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Abstract

Although increase of hardware resources is the general trend in information technology,
resource-constrained systems continue to be of relevance. In wireless sensor networks
(WSN), for example, a typical device is equipped with a few kilobytes of RAM and
provides only limited computing power. Such systems aim to provide ad-hoc and long-
term monitoring of physical or environmental conditions over large spatial regions.
Maximizing the number of participating devices and extending the overall network
lifetime is crucial for such applications. Moore’s Law is therefore exploited towards
lower device costs and lower power consumption at almost constant resource capabilities
per device.

This scarcity of resources has various implications on how resource-constrained sys-
tems such as wireless sensor networks are designed and implemented. Besides requiring
highly optimized network protocols, one particularly important consequence is the preva-
lent adoption of the event-based programming paradigm. This paradigm is considered
well-suited for traditional WSN applications, because it can be implemented efficiently
and matches the reactive nature of such applications. However, requirements of WSN
applications are continuously increasing, causing higher software complexity to meet
growing expectations. As a result, today’s sensor networks often run IP stacks, HTTP and
CoAP services, middleware, and other extensive software components. Implementing
the complex control and data flows of such applications and services in an event-based
manner is error-prone and the resulting code is hard to maintain. This leads to software
faults that are costly and time consuming to track down, both during development and
testing, and particularly during deployment and operation. Additionally, the presence of
software faults entails security issues for a deployed system. To counter these problems,
better programming abstractions for resource-constrained systems seem necessary.

Threads are known for overcoming many problems of events by supporting sequential
control flows via synchronous functions, but existing solutions either provide incomplete
thread semantics or introduce a significant resource overhead. This reflects the common
believe that expressiveness has to be traded for efficiency and vice versa. With our work,
we show that this trade-off is not inherent to resource-constrained systems.

We follow the approach of compiler-assisted thread abstractions, where full-fledged
thread-based C code is compiled to equivalent event-based C code that runs atop an
event-based operating system. This approach is promising for two reasons. First, the
event-based run-time system avoids multiple preallocated stacks and the overhead of a
task scheduler. And second, a compiler can, in contrast to a run-time-based thread library,
perform static program analysis and thus apply application-specific optimizations.

Our thesis is that a comprehensive thread abstraction is possible also for resource-
constrained systems. A compiler, which translates thread-based applications into event-
based programs, is able to combine the efficiency of event-based programming with the
comfort of thread-based programming. This addresses the increasing requirements of
resource-constrained systems. We develop our thesis in the context of wireless sensor
networks, assuming that resource scarcity will continue to be relevant. Existing threading
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Abstract

solutions either provide only limited thread semantics or require more resources than
common WSN devices offer. We therefore propose a compiler-assisted approach that can
provide a comprehensive and efficient thread abstraction.

We support our thesis by presenting a comprehensive compiler-assisted thread ab-
straction concept for resource-constrained systems. To achieve this, we developed a
platform-agnostic code transformation from thread-based C code to equivalent event-
based C code. This enables developers to write thread-based applications without the
additional costs of a thread library. Moreover, we present a way to reverse this transfor-
mation at run-time for fault diagnostics purposes. Hiding the details of the transformation
and the underlying run-time system during all phases of development completes the
abstraction. In order to evaluate our approach, we designed and implemented a com-
piler and a debugger prototype to conduct a set of experiments. Our results show that
compiler-assisted thread abstractions not only outperform thread libraries, but are even
almost as efficient as hand-written event-based code. The identified overhead accounts
for only 1% higher RAM usage, 2% additional processor cycles, and 3% larger binaries
on average, which we consider a reasonable trade-off for the gained comfort of a compre-
hensive thread abstraction. Additionally, the experiments demonstrate that sustaining the
abstraction level for fault diagnostics is possible.
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Zusammenfassung

Obwohl der allgemeine Trend in der Informationstechnik in Richtung immer leistungsfä-
higerer Hardware geht, bleiben ressourcenbeschränkte Systeme weiterhin von Relevanz.
Drahtlose Sensornetze, zum Beispiel, verwenden typischerweise Rechnerknoten, die
mit wenigen Megahertz getaktet werden und nur über einige Kilobyte Speicher verfü-
gen. Der Grund dafür ist, dass solche Systeme eine infrastrukturlose, langfristige und
geographisch ausgedehnte Überwachung von physikalischen Phänomenen ermöglichen
sollen. Da hierfür eine Maximierung der Anzahl der Knoten und der Lebensdauer des
Systems entscheidend ist, wird der durch das Mooresche Gesetz induzierte Effizienz-
gewinn für niedrigere Gerätekosten und niedrigeren Energieverbrauch bei annähernd
gleichbleibenden Hardwareressourcen pro Gerät genutzt.

Die Ressourcenknappheit hat einen starken Einfluss auf Entwurf und Implementierung
solcher Systeme, so dass es zum Beispiel für Sensornetze hoch optimierter Kommunika-
tionsprotokolle bedarf. Ausserdem ist in dieser Domäne das ereignisbasierte Program-
miermodell weit verbreitet, da sich dieses Paradigma effizient umsetzen lässt und es gut
zur reaktiven Natur traditioneller Sensornetzanwendungen passt. Die Anforderungen
an solche Anwendungen nehmen allerdings kontinuierlich zu, was zu einer erhöhten
Komplexität der Programme führt. Um den steigenden Erwartungen Rechnung zu tragen,
werden auf heutigen Sensorknoten u.a. IP-Protokollstapel, HTTP- und CoAP-Dienste,
Middleware und weitere umfangreiche Softwarekomponenten betrieben. Die ereignisba-
sierte Umsetzung von Kontroll- und Datenflüssen solcher Anwendungen ist allerdings
fehleranfällig, und die Pflege entsprechender Software gestaltet sich als schwierig. In der
Konsequenz führt dies zu Softwarefehlern, deren Analyse und Behebung während Ent-
wicklung und Erprobung, aber vor allem während Inbetriebnahme und Betrieb kostspielig
sind. Darüber hinaus können solche Softwarefehler auch sicherheitsrelevante Schwach-
stellen sein. Um all dem entgegenzuwirken, sind höhere Programmierabstraktionen für
ressourcenbeschränkte Systeme nötig.

Threads können durch sequenziellen Kontrollfluss und synchrone Funktionen viele
Probleme der ereignisbasierten Programmierung beheben. Bei bereits existierenden Lö-
sungen ist allerdings entweder die unterstützte Threadsemantik eingeschränkt oder es
werden leistungsfähigere Systemkomponenten benötigt als solche, die typischerweise
in drahtlosen Sensornetzen zum Einsatz kommen. Das überrascht nicht, da es der all-
gemeinen Meinung entspricht, dass es einen Zielkonflikt zwischen der Vollständigkeit
einer Threadsemantik einerseits und der Effizienz ihrer Implementierung andererseits
gibt. Unsere Arbeit zeigt allerdings, dass dieser Zielkonflikt keine inhärente Eigenschaft
von ressourcenbeschränkten Systemen ist.

Dabei verfolgen wir den Ansatz der übersetzergestützten Threadabstraktion. Ein Com-
piler wandelt hierzu ein vollwertiges threadbasiertes C-Programm in ein äquivalentes
ereignisbasiertes C-Programm um, welches von einem ereignisbasierten Betriebssystem
ausgeführt wird. Dieser Ansatz ist aus zwei Gründen vielversprechend: Erstens ist das
übersetzte Programm ereignisbasiert, so dass sowohl vorbelegte Stacks als auch der
zusätzliche Aufwand eines Thread-Scheduler vermieden werden. Und zweitens kann ein
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Zusammenfassung

Compiler, im Gegensatz zu einer laufzeitbasierten Threadbibliothek, statische Programm-
analysen durchführen und somit anwendungsspezifische Optimierungen vornehmen.

Unsere These ist daher, dass eine umfassende Threadabstraktion auch auf ressour-
cenbeschränkten Systemen möglich ist. Ein Compiler, der threadbasierte Programme in
ereignisbasierte Programme umwandelt, ist in der Lage, die Effizienz von ereignisba-
sierter Programmierung und den Komfort threadbasierter Programmierung zu vereinen.
Insgesamt kann so den wachsenden Anforderungen an ressourcenbeschränkten Systemen
Rechnung getragen werden. Wir entwickeln unsere These im Kontext von drahtlosen Sen-
sornetzen, wobei wir davon ausgehen, dass Ressourcenknappheit auch in Zukunft relevant
sein wird. Existierende Threadlösungen aus dieser Domäne benötigen entweder mehr
Ressourcen als ein typischer Rechnerknoten zur Verfügung stellt oder sie unterstützen
nur eine eingeschränkte Threadsemantik. Wir schlagen daher vor, mit Hilfe des überset-
zergestützten Ansatzes eine umfangreiche und dennoch effiziente Threadabstraktion zu
verwirklichen.

Wir untermauern unsere These dadurch, dass wir ein Konzept für eine übersetzer-
gestützte Threadabstraktion für ressourcenbeschränkte Systeme angeben. Zu diesem
Zweck haben wir eine plattformunabhängige Transformation von threadbasierten C-
Programmen zu äquivalenten ereignisbasierten C-Programmen entwickelt. Entwickler
können damit threadbasierte Anwendungen ohne die zusätzlichen Kosten einer Threadbi-
bliothek realisieren. Ausserdem zeigen wir auf, wie man zum Zwecke der Fehlersuche
die Transformation zur Laufzeit rückgängig machen kann. Indem wir damit die Details
der Transformation und der darunterliegenden Laufzeitumgebung während allen Ent-
wicklungsphasen verbergen, vervollständigen wir die Abstraktion. Zur Bewertung dieses
Ansatzes haben wir einen Prototypen eines Übersetzers und eines Debuggers entwickelt
und damit eine Reihe von Experimenten durchgeführt. Unsere Messungen haben erge-
ben, dass übersetzergestützte Threadabstraktionen hinsichtlich der Effizienz nicht nur
Threadbibliotheken übertreffen, sondern auch fast so effizient wie handgeschriebene
ereignisbasierte Programme sind. Der gemessene durchschnittliche Mehrverbrauch an
Ressourcen beträgt 1% RAM sowie 2% Prozessorzyklen und resultiert in 3% grösseren
Binärprogrammen. Unserer Meinung nach sind diese geringen Mehrkosten aufgrund
des gewonnenen qualitativen Mehrwerts einer umfangreichen Threadabstraktion gerecht-
fertigt. Ausserdem zeigen die Experimente, dass es möglich ist, die Abstraktion auch
während der Fehlersuche zur Laufzeit aufrechtzuerhalten.
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Preface

Before we start with the introduction to our thesis, there are a few important remarks
about this document.

1. This document uses a consistent formatting to convey meta information of text:

• phrase: This indicates a phrase that is included in the Index, the List of
Figures, the List of Tables, or the List of Abbreviations of this document.

• name: This indicates the name of a keyword, function, a variable, or any other
identifier from a program written in any programming language.

• syntax: This indicates concrete syntax used in the specification of code
patterns.

• term: This indicates a meta variable used in the specification of code patterns.

An example would be:

conditional assignment: if (condition) var1 = value;

2. This document references sections and clauses of the C language standard ISO/IEC
9899:1999 [64]. Such references use the following syntax:

• “C99” refers to ISO/IEC 9899:1999 as a whole.

• [C99: 1.2.3] refers to Section 1.2.3 of C99.

• [C99: 1.2-3] refers to clause 3 of [C99: 1.2].

• [C99: 1.2-3–5] refers to the range of clauses from [C99: 1.2-3] up to and
including [C99: 1.2-5].

3. This document also contains references to sections of the GCC manual [127].
The GNU Compiler Collection (GCC)1 is mainly an implementation of the C
programming language family. The employed references are used to refer to the
various GCC language extensions. Such references use the following syntax:

• “GNU C” refers to the GCC manual as a whole.

• [GNU C: 1.2.3] refers to Section 1.2.3 of GNU C.

4. Requirement levels — i.e., the terms “must”, “should”, “may”, etc. — are used
according to RFC 2119 [13] within this document.

5. Finally, substantial parts of Chapter 3 (excluding Section 3.5) and Chapter 6 are
covered by the following publication: A. Bernauer and K. Römer, A Comprehen-
sive Compiler-Assisted Thread Abstraction for Resource-Constrained Systems,
In Proceedings of the Conference on Information Processing in Sensor Networks
(IPSN), 2013.

1http://gcc.gnu.org/
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1. Introduction

Technological advances in the last few decades have continuously enabled new applica-
tions of information technology due to always smaller, cheaper, more robust, and more
capable devices. One central vision that emerged from this development is Smart Dust,
where cubic-millimeter devices constitute “autonomous sensing, computing, and commu-
nication systems” that form “massively distributed sensor networks” [143]. Smart Dust
was found unfeasible with the technology at the time. The general idea of developing and
deploying wireless sensor networks (WSN) to autonomously monitor spatially spread
physical or environmental conditions has, however, been pursued ever since. Today’s
WSN applications range from wildlife monitoring [34, 83] and environmental monitoring
[137, 52, 145], over control systems [16, 17], structural monitoring [67, 149], and military
applications [3, 91, 124], to logistics [11] and many more [96, 118]. This thesis uses the
WSN domain as an example to engage in abstractions to simplify the development of
applications for resource-constrained systems.

In this introductory chapter the domain of wireless sensor networks will be introduced
in Section 1.1. Section 1.2 then gives a somewhat unusual interpretation of Moore’s Law
in the WSN domain, which implies a resource scarcity with various implications such as
turning trivial and standard solutions to known problems infeasible. Section 1.3 first gives
a brief overview of these implications in general and then focuses on one particular case,
the event-based programming paradigm. Thread-based programming as an alternative
to the event-based model is presented in Section 1.4, including a discussion on why it is
still perceived as impossible to realize in its entirety on WSN devices. Section 1.5 then
summarizes the contributions of this thesis towards overcoming the perceived obstacles
and providing a comprehensive thread abstractions on resource-constrained systems
nevertheless.

1.1. Wireless Sensor Networks

Although there is no strict definition of what exactly constitutes a wireless sensor network,
most WSN applications share some common characteristics. First, as the term already
suggests, the employed devices, so-called motes, are basically embedded computers
equipped with sensors that allow monitoring phenomena of interest. The motes operate
without wires in order to avoid the need of expensive pre-installed infrastructure and to
enable mobility. This implies that they communicate via radio and have a self-sustaining
energy supply via batteries or energy harvesting [106, 120].

A second common aspect of WSN applications is the inaccessibility of the motes. This
is the case when, for example, human presence would disturb the monitored animals and
falsify the experimental results [83], or motes are attached to wild-living badgers that
stay below ground most of the time [34], or they are mounted on secluded rocks and
escarpments in the Swiss Alps [52], or they are shipped inside of containers along with
fruits or pharmaceuticals whose micro-climatic conditions have to be monitored [11].
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1.2. MOORE’S LAW CHAPTER 1. INTRODUCTION

Mode Current Mode Current
CPU Radio
Active 8.0 mA Rx 7.0 mA
Idle 3.2 mA Tx (-20 dBm) 3.7 mA
ADC Noise Reduce 1.0 mA Tx (-19 dBm) 5.2 mA
Power-down 103 µA Tx (-15 dBm) 5.4 mA
Power-save 110 µA Tx (-8 dBm) 6.5 mA
Standby 216 µA Tx (-5 dBm) 7.1 mA
Extended Standby 233 µA Tx (0 dBm) 8.5 mA
Internal Oscillator 0.93 mA Tx (+4 dBm) 11.6 mA
LEDs 2.2 mA Tx (+6 dBm) 13.8 mA
Sensor Board 0.7 mA Tx (+8 dBm) 17.4 mA
EEPROM access Tx (+10 dBm) 21.5 mA
Read 6.2 mA
Read Time 565 µs
Read 18.4 mA
Read Time 12.9 ms

Table 1.1.: Power model for the Mica2: The mote was measured with the micasb sensor
board and a 3 V power supply [123].

In addition, the number of employed motes tends to be high, for example because a
large spatial region has to be covered [137, 3, 67], or because the number of individually
monitored objects is high [11], or because of required redundancy [91]. In such scenarios,
networks of 64 [67], 90 [3] or more motes are not uncommon. The Argo project [137]
deploys as much as 3000 individual sensors to cover the world’s oceans.

Furthermore, the total system lifetime of wireless sensor networks can easily exceed
several years (e.g., [137, 16, 17, 52, 67, 149]). Also, the mote usually has to be small and
lightweight to meet law-regulated weights limits on animals [34], to reduce costs [11], to
be unobtrusive [149], or to be hidden [3].

1.2. Moore’s Law

The inaccessibility of motes makes maintenance very expensive, sometimes even impossi-
ble. This implies that the complete system lifetime has to be covered by batteries, energy
harvesting, or a combination of both. Table 1.1 lists the energy demands for various
operations of the Mica2 mote, a typical WSN device. The power density of today’s energy
harvesting technologies is in the realm of several µW to a few mW per cm3 [106]. In
consequence, even with a reasonably sized harvesting unit, only a few data packets can be
received and sent per day, and batteries are required when higher mote activity is needed.

However, while memory space and system clock speed have complied with Moore’s
Law and exhibited an exponential growth over time, the energy density of batteries has
not followed such a trend. At the same time, growing computational resources increase
the overall energy consumption of a mote [69]. This keeps the physical resources of
motes rather limited and makes energy saving a major design goal in the WSN domain.
In addition, owing to the need of a large number of motes, a reasonable price per unit is
crucial in order to keep the overall system costs within bounds. This also implies that
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Mote Mica [23, 54] TelosB/TMote Sky [105] TinyNode [26]
CPU ATmega128, 7.3 MHz TI MSP430, 8 MHz TI MSP430, 16 MHz
RAM 128 kB 10 kB 8 kB
ROM 512 kB 48 kB 604 kB
Applications [3, 34, 67, 83, 124] [17, 67, 145] [16, 52]

Table 1.2.: Constrained resources: Typical WSN devices do not provide much computa-
tional resources.

each device has limited physical resources, as more capable devices are more expensive.
Overall, “Moore’s law has an unorthodox interpretation here: it is applied toward reduced
size and cost, rather than increase in capability, therefore, the amount of available physical
resources is not expected to change as the technology advances” [119].

Table 1.2 shows the available resources of typical motes. It can be seen that conven-
tional WSN hardware has a single central processing unit (CPU) with a clock speed
between 8 MHz and 16 MHz, 8 kB to 128 kB of random access memory (RAM), and 48
kB to 604 kB of non-volatile programmable memory (ROM). As a comparison, Apple’s
latest iPhone 4s runs a dual core processor with a 1 GHz clock each, has 1 GB of RAM
and up to 64 GB of non-volatile memory. Consequently, this smartphone costs between
$649 and $849 [store.apple.com, 05/01/2012] and has to be recharged every other
day. In contrast, motes cost between $20 and $150 [moteware.com, redwirellc.com,
05/01/2012] and can operate for months and even years without recharging.

1.3. Implications of Resource Scarcity

The scarce resources of motes have many implications on design and implementation of
WSN operating systems (OS), protocols and applications. For instance, some devices
harvest energy from the physical environment [106, 120] to account for the limited
capacity of current batteries. Furthermore, radio use is a major energy drain, which
resulted in the development of numerous different medium access protocols with various
trade-offs and properties [97]. Other examples of energy saving include low-power
listening techniques [104], in-network aggregation [81, 148], duty cycling via precise time
synchronization [117], and efficient data collection [44] and dissemination [77] protocols.
The limited resources also impact the operation of wireless sensor networks, as detecting
faults in the presence of very limited communication is hard. Consequently, several
approaches exist to engage this fundamental problem (e.g., [19, 107, 110, 111, 113, 116]).

Concerning how WSN applications are written, the constrained resources have led to
the event-based programming paradigm being the predominant programming approach,
mainly because of its efficient implementation. Major WSN operating systems such
as TinyOS [55] and Contiki [30] have adopted this paradigm. TinyOS even employs a
special programming language called nesC [42], which compiles to plain C and enforces
component-based software architectures with exclusively asynchronous interfaces. For a
rather long time, this has generally been perceived as a good design choice, also because
the reactive nature of event-based programming is well suited for time-critical sensing
applications.

In recent years, however, WSN applications have advanced from initially very simple
sleep-sample-send data collection trees to more complex distributed systems with peers
running IP stacks [61], HTTP and CoAP services [70], middleware [22], and business
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logic [95]. As a result, today’s WSN applications include complex control and data
flows that do not fit well with event-based programming. In fact, long causal chains of
events, handlers, and subsequent events are needed to model the complex control flow
with asynchronous functions. Also, data flowing across different event handlers has to
be managed manually. It has been observed that this often leads to confusing, hard to
manage, and error-prone code (e.g., [2, 31, 68, 88, 99, 119, 144]). We agree with this
observation.

