of this approach is tremendous as we show in Section 4.4.

The condition f ≥ m f over [l,u] in Theorem 4.10 implies that f must
have a vertex polyhedral convex envelope (see Section 3.1.1). In fact, we
have that vex[l,u][ f ] = vex[l,u][m f ] (cf. [TS02b]). However, the extended
formulation in Theorem 4.10 is not necessarily true for general functions
having a vertex polyhedral convex envelope but only in the more restric-
tive case of f (x) ≥ m f (x) for all x ∈ [l,u].

Example 4.11. Consider f : R2
→ R, x 7→ f (x) := (x3

1 − 2x1)(x2
2 − 0.5),

over [l,u] := [−2, 1] × [−0.75, 0.95]. The convex envelope of f is vertex
polyhedral and reads

vex[l,u][ f ](x) = max
{

1
80 (5x1 − 64x2 − 58), 1

400 (161x1 − 80x2 − 246)
}
.

The multilinear function reads m f (x) = −0.425 + 0.2125x1 − 0.4x2 + 0.2x1x2

such that, for x̄ = (−0.74,−0.25), we have that f (x̄) ≈ −0.470 < −0.44525 =
m f (x̄) so that the point

(x̄, z{1,2}, µ) = (x̄1, x̄2, x̄1x̄2, f (x̄)) = (−0.74,−0.25, 0.185,−0.470) ∈ U f

violates the additional inequality µ ≥ [m f ]L(z) = −0.425+0.2125z1−0.4z2 +
0.2z{1,2}. �

Next, we give the explicit description ofU f for two classes of compo-
nent-wise concave functions.

Example 4.12. For d ∈ Zn
≥0, consider the negative of a monomial xd :=
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4. Extended Formulations for Convex Envelopes

∏n
j=1 xdi

i over a nonnegative box [l,u] ⊆ Rn
≥0. Then,

U
−xd = {(z, µ) ∈ R2n

| z ∈ S (n)
[l,u], µ ≥

∑
J⊆N

aJzJ},

where for all J ⊆ N, the coefficient aJ is equal to

(−1)n−|J|+1
∏

j∈N\J

l ju j

∏
j∈J


d j−1∑
r=0

l
d j−1−r
j ur

j

 ∏
j∈N\J


d j−2∑
r=0

l
d j−2−r
j u j

r

.
�

Example 4.13. Consider a bivariate function of the form f (x) := a20xd1
1 +

a11x1x2 + a02xd2
2 , where di ∈ Z>0, a20, a11, a02 ∈ R. If f is component-wise

concave over a box [l,u] ⊆ R2, the facet-description ofU f is given by the
description of S (2)

[l,u] and the additional inequalitya20

d1−1∑
i=0

ld1−1−i
1 ui

1

 z{1} +

a02

d2−1∑
i=0

ld2−1−i
2 ui

2

 z{2} + a11 z{1,2} − µ

≤a20

d1−1∑
i=1

ld1−i
1 ui

1 + a02

d2−1∑
i=1

ld2−i
2 ui

2.

�

By construction, U f does not only provide an underestimator for f
but also a simultaneous relaxation for f and the vector of multilinear
monomials F(n). This leads to an improved relaxation of the epigraph
of f and the graphs of F(n) compared to the individual relaxation of the
functions.

Example 4.14. Consider the function f (x) := x3
1x2 and the domain [l,u] :=

[−2, 1] × [0, 1] over which f is not component-wise concave, but it can be
checked that f (x) ≥ m f (x) for all x ∈ [l,u]. The convex envelope of f is
vertex polyhedral and reads vex[l,u][x3

1x2] = max{3x1 + x2 − 3,−8x2}. The
extended formulation according to Example 4.12 is given by

U f = {(z, µ) ∈ R22
| z ∈ S (2)

[l,u], µ ≥ [m f ]L(z) = −2z{2} + 3z{1,2}}.

In this setting the simultaneous relaxation of µ ≥ f (x) = x3
1x2 and the

monomial z{1,2} = x1x2 is given by U f . Let R denote the convex set
obtained by the individual relaxation of f and the multilinear monomial
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4.2. Component-Wise Concave Functions

x1x2 with their corresponding envelopes, i.e.,

R :=

 (z, µ) ∈ R4
z{1,2} ≥ vex[l,u][x1x2](z{1}, z{2}),
z{1,2} ≤ cave[l,u][x1x2](z{1}, z{2}),
µ ≥ vex[l,u][ f ](z{1}, z{2})

 .
To measure the qualities ofU f andR in terms of relaxation, we computed
their volumes using the function NIntegrate in Mathematica 8 [Wol08].
For this, the component µ is bounded from above by fmax = max{ f (x) |
x ∈ [l,u]} = 6. The volumes are then given by Vol(U f , µ ≤ 6) = 11.52 and
Vol(R, µ ≤ 6) = 13.20 yielding a gap of 14%. �

4.2.1. Reduced RLT Relaxations for Polynomial Programs

Sherali and Tuncbilek [ST92] applied the RLT to construct tight linear
relaxations of (continuous) polynomial programs. Applications and ex-
tensions of their idea can be found in several papers, see e.g., [ST97, She98,
SW01, SDD12, SDL12]. Such an RLT based relaxation can, however, lead
to an explosion in the problem size for instances with many variables and
a high degree. One possibility to reduce the size of RLT relaxations is
given in [SDL12], where the existence of a linear subsystem is exploited.
We present an alternative approach to reduce the size of a RLT relaxation
based on Theorem 4.10. Initially, we present the ideas of the RLT based
relaxation and then, illustrate the application of Theorem 4.10.

We adapt the notation in [ST92, SDD12] and consider the polynomial
program

min φ0(x) s. t. φi(x) ≤ 0, ∀ i = 1, . . . ,m, x ∈ [l,u] ⊆ Rn
≥0, (PP)

where φi(x) =
∑

t∈Ti
αit

∏
j∈Jit

x j, for i = 0, . . . ,m. The index set Ti, i =
0, . . . ,m, indicates the monomials occurring in φi(x). Let δ denote the
largest degree of a monomial occurring in (PP), and let N := {1, . . . ,n} be
the index set of variables. By N we denote the multiset which consists of
δ copies of N, i.e., N = {N,N, . . . ,N}. Then, Jit ⊆ N and |Jit| ≤ δ for all t ∈ Ti

and i = 0, 1, . . . ,m. For instance, the multiset {1, 1, 2} corresponds to the
monomial x2

1x2. The classical RLT relaxation of (PP) reads

min [φ0(x)]L(z,w)

s. t. [φi(x)]L(z,w) ≤ 0, ∀ i = 1, . . . ,m, (z,w) ∈ RRLT,
(PPRLT)
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where the operator [·]L(z,w) denotes the linearization of an expression
such that all multilinear monomials defined by a multiset J are substituted
by a new variable zJ, and all nonmultilinear monomials are substituted
by a variable wJ. For example, [−x3

1x2 + 5x1x2]L(z,w) = −w{1,1,1,2} + 5z{1,2}.
The vector (z,w) ∈ R(n+δ

δ )−1 corresponds to all monomials
∏

j∈J x j with

∅ , J ⊆ N and |J| ≤ δ. The set RRLT ⊆ R(n+δ
δ )−1 is defined as

RRLT :=
{
(z,w) ∈ R(n+δ

δ )−1
| ∀(J1 ∪ J2) ⊆ N, |J1 ∪ J2| = δ :[∏

j∈J1

(x j − l j)
∏
j∈J2

(u j − x j)
]

L
(z,w) ≥ 0

}
.

Example 4.15. Let (PP) be given as min{x1 − x3
1 | x1 ∈ [0, 1]}. Then, δ = 3,

N = {1, 1, 1}, and (PPRLT) reads min{z{1} − w{1,1,1} | (z,w) ∈ RRLT}, where

RRLT =

{
(z,w)

1 − 3z{1} + 3w{1,1} − w{1,1,1} ≥ 0, w{1,1} − w{1,1,1} ≥ 0
z{1} − 2w{1,1} + w{1,1,1} ≥ 0, w{1,1,1} ≥ 0

}
.

For example, the constraint w{1,1} − w{1,1,1} ≥ 0 follows from [(x1 − 0)2(1 −
x1)1]L(z,w) = [x2

1 − x3
1]L(z,w) ≥ 0. Figure 4.2 illustrates the strength of the

RLT relaxation. It depicts the graph of x3
1 and the projection of the RLT

relaxation to the (z1,w{1,1,1})-space.

0 1

x3
1/w1,1,1

1

x1/z1

Figure 4.2.: The figure depicts the RLT relaxation (blue area) of the graph
of x3

1 (bold black line) over the interval [0,1].

�
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4.2. Component-Wise Concave Functions

As already indicated and shown in the example, the RLT relaxation
does not necessarily lead to the convex hull of a polynomial program (cf.
Figure 4.2) but it strengthens the relaxation since the additional bound
factor product constraints reflect the dependency among the different
monomials. However, the size of the relaxation grows exponentially in
the number of variables and the degree δ. Theorem 4.10 offers a possibility
to reduce the relaxation size. If the coefficient αit of a nonmultilinear
monomial is negative, the corresponding term αit

∏
j∈Jit

x j is component-
wise concave and can be underestimated with the help of Theorem 4.10.
We show that this term can be excluded from the determination of the
largest degree δ of the program, yet yielding the same relaxation quality.

Example 4.16 (Example 4.15 continued). The component-wise concave
term (−x3) is replaced by w{1,1,1}. Let f (x) := −x3. Theorem 4.10 yields the
underestimator −w{1,1,1} ≥ [m f ]L(z) = −z{1}. Excluding the term −x3, the
largest degree is δ = 1 and the RLT-relaxation is z{1} ∈ S (1)

[0,1] = [0, 1]. We
will show that the relaxation min{z{1} − w{1,1,1} | (z,w{1,1,1}) ∈ R?

mod}with

R?
mod =

{
(z,w{1,1,1}) −z{1} + w{1,1,1} ≤ 0, z{1} ≥ 0, z{1} ≤ 1

}
is as strong as the RLT-relaxation in Example 4.15 although the relaxation
based on R?

mod needs one variable and one constraint less. �

We consider the extreme case with αit < 0 for all t ∈ Ti and i = 0, . . . ,m
such that Jit * N, that is the coefficients of the nonmultilinear variables
are negative. Recall that we consider nonnegative domains [l,u] ⊆ Rn

≥0 so
that all summands of the involved functions φi(x) =

∑
t∈Ti

αit
∏

j∈Jit
x j are

component-wise concave. We refer to this class of polynomial programs
as component-wise concave polynomial programs (PP−). Further, we assume
that δ > n. Otherwise, we consider the subset of monomials involved
in the nonmultilinear monomial with the largest degree, e.g., for the
monomials x2

1x2, x1x2 and, x1x2x3x4 we just consider the monomials x2
1x2

and x1x2.

Technically, we proceed as follows. The index set of all nonmulti-
linear monomials, for which a variable wJ is introduced is denoted by
I := {J ⊆ N | 1 ≤ |J| ≤ δ,

∏
j∈J x j is nonmultilinear}. The index set of

nonmultilinear monomials which actually occur in (PP−) is given by
I? := {Jit | Jit ∈ I for t ∈ Ti, i = 0, 1, . . . ,m} and the corresponding sub-
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vector of w is denoted by w?. The modified RLT relaxation reads

min [φ0(x)]L(z,w?)

s. t. [φi(x)]L(z,w?) ≤ 0, ∀ i = 1, . . . ,m, (z,w?) ∈ R?
mod,

(PP−mod)

where

R?
mod :=

{
(z,w?) ∈ R(2n

−1)+|I? |
| z ∈ S (n)

[l,u],−w?
J ≥ [m−xJ (x)]L(z)∀J ∈ I?

}
with xJ :=

∏
j∈J x j.

The problem characteristics of the two sets RRLT and R?
mod in terms of

number of variables and constraints are compared in Table 4.1. Although

RRLT R?
mod

#Variables
(n+δ
δ

)
− 1 (2n

− 1) + |I?|

#Constrains
∑δ

k=0

(
n + k − 1

k

) (
n + (δ − k) − 1
δ − k

)
2n + |I?|

case: n = 5 and δ = 4
#Variables 125 31 + |I?| ≤ 125
#Constraints 715 32 + |I?| ≤ 126

Table 4.1.: Problem characteristics of RRLT and R?
mod. The formulas for RRLT

are from [ST92].

the problem characteristics are quite different, we prove that the two
relaxations of (PP−) based on RRLT and R?

mod return the same objective
function value.

Theorem 4.17. min(PP−RLT) = min (PP−mod).

Proof. The relation min(PP−RLT) ≥ min (PP−mod) can be derived as follows.
Given (z̄, w̄) ∈ RRLT, assume that its subvector (z̄, w̄?) < Rmod. As the RLT
theory implies that z̄ ∈ S (n)

[l,u] (see [ST92]), it follows that there is a J ∈ I?

with −w̄?
J < [m−xJ (x)]L(z̄). By Theorem 4.10, there exists an x̄ ∈ [l,u]

with
∏

j∈J x̄ j < mxJ (x̄). This contradicts that −
∏

j∈J x̄ j is component-wise
concave over the underlying positive domain and thus, we can conclude
that (z̄, w̄?) ∈ Rmod.

For the converse relation let (z̄, w̄?) be an optimal solution of min (PP−mod).
We can assume that −w̄?

J is at its lower bound for all J ∈ I?, i.e., −w̄?
J =
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4.2. Component-Wise Concave Functions

∑
S⊆N aJ,Sz̄S for all J ∈ I?, because −w̄?

J is not bounded from below by the
constraints [φi(x)]L(z,w?) ≤ 0, i = 1, . . . ,m, and the minimization of the
objective function [φ0(x)]L(z,w?) attains its optimal solution at the mini-
mal −w̄?

J (if −w̄?
J occurs in the objective function). To construct a solution

(z̄, w̄) ∈ RRLT, we define−w̄J :=
∑

S⊆N aJ,Sz̄S for all J ∈ I\I?. As z̄ ∈ S (n)
[l,u], it can

be represented as z̄ =
∑

v∈V λvF(n)(v), where V := vert([l,u]). Let G : Rn
→

R|I|, with GJ(x) :=
∏

j∈J x j for all J ∈ I, be the vector of nonmultilinear mono-
mials. Then, −w̄J =

∑
S⊆N aJ,S(

∑
v∈V λvF(n)

S (v)) =
∑

v∈V λv
∑

S⊆N aJ,SF(n)
S (v) =∑

v∈V λv m−xJ (v) =
∑

v∈V λv(−
∏

j∈J v j) =
∑

v∈V λv(−GJ(v)) for all J ∈ I. There-
fore, the point (z̄, w̄) can be represented as convex combination of points
(F(n)(v),G(v)) ∈ RRLT which shows that (z̄, w̄) ∈ RRLT. �

One can even show that the quality of the relaxations of (PP−) based
on RRLT and R?

mod is not only identical but best possible when dealing
with polynomial programs and using a relaxation which is based on the
substitution of monomials by new variables. The desired object in this
context is given by the convex hull of all monomials with degree less or
equal to δ and reads

C := conv({(z,w) | z = F(n)(x), wJ =
∏
j∈J

x j ∀J ∈ I, x ∈ [l,u]}).

The description of C is not polyhedral and also not known in general.
Let (PP−

C
) denote the relaxation of component-wise concave polynomial

programs (PP−) based on C. We can prove the following statement using
the same arguments as in the proof of Theorem 4.17.

Theorem 4.18. min(PP−
C

) = min(PP−RLT) = min (PP−mod).

The strength of the RLT based relaxation for (PP−) provides a possible
explanation for an observations made by Sherali, Dalkiran, and Desai
in [SDD12] for polynomial programs: The more the programs are of
the form (PP−), i.e., the more negative coefficients occur, the faster the
computations. The authors generated random instances which are dense
and sometimes dominated by the objective function, e.g., the place in
the program files occupied by the objective function varies from 15% to
90%. In particular, all monomials occur in the objective function while
their occurrence in the constraints is determined randomly. The random
instances are solved by the classical RLT approach and additionally by
a combined approach of RLT and linear cuts derived from semidefinite
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4. Extended Formulations for Convex Envelopes

programming (SDP). Table 4.2 displays their results and shows that a
higher percentage of negative coefficients in the objective function leads
to a tremendous acceleration of the computations. One reason for this
acceleration is given by the tight RLT based relaxation in this case.

CPU time [s] (depending on % of neg. obj. coef.)
10% 50% 90%

RLT 1,173 1,850 138
RLT+SDP 674 1,055 45

Table 4.2.: The table presents the average CPU time of an RLT and a com-
bined RLT+SDP based algorithm depending on the percentage
of negative objective function coefficients. The numbers are
taken from Table 3 in [SDD12].

4.3. Functions of Class 2 and 3

This section presents closed-form expressions for the convex underesti-
mation of nonlinear functions belonging to Classes 2 and 3. Initially, we in-
vestigate Class 2 which contains continuous functions f : [lx,ux]×[ly,uy] ⊆
Rnx × R → R, (x, y) 7→ f (x, y), that are (i) component-wise concave in
the x-variables and (ii) either convex or concave in y for every fixed
x̄ ∈ vert([lx,ux]). The convex envelope for a well-structured subclass of
such functions was recently derived in [KS12a]. We deduce an extended
formulation for the convex underestimation of the entire class of func-
tions. This is approached by considering the following set

U f := conv({(z, µ) ∈ R2n
| µ ≥ f (x, y), z = F(n)(x, y), (x, y) ∈ [l,u]}),

where n := nx + 1 and [l,u] := [lx,ux] × [ly,uy].
Similar to the case of component-wise concave functions in the previous

section, we show that the set U f is described by the facets of S (n)
[l,u] and

one additional inequality which links the function f (x, y) to the set of
all multilinear monomials in the x- and y-variables. In contrast to the
component-wise concave case, this inequality is nonlinear and is obtained
by means of the next lemma.
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4.3. Functions of Class 2 and 3

Lemma 4.19. Let [l,u] := [lx,ux] × [ly,uy] ⊆ Rnx × R be a full-dimensional
box, Nx := {1, . . . ,nx}, Vx := vert([lx,ux]), and n := nx + 1. Moreover, let
V1,V2 ⊆ Vx be a partition of Vx, i.e., Vx = V1 ∪ V2, V1 ∩ V2 = ∅. For a given
z ∈ R2n

−1, consider the following nonlinear system in the variables λv, yv with
v ∈ V1, and λv,l, λv,u with v ∈ V2:

zJ =
∑
v∈V1

λvF(nx)
J (v) +

∑
v∈V2

(
λv,lF(nx )

J (v) + λv,uF(nx)
J (v)

)
, (4.10)

zJ∪{n} =
∑
v∈V1

λv yvF(nx )
J (v) +

∑
v∈V2

(
λv,llyF(nx )

J (v) + λv,uuyF(nx )
J (v)

)
, (4.11)

for all J ⊆ Nx. Its solution is given by

λv =
ev̂(zx)∏nx

j=1(u j − l j)
, yv =

∑
J⊆Nx (−1)|J|+α(v̂) F(nx )

Nx\J
(v̂)zJ∪{n}

ev̂(zx)
, (4.12)

for v ∈ V1, where v̂ denotes the vector opposite to v in [lx,ux], zx denotes the
subvector of z-variables with entries zJ, ∅ , J ⊆ Nx, and ev̂(zx) according to
Equation (4.7). The solution of λv,l and λv,u with v ∈ V2 reads

λv,l =
e(v̂,uy)(z)∏n
j=1(u j − l j)

and λv,u =
e(v̂,ly)(z)∏n
j=1(u j − l j)

. (4.13)

Proof. We prove Lemma 4.19 in two steps. Initially, we consider subsys-
tem (I) defined by Equation (4.10) and subsystem (II) defined by Equa-
tion (4.11) for all J ⊆ Nx independently. Afterwards we combine the
solutions of the two subsystems.

Let T be the matrix whose columns are given by the vectors (1,F(nx )(v)),
v ∈ Vx. We can then bring both subsystems into the form ζ = Tξ. This
system has the unique solution ξv = ev̂(ζ)/

∏nx
j=1(u j − l j), v ∈ Vx (see [SA90,

Lau03, AS05]).
For subsystem (I) we replace

(
λv,lF(nx)

J (v) + λv,uF(nx )
J (v)

)
by (λvF(nx )

J (v)) in
Equation (4.10). Hence, we obtain the system (1, zx) = Tλ with unique
solution λv = ev̂(zx)/

∏nx
j=1(u j − l j), v ∈ Vx.

For subsystem (II) we substitute the term
(
λv,llnF(nx )

J (v) + λv,uunF(nx )
J (v)

)
by

(λv yvF(nx )
J (v)) in Equation (4.11) and afterwards, λv yv by rv. With ζJ = zJ∪{n}

for all J ⊆ Nx, subsystem (II) is of the form ζ = Tr with unique solution
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rv = ev̂(ζ)/
∏nx

j=1(u j − l j), v ∈ Vx.
Finally, we consider the original system, where rv = λv yv, v ∈ V1, and

rv = λv,lly + λv,uuy, λv = λv,l + λv,u, v ∈ V2. To obtain yv, v ∈ V1, we can
solve rv = λv yv for yv if λv , 0. Then, yv = rv/λv = ev̂(ζ)/ev̂(zx). If λv = 0,
yv can take any value as its corresponding summand cancels out.

To derive λv,l and λv,u, v ∈ V2, we solve the linear system λv yv =
λv,lly + λv,uuy and λv = λv,l + λv,u. Then, λv,l = λv(uy

− yv)/(uy
− ly) and

λv,u = λv(yv
− ly)/(uy

− ly).
We prove the formula for λv,l in Equation (4.13). An analogous argu-

mentation holds for λv,u. We get λv,l = λv(uy
− yv)/(uy

− ly) = ev̂(zx)(uy
−

yv)/
∏

j∈N(ui − li). To deduce Equation (4.13), it is thus sufficient to show
that e(v̂,uy)(z) = ev̂(zx)(uy

−yv). This follows because e(v̂,uy)(z) can be rewritten
as ∑

J⊆N

(−1)|J|+α(v̂)F(n)
N\J(v̂,u

y)zJ

=
∑
J⊆Nx

(−1)|J|+α(v̂)F(n)
N\J(v̂,u

y)zJ +
∑

J=T∪{n}:T⊆Nx

(−1)|J|+α(v̂)F(n)
N\J(v̂,u

y)zJ

=
∑
J⊆Nx

(−1)|J|+α(v̂)uyF(nx )
Nx\J

(v̂)zJ +
∑
J⊆Nx

(−1)|J|+α(v̂)+1F(nx )
Nx\J

(v̂)zJ∪{n}

= uyev̂(zx) − yvev̂(zx) = ev̂(zx)(uy
− yv).

This concludes the proof. �

In the special case of V1 = ∅, Lemma 4.19 follows from the fact that the
convex hull of {(Fnx+1(v, y), (v, y) ∈ vert([lx,ux]×[ly,uy])} equalsS (nx+1)

[lx ,ux]×[ly ,uy ]
.

For V2 = ∅ the solution of the corresponding system in Equations (4.12)
and (4.13) is already reported in [SA94, AS05] and used to derive the
equivalent extended linear formulation for certain polynomial mixed-
discrete programs.

Theorem 4.20. Consider a function f : [lx,ux] × [ly,uy] ⊆ Rnx × R → R,
(x, y) 7→ f (x, y). Let Vx := vert([lx,ux]), and let n := nx + 1. Assume that
f (x, y) is component-wise concave in x, and that Vx can be partitioned into V1

and V2 such that f (x, y) is convex but not linear in y for each x ∈ V1 and concave
in y for each x ∈ V2. Then,

U f =
{
(z, µ) ∈ R2n

| z ∈ S (n)
[l,u] and µ ≥ φ(z)

}
,
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where φ(z) :=
∑

v∈V1
λv f (v, yv) +

∑
v∈V2

λv,l f (v, ly) + λv,u f (v,uy), with λv and
yv for v ∈ V1, and λv,l and λv,u for v ∈ V2 according to Lemma 4.19.

Proof. Lemma 4.8 implies that the description of S (n)
[l,u] is necessary for an

explicit characterization ofU f . For the remaining constraint we can argue
as follows. As f is component-wise concave in the x-variables and the
multilinear monomials

∏
j∈J x j are linear in the x-variables, the setU f can

be represented as (see [TS02b, Taw10]):

U f = conv
( ⋃

v∈Vx

{
(F(n)(v, yv), µ) | µ ≥ f (v, yv), yv

∈ [ly,uy]
})
.

For each fixed v ∈ Vx the set U f (v,y) corresponds to the epigraph of
the function vex[ly ,uy ][ fv], where fv(y) := f (v, y). If v ∈ V1, then f (v, y) is
convex and vex[ly ,uy ][ fv](y) = f (v, y). If v ∈ V2, then f (v, y) is concave and
vex[ly ,uy ][ fv](y) is given by the secant connecting (ly, fv(ly)) and (uy, fv(uy)).

Disjunctive programming techniques imply that, for any given z̄ ∈ S (n)
[l,u],

the corresponding minimal value µ with (z̄, µ) ∈ U f can be computed by
the following optimization problem

min
∑

v∈V1
λv f (v, yv) +

∑
v∈V2

(
λv,l f (v, ly) + λv,u f (v,uy)

)
s. t. z̄ =

∑
v∈V1

λvF(n)(v, yv) +
∑

v∈V2

(
λv,lF(n)(v, ly) + λv,uF(n)(v,uy)

)
1 =

∑
v∈V1

λv +
∑

v∈V2

(
λv,l + λv,u

)
λv ≥ 0, v ∈ V1, λv,l, λv,u ≥ 0, v ∈ V2, yv

∈ [ly,uy], v ∈ V1 .

The constraint set of this problem is solved in Lemma 4.19. Note that
λv ≥ 0, v ∈ V1, λv,l, λv,u ≥ 0, v ∈ V2, and 1 =

∑
v∈V1

λv +
∑

v∈V2
(λv,l + λv,u)

follows from the fact that z̄ ∈ S (n)
[l,u]. This proves the claim. �

Remark 4.21. Theorem 4.10 is a special case of Theorem 4.20, namely
for V1 = ∅ and V2 = Vx. Even though the two representations do not
coincide at a first glance, it can be checked that the additional inequality
in Theorem 4.20 reduces to the one in Theorem 4.10 in this special case.

The next example illustrates Theorem 4.20 and emphasizes its potential
for simultaneous convexification purposes.

