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Multimodal oncological strategies which combine chemotherapy or radiother-

apy with hyperthermia, have a potential of improving the efficacy of the non-

surgical methods of cancer treatment. Hyperthermia engages the heat-shock

response (HSR) mechanism, the main component of which are heat-shock pro-

teins. Cancer cells have already partially activated HSR, thereby hyperthermia

may be more toxic to them relative to normal cells. On the other hand, HSR

triggers thermotolerance, i.e. hyperthermia-treated cells show an impairment

in their susceptibility to a subsequent heat-induced stress. This poses questions

about efficacy and optimal strategy for anti-cancer therapy combined with

hyperthermia treatment. To address these questions, we adapt our previous

HSR model and propose its stochastic extension. We formalize the notion of

a HSP-induced thermotolerance. Next, we estimate the intensity and the dur-

ation of the thermotolerance. Finally, we quantify the effect of a multimodal

therapy based on hyperthermia and a cytotoxic effect of bortezomib, a clini-

cally approved proteasome inhibitor. Consequently, we propose an optimal

strategy for combining hyperthermia and proteasome inhibition modalities.

In summary, by a mathematical analysis of HSR, we are able to support the

common belief that the combination of cancer treatment strategies increases

therapy efficacy.

1. Introduction
Most of the non-surgical methods of cancer treatment (e.g. chemotherapy and

radiotherapy) are based on the principle of putting some kind of stress on cancer

cells to induce their death. Unfortunately, in many cases the above methods fail.

The fact that heat-shock proteins (HSPs) prevent apoptosis induced by different mod-

alities of cancer treatment explains how these proteins could limit the application of

such anti-cancer therapies [1]. In order to improve the efficacy of these treatments,

some effort is focused on the multimodal oncological strategies which usually

combine treatment of chemotherapy or radiotherapy with hyperthermia.

1.1. Heat-shock response in cancer treatment
HSPs are a group of highly conserved proteins involved in many physiological and

pathological cellular processes. They are the so-called chaperones, as they protect

proteins from stress and help new and distorted proteins with folding into their

proper shape [2]. In principle, HSP synthesis increases under stress conditions. Sub-

sequently, upregulation of HSP increases cell survival and stress tolerance [3].

Elevated expression of different members of the HSP family has been detected in

several cases of tumour (e.g. [4]). Despite its importance, little is still known

about how exactly HSPs are involved in different processes related to cancer devel-

opment. In this work, we are interested in the heat-shock inducible isoform of

70 kDa (Hsp70). We will denote the Hsp70 protein by HSP from now on.

Hyperthermia is a therapeutic procedure used to raise the temperature of a

whole body or a region of the body affected by cancer. Body tissues are,

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0527&domain=pdf&date_stamp=2013-08-28
mailto:mikolaj.rybinski@bsse.ethz.ch
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http://dx.doi.org/10.1098/rsif.2013.0527
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Figure 1. Scheme of the HSR model. Squares represent species, including com-
plexes, and dots represent reactions, with substrates and products denoted,
respectively, by incoming and outgoing arrows. On the left-hand side of the
scheme, the denaturation of native proteins P and refolding or degradation of
denatured proteins S (substrate) moderated by the HSP chaperones. On the
right-hand side, the adaptive HSP production loop, stimulated by HSF, which tri-
merize and initiate HSE transcription and HSP mRNA translation (dotted arrow).
As a negative feedback, HSP molecules promote HSF trimers dissociation and inhi-
bit single HSF molecules by direct binding. The loop is closed by the inflowing
substrate which forces out inhibited HSF out of the complex with HSP.
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globally or locally, exposed to temperatures up to 458C [5].

Besides characteristics specific to cell type, the effectiveness

of hyperthermia depends on the temperature achieved

during the treatment, as well as on the length of the treatment

[5,6]. In general, moderate hyperthermia treatment, which

maintains temperatures in a moderate 40–428C range for

about an hour, does not damage most normal tissues and

has acceptable adverse effects [5,7].