Figure 1.1 shows three basic examples of the previously discussed consequences
of event-based programming. On the left appears the code written when threads are
available. The operation is a synchronous function, and execution continues with the
next statement as soon as this function returns. The equivalent event-based code is shown
on the right, where operation is an asynchronous function which is only triggered, while
the continuation is registered and called back eventually. In real applications, virtually any
combination of the shown control flow examples can be found. The number of necessary
continuation functions and manually managed global state increases significantly with
the complexity of an application. This leads to error-prone code that is hard to maintain.

Experience has shown that humans are quickly overwhelmed by the complexity of
reasonably sized systems. Particularly when the level of abstraction is low, software
faults are the rule rather than the exception. Also, the amount of labor that is required to
create a prototype, and more so a production-ready application, is high. It also means
that development and testing is time-consuming and hinders the quick adoption of new
ideas, insights, or requirements. During deployment, detecting software faults and system
errors is cumbersome and expensive, in particular because the usually numerous motes
are often spread out and inaccessible. And during operations, anybody within the physical
vicinity of the motes can communicate with them and might be able to take over control
by exploiting a software fault. Security failures can become fatal, especially when motes
cannot only sense the physical environment but also affect it by means of actuators. With
the emergence of the Internet of Things (IoT) [86], where mote-like devices are connected
to the Internet and interact with the real world, security and safety of resource-constrained
systems even affects the general public.

It seems therefore to be advisable to use programming models with a high level of
abstraction to prevent software faults in the first place. Hence, various programming
abstractions for wireless sensor networks have been proposed over the last few years
[96]. They range from extending the present programming language with features to
iterate over neighboring nodes and to access their remote state [48], to introducing a new
domain-specific, declarative and functional language [82], and many points in the design
space in between [96]. Although programming becomes easier with these abstractions,
additional obstacles such as learning new languages, concepts and features can hamper the
adoption to practice. Additionally, only a single one of these abstractions considers fault
diagnostics [7], i.e., the Macrodebugger [125], a post-mortem debugger for MacroLab
[126], a MATLAB1 dialect for programming distributed WSN applications as a whole.
In any other case, the missing support for fault diagnostics breaks the abstraction, as
developers are faced with the event-based nature of the run-time system when executing it
in the present debugger. The developer bears the burden of understanding the potentially
complex implementation of the abstraction in order to perform the necessary back-
mapping from low-level code observation to the initial abstract program. This may be a
major reason preventing these abstractions from becoming popular, although we are not

1http://www.mathworks.com/products/matlab/
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void f() {
statement1;
operation();
statement2;

}

⇒

void f1() {
statement1;
operation(&f2);

}

void f2() {
statement2;

}

void f() {
statement1;
if (condition) {

statement2;
operation1();
statement3;

} else {
statement4;
operation2();
statement5;

}
statement6;

}

⇒

void f() {
statement1;
if (condition) {

statement2;
operation1(&f2);

} else {
statement4;
operation2(&f3);

}
}

void f2() {
statement3;
f4();

}

void f3() {
statement4;
f4();

}

void f4() {
statement6;

}

void f() {
statement1;
for (int i=0; i<10; i++) {

statement2;
operation();
statement3;

}
statement4;

}

⇒

int i;

void f() {
statement1;
i = 0;
f2();

}

void f2() {
if (!(i<10)) {

f4();
} else {

statement2;
operation(&f3);

}
}

void f3() {
statement3;
i++;
f2();

}

void f4() {
statement4;

}

Figure 1.1.: Consequences of event-based programming: The control flow is spread
across multiple functions and state has to be managed manually.

5



1.4. THREAD-BASED PROGRAMMING CHAPTER 1. INTRODUCTION

aware of any studies that investigate this correlation.

1.4. Thread-based Programming

In contrast to new languages and language concepts, a different research direction investi-
gates the well-known paradigms of cooperative and preemptive threads as an alternative
execution model of the C programming language and its dialects. There have been quite
some efforts in the past to enable thread-based programming on motes, as threads allow
for sequential computations via synchronous functions. This, compared to event-based
programming, often leads to simpler and better manageable code. Traditionally, this has
been achieved by preallocating one stack for each thread and by introducing a software
scheduler that switches between different threads at run-time. Some WSN operating
systems like Mantis OS [10] and LiteOS [15] have such a scheduler included in the kernel,
while for others this functionality is implemented as a dedicated library that is executed
by the event-driven OS core [68, 88, 99, 144].

In either case, this approach is not resource efficient for two reasons. First, each stack
has to provide enough cut-off to support the worst case memory demand of occurring
interrupt handlers operating on the respective current stack. Second, the aggregated size
of all preallocated stacks is usually higher than the actual maximum stack consumption
of an application, because usually not all threads reach their maximum stack usage at the
same time. As a consequence, multiple, preallocated stacks do not scale well with the
number of threads. Given limited RAM, this severely limits the maximum number of
threads per WSN application.

Therefore, compiler-assisted thread abstractions are gaining momentum [31, 89, 119].
In this approach, a thread-based program is translated into an event-based one that can be
executed by an efficient event-based kernel. Conceptually, there are three major reasons
why compiler-assisted thread abstractions can be more efficient than run-time-based
approaches. First, compiler-assisted thread abstractions generate code that uses the
existing multi-tasking capabilities of the operating system. Run-time-based solutions, in
contrast, employ a scheduler, which is an additional software component that performs
context switching, i.e., suspending the execution of one task and resuming the execution of
a different one. Second, compiler-assisted thread abstractions avoid multiple preallocated
stacks, as the event-based run-time system operates on the single hardware stack. This
results, as previously mentioned, in more efficient RAM usage. And third, compilers can
perform static analysis and generate specialized code that exploits application-specific
properties. Run-time-based solutions, on the other hand, always have to support the most
generic case.

The first and most prominent example of a compiler-assisted thread abstraction is
Contiki’s protothreads [31]. This system uses the C preprocessor in a creative way
to provide the syntactic illusion of threads. Although protothreads are widely used in
Contiki, as they have been shown to be almost as efficient as native event-based programs,
the provided thread abstraction is very limited. Among other issues, there is no automatic
memory management and yield points may only exist at certain places. Worse, invalid
code is sometimes not detected by the compiler, leading to run-time errors. At the same
time, when investigating application faults, software developers are faced with the event-
based nature of the run-time system. This breaks the abstraction and forces developers to
understand the details of protothreads’ implementation.

Other approaches to compiler-assisted threads employ dedicated compilers and have
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improved the provided thread semantics. But none of them have fully exploited the capa-
bilities of compiler-assisted thread abstractions and they do no support fault diagnostics.
With our work, we are aiming to achieve both.

1.5. Contributions

This thesis proposes the first comprehensive compiler-assisted thread abstraction for
resource-constrained systems. We offer a full-fledged cooperative threading model. Also,
Ocram, our compiler implementation, generates event-based code that can run atop any
event-based kernel such as Contiki or TinyOS, only requiring a thin platform abstraction
layer. Ocram detects violations of the remaining constraints of the threading model
reliably, and the resulting code is almost as efficient as hand-written event-based code.
Furthermore, generated and hand-written event-based code can seamlessly be integrated
into each other.

Additionally, Ruab, our debugger implementation, completes the abstraction by en-
abling fault diagnostics on the abstraction level of threads, thus hiding the event-based
nature of the run-time system entirely. Our approach is mostly intended for software
in the service and application layers atop the operating system and its drivers, where
the highest increase in complexity has been observed in the past and is expected in the
future. On these layers, timing issues are of lesser concern, which is why the inability
of cooperative threads to guarantee timings [68] does not impede the goal of this work,
which is simplifying the creation of WSN applications.

In summary, our contributions are:

1. A platform-agnostic source-to-source transformation scheme that translates C
programs using cooperative threads and synchronous functions into equivalent C
programs using events and asynchronous functions,

2. Ocram, a compiler prototype that implements the transformation,

3. Ruab, a debugger prototype for Ocram that enables fault diagnostics on the thread-
level of abstraction,

4. platform abstraction layers to bind Ocram to Contiki and TinyOS,

5. an extensive evaluation, which

a) shows the feasibility of compiler-assisted threads for three different WSN
application archetypes,

b) verifies the correctness of the transformation, and

c) measures the resource costs of this abstraction compared to both native event-
based implementations and run-time-based solutions.

The complete source code of both Ocram and Ruab is published [6] under GPL 2.0 [41].
Also, the complete evaluation including all case study applications and any additional
software is published the same way. This additional software includes a thread library
for Contiki, a COOJA [38] plugin to profile MSP430-based applications, a Haskell
[4] implementation for the GDB [129] Machine Interface, and other components. We
have chosen to publish the source code of this thesis so that our claims can be verified
independently, details can be looked up, and future research can be built upon it.
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1.6. Structure

This thesis is organized as follows: Chapter 2 establishes the context. In Section 2.1
the terminology used throughout the thesis is clarified. WSN operating systems, both
run-time-based and compiler-assisted approaches to thread abstractions, as well as various
approaches to investigate faults in WSN applications are presented in 2.2. Finally, Sec-
tion 2.3 provides a motivation for as well as an introduction to Haskell, the programming
language we have chosen to implement the prototypes with.

Chapter 3 presents the first of two conceptual cores of this thesis: translating threads (T-
code) to events (E-code). Section 3.1 gives an overview of the compiler and its principles.
In 3.2, the scheme of translating thread-based code into equivalent event-based code
is explained. A definition of the term “equivalent” and an informal reasoning why the
translation scheme indeed generates equivalent code can be found in 3.3. Section 3.4
then explains how generated code interoperates with the operating system and existing
event-based code. A description of the various stages of the compiler pipeline concludes
this chapter (Section 3.5).

Chapter 4 presents the second conceptual core of this thesis: mapping the execution of
the event-based system back to the abstraction of the thread-based code to facilitate fault
diagnostics. In Section 4.1, the user-facing interface and concepts of the debugger are
discussed. Section 4.2 explains what information the T-code debugger needs and how
the T-code compiler provides this information. 4.3 elaborates on the interface between
our T-code debugger and the native E-code debugger. Finally, Section 4.4 shows how the
three interfaces discussed in the previous sections are integrated in order to establish the
T-code debugger.

Chapter 5 provides a documentation of Ocram, a T-code compiler prototype (5.1),
and Ruab, a prototypical T-code debugger (5.2). Their respective software architec-
ture is explained, major interfaces are specified and a few selected challenges of the
implementation are highlighted in each of these sections.

Chapter 6 covers the evaluation of our approach. In Section 6.1 the setup of the
performed experiments is specified. Several verification mechanisms to ensure the
soundness of the experimental results are discussed in 6.2. Section 6.3 explains the
measured parameters. The results are presented in 6.4, followed by an interpretation in
Section 6.5. This final section ends with a discussion on the limitations of the translation
scheme and the prototypes, possible improvements and alternatives, and a general outlook
on future research directions.

Chapter 7 concludes this thesis.
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2. Background

In this chapter the context of this thesis will be established. Section 2.1 explains the
intuition of operational semantics of event-based and thread-based programming, and
clarifies corresponding terms used throughout this thesis. Section 2.2 presents the state-of-
the-art in providing thread abstractions for, and investigating faults of, WSN applications.
Finally, Section 2.3 motivates our choice to use Haskell to implement our prototypes and
introduces three major language features.

2.1. Terminology

There are many slightly different definitions of the terms “thread,” “event,” “task,” etc. in
relevant literature. To avoid confusion, our definitions of the terms used throughout this
thesis are clarified. Additionally, we will describe the intuition of operational semantics
of thread-based and event-based applications as we use them here. We will also explain
the various terms involved in fault management of applications.

2.1.1. Operating Systems and Applications

An operating systems is a set of basic software components that manages device resources
and provides common services by means of an application programming interface (API).
An API is a set of functions. Calling such a function triggers an operation of the
OS, which, for instance, can involve reading a sensor value, sending a network packet,
or writing to non-volatile memory. In case of a synchronous function, the associated
operation is guaranteed to be completed when the function returns. In contrast, calling an
asynchronous function triggers an operation that will only complete eventually. Signaling
completion of such an operation can be done in various ways. The next section will
address one of them, which is sending an event to the application.

An application usually consists of multiple tasks, which are logical groups of com-
putations that pursue a common goal. Examples include tasks for continuously reading
sensor values, participating in the routing or data dissemination protocols, keeping track
of network neighborhoods, etc. Operating systems need to schedule multiple tasks to
a single CPU while maximizing its utilization. This can be reportedly achieved most
efficiently by having asynchronous OS APIs, and following the event-based paradigm.

2.1.2. Event-based Programming

An event-based system consists of a set of possible events and associated event handler
functions. Conceptually, an event represents the occurrence of something that should
provoke a reaction of the system. Examples include the reception of a radio message,
a timeout, or the completion of an operation. The OS manages all current events in a
possibly prioritized event queue and runs a dispatcher that repeatedly takes an event from
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the queue and passes it to the associated event handler function. In response to an event,
a handler function can perform computations, trigger operations, and create new events.

Within this paradigm, a task is formed by a causal chain of events and event handler
functions, frequently initiated by recurring events like timeouts or incoming radio mes-
sages. Such tasks can naturally be executed in an interleaved fashion on a system that is
neither parallel nor preemptive, as the single dispatcher waits for a handler function to
return before processing the next event in the queue. Thus, a single stack is enough to
execute all tasks virtually in parallel. Also, task scheduling is as easy as managing the
event queue and there is virtually no context switching overhead.

Although efficient, the event-based paradigm only provides little abstraction and entails
high complexity. A main source of complexity is the difficulty of managing the control
flow of a task, as the code is spread out amongst multiple event handlers (cf. Figure 1.1).
A second major source of complexity is that execution contexts of tasks have to be
manually managed and preserved between subsequent event handler invocations. The
only reasonable way to do this is by using global variables, i.e., objects with static storage
duration [C99: 6.2.4-3], and identifiers that have file scope [C99: 6.2.1-4] and external or
internal linkage [C99: 6.2.2].

Additionally, every function that calls an asynchronous function becomes asynchronous
itself, which recursively applies to the whole call stack and forces all functions’ imple-
mentations to be split up (cf. “stack ripping” [2]).

Overall, event-based programming requires a lot of cumbersome and error-prone
manual work by the programmer. This, as already discussed in Section 1.3, can lead to
software faults, which make WSN applications expensive to develop, deploy and maintain,
while representing a high risk for security issues.

2.1.3. Thread-based Programming

Thread-based programming overcomes the above-mentioned problems via synchronous
OS APIs. With synchronous functions, the control flow is sequential, and a task’s context
can be stored in so-called local variables, i.e., objects with automatic storage duration
[C99: 6.2.4-4–5], and with identifiers that have block scope [C99: 6.2.1-4] and no linkage
[C99: 6.2.3-6]. These variables have a scope-based lifetime that is managed automatically.

Calling a synchronous function implies waiting for the associated operation to complete.
Other tasks should therefore progress in the meanwhile to utilize the CPU. This can be
realized by having one thread per task.

A thread is one flow of control starting with the invocation of a thread start function
and sequentially executing the statements of that function. This includes calls to other
functions and access to both local and global variables, as well as to other objects. While
a thread ends as soon as its start function returns, such functions usually have an infinite
loop to keep the corresponding task running.

Threads appear less expressive than events, as they can only wait for the completion
of exactly one operation at any point in time. With help of the underlying platform API,
however, threads can achieve equal expressiveness as events. For instance, if there is a
synchronous API function receive_with_timeout, a thread can simultaneously wait
for a timeout and an incoming network packet. This introduces complexity to the OS and
could quickly increase the number of required API functions. Our evaluation in Chapter 6
shows that fortunately only a few of such combining functions are needed in practice.

Threads are considered inefficient because the context of a task is the complete stack
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of its thread. Determining the maximum stack size of an application is in general an
undecidable problem, particularly because of recursive functions. Even when recursion
and other disruptive features are removed the problem is still considerable:

The predominant execution environment on CPUs comprises a hardware stack, i.e., a
single stack data structure for which the hardware offers special instructions. In such an
environment, multi-stacked execution can be achieved by altering the hardware register
that points to the beginning of the stack in memory (i.e., the stack pointer register).
However, interrupt handler functions are not aware of this and execute on the respective
current stack, assuming it to be the hardware stack. Additionally, aside from temporary
interrupt masking, interrupts can both occur at any point in time and interleave with each
other.

Best practice is to add enough cutoff to each stack in order to void out-of-stack situations
for any possible combination of invocations of interrupt handlers [88]. This approach
does not scale well with the number of threads. Also, cutoffs of a reasonable amount of
threads quickly exceed the total amount of available RAM on sensor nodes.

In addition, all stacks accumulated are usually larger than the maximum of the thread’s
individual stack usage over time. This happens because usually not all threads reach their
individual maximum at the same time. Thus, multiple preallocated stacks are not efficient
with respect to RAM utilization.

Overall, these are the main reasons why providing a comprehensive thread abstraction
for resource-constrained WSN devices is not trivial.

2.1.4. Preemption vs. Cooperation

There are two main ways to implement thread-based multitasking. The more common
preemptive threads work with a scheduler that can preempt any thread at any point in
time and perform a context switch. This approach guarantees timings, priorities, and
fairness irrespective of the concrete implementation of each thread.

The major downside is that “[preemptive] threads [...] are wildly nondeterministic,
and the job of the programmer becomes one of pruning that nondeterminism” [74] by
defining critical sections with mutexes and other synchronization tools. Furthermore,
practice has shown that “humans are quickly overwhelmed by concurrency and find it
much more difficult to reason about concurrent than sequential code” [130].

In scenarios that we target, i.e., application and service layers of WSN applications, we
encounter requirements that do not mandate preemptive threading. First, real-time is less
of an issue. Second, untrusted and therefore uncooperative code is usually not included.
This is why we argue for cooperative threads, the simpler thread programming model.

In cooperative threads, the set of functions can be partitioned into three categories.
First, a blocking function is a synchronous function of the OS API that involves waiting
for an operation to complete and blocks the calling thread. Second, a critical function is a
function of the application that contains at least one code path that leads to the invocation
of a blocking function. And third, an auxiliary function is a function that is neither a
blocking nor a critical function. These functions may be part of either the application or
the OS API.

With cooperative threads, all but one are always blocked and context switching between
them can only occur when the running thread invokes a blocking function. These yield
points form the boundaries of implicit critical sections, meaning that the use of a shared
state is generally safe and has to be checked only after a critical call, i.e., a call of a
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critical or blocking function.
The execution of preemptive threads is inherently nondeterministic, as the scheduler can

interrupt a thread at any point in time. Although cooperative threads clearly mitigate this,
their execution is nondeterministic nevertheless, because each one of all waiting threads
could continue first. If the exact order of threads is important, thread synchronization
primitives are required and the OS API has to provide them.

2.1.5. Expectations on Thread Abstractions

Programmers usually have a set of expectations in relation to threads. In this section they
will be stated to prepare the argument that many existing WSN thread abstractions do not
meet expected standards.

A program with cooperative threads includes a set of application functions and a set of
OS API functions. Some of the application functions are thread start functions, which
execute threads either statically or dynamically. With static thread creation, threads are
statically assigned to thread start functions and are started as soon as the program starts.
Dynamic thread creation, in contrast, is able to start new threads at run-time by calling
special OS API functions. The maximum number of threads is conceptually unbound and
only limited by the amount of available computational resources.

Implementing critical functions should not differ from implementing auxiliary functions.
They should not vary in their call semantics either, with the exception of critical calls
possibly leading to a context switch. Some implementations make a syntactic difference
between critical and non-critical calls to keep the developer aware of possibly changed
shared state. Unfortunately, the only reasonable and C99-compliant way to do so is
enforcing a naming scheme such as a fixed prefix for critical and blocking functions.

Staying compliant with C99 (or other C standards) is important because it allows using
existing tools such as integrated development environments (IDE), static analysis tools to
verify coding conventions and detect faults, etc. Thus, thread abstractions should avoid
syntactic extensions to the programming language.

Threads should be able to communicate freely with each other via shared storage such
as objects with static or allocated storage duration [C99: 7.20.3] and identifiers with
file scope. All application functions should also be able to freely call each other, which
implies two things in particular: First, critical calls may occur anywhere in the code.
Second, any function can be re-entrant, i.e., multiple threads can call it at the same time,
while each thread has its own set of local variables.

The expectations on preemptive threads are very similar to those on cooperative threads,
except for the timing of context switches. In any case, there should not be major deviations
from well-known execution semantics of preemptive or cooperative threads. This would
demand for an understanding of all its implications or could lead to subtle software faults
otherwise.