Example 4.22. Let f (x, y) = x1x2/y, x1 ∈ [−1, 1], x2 ∈ [0.1, 1], y ∈ [0.1, 1].
This is Example 2 in [KS12a]. The convex envelope over the subdomain
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0.9x1 + 2x2 ≥ 1.1 reads

vex[l,u][ f ](x, y) =



(0.5x1+1.1x2−0.6)2

y+0.05x1+0.11x2−0.16 + 5x1 − 1.1x2 − 3.9, if 0.1 ≤ y ≤ s1,
(0.5x1+0.76x2−0.26)2

y+0.05x1−0.05 + 5x1 − 5, if s1 ≤ y ≤ s2,
0.12(x2−1)2

y−0.45x1−1.1x2+0.56 + 5.5x1 + 1.1x2 − 5.6, if s2 ≤ y ≤ s3,

10y + x1 + x2 − 11, if s3 ≤ y ≤ 1,

where s1 = 10y+x1+x2−11, s2 = 0.45x1+0.76x2−0.21, and s3 = 0.45x1+0.55.
The convex envelope over 0.9x1 + 2x2 ≤ 1.1 reads

vex[l,u][ f ](x, y) =


0.5(x1+1)2

20y+x1−1 + 0.5x1 − 10x2 + 0.5, if 0.1 ≤ y ≤ s3,

y + 0.1x1 − 10x2, if s3 ≤ y ≤ 1.1 − x2,

10y + 0.1x1 − x2 − 9.9, if 1.1 − x2 ≤ y ≤ 1.

The extended formulation U f is given by the facets of S (3)
[l,u] and the

inequality µ ≥ φ(z) with

φ(z) := − 5.5z{2} + 5.5z{1,2} + 5z{2,3} − 5z{1,2,3} − 101
81

+
(1+z{1}−z{2}−z{1,2})2

18(z{3}+z{1,3}−z{2,3}−z{1,2,3})
+

(1+z{1}−10z{2}−10z{1,2})2

180(−z{3}−z{1,3}+10z{2,3}+10z{1,2,3})
.

The setU f is the simultaneous convex hull of (z, µ) withµ ≥ f (x, y) and the
seven multilinear monomials in the x- and y-variables over [l,u]. LetRde-
note the convex relaxation, where f and each multilinear monomial is in-
dividually relaxed by its convex and concave envelope (cf. Example 4.14).
We can bound component µ from above by max{ f (x) | (x, y) ∈ [l,u]} = 10.
The volumes of the individually and simultaneously convexified sets
computed with Mathematica 8 [Wol08] are Vol(R, µ ≤ 10) ≈ 0.325 and
Vol(U f , µ ≤ 10) ≈ 0.014. This yields a gap of 2120%. �

Remark 4.23. Note that it is not clear how to generalize Theorem 4.20 to
functions, where the convex part consists of more than one component,
i.e., functions f : [lx,ux] × [ly,uy] ⊆ Rnx ×Rny , (x, y) 7→ f (x, y), with ny > 1.
For instance, let nx = 1 and ny = 2 with V1 = {lx

} and V2 = {ux
}. Following

the proof of Theorem 4.20, the inequality

µ ≥ λl f (lx, yl) +
∑

s∈vert([ly ,uy])

λu,s f (us, s)
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is part of the description forU f . This inequality involves seven unknowns
λl, yl

1, y
l
2 and λu,s with s ∈ vert([ly,uy]) and |vert([ly,uy])| = 4. In the proof

of Theorem 4.20 we further exploit the fact that for a fixed x̄ the setU f (x̄,y)

corresponds to the epigraph of the function vex[ly ,uy ][ fx̄], where fx̄(y) :=
f (x̄, y). This is not the case for ny = 2 since the monomial y1 y2 needs to
be taken into account for U f (x̄,y), as well. To overcome this hurdle, one
might only introduce the monomials x1 y1 and x1 y2. However, this leads
only to a system of six linear equations, namely for z{1}, z{2}, z{3}, z{1,2}, z{1,3},
and the summation condition for the convex multipliers. As there are
seven variables, it is still necessary to solve an optimization problem for
the remaining unknown variable in order to determineU f .

Next, we consider Class 3 which contains continuous functions f :
[lx,ux]× [ly,uy] ⊆ Rnx ×Rny → R, (x, y) 7→ f (x, y), that are component-wise
concave in the x-variables and convex on the space of the y-variables for
every fixed x ∈ vert([lx,ux]). Let Nx := {1, . . . ,nx} and Ny := {1, . . . ,ny}. We
introduce

• for all J ⊆ Nx, J , ∅, the monomials
∏

j∈J x j and the variables zJ ∈ R,

• for all k ∈ Ny and for all J ⊆ Nx, the monomials yk
∏

j∈J x j and the
variables wk

J ∈ R, where we define wk := (wk
∅
,wk
{1}, . . . ,w

k
Nx

) which is
associated with

yk(1,F(n)(x)) = (yk, ykx1, . . . , ykxn, ykx1x2, . . . , yk

n∏
j=1

x j).

This collection of monomials ensures that for a fixed x all introduced
monomials are either constant or linear. An extended formulation for the
convex envelope of f is then given by the set

E f := conv
({

(z,w1, . . . ,wny , µ) ∈ R(2nx−1)+ny ·2nx +1
∣∣∣ µ ≥ f (x, y),

z = F(nx)(x), wk = yk(1,F(nx )(x)), for all k ∈ Ny,

z{ j} = x j ∈ [lx
j ,u

x
j ], j = 1, . . . ,nx,

wk
∅

= yk ∈ [ly
k ,u

y
k ], k = 1, . . . ,ny

})
.

By construction and our assumptions on f , E f (v,y) corresponds to the
epigraph of vex[l,u][ f (v, y)] = f (v, y), for all v ∈ vert([lx,ux]). Similar to
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the description ofU f which is based on S (n)
[l,u], Lemma 4.8 implies that the

description of the following set is needed for E f .

L
(nx ,ny )

[l,u] := conv
({

(z,w1, . . . ,wny ) ∈ R(2nx−1)+ny ·2nx
∣∣∣ z = F(nx )(x),

wk = yk(1,F(nx )(x)), for all k ∈ Ny,

z{ j} = x j ∈ [lx
j ,u

x
j ], j = 1, . . . ,nx,

wk
∅

= yk ∈ [ly
k ,u

y
k ], k = 1, . . . ,ny

})
Sherali and Adams showed that the set L (nx ,ny )

[l,u] can be represented as
intersection of the simplices S (nx+1)

[lx ,ux ]×[l
y
k ,l

y
k ]

.

Lemma 4.24 ([SA94, AS05]). L (nx ,ny )

[l,u] =
⋂ny

k=1{(z,w
1, . . . ,wny ) | (z,wk) ∈

S
(nx+1)

[lx ,ux ]×[l
y
k ,l

y
k ]
}.

According to our definition, points in S (nx+1)

[lx ,ux ]×[l
y
k ,l

y
k ]

are labeled by subsets

J ⊆ {1, . . . ,nx + 1}, J , ∅, that follow the order of the vector F(nx+1). This
labeling might be different to the order of the vector (z,wk). However, to
keep the notation simple, we assume for Lemma 4.24 that the components
of points (z,wk) are permuted in the correct way when necessary.

We are now ready to give a description for E f .

Theorem 4.25. Let f : [lx,ux]× [ly,uy] ⊆ Rnx ×Rny → R be a function that is
component-wise concave in the x-variable for every fixed y ∈ [ly,uy] and convex
on the space of y-variables for every x̄ ∈ V := vert([lx,ux]). Then,

E f =

 (z,w1, . . . ,wk, µ)
(z,wk) ∈ S (nx+1)

[lx ,ux ]×[l
y
k ,u

y
k ]
, k = 1, . . . ,ny,

µ ≥ ϕ(z,w) :=
∑

v∈V λv f (v, yv)

 ,
where, for all v ∈ V and k ∈ Ny,

λv =
ev̂(z)∏nx

i=1(ux
i − lx

i )
, yv

k =

∑
J⊆Nx (−1)|J|+α(v̂) F(nx)

Nx\J
(v̂)wk

J

ev̂(z)
, (4.14)

ev̂(z) according to Equation (4.7), and v̂ is the vector opposite to v in [lx,ux].

Proof. The constraints (z,wk) ∈ S (nx+1)

[lx ,ux ]×[l
y
k ,u

y
k ]

, k ∈ Ny, are implied by Lem-

mas 4.8 and 4.24. For the remaining constraint we can argue similar to the
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proof of Theorem 4.20 with V2 = ∅. Moreover, the representation ofL (nx ,ny )

[l,u]

in Lemma 4.24 implies that for each k ∈ {1, . . . ,ny} the linear systems cor-
responding to yv

k , v ∈ V, can be solved independently (see [SA94]). Thus,
for each k ∈ {1, . . . ,ny} the formula for yv

k in Equation (4.14) is given anal-
ogously to Equation (4.12), where ny = 1.

�

Remark 4.26. The condition of being component-wise concave in the
x-variables in Theorems 4.20 and 4.25 can be relaxed to the condition
f (x, ȳ) ≥ m f (x,ȳ)(x) for all x ∈ [lx,ux] and all fixed values ȳ ∈ [ly,uy], where
m f (x,ȳ)(x) is the multilinear function obtained in Lemma 4.9. If we consider
the special case of f (x, y) = g(x)h(y) , 0 with h(y) nonnegative and con-
vex, we can strengthen Theorems 4.20 and 4.25 as follows. The extended
formulation in Theorem 4.20 is valid if and only if g(x) ≥ mg(x) for all
x ∈ [lx,ux]. If g(x) is further nonnegative, the extended formulation in
Theorem 4.25 is valid if and only if g(x) ≥ mg(x) for all x ∈ [lx,ux].

The next example illustrates Theorem 4.25 and compares the extended
formulation to the convex envelope.

Example 4.27. Let f (x, y) = x/(y1 y2), (x, y1, y2) ∈ [l,u] := [0.5, 2] × [0.1, 1] ×
[1.5, 2]. This is Example 2 in [KS12b], where the convex envelope of f
is described by six different formulas, each of them valid over a specific
subdomain of the box [l,u]. The extended formulation E f obtained by
the simultaneous convexification with the monomials y1x (= w1

{1}) and
y2x (= w2

{1}) is given by

E f =

{
(z,w1,w2, µ) ∈ R5

(z,w1) ∈ S (2)
[0.5,2]×[0.1,1], (z,w

2) ∈ S (2)
[0.5,2]×[1.5,2],

µ ≥ ϕ(z,w1,w2)

}
,

where

ϕ(z,w1,w2) := lx(ux
−z)3

(ux−lx)(uxw1
∅
−w1
{1})(u

xw2
∅
−w2
{1})

+ ux(z−lx)3

(ux−lx)(lxw1
∅
−w1
{1})(l

xw2
∅
−w2
{1})
.

The variable µ can be bounded from above by max{ f (x, y) | x ∈ [l,u]} =
40/3. Mathematica 8 computes the volumes of E f and its individual
counterpart R as Vol(E f , µ ≤ 40/3) ≈ 0.263 and Vol(R, µ ≤ 40/3) ≈ 0.269
which implies a gap of 2%. �

In Examples 4.22 and 4.27, some advantages and disadvantages of the
extended formulationsU f and E f compared to the convex envelopes are

137



4. Extended Formulations for Convex Envelopes

indicated. The extended formulations have the disadvantage of introduc-
ing additional variables corresponding to certain multilinear monomials.
Especially for higher dimensional functions, the exponential growth in
the number of variables can lead to an explosion of the problem size.
Nevertheless, for lower dimensional cases the growth of variables is rea-
sonable and we noticed that the multilinear monomials often occur in the
problem description, see e.g., problems ex734 and ex735 from GLOBAL-
Lib [GLO] and eniplac, 1252, nvs05, and pump from MINLPLib [BDM03].
Therefore, the extended formulations can lead to improved convex relax-
ations as indicated in Example 4.22. Furthermore, one can check that
the formulas describing parts of the convex envelope are only valid over
the specified subdomains. For instance, consider Example 4.22 and let
(x̄1, x̄2, ȳ) = (0, 0.5, 0.7). Then, vex[l,u][ f ](x̄1, x̄2, ȳ) = ȳ + 0.1x̄1 − 10x̄2 = −4.3
while this is violated by the last formula, 10ȳ + 0.1x̄1 − x̄2 − 9.9 = −3.4.
Usually, convex relaxations are constructed and solved over the entire
domain. Thus, the formulas of the convex envelope can be used in a
cut-generation algorithm to construct valid linear cuts, but they cannot
be added directly to the convex relaxation whereas this is possible with
the extended formulation.

To conclude this section, we emphasize that the convex envelopes for
the two classes of functions considered in this section are not known,
in general. As discussed in Subsection 3.1.3, Khajavirad and Sahini-
dis [KS12b, KS12a] have recently derived explicit formulas of convex
envelopes for special subclasses in the original space. They consider
functions f (x, y) = g(x)h(y), where

• g(x) is a component-wise concave function such that its restriction
to the vertices is submodular and has the same monotonicity in
every argument,

• h(y) is a nonnegative convex function of one of the two forms (i)
h(y) = ya, a ∈ R \ [0, 1] or (ii) h(y) = ay, a > 0, and

• g(x) is nonnegative or h(y) is monotone.

For special cases they relax some conditions but the assumptions above
reflect their general setting.

First, the formulations presented in this chapter do not require that f
can be written as f (x, y) = g(x) h(y). For instance, the function f (x, y) =
(y + 1) exp(xy) over [l,u] = [−1, 1] × [−3,−1] belongs to the functions
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considered in Theorem 4.20 but does not fit into the concept of Khajavirad
and Sahinidis.

Second, Khajavirad and Sahinidis state that the property of component-
wise concavity of g(x) can be relaxed to having a vertex polyhedral convex
envelope in their context. For the extended formulation, we can relax the
component-wise concavity of g(x) by g(x) ≥ mg(x) for all x ∈ [lx,ux] (see
Remark 4.26). In this case, the assumptions of Khajavirad and Sahinidis
are more general than ours. For example, the function g(x) = max{−x1 +
0.5,−x2 +0.5} over [lx,ux] = [0, 1]2 is vertex polyhedral, submodular when
restricted to the vertices of [lx,ux] and nonincreasing in each argument.
However, g(x) < mg(x) = −x1x2 + 0.5 for all x in the interior of the box
[0, 1]2.

Third, in the setting of the convex envelope the univariate variable
y in the convex function h(y) can be replaced by cT y + d, where y is
multivariate, if g(x) is nonnegative. This extension is also covered by
Theorem 4.25 because f (x, cT y + d) is the composition of a convex and a
linear function w.r.t. to the y-space and thus, it is convex [Roc70].

Finally, Theorems 4.20 and 4.25 do not require that g(x) is submodu-
lar when restricted to the vertices and nondecreasing (or nonincreasing)
in every argument. For instance, the convex envelope of the function
f (x, y) = g(x)h(y) = (x1x2)y2 cannot be determined by the framework of
Khajavirad and Sahinidis as g is supermodular (cf. Section 4.1 in [KS12b])
while the function satisfies all assumptions of Theorems 4.20.

4.4. Computations

In this section we present a computational case study which compares
our extended formulations with standard relaxation methods. We fo-
cus on the component-wise concave functions discussed in Section 4.2
because their extended formulation is polyhedral and thus, easier to im-
plement. Yet, the presented results can hint at the computational behavior
of the extended formulations for the other two classes of functions. In
the following, we first present our test set which consists of instances of
the Molecular Distance Geometry Problem. Second, different relaxation
strategies for this class of problems are investigated. Finally, we imple-
mented two separators for the MINLP solver SCIP [Ach09] which are based
on the relaxations S (n)

[l,u] and U f . We apply these implementations to our
test set and compare their results to the results of state-of-the-art software.
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Molecular Distance Geometry Problem

The Molecular Distance Geometry Problem (MDGP) (see e.g., [LLM09]) is
to determine the three-dimensional structure of a molecule consisting of
a finite set A = {1, . . . , s} of atoms and given distances d{i, j} ≥ 0 between
two atoms {i, j} ∈ E ⊆ A × A (edge set). This leads to the following
unconstrained nonconvex optimization problem

min
∑
{i, j}∈E

(
||ξi
− ξ j
||

2
− d2

{i, j}

)2
s.t. ξ := (ξ1, . . . , ξs) ∈ R3s, (4.15)

where ξi := (ξi
1, ξ

i
2, ξ

i
3) ∈ R3, i = 1, . . . , s, represents the position of atom i

in the three-dimensional space. A point ξ ∈ R3s is a solution of the MDGP
if and only if the corresponding objective function value is zero.

In the formulation of Equation (4.15) the MDGP can be solved instan-
taneously by solvers like BARON or SCIP for low dimensional problems.
In order to illustrate the impact of the proposed relaxation methods, we
follow [CLL10] and analyze the expanded model formulation

min
∑
{i, j}∈E

s{i, j} s.t. s{i, j} ≥ EXPAND
[ (
||ξi
− ξ j
||

2
− d2

{i, j}

)2 ]
, ξ ∈ R3s, (4.16)

where the operator EXPAND[·] expands each term
(
||ξi
− ξ j
||

2
− d2

{i, j}

)2
such

that it is given as the sum of 52 monomials of the following form:

x1, x1x2, x1x2x3, x1x2x3x4, x2
1, x4

1, −x2
1x2x3, −x3

1x2.

We consider two test sets related to the MDGP. Test set TS1 contains
five MDGP instances lavor6 through lavor20 which are characterized in
Table 4.3. The instances differ in the number of atoms and edges, and
the domains which are chosen such that the instances are feasible. All
instances (except for the domain) were randomly generated as described
in [Lav06] and given to us by Jon Lee. Test set TS2 consists of 50 randomly
generated test instances, where we construct 10 random instances for each
of the five Lavor instances. For this, it is decided uniformly at random if
a summand is multiplied by zero or one. Thus, the instances of TS2 are
sparser than the instances of TS1.
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Instance lav6 lav7 lav8 lav10 lav20

#atoms/#edges 6 / 13 7 / 16 8 / 20 10 / 28 20 / 70
domain [0, 3] [0, 4] [0, 4] [0, 5] [0, 9]

Table 4.3.: Lavor instances: Each instance is characterized by the number
of atoms, the number of edges between the atoms, and the
domain of each component ξi

k of an atom i.

Different Relaxation Strategies Applied to TS1

We consider four different linear relaxation strategies which we briefly
summarize. Relaxation strategy StandRelax follows Cafieri et al. [CLL10],
where each term is reformulated into terms of products of univariate
or bilinear/trilinear terms for which the formulas of their envelopes are
applied. QHullRelax additionally computes the convex envelopes for all
component-wise concave monomials by the algorithm Qhull [BDH96]. In
S-Relax all multilinear terms, in particular, the quadrilinear terms x1x2x3x4

are relaxed byS (4)
[l,u]. U-Relax followsS-Relax and further employs extended

space underestimators U f for the component-wise concave monomials
f (x) = −x3

1x2 and f (x) = −x2
1x2x3.

All computations were accomplished with SCIP 2.1.1 [Ach09] using
the LP solver CPLEX 12.3 [IBM12] on a 2.67 GHz INTEL X5650 with 96
GB RAM. QHullRelax uses Qhull 2012.1 [BDH96]. The time limit for all
computations is one hour.

All relaxation strategies are employed in a branch-and-bound frame-
work and the results concerning the bound obtained at the root node,
the final bound, and the number of iterations are displayed in Table 4.4.
Note that the optimal objective function value for all instances is zero.
Several observations can be made. First, the root node relaxations of
S-Relax andU-Relax are twice as good as the relaxations of StandRelax and
QHullRelax. As we start with lower bounds of zero for the variables in the
root node, StandRelax and QHullRelax, and S-Relax and U-Relax yield the
same lower bound. Changing the lower bounds to 1, for instance, reveals
that QHullRelax generates stronger bounds than StandRelax andU-Relax is
better than S-Relax.

Second, the final bounds derived by S-Relax and U-Relax are always
twice as good as the bound obtained by StandRelax and QHullRelax. This
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StandRelax QHullRelax S-Relax U-Relax

lav6 root -36,871 -36,871 -14,770 -14,777
1 hour -15,554 -21,727 -7,212 -6,333
#iter 14,406 750 13,182 18,147

lav7 root -141,278 -141,278 -56,698 -56,698
1 hour -69,754 -99,271 -32,564 -30,002
#iter 12,039 365 11,008 15,649

lav8 root -176,869 -176,869 -70,946 -70,946
1 hour -100,891 -138,822 -46,212 -43,218
#iter 10,090 231 8,839 12,689

lav10 root -602,754 -602,754 -241,694 -241,694
1 hour -423,748 -520,950 -184,078 -176,735
#iter 6,898 138 6,372 9,703

lav20 root -15,840,033 -15,840,033 -6,367,589 -6,367,589
1 hour -13,291,564 -14,557,815 -5,618,446 -5,529,058
#iter 2,690 44 2,192 3,360

Table 4.4.: Test set TS1: Comparison of the behavior of the relaxation
strategies concerning their root node relaxation, the final bound
(1 hour), and the number of iterations in the branching proce-
dure. All computations were stopped after one hour.

shows that the extended space relaxations are not only stronger but are
also solvable in a comparable time. For instance,U-Relax performs always
the highest number of iterations among all relaxation strategies. Besides
the stronger relaxation quality ofU-Relax, the higher number of iterations
is a reason why the final bound ofU-Relax compared to S-Relax is about 10
% better for the smaller Lavor instances and still 3 % better for the larger
instances.

It is noticeable that relaxation strategy QHullRelax returns always the
worst bound. This is due to the expensive computation of the convex
envelope by the Qhull algorithm. In order to analyze the possible im-
pact of the convex envelopes, we compare the bounds of StandRelax and
QHullRelax after the same number of iterations in Table 4.5. The bounds
of the two relaxations are almost the same although QHullRelax employs
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additional convex envelopes. An analysis of StandRelax and QHullRelax
shows that most of the constraints describing the additional convex en-
velopes are already implied by the constraints of StandRelax: The projec-
tion of the relaxation for the component-wise concave functions used in
StandRelax based on reformulation is almost identical to the relaxation by
the convex envelopes and even links the different functions to each other.

lav6 lav7 lav8 lav10 lav20

iter 750 365 231 138 44
StandRelax -21,730 -99,271 -138,822 -520,950 -14,557,815
QHullRelax -21,727 -99,271 -138,822 -520,950 -14,557,815

Table 4.5.: Final bounds by StandRelax and QHullRelax after the same num-
ber of iterations.

A Comparison of Standard Solvers Applied to TS2

In this subsection we compare the computational results of the state-
of-the-art solver BARON [TS05], the open-source solver SCIP [Ach09],
and SCIP with two separators based on the derived extended formula-
tions. The separators are add-ons for SCIP and can be downloaded from
http://www.ifor.math.ethz.ch/staff/balmarti. The separator Sim-
MultMonom is based on S (n)

[l,u] while the separator CWConcaveMonom
usesU f , where f is a monomial over a nonnegative domain. We denote
the corresponding algorithms S-SCIP andU-SCIP, respectively.

All computations were accomplished with BARON 11.1.0 and SCIP 3.0.0.
We used the default settings of the separators except for the frequency
which is set to 1 in order to apply the separators at every iteration. The
current implementation of the separators requires to reformulate the prob-
lems such that additional variables are introduced corresponding to the
monomials which are then linked to the monomials by additional con-
straints. We refer to this formulation as reformulated model formulation.
Both BARON and SCIP were tested on the reformulated model and the
expanded model formulation in Equation (4.16). As both algorithms per-
form better on the expanded model formulation, we subsequently state
only their results for this formulation.
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Table 4.6 shows the computational results for test set TS2 consisting of
50 randomly modified Lavor instances. We compare the algorithms in
terms of four criteria: The number of times an algorithm computes the
best lower or upper bound on the problem or is at most 0.01% worse than
the best bound. The dual gap is computed w.r.t. the best known feasible
solution over all algorithms as the arithmetic sum over all instances,
where the gap for each instance is either bounded by 100% or 1000%. See
the discussion of Table 3.2 in Section 3.2.3 for a detailed description of the
performance criteria.

BARON SCIP S-SCIP U-SCIP

#best primal/dual bound 18 / 0 10 / 0 22 / 3 22 / 50
dual gap ( 100%) 84.65% 97.73% 58.50% 55.19%
dual gap (1000%) 140.14% 256.41% 64.44% 60.52%

Table 4.6.: Test set TS2 (50 randomized Lavor instances): Comparison of
the number of times an algorithm computes the best lower or
upper bound or is in the range of the best bound, and the sum
of the dual gaps over all instances, where each summand is
either bounded by 100% or 1000%.

Good primal bounds are computed by the algorithms BARON, S-SCIP,
andU-SCIP. The primal bounds of all algorithms deviate in average not
more than 6% from the best primal bound. The best dual bounds are
obtained by U-SCIP for all cases, but the dual gaps show that S-SCIP
is almost as good as U-SCIP. In particular, the dual gaps by algorithms
S-SCIP and U-SCIP are two times better than the dual gap of BARON
and four times better than the dual gap of SCIP in the 1000% case. This
comparison shows that SCIP can benefit from the separators and that
using the separators in BARON may even yield better results.

Finally, we remark that the algorithms S-SCIP and U-SCIP introduce
variables corresponding to the monomials needed for the relaxationsS (n)

[l,u]

andU f . In contrast to test set TS1, not all of the corresponding monomials
occur in the problem formulation of TS2 so that the problem formulation
becomes much bigger than necessary. Nevertheless, the results show that
the proposed relaxations accelerate the computations significantly.

In this chapter we suggested an alternative approach to derive closed-
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form expressions for convex envelopes in an extended space. Our ap-
proach relies on the introduction of additional variables corresponding to
multilinear monomials. This allows us to reduce the obstacles involved
in the computation of the convex envelopes and to exploit the RLT theory
to provide explicit formulas for three classes of interesting functions f .
In fact, the extended formulations correspond to a simultaneous convex-
ification of f with the multilinear monomials. These relaxations can be
much stronger than the individual relaxations of the functions by their
convex and concave envelopes and can also accelerate computations as
shown in the last part of this chapter.
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CHAPTER 5

Simultaneous Convexification

In the previous chapter the convexification of several functions simulta-
neously was considered as an auxiliary approach to overcome the com-
binatorial difficulties involved in the determination of convex envelopes.
The corresponding fast computations (see Section 4.4) and the large dif-
ference in volume of the individual and the simultaneous relaxations (see
Example 4.22) motivated us to explicitly study the simultaneous convex
hull of the graph of several functions in this chapter.