Currently, hyperthermia effectiveness is under study in clini-

cal trials, including combination with other cancer therapies

[5,7]. A synergistic interaction of radiotherapy and hyperthermia

as well as some cytotoxic drugs and hyperthermia has already

been confirmed in experimental studies [6]. In particular,

Neznanov et al. [8] demonstrated, in vitro, that induction of

heat-shock response (HSR) by hyperthermia enhances the efficacy

of a proteasome inhibitor called bortezomib—an FDA-approved

drug for treatment of multiple myeloma and mantle cell

lymphoma [9]. Basically, hyperthermia engages the HSR mech-

anism, the main component of which are the anti-apoptotic

HSPs. Cancer cells already have partiallyactivated HSR, because

they are coping with higher levels of constitutively misfolded

proteins. An elevated level of misfolded proteins has been

detected in many tumours [10,11]. This is mainly due to the

rapid rate of proliferation and specific intracellular conditions

of cancer cells such as hypoxia or glycolysis-related acidifica-

tion. Therefore, in principle, a sufficiently increased level of

misfolded proteins, as obtained by, for example, a combination

of cytotoxic drugs and hyperthermia, cannot be matched by

the capacity of the intracellular HSR mechanism and such

enhanced proteotoxic stress can be more toxic to cancer cells

than to normal cells [8]. This phenomenon is observed despite

the fact that, mainly due to p53 inactivation, many cancer cells

have downregulated their apoptotic pathways [12]. Namely, an

increased level of proteotoxic stress has been demonstrated to

induce cell death also by p53-independent apoptosis. For

instance, experimental studies performed on HCT116 human

colon cancer cells revealed that this phenomenon concerns

both p53 wild-type cells as well as p53 knockout (p53–/–)

cells. Despite a greater extent of apoptosis in the former case,

apoptosis induced by a proteotoxic stress caused by combi-

nation of bortezomib with an inducer of protein misfolding is

largely p53 independent [8]. In principle, even if cancer cells

have their apoptotic pathways downregulated and it results

in a lower efficacy of proteotoxic stress, then at sufficient

doses of stress inducers these cells will die anyway due to

apoptosis (or other causes) [12].

On the other hand, after a heat shock, all cell types show

an impairment in their susceptibility to heat-induced proteo-

toxicity. This phenomenon, known as thermotolerance, is

triggered by HSR and it is, at least partially, based on the

upregulation of HSP [6]. Thermotolerance is, in principle,

reversible and persists for usually between 24 and 48 h [5].

Owing to this phenomenon, the applicability of the combined

hyperthermia therapy may be, counterintuitively, initially

limited. This naturally poses questions about the efficacy

and about an optimal strategy for hyperthermia treatment.
1.2. Our results
We formalize the notion of the HSP-induced thermotolerance, i.e.

the HSR system desensitization with respect to the second con-

secutive heat shock (desensitization reflects memory of the

previous temperature perturbation). Using mathematical
modelling, we compute the intensity and the duration of the

thermotolerance. Finally, we quantify the effect of a combined

therapy of hyperthermia and bortezomib-induced proteasome

inhibition. Based on that, we propose an optimal strategy forcom-

bination of heat shock and the inhibitor. In principle, our results

support the common belief that the combination of the aforemen-

tioned cancer treatment strategies increases therapy efficacy.
2. Model
The main purpose of this work is to contribute to the under-

standing of the involvement of the HSR mechanism in

multimodal cancer therapies. To this end, we use a refined

version of our previous deterministic model [13]. Despite its

simplicity, the model provides a correct qualitative dynami-

cal description of the most important experimentally

studied elements of the HSR mechanism (cf. [13]).

The Szymańska & Żylicz [13] model captures dynamics of

synthesis of HSP and its interactions with key intracellular com-

ponents of HSR : HSP; the heat-shock factor (HSF) and its trimer,

which is a HSP transcription factor; HSP substrate—mainly

denatured, misfolded native proteins (S); HSP gene—heat-
shock element (HSE) and HSP mRNA. Figure 1 depicts the overall

model scheme, and following reactions give the precise model

structure:

HSP : HSFþ S O HSP : SþHSF; ð2:1Þ
3 �HSF! HSF3; ð2:2Þ

HSF3 þHSE O HSE : HSF3; ð2:3Þ
HSE : HSF3 ! HSE : HSF3 þmRNA; ð2:4Þ
HSPþHSF3 ! HSP : HSFþ 2 �HSF; ð2:5Þ

HSPþ S O HSP : S; ð2:6Þ
HSPþHSF O HSP : HSF; ð2:7Þ

HSP! ;; ð2:8Þ
HSP : S! HSPþ P; ð2:9Þ

P �T! S; ð2:10Þ
mRNA! mRNAþHSP; ð2:11Þ

mRNA! ;: ð2:12Þ
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Figure 2. Numerical simulations of the HSR ODE model for a constant 428C
heating strategy. Simulation starts at a 378C steady state. Plot (a) depicts
HSP response to the temperature-stimulated inflow of denatured proteins S
(substrate). Free substrate is instantaneously bound into an HSP : S complex.
Insufficient amount of free HSP causes its extraction from the HSP : HSF complex,
forming an initiative response of the cell. Released in exchange HSF induces
adaptive production of HSP molecules to complement its deficiency as indicated
by accumulation of S, with peak at ca 25 min. After over 120 min, the excess of
upregulated HSP is used to inhibit HSF activity. System completely stabilizes
after ca 650 min (see electronic supplementary material, figure S1) with
most of constantly inflowing S secured in the HSP : S complexes. Plot (b) depicts
the adaptive HSP production, stimulated by HSF. HSF trimerizes and initiate HSE
transcription to mRNA, followed by further translation to HSP, as visible by the
shifted activity of subsequent components.
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Four out of the 12 reactions (equations (2.1)–(2.12)) are

reversible, for a total of 16 reactions. The superscript T over

the reaction arrow (equation (2.10)) denotes temperature

dependence. The proteins’ denaturation rate dependence on

temperature is modelled by a power-exponential function,

analogous to some of the previous HSR mathematical models

[13–16]. This type of functional relation is based on

experimental calorimetric enthalpy data [17].

Principal changes we have introduced to the refined ver-

sion of the model include explicit native protein species

(equations (2.9) and (2.10)) and the HSP mRNA degradation

reaction distinct from a translation process (equations (2.11)

and (2.12)). The first change is in fact a technical operation to

increase clarity of the model, i.e. it does not affect dynamics

of the model per se. Technically speaking, this change intro-

duced a new species without changing dimensionality of

the dynamical system corresponding to the model (rank

of the stoichiometric matrix remains the same). The second

change was introduced to correct for a previous shortcoming

of the model in order to account for multiple translations

from a single HSP mRNA molecule.

The deterministic mathematical model assumes kinetics, and

it is represented by first-order ordinary differential equations

(ODEs). Figure 2 depicts the behaviour of this model in response

to the immediate shift of the temperature to T¼ 428C. Initial

conditions reflect the state of homeostasis, i.e. a steady state for

T¼ 378C. Amounts of species are arbitrarily scaled, each of

them separately, to obtain values of a similar order of magnitude

for each species (denoted a.s.M). We calibrated this model

with respect to the HSE : HSF3 428C experimental data [18]

(see electronic supplementary material, figure S2).

We additionally developed a stochastic counterpart of

the deterministic model, represented by the chemical master
equation (CME) or, equivalently, continuous-time Markov chain
(CTMC), which we then analysed using the probabilistic model
checking (PMC) technique. In order to ensure the feasibility of

this approach, we used the approximate PMC (APMC) tech-

niques as implemented in the PRISM tool [19]. In §2.1, we

justify the deterministic approach as a valid approximation of

a stochastic one.

Files with deterministic and stochastic models are avail-

able in the electronic supplementary material, as an XML

file F1 in SBML format [20] and as a text file F2 in the

PRISM model format [19], respectively. Additionally, text

S3 in the electronic supplementary material, §1, describes

both mathematical models in detail.
2.1. Comparison of stochastic and deterministic models
For a stochastic model, we used the scaling coefficient d that

relates concentrations in the deterministic model to the

number of molecules in the stochastic model. The value of d

corresponds to a number of molecules per one unit of concentra-

tion, i.e. d . [S] ¼ #S. This approach is equivalent to considering

an approximate stochastic model of packs of NA
. [V ]/d mol-

ecules instead of single molecules (here NA is Avogadro

constant and jVj is the solution volume). We adjust reactions

constants accordingly, with NA � jVj :¼ d (cf. [21]).

We find that for d ¼ 100 the ODE model is in good agree-

ment with the stochastic variant for both 378C and 428C. A

visual comparison of the ODE and stochastic simulations is

presented in figure 3. Table 1 presents a comparison of sto-

chastic mean values with ODE values for d equal to 100
and 1000. There are two sources of errors in the stochastic

model: the rounding errors due to the molecule packaging,

and the propensity constants approximations, especially for

the only reaction R with rank(R) . 2, i.e. the HSF trimeriza-

tion ((equation (2.2); cf. [21]). Although for d ¼ 1000 the

relative errors, and equivalently the absolute errors in

steady state, are ca 10 times lower than for d ¼ 100 (table 1),

the stochastic simulation paths, and consequently their run-

ning time, are almost exactly 10 times longer (mean

677092.4+1235.8 s.d. steps of the underlying CTMC for

d ¼ 1000 versus mean 67722.5+ 396.1 s.d. steps for d ¼ 100

to reach 571 min; estimated from 1000 simulations). We find

d ¼ 100 to be a good compromise between accuracy and

efficiency for our proof-of-concept case study.