2.1.6. Debugging

The term debugging has a colloquial origin but is well established in today’s software
engineering domain. It refers to the process of finding a fault, a defect in the system under
observation. This process is also referred to as fault diagnostics. A fault can lead to an
error, which refers to “that part of the system state that is liable to lead to subsequent
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failure” [50]. In contrast, a failure “occurs when the delivered service no longer complies
with the specification” [50].

A source-level debugger is a controlled execution environment for the system under
observation that offers debugging tools to users. First, it makes the system state observable
and sometimes even modifiable. Second, it offers breakpoints, i.e., stopping system
execution when user-defined conditions are met. The important aspect hereby is that
the user’s view on the system is its source code, i.e., variables and language statements.
Details of how the source is compiled and how the binary is executed are hidden, enabling
users to focus on system faults.

During fault diagnostics, the user tries to reproduce an observed failure by bringing
the system back to the point where the failure occurs. By inspecting the system state it is
then possible to find the error and deduce the fault from this information.

2.2. State-of-the-Art

Wireless sensor networks enable important applications, but they are extreme with respect
to scarcity of resources. This domain serves as a good environment to develop and
evaluate our approach. Nevertheless, Section 2.2.1 will first address a general discussion
on multi-tasking to establish the subsequent discussion that is focused on wireless sensor
networks.

WSN research has been conducted for over a decade now with many results produced.
We have chosen to discuss the following subset that we consider particularly relevant
for our work. Our approach is based on event-based run-time systems, which is why
WSN operating systems are presented in Section 2.2.2. Thread-based WSN operating
systems are also discussed briefly, as they target the same problem as our approach does.
Section 2.2.3 provides a brief survey of WSN thread libraries and their various techniques,
trade-offs, and compromises with respect to supported thread semantics.

In Section 2.2.4 existing compiler-assisted thread abstractions are examined by fol-
lowing their evolution and explaining why we still consider them to be incomplete.
Nevertheless, our work builds upon these ideas and adds the necessary steps to obtain a
comprehensive compiler-assisted thread abstraction for resource-constrained systems. Fi-
nally, some suggested approaches for debugging in wireless sensor networks are outlined
in 2.2.5.

2.2.1. Multi-tasking

The core of the problem our work targets steams from the need to support multiple tasks
within a single program. This section discusses various known solutions to this problem
and puts our approach in perspective.

Scheduling a number of tasks on a lower number of CPUs requires some means to
suspend and resume the execution of individual tasks. Section 2.2.1.1 is concerned
with the state of a task which has to be stored and reloaded to this end. Subsequently,
Section 2.2.1.2 provides a short introduction to coroutines, a very expressive concept
which enables various control structures. Amongst them, thread-based multi-tasking can
be regarded as a special case of coroutines. Finally, Section 2.2.1.3 provides a tight survey
on the long-standing argument on threads vs. events.
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2.2.1.1. Continuations

Suspending a task and resuming it later requires the manifestation of the task’s state
as an ordinary data structure that can be managed in a wait queue for instance. Such a
manifestation is generally referred to as the continuation of that task. Different run-time
system have varying definitions and implementations of continuations. We will cover the
most important ones in this section.

On the level of assembler languages, a continuation consist of an instruction and a
stack pointer along with the assumption that the referenced code and data is preserved.
Software engineers in this domain are used to deal with continuations explicitly. In fact,
every function call and return entails copying stack and instruction pointers between
registers and the stack, so that the call stack of a task contains many continuations, one
for each pending function call. Such a continuation does not only determine where to
continue the execution of a task, but it also references the state of all local variables as
stored on the corresponding stack. In contrast, other aspects such as allocated memory
and file resources are not covered and have to be managed manually as needed.

The concept of continuations is generic enough to be viable not only for function calls
and returns. For instance, performing a non-local jump that crosses multiple stack frames
is trivially possible and can be used to implement exceptional control flows. The use
case most important in the context of this thesis is the implementation of thread-based
multi-tasking by managing continuations referring to different stacks [88].

C99 provides an abstraction for a restricted type of continuations. The function (or
macro) setjmp “saves its calling environment [i.e., its continuation] in its [...] argument
for later use by the longjmp function” [C99: 7.13.1.1]. Invoking longjmp performs a
non-local jump to the point after the corresponding call to setjmp. The continuation is
stored in an array which can be arbitrarily managed, thus enabling a variety of different
control structures.

C99 continuations are restricted because longjmp is not required to preserve the
current execution environment. Jumping into a function that has previously been left via
longjmp therefore results in undefined behavior. This situation, however, occurs every
time a previously suspended task is resumed. Implementing thread-based multi-tasking
in C99 is therefore not portable, but nevertheless possible with many implementations.

A C99 continuation in event-based programming is typically limited to only carry an
instruction pointer while the stack pointer is assumed to be the same for all continuations.
While this enables a very efficient implementation of multi-tasking it excludes local
variables. When resuming a continuation pointing to the middle of a function, the state
of local variables is usually lost and reset to some undefined value, as the execution of
other tasks has invalidated the corresponding stack frame in the meanwhile. Protothreads
follow this approach, thus inducing treacherous run-time behavior of the system (cf. Sec-
tion 2.2.4). To avoid confusion, most event-based systems therefore restrict a continuation
to refer to the start of a function where all local variables have not been initialized yet
anyway.

In other words, the instruction pointer of a continuation is obtained by retrieving the
address of a call-back function. This address is either registered in advance or passed
along while yielding, constituting an imperative continuation-passing style (Section 3.4
of [33]). The downside is that there must be a distinct function for each continuation of
a task, resulting in the control flow being split and spread over a possibly large number
of functions. Also, local variables still are not part of a continuation, which disables the
usage of automatic storage and forces manual memory management instead.

14



CHAPTER 2. BACKGROUND 2.2. STATE-OF-THE-ART

In order to translate a thread-based program into an event-based one we basically have to
transform thread-style continuations with arbitrary instruction and different stack pointers
into event-style continuations with addresses of call-back functions and a single implicit
stack pointer. Chapter 3 will explain how computed gotos and statically allocated data
structures resembling run-time stacks compensate for the limited event-style continuations
and enable such a translation.

Languages like Scheme [33] address continuations by elevating them to first-order
objects [142]. The function call/cc1 takes a single function fun which is called with
the current continuation. Such a continuation is itself a function taking a single parameter
res. As functions are first-order objects in Scheme, a continuation can be stored and
arbitrarily managed by a scheduler for instance. If fun returns, call/cc returns with the
result of fun. Whenever the continuation is called, the current control flow is aborted and
execution resumes as if the corresponding call to call/cc had just returned res.

A Scheme continuation can be resumed arbitrarily often. Associated closures addition-
ally manage all referenced data automatically, turning this facility into a very powerful and
generic tool for various control structures. Non-local jumps (a.k.a. non-local exits) are
trivial and provide a comfortable way to handle exceptional control flows for functional
programs. Continuations can also be used to implement threads [122], where suspending
a task is calling the scheduler function via call/cc and resuming a task simply involves
calling the received continuation. Because continuations are so flexible, they even enable
the implementation of coroutines [53], which we will discuss in the next section.

This flexibility comes at a cost, though, as it requires a solution to the funarg problem
[94]. This problem emerges whenever a function references variables from its outer
environment, for instance a local variable of one of its callers. When that function is
invoked later as part of a continuation, the surrounding environment might have changed,
e.g., the original caller might have returned and the associated stack frame has therefore
been invalidated. Possible solutions vary from switching to allocated storage and utilize
either garbage collection or reference counting [4], to limiting support to read-only
variables and to copy them [45]. In any case, up to our knowledge, no solution is efficient
enough to enable Scheme-style continuations on resource-constrained system like the
ones we target.

2.2.1.2. Threads and Coroutines

Coroutines [84] are a generalization of subroutines (a.k.a. functions). While functions
can only be exited once, coroutines can exit (i.e., yield) and resume arbitrarily often.
Whenever a coroutine resumes it behaves as if it had never exited, only that shared state
might have been modified in the meanwhile.

When a coroutine yields, it names the coroutine which should resume next. Although
this looks like a normal function call at first, it is important to note that the invoked
coroutine can yield back to the original coroutine. In contrast to the caller-callee schema
of ordinary function calls, “coroutines are subroutines all at the same level, each acting as
if it were the master program when in fact there is no master program” [21].

Coroutines represent a very interesting research topic because most if not all control
flow structures can be regarded as a special case of coroutines. For instance, coroutines
can express state machines within a single subroutine, actors [20], generators [133],
Communicating Sequential Processes (CSP) [115] as well as cooperative threads. In the

1short for call-with-current-continuation, originally called catch.
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latter case, each thread execution function is in fact a coroutine. Whenever a thread yields
the coroutine yields back to the scheduler which in turn yields to the next coroutine.

Interestingly enough, coroutines can be implemented by means of cooperative threads.
This simply requires one thread per coroutine and a single shared variable holding the
name of a coroutine. Whenever a coroutine yields, its thread updates this variable with
the name of the coroutine which should resume next. The scheduler respects this choice
and invokes the thread corresponding to the requested coroutine next.

While this suggests that implementing coroutines is as expensive as implementing
threads, the former is a rather uncommon multi-tasking model in C. The reason for
this might be historic, as originally the C language family did not even cover threads.
Instead, libraries like pthreads (IEEE Std 1003.1c-1995) and GNU Portable Threads
[36] introduced preemptive and cooperative threads after the fact, while a comparable
effort is unknown to have been attempted for coroutines. In order to provide a familiar
programming abstraction as an alternative to event-based multi-threading, our work
introduces an implementation of threads as opposed to coroutines.

2.2.1.3. Threads vs. Events

There has been an ongoing debate in the research community about whether event-
based or thread-based programming is superior. For instance, Ousterhout argued that
“threads are a bad idea” [102] and von Behren et al. suggest that “events are a bad idea”
[138]. Opinions seem to depend on requirements and users preferences. In general, both
concepts are known to be dual to each other [73]. Adya et al. even managed to “exhibit
adaptors that enable automatic stack management [thread-based] code and manual stack
management [event-based] code to interoperate in the same code base” [2].

Opposing parties have been working on their favorite paradigm to mitigate respective
disadvantages. For example, von Behren et al. argue that “a modern thread package
will be able to provide the same benefits as an event system while also offering a better
programming model for Internet services” [139]. To support this claim, they introduced
Capriccio, a scalable thread package for cooperative threads on Linux that comes with
resource-aware scheduling. To solve “the problem of stack allocation for large number
of threads”, the authors employ a compiler that augments the application with code for
dynamic stack management.

Overall, however, “[the authors] believe there is no advantage to a static transformation
from threaded code to event-driven code, because a well-tuned thread run-time can
perform just as well as an event-based one” [139]. From today’s perspective, either
past WSN research has failed in finding a “well-tuned thread run-time” or the previous
statement does not apply to wireless sensor networks. In fact, run-time-based WSN thread
abstractions either provide incomplete thread semantics or are clearly less efficient than
existing event run-time solutions (Section 2.2.3). We believe that resource scarcity makes
a significant difference to other domains and static transformation therefore is the key to
build a comprehensive thread abstraction.

For event-based programming, Cunningham and Kohler introduced the Explicit Event
Library (libeel) to make “event-driven code easier to read, write, debug, and maintain“
[24]. Overall, libeel “sustains the advantages of event-driven programming while adding
the important advantage of programmability”, which is achieved by designing libeel to be
“amenable to programming analysis”, and by creating “tools to graphically expose control
flow, verify resource safety properties, and simplify debugging”. Although libeel improves
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event-based programming, control flow is still split among multiple event handlers and
data flow has to be managed manually. Our approach, on the other hand, includes the
comfort of threads while being almost as efficient as event-based programming.

Approaching the issue from a different angle, Harris et al. introduced “AC, a set of
language constructs for composable asynchronous IO” [51]. These language constructs
include async, do/finish, and cancel operations that retain “a sequential style of
programming without requiring code to be ‘stack-ripped’ into chains of callbacks”.
Nevertheless, the run-time system is event-based and it performs the mapping between
sequential code and asynchronous input and output operations (IO). With our work, the
compiler performs the mapping at compile-time, therefore saving run-time resources.

Similar approaches have been explored by others and have even become mainstream
[135]. In all these cases, new language constructs and new control flow semantics are
added. Our work keeps the well-known cooperative threading paradigm, which we
consider adequate for solving the addressed problems.

2.2.2. Operating Systems

For the scope of this thesis, sensor network operating systems can be divided in two
categories by distinguishing operating systems that natively support threads from those
that do not. The latter category will be presented first.

2.2.2.1. Event-based Operating Systems

One main WSN operating system is TinyOS [55], whose development began in the late
nineties. The operating system and all applications are written in nesC [42], a specifically
designed dialect of the C programming language. This language enables static analysis
by disallowing pointer arithmetics and function pointers. It also enforces a component-
based software architecture with exclusively asynchronous interfaces. Interface definition,
component construction, and component composition are three separate aspects, which
can flexibly be integrated for a given application.

There are two execution contexts in TinyOS: interrupt handlers and tasks (not to be
confused with the term “task” from Section 2.1.1). Tasks are deferred procedure calls,
scheduled one after the other, that always run to completion. Interrupt handlers on the
contrary can be preemptively invoked at any point in time. To deal with the caused
concurrency, nesC distinguishes between synchronous and asynchronous context. Tasks
are synchronous context, interrupt handlers are asynchronous context, and functions can
be declared to be in either. The rule is that synchronous functions cannot be called from
asynchronous context. Thus, asynchronous functions are the only place where explicit
atomicity has to be established as needed.

Implementing complex control flows with nesC quickly becomes difficult and error-
prone, because all functions are asynchronous, causing corresponding continuations being
spread all over the program. Reading code written by others and comprehending the
control flow at hand is still harder. During debugging, stepping from the invocation of
an operation to the point in the corresponding control flow that handles its completion is
cumbersome.

A second major operating system for wireless sensor networks is Contiki [30]. The
focus of Contiki was not originally on wireless sensor networks. Instead, Contiki has
aimed to be small and highly portable, targeting memory-constrained networked systems
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in general. Today, the Contiki community calls it “The [..] Operating System for the
Internet of Things”2. Contiki is in particular famous for its networking capabilities,
including µ-IP stack [29], IPv6 stack with 802.15.4 6lowpan [93] header compression and
fragmentation [32], low-power IPv6 routing capabilities [136], and CoAP implementation
[70]. In fact, there is now only a thin line between Internet of Things and wireless sensor
networks due to increasingly similar or identical technologies, devices, and requirements.
Contiki can therefore be a good choice for sensor network applications and it is in fact
used often in that domain.

The run-time system of Contiki is event-based, although some operations such as send-
ing network packets are implemented via synchronous functions. Nevertheless, receiving
network packets, waiting for a time-out, and other operations alike have to be imple-
mented via asynchronous functions because the run-time system is single-threaded. The
Contiki community recognized the problems of event-based programming and introduced
protothreads, “simplifying event-driven programming of memory-constrained embedded
systems” [31]. Today, protothreads are deeply integrated into the Contiki system, mak-
ing its use almost mandatory. Section 2.2.4 will explain details of protothreads as they
constitute the first compiler-assisted thread abstraction for resource-constrained systems.
Being the first of its kind, protothreads still have some limitations. Our work aims to take
necessary next steps to improve this approach.

To complete the discussion on event-based WSN operating systems, we want to
mention SOS [49], which accounts for the need to reprogram remote, or inaccessible
motes. “SOS consists of dynamically-loaded modules and a common kernel, which
implements messaging, dynamic memory, and module loading and unloading, among
other services” [49]. Although addressing a real problem and providing a good solution,
SOS was not widely adopted in practice. With regard to our work, SOS could be used as
an underlying operating system and have dynamically-loaded modules written with our
abstraction.

2.2.2.2. Thread-based Operating Systems

To avoid event-based programming altogether, some WSN operating systems support
threads natively. For example, MANTIS (multimodal system for networks of in-situ
wireless sensors) “is a multi-threaded cross-platform embedded operating system for
wireless sensor networks” [10]. At first, the energy efficiency of MANTIS was not
competitive with event-based operating systems, but it has improved significantly and
now “it is possible to make a multi-threaded sensor network operating system as power-
efficient as an event-based system” [28]. Nevertheless, “the sensor network community
selected TinyOS as the de facto standard” [27], which motivated porting the MANTIS
technology to TinyOS [27] and discontinuing the project.

Other multi-threaded operating systems such as LiteOS [15] and RETOS [18] aim
for providing UNIX-like and POSIX-compliant interfaces. Still other like Nano-RK
[39] focus on reserving resources to guarantee task deadlines. A completely different
approach is followed with Maté, “a tiny communication-centric virtual machine [whose]
high-level interface allows complex programs to be very short [...], reducing energy costs
of transmitting new programs” [78]. Like SOS, Maté addresses the need to dynami-
cally reprogram motes and in addition its “instructions hide the asynchrony (and race
conditions) of TinyOS programming” [78].

2http://www.contiki-os.org
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In any case, thread-based operating systems follow a run-time based approach to
threads which is why they have the same problems as thread libraries do. These will be
addressed next.

2.2.3. Thread Libraries

Although event-based operating systems brought sensor network applications to smaller
devices, there is still a demand for higher programming abstractions. This has led to
several approaches of run-time-based thread implementations on top of event-based
systems.

Welsh et al. employ two execution contexts, which they call fibers: “the default system
fiber is event-driven and may not block” while “the application fiber is permitted to block”
[144]. Both fibers “can share a single stack”, therefore this “thread-like concurrency
model for TinyOS” is very lightweight. It is, however, also rather limited because there
can only be one blocking execution context at any point in time.

Y-Threads [99] constitute a generalization of fibers. They “provide separate small
stacks for blocking portions of applications, while allowing for shared stacks for non-
blocking computations”. The basic observation regarding Y-Threads is that the “size
of stack required to execute the control behavior is fairly small.” Y-Threads provide a
dedicated API for run-to-completion functions, which can all share the same stack space
because they don’t interleave with each other. Once these parts are extracted from a
thread, there is only a small amount of state left. It requires its own stack and is saved
there during blocking computations. The downside of Y-Threads is that programmers
have to manually and explicitly extract run-to-completion parts and call them indirectly
via a provided API. This again separates corresponding code fragments as it is the case
with event-based programming. Additionally, evolving applications that are based on
Y-Threads can cause cumbersome refactoring once a hitherto run-to-completion part now
happens to involve a blocking computation. All of this reflects the non-standard thread
semantics of Y-Threads.

In contrast, TinyThread [88] is “a library for TinyOS and nesC that enables true
multi-threading on a mote”. In this context, the term “true” refers to what is in general
meant with “multi-threading”, i.e., thread-based multi-tasking. Each thread has its own
stack and the scheduler switches the machine’s stack pointer register to perform context
switches between threads. The application code consists of a set of functions including
some thread start functions. Besides explicitly allocating stacks and assigning them to
individual threads, there is no boilerplate code necessary.

As discussed in Section 2.1.3, using multiple preallocated stacks introduces significant
memory overhead. To mitigate this, TinyThread employs advanced stack size estimation
algorithms that are context-sensitive and “exploit the fact that interrupts are disabled in
different parts of the application” [88]. The total extra memory added to the stacks still
grows with Θ(n×m), with n being the number of threads and m being the average number
of enabled interrupts. Also, the total memory used for stacks still tends to be larger than
the applications’ maximum stack usage over time.

The most recent run-time-based thread abstraction is TOSThreads, “a fully preemptive
threads package for TinyOS [that] resolves the tension between the ease of thread-based
programming and the efficiency of event-based programming by running all event-based
code inside a single high priority kernel thread and all application code inside application
threads, which only execute whenever the kernel thread becomes idle” [68]. As this is
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a run-time-based approach, “the memory costs associated with maintaining per thread
stacks can be substantial” [68]. Also, as already discussed in Section 2.1.4, we advocate
cooperation instead of preemption.

Overall, existing thread abstractions for WSN applications can be divided into two cate-
gories. The first imposes limitations on thread semantics (with respect to Section 2.1.5) to
account for constrained resources of WSN devices. The second supports complete thread
semantics, but at the cost of inefficient RAM utilization, which requires more capable
and expensive hardware. It seems that run-time based approaches cannot escape from
this trade-off.

2.2.4. Compiler-Assisted Thread Abstractions

Compiler-assisted thread abstractions require a dedicated compiler that translates a thread-
based program into an equivalent event-based program. The comfort of threads is
combined with the efficiency of events. Conceptually, there are two reasons why this
approach achieves better performance. First, the run-time system is event-based, and
uses the existing event dispatcher for task scheduling and context switching. Multiple
preallocated stacks are hereby avoided. Second, a compiler can exploit application-
dependent properties and generate optimized code, while a run-time-based approach
always has to assume the most generic case.