Definition 5.1. Let f : D ⊆ Rn
→ Rm, x 7→ f (x) = ( f1(x), . . . , fm(x)), be a

vector-valued function. The convex hullQD[ f ] := conv({(x, z) ∈ Rn+m
| z =

f (x), x ∈ D}) of the graph of f over D is called the simultaneous convex hull
of f over D. The convex hull of the epigraph of f over D is denoted by
ED[ f ] := conv({(x, z) ∈ Rn+m

| z ≥ f (x), x ∈ D}).

Literature on the simultaneous convex hull of a vector of functions
over continuous domains is rare (cf. [Taw10]). Vectors of general functions
are hardly investigated while specific vectors of well-structured functions
are analyzed for decades. The most prominent class is the vector of all
monomials for n variables up to degree δ. One possibility to relax the
simultaneous convex hull of this vector is the Reformulation Lineariza-
tion Technique (RLT) presented in Section 4.1. If the subvector of all
multilinear monomials is considered, the RLT even provides the simul-
taneous convex hull. For the general vector of monomials and n = 1 the
moment curve (x1

1, x
2
1, . . . , x

δ
1) is obtained whose simultaneous convex hull

is known for arbitrary δ ∈ N and [l,u] ⊆ R due to [KS53]. For δ = 2
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the vector of functions consists of all quadratic monomials, which is of
particular importance for quadratically constrained quadratic programs.
Its simultaneous convex hull is known up to n = 3 [AB10]. Note that
all mentioned vectors are in some sense “complete”, e.g., they contain all
quadratic monomials formed by the variables x1, . . . , xn, so that certain
structural properties can be exploited to deduce QD[ f ].

Tawarmalani [Taw10] was the first to address the simultaneous convex
hull QD[ f ] of a vector f (x) = ( f1(x), . . . , fm(x)) of general functions over
continuous domains D. The author focuses on the set of extreme points
of QD[ f ] and provides criteria to exclude points from this set. If the set of
extreme points is the disjunctive union of subsets and the simultaneous
convex hull can be described restricted to these subsets, he suggests to
apply disjunctive programming techniques to derive extended formulations
for the overall simultaneous convex hull. Furthermore, it is shown that
the convex hull ED[ f ] of the epigraph of the vector f is obtained by
intersecting the convex hulls of the epigraphs of the individual functions
fi.

In contrast to Tawarmalani’s approach that mainly considers the si-
multaneous convex hull as an object on its own, we link the simultaneous
convex hull to convex envelopes and exploit the rich theory of convex
envelopes to derive properties of QD[ f ]. Initially, we extend the work
of Tawarmalani regarding the extreme points of QD[ f ] and show that the
union of the extreme points ofQD[

∑m
i=1 αi fi] ⊆ Rn+1 over all α ∈ Rm is dense

in the set of extreme points ofQD[ f ] ⊆ Rn+m w.r.t. the x-components. Then,
we focus on the generation of valid inequalities for QD[ f ]. Instead of us-
ing disjunctive programming as suggested by Tawarmalani, we follow an
alternative approach to directly derive valid inequalities in the original
space of QD[ f ]. The basis for this approach is our finding that the high
dimensional object QD[ f ] ⊆ Rn+m for f : D ⊆ Rn

→ Rm can be represented
via the intersection of the lower dimensional objectsQD[(

∑m
i=1 αi fi)] ⊆ Rn+1

with α ∈ Rm:

QD[ f ] =
⋂
α∈Rm

{(x, z) ∈ Rn+m
| (x, αᵀz) ∈ QD[(αᵀ f )]}

=
⋂
α∈Rm

{(x, z) ∈ Rn+m
| vexD[αᵀ f ](x) ≤ αᵀz, x ∈ D}.

(5.1)

This representation allows us to derive strong valid constraints for QD[ f ]
using the different methods for convex underestimation of a function
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αᵀ f : D ⊆ Rn
→ R, especially using the convex envelope (see Chapter 3).

A central question for the representation in Equation (5.1) is whether
all α ∈ Rm are needed to describe QD[ f ]. For D = [l,u] ⊆ Rn we identify
the subsets Cvex and Cpoly,T which are not necessary for QD[ f ]. The set
Cvex is the cone of all α for which αᵀ f is convex. For each triangulation
T of [l,u] we introduce a cone Cpoly,T, where α ∈ Cpoly,T if and only if
vex[l,u][αᵀ f ] is vertex polyhedral and its polyhedral subdivision of [l,u]
corresponds to T. If the two types of cones are closed, the interior points
can be excluded from the representation ofQD[ f ]. We explicitly determine
the cones Cvex and Cpoly,T for vectors of two and three univariate convex
functions. Note that results for these “simple” functions can have a
significant impact on computations since higher dimensional functions,
whose convex envelope are not known, are often reformulated as sums
and products of univariate functions. This reformulation often leads
to subsystems consisting of (convex) univariate functions as shown in
Example 1.1.

For the vector of two univariate convex functions we further prove
that all α ∈ R2, which are not in the interior of the cones Cvex and Cpoly,T,
are irredundant in the description of QD[ f ] via Equation (5.1), i.e., the
corresponding constraint vexD[αᵀ f ](x) ≤ αᵀz cannot be obtained by a
conic combination of other constraints vex[l,u][(αi)ᵀ f ](x) ≤ (αi)ᵀz, αi

∈ R2.
Besides this, a separation result is presented to cut off any given point
(x, z) < QD[ f ].

This chapter is organized as follows. We start with a literature overview
in Section 5.1. In Section 5.2 we relateQD[ f ] to convex envelopes and with
this, we obtain basic properties ofQD[ f ]. In Section 5.3 vectors of two and
three univariate convex functions are investigated and strong relaxations
are derived. In Section 5.4 we give computational evidence for the impact
of the new relaxations. The results of this chapter are joint work with
Dennis Michaels and Robert Weismantel.

5.1. Overview of Simultaneous Convexification

Initially, two specific vectors f of functions are considered for which the
simultaneous convex hull or at least tight relaxations are known: The
moment curve f (x) = (x2, x3, . . . , xδ), δ ∈ N≥2 and the vector of quadratic
functions f (x) = (x2

1, . . . , x
2
n, x1x2, . . . , xn−1xn). Then, we present the work

of Tawarmalani [Taw10] in detail, where properties of QD[ f ] are derived

149



5. Simultaneous Convexification

for general vectors f .

5.1.1. The Moment Curve

The simultaneous convex hull of the vector f (x) := (x2, . . . , xδ), δ ∈ N≥2,
over the domain [l,u] = [0, 1] is well-studied as an auxiliary object of
the truncated Hausdorff moment problem (cf. [KS53] and references therein):
Given a finite sequence of numbers {µ1, . . . , µδ}, the problem is to find a
positive Borel measure µ on [0, 1] such that the numbers µk, k = 1, . . . , δ,

are the k-th moments of µ, i.e., µk =
∫ 1

0
tk dµ(t) for all k = 1, . . . , δ. Kar-

lin and Shapeley [KS53] prove that such a measure exists if and only if
(µ1, . . . , µδ) ∈ Q[0,1][ f ]. Moreover, they provide a description of Q[0,1][ f ] via
the Hankel determinants

H2k(µ) =

∣∣∣∣∣∣∣∣∣
1 µ1 · · · µk
...

...
µk µk+1 · · · µ2k

∣∣∣∣∣∣∣∣∣ ,

H2k(µ) =

∣∣∣∣∣∣∣∣∣
µ1 − µ2 µ2 − µ3 · · · µk − µk+1
...

...
µk − µk+1 µk+1 − µk+2 · · · µ2k−1 − µ2k

∣∣∣∣∣∣∣∣∣ ,

H2k+1(µ) =

∣∣∣∣∣∣∣∣∣
µ1 µ2 · · · µk+1
...

...
µk+1 µk+2 · · · µ2k+1

∣∣∣∣∣∣∣∣∣ ,

H2k+1(µ) =

∣∣∣∣∣∣∣∣∣
1 − µ1 µ1 − µ2 · · · µk − µk+1
...

...
µk − µk+1 µk+1 − µk+2 · · · µ2k − µ2k+1

∣∣∣∣∣∣∣∣∣ .
Theorem 5.2 (Theorems 7.2, 7.3, 17.2, and 17.3 in [KS53]). Let f (x) :=
(x2, . . . , xδ), δ ∈ N≥2. Then,

Q[0,1][ f ] = {z ∈ Rδ
| Hk(z) ≥ 0,Hk(z) ≥ 0, k = 1, . . . , δ}.

A point z = (z1, . . . , zδ) ∈ Rδ is contained in the interior of Q[0,1][ f ] if and only
if all Hk(z) > 0 and Hk(z) > 0 for all k = 1, . . . , δ. A point z ∈ Rδ is contained
in the boundary of Q[0,1][ f ] if and only if there is an r with 1 ≤ r ≤ δ such that
Hk(z) > 0 and Hk(z) > 0 for all k = 1, . . . , r − 1, Hr(z) = 0 or Hr(z) = 0, and
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5.1. Overview of Simultaneous Convexification

Hk(z) = 0 and Hk(z) = 0 for all k = r + 1, . . . , δ.

The boundary of Q[0,1][ f ] can be described by the functions zδ(z), zδ(z) :
[0, 1]δ → R with

zδ(z) := zδ −
Hδ(z)

Hδ−2(z) and zδ(z) := zδ +
Hδ(z)

Hδ−2(z)

in the following way:

Theorem 5.3 (Section 18 in [KS53] ). Let f (x) := (x2, . . . , xδ), δ ∈ N≥2. The
functions zδ(z) and zδ(z) are independent of zδ, and z = (z1, . . . , zδ) ∈ Q[0,1][ f ] if
and only if zδ(z) ≤ zδ ≤ zδ(z).

Example 5.4. If δ = 2, then f (x) = (x2) and

z2(z) = z2 −
z2−z2

1
1 = z2

1 and z2(z) = z2 +
z1−z2

1 = z1

such that Q[0,1][(x2)] = {z ∈ R2
| z2

1 ≤ z2 ≤ z1}. If δ = 3, then f (x) = (x2, x3)
and

z3(z) = z3 −
z1z3−z2

2
z1

=
z2

2
z1

, z3(z) = z3 +
(−1+z1)z3+z2+z1z2−z2

1−z2
2

1−z1
=

z2+z1z2−z2
1−z2

2
1−z1

such that Q[0,1][(x2, x3)] =
{
z ∈ R3

|
z2

2
z1
≤ z3 ≤

z2+z1z2−z2
1−z2

2
1−z1

}
. �

In the subsequent sections we propose a relaxation for Q[l,u][ f ] when f
is a vector of two or three univariate convex functions which is similar
to the linear relaxation given by Karlin and Shapely for Q[l,u][ f ] when
f = (x2, . . . , xδ). They show that the convex set Q[0,1][ f ] is included in a
simplex Sδ ⊆ Rδ whose vertices vk = (vk

1, . . . , v
k
δ), k = 0, . . . , δ, are given

by vk
i = (k

i)/(δi), i = 1, . . . , δ. For instance, in case of δ = 2 the simplex
S2 exhibits the vertices v0 = (0, 0), v1 = (1/2, 0), and v2 = (1, 1). The
comparison of Q[0,1][(x2)] and S2 in Figure 5.1 reveals that the points vk

are chosen such that the segments (v0, v1) and (v1, v2) correspond to the
tangents on f (x) = (x2) at x = 0 and x = 1.

The presented theory can be extended to arbitrary intervals [l,u] ⊆
R by means of a nonsingular, affine transformation T. For this, it is

exploited that z′1 ∈ [l,u] if and only if z1 =
z′1−l
u−l ∈ [0, 1]. Based on this, the

transformation T represents each zi as the linearized version of
( z′1−l

u−l

)i
for
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5. Simultaneous Convexification

S2

Q[0,1][ f ]

v0 v1

v2

Figure 5.1.: Q[0,1][ f ] (black) with f (x) = (x2) and S2 (red).

all i = 1, . . . , δ, i.e.,

zi = Ti(z′) := 1
(u−l)i

i−1∑
j=0

(−1) j

(
i
j

)
l j z′i− j + (−1)ili

(u−l)i , i = 1, . . . , δ. (5.2)

Then, z ∈ Q[0,1][ f ] if and only z′ ∈ Q[l,u][ f ]. Moreover, replacing z by T(z) in
Q[0,1][ f ] leads to the combinatorial equivalent set Q[l,u][ f ] (cf. [SA90]).

To conclude the discussion of moment curves, we illustrate the potential
of the simultaneous convex hull Q[l,u][ f ] compared to the standard relax-
ation of the functions by convex and concave envelopes and compared to
the simplex Sδ.

Example 5.5. Let δ = 3, f (x) = (x2, x3), and [l,u] = [1, 2]. Usually the indi-
vidual functions are relaxed by the functions itself as convex envelopes
and by the secants of the functions as concave envelope yielding the
standard relaxation

RStd =
{
(z1, z2, z3) ∈ R3

| z2
1 ≤ z2 ≤ 3z1 − 2, z3

1 ≤ z3 ≤ 7z1 − 6
}
.

The affine transformation in Equation (5.2) evolves to z1

z2

z3

 =

 1 0 0
−2 1 0

3 −3 1

 z′ +

 −1
1
−1

 .
Using this transformation, the set Q[0,1][(x2, x3)] from Example 5.4 changes
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5.1. Overview of Simultaneous Convexification

to

Q[1,2][(x2, x3)] =
{
(z1, z2, z3) ∈ R3

|
z2

1−z2−z1z2+z2
2

z1−1 ≤ z3 ≤
4z2+2z1z2−4z2

1−z2
2

2−z1

}
.

Furthermore, the affine transformation of the simplex S3 by T is denoted
by S3

[1,2] and its outer description reads

12z1 − 8 ≤ 6z2 − z3, 5z1 − 2 ≤ 4z2 − z3,
−3z1 + 1 ≤ −3z2 + z3, −8z1 + 4 ≤ −5z2 + z3.

The volumes of the three convex relaxations of the moment curve are
computed using NIntegrate in Mathematica 8 [Wol08] and are given
in Table 5.1. The standard relaxation is improved by a factor of 8 by
the “simultaneous” linear relaxation S3

[1,2] and by a factor of 27 by the
simultaneous convex hullQ[1,2][(x2, x3)]. The numbers show that the linear
relaxation S3

[1,2] is a strong relaxation for Q[1,2][(x2, x3)]. �

RStd S3
[1,2] Q[1,2][(x2, x3)]

Volume 0.1500 0.0185 0.0055

Table 5.1.: Volume of the different convex relaxations for Q[1,2][(x2, x3)].

In Section 5.3 we use the moment curve as a reference to evaluate our
relaxations for the vectors of univariate convex functions.

5.1.2. Quadratic Monomials

Quadratically constrained quadratic programs have been a central topic
in the optimization community over the last decades (see [BST11, BS12]
for an overview). Among others, a classical approach to solve these
programs is to relax the vector of all possible quadratic monomials, i.e.,
f : [l,u] ⊆ Rn

→ R(n+1
2 ) with f (x) := (x2

1, . . . , x
2
n, x1x2, . . . , xn−1xn). For this,

each monomial xix j is associated with a new variable zi, j for all 1 ≤ i ≤ j ≤ n
such that

Q[l,u][ f ] = conv
{
(x, z) ∈ Rn+(n+1

2 ) | zi, j = xix j for all 1 ≤ i ≤ j ≤ n, x ∈ [l,u]
}
.
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5. Simultaneous Convexification

To keep notation short, we consider the case of [l,u] = [0, 1]n = [0, 1] and
remark that a nonsingular, affine transformation (similar to the one for
the moment curve) can be used to generalize the results.

We follow the work of Burer and Letchford [BL09] to present their char-
acterization of Q[0,1][ f ] which is mainly based on semidefinite program-
ming (SDP) and the Boolean quadric polytope (cf. [BL09] and references
therein). The key observation for an SDP-relaxation of Q[0,1][ f ] is that(

1
x

) (
1
x

)ᵀ
=

(
1 xᵀ

x xxᵀ

)
∈ PSD for all x ∈ Rn,

where (xxᵀ)i, j = xix j and X ∈ PSD denotes that X belongs to the convex
set of positive semidefinite matrices. To embed Q[0,1][ f ] in this context, a
symmetric matrix Z ∈ Rn×n is introduced, where Zi, j = zi, j, such that all
(x, z) ∈ Q[0,1][ f ] necessarily satisfy that

Ẑ :=
(

1 xᵀ

x Z

)
∈ PSD.

A second class of constraints of Q[0,1][ f ] are the facets of the Boolean
quadric polytope which is given as

B := conv
{
(x, z) ∈ {0, 1}n+(n

2) | zi, j = xix j for all 1 ≤ i < j ≤ n, x ∈ {0, 1}n
}
.

Let zB denote the subvector of z consisting only of the components zi, j with
1 ≤ i < j ≤ n. From the definition of B and Q[0,1][ f ] it becomes obvious
that B is the projection of Q[0,1][ f ] onto the (x, zB)-space and thus, all valid
constraints for B are also valid for Q[0,1][ f ]. In particular, large classes of
facets of B are also facets of Q[0,1][ f ]. However, the facet-description of
B is not known, in general, but in dimension n = 2 the Boolean quadric
polytope B is described by the first level RLT constraints (see Section 4.1)
which are equivalent to the convex hull of x1x2 (see Example 3.14), i.e.,

zi, j ≤ xi, zi, j ≤ x j, zi, j ≥ 0, zi, j ≥ xi + x j − 1. (1RLT)

We say Ẑ ∈ 1RLT if and only if the submatrix Z satisfies all constraints
in Equation (1RLT). With the help of these relaxations, Q[0,1][ f ] can be
completely characterized for n = 2.
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Theorem 5.6 (Theorem 2 in [AB10]). Let n = 2. Then,

Q[0,1][(x2
1, x

2
2, x1x2)] =

{
(x, z) ∈ R2+3

| Ẑ ∈ PSD ∩ 1RLT
}
.

There is also a complete description of Q[0,1][ f ] for n = 3 which is
based on so-called doubly nonnegative matrices. See [AB10] for details. For
larger dimensions n an explicit description for Q[0,1][ f ] is not known. Yet,
computational experiments in [Ans09] for dimension n = 30 show that the
relaxation quality with the constraint Ẑ ∈ PSD ∩ 1RLT is still reasonable.
The gap of the considered programs with quadratic objective functions
and box constraints is always less than 4%.

Burer and Letchford [BL09] provide a very general, but computation-
ally not tractable characterization for Q[0,1][ f ], which is a special case of
our subsequent results: They classify all valid inequalities aᵀx + γ ≤
αᵀz =

∑
1≤i≤ j≤n αi, jzi, j for Q[0,1][ f ] in terms of the convexity behavior of the

corresponding function αᵀ f .

Proposition 5.7 (Proposition 8 in [BL09]). Suppose that aᵀx + γ ≤ αᵀz is
valid for Q[0,1][ f ] and αᵀ f is convex. Then, aᵀx + γ ≤ αᵀz is valid for the
following convex set {

(x, z) ∈ [0, 1]n+(n+1
2 ) | Ẑ ∈ PSD

}
.

Proposition 5.8 (Proposition 9 in [BL09]). Suppose that aᵀx + γ ≤ αᵀz is
valid for Q[0,1][ f ] and αᵀ f is concave. Then, aᵀx + γ ≤ αᵀz is valid for the
following polytope{

(x, z) ∈ [0, 1]n+(n+1
2 ) | (x, zB) ∈ B , zi,i ≤ xi for all 1 ≤ i ≤ n

}
.

Proposition 5.9 (Proposition 10 and Corollary 3 in [BL09]). For n ≥ 2, let
V be the collection of all (a, α, γ) such that aᵀx + γ ≤ αᵀz is valid for Q[0,1][ f ]
and αᵀ f indefinite. Then,

Q[0,1][ f ] =


Ẑ ∈ PSD,

(x, z) ∈ [0, 1]n+(n+1
2 ) (x, zB) ∈ B , zi,i ≤ xi for all 1 ≤ i ≤ n,

aᵀx + γ ≤ αᵀz for all (a, α, γ) ∈ V

 .
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Propositions 5.7 through 5.9 indicate that all constraints needed to de-
scribe Q[0,1][ f ] can be categorized by the convexity pattern of the function
αᵀ f . In the following sections we show that these results hold for general
vectors of functions f and that the set of valid constraints for Q[0,1][ f ] can
be obtained from the convex envelopes of αᵀ f , α ∈ Rm.

5.1.3. General Functions: Inclusion Certificates

Recently, Tawarmalani [Taw10] presented first results for the simulta-
neous convex hull of general functions over continuous domains. The
author considers even a more general setting, namely the convex hull of
the set

MD := {(x, z) | H(x) ≤ z ≤ F(x), x ∈ D},

where H = (h1(x), . . . , hm(x)) with hi : Rn
→ R ∪ {−∞}, i = 1, . . . ,m, and

F = ( f1(x), . . . , fm(x)) with fi : Rn
→ R ∪ {∞}, i = 1, . . . ,m, and D ⊆ Rn is

a compact set. It is assumed that either hi(x) = −∞ ( fi(x) = +∞) for all
x ∈ D or hi ( fi) exhibits an affine minorant (majorant), and either hi > −∞
or fi < +∞ for all i = 1, . . . ,m, so that there is no line in MD.

The main focus of Tawarmalani’s work is to reduce the set of possible
extreme points of conv(MD). If this set can be expressed as disjunctive
union of subsets, then conv(MD) may be relaxed easier when restricted
to these subsets and disjunctive programming techniques can be used to
describe conv(MD) in an extended space.

Example 5.10. Given the set MD = {(x, y, z) ∈ R1+1+2
| z1 ≥ h1(x, y), z2 =

h2(x, y), x ∈ [lx,ux], y ∈ [ly,uy]}. If h2 is component-wise linear in x and h1

is component-wise concave in x, conv(MD) can be represented as

conv(MD) = conv

 ⋃
x∈{lx ,ux}

{(x, y, z) | z1 ≥ h1(x, y), z2 = h2(x, y), y ∈ [ly,uy]}

 . (5.3)

This is a well-known approach that we also applied in Chapter 4. The
representation in Equation (5.3) allows to compute the convex hulls
over the subsets Dl := {lx} × [ly,uy] and Du := {ux} × [ly,uy] separately.
For simplicity assume that conv(MDl ) = {v = (x, y, z)ᵀ | Alv ≤ bl} and
conv(MDu ) = {v = (x, y, z)ᵀ | Auv ≤ bu}. Then, an extended space descrip-
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5.1. Overview of Simultaneous Convexification

tion for conv(MD) is given by{
v | v = λlvl + λuvu,Alvl

≤ bl,Auvu
≤ bu, λl + λu = 1, λl, λu ≥ 0

}
=

{
v | v = ṽl + ṽu,Alṽl

≤ λlbl,Auṽu
≤ λubu, λl + λu = 1, λl, λu ≥ 0

}
.

�

To identify extreme points or to exclude potential candidates, Tawar-
malani adapts the following well-known criteria: A point (x0, z0) is no ex-
treme point of conv(MD) if it can be represented as convex combination of
points different from (x0, z0), i.e., (x0, z0) =

∑
k λk(xk, zk), (x0, z0) , (xk, zk) ∈

MD, 1 =
∑

k λk, and λk ≥ 0 for all k. Note that we can restrict the points
(xk, zk) to be of the form (x,H(x)) or (x,F(x)) with x ∈ D since these points
are the potential extreme points of conv(MD). Based on this, Tawarmalani
suggests alternatively to express the convex combination by a probability
measure µ(x0) with support xk and probabilities λk such that its expecta-
tion yields Eµ(x0)[x] =

∑
k λkxk = x0. Then, Eµ(x0)[H(x)] =

∑
k λkH(xk), for

instance.

Definition 5.11. Let D be a compact set. For each point x0
∈ D′ with

D′ ⊆ conv(D), an inclusion certificate is a measure µ(x0) with its support in
D such that Eµ(x0)[x] = x0.

In this setting a point x0 is a proper convex combination of points xk , x0

if and only if µ(x0) is not a Dirac measure, i.e., µ(xk) = 0 for all k , 0 and
µ(x0) = 1. The next result states sufficient conditions for a subset X ⊆ D
such that it is not contained in the projection of the extreme points of
conv(MD) onto the x-space.

Theorem 5.12 (Theorem 2.1 in [Taw10]). Let X ⊆ D be such that for each
x0
∈ X there exists a non Dirac measure µ(x0), that satisfies the following

conditions

1. Eµ(x0)[x] = x0,

2. Eµ(x0)[H(x)] ≤ H(x0) ≤ F(x0) ≤ Eµ(x0)[F(x)].

Then, cl conv(MD) = conv(MD) = conv(MD\X). Further, cl conv(MD) does
not contain any lines and the projection of the extreme points of conv(MD) onto
the space of x variables does not intersect with X.

This result follows immediately if both hi > −∞ and fi < ∞, so that
conv(MD) is not only closed but also bounded. Then, (x, z) is no extreme
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5. Simultaneous Convexification

point of conv(MD) if there are points xk
∈ D different from x and convex

multipliers λk ≥ 0 such that x =
∑

k λkxk, 1 =
∑

k λk, and
∑

k λkH(xk) ≤ z ≤∑
k λkF(xk). In other words, the inclusion certificate proves exclusion of a

point from the set of extreme points.
Tawarmalani applies inclusion certificates to show that the convex hull

of the graph of multilinear terms over a box [l,u] ⊆ Rn is generated by
the vertices of this box. Moreover, compositions of variable disjoint func-
tions are identified for which the inclusion certificates of the individual
functions are also valid for the composition. See Theorem 3.6 in [Taw10].
This result leads to the following useful corollary.

Corollary 5.13 (Corollary 3.9 in [Taw10]). Consider H(x) : D→ Rm
∪ {−∞}

and F(x) : D → Rm
∪ {∞} restricted to the compact domain D ⊆ Rn. For

each x0
∈ conv(D), let µ(x0) be the inclusion certificate associated with the

convex envelopes of hi and concave envelopes of fi, i.e., µ(x0) has its support in
D and Eµ(x0)(hi(x)) = vexconv(D)[hi](x0) and Eµ(x0)( fi(x)) = caveconv(D)[ fi](x0) for
all i ∈ {1, . . . ,m}. Let

CD =
{
(x, z) | vexconv(D)[hi](x) ≤ z ≤ caveconv(D)[ fi](x), i = 1, . . . ,m, x ∈ D

}
and MD = {(x, z) | H(x) ≤ z ≤ F(x), x ∈ D}. Then, Cconv(D) = conv(MD).
In particular, the relation holds, if D is a polytope, fi and hi have polyhedral
envelopes for all i, and the polyhedral subdivisions of D associated with vexD[hi]
and caveD[ fi] are the same.