To quantify the level of of stochastic noise, we calculate

the variance-to-mean ratio (VMR) defined as VMRðXÞ ¼
VARðXÞ/EðXÞ. It quantifies noise of a species amount vari-

able X ¼ #S at a fixed time point in the stochastic model,

with respect to the Poisson birth–death process (e.g. [22]).

Table 2 contains estimated steady-state values of VMR in

our model. These VMR values are significant for some of

the crucial species, both for the state of homeostasis and the

steady state during the heat shock.
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Figure 3. Comparison of the stochastic simulations with respect to ODE’ numerical solutions for the HSR model. Both (a) homeostasis and (b) heat-shock conditions
are compared. Each plots shows 10 sample stochastic trajectories, estimated mean+s.d. of a sample of 103 stochastic simulations, and an ODE numerical solution
(black). Here, we assumed 100 molecules per unit of concentration.
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The steady-state amount of substrate, HSP, HSF and HSP

mRNA is over-dispersed with respect to the Poisson distri-

bution, indicating their high stochasticity in our model. In

general, the relative noise of species amounts increases for

the higher temperature parameter value: mean VMR is 1.23

in homeostasis, while it is 1.32 in the 428C heat shock (ca
7.5% higher; see table 2). This is due to the almost twofold

increase in substrate noise (highlighted).

We conclude this section by noting the strong similarity

between both deterministic and stochastic models with

respect to the stochastic mean value. However, it is worth

noting that almost half of the modelled species exhibit a

significant noise level in the stochastic model.
3. Results
3.1. Quantification of the thermotolerance phenomenon
Thermotolerance can be described as a desensitization with

respect to a consecutive heat shock, compared to the response

to the first heat shock. In other words, thermotolerance
represents a memory of the system about the first two, ‘on’

and ‘off’ temperature perturbations, leading to a decreased

response to the subsequent ‘on’ perturbation. In the case of

the HSR system, its memory is created by a propagating

shift in species activity and the feedback loop of the

biochemical network (cf. figure 2).

Figure 4 depicts the thermotolerance phenomenon in the

deterministic HSR model for the immediate 428C heat shock.

Duration and strength of the memory of the first temperature per-

turbation can be accurately tracked by the activity of HSP, the

level of which is negatively correlated with the strength of the

response (cf. the electronic supplementary material, figure S4).

In the stochastic model, we introduce approximate pertur-

bations as an independent, k-level Poisson process (see text S3

in the electronic supplementary material, §3 for details). This

allows us to stay within the same mathematical model, i.e.

CTMC, and seamlessly perform stochastic simulations.

We define the notion of the HSP-induced thermotolerance

during nth heat shock (n . 1) as the desensitization coefficient

Dn ¼ 1�Rn

R1
; ð3:1Þ



Table 1: Estimates of a relative error of each species mean value with respect to its ODE value, i.e. jEdð#SÞ/d� ½S�j/½S�, given as percentage values.
Relative errors were calculated in homeostasis (T ¼ 378C) and the heat-shock steady state (T ¼ 428C), for two scaling coefficient d values. Species are sorted
according to error values in homeostasis for d ¼ 100; from the least to the most consistent with the ODE solutions. Steady-state mean values were estimated
using APMC with 104 independent simulation samples for each species.