The first system that provided a compiler-assisted thread-abstraction for WSN applica-
tions was protothreads [31]. It has been specifically designed for Contiki and its usage is
deeply embedded in Contiki’s libraries and run-time system. Technically, protothreads
are a set of C preprocessor macros that enable the syntactical illusion of threads and
synchronous functions. Instead of blocking until the completion of an operation that
involves waiting, the run-time system memorizes the current code location and returns
from the handler function. When resuming the thread, the same function is called again
and a switch statement, expanded from the protothreads macros, brings the execution
back to the location where the previous wait operation was triggered. Storing a code
location implies only two bytes of overhead for each thread (a.k.a. protothreads process),
and therefore the authors claim to provide the most efficient thread implementation.

There are two reasons for protothreads’ performance. First, the potential of compiler-
assisted thread abstractions is partially exploited by utilizing an event-based run-time.
Second, and more important, as the C preprocessor can only locally replace language
tokens and is not a dedicated compiler, protothreads’ semantics have a number of limita-
tions.

First, blocking functions can only be called in the top-level thread start function
as opposed to nested functions. This severely restricts the software architecture of
protothreads applications, as the encapsulation of repetitive code patterns that involve
blocking functions is prohibited. Second, the state of local variables is not preserved
across calls of blocking functions. They are reset to undefined values instead because
at the thread start function actually returns at run-time and is invoked again later. This
unexpected deviation from well-known execution semantics has reportedly taken many
developers by surprise. Even worse, such faults have to be indirectly inferred from
observing the misbehaving execution of the application, as the protothreads tool chain
is not able to catch the issue. Finally, using additional switch statements in thread
start functions can interfere with the ones expanded from the protothreads macros in
unexpected ways. The protothreads tool chain again happily accepts such programs as
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input and generates an output program with absurd run-time behavior.
Compared to thread libraries, the thread abstraction provided by protothreads is clearly

incomplete and also treacherous. Nevertheless, protothreads are widely used, which
indicates that thread-based programming is needed. Our work aims to satisfy this need
by providing a comprehensive and accustomed thread abstraction which is still efficient
enough to be executed on resource-constrained devices such as motes.

The first system, that in contrast to protothreads, employed a dedicated compiler to
provide thread abstractions for wireless sensor networks was TinyVT [119]. It was specif-
ically designed for TinyOS, which provides a component-based software architecture
with event-based interfaces. TinyVT enables software developers to implement single
components sequentially, as it is possible to embed event handlers in code blocks fol-
lowing a special await statement. Also, the run-time system preserves the state of local
variables across such operations.

Although TinyVT overcomes many of protothreads’ drawbacks, supported thread se-
mantics are still restricted. Embedded event handlers must not contain await statements,
and it is not possible to split the implementation of a component into multiple functions,
which implies that code cannot be shared between multiple threads and functions cannot
be re-entrant.

The most recent compiler-assisted thread abstraction for TinyOS is UnStacked C, “a
source-to-source transformation that can translate multi-threaded programs into stack-less
continuations” [89]. This is a hybrid approach, as the compiler input is an application
which uses a thread library such as TOSThreads, and it generates an improved application,
which uses a modified version of the original thread library. Furthermore, the compiler
replaces the preemptive computation model with lazy preemption, reducing overhead
by softening the timing guarantees of context switching. Although supported thread
semantics are rather complete, the generated run-time system still depends on a thread
library and it is still unclear if lazy preemption is appropriate for WSN applications.

Overall, compiler-assisted thread abstractions have shown the capability to unify the
comfort of cooperative threads with the efficiency of events. However, existing work has
not fully exploited the possibilities of this approach, as they only support either limited or
non-standard thread semantics (cf. Section 2.1.5) and do not exploit application-specific
properties. With our work, we want to advance to the next step by introducing a dedicated
compiler that:

1. offers a comprehensive cooperative thread abstraction,

2. performs a source-to-source transformation of C code,

3. rejects invalid input code,

4. exploits application-specific properties, and

5. is platform-agnostic with respect to the operating system that executes the generated,
event-based application.

2.2.5. Fault Diagnostics Tools

Fault diagnostics is, like programming, a question of abstraction. For instance, reading
CPU registers and single-stepping the CPU execution via JTAG3 is possible, but may
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not be the right way to find faults in applications written in languages like MacroLab
[126], for instance, as the provided abstraction is built upon distributed data vectors
and computations on them. For a good reason, Macrodebugger [125], a debugger for
MacroLab code, has been introduced.

The debugger should ideally operate on the same abstraction level as the compiler. For
this reason YETI [14], an Eclipse [132] plugin, has been developed. It closes the gap
between nesC and C by supporting debugging of nesC applications. These are, as already
mentioned in Section 1.3, rare examples of debuggers that have been introduced along
with a new programming abstraction.

Other WSN research efforts in this regard focus on finding faults in applications
written in C or one of its dialects, whether an additional programming abstraction has
been used or not. MSPsim, for example, is a “MSP430 instruction level simulator that
simulates sensor boards with peripherals for the purpose of reducing development and
debugging time” [37]. COOJA is a graphical network simulator that integrates MSPsim
and provides a plug-in for interactive debugging of MSP430 binaries [38]. Similarly,
TOSSIM provides “accurate and scalable simulation of entire TinyOS applications” [76].
Technically, TOSSIM is a Python [133] framework that enables the user to implement
tests and debug TinyOS applications by writing Python scripts.

Simulating the execution of WSN applications via MSPsim or TOSSIM saves a lot of
time. Debugging on real hardware is still necessary, because lab conditions can differ
significantly from simulator models. Thus debugging on real hardware is necessary.
Clairvoyant “is a comprehensive source-level debugger for wireless, embedded networks
[where] a developer can wirelessly connect to a sensor network and execute standard
debugging commands [...] as well as new commands that are specially designed for
debugging WSNs” [147]. Likewise, Marionette “facilitates interactive development and
debugging” by providing “the ability to call functions and to read or write variables on
pre-compiled, embedded programs at run-time” [146].

Deep embedding into the real world causes lab conditions to differ greatly from
deployment conditions. Therefore, debugging of deployments is also required. Passive
Distributed Assertions “allow a programmer to formulate assertions over distributed node
states [...] causing the sensor network to emit information that can be [...] evaluated
to verify that assertions hold” [113]. Collecting this information can be done using
a temporary deployment support network [9] that passively overhears network traffic.
LiveNet “is based on the use of multiple passive packet sniffers co-located with the
network, which collect packet traces that are merged to form a global picture of the
network’s operation” [19]. The SNIF framework is “a general framework for passive
inspection of multi-hop sensor networks to detect problems related to individual nodes
(e.g., reboot, death), wireless links, paths (e.g., routing failures, loops), or global problems
(e.g., partitions)” [111]. Memento [116] and Sympathy [107] are other solutions that can
detect a pre-defined set of known problems during deployment and move the scope from
debugging implementations to monitoring operations.

All these technologies ignore the abstraction level used to develop the application under
observation. Thus, it is a challenging task to find an actual software fault from data that
has been collected by such tools. We, on the other hand, want to complete the abstraction
of cooperative threads by sustaining it during fault diagnostics as well. For this reason,
we introduce a source-level debugger, that

1. operates on the abstraction level of cooperative threads,
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2. supports both global and thread-specific breakpoints,

3. supports the evaluation of arbitrary expressions over identifiers,

4. has a modular architecture that enables different user front-ends,

5. can be executed on any platform that has a GDB [129] target.

2.3. Haskell

Our prototypes of T-code compiler and debugger are implemented in Haskell. We want to
motivate this choice by presenting previous approaches in Section 2.3.1 and by explaining
some core features of Haskell in Section 2.3.2. Basic knowledge about those features
is required to follow parts of Chapter 5. Covering the whole spectrum of language
features goes beyond the scope of this thesis, and we refer to the literature instead (e.g.,
[4, 5, 80, 101]).

Haskell is a non-strict, purely functional and statically typed programming language,
which was named after Haskell B. Curry. The non-strict evaluation strategy is imple-
mented via call-by-need, a.k.a. lazy evaluation. This allows for computations on infinite
data structures and, more importantly, provides a tool to cleanly separate concerns. Being
pure means that the result of a function solely depends on its input arguments, i.e., it
constitutes a function in the mathematical sense. This ensures referential transparency, a
key property of functional programs, yielding deterministic behavior that enables reason-
ing about program correctness, allows optimizations such as memoization and common
subexpression elimination, facilitates easy unit testing, etc. Haskell’s purity particularly
entails that side effects are not possible by default, but have to be made explicit via monads
(Section 2.3.2.3). In fact, “one of Haskell’s main impacts on mainstream programming
[is believed to be] the realization that being explicit about [side] effects is extremely
useful” [58]. Finally, Haskell’s powerful type system provides strong static guarantees
for a program while its Damas–Hindley–Milner-based type inference [25, 56, 92] reliefs
software developers from specifying the involved types in most cases.

Being functional in general implies, among other things, that functions are first-class
citizens, i.e., they can be arguments to or results from other functions, so-called higher-
order functions. “Higher-order functions and lazy evaluation can contribute significantly
to modularity. [...] Since modularity is the key to successful programming, functional pro-
gramming offers important advantages for software development” [59]. Also, “compilers
and other code translation are natural applications for functional languages” [58]. After
all, the core of a compiler is a function from input code to output code. This function
particularly has to identify sections of abstract syntax trees, either in order to collect static
information or to perform transformations. Algebraic data types and pattern matching, a
common feature of functional programming languages, lends itself very nicely to this pur-
pose. It was therefore clear to us that we should use a functional programming language
to implement Ocram.

2.3.1. Alternative Approaches

We first tried to connect Rats! [46], a parser generated for Java [45] that builds on
recent research on parsing expression grammars [40], with Scala [100], a functional
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programming language for the Java Virtual Machine (JVM). Scala is actually a multi-
paradigm programming language, as it supports Java-style object-oriented programming
as well. It integrates seamlessly with Java and other languages that generate bytecode
for the JVM, so using parsers generated by Rats! poses no problem. Scala is strict by
default, statically typed, and supports basic type inference, algebraic data types with
pattern matching via so-called case classes, and other basic functional programming
features. Rats! is part of the Extensible Compiler Project (xtc)4, which provides, among
other things, a grammar for C with common GNU C extensions.

Unfortunately, the abstract syntax trees returned by Rats! parsers consist of generic
tuples containing a name and a list of child nodes. To use the pattern matching capabilities
of Scala, translating these tuples to instances of case classes is required. Implementing
and maintaining the translation of the approximately 140 different nodes that are involved
in xtc’s abstract syntax tree of C seemed too cumbersome. When we tried to generate
the translation code instead, we faced various time-consuming technical obstacles. Fur-
thermore, xtc provides no pretty printer, which is something Ocram needs to generate the
concrete syntax of the E-code application. So, we went on to try a different alternative.

The C Intermediate Language (CIL) [98] is “a representation that makes it easy to
analyze and manipulate C programs” [98]. A front-end translates C programs to CIL,
thereby simplifying many language constructs. CIL also provides “a set of tools that
permit easy analysis and source-to-source transformation of C programs” [98] as well as
a pretty printer. CIL’s recommended way of usage is to write an OCaml module [109].
OCaml is the object-oriented variant of Caml, which is a dialect of the ML programming
language family. It is strict and statically typed, supports type inference, is both functional
and object-oriented, and provides a rich set of additional features. Overall, it seemed
like an adequate tool for the given task and we quickly managed to write early compiler
prototypes.

The problem was that the CIL framework does not maintain a log of transformations
applied to the input program. This knowledge is, however, required by the T-code
debugger, as it is supposed to map the E-code run-time all the way back to T-code
source, as opposed to displaying the CIL representation of the code to the user. The
implementation of CIL seemed to be too complex for us to be able to include this feature
in reasonable time. We therefore postponed this approach to try a third alternative.

The Language.C library [57] is mostly a parser and pretty printer for K&R C [66], C99,
and GNU C. To use this Haskell library, our compiler had to be written in Haskell as well.
Our initial experience with Haskell in general and Language.C in particular was so posi-
tive, that we decided to continue with this approach. After finishing the implementation of
Ocram, we even continued to use Haskell to implement Ruab, although a debugger with
user interaction and sub-process communication is not a natural application for functional
languages. Nevertheless, Haskell turned out to be a good choice for Ruab as well.

First of all, numerous classes of software faults do not exist in Haskell, simply because
the abstraction prevents memory corruption and because there is no state by default. The
latter reason, which originates from Haskell’s purity, involves race conditions, unini-
tialized data, usage of destroyed objects, and other common problems of imperative
programming languages. Also, the type system catches most mistakes, leading to the
often stated phrase: “if it compiles, it’s correct”. Certainly, this cannot be always true,
but experience shows that this is often the case nevertheless. And when there is a fault in
the program, comparing the expected output with the real output often directly pointed

4http://cs.nyu.edu/rgrimm/xtc/
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to exactly one place in the code that could possibly be the cause. This is mainly due to
Haskell’s expressiveness and abstraction capabilities, which allows software developers
to follow the Don’t Repeat Yourself (DRY) principle [62] to its extreme.

2.3.2. Haskell in a Nutshell

The history of Haskell is summarized in [58]. It goes back to 1987 when the functional
programming community at the Conference on Functional Programming and Computer
Architecture decided to form a committee to design a purely functional programming
language with lazy evaluation. The motivation was to define a common language to
provide “faster communication of new ideas, a stable foundation for real application
development, and a vehicle through which others would be encouraged to use functional
languages” [58]. In 1990, the first version of Haskell was defined, followed by a series of
updates, which culminated in the Haskell 98 Language Report, a stable, minimal, and
portable version of Haskell. Although the Haskell Committee ceased to exist in 1999,
Haskell continued to be adopted by others who identified small flaws in the language
design and ambiguities in the report. As a consequence, The Revised Haskell 98 Report
[5] was published in 2002. In 2005, a new committee has been formed to design Haskell′

(Haskell-prime), a successor language that includes language extensions which are used
in practise. The Haskell community was heavily involved in the public discussions on
Haskell′, leading to the first revision in 2010 [4].

Although Haskell started as an academic playground, it is widely used in the “real
world” today [101]. The Glasgow Haskell Compiler (GHC) [85] is an industrial-strength,
cross-platform, and open source Haskell implementation, which provides many language
extensions and employs advanced optimization techniques. Several companies employ
Haskell as a productive tool for their business, ranging from electronic design automa-
tion to systems programming for Linux-based consumer products, artificial intelligence
software for decision support, a domain-specific language for specifying cryptographic
algorithms, and to a WebDAV server with audit trails and logging [58]. Haskell has also
influenced other programming languages such as Python, Java, C#, Visual Basic, and
Scala [58]. The Haskell community is constantly growing, creating a huge ecosystem
of libraries and a plethora of learning material for beginners (e.g., [80]). Nevertheless,
Haskell is still tightly coupled with recent research, continuously yielding GHC language
extensions and libraries whose foundations have been published in high quality confer-
ences and journals (e.g., [60, 71]). Our perception is that this combination of established
research and pragmatic public is what drives the success of Haskell.

We will briefly describe a few key features of the Haskell programming language, i.e.,
polymorphic data types (Section 2.3.2.1), type classes (Section 2.3.2.2), and monads
(Section 2.3.2.3). These sections provide the background for Chapter 5. For a more
extensive explanation of the concepts we recommend reading [80].

2.3.2.1. Polymorphic Data Types

Haskell’s type system supports polymorphic data types, i.e., data types that are parametrized
with other types. For example, the type Maybe is defined as

data Maybe b = Just b | Nothing

and encapsulates a value of type b that is either present (reflected by the data constructor
Just) or not (reflected by the data constructor Nothing). This allows to model compu-
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tations that can fail, while a subsequent pattern matching on the data constructors can
either obtain the returned value or handle the failure case accordingly.

A second example is the type

data Either b c = Left b | Right c

which can be used to model computations that either return a value of type b (Left) or a
value of type c (Right). A common scenario is b being an error type and c being a result
type. A function that for instance returns Either String Int can then either return
an integer or signal failure by returning a string that describes what went wrong. Again,
pattern matching can distinguish the two data cases to react accordingly. We will make
use of Maybe and Either particularly in Section 3.5.

As a final example, the Language.C data types that are used to build up the abstract
syntax tree are polymorphic with a single type parameter (cf. Appendix A). For instance,
the data type

data CTranslationUnit a =
CTranslUnit [CExternalDeclaration a] a

models a translation unit that consists of a list of external declarations and a single value
of any type. This allows for annotating tree nodes with arbitrary information. We will
make use of this in Section 4.2.2.1.

2.3.2.2. Type Classes

A Type class basically is a set of functions which is parameterized with a single type. A
given type can implement a type class if it provides definitions for all of its functions. For
example, the type class

class Monoid a where
mempty :: a
mappend :: a -> a -> a

states, that any type a can be a monoid if there is an overloaded version of both mempty
that returns a value of that type and mappend that maps two values of that type to a third
one. The documentation of Monoid clarifies, that mappend is a binary operation and
mempty is its neutral element, forming the algebraic monoid structure. Note that the
purity of mempty implies that it always returns the same value, i.e., the neutral element is
unique.

It is known from algebra, that lists are monoids. This can be expressed in Haskell with
the following instantiation:

instance Monoid [b] where
mempty = []
mappend = (++)

This states, that the binary operation is list concatenation (implemented by the infix
operator ++) and the neutral element of list concatenation is the empty list.

Actually, this instantiation provides two additional interesting aspects. First, it is
generic, as it defines an instance of Monoid for a list of any type, i.e., the type parameter
a of the Monoid type class is instantiated with the type “list of values of type b” for any
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b. And second, the definition of mappend is in so-called point-free style, i.e., it is defined
in terms of another function without ever mentioning the actual function arguments. We
will make use of lists as monoids in Section 5.1.3.2.

Basic type classes of Haskell are Show and Read to print and parse values, Eq and Ord
to compare and sort values, Num, Real, Integral, etc. for numeric operations, Enum for
enumerations, and Ix for array indexing. If a function wants to utilize the functions of a
type class, it has to restrict its arguments to actually instantiate the respective type class.
For instance, the function

sort :: Ord a => [a] -> [a]

can sort a list of values of type a, given a instantiates Ord, i.e., there actually is a total
ordering for the values of the list.

Type classes are a distinguished feature of Haskell. Among other things, they enable
the implementation of domain-specific embedded languages, as basic operations such as
addition and comparison can easily be overloaded for new types. Type classes also play a
major role in the implementation of monads, as the next section will explain.

2.3.2.3. Monads

Type classes can be parametrized not only by a type, but also by a type constructor. This
means, the type parameter can be forced to be polymorphic. This is used by the Monad
type class, which is defined as follows:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The function return wraps a value into the monad, yielding a monadic value. The
infix operator >>=, sometimes called “bind”, takes a monadic value, unwraps it, passes
it to the given function, and returns its monadic result value. This allows for chaining
functions that take pure values and return monadic values. We will provide an example
further below.

Conceptually, a monad provides an encapsulation of side effects [141]. For example,
failing can be regarded as a side effect, which leads to the Maybe monad:

instance Monad Maybe where
return = Just
Nothing >>= _ = Nothing
(Just x) >>= f = f x

Lifting a value into the Maybe monad is simply wrapping it with the Just data con-
structor. Binding, on the other hand, distinguishes between two cases. If the input value
already signals failure, then failure is returned without invoking the next function. To
this end, the underscore binds the second argument to >>=, which effectively ignores that
value. If there is an input value instead, >>= unwraps that value via pattern matching,
passes it to the given function, and returns its result.

Given these functions, computations that might fail can be chained like this:

f :: a -> Maybe b
g :: b -> Maybe c
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h :: c -> Maybe d

chain :: a -> Maybe d
chain x = f x >>= g >>= h >>= return

The implementation of chain aborts the pipeline with failure as soon as the first
function fails and returns the final value otherwise. Consider the alternative of checking
for failure after each single function via pattern matching.

chain :: a -> Maybe d
chain w = case f w of

Nothing -> Nothing
Just x -> case g x of
Nothing -> Nothing
Just y -> case h y
Nothing -> Nothing
Just z -> Just z

The difference to the previous implementation shows that separating the concern of
failure handling from the actual application logic leads to compact implementations. This
is a great example of how higher-order functions (>>= in this case) support powerful and
expressive abstractions.

Other major side effects are non-deterministic computations (provided by the list
monad), stateful computations (provided by the reader, writer and state monads), and I/O
operations (provided by the I/O monad). In either case, the signature of a function shows
if it is pure or not, as in the latter case it returns a monadic value. The Monad type class
enables the implementation of functions that can operate on any monad. For example,

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

is a monadic version of the map function that applies a function to each element of
a given list and returns the resulting list. If m is a monad, then mapM performs the
same computation while executing the side effects of m. For instance, if the provided
function returns Nothing for one of the elements of the list, the overall computation
yields Nothing as well, reflecting the semantics of the Maybe monad to fail the whole
computation if a single interior step fails.