This corollary can be applied for functions hi : [l,u] ⊆ Rn
→ R, i =

1, . . . ,m, which are submodular restricted to the vertices of D = [l,u] and
whose convex envelopes are polyhedral. Note that submodular functions
share the same inclusion certificate because the polyhedral subdivisions
of D associated with vexD[hi] are identical for all i and correspond to
Kuhn’s triangulation (see Section 3.1.1 and [TRX12]). This implies that the
convex hullED[h] of the epigraph of submodular functions h = (h1, . . . , hm)
is obtained by intersecting the convex hulls of the individual epigraphs.

A dual version of the concept of inclusion certificates, and especially
Theorem 5.12, is deduced via the following program

LD(a, α) : inf{aᵀx + (α+)ᵀH(x) + (α−)ᵀF(x) | x ∈ D},

where (a, α) ∈ Rn+m, α+
i = max{αi, 0} and α−i = min{αi, 0}. The nonconvex

problem LD(a, α) returns the same optimal objective function value as the
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convex program

HD(a, α) : inf{aᵀx + (α+)ᵀz + (α−)ᵀz | (x, z) ∈ conv(MD)}

since the extreme points of conv(MD) are of the form (x,H(x)) or (x,F(x)).
Therefore, an optimal solution x∗ of LD(a, α) corresponds to a potential
extreme point (x∗,H(x∗)) or (x∗,F(x∗)) of conv(MD). Moreover, let γ denote
the optimal objective function value of LD(a, α), then the constraint γ ≤
aᵀx+(α+)ᵀz+(α−)ᵀz corresponds to a supporting hyperplane on conv(MD).
If x∗ is the unique solution of LD(a, α), either (x∗,H(x∗)) or (x∗,F(x∗)) satisfies
the definition of an exposed point of conv(MD). An exposed point x is an
extreme point of a convex set for which a supporting hyperplane exists
such that the intersection of the convex set and the hyperplane reduces to
{x} (cf. [HUL01]).

Corollary 5.14 (Corollary 2.4 in [Taw10]). Assume that H(x) ≤ F(x) for all
x ∈ D. Let X ⊆ D and assume that for all x′ ∈ X there is no (a, α) ∈ Rn+m such
that x′ is the unique minimizer of LD(a, α). Then, conv(MD) = cl conv(MD\X).
More generally, if for all (a, α) that have a unique minimizer in LD(a, α), it is
true that LD(a, α) = LD\X(a, α), then conv(MD) = cl conv(MD\X).

The uniqueness of the minimizer in the corollary can be neglected if
LD(a, α) = LD\X(a, α) for all (a, α) ∈ Rn+m. Then, the sets MD and MD\X are
characterized by identical supporting hyperplanes so that conv(MD) =
cl conv(MD) = cl conv(MD\X) (see Remark 2.5, Corollary 2.6, and the com-
ments afterwards in [Taw10]). We illustrate the results by a simple exam-
ple.
Example 5.15. Consider the continuously differentiable function f : R →
R over D := [−1, 1] which is defined by f (x) := 0 for all x ≤ 0 and
f (x) := x2 for all x > 0. Let MD := {(x, z) ∈ R1+1

| f (x) ≤ z ≤ f (x)}
with conv(MD) = {(x, z) ∈ R1+1

| f (x) ≤ z ≤ 1/2 x + 1/2} = Q[−1,1][ f ] (see
Figure 5.2). The set of extreme points is given by {(x, f (x)) | x ∈ {−1}∪[0, 1]}
and the only extreme point which is not an exposed point is (0, f (0)). Let
X := {−1} ∪ (0, 1]. It follows that conv(MD\X) ( conv(MD) = cl conv(MD\X)
and LD(a, α) = LD\X(a, α) for all (a, α) ∈ Rn+m.

�

In the context of the simultaneous convex hull QD[ f ] we have H(x) =
F(x) = f (x) so that the program LD(a, α) evolves to

L̃D(a, α) : inf{aᵀx + αᵀ f (x) | x ∈ D}.
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conv(SD)

1 x0 (0, f (0))−1

1
z

Figure 5.2.: The point (0, f (0)) is an extreme point but no exposed point of
conv(MD).

The determination of the exposed and/or extreme points of conv(MD) =
QD[ f ] via the program L̃D(a, α) is a natural approach. It requires, however,
to solve infinitely many auxiliary, nonconvex problems. To simplify these
problems, the key idea in our approach is to exploit the knowledge of
convex envelopes. For this, assume that γ is the optimal solution of
L̃D(a, α) for given (a, α) ∈ Rn+m so that γ ≤ aᵀx + αᵀz or equivalently
−aᵀx + γ ≤ αᵀz is a valid inequality for QD[ f ]. We show in the following
section that for all valid inequalities it holds that−aᵀx+γ ≤ vexD[αᵀ f ](x) ≤
αᵀz and use this relation to derive the extreme points of QD[ f ].

5.2. Basic Properties

In this section we link the simultaneous convex hull to the theory of convex
envelopes and deduce basic properties of QD[ f ]. Initially, the extreme
points ofQD[ f ] are described and then valid constraints are characterized.
The corresponding results provide an inner as well as an outer description
for QD[ f ].

5.2.1. The Generating Set

For closed sets S ⊆ Rn it holds that the extreme points of conv(S) are
a subset of S and thus, the extreme points of the simultaneous con-
vex hull QD[ f ] = conv

({
(x, f (x)) ∈ Rn+m

| x ∈ D
})

are a subset of the set{
(x, f (x)) ∈ Rn+m

| x ∈ D
}
. This observation motivates the analysis ofQD[ f ]

in terms of the x variables for which we provide some definitions analo-
gous to the concepts for convex envelopes (see Definitions 3.4 and 3.8).
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Definition 5.16. The generating set of QD[ f ] is defined as

G(QD[ f ]) := {x ∈ Rn
| (x, f (x)) is an extreme point of QD[ f ]}.

Assume that D is a polytope. The simultaneous convex hull QD[ f ] is
called polyhedral if its generating set is finite. It is called vertex polyhedral
if G(QD[ f ]) = vert(D). The terms are analogously defined for ED[ f ].

Corollary 5.14 by Tawarmalani implies that for every x ∈ G(QD[ f ])
corresponding to an exposed point (x, f (x)) of QD[ f ] there exists (a, α) ∈
Rn+m such that x is the unique minimizer of the function aᵀx +αᵀ f (x) over
D or equivalently that (x, f (x)) is the unique minimizer of aᵀx + αᵀz over
QD[ f ]. This also implies that x is a generator of the convex envelope of
αᵀ f , i.e., x ∈ Gvex

D [αᵀ f ]. Conversely, if x ∈ Gvex
D [αᵀ f ], then x ∈ G(QD[ f ]).

Lemma 5.17. Let f : D ⊆ Rn
→ Rm be continuous over the compact, convex

set D. Then,

(i)
⋃
α∈Rm

Gvex
D [αᵀ f ] ⊆ G(QD[ f ]) and (ii) G(QD[ f ]) ⊆ cl

 ⋃
α∈Rm

Gvex
D [αᵀ f ]

 .
Proof. To prove (i), consider a fixed α ∈ Rm and choose x̄ ∈ Gvex

D [αᵀ f ].
Assume that x̄ < G(QD[ f ]) which implies the existence of xi

∈ D, xi , x̄,
and λi ≥ 0 with

∑
i λi = 1 such that (x̄, f (x̄)) =

∑
i λi(xi, f (xi)). Then,∑

i λiαᵀ f (xi) = αᵀ(
∑

i λi f (xi)) = αᵀ f (x̄). Thus, it follows that (x̄, αᵀ f (x̄)) =∑
i λi(xi, αᵀ f (xi)) which contradicts that x̄ ∈ Gvex

D [αᵀ f ].
Note that the ideas to prove (ii) are similar to the proof of Corollary 5.14.

But as the corresponding paper [Taw10] is not reviewed yet, we give our
own proof here. We assume that x̄ ∈ G(QD[ f ]) and (x̄, f (x̄)) is an exposed
point of QD[ f ], i.e., there are a ∈ Rn and α ∈ Rm so that (x̄, f (x̄)) is the
unique minimizer of the linear function aᵀx + αᵀz over QD[ f ]. Assume
that x̄ < Gvex

D [αᵀ f ]. Then, there are xi
∈ D, xi , x̄, and λi ≥ 0 with

∑
i λi = 1

such that (x̄, αᵀ f (x̄)) =
∑

i λi(xi, αᵀ f (xi)). We show that the latter statement
is not true. From (aᵀxi + αᵀ f (xi)) > (aᵀx̄ + αᵀ f (x̄)) for all xi, we obtain∑

i λi(aᵀxi + αᵀ f (xi)) > (aᵀx̄ + αᵀ f (x̄)). With x̄ =
∑

i λixi the later inequality
evolves to

∑
i λi(αᵀ f (xi)) > αᵀ f (x̄) which contradictsαᵀ f (x̄) =

∑
i λiαᵀ f (xi).

It remains to discuss x̄ ∈ G(QD[ f ]), where (x̄, f (x̄)) is an extreme point but
no exposed point of QD[ f ]. In this case there is no supporting hyperplane
on QD[ f ] such that (x̄, f (x̄)) is a unique minimizer. Therefore, x̄ is not
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5. Simultaneous Convexification

necessarily in
⋃
α∈Rm Gvex

D [αᵀ f ]. Strasziewicz’s Theorem (cf. [Roc70]) states
that exposed points of a closed convex set in Rn are dense in the extreme
points of this set. This property remains true for projections or subsets.
Let Sexps denote the subset of G(QD[ f ]), where for all x ∈ Sexps the point
(x, f (x)) is an exposed point of QD[ f ]. Then, Sexps is dense in G(QD[ f ]). We
showed that Sexps ⊆

⋃
α∈Rm Gvex

D [αᵀ f ] which implies G(QD[ f ]) = cl(Sexps) ⊆
cl(

⋃
α∈Rm Gvex

D [αᵀ f ]) and concludes the proof. �

Remark 5.18. It is not clear if there really is a gap between
⋃
α∈Rm Gvex

D [αᵀ f ]
and G(QD[ f ]). So far we are not aware of a counterexample.

In the following we illustrate possible applications of Lemma 5.17 in
order to determine the generating set of QD[ f ].
Example 5.19. Let f : D → R2, D := [l,u] ⊆ R2, with f1(x) := x2

1 + x1x2

and f2(x) := x1x2 + x2
2. We show that the generating set G(QD[ f ]) equals

the boundary of D. Consider an arbitrary α ∈ R2 and the corresponding
function gα := αᵀ f whose Hessian equals

Hgα (x) =

(
2α1 α1 + α2

α1 + α2 2α2

)
.

The determinant of the Hessian is given by −(α1 − α2)2. Therefore, the
Hessian cannot be positive semidefinite so that there is a concave direction
at each interior point of D which can be used as an underestimating
segment. We can thus infer from Observation 3.5 that the generating set
Gvex

D [gα] is always a subset of the boundary of D denoted by bd(D).
To show that

⋃
α∈Rm Gvex

D [gα] = bd(D), we consider two corner cases.
For α = (1, 0) the function gα = f1 is strictly convex along faces with
y ∈ {ly,uy}. Using Observation 3.6, we conclude Gvex

D [gα] = ([l1,u1] ×
{l2}) ∪ ([l1,u1] × {u2}). Analogously, for α = (0, 1) we obtain Gvex

D [gα] =
({l1} × [l2,u2]) ∪ ({u1} × [l2,u2]). Then,

⋃
α∈Rm Gvex

D [gα] = bd(D) = cl(bd(D))
which means G(QD[ f ]) = bd(D).

The geometric reason for G(QD[ f ]) = bd(D) is the linearity of both f1

and f2 over the line x2 = −x1 which implies that for all interior points x
of D there are points x1, x2 in the boundary of D and λ ∈ (0, 1) such that
(x, f1(x), f2(x)) = λ(x1, f1(x1), f2(x1)) + (1 − λ)(x2, f1(x2), f2(x2)). �

A second application of Lemma 5.17 is the next result.

Corollary 5.20. Let f : D ⊆ Rn
→ Rm, where f is continuous and D is a

compact, convex set. If there is an α ∈ Rm such that αᵀ f is strictly convex over
D, then G(QD[ f ]) = D.
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5.2. Basic Properties

Proof. As αᵀ f is strictly convex, Gvex
D [αᵀ f ] = D. With Lemma 5.17 we can

conclude D = Gvex
D [αᵀ f ] ⊆ G(QD[ f ]) ⊆ D and thus, G(QD[ f ]) = D. �

The converse of Corollary 5.20 is true for a vector of quadratic functions.
This is already indicated in Example 5.19, whereG(QD[ f ]) , D and there is
no α ∈ Rm such that αᵀ f is strictly convex. However, for general functions
the converse is not true as illustrated in the following example.

Example 5.21. Let f : D → R2, D := [0, 1], with f1(x) := −2.0942 x3 +
5.807 x4

− 6.2334 x5 + 3.0486 x6
− 0.569 x7 + 0.25 and f2(x) := 1.048 x3

−

0.72 x4
− 0.164 x5 + 0.161 x6 which are depicted together with their convex

envelopes in Figure 5.3. The convex envelopes read

vexD[ f1](x) =

{
−0.10 x + 0.250, x < 0.508,
f1(x), x ≥ 0.508,

vexD[ f2](x) =

{
f2(x), x ≤ 0.628,
0.493 x − 0.168, x > 0.628.

The generating sets of the convex envelopes are Gvex
D [ f1] = {0} ∪ [0.508, 1]

and Gvex
D [ f2] = [0, 0.628] ∪ {1} whose union is [0, 1] = D. Lemma 5.17

implies that G(QD[ f ]) = D.

0.4 0.6 0.8 1.00

0.1

0.2

0.2

0.3

x

f1(x)

vex[0,1][ f1](x)

(a) f1

0.4 0.6 0.8 1.00

0.1

0.2

0.2

0.3

x

f2(x)

vex[0,1][ f2](x)

(b) f2

Figure 5.3.: The functions f1 and f2 (black) together with their convex
envelopes (red).

But there is no α ∈ R2 such that αᵀ f is strictly convex over D: The

eigenvalues of gα := αᵀ f at x ∈ {0.1, 0.6, 0.9} read d2 gα

dx2 (0.1) = −0.675α1 +

0.539α2, d2 gα

dx2 (0.6) = 0.613α1 + 0.579α2, and d2 gα

dx2 (0.9) = 0.146α1 − 0.561α2.
As neither f1 nor f2 is strictly convex, it is sufficient to normalize α and
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5. Simultaneous Convexification

considerα1 ∈ {−1, 1}. Ifα1 = −1, then d2 gα

dx2 (0.9) ≥ 0 if and only ifα2 ≤ −0.26,

and d2 gα

dx2 (0.6) ≥ 0 if and only if α2 ≥ 1.05, so that there is no α2 ∈ R yielding

a convex function gα. If α1 = 1, then d2 gα

dx2 (0.9) ≥ 0 if and only if α2 ≤ 0.26,

and d2 gα

dx2 (0.1) ≥ 0 if and only if α2 ≥ 1.25, so that there is again no α2 ∈ R
yielding a convex function gα. Thus, there are no α ∈ R2 such that gα is
convex or strictly convex.

�

To conclude our considerations regarding the generating sets, we gen-
eralize Theorem 3.9, which deals with the polyhedrality of convex en-
velopes, to the higher dimensional objects QD[ f ] and ED[ f ]. Assume that
the domain D is a polytope and f is a vector of continuously differentiable
functions. Then, the following result allows us to focus on the vertices of
D when checking whether QD[ f ] is polyhedral.

Theorem 5.22 (Generalization of Theorem 3.9). Let f : D ⊆ Rn
→ Rm be

a vector of continuously differentiable functions and D be a polytope. The set
QD[ f ] is polyhedral if and only if QD[ f ] is vertex polyhedral. The same is true
for ED[ f ].

Proof. If QD[ f ] is vertex polyhedral, it is also polyhedral. For the con-
verse direction we use some ideas of the proof of Lemma 5.17. As all
extreme points of QD[ f ] are exposed points, we have that G(QD[ f ]) =⋃
α∈Rm Gvex

D [αᵀ f ]. Moreover, polyhedrality of QD[ f ] induces finiteness of
G(QD[ f ]) and thus, Gvex

D [αᵀ f ] is finite for all α ∈ Rm. Since Gvex
D [αᵀ f ] is

finite, vexD[αᵀ f ] is polyhedral. By Theorem 3.9, vexD[αᵀ f ] is also ver-
tex polyhedral and Gvex

D [αᵀ f ] = vert(D) for all α ∈ Rm. This implies
G(QD[ f ]) =

⋃
α∈Rm Gvex

D [αᵀ f ] = vert(D) and shows that QD[ f ] is vertex
polyhedral. �

Similar to the work of Tawarmalani [Taw10], the derived properties of
the generators can be used in a disjunctive programming approach to de-
termine QD[ f ] in an extended space (see Example 5.10). This approach is
appropriate ifQD[ f ] restricted to the disjunctive subsets of extreme points
can be explicitly described. Moreover, if the generating set is finite, com-
binatorial software like QHull [BDH96], PORTA [CL07], or polymake [GJ00]
can be utilized to compute a complete outer description of QD[ f ]. If the
generating set is infinite, comparable algorithms are not available. To
overcome these obstacles, we suggest an alternative approach based on
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5.2. Basic Properties

the knowledge of convex envelopes which directly aims at the computa-
tion of strong constraints in the original space of QD[ f ].

5.2.2. Valid Inequalities

In this section we show that (x, z) ∈ QD[ f ] if and only if vexD[αᵀ f ](x) ≤ αᵀz
for all α ∈ Rm. Our point of departure is the following elementary lemma.

Lemma 5.23. Let C ⊆ Rn+m be a closed, convex set in the (x, z)-space Rn+m such
that for all µ > 0 and (x, z) ∈ C it holds that (x, µz) ∈ C. Choose an arbitrary
subset V ⊆ C with conv(V) = C. For each α ∈ Rm

≥0 we define Cα := {(x, z) ∈
Rn+m

| (x, αᵀz) ∈ conv(Vα)}, where Vα := {(v, αᵀw) ∈ Rn+1
| (v,w) ∈ V}.

Then,

C =
⋂
α∈Rm

≥0

Cα.

Proof. “⊆”: Let (x̄, z̄) ∈ C. Then, (x̄, z̄) =
∑

k λk(vk,wk) for some λk ≥ 0
with

∑
k λk = 1 and some (vk,wk) ∈ V. Thus, for each α ∈ Rm

≥0 we have
(vk, αᵀwk) ∈ Vα and

αᵀz̄ =

m∑
j=1

α jz̄ j =

m∑
j=1

α j

(∑
k

λkwk
j

)
=

∑
k

λk

m∑
j=1

α jwk
j =

∑
k

λk (αᵀwk).

Therefore, (x̄, αᵀz̄) ∈ conv(Vα) and hence, (x̄, z̄) ∈ Cα.

“⊇”: Assume that there is an (x̄, z̄) ∈
(⋂

α∈Rm
≥0

Cα

)
\ C. As C is a closed,

convex set, there exists a hyperplane {(x, z) | aᵀx+αᵀz = γ} for some a ∈ Rn,
α ∈ Rm, and γ ∈ R, which separates the point (x̄, z̄) from C (cf. [HUL01,
Theorem 4.1.1]), i.e.,

aᵀx + αᵀz ≥ γ, for all (x, z) ∈ C, and aᵀx̄ + αᵀz̄ < γ.

Note that α ≥ 0 since the z-components are not bounded from above in
C. In particular, aᵀx + αᵀz ≥ γ is valid for all (x, z) ∈ V ⊆ C. Therefore,
identifying αᵀz with a new variable z̃, we obtain that aᵀx + z̃ ≥ γ is
a valid inequality for conv(Vα), but it is not satisfied by (x̄, αᵀz̄). This
shows that aᵀx + z̃ ≥ γ separates (x̄, αᵀz̄) from conv(Vα) and implies that
aᵀx + αᵀz ≥ γ separates (x̄, z̄) from Cα. This contradicts the assumption
that (x̄, z̄) ∈

⋂
α∈Rm Cα. �
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5. Simultaneous Convexification

This lemma allows us to derive an alternative representation of the
convex hull ED[ f ] of the epigraph of a vector of functions in terms of
convex envelopes. Throughout this chapter we assume that D ⊆ Rn is
a full-dimensional, compact, convex set and that each function fi, i =
1, . . . ,m, is continuous over D. Our assumptions imply that ED[ f ] is a
closed, convex set so that we can describe ED[ f ] with Lemma 5.23 by
setting C = ED[ f ] = conv({(x, z) ∈ Rn+m

| z ≥ f (x), x ∈ D}) and V = {(x, z) ∈
Rn+m

| z ≥ f (x), x ∈ D}.

Corollary 5.24. Let f : D ⊆ Rn
→ Rm, where f is continuous and D is a

compact, convex set. Then,

ED[ f ]
(a)
=

⋂
α∈Rm

≥0

{(x, z) ∈ Rn+m
| (x, αᵀz) ∈ ED[(αᵀ f )]}

(b)
=

⋂
α∈Rm

≥0

{(x, z) ∈ Rn+m
| αᵀz ≥ vexD[αᵀ f ](x), x ∈ D}.

Proof. Equation (a) is a direct consequence of Lemma 5.23, where we set
C = ED[ f ], V = {(x, z) ∈ Rn+m

| z ≥ f (x), x ∈ D}, and Vα = {(x,w) ∈ Rn+1
|

w ≥ αᵀ f (x), x ∈ D} so that conv(Vα) = ED[(αᵀ f )]. Equation (b) follows
from the fact ED[(αᵀ f )] = {(x, z̃) ∈ Rn+1

| vexD[αᵀ f ](x) ≤ z̃, x ∈ D}. �

The representation of ED[ f ] in Corollary 5.24 is closely related to the
supporting hyperplanes of ED[ f ]. For a given α ∈ Rm

≥0 the constraint
αᵀz ≥ vexD[αᵀ f ](x) comprises all a ∈ Rn and γ ∈ R so that aᵀx + αᵀz ≥ γ
is a valid inequality for QD[ f ] because αᵀz ≥ vexD[αᵀ f ](x) ≥ −aᵀx + γ for
all (x, z) ∈ QD[ f ]. Supporting hyperplanes or strong valid inequalities for
ED[ f ] are generally not known. Thus, Corollary 5.24 offers one possibility
to determine ED[ f ] by exploiting the knowledge of convex envelopes.

The description ofED[ f ] in Corollary 5.24 can be used to derive a similar
description forQD[ f ]. For this, we link the two objects to each other. Note
that for m = 1 the convex hull QD[ f ] can be described by

QD[ f ] = {(x, z) ∈ Rn+1
| vexD[ f ](x) ≤ z, caveD[ f ](x) ≥ z, x ∈ D}

= {(x, z) ∈ Rn+1
| vexD[ f ](x) ≤ z, vexD[− f ](x) ≤ −z, x ∈ D}

= {(x, z) ∈ Rn+1
| (x, z) ∈ ED[ f ]} ∩ {(x, z) ∈ Rn+1

| (x,−z) ∈ ED[− f ]}.
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We generalize this representation to higher dimensions m. For this, we
introduce the diagonal matrix Iβ with entries (Iβ)i,i = βi for all i = 1, . . . ,m.
Then, for a given z ∈ Rm the product Iβz results in a vector with (Iβz)i = βizi,
i = 1, . . . ,m. Using this notation, we verified that

QD[ f ] =
⋂

β∈{−1,1}m

{
(x, z) ∈ Rn+m

| (x, Iβz) ∈ ED[Iβ f ]
}
. (5.4)

Therefore, one can describeQD[ f ] by determining all ED[Iβ f ], β ∈ {−1, 1}m.
For instance, Tawarmalani [Taw10] proved for the vector of submodular
functions f (x) = ( f1, . . . , fm) that ED[Iβ f ] with β = (1, . . . , 1)ᵀ is obtained by
intersecting the convex hulls of the individual epigraphs {(x, z) ∈ Rn+m

|

zi ≥ fi(x), x ∈ D}. Alternatively, we use the representation of QD[ f ] in
Equation (5.4) to extend Corollary 5.24 for QD[ f ].

Corollary 5.25. Let f : D ⊆ Rn
→ Rm, where f is continuous and D is a

compact, convex set. Then,

QD[ f ]
(a)
=

⋂
α∈Rm

{(x, z) ∈ Rn+m
| (x, αᵀz) ∈ QD[(αᵀ f )]}

(b)
=

⋂
α∈Rm

{(x, z) ∈ Rn+m
| αᵀz ≥ vexD[αᵀ f ](x), x ∈ D}.

From Corollaries 5.24 and 5.25 we obtain that ED[ f ] and QD[ f ] can be
represented via lower-dimensional objects using the convex envelopes
vexD[αᵀ f ], α ∈ Rm. Nevertheless, the representation implies the knowl-
edge of vexD[αᵀ f ] for all α ∈ Rm. We thus address two natural questions
in the following: Which α ∈ Rm are actually needed in the description of
ED[ f ] and QD[ f ]? Which α ∈ Rm generate tight relaxations of ED[ f ] and
QD[ f ]?

To answer the first question, we assume that D = [l,u] and collect all α
which either lead to a convex function αᵀ f or to functions, whose convex
envelope is vertex polyhedral and generated by the same triangulation.
For this, let T denote the set of all triangulations T of D. Then,

Cvex := {α ∈ Rm
| αᵀ f is convex},

Cpoly,T :=
{
α ∈ Rm vexD[αᵀ f ](x) is vertex polyhedral and its

polyhedral subdivision of [l,u] corresponds to T

}
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for all T ∈ T . The sets Cvex and Cpoly,T are cones which can be empty,
e.g., Cvex = ∅ in Example 5.21. The motivation for the definition of these
sets is the following: Let α1, α2, α ∈ Cvex, for example, such that there are
µ1, µ2 > 0 with µ1α1 + µ2α2 = α. Recall that for convex functions αᵀ f it
holds that vexD[αᵀ f ] = αᵀ f . Then,

µ1 vexD[(α1)ᵀ f ]+µ2 vexD[(α2)ᵀ f ] = µ1(α1)ᵀ f +µ2(α2)ᵀ f = αᵀ f = vexD[αᵀ f ].