relative error+++++ 95% CI in %

species

homeostasis heat shock

d 5 100 d 5 1000 d 5 100 d 5 1000

HSP 12.5+ 0.68 1.31+ 0.19 8.4+ 0.55 0.83+ 0.16

HSF3 12.1+ 0.86 1.45+ 0.26 9.4+ 0.75 0.71+ 0.23

HSP mRNA 12.1+ 0.79 1.23+ 0.24 8.8+ 0.67 0.79+ 0.21

HSE : HSF3 11.4+ 0.87 1.37+ 0.26 8.5+ 0.74 0.86+ 0.23

HSF 6.9+ 0.72 0.88+ 0.24 5.1+ 0.68 0.76+ 0.23

substrate 2.5.+ 0.69 0.34+ 0.22 2.9+ 0.44 0.33+ 0.14

HSP : HSF 1.6+ 0.06 0.21+ 0.02 1.8+ 0.09 0.21+ 0.03

HSE 0.6+ 0.04 0.06+ 0.01 0.5+ 0.05 0.05+ 0.01

HSP : substrate 0.1+ 0.17 0.04+ 0.05 0.1+ 0.05 0.01+ 0.02

Table 2. Estimates of VMR for each species in homeostasis (T ¼ 378C) and
the heat-shock steady state (T ¼ 428C). VMR estimates were calculated for
d ¼ 100. Species are sorted according to the VMR values in homeostasis,
from the most to the least disperse. The first four species represent over-
disperse variables while the remaining species represent the under-dispersed
variables, with respect to the Poisson distribution. The dispersion does not
change much with temperature, except for the substrate (italicized). Mean
and variance values were estimated using APMC with, respectively, 104 and
5�104 independent simulation samples for each species.

VMR+++++ 95% CI

species homeostasis heat shock

HSP 3.05+ 0.65 3.14+ 0.74

HSF 2.41+ 0.35 2.21+ 0.40

HSP mRNA 1.68+ 0.29 1.60+ 0.34

substrate 1.19+ 0.24 2.32+ 0.53

HSE : HSF3 0.81+ 0.12 0.85+ 0.14

HSP : substrate 0.78+ 0.55 0.57+ 0.77

HSF3 0.78+ 0.12 0.79+ 0.15

HSP : HSF 0.27+ 0.46 0.38+ 0.60

HSE 0.10+ 0.11 0.03+ 0.13
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where nth response Rn is defined as

Rn ¼ max
tn�t,tnþ1

f#SðtÞ �#S�g; ð3:2Þ

where #S� ¼ Epð#SÞ is a mean value of a species S amount

in a steady-state p; tn is a nth heat-shock start time (we

assume tnþ1 ¼1 if not specified otherwise); and the first

response, by assumption, satisfies R1 . 0. For the determinis-

tic model, the species amount is simply a scaled value

of ODE variable, corresponding to the mean value of a

stochastic process random variable.
We argue that such measure of a response represents

toxicity of the heat shock. Based on the evidence of largely

p53-independent apoptosis caused by heat and chemically

induced proteotoxic stress, we will straightforwardly interpret

a higher response as a higher likelihood of cell dying.

Figure 5 depicts values of the desensitization coefficient D2

for the substrate species, with respect to the time gap between

heat shocks. After the first heat shock and after the time gap of

the approximated memory loss, i.e. at ca 400 min, the system is

very close to the homeostasis steady state (cf. the electronic

supplementary material, figure S1; t � Dt1 þ 400 � 470 min).

In the stochastic model, we may observe a non-zero

(slightly positive) level of mean D2; after the thermotolerance

effect has vanished. More importantly, the stochastic variant

presents a constantly high standard deviation of the desensi-

tization intensity: ca 20% of its expected maximum level

(which is observed for the very short-time gap between

heat shocks). These results, as well as the overall difference

with respect to the deterministic model, may be attributed

to the stochastic noise and the fact that we take a maximum

amount of substrate in equation (3.2) to measure its toxic

influence, not the mean value.
3.2. Hyperthermia in multimodal oncological strategies
It has been hypothesized that because hyperthermia enga-

ges the HSR mechanism and because the capacity of this

mechanism is limited, especially in cancer cells, hyperthermia

enhances the toxicity induced by a second modality of cancer

treatment [8]. This synergistic effect of hyperthermia and

other cancer therapies can be attributed to the much higher

accumulation of denatured proteins (substrate), which are

deadly for cells. In our modelling approach, we investigate,

by means of the presented mathematical HSR model, the

temperature dependence of HSR in combination with

bortezomib-induced inhibition of proteasome.

In our intracellular-level model, we assume that hyperther-

mia treatment is represented by a heat shock with an
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time gap between the end of the first heat shock and the beginning of the second heat shock. Duration of both heat shocks Dtn (n ¼ 1,2) is equal to 71 min.
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with 95% level. In the case of the mean value, the confidence interval width is less than 5 � 1023, while for the standard deviation the confidence interval is
depicted as a strip. Estimators were calculated using APMC with 104 and 5 � 104 independent simulation samples for the first and the second moment, respectively
(see text S3 in the electronic supplementary material, §2 for details).
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immediate temperature shift, as presented in §3.1. In order to

incorporate into the model the inhibitory effect of bortezomib,

we limit the HSP-assisted degradation of denatured proteins

(equation (2.9)) and degradation of HSP itself (equation (2.8)).