Particularly functions that return IO b for a given b are of interest, because they can
be used to interact with the outside world [103]. While lazy evaluation itself does not
guarantee the execution (i.e., the evaluation) of these functions in the right order, the
I/O monad enforces it, ultimately enabling real world interactions in a purely functional
environment. The type IO instantiates the Monad type class accordingly. The only special
thing about that type is that there is no way to manually unwrap a value from the I/O
context. Instead, each function that invokes a function that returns IO has to return IO
itself, which is ultimately rooted in the main function, which has type IO (). The type
() is called unit type and its only value is unit, also depicted as (). A function which
returns IO () therefore declares statically that it returns no value but is only executed for
its side effects. Overall, it is the type system which enforces that I/O can not be performed
from within pure functions.

Haskell’s monads became so ubiquitous, that a special syntax, the do-notation, has been
introduced to ease their usage [140]. We will make use of this notation in Section 5.1.1.
For instance, the previous example can also be written as
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chain :: a -> Maybe d
chain v = do

x <- f v
y <- g x
z <- h y
return z

which expands to the previously given first definition of chain.
From this example, the benefit of the do-notation is not obvious. Therefore, consider

the following example, which does not resemble a simple pipeline but uses intermediate
results later on:

f,g,h :: Int -> Maybe Int

chain :: Int -> Maybe Int
chain v = do

x <- f v
y <- g v
z <- h (x + y)
return z

This example expands to

chain :: Int -> Maybe Int
chain v = f v

>>= \x -> g v
>>= \y -> h (x + y)
>>= \z -> return z

where \x -> expr is a lambda expression, i.e., the definition of an anonymous function,
which, in this case, takes a single argument and evaluates the given expression which
might make use of that argument.

We want to close our explanation of monads with a final motivating example taken
from practice. The Parsec library5 provides an industrial-strength parser which is simple,
safe, and fast. The major data type is Parser, the parser monad. It encapsulates the side
effects of parsing, i.e., consuming input and back-tracking. The user can focus on the
grammar itself to create the required parser.

For instance, the GDB manual [129] defines the following EBNF [63] for output
records6:

output ->
( out-of-band-record )*
[ result-record ]
( out-of-band-record )*
"(gdb)" nl

Given parsers for out-of-band and result records, and a data type for outputs, the parser
for output is as simple as this:

5http://hackage.haskell.org/package/parsec
6Actually, the documentation does not allow out-of-band records after the list of result records, but the

current implementation behaves otherwise (bug ID 7708).
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outOfBandRecord :: Parser OutOfBandRecord
resultRecord :: Parser ResultRecord

data Output =
Output [OutOfBandRecord] (Maybe ResultRecord)

output :: Parser Output
output = do

oob <- many outOfBandRecord
rr <- optionMaybe resultRecord
oob’ <- many outOfBandRecord
string "(gdb)" >> newline >> eof
return (Output (oob ++ oob’) rr)

where many and optionMaybe are combinator functions which apply a given parser as
often as possible, or return a Maybe value reflecting whether the given parser could be
applied or not. Also, the infix operator >> is a variant of the bind operator which ignores
the monadic value and evaluates the functions only for their side effects instead.

(>>) :: m a -> m b -> m b
x >> y = x >>= \_ -> y

So, the parser for outputs reads arbitrary many out-of-band records, optionally a result
record, again arbitrary many out-of-band records, the string "(gdb) " followed by a
newline and the end of the input. After parsing everything successfully, the parser returns
an Output object which is constructed from the previously parsed components.

This example shows the power of monads, as the author of the parser only needs to
understand how to use monads in general and trust the implementation to perform required
side effects in the background. Also, the parser code is very close to the EBNF-based
grammar definition. This is a good example of the expressiveness of Haskell.

2.4. Summary

In this chapter we established the context of our thesis. We first introduced necessary
terminology by defining various terms concerning operating systems, applications, event-
based and thread-based programming, preemptive and cooperative multitasking, as well
as debugging. We also named common expectations software developers have from
thread abstractions.

Subsequently, we presented the relevant state-of-the-art in event-based and thread-based
programming, operating systems, thread libraries, compiler-assisted thread abstractions,
and fault diagnostics tools. The focus has mostly been on the WSN domain, but we also
discussed other relevant work.

Finally, we outlined the various approaches we have taken towards implementing our
compiler prototype. We have ultimately chosen the Haskell programming language,
which is why this chapter also introduces this language and a few of its core concepts.
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In this chapter we investigate the primary goal of our work, the translation of thread-based
applications (T-code) to equivalent event-based applications (E-code).

Section 3.1 provides an overview by sketching the translation scheme, listing its
limitations (Section 3.1.1), and explaining its embedding into a surrounding project
including interactions with various other tools involved (Section 3.1.2).

Section 3.2 explains the overall mapping performed by the translation scheme and
covers its two aspects, data flow transformation (Section 3.2.1) and control flow transfor-
mation (Section 3.2.2). In Section 3.2.3 a small, but complete, example is provided.

Section 3.3 investigates translation semantics by specifying T-code semantics (Sec-
tion 3.3.1), defining the term “equivalence” (Section 3.3.2), and by explaining why the
translation scheme turns arbitrary but valid T-code into equivalent E-code (Section 3.3.3).

Section 3.4 covers the mediation between E-code and operating system (Section 3.4.1),
and provides an implementation of a platform abstraction layer for Contiki (Section 3.4.2).
It also shows proof of concept for TinyOS (Section 3.4.3), and discusses the generation
of application-specific platform abstraction layers (Section 3.4.4).

Finally, Section 3.5 illustrates the compiler pipeline that performs the translation and
covers its limitations, employed algorithms, and involved code representations.

3.1. System Overview

As depicted in Figure 3.1, in the context of our work a dedicated compiler translates a
thread-based application (T-code) into an equivalent event-based application (E-code).
The T-code application is built upon a synchronous T-code API, which has been manually
derived from an asynchronous OS API. Instead of implementing the T-code API, what
a run-time-based thread abstraction would do, the compiler additionally generates a
corresponding E-code API that is used by the generated E-code application.

When translating the T-code API, the compiler does not alter auxiliary functions (cf.
Section 2.1.4) and the operating system already provides an implementation for them. A
blocking function is, in contrast, turned into a yield point function, i.e., an asynchronous
function with a systematic signature and the same semantics as the corresponding blocking
function. The platform abstraction layer (PAL) (Section 3.4) implements yield point
functions by means of the OS API.

Regarding the application code, the compiler’s task is to turn critical functions into
event handlers (Section 3.2.2). Also, the compiler has to preserve the value of local
variables across context switches if needed (Section 3.2.1). And the E-code application
should be equivalent to the T-code application in order to ensure the behavior intended by
the T-code developer (Section 3.3).

The compiler generates for each thread a static data structure containing all variables
needed after a critical call. By replacing local variables with their static counterparts,
the relevant state of the task stays available. Overall, the control flow transformation
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Figure 3.1.: System overview: compiling: The compiler translates the thread-based ap-
plication (T-code) into an equivalent event-based application (E-code). The
platform abstraction layer (PAL) mediates between the generated application
and the given operating system (OS).

preserves statement execution order while the transformation of the data flow preserves
the particular effects. This is why T-code and E-code are equivalent.

For T-code, a task is implemented by a thread and a set of critical functions. For E-code,
on the other hand, the same task is implemented by a single function that contains the
implementation of all involved critical functions. This function serves as the single event
handler function and is called by the PAL to start or resume the task. Consequently,
the task is suspended when the event handler function returns. This always happens
immediately after the invocation of a yield point function. Multitasking is achieved by
resuming a task while other tasks are suspended (Section 3.4.1).

The translation scheme has been designed to avoid the usage of dynamic memory, i.e.,
objects with allocated storage duration. This is common practice in embedded systems
because with dynamic memory is it hard to guarantee that out-of-memory situations do
not occur.

Both T-code and E-code are compliant with existing language standards. This particu-
larly means that we, in contrast to other approaches, avoid new language keywords or
unusual execution semantics. Our approach therefore enables the utilization of existing
language tools and eases its adoption to practice (cf. Section 2.1.5).

3.1.1. Limitations

A major handicap of static analysis and translation is its limitation to decidable problems.
In the context of compiler-assisted thread abstractions, this entails three restraints to
enable a reliable determination of the application’s call graph.

First, it is not allowed to take the address of a critical function. Case differentiation,
which causes only moderate overhead, can easily be used instead. Second, critical func-
tions may not be recursive. Recursion makes stack consumption estimation undecidable,
which is why this technique is uncommon in embedded systems anyway. We therefore
consider this restriction being minor as well.

And third, dynamic thread creation cannot be supported, but threads have to be assigned
statically with thread start functions. To some extent, dynamic thread creation can be
simulated with static thread creation by blocking a static thread immediately after start-up
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Figure 3.2.: Project structure: The T-code compiler turns T-code into E-code. The E-code
tool chain is used to compile and link the E-code along with additional utility
modules and libraries.

and releasing it when it is supposed to “start”. This is a viable solution if the maximum
number of “dynamically” started threads is known in advance. Since WSN applications
are normally composed of a fixed set of tasks, this is not considered a severe limitation
either.

These restrictions are all inherent to compiler-based approaches that avoid allocated
storage, and the compiler reliably rejects invalid T-code. It therefore seems appropriate to
refer to our approach as a comprehensive compiler-assisted thread abstraction.

3.1.2. Project Structure

Figure 3.2 shows the structure of a typical T-code project. A T-code application containing
all critical functions and some auxiliary functions, as well as various utility modules and
libraries constitute the input files of the project. The T-code application is translated
into an E-code application by the T-code compiler. The utility modules and libraries are
meanwhile processed by a conventional C tool chain. We use the prefix “E-code” to refer
to this tool chain for clarification.

Other than an E-code compiler, a T-code compiler cannot process single translation
units [C99: 5.1.1.1] independently from each other because it needs to determine the
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application’s global call graph of critical functions. In principle, splitting the T-code
application among multiple translation units is possible when passing them all to a single
invocation of the compiler. However, merging translation units to obtain a global view is
not expected to add insights regarding our research question. We have therefore chosen
to require a single translation unit as input to the T-code compiler instead.

The T-code compiler depends on two external tools to perform its work: A C prepro-
cessor to resolve preprocessor macros in the T-code application (Section 3.5.2), and a
platform-dependent PAL generator to generate a platform abstraction layer that is opti-
mized for the given application (Section 3.4.4). The output of the generator is standard
C99 code and can be further processed by the E-code tool chain.

T-code can freely use any auxiliary function, whether it is defined in the T-code applica-
tion, in a utility module, or in a library. The translation does not alter implementations nor
invocations of auxiliary functions, therefore using the E-code tool chain to compile and
link the E-code application along with the utility modules and libraries works seamlessly.
The operating system in embedded systems usually comes as a set of libraries. The
resulting target binary is self-sustaining and can be executed on a mote as is. Figure 3.2
illustrates such a setup, but the T-code compiler can also be used in different environments.

3.2. Translation Scheme

The translation’s goal is to transform valid T-code into equivalent E-code. To this end, the
translation distinguishes between critical and blocking functions, and everything else. All
external definitions [C99: 6.9] concerning neither a critical nor a blocking function are
passed through unchanged and are not considered any further. Declarations of blocking
functions, in contrast, become declarations of yield point functions. And declarations of
critical functions are discarded while their definitions are translated into an intermediate
representation (IR) as a first step (Section 3.5.4).

Besides some technicalities such as uniqueness of identifiers, the IR requires two
things in particular. First, advanced control flow structures like while and for loops
are replaced by basic statements such as if, goto, and label statements. And second,
critical calls have only two distinctive appearances. The first normal form is a statement
consisting of a single critical call, and the second normal form is anything of the form

expression ?= function(parameters);

where ?= stands for any assignment operator [C99: 6.5.16].
To establish the normal form, the compiler makes use of the fact that critical calls in

nested expressions can be substituted by new variables that are initialized by the same
critical call in a directly preceding statement (Section 3.5.4.4). Special care is needed to
handle Boolean short-circuit evaluation [C99: 6.5.13-4] [C99: 6.5.14-4] correctly, which
is achieved by splitting Boolean expressions that contain critical calls into a sequence of
if statements as needed (Section 3.5.4.3). Overall, the translation into IR preserves the
effective control flow of the T-code application.

3.2.1. Data Flow

Given the IR, the compiler performs a liveness analysis on each critical function to find
the set of critical variables, i.e., local variables whose value is needed after a critical
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1 double c1(char* s){
2 int m = s + 1;
3 c2(m);
4 int i = f();
5 m = s + i;
6 c3(m);
7 return i;
8 }

(a) critical function

typedef struct {
int m;

} eframe_c1_t;

(b) E-frame

1typedef struct {
2void* cont;
3double result;
4char* s;
5int i;
6union {
7tframe_c2_t c2;
8tframe_c3_t c3;
9} frames;
10} tframe_c1_t;

(c) T-frame

Figure 3.3.: T-stack and E-frame of a critical function: c1, c2, and c3 are critical func-
tions while f is an auxiliary function.

call such that it has to be preserved. Because aliasing turns liveness analysis into an
undecidable problem, the compiler makes conservative choices such as considering a
variable as critical if its address is taken somewhere (Section 3.5.4.7).

With the set of critical and non-critical variables at hand, the compiler generates a
T-frame and an E-frame for each critical function. Figure 3.3a shows an example of a
general critical function. The functions’ E-frame (cf. Figure 3.3b) contains all of its
non-critical variables. In Figure 3.3a, line 5 modifies the value of m before it is read in
line 6. Its value, which is set in line 2 before the call to c2, is therefore not needed, which
is why m is a non-critical variable. For each thread, the union of all E-frames of the
involved critical functions establish the E-stack (Section 3.5.5.1), a local variable of the
thread execution function as explained in the next section.

A T-frame (cf. Figure 3.3c) contains the continuation, i.e., information about where
execution should continue when the critical function returns (line 2), the return value of
the function if existent (line 3), its parameters (line 4), its critical variables (line 5), and a
union of the T-frames of all critical callees (lines 6–9). Furthermore, one T-frame for each
thread starting function, called the T-stack of the thread (Section 3.5.5.1), is instantiated
statically. Function parameters, critical or not, are always stored on the T-stack to simplify
the implementation of critical calls. This can be improved in the future.

Given these stacks, the compiler is rewriting access to local variables by replacing them
with the corresponding variables (Section 3.5.5.2). Similarly, access to function-static
variables, i.e., objects with static storage duration and with identifiers that have block
scope, is rewritten because the single critical functions are dissolved. The following
section investigates this.

3.2.2. Control Flow

To translate the control flow for each thread, the bodies of all respective critical functions
are collected into one common thread execution function. This function serves as a single
event handler function for all events of the corresponding task. While dissolving the
functions, the compiler equips every first statement of a function body and every first
statement after a critical call with a unique label, which serves as a continuation point. The
compiler also translates all critical function calls and function returns (Section 3.5.5.2).

Figure 3.4 depicts an example of how critical calls to critical functions are replaced
by the following sequence of statements: First, the callee’s parameters are copied to the
T-stack (line 4). Then, the continuation information for the callee is copied to the T-stack
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__attribute__((tc_start)) void blinky() {
while(1) {

wait(23);
// do something

}
}

⇓

1 void thread_0(..) {
2 //...
3 blinky_1: if (!1) return;
4 tstack_blinky.frames.wait.dt = 23;
5 tstack_blinky.frames.wait.cont = &&blinky_2;
6 goto wait_1;
7 blinky_2:
8 // do something
9 goto blinky_1;

10
11 wait_1:
12 // E-code body of wait
13 goto *tstack_blinky.frames.wait.cont;
14 }

Figure 3.4.: Critical call of a critical function: blinky and wait are critical functions.

(line 5). Finally, a goto jumps to the start of the callee’s body (line 6). Similarly, every
return statement in T-code is replaced by a goto statement, which uses the continuation
information stored on the T-stack (line 13). The replacement of the while loop by an if
(line 3) and a goto statement (line 9) is, as previously stated, due to the translation into
intermediate representation.

Figure 3.5 shows that critical calls to blocking functions are replaced by a slightly
different sequence of statements. First, function parameters (line 5) and continuation
information (line 6) are copied to the T-stack as well. But then, the yield point function is
called, passing it a pointer to its T-frame (line 7). Lastly, the thread execution function
returns in order to pass control back to the PAL (line 8). The PAL takes care to invoke
the thread execution function thread_0 again as soon as the operation has completed,
passing it the continuation that has previously been copied to the T-stack of the yield
point function. The first statement in each thread execution function is a goto (line 2)
that resumes the computation at this location. The critical call now has a return value, i.e.,
the member result of the T-frame of sleep. If the critical call were in second normal
form, the value would be copied from T-stack and assigned to the translated lvalue [C99:
6.3.2.1-1] of the normal form’s assignment.

The compiler needs to determine the call graph of the application to be able to transform
the control flow. This implies that it must be possible to identify thread start functions
and blocking functions. As shown in Figure 3.4 and Figure 3.5, this is achieved by using
function attributes [GNU C: 6.30] and defining new attribute names, i.e., tc_start and
tc_block. The attribute extension has been carefully designed to minimize compatibility
issues with other implementations. For example, it can easily be masked via a simple pre-
processor macro that expands the pattern __attribute__(x) to nothing. Section 5.1.2.1
shows a variation of that technique.

The translation of the control flow employs computed goto statements which are also a
GNU C extension [GNU C: 6.3]. In C99, it is not possible to take the address of a label
and to use a pointer as the target of a goto statement. It is however possible to achieve
the same effect by replacing the introductive if statement (cf. Figure 3.5, line 2) with a
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__attribute__((tc_block)) _Bool sleep(int until);

void wait(int dt) {
sleep(42 + dt);
// do something

}

⇓

1 void thread_0(void* cont) {
2 if (cont) goto *cont;
3 //... E-code body of blinky
4 wait_1:
5 tstack_blinky.frames.wait.frames.sleep.until = 42 + tstack_blinky.frames.wait.dt;
6 tstack_blinky.frames.wait.frames.sleep.cont = &&wait_2;
7 sleep(&tstack_blinky.frames.wait.frames.sleep);
8 return;
9 wait_2:

10 // do something
11 goto *tstack_blinky.frames.wait.cont;
12 }

Figure 3.5.: Critical call of a blocking function: wait is critical functions, and sleep is
a blocking function.

switch statement whose body spans the whole function, and by turning all labels into
case labels with different literal integers. Then, the continuation would be an integer
instead of a pointer. Protothreads actually apply this technique.

3.2.3. Example

Figure 3.6 represents a small, but complete example. In both listings, the lines labeled
with A are external definitions concerning neither a critical nor a blocking function. They
are therefore passed unchanged from T-code to E-code.

Label B indicates the T-frame structures for the critical functions sleep, wait, and
blinky. For example, the integer state (E-code, line 16) originates from the local
variable state of the function blinky (T-code, line 9). Label C shows the instantiation
of the T-stack.

Label D is the E-frame for the function wait, which is the only function with a non-
critical variable. Empty T-frames are not generated, thus the E-stack (Label E) contains
only one member.

Labels F and G indicate the bodies of the function blinky and wait with two mod-
ifications. First, access to variables and parameters is altered. For instance, access to
state and now (T-code, line 10 and 20) is translated to access to the T-stack and E-stack
(E-code, line 27 and 39). And second, the control flow is translated into continuation
passing style. This involves instrumenting the code with labels marking the single contin-
uations (E-code, line 28, 33, 38, and 44). It also involves rewriting critical calls to critical
functions (E-code, line 30–32) and to blocking functions (E-code, line 40–43).

Label H shows how declarations of blocking functions become declarations of yield
point functions. Also, line 6 and line 8 of the T-code show the syntax of function attributes
that are used to mark thread start and blocking functions.