This implies that the constraint vexD[αᵀ f ](x) ≤ αᵀz is a conic combination
of the constraints vexD[(αi)ᵀ f ](x) ≤ (αi)ᵀz, i = 1, 2, and therefore, it is not
needed in the description of QD[ f ] by Corollary 5.25. A similar argumen-
tation holds for Cpoly,T and implies that the interior points of the cones are
not necessary for QD[ f ] (if the cones are closed). We obtain the following
lemma.

Lemma 5.26. Let f : D ⊆ Rn
→ Rm, where f is continuous, D = [l,u], and

T denotes the set of triangulations of D. Assume that the cones Cvex and Cpoly,T,
T ∈ T , are closed and define M := Rm

\ (int(Cvex) ∪
⋃

T∈T int(Cpoly,T)). Then,

QD[ f ] =
⋂
α∈M

{(x, z) ∈ Rn+m
| αᵀz ≥ vexD[αᵀ f ](x), x ∈ D}.

In the next example we compute Cvex and Cpoly,T for f = (x2
1, x

2
2, x1x2)ᵀ

whose simultaneous convex hull was derived by Anstreicher and Bu-
rer [AB10] and was discussed in Section 5.1.2.

Example 5.27. Let f : R2
→ R3 with f = (x2

1, x
2
2, x1x2)ᵀ be restricted to the

box D := [0, 1]2
⊆ R2. To determine Cvex, we analyze the Hessian of each

function αᵀ f = α1x2
1 + α2x2

2 + α3x1x2, α ∈ R3, which reads

Hαᵀ f (x) =

(
2α1 α3

α3 2α2

)
.

Thus, Cvex = {α ∈ R3
| Hαᵀ f (x) � 0} corresponds to the closed cone of all

positive semidefinite matrices, whose boundary consists of all positive
semidefinite matrices having at least one eigenvalue equal to zero. The
constraints vexD[αᵀ f ](x) ≤ αᵀz with α ∈ Cvex comprise all valid linear
constraints aᵀx + γ ≤ αᵀz for QD[ f ] such that αᵀ f is convex. According to
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Proposition 5.8 these constraints are also valid for{
(x, z) ∈ [0, 1]2+(2+1

2 ) | Ẑ ∈ PSD
}
.

To determine the cones Cpoly,T over D = [0, 1]2, we consider the two trian-
gulations of [0, 1]2 resulting in Cpoly,T1 = cone({(−1, 0, 0), (0,−1, 0), (0, 0, 1))
and Cpoly,T2 = cone({(−1, 0, 0), (0,−1, 0), (0, 0,−1)). Note that the union of
Cpoly,T1 and Cpoly,T2 is again a cone. The constraints vexD[αᵀ f ] ≤ αᵀz corre-
sponding to the extreme rays of the cones read

(−1, 0, 0) : −x1 ≤ −z1,1, (0, 0, 1) : max{0, x1 + x2 − 1} ≤ z1,2,
(0,−1, 0) : −x2 ≤ −z2,2, (0, 0,−1) : max{−x1,−x2} ≤ −z1,2,

which is equivalent to zi,i ≤ xi, i = 1, 2, and (x, z1,2) = (x, zB) ∈ B, where B
is the Boolean quadric polytope introduced in Section 5.1.2. This observa-
tion extends Proposition 5.8, which states that all inequalities aᵀx+γ ≤ αᵀz,
which are valid for Q[0,1][ f ] and where αᵀ f is concave, are also valid for
the set {

(x, z) ∈ [0, 1]2+(2+1
2 ) | (x, zB) ∈ B , zi,i ≤ xi for all 1 ≤ i ≤ n

}
.

The inequalities aᵀx + γ ≤ αᵀz, which are valid for Q[0,1][ f ] and where
vexD[αᵀ f ] is vertex polyhedral, are not only valid but describe this set
completely. This strengthening is achieved because concave functions
αᵀ f are a subset of functions αᵀ f whose convex envelope is vertex poly-
hedral. �

We observed in the example that the union of the cones Cpoly,T over all
triangulations T is a cone again. However, this is not true in general as
we show in the following example.
Example 5.28. Let f : D ⊆ R2

→ R2 with f1(x) := (x3
1 − 2x1)(x2

2 − 0.5),
f2(x) := −0.18x1x2, and D := [−2, 1] × [−0.75, 0.95]. In Example 4.11 we
showed that f1 is vertex polyhedral over D. The function f2 is vertex
polyhedral since it is component-wise concave. Assume that the convex
envelope of f1 + f2 is vertex polyhedral so that vexD[ f1 + f2](x) would be
equivalent to

vexD[ f1 + f2](x) = max
{

1
400 (79x1 − 176x2 − 182) , 1

2000 (463x1 − 760x2 − 888)
}
.

However, at the point x̄ = (−0.74,−0.25) we observe ( f1 + f2)(x̄) ≈ −0.50 <
−0.49 ≈ vexvert(D)[ f1 + f2](x̄) which contradicts vertex polyhedrality of
vexD[ f1 + f2]. In particular, this example shows that the convex enve-
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lope of the sum of two functions, having a vertex polyhedral convex
envelope, is not necessarily vertex polyhedral. �

5.3. Vectors of Univariate Convex Functions

A first step towards the application of the proposed concepts is presented
in this section, where we explicitly derive the cones Cvex and Cpoly for
vectors f of two and three univariate convex functions satisfying specific
assumptions. Note that we omit the index T in Cpoly,T, T ∈ T , as there
is only one triangulation of univariate boxes. The cones Cvex and Cpoly

are then used to determine necessary and sufficient sets of α ∈ Rm such
that QD[ f ] is completely described via the constraints vexD[αᵀ f ](x) ≤ αᵀz.
Based on this, we suggest a small set of α such that the corresponding
constraints vexD[αᵀ f ](x) ≤ αᵀz yield a tight relaxation of QD[ f ].

Our analysis relies on the ability to describe convex envelopes of uni-
variate functions αᵀ f , whose convexity behavior strongly depends on α.
Although univariate functions may seem to be the most simple case, they
often occur in the reformulation process of more complicated functions
as indicated in Example 1.1. Their convex envelopes are only known
for specific classes of univariate functions (e.g., see [LP03]), whereas no
explicit descriptions for general functions are available. However, there
are constructive procedures based on the location of the local extreme
points and the inflection points [McC76, MF95], which we use to derive
the convex envelopes of functions with one or two inflection points. This
allows us to analyze vectors of two univariate convex functions, where
αᵀ f exhibits at most one inflection point, and vectors of three univari-
ate convex functions,where αᵀ f exhibits at most two inflection points, in
Subsections 5.3.1 and 5.3.2, respectively.

5.3.1. Two Univariate Convex Functions

Let f : [l,u] ⊆ R → R2 be a vector of two univariate functions such
that αᵀ f possesses at most one inflection point over [l,u] for all α ∈
R2. Thus, there are four possible types of functions αᵀ f : (i) convex,
(ii) concave, (iii) convex-concave, i.e., first strictly convex, then strictly
concave, and (iv) concave-convex, i.e., first strictly concave, then strictly
convex. The convex envelopes of the first two types are generally known.
The convex envelope of a convex function is the function itself and the
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5.3. Vectors of Univariate Convex Functions

convex envelope of a concave function is the segment connecting (l, f (l))
and (u, f (u)). For functions of type (iii) and (iv) McCormick [McC76]
and Maranas and Floudas [MF95] describe the construction of the convex
envelopes. Using their ideas, we formally analyze certain well-known
structural properties of these envelopes in order to determine Cvex and
Cpoly.

Observation 5.29 (convex-concave case). Let g : [l,u] ⊆ R→ R be a twice
continuously differentiable function and w ∈ (l,u) such that g′′(x) > 0 for all
x ∈ [l,w), g′′(w) = 0, and g′′(x) < 0 for all x ∈ (w,u]. Consider the equation

g′(x) =
g(u)−g(x)

u−x . (5.5)

The following holds: (i) Let x∗ ∈ [l,u) be a solution of Equation (5.5), then
g′′(x∗) > 0. (ii) If Equation (5.5) exhibits a solution x∗ ∈ [l,u], then the solution
is unique. (iii) Equation (5.5) possesses a solution x∗ ∈ [l,u) if and only if
g′(l) ≤ g(u)−g(l)

u−l . Moreover, if Equation (5.5) exhibits a solution x∗ ∈ [l,u], then

vex[l,u][g](x) =

{
g(x), x < x∗,
g′(x∗) (x − x∗) + g(x∗), x ≥ x∗.

If there is no x∗ ∈ [l,u) satisfying Equation (5.5), then vex[l,u][g](x) =
g(u)−g(l)

u−l (x−
l) + g(l).

The observation is illustrated in Figure 5.4. Given a convex-concave
function g, the convex envelope is initially identical to the function over
[l, x∗], then it is given by the segment connecting (x∗, g(x∗)) and (u, g(u)).
Moreover, the point x∗ is the unique point such that the slope of the
segment is equal to the slope of the tangent on g. In particular, g is
strictly convex at x∗. Analogous results can be derived for concave-convex
functions.

To bound the number of inflection points of αᵀ f by one, we investigate
the roots of (αᵀ f )′′(x) = α1 f ′′1 (x) + α2 f ′′2 (x) = 0 over x ∈ [l,u] which is
equivalent toα1 = −α2 f ′′2 (x)/f ′′1 (x) for strictly convex functions f1 with f ′′1 (x) >
0 for all x ∈ [l,u]. There is at most one inflection point if f ′′2 (x)/f ′′1 (x) is strictly
monotone increasing, i.e., ( f ′′2 (x)/f ′′1 (x))′ > 0.

In our setting functions g = αᵀ f are considered so that Equation (5.5)
for convex-concave functions and the analogous equation for concave-
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l x∗ u

vex[l,u][g](x)

g(x)

Figure 5.4.: A convex-concave function (black) and the parts of its convex
envelope: The convex envelope (red) is the function itself until
x∗, then it is given by the tangent on the function at x∗.

convex functions read

α1 f ′1 (x) + α2 f ′2 (x) =
(α1 f1(u)+α2 f2(u))−(α1 f1(x)+α2 f2(x))

u−x ,

α1 f ′1 (x) + α2 f ′2 (x) =
(α1 f1(x)+α2 f2(x))−(α1 f1(l)+α2 f2(l))

x−l .

Normalizing α to α2 = −1 in the first equation and α2 = 1 in the second
equation, we can solve the resulting equations forα1 and obtainα1 = Tu(x)
and α1 = −Tl(x), respectively, where

Tl(x) :=


f ′′2 (l)/f ′′1 (l), x = l,
f2(l)− f2(x)−(l−x) f ′2 (x)
f1(l)− f1(x)−(l−x) f ′1 (x) , x > l,

Tu(x) :=

 f2(u)− f2(x)−(u−x) f ′2 (x)
f1(u)− f1(x)−(u−x) f ′1 (x) , x < u,
f ′′2 (u)/f ′′1 (u), x = u.

We exploit these terms, for instance, to show that g = αᵀ f with α =
(Tu(x̄),−1) and x̄ ∈ (l,u] is convex-concave and that the unique point x∗ of
Observation 5.29 and Figure 5.4 is identical to x̄. Note that both the numer-
ator and the denominator of the functions Tl(x) and Tu(x) are nonnegative
if f1 and f2 are strictly convex since they express the underestimation of a
convex function by its tangent, e.g., f1(l) ≥ f1(x) + (l − x) f ′1 (x).

The previous considerations are now applied to determine the convex-
ity patterns and the convex envelopes of functions αᵀ f . For this, it is
sufficient to consider two cases of normalized α-vectors in order to de-
duce the convex envelope of αᵀ f for all α ∈ R2, namely α2 = −1 and
α2 = 1.

Lemma 5.30 (Case 1: α2 = −1). Let f : [l,u] ⊆ R → R2 be a vector of three
times continuously differentiable functions such that f ′′i (x) > 0, i = 1, 2, and
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( f ′′2 (x)/f ′′1 (x))′ > 0 for all x ∈ [l,u]. Consider gα := α1 f1 + α2 f2 with α1 ∈ R,
α2 = −1. The following properties of gα hold over [l,u]:

(a) It is convex for all α1 ≥ f ′′2 (u)/f ′′1 (u), concave for all α1 ≤ f ′′2 (l)/f ′′1 (l), and
convex-concave for α1 ∈ ( f ′′2 (l)/f ′′1 (l) , f ′′2 (u)/f ′′1 (u)).

(b) The term Tu(x) is continuous, strictly monotone increasing over [l,u], and
Tu(l) > f ′′2 (l)/f ′′1 (l). For all α1 ∈ (Tu(l),Tu(u)) there is a unique x̄ ∈ (l,u) with
α1 = Tu(x̄) such that

vex[l,u][gα](x) =

{
gα(x), x ≤ x̄,
(gα)′(x̄) (x − x̄) + gα(x̄), x > x̄.

(c) For α1 ≤ Tu(l) the convex envelope of gα is vertex polyhedral.

Proof. (a): Convexity is settled by the second partial derivative of gα which
readsα1 f ′′1 (x)− f ′′2 (x). This expression is greater or equal to zero if and only
if α1 ≥ f ′′2 (x)/f ′′1 (x). As f ′′2 (x)/f ′′1 (x) is strictly increasing, the convexity/concavity
characteristics follow.

(b): If α1 ∈ ( f ′′2 (l)/f ′′1 (l) , f ′′2 (u)/f ′′1 (u)), then gα satisfies the assumptions of
Observation 5.29 and Equation (5.5) evolves to

α1 f ′1 (x) − f ′2 (x) =
(α1 f1(u)− f2(u))−(α1 f1(x)− f2(x))

u−x

which is satisfied if and only if α1 = Tu(x). Thus, for α1 = Tu(x̄), x̄ ∈ [l,u],
we infer from Observation 5.29 that Equation (5.5) has a unique solution
x∗ = x̄ and (gα)′′(x̄) > 0. In particular, if x̄ = l and ᾱ = (Tu(l),−1), then
(gᾱ)′′(l) > 0 which implies that gᾱ is not concave. Then, Tu(l) = ᾱ1 >
f ′′2 (l)/f ′′1 (l) since gα is concave for all α = (α1,−1) with α1 ≤ f ′′2 (l)/f ′′1 (l). The
representation of the convex envelope follows from Observation 5.29.

To verify continuity of Tu(x), it is sufficient to show that Tu(x)→ f ′′2 (u)/f ′′1 (u)

for x → u since all involved terms are continuous and x = u is the only
root of the denominator. We apply L’Hôpital’s rule to determine the limit
of Tu(x) in u because the limit of both the numerator and denominator are
zero if x → u (cf. [Wal04]). Then, limx→u Tu(x) = [−(u − x) f ′′2 (u)]/[−(u −
x) f ′′1 (u)] = f ′′2 (u)/ f ′′1 (u). To show that Tu(x) is strictly monotone increasing,
we consider the first derivative of Tu(x) and exploit that (gα)′′(x) > 0 if
α1 = Tu(x). Let a and b denote the numerator and denominator of Tu(x),
respectively. Hence, (Tu)′(x) = a′b−ab′

b2 > 0 for all x ∈ (l,u) if and only if
a′b − ab′ = −(u − x) f ′′2 (x)b + a(u − x) f ′′1 (x) > 0 for all x ∈ (l,u). One can
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check that a, b > 0 for all x ∈ (l,u) because fi(x) + (u− x) f ′i (x) is the tangent
on the strictly convex function fi at x and thus less than fi(u). Therefore,
−(u − x) f ′′2 (x)b + a(u − x) f ′′1 (x) > 0 is equivalent to a

b f ′′1 (x) − f ′′2 (x) > 0 and
thus, equivalent to (gα)′′(x) > 0.

(c): For α1 ∈ [ f ′′2 (l)/f ′′1 (l) , Tu(l)] the convex envelope of gα is given by its
secant and thus, vertex polyhedral. For α1 < f ′′2 (l)/f ′′1 (l) the function gα is
concave and its convex envelope is vertex polyhedral. �

In case of α2 = 1 analogous properties can be shown.

Lemma 5.31 (Case 2: α2 = 1). Let f : [l,u] ⊆ R → R2 be a vector of three
times continuously differentiable functions such that f ′′i (x) > 0, i = 1, 2, and
( f ′′2 (x)/f ′′1 (x))′ > 0 for all x ∈ [l,u]. Consider gα := α1 f1 + α2 f2 with α1 ∈ R,
α2 = 1. The following properties of gα hold over [l,u]:

(a) It is convex for all α1 ≥ − f ′′2 (l)/f ′′1 (l), concave for all α1 ≤ − f ′′2 (u)/f ′′1 (u), and
concave-convex for α1 ∈ (− f ′′2 (u)/f ′′1 (u) , − f ′′2 (l)/f ′′1 (l)).

(b) The term Tl(x) is continuous, strictly monotone increasing over [l,u], and
Tl(u) < f ′′2 (u)/f ′′1 (u). For all α1 ∈ (−Tl(u),−Tl(l)) there is a unique x̄ ∈ (l,u)
with α1 = −Tl(x̄) such that

vex[l,u][gα](x) =

{
(gα)′(x̄) (x − x̄) + gα(x̄), x < x̄,
gα(x), x ≥ x̄.

(c) For α1 ≤ −Tl(u) the convex envelope of gα is vertex polyhedral.

The previous two lemmas lead to the characterization of Cvex and Cpoly.

Theorem 5.32. Let f : [l,u] ⊆ R→ R2 be a vector of three times continuously
differentiable functions such that f ′′i (x) > 0, i = 1, 2, and ( f ′′2 (x)/f ′′1 (x))′ > 0 for all
x ∈ [l,u]. Then, Cvex = cone({α1

vex, α
2
vex}) and Cpoly = cone({β1

poly, β
2
poly}), where

α1
vex :=

(
−

f ′′2 (l)
f ′′1 (l) , 1

)
, α2

vex :=
(

f ′′2 (u)
f ′′1 (u) ,−1

)
,

β1
poly := (−Tl(u), 1), β2

poly := (Tu(l),−1).

Moreover,

Q[l,u][ f ] =
⋂

α∈
⋃

i=1,2 cone({αi
vex ,β

i
poly})

{(x, z1, z2) ∈ R3
| αᵀz ≥ vex[l,u][αᵀ f ](x)}.
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Proof. The theorem follows from Lemmas 5.26, 5.30, and 5.31. �

In Figure 5.5 we illustrate Theorem 5.32. The figure displays the subdi-
vision of α ∈ R2 with respect to the convex envelope of αᵀ f over a domain
[l,u]. For α ∈ Cvex the function αᵀ f is convex and thus, it is identical to
its convex envelope. For α ∈ Cpoly the convex envelope of αᵀ f is vertex
polyhedral.

Cpoly

Cvex

α1
vex

β1
poly

α2
vex

β2
poly

vex[α> f ] linearα> f convex

α> f concave-convex α> f convex-concave

α ∈ cone({α1
vex, β

1
poly}) α ∈ cone({α2

vex, β
2
poly})

α ∈ cone({α1
vex, α

2
vex}) α ∈ cone({β1

poly, β
2
poly})

Figure 5.5.: Subdivision for α ∈ R2 w.r.t. the type of the convex envelope
of αᵀ f . An example from each subdivision is given in the
figures at the right hand side, where the functions αᵀ f (black)
and their convex envelopes (red) are displayed.

Recall that a central question of this chapter is to identify subsets of
α ∈ Rm such that the corresponding constraints vex[l,u][αᵀ f ](x) ≤ αᵀz are
necessary and sufficient to describe Q[l,u][ f ]. Due to Theorem 5.32 the
points α ∈ int(Cvex) ∪ int(Cpoly) are not necessary for this. After exclusion
of the unnecessary constraints it follows obviously that the constraints
corresponding to α ∈ Rm

\ (int(Cvex) ∪ int(Cpoly)) are sufficient for Q[l,u][ f ].
We show that, up to scaling, none of these constraints can be obtained by
a conic combination of other constraints. Within this process we further
derive a complete outer description ofQ[l,u][ f ] by supporting hyperplanes.

Theorem 5.33. Let f : [l,u] ⊆ R→ R2 be a vector of three times continuously
differentiable functions such that f ′′i (x) > 0, i = 1, 2, and ( f ′′2 (x)/f ′′1 (x))′ > 0
for all x ∈ [l,u]. The vectors αi

vex and βi
poly, i = 1, 2, are defined according to

Theorem 5.32. Then, up to scaling, none of the constraints αᵀz ≥ vex[l,u][αᵀ f ](x)
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withα ∈ int(cone({αi
vex, β

i
poly})), i = 1, 2, can be represented as conic combination

of other constraints (αi)ᵀz ≥ vex[l,u][(αi)ᵀ f ](x), αi
∈ Rm. Moreover,

Q[l,u][ f ] =
⋂

x̄∈[l,u]


αᵀz ≥ (αᵀ f )′(x̄)(x − x̄) + αᵀ f (x̄),

(x, z1, z2) αᵀz ≥ (αᵀ f )′(x̄)(x − x̄) + αᵀ f (x̄),
where α ∈ {(Tu(x̄),−1), (−Tl(x̄), 1)}

 . (5.6)

We first need an auxiliary result.

Lemma 5.34. Let f : [l,u] ⊆ R → R2 be a vector of three times continuously
differentiable functions such that f ′′i (x) > 0, i = 1, 2, and ( f ′′2 (x)/f ′′1 (x))′ > 0 for all
x ∈ [l,u]. Then, Tl(u) > Tu(l) and Tu(x) > Tl(x) for all x ∈ [l,u].

Proof. Letα = (Tu(l),−1). The functionαᵀ f is convex-concave and the con-
vex envelope vex[l,u][αᵀ f ] is vertex polyhedral according to Lemma 5.30.
The function (−α)ᵀ f is concave-convex. If the convex envelope of (−α)ᵀ f
is also vertex polyhedral, it follows from

vex[l,u][(−α)ᵀ f ] =
(−α)ᵀ f (u)−(−α)ᵀ f (l)

u−l (x − l) + (−α)ᵀ f (l) = −vex[l,u][αᵀ f ]

and −vex[l,u][(−α)ᵀ f ] = cave[l,u][αᵀ f ] that vex[l,u][αᵀ f ] = cave[l,u][αᵀ f ] =
αᵀ f . As vex[l,u][αᵀ f ] is an affine function, the same holds for αᵀ f . This
contradicts the fact that αᵀ f is convex-concave and thus, vex[l,u][(−α)ᵀ f ]
is not vertex polyhedral. Lemma 5.31 (c) then yields that −Tu(l) = −α1 >
−Tl(u) so that we proved the first claim Tu(l) < Tl(u).

Lemmas 5.30 (b) and 5.31 (b) state further that Tu(l) > f ′′2 (l)/f ′′1 (l) = Tl(l)
and Tu(u) = f ′′2 (u)/f ′′1 (u) > Tl(u) so that Tl(l) < Tu(l) < Tl(u) < Tu(u). As Tl(x)
and Tl(x) are strictly monotone increasing, there are x1, x2

∈ [l,u] such that
Tu(x1) = Tl(x2). Then, (α1)ᵀ f (x) with α1 = (Tu(x1),−1) is convex-concave
and strictly convex at x = x1 (see Observation 5.29 (i) and Lemma 5.30)
while (α2)ᵀ f (x) with α2 = (−Tl(x2), 1) is concave-convex and strictly con-
vex at x = x2. As (α1)ᵀ f is convex-concave and α1 = −α2 it follows
that x1 < x2. Moreover, Tu(x) is strictly monotone increasing which im-
plies that Tu(x2) > Tu(x1) = Tl(x2) and shows that Tu(x) > Tl(x) for all
x ∈ [l,u]. �

We are now ready to prove Theorem 5.33.

Proof of Theorem 5.33. In order to show that none of the constraints ᾱᵀz ≥
vex[l,u][ᾱᵀ f ](x) with ᾱ ∈ int(cone({αi

vex, β
i
poly})), i = 1, 2, is a conic combi-
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nation of other constraints of this form, we write ᾱ as ᾱ = (Tu(x̄),−1)
or ᾱ = (−Tl(x̄), 1) for some x̄ ∈ (l,u) and consider the constraints at
x = x̄, where vex[l,u][ᾱᵀ f ](x̄) = ᾱᵀ f (x̄) (Lemmas 5.30 (b) and 5.31 (b)).
Let ᾱ = (Tu(x̄),−1) and assume that there are some µi ≥ 0, αi

∈ Rm,
αi , ᾱ, with ᾱ =

∑
i µiαi and vexD[ᾱᵀ f ](x̄) =

∑
i µi vexD[(αi)ᵀ f ](x̄). As

vexD[ᾱᵀ f ](x̄) = ᾱᵀ f (x̄) and vexD[(αi)ᵀ f ](x̄) ≤ (αi)ᵀ f (x̄), it has to hold that
vexD[(αi)ᵀ f ](x̄) = (αi)ᵀ f (x̄). We show that all αi

∈ Rm, αi , ᾱ, with
vexD[(αi)ᵀ f ](x̄) = (αi)ᵀ f (x̄) are contained in the open halfspace Hᾱ := {α ∈
R2
| −ᾱ2α1 + ᾱ1α2 = α1 + Tu(x̄)α2 > 0} which does not contain ᾱ. This

contradicts the existence of µi ≥ 0 with ᾱ =
∑

i µiαi because ᾱ < Hᾱ.
If αi

2 = −1 and αi , ᾱ, then vexD[(αi)ᵀ f ](x̄) = (αi)ᵀ f (x̄) if and only if
αi

1 > Tu(x̄) (see Lemma 5.30) and thus, −ᾱ2αi
1 + ᾱ1αi

2 = αi
1 + Tu(x̄)(−1) >

Tu(x̄) − Tu(x̄) = 0. This means αi
∈ Hᾱ. If αi

2 = 0, then vexD[(αi)ᵀ f ](x̄) =
(αi)ᵀ f (x̄) = αi

1 f1(x̄) if and only if αi
1 ≥ 0. Note that we can exclude αi =

(0, 0) from our considerations as the corresponding constraint (αi)ᵀz ≥
vex[l,u][(αi)ᵀ f ](x) yields 0 ≥ 0 which is useless for our purposes. Thus,
the interesting αi satisfy αi

1 > 0 and are contained in Hα. If αi
2 = 1, then

vexD[(αi)ᵀ f ](x̄) = (αi)ᵀ f (x̄) if and only if αi
1 ≥ −Tl(x̄). We can infer from

Lemma 5.34 that −Tu(x̄) < −Tl(x̄) and thus, −ᾱ2αi
1 + ᾱ1αi

2 ≥ (−Tl(x̄)) +
Tu(x̄)(1) > −Tu(x̄) + Tu(x̄) = 0 which implies αi

∈ Hᾱ. Thus, all αi
∈ Rm,

αi , ᾱ, with vexD[(αi)ᵀ f ](x̄) = (αi)ᵀ f (x̄) are contained in the open halfspace
Hᾱ. This leads to a contradiction. An analogous procedure can be applied
for ᾱ = (−Tl(x̄), 1) showing that the constraint ᾱᵀz ≥ vex[l,u][ᾱᵀ f ](x) is no
surrogate of other constraints.