More precisely, we linearly scale both reaction rate constants

k, i.e. we set (1 2 I ) . k, for I [ [0,1], where I represents the

current inhibition level (when no drug is administrated I ¼ 0,

whereas in the case of maximum inhibition I ¼ I100).

We used bortezomib pharmacodynamics as modelled by

Sung & Simon [23]. Namely, the inhibition level linearly
raises up to its maximum level at t100 ¼ 60 min, after which

it decays with a half-life t50 ¼ 12 . t100, i.e.:

IðtÞ ¼ I100 �
t

t100
for t � t100

e�kIðt�t100Þ for t . t100

8<
: ; ð3:3Þ

where kI ¼ ln(2)/t50. The maximum inhibition level I100

directly corresponds to the drug dose. For a maximum toler-

ated bortezomib dose, I100 is equal to ca 65%, while for

some of the next-generation proteasome inhibitors, such as
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carfilzomib or ONX-0912, both of which are in clinical develop-

ment, it was possible to reach over 80% proteasome inhibition

in blood (with consecutive-day dosing schedules) [9].

Figure 6 depicts activity of substrate and HSP : substrate

complex, with respect to an unimodal proteasome inhibition

treatment for a range of its maximum levels I100, as well as

a unimodal hyperthermia treatment and combined 65%

maximum inhibition treatment for a range of moderate

hyperthermia temperatures. Recall that the activity peak of a

cytotoxic substrate defines level of HSR R1 (equation (3.2)).

The higher the response is the more effective is the therapy in

terms of indicating higher death probability of cancer cells.

The bortezomib-based proteasome inhibition and hyper-

thermia induce a similar level of protein denaturation

(figure 6). However, in the case of proteasome inhibition,

the vast majority of these proteins is secured in HSP : sub-

strate complexes on the fly. This is due to the gradual

increase in the bortezomib inhibition effect, which is not fast

enough with respect to the rate at which new HSP molecules

are synthesized. The immediate heating has a much better

effect in terms of substrate proteotoxicity. Furthermore, when

both therapies are applied simultaneously, levels of both

substrate and HSP : substrate complex indeed are higher than

in the case of an application of only one of the treatment mod-

alities. HSR capacity, as represented by an analogous R1

coefficient for HSP : substrate complex (cf. equation (3.2)), is

much closer to saturation plateau in the case of the 65% peak

inhibition level than without inhibition (figure 6). Hence,
increase in the temperature has a better effect in the combined

treatment, in the sense of a deadly accumulation of free

substrate molecules.

Figure 7 depicts this synergistic effect in a continuous scale

of both the temperature and the maximum inhibition level of

bortezomib. A monotone increase in response with respect to

both modalities can be observed regardless of the heat-shock

application time (see the electronic supplementary material,

figure S5). We found that the multimodal toxicity response

increases by over 40% with respect to a unimodal hyper-

thermia response for a maximum inhibition level equal to a

reported 65%, up to over 80% increase for a theoretical

maximum of 100% of proteasome inhibition. Moreover, we

established t�1 � 38 min as an optimal time to start hyper-

thermia treatment in combination with 65% bortezomib

inhibition (figure 7). Interestingly, this is not in agreement

with a maximum area under the bortezomib inhibition curve
(AUC), a common pharmacokinetic efficacy measure. For the

heat-shock duration Dt1 ¼ 71 min, AUC maximum is reached

at t1 � 56 min (see the electronic supplementary material,

figure S6). Timing of heat shock in the optimal multimodal

treatment strategy t�1 can be intuitively explained by the follow-

ing observations (cf. figure 6). Firstly, time required for

denatured proteins to peak after the beginning of a heat

shock is roughly the same as the time gap between t�1 and

t100 (22 min). Secondly, at t�1 the inhibition itself has still a rela-

tively low impact. This way, the inhibition peak coincides with

the period of maximum temperature-induced toxicity, at
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which HSR mechanism is the most occupied, thus resulting in

the optimal synergistic toxicity.
4. Conclusions and discussion
We formalized and quantified the notion of thermotolerance

induced by the HSP-based mechanism of HSR. Although we

found a deterministic approach to be a valid approximation

of the stochastic HSR model, the latter variant presented a

high level of intrinsic noise. In consequence, we observe a sig-

nificant level of intrinsic thermotolerance intensity which can

be greatly increased by the heat shock accompanied by a high

reduction of variability. With respect to the methodo-

logy applied in this part of the analysis, the applicability of

probabilistic model checking has been already demonstra-

ted in several biological case studies (e.g. [24,25]), and we

confirmed the practical potential of its approximate variant.