The actual implementation applies a naming scheme to new identifiers in order to
guarantee uniqueness. For clarity this and other details are omitted in this example and
we refer to the source distribution of our work [6] instead.
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1 | int delay = 500;
2 A | int get_leds() { /* ... */ }
3 | void set_leds(int state) { /* ... */ }
4 | int time(); // included from OS header file
5
6 H | __attribute__((tc_block)) _Bool sleep(int until);
7
8 __attribute__((tc_thread)) void blinky() {
9 | unsigned char state;

10 | state = get_leds();
11 | while(1) {
12 F | wait(delay);
13 | state ^= 0xff;
14 | set_leds(state);
15 | }
16 }
17
18 void wait(int dt) {
19 | int now;
20 G | now = time();
21 | sleep(now + dt);
22 }

⇓
1 | int delay = 500;
2 A | int get_leds() { /* ... */ }
3 | void set_leds(int state) { /* ... */ }
4 | int time();
5
6 | typedef struct {
7 | void* cont; _Bool result; int until;
8 | } tframe_sleep_t;
9 | typedef struct {

10 | void* cont;
11 | union { tframe_sleep_t sleep; } frames;
12 B | int dt;
13 | } tframe_wait_t;
14 | typedef struct {
15 | union { tframe_wait_t wait; } frames;
16 | unsigned char state;
17 | } tframe_blinky_t;
18
19 C | static tframe_blinky_t tstack_blinky;
20 D | typedef struct { int now; } eframe_wait_t;
21 H | void sleep(tframe_sleep_t*);
22
23 void thread_0(void* cont) {
24 E | union { eframe_wait_t wait; } estack;
25 if (cont) goto *cont;
26
27 | tstack_blinky.state = get_leds();
28 | blinky_1:
29 | if (!1) return;
30 | tstack_blinky.frames.wait.dt = delay;
31 | tstack_blinky.frames.wait.cont = &&blinky_2;
32 | goto wait_1;
33 F | blinky_2:
34 | tstack_blinky.state ^= 0xff;
35 | set_leds(tstack_blinky.state);
36 | goto blinky_1;
37
38 | wait_1:
39 | estack.wait.now = time();
40 | tstack_blinky.frames.wait.frames.sleep.until = estack.wait.now + dt;
41 G | tstack_blinky.frames.wait.frames.sleep.cont = &&wait_2;
42 | sleep(&tstack_blinky.frames.wait.frames.sleep);
43 | return;
44 | wait_2;
45 | goto *tstack_blinky.frames.wait.cont;
46 }

Figure 3.6.: Translating T-code to E-code: A small but complete example
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3.3. Equivalence

It is important to ascertain that the generated code behaves as intended by the T-code
developer. In this section it is therefore specified what it means for the E-code to be
equivalent to the T-code.

As a first step, Section 3.3.1 defines the semantics of T-code, so that software developers
know which behavior they can expect from their T-code application. In Section 3.3.2
the term “equivalence” itself is defined. Why the transformation from T-code to E-code
preserves equivalence is discussed in Section 3.3.3.

The execution semantics of an E-code application is specified by C99. It is nondeter-
ministic, because from a set of pending events either one could occur first. As we will see
further on, the details of the underlying operating system are not important here as long
as the PAL implements the generated E-code API properly (Section 3.4.1).

3.3.1. T-code Execution Semantics

A T-code application is a single C99 preprocessing translation unit [C99: 5.1.1.1] with
GNU C extensions. The set of valid T-code applications, however, is a subset thereof for
two reasons.

First, a T-code application must contain one or more definitions of thread start functions,
and one declaration of each blocking function that is called by at least one critical
function. It may also contain additional definitions of critical functions and other external
definitions.

Second, there are a number of constraints for a valid T-code application. For example,

• critical functions must not be recursive,

• a function designator [C99: 6.3.2.1-4] must not reference a critical function,

• there must not be a main function [C99: 5.1.2.2.1],

• thread start functions must not take any parameters and must return void.

• the declaration of a blocking function must be annotated with the function attribute
tc_api,

• the definition of a thread start function must be annotated with the function attribute
tc_thread, and

• identifiers must not start with the prefix ec_.

A complete list of constraints that apply for the whole translation unit and for critical
functions in particular can be found in Section 3.5.3.

The execution semantics of a T-code application is derived from C99 semantics. The
execution semantics of a single T-code thread equals the execution semantics of a C99
application if its thread start function is replaced with a void main() function. From
this basic principle, the execution semantics of the complete T-code application can be
established as follows:

At any point in time, there is at most one thread in running state. Whenever a thread
calls a blocking function it goes from running state to blocking state. If no thread is
in running state, one of the blocking threads whose operation has completed in the
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meanwhile is selected nondeterministically. This thread then goes from blocking state
to running state and resumes its execution as if the critical call that caused the thread to
block previously had just returned. Switching context between threads is like suspending
the associated C99 application of the hitherto running thread and resuming the associated
C99 application of the next thread. Hereby, the following rules on the visibility of the
application state apply.

Objects with static or allocated storage duration are all shared between the threads.
This means that all threads read from and write to the same instance. In contrast, objects
with automatic storage duration are thread-local. This means that there is one separate
instance for each thread and each function call. Modifications of shared objects are
guaranteed to be visible to other threads when resuming1.

A thread is started automatically by calling its thread start function when the program
starts. The threads of an application are started in source code order of their thread start
functions. This rule is arbitrary, but also simple and intuitive. It is the duty of the PAL to
enforce this rule (Section 3.4). A thread quits if its thread start function returns. If a thread
calls exit [C99: 7.20.4.3] or its associated C99 application causes an abnormal program
termination [C99: 5.1.2-1], the complete T-code application terminates immediately.

T-code is subject to the whole spectrum of unspecified, undefined, implementation-
defined, and local-specific behavior of C99 applications [C99: 3.4] [C99: Annex J]. The
implementation [C99: 3.12] in this case is a given combination of T-code and E-code
compiler.

3.3.2. Equivalence Definition

It is important to ascertain that the generated code behaves as intended by the T-code
developer. We therefore define an E-code application to be equivalent to a T-code
application if and only if every possible observable behavior of the E-code corresponds
to at least one possible observable behavior of the T-code. The execution semantics of
both T-code and E-code applications are nondeterministic. Thus, a single program can
have various observable behaviors.

The intuition behind this definition is twofold. If the observed interactions with
the environment performed by the E-code application are indistinguishable from the
interactions by the T-code application, then both applications apparently do “the same
thing” and it does not matter which one is executed. And second, if every observed
interaction of the E-code application can be explained by an execution of the T-code
application, then “nothing surprising” can happen.

The observable behavior is defined as the actual run-time order of all invocations of
API functions including the values of the involved function parameters. For a T-code
application, this includes all calls of blocking functions and their function parameters.
For an E-code application, it means all calls of yield point functions and the members
of the corresponding T-frame that constitute the parameters of the blocking function.
This definition is sound because yield point functions and T-frames are systematically
generated from blocking functions.

The exact timing of function calls is not part of the observable behavior. Cooperative
threads are not viable for timing-critical tasks anyway, such that this definition does not
involve any additional restrictions. The implementation of yield point functions is not

1As our work targets single core motes this is trivially true.
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covered either because it is not generated. Instead, it is the duty of the PAL author to
ultimately preserve the semantics.

The value of a parameter is the “precise meaning of [its] contents” [C99: 3.17] if it has
basic, array, structure, or union type [C99: 6.2.5]. If the parameter is of pointer type [C99:
6.2.5], its value is that of the referenced object. When comparing observable behavior
programmatically, this definition makes it impossible to compare pointers to void because
they cannot be dereferenced. Similarly, comparing arrays requires some way to determine
the array size in order to compare the array elements. This can, for example, be achieved
by knowing that the arrays are null-terminated or by having an additional length parameter
at hand. Otherwise, comparing arrays is impossible as well. This, however, does not
impede the soundness of our definition. The transformation preserves the observable
behavior; in these cases we just cannot verify this fact at run-time.

3.3.3. Correctness of the Transformation

The previous sections have specified the definition of equivalence and the execution
semantics of T-code and E-code applications. As a next step, the properties of the
translation steps have to be elaborated in order to reason about their correctness.

The uncritical variables of a given critical function are stored on the E-stack. Being
uncritical implies, by definition, that the value of a variable is not needed after a critical
call. It does not matter that the E-frame shares memory with the E-frame of the callee,
which is a critical function. It is also irrelevant that the E-stack is a local variable whose
value is reset with every return of the corresponding thread execution function, because a
return only happens after a critical call to a yield point function. Overall, E-stack variables
can simulate the essential storage duration of corresponding T-code variables.

Critical variables of a given critical function are stored on the T-stack. They are local
variables, which implies by definition that their values are not needed anymore when
the corresponding function returns. It is therefore insignificant that the T-frame shares
memory with T-frames of other critical functions. In fact, a T-stack is, by construction,
the overlay of all snapshots of the hardware stack, given the corresponding thread would
actually be executed.

Function parameters are stored on the T-stack whether critical or not. If the algorithm
cannot decide if variables are critical, a conservative choice is made and they are stored
on the T-stack as well. Storage duration on the T-stack outlasts storage duration on the E-
stack, which is why T-stack variables can simulate the storage duration of corresponding T-
code variables. Overall, data flow transformation preserves effects of function statements,
as it only exchanges storage locations of involved variables.

Regarding control flow, we have to point out first, that translation into intermediate
representation preserves the observable behavior of the T-code application (Section 3.5.4).
The transition from threads to events is performed by the transformation of the control
flow that operates on this representation. For any given thread, any execution path
in T-code between two consecutive calls to blocking functions corresponds to exactly
one invocation of the corresponding thread execution function in the E-code. As the
control flow transformation preserves the sequence of statements while the data flow
transformation preserves their effects, the observable behaviors of T-code and E-code are
equivalent for each occurrence of an event. In order to show the equivalence of T-code
and E-code in general, sequences of occurring events have to be compared next.

If there is only one task, the execution environment which causes varying results
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of yield point functions is the only source of nondeterminism for E-code. As yield
point functions and corresponding blocking functions have the same semantics, the
same nondeterminism also exists in T-code. Also, each sequence of events in E-code
corresponds to a possible control flow in T-code, such that the only remaining concern is
the interleaving of multiple tasks.

The execution of E-code is nondeterministic with regard to the order of occurring
events. The event sequences of all executed tasks can interleave arbitrarily and one of
all possible interleaved event sequences will happen at E-code run-time. However, the
execution of T-code is nondeterministic as well because when two threads are blocked
at the same time each one of them could continue next. Therefore, there is one possible
control flow in T-code for each possible sequence of events in E-code. As the observable
behavior of each step is equivalent, the overall equivalence can be deduced.

This reasoning is obviously informal. Finding a formal proof of equivalence is, however,
very involved for various reasons. First, C99 provides no formal specification of execution
semantics. Then, C99 includes unspecified, undefined, and implementation-defined
behavior. And finally, the language as a whole is rather complex and involves many
corner cases. To compensate for a lacking proof, we took a series of measures to
verify the correctness in the case of the chosen case study applications of our evaluation
(Section 6.2).

3.4. Platform Abstraction Layer

The purpose of the platform abstraction layer (PAL) is to provide an implementation for
yield point functions and to drive the execution of application tasks. It is important to
note that the PAL is not a conceptual requirement of compiler-assisted thread abstractions.
Instead, the PAL connects existing operating systems with generated E-code and its
complexity depends directly on how dissimilar a given OS API is from the systematic
E-code API (Section 3.4.1). If a future operating system would provide that interface by
itself, no PAL would be needed ultimately.

All of the existing operating systems, however, need some mitigation. The PAL can
then also be used to integrate generated E-code with existing native code. It is even
possible to integrate multiple E-code applications into a single executable, which allows
development of independent T-code applications that can be executed jointly on a single
mote. The PAL therefore not only introduces overhead but it also entails a lot of flexibility.

In Section 3.4.2 a minimalistic example of a PAL for Contiki is presented. Our evalua-
tion in Chapter 6 employs a Contiki PAL built by following this approach. In Section 3.4.3
a proof of concept PAL for TinyOS PAL is provided. And finally, Section 3.4.4 explains
how a specialized PAL for a given application can be generated to improve the overall
efficiency.

3.4.1. E-code API

As mentioned in Section 3.1, the E-code API is generated from the T-code API, which
was manually derived from the OS API. This does not imply that there is one blocking
function for each asynchronous OS API function. Instead, arbitrary blocking functions
with appropriate semantics can be specified as long as the OS API provides means to
actually perform required operations. For instance, the example provided in Section 2.1.3,
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a receive_with_timeout function, could use the two OS API functions listen and
set_timeout.

A yield point function that has been generated from a blocking function always returns
void and takes a pointer to its T-frame as a single parameter. The T-frame contains all
function parameters of the blocking function and an additional member for its result
value. Additionally, the T-frame has a member that stores continuation information of
the invoking task. The implementation of the yield point function arranges that the result
is eventually copied to the T-frame if needed and the thread execution function of the
invoking task is called with continuation information from the T-frame. Yield point
functions are strictly asynchronous, which means that they must return immediately and
they must ascertain that the thread execution function is called eventually. This is different
to some implementations of asynchronous functions that return a failure and never invoke
the registered callback if the requested operation could not be triggered. It is the duty of
the PAL author to keep blocking function declarations (and documentation) and yield
point function implementations synchronized with respect to function semantics.

The PAL must start tasks in the source code order of the corresponding thread start
functions. To start a task, the PAL calls the thread execution function passing it a
NULL continuation. After that, the task will call a yield point function which will take
appropriate actions and return. Subsequently, the thread execution function returns as well,
passing control back to the PAL. The requested operation could either not be triggered or
it will complete eventually. In any case, when the thread execution function is called the
result of the operation has been copied to the T-stack and the task resumes from the point
of continuation that is passed to the thread execution function.

Spurious events that emerge in the operating system without being triggered by a call to
a yield point function must be ignored instead of being propagated to the application level.
This maintains thread semantics, which specify that a thread can only react to happenings
in the environment while being blocked in a call to a blocking function. In other words, a
thread cannot resume without being blocked previously. The PAL has to ensure this.

The PAL drives the execution of all tasks and has to keep an account of which task
called which blocking function. If a thread execution function returns without invoking
a yield point function in advance, the corresponding task must quit, i.e., that thread
execution function must not be invoked any more. Also, while one task is waiting for the
requested operation to complete, the PAL can call thread execution functions of other
tasks and resume them. This is the essential of the multitasking E-code application.

3.4.2. Contiki

To illustrate the building blocks of a Contiki PAL, we assume the minimalistic T-
code example employing only a single thread and the single blocking function sleep
from Figure 3.6. As already depicted there, the translation generates the T-frame
tframe_sleep_t and the declaration of the yield point function sleep. The PAL
needs to implement this function and drive a proper execution of thread_0, the thread
execution function of the single thread.

Contiki is built upon an event-based approach with a single event handler function for
each task. Usually, a task is implemented by a protothread, which provides the syntactical
illusion of blocking functions. Nevertheless, Contiki is an event-based system at run-time.
For clarity, we avoided using any of the protothread macros for the Contiki PAL. We are
still using a so-called “process”. This is unavoidable, but without protothreads a process

43



3.4. PLATFORM ABSTRACTION LAYER CHAPTER 3. COMPILER

1 typedef enum {
2 YPF_none = 0,
3 YPF_sleep,
4 /* constants for other yield point functions*/
5 } YPF;
6
7 typedef struct {
8 union {
9 struct {

10 frame_sleep_t* frame;
11 struct etimer et;
12 } sleep;
13 /* contexts of other yield point functions*/
14 } context;
15 YPF ypf;
16 } ThreadContext;
17
18 ThreadContext threads[1];
19 ThreadContext* current_thread;
20
21 void sleep(tframe_sleep_t* frame) {
22 current_thread->context.sleep.frame = frame;
23 current_thread->ypf = YPF_sleep;
24 clock_time_t now = clock_time();
25 if (frame->until > now) {
26 etimer_set(&thread->context.sleep.et, frame->until - now);
27 } else {
28 process_post(PROCESS_CURRENT(), PROCESS_EVENT_CONTINUE, NULL);
29 }
30 }

Figure 3.7.: Contiki PAL: implementation of sleep

is nothing more than an event handler plus meta information. In order to use Contiki’s
event multiplexing mechanism it is advisable to employ one process per T-code thread.

Figure 3.7 shows the implementation of the yield point function sleep. The array
threads stores one ThreadContext for each T-code thread (line 18). A ThreadContext
remembers which yield point function has been called (line 15) and saves associated
context, which is the T-frame (line 10) including additional state necessary for the im-
plementation (line 11). As each thread can call no more than one yield point function at
any point in time, the contexts can share memory via a union (line 8–14). The pointer
current_thread (line 19) always points to the ThreadContext instance of the thread
that is currently running.

The implementation of sleep first saves the T-frame (line 22) and the selection of the
yield point function (line 23) to the context of the current thread. Next, it queries the
current time from an auxiliary function of the operating system (line 24). If the requested
time lies in the future (line 25), the timer is set (line 26), causing a timer event being sent
to the current process once the time expires. If instead the requested time has already
elapsed, a continuation event is sent to the current process immediately (line 28). This
implements strict asynchronism of the yield point function.

Figure 3.8 lists the event handler function for the Contiki process that drives the T-code
thread. Whenever this function is invoked, the current thread pointer is set properly
(line 3). The function can discern its first invocation by looking at (line 5) and updating
(line 6) meta information in ptinfo. If the function is invoked for the first time, the
continuation is set to NULL (line 7). As line 26 calls the thread execution function with
continuation, this effectively starts the thread. Otherwise, by looking at the context
of the current thread (line 10), the handler code for the current yield point function is
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1 static char event_handler_0(struct pt* ptinfo, process_event event, process_data_t data) {
2 void* cont;
3 current_thread = &threads[0];
4
5 if (ptinfo->lc == 0) { // first invokation
6 ptinfo->lc = 1;
7 cont = NULL;
8 }
9

10 else if (current_thread->ypf == YPF_sleep) {
11 if (event == PROCESS_EVENT_TIMER) {
12 current_thread->context.sleep.frame->result = true;
13 } else { // event == PROCESS_EVENT_CONTINUE
14 current_thread->context.sleep.frame->result = false;
15 }
16 continuation = current_thread->context.sleep.frame->cont;
17 }
18
19 /* handle other yield point functions*/
20
21 else { // spurious event
22 return PT_YIELDED;
23 }
24
25 current_thread->ypf = YPF_none;
26 thread_0(continuation);
27 return PT_YIELDED;
28 }

Figure 3.8.: Contiki PAL: event handler running a T-code thread

executed. In this example, there is only the sleep function. If the current event is a
timer event (line 11), the result of the yield point function, which is stored on the T-stack,
is set to true (line 12). Otherwise, the current event must be a continuation event, in
which case the result is set to false (line 14). In any case, continuation is set to the
caller’s continuation, which is stored on the T-stack (line 16). Line 26 again invokes the
thread execution function, resuming the thread in this case. Whenever the tread execution
function is called, it will eventually call a yield point function, which will take proper
action, as shown previously, and return. The thread execution function will then return
too, passing control back to line 27 of the event handler function. This concludes the
event handler function by signaling Contiki that further events for the current process
are expected. Spurious events are ignored (line 21–23, line 25). The same mechanism
additionally implements task termination.

Figures 3.7 and 3.8 sketch how to extend the PAL to support more yield point func-
tions and more T-code threads. For the former, the enumeration YPF and the union
ThreadContext.context have to be extended, and the yield point functions have to be
implemented. For additional T-code threads, extra Contiki processes are needed, each us-
ing a different instance from the threads array, a different thread execution function, and
a different event handler function. To avoid code duplication, the common event handler
code should then be moved to a shared function that only operates on current_thread
(Section 5.1.2.2).

As the PAL is just one of many Contiki modules, it can and does use standard Contiki
primitives to communicate with others. Integrating existing native code poses therefore
no problems.
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1 interface Pal {
2 command void sleep(tframe_sleep_t* frame);
3 /* commands for other yield point functions */
4
5 command void toggle_led_0();
6 command uint32_t time();
7 /* more auxiliary functions if required */
8
9 // the thread execution function

10 event void thread(void* continuation);
11 }

Figure 3.9.: TinyOS PAL: the PAL interface: The incarnation of the E-code API.

3.4.3. TinyOS

PALs for other operating systems look different, but in general it should always be possible
to perform the necessary mapping. Figure 3.9 shows the interface definition of the E-code
API for a particular thread. There we can see that yield point functions are implemented
as TinyOS commands (line 2) and the thread execution function is implemented as a
TinyOS event (line 10). The interface additionally contains arbitrary auxiliary functions,
also implemented as commands (line 5–6).

Figure 3.10 shows a TinyOS component that implements the PAL interface (line 11)
for a particular thread. There is an enumeration (line 16–20) and a selector (line 27) for
the current yield point function. A union stores the context of each of these functions
(line 22–25), and a variable holds the current continuation (line 28). When the yield point
function sleep is called (line 40) and the requested time lies in the future, the selection
is memorized (line 43), the T-frame is stored (line 44), and a timer is triggered (line
45). When the requested time has already passed, continuation is set to the caller’s
continuation (line 47) and the thread execution function is invoked.

In contrast to Contiki, invoking the thread execution function is decoupled with a
scheduler task being posted (line 37, 48, and 55), whose implementation signals the
event for the thread execution function with the current continuation (line 30). When
the system starts, continuation is set to NULL (line 36) before posting the scheduler
task, thus starting the thread. Likewise, when an anticipated event occurs, the caller’s
continuation is copied from the T-frame to continuation before posting the scheduler
task (line 54). Again, spurious events are ignored (line 31, 53) while the same mechanism
implements task termination.