Next we prove the linear inequality description ofQ[l,u][ f ]. Theorem 5.32
yields

Q[l,u][ f ] =
⋂

x̄∈[l,u]

{
(x, z1, z2) αᵀz ≥ vex[l,u][αᵀ f ](x) with α = (Tu(x̄),−1),

αᵀz ≥ vex[l,u][αᵀ f ](x) with α = (−Tl(x̄), 1)

}
.

Let ᾱ = (Tu(x̄),−1) for an x̄ ∈ [l,u], then ᾱᵀ f is convex-concave and
its convex envelope is piecewise defined by vex[l,u][ᾱᵀ f ](x) = αᵀ f for
x ∈ [l, x̄) and by vex[l,u][ᾱᵀ f ](x) = (ᾱᵀ f )′(x̄)(x − x̄) + ᾱᵀ f (x̄) for x ∈ [x̄,u].
Thus, the linear inequality description in Equation (5.6) follows over this
domain [x̄,u]. For x ∈ [l, x̄) we show that ᾱᵀz ≥ vex[l,u][ᾱᵀ f ](x) = ᾱᵀ f (x) is
dominated by the family of constraints βᵀz ≥ (βᵀ f )′(x̄)(x− x̄)+ ᾱᵀ f (x̄) with
β1 = Tu(y) < Tu(x̄), i.e., y ∈ [l, x̄) and β2 = −1. Then, the result follows.

To show the claim, consider the constraint ᾱᵀz ≥ vex[l,u][ᾱᵀ f ](x) at
x = y ∈ [l, x̄), i.e., Tu(x̄)z1 − z2 ≥ vex[l,u][ᾱᵀ f ](y) = Tu(x̄) f1(y) − f2(y). We
compare this constraint with the hyperplane constraint corresponding to
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β = (Tu(y),−1) which is given by Tu(y)z1−z2 ≥ (βᵀ f )′(y)(x− y)+βᵀ f (y). By
the choice of y and β = (Tu(y),−1) it follows that vex[l,u][βᵀ f ](y) = βᵀ f (y) =
Tu(y) f1(y) − f2(y) = (βᵀ f )′(y)(x − y) + βᵀ f (y). Thus, the hyperplane con-
straint at x = y is equivalent to Tu(y)z1 − z2 ≥ Tu(y) f1(y) − f2(y). Both the
ᾱ- and the β-constraint give upper bounds on z2:

ᾱ : z2 ≤ Tu(x̄) z1 − Tu(x̄) f1(y) + f2(y),
β : z2 ≤ Tu(y) z1 − Tu(y) f1(y) + f2(y).

The β-constraint is more restrictive because Tu(x̄)z1 − Tu(x̄) f1(y) + f2(y) ≥
Tu(y)z1 − Tu(y) f1(y) + f2(y) is equivalent to (Tu(x̄) − Tu(y))z1 ≥ (Tu(x̄) −
Tu(y)) f1(y) which is true since Tu(x) is strictly monotone increasing, x̄ > y,
and z1 ≥ f1(y) is implied by the valid constraints of the individual convex
hull of the graph of f1 given by Q[l,u][ f1] = {(x, z1) | f1(x) = vex[l,u][ f1] ≤
z1 ≤ cave[l,u][ f1], x ∈ [l,u]}. Thus, for ᾱ = (Tu(x̄),−1) we showed that the
constraint ᾱᵀz ≥ vex[l,u][ᾱᵀ f ](x) is induced by other constraints for x < x̄.

The claim can be proven analogously for ᾱ = (−Tl(x̄), 1) with x̄ ∈ [l,u].
Thus, the result follows. �

In Theorems 5.32 and 5.33 the simultaneous convex hull Q[l,u][ f ] is rep-
resented as the intersection of uncountably many constraints correspond-
ing to the supporting hyperplanes on Q[l,u][ f ]. However, Q[l,u][ f ] ⊆ R3 is a
nonempty closed set and R3 is a separable Banach space and thus, Q[l,u][ f ]
can be described by a countable subset of constraints (cf. [AB06]). Hence,
we can give a final answer to the question regarding subsets of α ∈ Rm

such that the description ofQ[l,u][ f ] via the constraints vex[l,u][αᵀ f ](x) ≤ αᵀz
is necessary and sufficient. We infer from Theorems 5.32 and 5.33 that
there is not necessarily a unique set satisfying this, but each of these sets
is a countable subset of Rm

\ (int(Cvex) ∪ int(Cpoly)). From a computational
point of view, the representation of Q[l,u][ f ] via countably infinitely many
constraints is not applicable. To overcome this problem, we devote the
remainder of this section to the construction of a strong, basic relaxation
of Q[l,u][ f ], and then provide a separation result such that constraints can
be added to the basic relaxation to cut off any point (x, z) < Q[l,u][ f ].

A Basic Relaxation We propose a relaxation of Q[l,u][ f ] based on the
extreme rays α1

vex, α
2
vex of Cvex and β1

vex, β
2
vex of Cpoly defined in Theorem 5.32.

The advantage of this choice is that the computation of the corresponding
convex envelopes is easy and that the resulting constraints induce all
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5.3. Vectors of Univariate Convex Functions

other constraints vex[l,u][αᵀ f ](x) ≤ αᵀz with α ∈ int(Cvex) ∪ int(Cpoly). The
strength of this relaxation is illustrated in the next example.

Example 5.35 (Example 5.5 continued). Let f := (x2, x3) and [l,u] = [1, 2].
The standard relaxation is given by the individual convex and concave
envelopes

RStd =
{
(x, z1, z2) | vexD[ fi](x) ≤ zi, vexD[− fi](x) ≤ −zi, i = 1, 2

}
=

{
(x, z1, z2) | f1(x) ≤ z1, −3x + 2 ≤ −z1, f2(x) ≤ z2, −7x + 6 ≤ −z2

}
.

The constraints of RStd correspond to (α1, α2)-values of (1, 0), (−1, 0), (0, 1),
and (0,−1), which are interior points of the cones Cvex and Cpoly generated
by the extreme rays α1

vex = (6,−1), α2
vex = (−3, 1), and β1

poly = (4,−1), β2
poly =

(−5, 1), respectively. Hence, the constraints of RStd are implied by the
constraints corresponding to these extreme rays. Our proposed basic
relaxation is given by

RBsc =

{
(x, z1, z2) vex[1,2][(αi

vex)ᵀ f ](x) ≤ (αi
vex)ᵀz, i = 1, 2

vex[1,2][(βi
poly)ᵀ f ](x) ≤ (βi

poly)ᵀz, i = 1, 2

}
=

{
(x, z1, z2) 6x2

− x3
≤ 6z1 − z2, 5x − 2 ≤ 4z1 − z2

−3x2 + x3
≤ −3z1 + z2, −8x + 4 ≤ −5z1 + z2

}
.

This relaxation in contained in the linear relaxation S3
[1,2] ofQ[1,2][ f ] defined

in Example 5.5, which is given by

S3
[1,2] =

{
(x, z1, z2) 12x − 8 ≤ 6z1 − z2, 5x − 2 ≤ 4z1 − z2

−3x + 1 ≤ −3z1 + z2, −8x + 4 ≤ −5z1 + z2

}
.

Note that the (α1, α2)-values of these constraints are identical to ones used
in RBsc. In particular, two constraints of RBsc and S3

[1,2] are identical, namely
the linear ones corresponding to β1

poly and β2
poly. Further, for the remaining

constraints it holds that 12x− 8 is the tangent on the convex term 6x2
− x3

at x = u = 2 and −3x + 1 is the tangent on the convex term −3x2 + x2 at
x = l = 1, i.e.,

12x − 8 ≤ 6x2
− x3

≤ 6z1 − z2 and − 3x + 1 ≤ −3x2 + x2
≤ −3z1 + z2

for all x ∈ [1, 2]. Thus, we conclude that the proposed basic relaxation can
be seen as an extension of the linear relaxation S3

[1,2] for the moment curve
to more general vectors of two functions.
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The quality of the different convex relaxations is compared in Table 5.2,
where the volume of each relaxation is computed by numerical integration
with Mathematica 8 [Wol08]. The numbers show an enormous difference
between the standard relaxation RStd and the suggested relaxation RBsc

based on Theorem 5.32. While the volume of RBsc and Q[1,2][ f ] differ by a
factor of two, the factor for the difference between RStd and Q[1,2][ f ] is 27.
The difference between the linear relaxation S3

[1,2] and the (strictly) convex
relaxation RBsc is reasonable and accounts for a factor of 1.5. �

RStd S3
[1,2] RBsc Q[1,2][(x2, x3)]

Volume 0.1500 0.0185 0.0119 0.0055

Table 5.2.: Volumes of the different convex relaxations for Q[1,2][(x2, x3)].

In the example, the constraints of the standard relaxation RStd are in-
duced by the constraints of the basic relaxation RBsc so that RStd ⊆ RBsc.
This is generally true as the (α1, α2)-values (1, 0), (−1, 0), (0, 1), and (0,−1)
corresponding to RStd are always interior points of Cvex = cone{α1

vex, α
2
vex}

and Cpoly = cone{β1
poly, β

2
poly}, i.e., R2

≤0 ( Cpoly and R2
≥0 ( Cvex. This can be

easily verified by using the assumptions and definitions in Theorem 5.32.

A Separation Result The proposed basic relaxation can be seen as an
initial relaxation of QD[ f ] for which we further deduce linear inequalities
that separate any (x, z) < QD[ f ] from QD[ f ]. Such a procedure is best
suited for the concept of branch-and-bound algorithms which usually
start with an initial relaxation at each node of the branching tree, solve
this relaxation, and then check if additional constraints can be added to
the relaxation in order to cut off the current solution.

To illustrate the potential of our approach and to explain some no-
tation, we compare the simultaneous convex hull Q[l,u][ f ] to the relax-
ation obtained by the individual convex and concave envelopes for f1

and f2 in Figure 5.6. The green colored area represents the projection
of Q[l,u][ f ] onto the (z1, z2)-space at a fixed x̄ ∈ (l,u) while the individual
relaxations correspond to the dashed box. Usually a closed-form de-
scription of QD[ f ] is not known so that a strong relaxation of this set is
needed, e.g., the proposed basic relaxation. Next, we refine this relax-
ation by deriving a supporting hyperplane from Theorem 5.33 for each
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cave[l,u][ f2](x̄)

vex[l,u][ f2](x̄)

vex[l,u][ f1](x̄) cave[l,u][ f1](x̄)
z1

z2

vex[l,u][ f1](x̄) cave[l,u][ f1](x̄)
z1

z2

cave[l,u][ f2](x̄)

vex[l,u][ f2](x̄)

Figure 5.6.: The figure displays the projection of QD[ f ] onto the (z1, z2)-
space for a fixed x̄ ∈ D and indicates its relaxation by support-
ing hyperplanes.

point (x̄, z̄) < QD[ f ] that cuts off (x̄, z̄). For this, consider Figure 5.6 (b),
where the red hyperplanes correspond to constraints αᵀz ≥ aᵀx + γ with
α2 = 1 and hence α ∈ cone({α1

vex, β
1
poly}) while the blue hyperplanes belong

to constraints αᵀz ≥ aᵀx + γ, where α2 = −1 and α ∈ cone({α2
vex, β

2
poly}).

If the point (x̄, z̄), which we aim to cut off, lies above the yellow seg-
ment in Figure 5.6 (b) connecting (z1, z2) = (vex[l,u][ f1](x̄),vex[l,u][ f2](x̄))
and (z1, z2) = (cave[l,u][ f1](x̄), cave[l,u][ f2](x̄)), it can be cut off by the blue
hyperplanes. Otherwise, the point is separated from QD[ f ] by the red
hyperplanes. Formally, this means if

z̄2 ≥
cave[l,u][ f2](x̄)−vex[l,u][ f2](x̄)
cave[l,u][ f1](x̄)−vex[l,u][ f1](x̄) (z̄1 − vex[l,u][ f1](x̄)) + vex[l,u][ f2](x̄), (5.7)

then (x̄, z̄) is cut off by a hyperplane αᵀz ≥ (αᵀ f )′(y)(x − y) + αᵀ f (y) with
α = (Tu(y),−1), y ∈ [l,u], and otherwise, with α = (−Tl(y), 1), y ∈ [l,u]. We
show that the determination of a separating hyperplane is equivalent to
minimizing a certain function over [l,u] which is first strictly decreasing
and then strictly increasing so that the point satisfying the first order
necessary condition is the global optimum. Such functions are called
unimodal.

Lemma 5.36 (α2 = −1). Let f : [l,u] ⊆ R → R2 be a vector of three
times continuously differentiable functions such that f ′′i (x) > 0, i = 1, 2,
and ( f ′′2 (x)/f ′′1 (x))′ > 0 for all x ∈ [l,u]. Assume that (x̄, z̄1, z̄2) < QD[ f ],
(x̄, z̄1) ∈ QD[ f1], and Equation (5.7) is satisfied. If x̄ = u, then (x̄, z̄1, z̄2)
can be cut off by αᵀz ≥ (αᵀ f )′(y)(x − y) + αᵀ f (y) with α = (Tu(y),−1) for
any y ∈ [l,u]. If x̄ ∈ [l,u), then (x̄, z̄1, z̄2) can be cut off by the hyperplane
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αᵀz ≥ (αᵀ f )′(y)(x − y) + αᵀ f (y) with α = (Tu(y),−1), where y is the unique
minimizer of an unimodal function over [l, x̄], i.e.,

{y} = argmin
{
Tu(y) z̄1 − (αᵀ f )′(y)(x̄ − y) − αᵀ f (y) | y ∈ [l, x̄]

}
.

The minimizer y is determined as the unique solution of the system

(x̄ − u) f1(y) + ( f1(u) − z̄1) y + u z̄1 − x̄ f1(u) = 0 and y ≤ x̄. (5.8)

Proof. Theorem 5.33 yields that linear constraints of the form αᵀz ≥
(αᵀ f )′(y)(x − y) + αᵀ f (y) are sufficient to describe Q[l,u][ f ]. If (x̄, z̄1, z̄2)
satisfies Equation (5.7), we are in the case of the blue hyperplanes in
Figure 5.6 (b), i.e., α = (Tu(y),−1) with y ∈ [l,u]. The maximal z2 for the
given (x̄, z̄1) such that (x̄, z̄1, z2) ∈ Q[l,u][ f ] is determined over all constraints
Tu(y)z̄1 − z2 ≥ (αᵀ f )′(y)(x̄ − y) + αᵀ f (y) and thus,

z2 ≤ min
y∈[l,u]
{Tu(y)z̄1 − (αᵀ f )′(y)(x̄ − y) − αᵀ f (y)︸                                        ︷︷                                        ︸

=:h(y)

}.

We show that h(y) is first strictly monotone decreasing and then strictly
monotone increasing. Let a and b denote the numerator and denominator
of Tu, i.e., Tu = a/b. The first derivative of h(y) reads h′(y) =

(αᵀ f )′′(y) t(y)
b ,

where t(y) := (x̄− u) f1(y) + ( f1(u)− z̄1) y + u z̄1 − f1(u) x̄ (cf. Equation (5.8)).
The sign of h′(y) is determined by t(y) because b is nonnegative and
(αᵀ f )′′(y) > 0 for all x̄ ∈ [l,u) (see Observation 5.29 (i)).

If x̄ = u, then z̄1 = f1(u) is implied by (x̄, z̄1) ∈ Q[l,u][ f1]. In this case
h(y) = f2(u) and h′(y) = 0 for all y ∈ [l,u]. If x̄ ∈ [l,u), then t(y) is strictly
concave since x̄ − u < 0 and f1 is strictly convex. Thus, there are at most
two roots for t(y) = 0. One root is attained at y = u. If t(l) ≤ 0, the second
root is attained in [l,u) due to concavity of t. The expression t(l) ≤ 0 is
equivalent to (u− l) z̄1 ≤ ( f1(u)− f1(l)) x̄ + (u− l) f1(l) and thus, equivalent
to z̄1 ≤

f1(u)− f1(l)
u−l (x̄− l)+ f1(l). The latter expression is true since we assume

(x̄, z̄1) ∈ Q[l,u][ f1] = {(x, z) | f1(x) ≤ z1 ≤
f1(u)− f1(l)

u−l (x − l) + f1(l)}. Therefore,
the case t(l) > 0 cannot occur and there is a y∗ ∈ [l,u) with h′(y) < 0 for all
y ∈ [l, y∗), h′(y∗) = 0, and h′(y) > 0 for all y ∈ (y∗,u] so that the objective
function h is unimodal. Moreover, the optimal solution is the unique
solution of t(y) = 0 which is stated in Equation (5.8).

182



5.3. Vectors of Univariate Convex Functions

It remains to show that h′(y∗) = t(y∗) = 0 is satisfied for y∗ ∈ [l, x̄]. Recall
that t(y) is strictly concave with at most two roots and one root is attained
at y = u. We observe that t(x̄) = (u − x̄)(z̄1 − f1(x̄)) ≥ 0 since x̄ ∈ [l,u) and
(x̄, z̄1) ∈ Q[l,u][ f1]. Therefore, t(y) > 0 for all y ∈ (x̄,u) so that no minimum
is attained over this domain. �

Lemma 5.37 (α2 = 1). Let f : [l,u] ⊆ R→ R2 be a vector of three times contin-
uously differentiable functions such that f ′′i (x) > 0, i = 1, 2, and ( f ′′2 (x)/f ′′1 (x))′ > 0
for all x ∈ [l,u]. Assume that (x̄, z̄1, z̄2) < QD[ f ], (x̄, z̄1) ∈ QD[ f1], and Equa-
tion (5.7) is not satisfied. If x̄ = l, then (x̄, z̄1, z̄2) can be cut off by αᵀz ≥
(αᵀ f )′(y)(x − y) + αᵀ f (y) with α = (−Tl(y), 1) for any y ∈ [l,u]. If x̄ ∈ (l,u],
then (x̄, z̄1, z̄2) can be cut off by the hyperplane αᵀz ≥ (αᵀ f )′(y)(x− y) + αᵀ f (y)
with α = (−Tl(y), 1), where y is the unique maximizer of

max
{
Tl(y) z̄1 + (αᵀ f )′(y)(x̄ − y) + αᵀ f (y) | y ∈ [x̄,u]

}
.

The maximizer y is determined as the unique solution of the system

(l − x̄) f1(y) + (z1 − f1(u)) y + l z1 + x̄ f1(l) = 0 and y ∈ [x̄,u]. (5.9)

Remark 5.38. Note that RBsc ⊆ RStd = {(x, z1, z2 | (x, z1) ∈ QD[( f1)], (x, z2) ∈
QD[( f2)]} so that the assumption (x, z1) ∈ QD[( f1)] in Lemmas 5.36 and 5.37
can be replaced by the stricter assumption (x, z1, z2) ∈ RBsc. This allows
to start with the proposed basic relaxation RBsc and then to cut off any
(x, z) < QD[ f ].

The next example shows that the separation problem can be solved an-
alytically for some classes of functions leading to closed-form expressions
for QD[ f ].
Example 5.39. Let f : [l,u] ⊆ R → R2 be a vector of functions satisfying
all assumptions of Lemmas 5.36 and 5.37. Equations (5.8) and (5.9) can
be solved analytically for vectors of functions f , where f1 is of the form
x2, x3 or

√
x, for instance. For f1 = x2 consider any function f2 and

[l,u] ⊆ R satisfying the assumptions of Lemmas 5.36 and 5.37. Then,
the simultaneous convex hull QD[ f ] is the intersection of the constraints
(x, z1) ∈ Q[l,u][ f1] = {(x, z) | f1(x) ≤ z1 ≤

f1(u)− f1(l)
u−l (x − l) + f1(l)},

z2 ≤
f2(u)(z1−x2)+ f2

( ux−z1
u−x

)
(u−x)2

z1+u2−2ux and z2 ≥

f2(l)(z1−x2)+ f2

(
z1−lx
x−l

)
(x−l)2

l2−2lx+z1
. (5.10)
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The constraints in Equation (5.10) correspond to all possible supporting
hyperplanes on QD[ f ] so that the constraint (x, z1) ∈ Q[l,u][ f1] is redundant
and can be removed from the description of QD[ f ]. One can verify that
the derived description is identical to the one for the moment curve if
further f2 := x3 (cf. Subsection 5.1.1). �

Computational results of our proposed relaxations are presented after
the discussion of the vector of three univariate convex functions.

5.3.2. Three Univariate Convex Functions

The previous analysis of a vector of two univariate functions showed the
strength of the derived relaxations but already indicated some technical
difficulties regarding the analytical derivation of the involved objects. In
this subsection we extend these methods to a vector of three univariate
convex functions in order to deduce improved relaxations but also to
emphasize the technical limitations of our approach.

We consider a vector of three univariate convex functions f : [l,u] ⊆
R→ R3 such thatαᵀ f possesses at most two inflection points over [l,u] for
all α ∈ R3. Besides the convex, concave, convex-concave, and concave-
convex cases, we further encounter functions whose convexity pattern
is convex-concave-convex, i.e., they are first strictly convex, then strictly
concave, and finally strictly convex again, and concave-convex-concave,
i.e., they are first strictly concave, then strictly convex, and finally strictly
concave.

Initially, we focus on Cvex. A given α ∈ R3 belongs to Cvex if and
only if (αᵀ f )′′(x) ≥ 0 for all x ∈ [l,u]. This expression is equivalent to

α1 ≥ −α2
f ′′2 (x)
f ′′1 (x) −α3

f ′′3 (x)
f ′′1 (x) for all x ∈ [l,u] if f1 is strictly convex with f ′′1 (x) > 0

for all x ∈ [l,u]. To limit the number of inflection points of αᵀ f to at most

2, we define t[α2, α3](x) := −α2
f ′′2 (x)
f ′′1 (x) − α3

f ′′3 (x)
f ′′1 (x) and restrict t[α2, α3](x) to

be (i) strictly monotone increasing, (ii) strictly monotone decreasing, (iii)
first strictly monotone increasing, then strictly monotone decreasing, or
(iv) first strictly monotone decreasing, then strictly monotone increasing.
The equation α1 = t[α2, α3](x) possesses then at most two roots over [l,u]
each of which is equivalent to an inflection point of αᵀ f . Therefore,

we analyze (t[α2, α3])′(x) = −α2

( f ′′2 (x)
f ′′1 (x)

)′
− α3

( f ′′3 (x)
f ′′1 (x)

)′
and, in particular, the

184



5.3. Vectors of Univariate Convex Functions

following quotient of derivatives

L(x) :=
( f ′′3 (x)/ f ′′1 (x))′

( f ′′2 (x)/ f ′′1 (x))′ =
f ′′1 (x) f ′′′3 (x)− f ′′′1 (x) f ′′3 (x)
f ′′1 (x) f ′′′2 (x)− f ′′′1 (x) f ′′2 (x) .

If L(x) is strictly monotone increasing, we show that t[α2, α3](x) satisfies
the required monotonicity properties and (αᵀ f )′′(x) exhibits at most two
roots over [l,u]. Depending on these properties we can compute the
minimal α1 for a given pair (α2, α3) such that αᵀ f is convex over [l,u], i.e.,
the minimal α1 with α1 ≥ t[α2, α3](x) for all x ∈ [l,u].

Lemma 5.40. Let f : [l,u] ⊆ R → R3 be a vector of four times continuously
differentiable functions. Assume that (i) f ′′i (x) > 0, i = 1, 2, 3, (ii) ( f ′′i /f ′′1 )′(x) >

0, i = 2, 3, and (iii) L′(x) > 0 for all x ∈ [l,u]. Define a? =
f ′′1 (l) f ′′3 (u)− f ′′1 (u) f ′′3 (l)
f ′′1 (l) f ′′2 (u)− f ′′1 (u) f ′′2 (l) .

(a) The function t[α2, α3](x) exhibits four patterns of strict monotonicity over
[l,u]:
- For (α2, α3) ∈ cone({(L(l),−1), (−L(u), 1)}) increasing .
- For (α2, α3) ∈ int(cone({(−L(u), 1), (−L(l), 1)})) first increasing, then de-
creasing.
- For (α2, α3) ∈ cone({(−L(l), 1), (L(u),−1)}) decreasing.
- For (α2, α3) ∈ int(cone({(L(u),−1), (L(l),−1)})) first decreasing, then in-
creasing.

(b) If (α2, α3) ∈ cone({(−L(u), 1), (a?,−1)}), max{t[α2, α3](x) | x ∈ [l,u]} =
t[α2, α3](u).

(c) If (α2, α3) ∈ cone({(−L(l), 1), (a?,−1)}), max{t[α2, α3](x) | x ∈ [l,u]} =
t[α2, α3](l).

(d) If (α2, 1) ∈ int(cone({(−L(u), 1), (−L(l), 1)})), there is a unique x̄ ∈ (l,u)
with α2 = −L(x̄) and max{t[α2, α3](x) | x ∈ [l,u]} = t[α2, α3](x̄).

(e) The space R2 can be represented as the union of cone({(−L(u), 1), (a?,−1)}),
cone({(−L(l), 1), (a?,−1)}), and int(cone({(−L(u), 1), (−L(l), 1)})).