Next, by mathematical modelling of HSR, we were able to

support the common belief that combined cancer treatment

strategies can more effectively increase proteotoxicity of

denatured proteins in cancer cells than unimodal strategies.

Moreover, we presented an optimal starting time for a moder-

ate hyperthermia treatment in combination with a proteasome

inhibitor application. This is an example of how mechanistic

modelling can surpass pharmacokinetic measures of optimal

drug efficacy, such as area under a curve (which basically is

an optimization only with respect to a system’s input).

We suggest that the synergistic effect of hyperthermia

and other cancer treatment modalities (like chemotherapy and

radiotherapy) is caused by increased accumulation of denatured

proteins, i.e. heat and drug-sensitive proteins or heat and
radiation-sensitive proteins. This results in an increased

demand for the HSPs and higher selective barrier for cells.

Our model-based analysis proves successful in reprodu-

cing experimental knowledge of key aspects of hyperthermia

treatment, and as such offers a reasonable framework for

studying its connections with HSR. However, all of the kinetic

models of molecular biological systems are incomplete due to

the constraints under which these models are formulated. In

this regard, we would like to point out that this work presents

a model-based analysis, and there are many issues to address

here. For instance, we omitted the investigation of the day-

based strategies of multimodal treatment. This is because we

found that in our HSR model the single-cell-level thermotoler-

ance duration (ca 6.5 h) is much shorter than the bortezomib

decay rate (12 h half-life), thus making the latter a determining

factor for a standard, daily dosing schedule. The inconsis-

tency between reported (24–48 h) and simulated duration of

thermotolerance can be primarily attributed to the fact that

the induction of thermotolerance is most probably because of

multiple factors, only one of which is HSP upregulation (cf.

[26]). Secondly, this inconsistency may also be attributed to the

simplistic single-cell modelling of the immediate temperature

shift, disregarding spatial heat distribution and the preheating

period as in, for example, whole-body hyperthermia (cf. [5]). In

this regard, to provide solid, quantitative results, our model

requires more extensive calibration with respect to experimen-

tal data, including the behaviour for varying temperatures

(cf. [13,27]). Nevertheless, our analysis undoubtedly gives a

valuable mathematical framework for model-based under-

standing of hyperthermia treatment strategies, such as those

combining hyperthermia with very promising therapeutic

proteasome inhibitors.
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5. Material and methods
The model was defined using the SBML-SHORTHAND notation [28],

and automatically generated in the SBML format [20]. The ODE

model was numerically solved using the MATHSBML package of

the MATHEMATICA software [29]. The corresponding stochastic ver-

sion of this model, represented by CME or, equivalently, CTMC

(cf. [21]), was analysed using PMC. To ensure the feasibility of

this approach, we have chosen to use approximate variant of

PMC. A characteristic of model checking is that temporal for-

mulae are used to express properties of a model. As opposed

to exact PMC, the APMC technique is only able to compute an

approximation of the probability of a temporal formula. Essen-

tially, the approximate value is computed by generating and

analysing a large number of sample paths through state space

of a model.

In our experiments, we have used APMC techniques

implemented in the PRISM tool [19]. Consequently, all stochastic

simulations and the confidence interval-based APMC were done

using PRISM. To create the PRISM model, we used a prototype

SBML translator, which generates model specification in the

PRISM language. Minor adjustments, such as factorization of

parameters or accounting for mass conservation laws were

done manually.

For means of modelling frameworks comparison and stochastic

noise quantification as well as for thermotolerance quantification

(figure 5), we used PRISM rewards to describe first and second

moments of, respectively, species variables as well as one minus

desensitization coefficient (see equation (2.1)). Text S3 in the

electronic supplementary material, §2 describes in detail

the unbiased estimators and their symmetric confidence intervals
for mean, variance, variance-to-mean ratio, and for standard devi-

ation of both species and desensitization coefficient random

variables. With respect to implementation of these quantities, we

would like to emphasize the flexibility of both the modelling and

property specification languages of PRISM.