Because TinyOS uses nesC and the T-code compiler generates C code, an additional
step is required to unify them. One possible way is to use the skeleton module shown
in Figure 3.11, add the T-frame declarations at the top and implement the thread event
handler with the body of the generated thread execution function. To achieve this, calls to
both E-code API functions and auxiliary functions have to be converted from C-style to
nesC style by adding the call keyword. Also, the current T-code compiler makes use
of computed goto statements which is a GNU extension that is not supported by nesC.
The T-code compiler therefore has to be extended with a compatibility mode using a
central switch statement and constants instead of computed goto and label statements
(cf. Section 3.2.2).

Finally, these three components have to be wired together, adding further triples for
additional threads, and wiring everything into a complete TinyOS application. We have
performed this process manually and wrote some basic unit tests verifying that this
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1 module ThreadC @safe()
2 {
3 uses interface Boot;
4
5 uses interface Timer<TMilli>;
6 /* dependencies of other yield point functions */
7
8 uses interface Leds;
9 /* dependencies of other auxiliary functions */

10
11 provides interface Pal;
12 }
13
14 implementation
15 {
16 typedef enum {
17 YPF_none = 0,
18 YPF_sleep,
19 /* constants for other yield point functions */
20 } YPF;
21
22 union {
23 tframe_sleep_t* sleep;
24 /* contexts of other yield point functions */
25 } context;
26
27 YPF ypf;
28 void* continuation;
29
30 task void scheduler() {
31 ypf = YPF_none;
32 signal Pal.thread(continuation);
33 }
34
35 event void Boot.booted() {
36 continuation = NULL;
37 post scheduler();
38 }
39
40 command void Pal.sleep(tframe_sleep_t* frame) {
41 uint32_t now = call Timer.getNow();
42 if (frame->until > now) {
43 ypf = YPF_sleep;
44 context.sleep = frame;
45 call Timer.startOneShot(frame->until - now);
46 } else {
47 continuation = frame->cont;
48 post scheduler();
49 }
50 }
51
52 event void Timer.fired() {
53 if (ypf == YPF_sleep) {
54 continuation = context.sleep->continuation;
55 post scheduler();
56 }
57 }
58
59 command void Pal.toggle_led_0() {
60 call Leds.led0Toggle();
61 }
62
63 command uint32_t Pal.time() {
64 return call Timer.getNow();
65 }
66 }

Figure 3.10.: TinyOS PAL: the thread component: This executes a single T-code thread.
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// T-frame declarations

module UserlandC {
uses interface Pal;

}

implementation {
tframe_blinky_t tstack_blinky;

event void Pal.thread(void* cont) {
// implementation of the thread execution function goes here

}
}

Figure 3.11.: TinyOS PAL: the thread execution function: A skeleton module for the
implementation of the thread execution function.

process yields a functional PAL for an exemplary TinyOS application. This serves only
as a proof of concept.

3.4.4. PAL Generator

Because the PAL introduces a resource-wise overhead to the E-code application, it is
important to keep it as small as possible. An obvious way to do so is having a PAL
specialized to the application’s needs instead of a full-fledged PAL supporting all possible
applications. This suggests to employ a PAL generator that takes the application’s
properties and generates a tailored PAL.

The application’s properties, referred to as the application footprint, comprise the
number of threads and the set of utilized yield point functions per thread. Using this
information, the PAL generator for Contiki, for instance, can create a constant size
threads array. Also, only if a particular yield point functions is in use, its implementation,
event handler code and thread context is actually included in the PAL. The details of
the PAL generator interface and our Contiki implementation used in the evaluation are
covered in Section 5.1.2.2. PAL generators for other operating systems should be able to
perform similar application-specific optimizations.

3.5. Compiler Pipeline

In this section, we will cover the distinct stages of the compiler pipeline, which is depicted
in Figure 3.12.

The input to the compiler is a T-code application, which is a translation unit in concrete
syntax representation (CSR) [C99: Annex A]. The Parser stage (Section 3.5.2) determines
the abstract syntax representation (ASR) of this translation unit, which is an abstract
syntax tree (AST) (Appendix A). The Analysis stage (Section 3.5.3) computes the static
call graph of the T-code application and checks its validity with respect to a set of
constraints. The Front-end stage (Section 3.5.4) turns the ASR of each critical function
into an intermediate representation (IR) (Section 3.5.1) and performs additional validity
checks. The Back-end stage (Section 3.5.5) takes the IR of all critical functions and
performs the translation from threads to events as described in Section 3.2. This results in
the ASR of the E-code application, which the Printer stage (Section 3.5.6) turns to CSR.

48



CHAPTER 3. COMPILER 3.5. COMPILER PIPELINE
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Figure 3.12.: The compiler pipeline: Five consecutive stages turn valid T-code applica-
tions into equivalent E-code applications.

While the design of the compiler pipeline is not special by itself, its internals involve
many concepts that are particular for translating threads to events. The following sections
will therefore explain the functionality of each stage. To provide an abstract illustration
of the concepts, we describe the stages as a sequence of pseudo functions operating
on pseudo data types. While their names serve as a reference to the implementation,
their signatures are considerably simplified so that we can focus on concepts rather than
implementation.

Because we claim that our T-code compiler either rejects T-code as invalid or turns it
into equivalent E-code, we have to emphasize the aspect of completeness. The following
sections will therefore provide a complete specification for what constitutes valid T-
code. Additionally, as the C programming language is complex and knows many corner
cases, they will carefully keep track of what the input and output domains of the various
functions are in order to argue why the whole spectrum of valid T-code applications is
covered overall.

Instead of inventing our own notation, we will use (almost) valid Haskell [4] syntax for
the specifications of the pseudo functions and pseudo data types. In most cases, the syntax
uses intuitive symbols like parenthesis to group tuples and square brackets to denote lists
(cf. Section 2.3.2). We therefore consider it an adequate tool for the intended purpose. In
any case, we will explain the syntax along the way.

As the execution semantics of T-code is derived from C99 (cf. Section 3.3.1), T-code is
subject to all kinds of unspecified, undefined, implementation-defined and locale-specific
behavior. Thus, it is advised to first compile a T-code application using the E-code
compiler (cf. Section 3.1.2) with warnings enabled. At first, processing T-code with
the E-code compiler might sound wrong, but T-code is valid C99 code (with GNU C
extensions). Also, the E-code compiler is the one that is used to generate the target
binaries for the given platform, so its choice of behavior [C99: J.3-1] is what matters
ultimately. The resulting object file is not used, as the purpose of the compilation is to
check for behavioral issues only. In the following, we assume that such issues have been
addressed properly.
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3.5.1. Intermediate Representation

The purpose of the intermediate representation (IR) is to both facilitate data flow analysis
and optimizations and to simplify the implementation of the back-end by reducing the
number of possible cases. Integrating critical calls into the IR makes this representation
unique in comparison to standard intermediate representations.

Just as T-code, the IR represents thread-based C code in a way which is independent of
the actual translation scheme. In contrast to T-code, however, only critical functions can
be expressed in IR, as everything else passes the compiler unmodified. The top-level IR
data type is therefore a function, which consists of variables and a function body.

Data 3.1: Function =
[Variable] -- scoped variables
Body -- function body

A Variable represents an identifier with block scope that refers to an object with
automatic or static storage duration, i.e., a local or function-static variable that has been
declared within the corresponding function. It contains the original name of the identifier,
its declaration with a unique name, and some additional flags. These flags specify the
storage duration of the variable, whether it is a function parameter or not, whether it is
critical or uncritical, and whether it originates from the T-code application or has been
introduced by a transformation step of the compiler pipeline.

Data 3.2: Variable =
String -- original name
CDecl -- renamed declaration
[Flag] -- flags

A Body consists on an entry label and a list of basic blocks, each of which is associated
with a unique name to which we refer to as IR label.

Data 3.3: Body =
Label -- entry label
[(Label, BasicBlock)] -- labeled basic blocks

A basic block consists of exactly one entry node, zero or more middle nodes, and
exactly one exit node.

Data 3.4: BasicBlock =
EntryNode -- exactly one entry node
[MiddleNode] -- zero or more middle nodes
ExitNode -- exactly one exit node

Entry nodes allow control to flow in, middle nodes always pass control through and
exit nodes either terminate the control flow or redirect it to other basic blocks. Each node
particularly contains a statement, and the execution semantics of a node corresponds to
the execution semantics of that statement. Table 3.1 lists the possible IR nodes with their
contained statement.

There are two kind of entry nodes. The simpler one is just a label node which contains
a label statement whose attached statement must be a null statement [C99: 6.8.3-3]. Thus,
executing a label node has no effect. If a basic block starts with a label node, its IR label
is equal to the identifier of the label statement of that label node.

The second kind of entry node is a continuation node which contains a critical call

50



CHAPTER 3. COMPILER 3.5. COMPILER PIPELINE

node type node name contained statement
entry node label node label: ;

continuation node expression ?= function(parameters);
middle node expression node expression;
exit node return node return expression;

return;
goto node goto target;
if node if (condition) goto target1;

else goto target2;
critical call node function(parameters);

expression ?= function(parameters);

Table 3.1.: IR nodes and their contained statements

in second normal form and represents the execution that takes place when that critical
call returns. As defined in Section 3.2, a critical call in second normal form assigns the
value of the function call to an arbitrary modifiable lvalue [C99: 6.3.2.1-1]. Thus, when
executing a continuation node, this assignment is actually performed. If a basic block
starts with a continuation label, its IR label is assigned to a unique name.

Concerning middle nodes, there are only expression nodes that contain a single ex-
pression statement [C99: 6.8.3]. That statement must not comprise a critical call. When
executing an expression node, the contained expression statement “is evaluated as a void
expression for its side effects” [C99: 6.8.3-2]. Non-critical function calls are evaluated
just like other expressions for their side effects, ignoring the fact that the control actually
leaves the function in between.

Finally, there are four kinds of exit nodes.

1. A return node contains a return statement and terminates the control flow. The
return statement may carry a return expression which must not comprise a critical
call.

2. A goto node contains a goto statement and redirects the control flow to exactly
one basic block that must start with a label node.

3. An if node contains an if statement and redirects the control flow to one of two
basic blocks that must start with a label node. This implies that the contained if
statement must be in the else form [C99: 6.8.4.1-2] and both of its sub-statements
must be goto statements. Executing an if node has the same behavior as executing
the contained if statement, i.e., the selection of the subsequent basic block depends
on the condition of the if statement.

4. A critical call node contains a critical call in first or second normal form. If a
critical call node is executed then the contained function call is performed for its
side effect. The fact that the control flow actually leaves the function in between
and also might block is ignored. A critical call node also carries the label of the
basic block that resumes execution. If the critical call is in first normal form then
the targeted block must start with a label node. If the critical call is in second
normal form instead, then the targeted block must start with a continuation node.
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The entry label specifies the first basic block. The control flow starts with the entry
node of that block and always terminates at a return node.

3.5.2. Parser

The Parser is the first stage of the compiler pipeline. It turns a translation unit from CSR
to ASR. The most interesting aspect of this stage is that a T-code application actually is a
preprocessing translation unit [C99: 5.1.1.1], i.e., it may contain preprocessing directives
[C99: 6.10]. The abstract syntax, however, cannot represent those. Instead, they have to
be preprocessed [C99: 6.10.1-6], yielding the CSR of the actual translation unit. This
step can, among other things, produce additional critical calls that are not obvious in the
preprocessing translation unit, which is another reason why it has to be done foremost.

We refer to the output of this step as P-code, which is an abbreviation for “preprocessed
T-code”. In this terminology, the translation from threads to events is actually a translation
from P-code to E-code. We will, however, still say “T-code to E-code translation” when
the distinction is not important.

Function 3.1: preprocess ::
Path -- path to file containing the input T-code

application
→ String -- a command line for the execution of the C

preprocessor
→ Either -- either

[Error] -- a list of errors, or
P-Code -- the output from the preprocessor

The specification of a pseudo function uses the symbol :: to separate the function
name from the parameter list, which is a list of data types separated by the→ symbol.
The last parameter in the list is the return type of the function. So, the preprocess
function takes both, the path to a file as well as a command line string, and returns either
a list of errors or the corresponding P-code.

As preprocessing is highly dependent on the environment, the user has to provide an
external tool to actually generate the P-code. The given command line specifies how to
invoke that tool (Section 5.1.2.1). It is an error if the input file cannot be opened or read,
if the preprocessor cannot be executed, or if the preprocessor fails to generate output.

If no error occurs, the P-code can be parsed next, yielding the ASR of the T-code
application. We use a parser implementation from a third party, i.e., the Language.C
library [57], which supports K&R C [66], C99 [64] and several GNU extensions [GNU C:
6].

Function 3.2: parse ::
P-Code -- a single translation unit in CSR

without preprocessing directives
→ Either -- either

[Error] -- a list of parse errors, or
CTranslationUnit -- the P-code in ASR
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3.5.3. Analysis

The Analysis stage is the second stage of the compiler pipeline. It determines the static
call graph of the input application and applies a set of constraints to it.

As our compiler guarantees that if a T-code application is accepted then the resulting E-
code application is equivalent, it has to filter T-code applications for which this guarantee
cannot be given. This concerns two types of features. First, the set of valid T-code
applications is a subset of C99 with GNU extensions due to conceptual limitations (cf.
Section 3.1.1 and Section 3.3.1). And second, our prototypical implementation does in
fact not support the complete set of valid T-code applications, mainly in order to stay
focused on the research question of this work. At this stage, the filtering concerns a
few features that are rejected globally. Later, additional constraints will be enforced for
critical functions.

Function 3.3: global_constraints ::
CTranslationUnit -- the AST of a translation unit with

K&R C features, C99 features, and GNU
extensions

→ [Error] -- a possibly empty list of reasons why
the AST has been rejected

The global_constraints function checks the AST for compliance with what the
compiler can process. It is an error if the input AST violates any of the following
restrictions:

• limitations on C99:

– reserved prefix: The T-code compiler must be able to generate unique identi-
fiers. The easiest way to do so is to use a proper naming scheme together with
a reserved prefix. The current implementation uses the prefix ec_, which thus
must not be used by a T-code application.

– main function: T-code threads are started via thread execution functions only.
We thus prohibit the definition of a main function to avoid confusion.

• excluded GNU extensions:

– nested functions: We do not support function definitions inside of function
definitions [GNU C: 6.4], because this gives rise to scoping and re-used
identifiers, which would complicate the compiler implementation.

– thread-local storage: GNU C supports thread-local storage which “is a
mechanism by which variables are allocated such that there is one instance
of the variable per extant thread” [GNU C: 6.59]. In this context, “thread”
refers to a preemptive thread like those provided by pthreads (IEEE Std
1003.1c-1995). Thread-local storage is a useful feature, but it can effectively
be provided by a set of auxiliary API functions in combination with cast
operators [C99: 6.5.4] with minor overhead. Thus, we have chosen to not
include direct support for this feature in our compiler, although we expect
doing so to be straight forward.

Now that in particular nested function definitions are excluded, the compiler can
determine the static call graph of the application. The call graph is an important source of
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information for various subsequent steps.

Function 3.4: call_graph ::
CTranslationUnit -- a T-code application in ASR, in

particular without nested function
definitions

→ CallGraph -- the static call graph of the
application

The call_graph function determines the static call graph of the translation unit by
scanning for function calls while ignoring calls via function pointer. It then identifies the
set of blocking functions and determines each reachable sub-graph. Each function from
the union of those is finally flagged as a critical function. Note that this includes functions
that call a blocking function but are not called by a thread execution function. This is
needed to check if the address of such a function is taken somewhere, thus enabling a
critical call path that is not detected by the static analysis (Section 3.5.4.8).

With the knowledge of critical functions, additional constraints can be enforced on
them. As already mentioned, some of the constraints are conceptual limitations and others
are meant to keep the set of special cases in the later stages of the compiler manageable
for the scope of this work. Overall, we believe that the set of supported features still
allows for reasonable development of C applications, and our evaluation in Chapter 6
supports this.

Function 3.5: critical_constraints ::
CTranslationUnit -- the T-code application in ASR

→ CallGraph -- the static call graph
→ [Error] -- a possibly empty list of reasons why

the AST has been rejected

There are two groups of C99 features that are not supported for critical functions. The
first group consists of conceptual limitations and consequences derived from them:

• critical recursion: Recursion of critical functions is not allowed.

• no thread start function: For obvious reasons, T-code applications that do not
start a single thread cannot be transformed in a meaningful way. Thus, the compiler
rejects such cases.

• thread not yielding: If a cooperative thread never calls a blocking function it will
run forever and prevent other threads from being executed. This can hardly be
intentional, which is why the compiler rejects thread start functions that are not
critical. Note that the former property is a syntactic attribute while the latter one is
derived from the factual call graph. Also note that a critical thread start function
still might never call a blocking function at run-time, for example because it is
trapped in an endless loop that does not contain a critical call. The question if a
thread will eventually block at run-time is undecidable, which is why static analysis
cannot give a definitive answer to that matter.

• signature of thread start function: A thread start function is never called, which
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is why it makes no sense if it returns a value or takes parameters. To emphasize
this, the compiler enforces the following function signature: void function().

• parameter names: Parameters in function declarations are not forced to have a
name. In case of blocking functions this poses a problem because the implementa-
tion of the PAL needs a handle to access the right data from the T-frame. We thus
enforce parameter names for the declaration of blocking functions.

The second group concerns features that we think are conceptually possible to support,
but which are disallowed in critical functions to avoid the associated complexity in the
compiler. Also, we expect little insight regarding the research question of this work from
supporting these features. The extend of the following list reflects the complexity of the C
programming language. Because the T-code compiler is expected to reliably distinguish
between valid and invalid input, we have to consider all of these cases.

• critical group of declarators: In C99, a declaration [C99: 6.7] can contain zero
or more arbitrary declarators [C99: 6.7.5]. If the function declarator [C99: 6.7.5.3]
of a critical function is not the only declarator of the enclosing declaration, the
input is rejected. An example would be “int i, c(int k), *j;”, given c is a
critical function. As due to our experience, function declarators are rarely mixed
with other declarators in practice, we think that this restriction is reasonable.

• volatile type qualifier: In C99, “an object that has volatile-qualified type may
be modified in ways unknown to the implementation or have other unknown side
effects” [C99: 6.7.3-6]. This is needed to implement drivers that access memory-
mapped hardware registers, for instance. Accessing a volatile object is a side effect
that has to be completed after each sequence point [C99: 5.1.2.3]. However, the
T-code to E-code transformation does not necessarily preserve sequence points,
which means that a T-code application cannot rely on the semantics of volatile
objects. Thus, the compiler rejects T-code applications that make use of them. In
principle, the transformation could be carefully designed to preserve the order of
sequence points, but regarding the fact that our work targets application and service
layer components that usually do not depend on this feature, avoiding the additional
complexity in the compiler seems to be reasonable.

• switch statements: The C99 syntax is very flexible when it comes to switch state-
ments. To facilitate the generation of the IR, we enforce the following constraints:

– The body of the switch statement is a compound block.

– The first statement of this compound block is a case statement or a default
statement.

– There is at most one default statement. (Actually, C99 requires this, but the
parser does not enforce it.)

– There are no case statements after a default statement.

Each of these restrictions actually represents good practise, so we consider them
being acceptable.

• inline assembler: We do not support inlined assembler code because the transfor-
mation would have to consider it, thus becoming platform-dependent. In principle,
though, assembler code can be transformed accordingly (cf. Section 6.5).

55



3.5. COMPILER PIPELINE CHAPTER 3. COMPILER

• ellipses: With ellipses, the structure of the T-stacks would become very complex,
and the macros from stdarg.h [C99: 7.15] such as va_start would have to be
redefined. Ellipses are a core feature of the C programming language, so a future
version of the compiler should support them.

• array initializer lists: In C99, one can enrich a declaration of a variable of ar-
ray, structure or union type with an initializer lists [C99: 6.7.8] which provides
initial values. When separating declaration and initialization, which is what the
transformation does, one can resort to compound literals [C99: 6.5.2.5] using the
same initializer list. However, this does not work for arrays, because C does not
support array assignment. Instead, array compound literals have the same semantics
as variables of array type, i.e., they are converted to a pointer to the first array
element. Possible workarounds are to wrap the array in a structure which then
can be assigned, to use memcpy [C99: 7.21.2.1] to copy the arrays manually, or
to change the type of the variable from T[] to T* and to assign the pointers. It
is currently unclear to us, which of these approaches, if any, provides a general
and robust solution to this problem. Thus, we cannot support this case in good
conscience. We still support initializer list for structure or union types.