Proof. (a) The monotonicity patterns are implied by the monotonicity of
L(x) (condition (iii)). For instance, (t[α2, α3])′(x) = −α2( f ′′2 (x)/ f ′′1 (x))′ −
α3( f ′′3 (x)/ f ′′1 (x))′ ≥ 0 can be reformulated, using condition (ii), into −α2 −

α3L(x) ≥ 0. If α3 = −1, then (t[α2, α3])′(x) ≥ 0 if and only if L(x) ≥ α2 for all
x ∈ [l,u]. By monotonicity of L(x), this is equivalent to L(l) ≥ α2.
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(b) We show that max{t[α2, α3](x) | x ∈ [l,u]} = t[α2, α3](u) for (α2, α3) =
(−L(u), 1) and (α2, α3) = (a?,−1) so that max{t[α2, α3](x) | x ∈ [l,u]} =
t[α2, α3](u) for all (α2, α3) ∈ cone({(−L(u), 1), (a?,−1}). In case of (α2, α3) =
(−L(u), 1) this is implied by (a). For (α2, α3) = (a?,−1) the function
t[α2, α3](x) can exhibit three possible monotonicity patterns as α3 = −1:
Strictly monotone increasing, strictly monotone decreasing, or first strictly
monotone decreasing, then strictly monotone increasing. The maximum
is thus attained at x = l or x = u. One can check that t[a?,−1](l) =

−
f ′′2 (l) f ′′3 (u)− f ′′2 (u) f ′′3 (l)
f ′′1 (l) f ′′2 (u)− f ′′1 (u) f ′′2 (l) = t[a?,−1](u) which implies that t[α2, α3](x) is first

strictly decreasing, then strictly increasing. Thus, max{t[α2, α3](x) | x ∈
[l,u]} = t[α2, α3](l) = t[α2, α3](u).

(c) We can apply the same arguments as for (b).
(d) If (α2, 1) ∈ int(cone({(−L(u), 1), (−L(l), 1)})), the strict monotonicity

of L(x) implies that there is a unique x̄ ∈ (l,u) with α2 = −L(x̄). More-
over, t[α2, α3](x) is first strictly increasing, then strictly decreasing. Thus,
there is a unique maximizer x∗ ∈ (l,u) satisfying the first order optimal-
ity condition (t[α2, α3])′(x∗) = −α2( f ′′2 (x∗)/ f ′′1 (x∗))′ − 1( f ′′3 (x∗)/ f ′′1 (x∗))′ = 0
which is equivalent to −α2 − L(x∗) = 0. This condition holds if and only if
L(x∗) = −α2 = L(x̄) and thus, if and only if x∗ = x̄.

(e) The conic combination of three vectors v1, v2, v3
∈ R2 spans R2 if

−v1 is in the interior of cone({v2, v3
}). We showed in (b) that t[a?,−1]

is first strictly decreasing, then strictly increasing. Thus, −t[a?,−1] =
t[−a?, 1] is first strictly increasing, then strictly decreasing so that (a)
implies −(a?,−1) ∈ int(cone({(−L(u), 1), (−L(l), 1)})). �

The previous analysis yields Cvex.

Theorem 5.41. Let f : [l,u] ⊆ R → R3 be a vector of four times con-
tinuously differentiable functions. Assume that (i) f ′′i (x) > 0, i = 1, 2, 3,
(ii) ( f ′′i /f ′′1 )′(x) > 0, i = 2, 3, and (iii) L′(x) > 0 for all x ∈ [l,u]. Then,
Cvex = cone({α1

vex, α
2
vex, α

3
vex} ∪ Avex), where

α1
vex := (t[−L(u), 1](u) , −L(u) , 1),

α2
vex := (t[−L(l), 1](l) , −L(l) , 1),

α3
vex := (t[

f ′′1 (l) f ′′3 (u)− f ′′1 (u) f ′′3 (l)
f ′′1 (l) f ′′2 (u)− f ′′1 (u) f ′′2 (l) ,−1](u) ,

f ′′1 (l) f ′′3 (u)− f ′′1 (u) f ′′3 (l)
f ′′1 (l) f ′′2 (u)− f ′′1 (u) f ′′2 (l) , −1),

Avex := {(t[−L(x), 1](x) , −L(x) , 1) ∈ R3
| x ∈ (l,u)}.
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5.3. Vectors of Univariate Convex Functions

Proof. A given α ∈ R3 belongs to Cvex if and only if (αᵀ f )′′(x) ≥ 0 for
all x ∈ [l,u]. Due to assumption (i), this expression is equivalent to
α1 ≥ max{t[α2, α3](x) | x ∈ [l,u]}. We can infer from Lemma 5.40 (e) that
(α2, α3) is contained in one of the cones defined in Lemma 5.40 (b)-(d),
where we also determine max{t[α2, α3](x) | x ∈ [l,u]}. �

Before we proceed with Cpoly we give an example for Cvex.
Example 5.42. Consider f = (x3, x5, x6) restricted to [l,u] := [1/2, 2] which
satisfies all requirements of Theorem 5.41. According to Lemma 5.40 the
monotonicity behavior of the auxiliary function t[α2, α3](x) leads to a sub-
division of the (α2, α3) ∈ R2 space into 4 subdomains which are indicated
in Figure 5.7 (a), where the vectors γ1 and γ2 are positive multiples of
(−L(u), 1) = (−9/2, 1) and (−L(l), 1) = (−9/8, 1), respectively.

γ2

increasing

incr., decr.

decr., incr.

decreasing

−γ1
α2

α3

γ1

−γ2

(a) Monotonicity patterns of t[α2, α3](x).

α̃3

x∗ = u

α2

x∗ = l

Ã: x∗ ∈ (l,u)

α3
α̃2 = γ2

α̃1 = γ1

(b) Maximizer x∗ of t[α2, α3](x).

Figure 5.7.: Figure (a) depicts the subdivision regarding the monotonicity
of t[α2, α3](x) over [l,u]. This leads to a subdivision regarding
the maximizer of max{t[α2, α3](x) | x ∈ [l,u]} in Figure (b) and
yields Cvex.

Given the monotonicity we can solve max{t[α2, α3](x) | x ∈ [l,u]}whose
optimal objective function value equals the minimal α1 for given (α2, α3)
such that αᵀ f is convex over [l,u]. We obtain Cvex = cone({α1

vex, α
2
vex, α

3
vex} ∪

Avex) with

α1
vex = (20 , −9/2 , 1), α2

vex = (5/16 , −9/8 , 1) , α3
vex = (−2 , 63/20 , −1) ,

and Avex =
{(

5/2 x3 , −9/4 x , 1
)
| x ∈ (l,u)

}
. The projection of the vectors αi

vex

and the set Avex onto the (α2, α3)-space is denoted by α̃i and Ã, respectively,
and illustrated in Figure 5.7 (b). The figure shows that Ã corresponds to
the (α2, α3)-area over which t[α2, α3](x) is first strictly monotone increasing
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5. Simultaneous Convexification

and then decreasing. Moreover, if t[α2, α3](x) is first strictly monotone
decreasing and then increasing, α̃3 clearly separates the area, where the
maximum of t[α2, α3](x) is attained at x = l and x = u. �

The monotonicity patterns of the auxiliary function t[α2, α3](x) lead to
convexity patterns for αᵀ f depending on α1, which are depicted in Fig-
ure 5.8, where the subdivision of the space corresponds to Figure 5.7 (a).
In order to determine Cpoly, the figure indicates that we need suitable cri-
teria for convex-concave-convex and concave-convex-concave functions
such that their convex envelopes are vertex polyhedral. This is the subject
of the remainder of this section.

cave-vex

vex-cave

α2

α3

vex-cave-vex
cave-vex,
vex-cave,

cave-vex-cave,
vex-cave,
cave-vex

Figure 5.8.: Possible convexity patterns besides strictly convex (vex) and
strictly concave (cave).

The unique candidate for a vertex polyhedral convex envelope of a
univariate, continuously differentiable function g : [l,u] ⊆ R → R is the
following affine function

c(x) := g(u)−g(l)
u−l (x − l) + g(l).

Thus, a necessary condition for having a vertex polyhedral convex enve-
lope is

g′(l) ≥
g(u)−g(l)

u−l ≥ g′(u), (5.11)

which is indicated in Figure 5.9. The dashed lines correspond to the
slopes g′(l) and g′(u), respectively, and the red line represents the slope
g(u)−g(l)

u−l of c(x). If g is concave-convex or convex-concave, Condition (5.11)
is also sufficient for having a vertex polyhedral convex-envelope (cf. Ob-
servation 5.30). This is also true for convex-concave-convex functions as
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5.3. Vectors of Univariate Convex Functions

indicated in Figure 5.9 (a).

g(x)

c(x)

l u x

(a) Vex-Cave-Vex.

c(x)

g(x)

l u x

(b) Cave-Vex-Cave.

c(x)

l u x

g(x)

(c) Cave-Vex-Cave.

Figure 5.9.: The dashed lines indicate the slopes g′(l) and g′(u) while the
red line represents the slope of the potential convex envelope.

Observation 5.43. Let g : [l,u] ⊆ R → R be a two times continuously
differentiable function which is convex-concave-convex. Then, vex[l,u][g] is vertex
polyhedral if and only if Condition (5.11) is satisfied.

In contrast to this, Condition (5.11) is not sufficient for concave-convex-
concave functions to have a vertex polyhedral convex-envelope as illus-
trated in Figure 5.9 (c). To guarantee vertex polyhedrality, we analyze
the minimal difference between g(x) and its potential vertex polyhedral
convex envelope c(x). If this minimum is nonnegative, c(x) is the convex
envelope of g.

Observation 5.44. Let g : [l,u] ⊆ R → R be a two times continuously
differentiable function which is concave-convex-concave. Then, vex[l,u][g] = c(x)
if and only if there is an x̄ ∈ (l,u) with (i) g′(x̄) =

g(u)−g(l)
u−l and (ii) g′′(x̄) > 0

satisfying g(x̄) ≥ c(x̄). If such an x̄ exists, it is unique.

We interpret Observations 5.43 and 5.44 for g = αᵀ f with α ∈ R3

and f : [l,u] ⊆ R → R3 in order to derive conditions on α such that
αᵀ f possesses a vertex polyhedral convex envelope. Condition (5.11)
reads (αᵀ f )′(l) − αᵀ f (u)−αᵀ f (l)

u−l ≥ 0 and αᵀ f (u)−αᵀ f (l)
u−l − (αᵀ f )′(u) ≥ 0, which is

equivalent to
3∑

i=1

−αi
(

fi(u) − fi(l) − (u − l) f ′i (l)
)
≥ 0 and

3∑
i=1

αi
(

fi(l) − fi(u) − (l − u) f ′i (u)
)
≤ 0,

189



5. Simultaneous Convexification

and thus, equivalent to

α1 ≤ −α2T2
u(l) − α3T3

u(l) and α1 ≤ −α2T2
l (u) − α3T3

l (u), (5.12)

where

Ti
l(x) :=


f ′′i (l)/ f ′′1 (l), x = l,
fi(l)− fi(x)−(l−x) f ′i (x)
f1(l)− f1(x)−(l−x) f ′1 (x) , x > l,

Ti
u(x) :=

 fi(u)− fi(x)−(u−x) f ′i (x)
f1(u)− f1(x)−(u−x) f ′1 (x) , x < u,
f ′′i (u)/ f ′′1 (u), x = u,

for i = 2, 3. Note that the functions Ti
l(x) and Ti

u(x) are defined analogously
to Tl(x) and Tu(x) in the previous section.

Observation 5.44 implies for g(x) = αᵀ f (x) that we have to guarantee
nonnegativity of the minimal difference between αᵀ f and its potential
convex envelope c(x) =

αᵀ f (u)−αᵀ f (l)
u−l (x− l) +αᵀ f (l), i.e., for all x ∈ [l,u] it has

to hold that

3∑
i=1

αi

(
fi(u)− fi(l)

u−l (x − l) + fi(l) − fi(x)
)
≤ 0. (5.13)

The expression in the big parenthesis represents the difference between
the secant of a strictly convex function fi and the function itself. At
x ∈ {l,u} the secant and the function coincide so that the difference is
zero and Equation (5.13) is satisfied. If x ∈ (l,u), the difference is strictly
positive and we can reformulate Equation (5.13) as

α1 +

3∑
i=2

αi

fi(u)− fi(l)
u−l (x − l) + fi(l) − fi(x)

f1(u)− f1(l)
u−l (x − l) + f1(l) − f1(x)︸                               ︷︷                               ︸

=:Si(x)

≤ 0. (5.14)

Thus, we derive the condition α1 ≤ inf{s[α2, α3](x) | x ∈ (l,u)}, where
s[α2, α3](x) := −α2S2(x)−α3S3(x). We define Si(l) :=limx→l Si(x) = Ti

u(l) and
Si(u) := limx→u Si(x) = Ti

l(u). If the minimizer of min{s[α2, α3](x) | x ∈ [l,u]}
is attained at x = l or x = u, we obtain

α1 ≤ −α2T2
u(l) − α3T3

u(l) or α1 ≤ −α2T2
l (u) − α3T3

l (u),

respectively. These constraints are already given by the necessary Condi-
tion (5.12).

Summarizing the derived conditions, we conclude that α ∈ Cpoly if and
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5.3. Vectors of Univariate Convex Functions

only if

α1 ≤ min


min{s[α2, α3](x) | x ∈ [l,u]},
−α2T2

u(l) − α3T3
u(l),

−α2T2
l (u) − α3T3

l (u)

 . (5.15)

In particular, α is in the boundary of Cpoly if and only if equality holds
in Equation (5.15). The solution of the optimization problem in Equa-
tion (5.15) leads to the description of Cpoly.

Theorem 5.45. Let f : [l,u] ⊆ R → R3 be a vector of four times con-
tinuously differentiable functions. Assume that (i) f ′′i (x) > 0, i = 1, 2, 3,
(ii) ( f ′′i /f ′′1 )′(x) > 0, i = 2, 3, and (iii) L′(x) > 0 for all x ∈ [l,u]. Then,
Cpoly = cone({β1

poly, β
2
poly, β

3
poly} ∪ Bpoly), where

β1
poly :=

(
−

T3
l (u)− f ′′3 (u)/ f ′′1 (u)

T2
l (u)− f ′′2 (u)/ f ′′1 (u)

T2
l (u) + T3

l (u) ,
T3

l (u)− f ′′3 (u)/ f ′′1 (u)

T2
l (u)− f ′′2 (u)/ f ′′1 (u)

, −1
)
,

β2
poly :=

(
−

T3
u(l)− f ′′3 (l)/ f ′′1 (l)

T2
u(l)− f ′′2 (l)/ f ′′1 (l)

T2
u(l) + T3

u(l) ,
T3

u(l)− f ′′3 (l)/ f ′′1 (l)

T2
u(l)− f ′′2 (l)/ f ′′1 (l)

, −1
)
,

β3
poly :=

(
T3

l (u)−T3
u(l)

T2
l (u)−T2

u(l)
T2

u(l) − T3
u(l) , −

T3
l (u)−T3

u(l)

T2
l (u)−T2

u(l)
, 1

)
,

Bpoly :=
{(
−

(S3)′(x)
(S2)′(x) S2(x) + S3(x) , (S3)′(x)

(S2)′(x) , −1
)
| x ∈ (l,u)

}
.

We analyze the subproblem min{s[α2, α3](x) | x ∈ [l,u]} of the optimiza-
tion problem in Equation (5.15) before we prove the theorem. For this,
we investigate the functions Si(x) in order to determine the monotonicity
patterns of s[α2, α3](x) = −α2S2(x) − α3S3(x).

Lemma 5.46. Let f : [l,u] ⊆ R → R3 be a vector of four times continuously
differentiable functions. Assume that (i) f ′′i (x) > 0, i = 1, 2, 3, (ii) ( f ′′i /f ′′1 )′(x) >
0, i = 2, 3, and (iii) L′(x) > 0 for all x ∈ (l,u). Then, (Si)′(x) > 0, i = 2, 3, and
((S3)′/(S2)′)′(x) > 0 for all x ∈ (l,u). Moreover,

lim
x→l

(S3)′(x)
(S2)′(x) =

T3
u(l)− f ′′3 (l)/ f ′′1 (l)

T2
u(l)− f ′′2 (l)/ f ′′1 (l)

= (β2
poly)2 , lim

x→u

(S3)′(x)
(S2)′(x) =

T3
l (u)− f ′′3 (u)/ f ′′1 (u)

T2
l (u)− f ′′2 (u)/ f ′′1 (u)

= (β1
poly)2.

Proof. To simplify notation, we introduce ai(x) := fi(u)− fi(l)
u−l (x−l)+ fi(l)− fi(x),

i.e., Si(x) = ai(x)/a1(x) and (Si)′(x) =
a1(x)a′i (x)−a′1(x)ai(x)

(a1(x))2 =
a′i (x)−a′1(x)Si(x)

a1(x) , i = 2, 3.
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We show that there is no x̄ ∈ (l,u) with (S2)′(x̄) = 0. Then, Lemma 5.34
and the definition of Si(x) imply that Si(l) = Ti

u(l) < Ti
l(u) = Si(u) so that

Si(x) can only be strictly monotone increasing. Assume that there exists an
x̄ ∈ (l,u) with (S2)′(x̄) = 0 and define α := (−α2S2(x̄), α2, 0) with α2 ∈ R\{0}.
One can check that

αᵀ f (x) = c(x) for x ∈ {l, x̄,u} and (αᵀ f )′(x̄) = c′(x̄). (5.16)

In Lemmas 5.30 and 5.31 we proved that αᵀ f (x) with α3 = 0 is either
strictly convex, strictly concave, convex-concave or concave-convex. In
none of these cases αᵀ f (x) has a shape which allows for an affine function
c(x) with the properties in Equation (5.16) and hence, there is no x̄ ∈ (l,u)
that satisfies the assumptions. Analogously, (S3)′(x) > 0 for all x ∈ (l,u)
can be proven.

To prove that
(

(S3)′(x̄)
(S2)′(x̄)

)′
=

(
a′3(x̄)−a′1(x̄)S3(x̄)

a′2(x̄)−a′1(x̄)S2(x̄)

)′
is positive for all x̄ ∈ (l,u), we

reformulate the expression as(
a′′3 (x̄)−a′′1 (x̄) S3(x̄)−a′1(x̄) (S3)′(x̄)

)(
a′2(x̄)−a′1(x̄) S2(x̄)

)
−

(
a′3(x̄)−a′1(x̄) S3(x̄)

)(
a′′2 (x̄)−a′′1 (x̄) S2(x̄)−a′1(x̄) (S2)′(x̄)

)
(a′2(x̄)−a′1(x̄) S2(x̄))2

=

(
a′′3 (x̄)−a′′1 (x̄) S3(x̄)−a′1(x̄) (S3)′(x̄)

)
−

(S3)′(x̄)
(S2)′(x̄)

(
a′′2 (x̄)−a′′1 (x̄) S2(x̄)−a′1(x̄) (S2)′(x̄)

)
a′2(x̄)−a′1(x̄) S2(x̄)

=

(
−

(S3)′(x̄)
(S2)′(x̄)

S2(x̄)+S3(x̄)
)

(−a′′1 (x̄))+
(S3)′(x̄)
(S2)′(x̄)

(−a′′2 (x̄))−(−a′′3 (x̄))

a′2(x̄)−a′1(x̄) S2(x̄)

=
(αᵀ f )′′(x̄)

a′2(x̄)−a′1(x̄) S2(x̄)
, (5.17)

where the last equation follows from a′′i (x) = − f ′′i (x) and

α :=
(
−

(S3)′(x̄)
(S2)′(x̄) S2(x̄) + S3(x̄) , (S3)′(x̄)

(S2)′(x̄) , −1
)
.

A positive sign of the denominator a′2(x̄) − a′1(x̄) S2(x̄) in Equation (5.17)

is implied by (Si)′(x̄) =
a′i (x̄)−a′1(x̄)Si(x̄)

a1(x̄) > 0, which we proved before, and
a1(x̄) > 0. It remains to show that (αᵀ f )′′(x̄) > 0. For this, we investigate
the function αᵀ f . It can be shown that

αᵀ f (x) = c(x) for x ∈ {l, x̄,u} and (αᵀ f )′(x̄) = c′(x̄). (5.18)

These conditions can only be met if αᵀ f (x) is either convex-concave-
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convex or concave-convex-concave. As α3 = −1, αᵀ f has to be concave-
convex-concave (cf. Figure 5.8) and (αᵀ f )′′(x̄) > 0. Thus, (S3)′(x)/(S2)′(x) is
strictly monotone increasing.

The limits of (S3)′(x)/(S2)′(x) as x approaches l or u follow from L’Hôpital’s
rule and are (β2

poly)2 and (β1
poly)2, respectively. �

In Lemma 5.40 we computed the maximizer of the auxiliary function
t[α2, α3](x) = −α2 f ′′2 (x)/f ′′1 (x) − α3 f ′′3 (x)/f ′′1 (x) over [l,u] using the fact that L(x) =
( f ′′3 (x)/ f ′′1 (x))′

( f ′′2 (x)/ f ′′1 (x))′ is strictly monotone increasing. Analogously, we can now de-

termine the minimizer of s[α2, α3](x) = −α2S2(x)−α3S3(x) since (S3)′(x)/(S2)′(x)

is strictly monotone increasing as shown in the previous lemma.

Lemma 5.47. Let f : [l,u] ⊆ R → R3 be a vector of four times continuously
differentiable functions. Assume that (i) f ′′i (x) > 0, i = 1, 2, 3, (ii) ( f ′′i /f ′′1 )′(x) >
0, i = 2, 3, and (iii) L′(x) > 0 for all x ∈ [l,u]. Let β̃i

poly := ((βi
poly)2, (βi

poly)3),
i = 1, 2, 3.

(a) The function s[α2, α3](x) exhibits four patterns of strict monotonicity over
[l,u]:
- Increasing for (α2, α3) ∈ cone({β̃2

poly,−β̃
1
poly)}).

- First increasing, then decreasing for (α2, α3) ∈ int(cone({−β̃1
poly,−β̃

2
poly})).

- Decreasing for (α2, α3) ∈ cone({−β̃2
poly, β̃

1
poly}).

- First decreasing, then increasing for (α2, α3) ∈ int(cone({β̃1
poly, β̃

2
poly})).

(b) If (α2, α3) ∈ cone({β̃2
poly, β̃

3
poly}), then min{s[α2, α3](x) | x ∈ [l,u]} =

s[α2, α3](l).

(c) If (α2, α3) ∈ cone({β̃3
poly, β̃

1
poly}), then min{s[α2, α3](x) | x ∈ [l,u]} =

s[α2, α3](u).

(d) If (α2,−1) ∈ int(cone({β̃1
poly, β̃

2
poly})), there is a unique x̄ ∈ (l,u) with α2 =

(S3)′(x̄)
(S2)′(x̄) and min{s[α2, α3](x) | x ∈ [l,u]} = s[α2, α3](x̄).

(e) The space R2 can be represented as the union of the cones cone({β̃2
poly, β̃

3
poly}),

cone({β̃3
poly, β̃

1
poly}), and int(cone({{β̃1

poly, β̃
2
poly})).

Finally, we prove Theorem 5.45.
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Proof of Theorem 5.45. A vector α ∈ R3 belongs to the boundary of Cpoly if
and only if it satisfies Equation (5.15) with equality, i.e., at least one of the
following constraints is active:

α1 ≤ min{−α2S2(x) − α3S3(x) | x ∈ [l,u]}, (5.19)

α1 ≤ −α2T2
u(l) − α3T3

u(l), (5.20)

α1 ≤ −α2T2
l (u) − α3T3

l (u). (5.21)

Let α̃ denote the projection of a vector α ∈ R3 onto its 2nd and 3rd compo-
nent, i.e., α̃ = (α2, α3). To identify the boundary of Cpoly, we determine the
minimal α1 for a given α̃ ∈ R2 such that αᵀ f exhibits a vertex polyhedral
convex envelope. Lemma 5.47 (e) implies that a given α̃ ∈ R2 belongs to
one of the three cones defined in Lemma 5.47 (b)-(d). The same lemma
also allows to solve subproblem min{−α2S2(x) − α3S3(x) | x ∈ [l,u]} (cf.
Equation (5.19)). Subsequently, we determine the minimal α1 over each
cone which yields the boundary of Cpoly.

If α̃ ∈ cone({β̃2
poly, β̃

3
poly}) or α̃ ∈ cone({β̃3

poly, β̃
1
poly}), the solution of the

problem min{s[α2, α3](x) | x ∈ [l,u]} is attained at x ∈ {l,u}. Then, Equa-
tion (5.19) changes to α1 ≤ −α2T2

u(l) − α3T3
u(l) or α1 ≤ −α2T2

l (u) − α3T3
l (u),

respectively, so that Equation (5.19) is redundant. Using Lemma 5.47 one
can check that the βi

poly, i = 1, 2, 3, satisfy the remaining conditions for
vertex polyhedrality in Equations (5.20) and (5.21) in the following sense:

(β1
poly)1 < −(β1

poly)2 T2
u(l) − (β1

poly)3 T3
u(l), (β1

poly)1 = −(β1
poly)2 T2

l (u) − (β1
poly)3 T3

l (u),

(β2
poly)1 = −(β2

poly)2 T2
u(l) − (β2

poly)3 T3
u(l), (β2

poly)1 < −(β2
poly)2 T2

l (u) − (β2
poly)3 T3

l (u),

(β3
poly)1 = −(β3

poly)2 T2
u(l) − (β3

poly)3 T3
u(l), (β3

poly)1 = −(β3
poly)2 T2

l (u) − (β3
poly)3 T3

l (u).

For each βi
poly, i = 1, 2, 3, at least one of the constraints is active and it

follows that the points βi
poly are contained in the boundary of Cpoly. This

is also true for any conic combination of either β1
poly and β3

poly, or β2
poly

and β3
poly. Thus, the points βi

poly, i = 1, 2, 3, are the extreme rays of Cpoly

corresponding to the first two cones. It remains to determine the extreme
rays corresponding to the last cone int(cone({{β̃1

poly, β̃
2
poly})).

Let α̃ ∈ int(cone({{β̃1
poly, β̃

2
poly})), where we can scale each α̃ such that

α3 = −1. According to Lemma 5.47 (d), there is an x̄ ∈ (l,u) with α2 =
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5.3. Vectors of Univariate Convex Functions

(S3)′(x̄)/(S2)′(x̄). Therefore, consider

α =
(
−

(S3)′(x̄)
(S2)′(x̄) S2(x̄) + S3(x̄) , (S3)′(x̄)

(S2)′(x̄) , −1
)

and the resulting function αᵀ f . In the proof of Lemma 5.46 we showed
that αᵀ f is concave-convex-concave and that

αᵀ f (x̄) = c(x̄), (αᵀ f )′(x̄) = c′(x̄), (αᵀ f )′′(x̄) > 0.

Thus, Lemma 5.44 implies that the convex envelope of αᵀ f is vertex poly-
hedral. Equations (5.20) and (5.21) represent the necessary conditions
for vertex polyhedrality and must therefore be satisfied by α. Equa-
tions (5.19)–(5.21) reduce thus to Equation (5.19) which is satisfied with
equality for all α ∈ Bpoly.