To stay within the CTMC framework and, consequently, to

seamlessly perform stochastic simulations underlying approxi-

mate model checking, we introduced approximate stochastic

perturbation events, based on n-counting Poisson processes. Pre-

cision of a single perturbation event, measured as a standard

deviation, is proportional by square root to the number of count-

ing levels n and inverse linearly proportional to the expected

time of occurrence of this event. The approximate stochastic per-

turbation strategy for ‘on’ and ‘off’ heat-shock events was

encoded manually in PRISM language, according to the

scheme presented in text S3 in the electronic supplementary

material, §3.
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Institute of Molecular and Cell Biology in Warsaw) and prof.
Bogdan Lesyng (University of Warsaw) for valuable discussions
and for inspiring this research.

Funding statement. The work of Z.S. was supported by the Polish
National Science Centre grant 2011/01/D/ST1/04133. The work of
M.R. and S.L. was partially supported by the Polish Ministry of
Science and Higher Education grant N N206 356036. The work of
M.R. and A.G. was partially supported by the Polish National Science
Center grant 2011/01/B/NZ2/00864 and by the Biocentrum Ochota
project POIG.02.03.00-00-003/09. After taking a position at the
Department of Biosystems Science and Engineering, ETH Zurich,
M.R. was supported by the Swiss National Science Foundation
under grant no. 141264.
References
1. Mayer MP, Bukau B. 2005 Hsp70 chaperones:
cellular functions and molecular mechanism. Cell.
Mol. Life Sci. 62, 670 – 684. (doi:10.1007/s00018-
004-4464-6)

2. Georgopoulos C, Welch WJ. 1993 Role of the major
heat shock proteins as molecular chaperones. Ann.
Rev. Cell Biol. 9, 601 – 634. (doi:10.1146/annurev.cb.
09.110193.003125)

3. Parsell DA, Lindquist S. 1993 The function of heat-
shock proteins in stress tolerance: degradation and
reactivation of damaged proteins. Ann. Rev. Genet.
27, 437 – 496. (doi:10.1146/annurev.ge.27.120193.
002253)

4. Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW. 2001
Expression of inducible Hsp70 enhances the
proliferation of MCF-7 breast cancer cells and
protects against the cytotoxic effects of
hyperthermia. Cell Stress Chaperon 6, 316 – 325.
(doi:10.1379/1466-1268(2001)006,0316:
EOIHET.2.0.CO;2)

5. Wust P, Hildebrandt B, Sreenivasa G, Rau B,
Gellermann J, Riess H, Felix R, Schlag PM. 2002
Hyperthermia in combined treatment of cancer.
Lancet. Oncol. 3, 487 – 497. (doi:10.1016/S1470-
2045(02)00818-5)

6. Hildebrandt B, Wust P, Ahlers O, Dieing A,
Sreenivasa G, Kerner T, Felix R, Riess H. 2002 The
cellular and molecular basis of hyperthermia. Crit.
Rev. Oncol. Hematol. 43, 33 – 56. (doi:10.1016/
S1040-8428(01)00179-2)
7. van der Zee J. 2002 Heating the patient: a
promising approach? Ann. Oncol. 13, 1173 – 1184.
(doi:10.1093/annonc/mdf280)

8. Neznanov N, Komarov AP, Neznanova L,
Stanhope-Baker P, Gudkov AV. 2011 Proteotoxic
stress targeted therapy (PSTT): induction of protein
misfolding enhances the antitumor effect of the
proteasome inhibitor bortezomib. Oncotarget 2,
209 – 221

9. Molineaux SM. 2012 Molecular pathways: targeting
proteasomal protein degradation in cancer. Clin.
Cancer Res. 18, 15 – 20. (doi:10.1158/1078-0432.
CCR-11-0853)

10. Helmbrecht K, Zeise E, Rensing L. 2000 Chaperones
in cell cycle regulation and mitogenic signal
transduction: a review. Cell Prolif. 33, 341 – 365.
(doi:10.1046/j.1365-2184.2000.00189.x)

11. Jolly C, Morimoto RI. 2000 Role of the heat shock
response and molecular chaperones in oncogenesis
and cell death. J. Natl. Cancer Inst. 92, 1564 – 1572.
(doi:10.1093/jnci/92.19.1564)

12. Lowe SW, Lin AW. 2000 Apoptosis in cancer.
Carcinogenesis 21, 485 – 495. (doi:10.1093/carcin/
21.3.485)
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