To conclude, we determined for all α̃ ∈ R2 the minimal α1 such that
vexD[αᵀ f ] is vertex polyhedral, i.e., the boundary of Cpoly. �

In Table 5.3 we give an overview of the characteristics of the extreme
rays of Cpoly given in Theorem 5.45 and revealed in Lemmas 5.46 and 5.47.

Convexity of g = αᵀ f g′(l) − g(u)−g(l)
u−l

g(u)−g(l)
u−l − g′(u)

α = β1
poly concave-convex > 0 = 0

α = β2
poly convex-concave = 0 > 0

α = β3
poly convex-concave-convex = 0 = 0

α ∈ Bpoly concave-convex-concave > 0 > 0

Table 5.3.: Characteristics of the extreme rays of Cpoly.

The explicit descriptions of the cones Cvex and Cpoly are now applied to
construct basic relaxations of QD[ f ] in case of a vector of three functions.
Analogously to the vector of two functions, we propose a basic relaxation
corresponding to the vectors αi

vex and βi
vex (defined in Theorems 5.41 and

5.45) which can be used as a strong initial relaxation in a branch-and-
bound algorithm before further cuts are added. The strength of the basic
relaxation is illustrated in the next example.

Example 5.48 (Example 5.42 continued). Let f = (x3, x5, x6) be restricted to
[l,u] := [1/2, 2]. In Example 5.42 we computed Cvex = cone({α1

vex, α
2
vex, α

3
vex}∪
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5. Simultaneous Convexification

Avex). Theorem 5.45 leads to Cpoly = cone({β1
poly, β

2
poly, β

3
poly} ∪ Bpoly) with

β1
poly =

(
−

1900
167 ,

1287
334 , −1

)
, β2

poly =
(
−

475
368 ,

423
184 , −1

)
, β3

poly =
(

421
80 , −

63
20 , 1

)
,

and

Bpoly =
{(
−

4x6+20x5+67x4+190x3+67x2+20x+4
2(4x3+20x2+25x+5) ,

3(4x4+20x3+32x2+35x+7)
2(4x3+20x2+25x+5) , −1

) ∣∣∣ x ∈ (l,u)
}
.

Besides being strictly convex or strictly concave, αᵀ f can have the
additional convexity patterns shown in Figure 5.10 (a). For a given (α2, α3)
the patterns depend on the choice of α1. In Figure 5.10 (b) we indicate the

cave-vex

vex-cave

α2

α3

vex-cave-vex
cave-vex,
vex-cave,

cave-vex-cave,
vex-cave,
cave-vex

(a) Possible convexity patterns.

B̃

α2

α3

β̃1

β̃2

β̃3

α1 =
−α2T2

l (u) − α3T3
l (u)

−α2T2
u(l) − α3T3

u(l)
α1 =

(b) Subdivision of projected Cpoly.

Figure 5.10.: Subdivision of R2 w.r.t. the possible convexity patterns of
αᵀ f besides strictly convex (vex) and strictly concave (cave),
and w.r.t. the projection of Cpoly.

projection of the vectors βi
poly and the set Bpoly onto the (β2, β3)-space which

is denoted by β̃i and B̃, respectively. A combined analysis of Table 5.3 and
the subdivision of R2 w.r.t. the projection of Cpoly shows that only a fraction
of concave-convex-concave functions possess a vertex polyhedral convex
envelope. Moreover, only one representative of convex-concave-convex
functions is necessary to describe Cpoly, namely (β3

poly)ᵀ f .

We compare the standard relaxation RStd of f by the individual con-
vex and concave envelope of fi, with the basic relaxation RBsc of f us-
ing the derived vectors αi

vex and βi
poly, i = 1, 2, 3, i.e., (x, z) ∈ RBsc if and

only if vex[l,u][(αi
vex)ᵀ f ](x) = (αi

vex)ᵀ f (x) ≤ (αi
vex)ᵀz and vex[l,u][(βi

poly)ᵀ f ](x) ≤

196



5.4. Computations

(βi
poly)ᵀz, i = 1, 2, 3. This system is equivalent to

20 x3
− 9/2 x5 +x6

≤ 20 z1 − 9/2 z2 + z3,
5/16 x3

− 9/8 x5 +x6
≤ 5/16 z1 − 9/8 z2 + z3,

−2 x3 + 63/20 x5
−x6

≤ −2 z1 + 63/20 z2 − z3,
−3384/167 x + 1472/167 ≤ −1900/167 z1 + 1287/334 z2 − z3,

−21719/49682 x + 11259/99241 ≤ −475/368 z1 + 423/184 z2 − z3,
63/20 x − 1 ≤ 421/80 z1 − 63/20 z2 + z3.

The volumes of the relaxations are calculated with Mathematica 8 [Wol08]
and are approximately 589.82 for RStd and 3.51 for RBsc. Thus, the volume
of RStd is more than 147 times larger than the one of RBsc. �

Finally, we emphasize the applicability of our concept to families of
interesting functions and domains for which the requirements of Theo-
rems 5.41 and 5.45 hold, e.g.,

• f = (xk1 , xk2 , xk3 ) with k1 < k2 < k3 and ki ∈ R \ [0, 1], i = 1, 2, 3, and
[l,u] ⊆ R>0,

• f = (exp(k1x), exp(k2x), exp(k3x)) with k3 > k2 > k1 and ki ∈ R, and
[l,u] ⊆ R,

• f = (1/x, x2, exp(x)) and [l,u] ⊆ R>0, and

• f = (−
√

x, sin(x), exp(x)) and [l,u] = [3.5, 4.5].

In contrast to the vectors of functions discussed in the literature overview
in Section 5.1, the vectors presented above are not necessarily complete.
For instance, the moment curve consists of all monomials up to a cer-
tain degree whereas this completeness is not necessary for our approach.
Moreover, while most results in the literature concern vectors of mono-
mials, our approach addresses a more general class of functions.

5.4. Computations

We showed in Examples 5.35 and 5.48 that the volume of the relaxation
of a vector of functions can be reduced by orders of magnitude using
the proposed basic simultaneous relaxation RBsc based on αi

vex and βi
poly

from Theorems 5.32, 5.41, and 5.45 instead of using the individual con-
vex relaxations of the functions. In this section we give computational
evidence for the potential of the proposed relaxations in global optimiza-
tion software. In Section 5.4.1 we focus on one particular example from
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5. Simultaneous Convexification

GLOBALLib and present the results of an ad-hoc implementation. In Sec-
tion 5.4.2 we show results for randomly generated instances which are
solved by standard software as well as SCIP [Ach07] with new separators
based on the proposed simultaneous relaxations.

5.4.1. Example ex8 4 6 from GLOBALLib

We searched the two common problem libraries GLOBALLib [GLO] and
MINLPLib [BDM03] for examples illustrating the effect of simultaneous
convexification. Many of the instances in these libraries are rather sparse,
that is a lot of variables occur only once or twice so that it is quite un-
likely that the simultaneous convexification of several nonlinearities has
significant impact. One interesting instance is ex8 4 6 from GLOBALLib:

min
8∑

i=1

( xi − ci

xi

)2
s. t. xi =

3∑
j=1

y j exp(−aiz j), i = 1, . . . , 8

with x ∈ [0, 1]8, y ∈ [−10, 10]3, z ∈ [0, 0.5]3, a = (4, 8, 12, 24, 48, 72, 94, 118)
and c = (0.1622, 0.6791, 0.6790, 0.3875, 0.1822, 0.1249, 0.0857, 0.0616). The
generic lower bound on this problem is 0 and a feasible solution is known
with objective function value 0.0011. The problem contains three families
of convex functions which all satisfy the conditions of Theorems 5.32, 5.41,
and 5.45, namely f j(z j), j = 1, 2, 3, with f j

i (z j) := exp(−aiz j), i = 1, . . . , 8. For
instance, f j

1 and f j
2 satisfy condition (ii) of Theorem 5.32: (( f j

1 )′′/( f j
2 )′′)′ =

exp(4z j) > 0.
The proposed relaxations are analyzed in a branch-and-bound frame-

work. For this, standard reformulation and convexification techniques
are applied to construct a convex relaxation of the original problem. In
particular, each function f j

i (z j) = exp(−aiz j) is replaced by a new variable
w j

i .
We investigate several relaxation methods to link the artificial variables

w j
i to the functions f j

i . First, the standard approach (Stand) is considered
corresponding to RStd, where the relaxations are constructed separately for
each function. Second, we make use of the basic relaxation RBsc to relax the
simultaneous convex hull of two functions f j

r and f j
s , 1 ≤ r < s ≤ 8. For the

strength of the relaxation it is important how many pairs of functions f j
k
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and f i
l are convexified. Relaxation strategy Sim2/4 forms 4 pairs, namely

(k, l) ∈ {(1, 2), (3, 4), (5, 6), (7, 8)}. Relaxation strategy Sim2/7 uses 7 pairs,
namely (k, l) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)}. Third, the basic
relaxation for the simultaneous convex hull of three univariate functions
is applied analogously. Relaxation strategy Sim3/3 forms 3 triples of
functions corresponding to the set {(1, 2, 3), (4, 5, 6), (6, 7, 8)} while Sim3/4
considers 4 triples from {(1, 2, 3), (3, 4, 5), (4, 5, 6), (6, 7, 8)}.

All relaxation strategies were implemented within a branch-and-bound
framework in C++, where each convex subproblem is solved by stan-
dard solvers. For this, we applied BARON 11.1.0 [TS05] and CoinBon-
min 1.6 [BBC+08]. The package CppAD [CO12] was used to calculate the
derivatives of the vectors of univariate functions. The computations were
accomplished on a 2.67 GHz INTEL X5650 with 96GB RAM.

A first test of the relaxation strategies showed that none of them could
improve the generic lower bound of 0. Therefore, we shrink the do-
mains of the y variables and center them around the best known solution,
i.e., y1 ∈ [2.00, 2.10], y2 ∈ [0.30, 0.40], and y3 ∈ [−4.65,−4.55]. For this re-
stricted setting Table 5.4 displays the lower bounds and the corresponding
number of iterations of the 5 relaxation strategies using BARON after 15,
30, 45, and 60 minutes. The results reveal that the simultaneous con-
vexification of several functions has a significant impact on the overall
performance. On the one hand, the convex programs based on the simul-
taneous convex hulls are more expensive to solve. This is reflected by the
fewer number of iterations. For instance, Sim3/4 can only solve a small
fraction of convex programs compared to Stand. This can be explained by
the high dependency between the variables w j

i due to the simultaneous
convexification. On the other hand, the bounds obtained from simulta-
neous convexification are often better although less iterations are used.

We also solved the subproblems by the software CoinBonmin which is
more suitable for convex problems. The bounds and iterations for Stand
obtained with CoinBonmin are similar to the ones computed by BARON.
For Sim2/4 and Sim2/7 the bounds by CoinBonmin are worse. Especially for
Sim2/4 the lower bound by CoinBonmin after one hour is extremely poor
compared to the one of BARON. Note that the severe deviations between
the two algorithms are caused by the numerical very unstable problem
containing a lot of exponential functions and the different tolerances and
limits of the two algorithms. The relaxations Sim3/3 and Sim3/4 based
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5. Simultaneous Convexification

Lower Bound / Iterations using BARON
15 min 30 min 45 min 60 min

Stand 0.23/1815 0.43/3009 0.61/4272 0.85/5572
Sim2/4 0.05/1116 0.89/2045 1.16/2901 1.37/3782
Sim2/7 7.70/ 992 8.34/1653 8.57/2342 8.76/2971
Sim3/3 0.01/ 496 0.12/1025 6.48/1434 7.38/1760
Sim3/4 0.00/ 47 0.00/ 65 0.00/ 102 0.00/ 120

Table 5.4.: Computations with BARON: Lower bounds scaled by 10−4 and
number of iterations. The best known feasible solution is 11 ·
10−4.

on the simultaneous convexification of three functions are handled very
well by CoinBonmin. In contrast to BARON, the number of iterations of
CoinBonmin is enlarged by a factor of 20 which leads to excellent lower
bounds. The lower bound of 10.89 ·10−4 by Sim3/4 after 60 minutes almost
proves global optimality of the local solution with objective value 11 ·10−4.

Lower Bound / Iterations using CoinBonmin
15 min 30 min 45 min 60 min

Stand 0.00/ 37 0.45/3059 0.69/4647 0.90/5873
Sim2/4 0.00/1728 0.03/3590 0.07/5426 0.11/4262
Sim2/7 0.15/ 423 0.42/ 557 3.01/ 823 6.88/1036
Sim3/3 1.46/ 685 7.82/1214 8.57/1960 8.98/2555
Sim3/4 7.69/ 738 9.37/1554 10.37/2226 10.89/2895

Table 5.5.: Computations with CoinBonmin: Lower bounds scaled by 10−4

and number of iterations. The best known feasible solution is
11 · 10−4.

All in all, a relaxation based on the simultaneous relaxation can clearly
outperform the standard relaxation. For instance, the lower bounds of
Sim2/7 with BARON and Sim3/4 with CoinBonmin are at any time 10 times
better than the bound of Stand.
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5.4.2. Separators in SCIP

Motivated by the computational results in the previous section, we imple-
mented the proposed basic relaxations RBsc as separators in SCIP [Ach07].
The separators 2UniVarConv and 3UniVarConv are based on the new re-
laxations for vectors of two and three univariate convex functions, respec-
tively, given by Theorems 5.32, 5.41, and 5.45. If the corresponding convex
constraints vex[l,u][(αi

vex)ᵀ f ](x) ≤ (αi
vex)ᵀz and vex[l,u][(βi

poly)ᵀ f ](x) ≤ (βi
poly)ᵀz

cut off a given point, a linear constraint is generated and added to the lin-
ear programming relaxation. In this section we compare the performance
of SCIP using the separators with state-of-the-art solvers.

Our test set consists of randomly generated problems, where we in-
vestigate the influence of the number of variables Nvars and constraints
Ncons, and the maximum degree Deg over all constraints. Similar to
Section 3.2.3, we define the following problem class

min ε s.t.
Deg∑
i=1

Nvars∑
j=1

ai, j,k x
pi, j,k
j ≤ ε ∀ k = 1, . . . , Ncons, x ∈ [l,u],

where ai, j,k is uniformly at random in {−4,−3, . . . , 3, 4}, pi, j,k is uniformly at
random in {i+0.2, i+0.4, . . . , i+1}, li is uniformly at random in {1, 2, 3, 4, 5},
and ui is uniformly at random in {1, 2, 3, 4, 5}+ li such that li < ui. We con-
sider the following parameter settings: Nvars ∈ {10, 20, 30, 50}, Ncons ∈
{1, 5, 10, 20, 50}, and Deg ∈ {2, 3, 4, 5}. For each of the 4 · 5 · 4 = 80 con-
figurations we generated 10 random instances so that 800 instances are
obtained in total.

The functions x
pi, j,k
j with the common variable x j form a vector of

univariate convex functions of the form (xk1
j , x

k2
j , . . . , x

kK
j ), K ∈ N, and

1 < kr < kr+1 ≤ (Deg + 1) for 1 ≤ r < K, whose subvectors satisfy the
requirements of Theorems 5.32, 5.41, and 5.45. Currently, the separators
do not automatically detect these vectors. Instead, we need to refor-
mulate the problems such that each function x

pi, j,k
j is replaced by a new

variable wi, j,k
j and the constraint wi, j,k

j = x
pi, j,k
j is added to the program. This

reformulation is called the extended formulation.
We compare SCIP 3.0.0 [Ach07, Ach09] (with the new separators en-

abled or disabled) with BARON 11.1.0 [TS05] and COUENNE 0.4 [BLL+09].
We use the separators 2UniVarConv and 3UniVarConv individually and
jointly, which is denoted by 2-SCIP, 3-SCIP, and 2+3-SCIP. To activate the
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5. Simultaneous Convexification

separators, we set their frequency to one, i.e., they are applied at every
node. All computations were executed on a 2.67 GHz INTEL X5650 with
96GB RAM. The time limit was 15 minutes. Among the 800 instances
there are 19 for which one of the algorithms aborted or failed so that they
are excluded from our subsequent discussion.

In Table 5.6 we compare the results of the standard solvers BARON,
COUENNE, and SCIP for the original and the extended problem formula-
tion. For an explanation of the performance parameters see the discussion
of Table 3.2 in Section 3.2.3. The three solvers perform similarly on the

Original / extended formulation
BARON COUENNE SCIP

#solved 531 / 549 503 /498 497 / 542
#fastest 103 / 76 7 / 1 47 / 155
#best dual bound 531 / 549 507 / 504 497 / 542

mean time 64.3 / 60.8 81.4 / 84.8 459.4 / 58.3
mean nodes 265.7 / 138.4 1249.9 / 1192.6 28395.7 / 823.4
mean dual gap 14.1% / 13.1% 13.9% / 14.2% 14.8% / 10.4

Table 5.6.: Computational results for 800 instances in original and ex-
tended formulation.

test set w.r.t. the number of instances solved, the best bound, and the dual
gap. BARON’s and COUENNE’s performance is more or less independent
from the problem formulation while SCIP benefits from the extended for-
mulation. It solves 10% more instances and reduces its mean number of
nodes and mean computation time significantly from 28395.7 nodes to
823.4 nodes and from 459.4 seconds to 58.3 seconds, respectively. More-
over, SCIP derives the lowest dual gap of 10.48%. For a comparison of the
standard solvers with the new separators we thus concentrate on SCIP.

The results in Table 5.7 show that SCIP can take advantage of the sep-
arators. SCIP with both separators enabled solves up to 100 additional
instances to optimality, derives the best bounds for 737 instances, and
even reduces slightly the mean computation time. The strength of the
relaxations used by the separators is depicted by the dual gap which is
less than 1% compared to 10.48% of SCIP. Comparing the results of the
separators, it turns out that all algorithms can solve a comparable num-
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SCIP 2-SCIP 3-SCIP 2+3-SCIP

#solved 542 627 644 643
#fastest 155 152 86 78
#best dual bound 542 637 708 737

mean time 58.3 44.5 52.6 53.1
mean nodes 823.4 1031.2 886.0 900.4
mean dual gap 10.48% 0.52% 0.76% 0.49%

Table 5.7.: SCIP (separators dis-/enabled) applied to 800 instances in ex-
tended formulation.

ber of instances. The increasing strength of the relaxations used in 2-SCIP,
3-SCIP, and 2+3-SCIP is reflected by the number of instances for which
the algorithms compute the best dual bound, namely 637, 708, and 737.
However, the stronger relaxations also lead to slower computations, e.g.,
2-SCIP exhibits the lowest mean computation time and is fastest for 152
instances whereas 3-SCIP and 2+3-SCIP are only fastest for 86 and 78 in-
stances, respectively. Nevertheless, the dual bounds of 2+3-SCIP are the
strongest so that we focus on this algorithm subsequently.

A detailed analysis of the dual gaps of BARON, COUENNE, SCIP, and
2+3-SCIP w.r.t. the number of variables and constraints, and the highest
degree of the polynomials over all constraints is presented in Figure 5.11.
The results of the standard solvers are similar: The dual gap increases
tremendously for higher number of variables and constraints, and for
a higher degree. However, the dual gap decreases slightly when the
number of constraints is increased from 20 to 50. In this case the feasible
sets might be smaller or potential solutions are excluded more quickly so
that the branch-and-bound algorithms become faster. In contrast to the
standard solvers, the dual gaps of 2+3-SCIP increase modestly for larger
problem instances and none of the gaps is larger than 2%. For the largest
problem classes with Nvars=50, Ncons=50, and Deg=5 the algorithm 2+3-
SCIP reduces the dual gap of the best standard solver by factors of 30, 10,
and 36, respectively.

The overall computations show that SCIP is substantially improved by
the implemented separators w.r.t. the considered test set. While SCIP with
separators enabled performs similar to the standard solvers for “easier”
instances (with a small number of variables and constraints, and a small
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Figure 5.11.: Dual gaps of the solvers w.r.t. the number of variables NVars,
constraints Ncons, and the maximal degree Deg.
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polynomial degree), it clearly outperforms the state-of-the-art global op-
timization solvers for the more complicated instances. For these instances
there is a high dependence between the different univariate convex func-
tions so that the separators can significantly exploit the simultaneous
relaxations.

In this chapter we established a link between the simultaneous convex
hull QD[ f ] of f = ( f1, . . . , fm) and the convex envelope of the functions
αᵀ f , α ∈ Rm, in order to use the theory of convex envelopes to derive
properties for QD[ f ]. On the one hand, we showed that the union of the
generating sets of vexD[αᵀ f ] over all α ∈ Rm is dense in the generating set
ofQD[ f ]. On the other hand, we describedQD[ f ] via the convex envelopes
of αᵀ f , α ∈ Rm, and identify subsets of α ∈ Rm which are not necessary for
this representation, namely the interior of the cones Cvex and Cpoly. Based
on this, a strong relaxation ofQD[ f ] for vectors of two and three univariate
convex functions was proposed. Computational results showed that the
proposed simultaneous relaxations do not only yield theoretically better
relaxations but also accelerate global optimization software.
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Outlook

This thesis presented new techniques to construct strong convex relax-
ations of MINLPs. The impact of these techniques was demonstrated in
various case studies involving benchmark problems as well as two appli-
cations from chemical engineering. Nevertheless, the results presented
in this thesis can only be viewed as small steps towards the global op-
timization of general real-world applications. In each part of the thesis
interesting further research directions can be inferred to accelerate the
computations of MINLPs.

In Chapter 2 we deduced a bound tightening technique for a hybrid
separation process of a binary mixture. Motivated by the good compu-
tational results, an extension of this technique handling processes with
multicomponent mixtures could be investigated. In this multivariate set-
ting the interaction between the variables increases so that the analysis of
the equation system becomes more complicated.

In Chapter 3 strong convex relaxations for two classes of bivariate
functions are discussed. For bivariate functions with a fixed convexity
behavior we implemented a constraint handler in SCIP which automati-
cally detects the convexity behavior of bivariate quadratic and monomial
functions. Each function is then replaced by a new variable and individ-
ually handled by the constraint handler. Hence, it is not exploited that
the sum of functions, which exhibit the same fixed convexity pattern, is
again characterized by this convexity pattern. Using this fact, the sum
of functions can be treated as one function and less additional variables
need to be introduced and relaxed by the constraint handler.

In Chapter 4 we derived extended formulations for the convex envelope
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5. Simultaneous Convexification

of practically relevant functions based on a simultaneous convexification
with multilinear monomials. For this, we introduce all possible multi-
linear monomials of a certain family of variables so that the RLT theory
can be used to uniquely solve the corresponding optimization problem.
However, this leads to an exponential increase in the number of addi-
tional variables. It is thus of interest to investigate the convex envelope in
a reduced, extended space, corresponding to a subset of the multilinear
monomials, which yet enables us to derive closed-form expressions for
the convex envelope.

In Chapter 5 both an inner and outer description for the simultaneous
convex hull of several functions is provided based on convex envelopes.
Regarding the inner description we proved that the generators of the
simultaneous convex hull are dense in the generators of the convex en-
velopes, but we could not find any example which gives evidence for the
gap between the two sets of generators. Regarding the outer description
we suggested a strong basic relaxation for the simultaneous convex hull
of two and three univariate convex functions, which is derived by the
explicit use of analytical tools. For more functions this approach is not
appropriate as the analytical solution of the corresponding auxiliary prob-
lems becomes more and more complicated. Alternative approaches are
therefore necessary that might deliver weaker results for two and three
functions but are applicable to larger families of functions.
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APPENDIX A

Modifications of (S1) and (S2)

Test Optimal Lower bounds and CPU time (hh:mm)
instance cost (S1mod) (S2mod)

T0 306.37 252.97 (100:00) 202.65 (100:00)
T2a 254.33 201.64 (100:00) 218.81 (100:00)
T2b 326.17 250.13 (100:00) 222.92 (100:00)
T4a 153.17 115.18 (100:00) 108.28 (100:00)
T4b 612.77 497.12 (100:00) 512.83 (100:00)
T5a 282.00 253.02 (100:00) 203.37 (100:00)
T5b 531.10 415.11 (100:00) 427.96 (100:00)
T6a 106.20 78.32 (100:00) 48.44 (100:00)
T6b 175.17 124.57 (100:00) 89.20 (100:00)
T7a 1056.47 224.68 (100:00) 115.27 (100:00)
T7b 155.50 155.50 ( 52:08) 135.84 (100:00)

Table A.1.: Stand-alone distillation column: Optimal cost in comparison
with the lower bounds of (S1mod) and (S2mod) after 100 hours
or the time needed to solve the problem globally. In (S1mod)
the reference model is changed such that nonlinearities includ-
ing a binary variable are removed using a Big-M formulation.
In (S2mod) the modeling approach of [VN11] is used to reduce
the number of binary variables.
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APPENDIX B

Copyrights

The permission to reproduce certain copyright material was obtained by
license agreements - between the author of this thesis and the correspond-
ing publishers - provided by the Copyright Clearance Center.

• Figure 3.3 is a reprint of Figure 1 in the paper: A simplicial branch-
and-bound algorithm for solving quadratically constrained quadratic pro-
grams, Jeff Linderoth, Mathematical Programming 103 (2005), no. 2,
251–282, with kind permission from Springer Science and Business
Media.

• Section 3.3 is based on the paper: A theoretical study of continu-
ous counter-current chromatography for adsorption isotherms with in-
flection points, Martin Ballerstein, Dennis Michaels, Andreas Seidel-
Morgenstern, and Robert Weismantel, Computers & Chemical En-
gineering 34 (2010), no. 4, 447–459, with permission from Elsevier.

• Figures 3.10 (a) and (b) are reprints of Figures 5 and 2, respectively,
in : Continuous chromatographic separation through simulated moving
beds under linear and nonlinear conditions, Cristiano Migliorini, Marco
Mazzotti, and Massimo Morbidelli, Journal of Chromatography A
827 (1998), 161–173, with permission from Elsevier.

• Figure 3.10 (c) is a reprint of Figure 3 in: Design of simulated mov-
ing bed processes under reduced purity requirements, Malte Kaspereit,
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B. Copyrights

Andreas Seidel-Morgenstern, and Achim Kienle, Journal of Chro-
matography A 1162 (2007), no. 1, 2–13, with permission from Else-
vier.

Chapter 4 is based on the paper: Extended Formulations for Convex En-
velopes, Martin Ballerstein and Dennis Michaels, Journal on Global Op-
timization, accepted August 2013. The final publication is available at
link.springer.com.
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