While the parser supports K&R C and GNU C extensions, supporting these dialects
adds a lot of complexity to the compiler. Thus, we disallow to use them within critical
functions2. While the following list of excluded features limits what is supported for
critical functions, at the same time it specifies what is possible for auxiliary functions.
The list is also complete in that sense that any additional features are not supported by the
parser. For each of these features we think that supporting them is conceptually possible.

• excluded K&R features:

– implicit return type: K&R C allows that function return types implicitly
default to int.

– K&R-style function declarations: K&R C allows to decouple the declara-
tion of the types of function parameters from the function declaration. One
can even omit the type declaration completely in which case it defaults to
int.

• excluded GNU extensions:

– compound statements as expressions: In C99, a statement can be an expres-
sion and an expression is a recursive structure consisting of expressions. In
GNU C, an expression can additionally contain a compound statement [C99:
6.8.2], thus creating a loop in the type system [GNU C: 6.1].

– computed gotos: In C99, the target of a goto statement has to be a label.
GNU C additionally supports to take the address of a label, store it in a void
pointer and use this value for a computed goto statement [GNU C: 6.3]. Note
that although the compiler does not support computed gotos, the generated
E-code makes use of them nevertheless.

– array range designators: GNU C supports to address ranges of array fields
[GNU C: 6.26].

2To be precise, omitting the middle operant of a conditional expression [C99: 6.5.15] is a GNU C
extension [GNU C: 6.7]. This feature is supported for critical functions nevertheless.
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– case ranges: In C99, a case label must be an integer constant expression
[C99: 6.8.4.2-3]. GNU C additionally supports the specification of value
ranges for case labels [GNU C: 6.27].

– attributes: GNU C supports function attributes “which help the compiler
optimize function calls and check your code more carefully” [GNU C: 6.30].
T-code makes use of this feature to identify blocking functions and thread start
functions. But the T-code compiler does not implement the semantics of the
various predefined attributes. Additionally, attributes for variable declarations
[GNU C: 6.36] and type declarations [GNU C: 6.37] are rejected as well. We
consider some of them, such as the packed attribute, which “specifies that
each member [...] of the [attributed] structure or union is placed to minimize
the memory required” [GNU C: 6.37], rather useful. A future version of the
T-code compiler should therefore support them after carefully checking their
implications on the equivalence of T-code and E-code.

– built-ins: The compiler does not support the following GNU built-ins:

* __builtin_offsetof [GNU C: 6.50]

* __builtin_va_arg [GNU C: 6.5]

* __builtin_types_compatible_p [GNU C: 6.54]

The reader might have noticed, that critical_constraints does not check if the
address of a critical function is taken somewhere, although Section 3.1.1 lists this as
one of the conceptual constraints. In fact, this analysis is not possible without tracking
nested scopes, because a new identifier might happen to have the same name as a critical
function, in which case applying the address operator [C99: 6.5.3.2] to this identifier
would misleadingly trigger an error. Nested scopes are dealt with in the Front-end, thus
this analysis is deferred until then.

3.5.4. Front-end

The Front-end is the third stage of the compiler pipeline. It determines the IR of each
critical function and enforces some final constraints on them.

First, collect and desugar simplify the function body by reducing the set of em-
ployed features. Then, short_circuit and normalize establish normal form for
critical calls. The resulting code is a semantics-preserving rewrite of the input code
and constitutes a T-code application that could actually have been written by a software
developer.

Next, basic_blocks turns the ASR of a critical function into the corresponding IR
by determining its basic blocks. Subsequently, optimize and critical_variables
perform basic optimizations and static analysis on the IR. Finally, filter enforces some
final constraints on critical functions.

Most of these functions use the call graph that has been determined by the Analysis
module. We omit such environmental information from the function signatures for clarity.

3.5.4.1. collect

The first step is to separate declarations from statements. Under certain circumstances,
which will be described below, it is possible to move all declarations to the beginning of
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a function without modifying the semantics of its implementation. This is what collect
does in principle, only that the declarations are in fact removed from the function body
and returned separately.

Function 3.6: collect ::
CFunctionDef -- the definition of a critical

function in ASR
→ ( -- a tuple consisting of

[CBlockItem], -- the body of the function as a list
of ASR block items containing only
statements and no declarations, and

[Variable] -- the list of extracted variable
declarations in IR

)

There are two possible places where declarations can occur: as a block item, or as the
first component of a for loop. Both of them can be included into a compound statement
of arbitrary nesting depth, so the algorithm has to recursively walk of the complete
function body. If a declaration is augmented with an initializer [C99: 6.7.8], it is replaced
with an assignment to the declared object using the initializer’s value. Obviously, this is
always possible for basic types, pointer types, and function types (the various types are
defined in [C99: 6.2.5]). Due to compound literals, assigning initializer values is also
possible for structure types and union types.

Because collect detaches variables from their surrounding scope, it assigns unique
names to them to avoid confusion. These new names do not matter to the T-code developer,
because the E-code debugger hides such details. We therefore do not go into the details
here.

3.5.4.2. desugar

The next step is to “desugar” advanced control flow structures, i.e., substitute them with
basic control flow structures while preserving the semantics of the program. This is what
the desugar function does. Additionally, it flattens compound statements by replacing
them with their contained statements. The result is a list of basic statements without
nested scopes.

Function 3.7: desugar ::
[CBlockItem] -- the body of a critical function as

list of block items containing only
statements

→ ( -- a tuple consisting of
[CStatement], -- the body of the input function as a

list of basic statements, and
[Variable] -- the list of new IR variables

)

A compound statement consists of a list of block items, and a block item can in principle
be a statement or a declaration. At this point in the compiler pipeline, all block items
are in fact statements because collect removed all declarations. Thus, by replacing
compound statements with their list of statements, we not only flatten the code but also
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statement pattern
expression expression;
goto goto label;
if if (condition) goto label1;
else form if (condition) goto label1; else goto label2;
label label: ;
null statement ;
return void return;
return return expression;

Table 3.2.: Basic statements

overcome the need for the generic block item type. This is why collect returns a list of
statements instead.

The set of basic statements is summarized in Table 3.2. The given patterns are strict,
which means that, for instance, label statements with other statements than null statements
are not allowed. Table 3.3 lists how all control flow structures are substituted with basic
statements. The substitutions are of course applied recursively and the new variables and
new labels have unique names. Within a substitution pattern, the body of a statement is a
possibly empty list of arbitrary statements. Also, the remarks indicate how break and
continue statements within such a body are substituted. We can verify via Appendix A
that these substitutions indeed cover all possibilities.

A few additional comments on two of the patterns are advisable. First, when substi-
tuting for loops, each of the three parts of the loop header may be missing. In each
case, the corresponding output statement is omitted as well. Second, when substituting
switch statements, the number of case statements can be anything greater or equal
to zero. In any case, each case statement is simply substituted by the given pattern
resulting in the equal amount of if statements and labelled bodies. Additionally, the
default statement may be missing, in which case the trailing goto statement and the
corresponding labelled body are omitted. Note that at this point in the pipeline possible
for and switch statements are limited to what is covered by the given input patterns.

3.5.4.3. short_circuit

C99 specifies that “if the first operand [of a logical and-expression] compares equal to 0,
the second operand is not evaluated” [C99: 6.5.13-4]. Likewise, “if the first operand [of a
logical or-expression] compares unequal to 0, the second operand is not evaluated” [C99:
6.5.14-4]. This behavior is usually referred to as short-circuit evaluation.

Because normalize will replace critical calls with new variables that are initialized by
that critical call right before their usage, the short-circuit evaluation will effectively not
be performed. Thus, the compiler emulates this behavior in these cases. short_circuit
substitutes Boolean expressions that contain critical calls with a sequence of statements
that preserve the observable behavior. This list contains an if statement that skips the
evaluation of the right-hand side when indicated.

Figure 3.13 shows two examples which reveal that double negation is used to get the
Boolean value of an arbitrary expression independent of its type. They also show that all
the new statements are in fact basic statements, as this is what is expected in the compiler
pipeline at this point. And of course, unique names are assigned to new variables and new
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statement input pattern output remarks
label name: statement; name: ;

statement;
if if (condition) { if (condition)

body goto label1;
} else goto label2;

label1: ;
body

label2: ;
if-else if (condition) { if (condition)

body1 goto label1;
} else { else goto label2;
body2 label1: ;
} body1

goto label3;
label2: ;
body2

label3: ;
while while (condition) { label1: ; break

body if (!(condition)) ⇒ goto label2;
} goto label2; continue

body ⇒ goto label1;
goto label1;
label2: ;

do do { label1: ; break
body body ⇒ goto label2;
} while(condition} if (condition) continue

goto label1; ⇒ goto label1;
label2: ;

for for (init; condition; incr) { init; break
body label1: ; ⇒ goto label3;
} if (!(condition)) continue

goto label3; ⇒ goto label2;
body

label2: ;
incr;
goto label1;
label3: ;

switch switch (expression){ int var1 = expression; break
case const1: body1 if (var1 == const1) ⇒ goto label3;
default: body2 goto label1;
} goto label3;

label1: ;
body1

label2: ;
body2

label3: ;

Table 3.3.: Substitution of control flow structures
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x = c() || y; ⇒

1var1 = !!c();
2if (! var1) goto label1;
3var1 = !!y;
4label1: ;
5x = var1;

(a) base case

return ((i = x, e) && c() + 1) || y; ⇒

1var1 = !!(i = x, e);
2if (var1) goto label1;
3var1 = !!(c() + 1);
4label1: ;
5var2 = !!var1;
6if (!var2) goto label2;
7var2 = !!h;
8label2: ;
9return var2;

(b) generic case

Figure 3.13.: Explicit Boolean short-circuit evaluation: c is a critical function.

labels.

Function 3.8: short_circuit ::
[CStatement] -- the body of a critical function as a

list of basic statement
→ ( -- a tuple consisting of

[CStatement], -- the body of the input function
without Boolean expressions that
involve critical calls, and

[Variable] -- a list of new IR variables
)

The algorithms of short_circuit are a bit involved which is why we refer to Ap-
pendix B for its details.

3.5.4.4. normalize

As function calls can appear arbitrarily nested in any expression, this step brings critical
calls into normal form to facilitate the actual transformation from threads to events. This
reduces the amount of possible cases int the Back-end, thus facilitating the T-code to
E-code transformation.

Overall, normalize scans each input statement in turn for a critical call that is not
in normal form. Each of them is replaced by a new variable with a unique name and a
preceding statement that assigns the value of the critical call to the new variable. This
assignment now constitutes a critical call in second normal form Figure 3.14 shows two
examples.
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return c(i); ⇒
1var1 = c(i);
2return var1;

(a) basic case

j = c(23) + c(42); ⇒

1var1 = c(23);
2var2 = c(42);
3j = var1 + var2;

(b) two critical calls

Figure 3.14.: Normalization of critical calls: c is a critical function.

Function 3.9: normalize ::
[CStatement] -- the body of a critical function as

a list of basic statements without
critical calls in logical operations

→ ( -- a tuple consisting of
[CStatement], -- the body of the input function as

a list of basic statements and with
critical calls only appearing in
normal form, and

[Variable] -- a list of new IR variables
)

The type of the new variable is the return type of the critical function that is called.
Figure 3.14b shows in particular that if an expression contains multiple critical calls the
generated assignments are in source code order of the corresponding critical calls. This
— just like any other choice — is compliant with C99, as “the order of evaluation of
subexpressions and the order in which side effects take place are both unspecified” [C99:
6.5-3].

3.5.4.5. basic_blocks

At this stage of the compiler pipeline, everything is prepared for the final translation into
the intermediate representation. This is done by the basic_blocks function.

Function 3.10: basic_blocks ::
[CStatement] -- a function body as a list of basic

statements with critical calls in normal
form

→ Body -- the function body in IR

As explained in Section 3.5.1, an IR body is an entry label and a list of labeled basic
blocks, while a basic block consist of a single entry node, zero or more middle nodes
and a single exit node. To perform this transformation, basic_blocks performs the
following steps:

1. null statements are removed from the input

2. each basic statement is annotated with the corresponding IR node type

62



CHAPTER 3. COMPILER 3.5. COMPILER PIPELINE

annotation basic statement
entry node label
middle node expression
exit node goto

if
else form
return void
return

Table 3.4.: Relation between basic statements and IR node annotations: We refer to
Table 3.2 for the list of basic statements.

3. the list of annotated statements is partitioned into prototypical basic blocks (i.e., a
proto-block)

4. each proto-block is converted into a real basic block

We will address the non-trivial steps 2–4 in turn.

annotating Table 3.4 shows which basic statements are annotated with which IR node
type. When annotating a statement this indicates that this statement is going to become an
IR node of the annotated node type (cf. Section 3.5.1). However, the statement may still
have the wrong structure. For example, a basic if statement is not required to be in else
form, but an IR if node does. Such situations will be resolved by the conversion step.

partition A proto-block already has an IR label but contains annotated basic statements
instead of nodes. More precisely, a proto-block consists of arbitrary many statements
of type middle node and optionally one statement of exit node type. This implies that a
proto-block might have no statements at all.

The list of proto-blocks are created by scanning the list of input statements and by
splitting them the right positions as follows: If the first statement is a label statement then
its identifier is used as the IR label of a new proto-block. Otherwise, a unique IR label is
associated with the new proto-block. All subsequent statements of middle node type are
added to the current proto-block. If the next statement is of type exit node it is used to
finalize the current proto-block. If it is of type entry node instead, the current proto-block
is left without a finalizing statement. In any case, the algorithm is applied recursively to
the rest of the input statements resulting in additional proto-blocks.

If the end of the list of statements is reached while consuming middle nodes, then the
input function has one or more code paths that are not terminated by a return statement.
This is in general valid, because “a function may have any number of return statements”
[C99: 6.8.6.4-2]. But at the same time, “if the } that terminates a function is reached,
and the value of the function call is used by the caller, the behavior is undefined” [C99:
6.9.1-12]. The second premise of this rule is excluded for functions returning void.
For any other function, it is in general undecidable if the closing bracket will actually
be reached at run-time. Thus, it is the burden of the developer to avoid the undefined
behavior either by finishing all code paths with return statements or by not using the value
of the function call when indicated.

Consequently, if the end of the list of input statements is reached while consuming
middle nodes, the last block is finished with an explicit return node that returns void.
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This is the correct behavior for functions returning void and for situations in which
the undefined behavior is not triggered. If it is, the algorithm still behaves standard
compliant, as “possible undefined behavior ranges from ignoring the situation completely
with unpredictable results, [...]” [C99: 3.4.3.-2]. The same situation arises if the last
proto-block is finished with a critical call or an if statement that is not in else form, as
in these cases the control flow also reaches the closing bracket. Using the same rationale,
an additional proto-block containing a return statement that returns void is appended to
the list of proto-blocks in such a case.

convert The conversion turns proto-blocks into basic blocks using the following steps:

• The IR label of the basic blocks equals the IR label of the proto-block.

• An entry node is created as described below.

• All statements with type middle node are carried over and wrapped in middle nodes.

• If the proto-block is finished by a statement of exit node type its structure is
completed if necessary and wrapped in an exit node. Otherwise, a new exit node is
created as described below.

• The IR label of the first proto-block becomes the entry label of the returned Body.

Converting proto-blocks to basic blocks requires context information about the previous
and the next proto-block in the sequence. If the previous proto-block was not finished by
a critical call in second normal form, the IR label of the proto-block is turned into a label
statement that is wrapped by a label node. Otherwise, the previous critical call is wrapped
into a continuation node. If a proto-block has no statement of type exit node, a goto node
is appended using the IR label of the next proto-block as the target. If there is a statement
of type exit node it might be an if statement that is not in else form. In this case a new
goto statement becomes its new second sub-statement, thus turning it into else form.

3.5.4.6. optimize

Given the IR, the compiler can now apply optimizations to it.

Function 3.11: optimize ::
Body -- the body of a critical function in IR

→ Body -- the possibly improved body of the input function

The current implementation only applies a very basic optimization, which is the removal
of minimal blocks. A minimal block is a basic block that consists of a label node and a
goto node only, thus its only effect is the redirection of the control flow to another basic
block. Thus, a minimal block can be removed if all places that target this minimal block
are rewritten to target the basic block that is targeted by the minimal block instead. This
potentially concerns all exit nodes as well as the entry label. This optimization reduces
the amount of basic blocks and removes unnecessary redirections.

Of course, one can think of additional and more advanced optimizations such as con-
stant folding and dead code elimination. In fact, the IR has been designed to facilitate the
usage of Hoopl [108], a rich third-party Haskell library. Hoopl provides an implementa-
tion of the Lerner-Grove-Chambers algorithm for interleaved analysis and transformation
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[75], thus enabling powerful optimizations that are composed of separate analysis and
translation steps. We primarily make use of this library in the next stage of the compiler
pipeline, but the present stage is the right place for additional optimizations.

3.5.4.7. critical_variables

Until now, a lot of effort has been put into converting the input program from its abstract
syntax to its intermediate representation. Now it is time to capitalize on this.

Function 3.12: critical_variables ::
Function -- a critical function in IR

→ Function -- the input function with variables flagged as
critical or non-critical

critical_variables determines the set of non-critical variables of a critical func-
tion. A non-critical variable is a local variable for which there is no code path from
a critical function call to a read access of that variable. All the other local variables
are referred to as critical variables. The distinction is important, because only critical
variables have to be persisted during a critical call (cf. Section 3.2.1).

The variables of the input function are initially all flagged as critical, because this is a
safe default. In contrast, the variables of the output function are flagged as non-critical
if appropriate. To this end, the compiler performs a liveness analysis on the function
body by providing a proper data flow lattice and a proper transfer function to Hoopl [108].
The result is a set of live identifiers for each basic block. From these basic blocks, the
algorithm takes those that are targeted by at least one critical call node and unifies their
sets of live identifiers. These identifiers also include objects with file scope, objects with
static storage duration, functions, etc. Thus, the algorithm needs to filter by intersecting
with the input list of variables.

The algorithm assumes that each read access to a variable was preceded by a write
access. This conforms to C99, because “if an object that has automatic storage duration
is not initialized explicitly, its value is indeterminate” [C99: 6.7.8-10] and the behavior is
undefined if “the value of an object with automatic storage duration is used while it is
indeterminate” [C99: J.2].

The liveness analysis fails to recognize read and write access to storage locations via
pointers, as this problem is in general undecidable. Thus, as a safe default, the algorithm
marks a variable as critical if its address is taken somewhere. Similarly, a variable of
array type is also marked as critical, because its members can be accessed via pointers.

3.5.4.8. filter

Calling functions via function pointers prevents a static determination of the factual call
graph. The translation, however, depends on knowing the call graph of critical functions.
The compiler therefore rejects calls to critical functions via pointers.

The easiest way to do so is to prevent the address of a function to be taken in the
first place. With the IR at hand, which has no nested scopes and whose identifiers are
guaranteed to be unique, enforcing this rule is finally possible.
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Function 3.13: filter ::
Function -- a critical function in IR

→ [Error] -- a possible empty list of reasons why the input
function has been rejected

Conceptually, filter can enforce arbitrary constraints on the IR of critical functions.
The only thing that is enforced currently is that it is prohibited to take the address of a
critical function. First, it seems to suffice to scan for address operators whose operant is
the identifier of a critical function. However, “a function designator [i.e., an expression
that has function type] with type ‘function returning type’ is converted to an expression
that has type ‘pointer to function returning type”’ [C99: 6.3.2.1-4]. This means, that the
address of a function can be obtained without using the address operator, which makes
the filter algorithm more involved.

It recursively scans the expressions that are contained in the statement of the IR nodes
and checks all identifiers. If an identifier of a critical or blocking function is not directly
enclosed in a function call node (CCall), it constitutes a function designator and is
therefore reported as an error.

3.5.5. Back-end

The Back-end is the fourth stage of the compiler pipeline. It performs the actual translation
from threads to events according to the scheme described in Section 3.2. As we will
discuss in Section 6.5, that scheme is only one of many possible ones. The previous steps
of the compiler pipeline have been designed to be generic in the sense that the generated
IR assumes no knowledge from the Back-end.

Formally, the Back-end turns the set of critical functions in IR into a single translation
unit in ASR. To this end, it employs three functions, namely tstacks, estacks, and
threads, which generate the T-stacks and -frames, the E-stacks and -frames, and the
tread execution functions. The Back-end additionally turns declarations of blocking
functions into declarations of yield point functions, and IR variables for function-static
variables into variable declarations with file scope, local linkage and a unique identifier.

Given these components and the input AST, the Back-end composes two results. First,
it generates the PAL footprint which is a list of declarations of yield point functions along
with the declarations of their T-frames, encompassing only functions that are actually
used by the T-code application. This list is passed to the PAL generator along with the
application footprint (cf. Section 3.4.4). Second, the Back-end generates the actual
E-code application in ASR, which consists of

• the external declarations of the T-code application that do not concern critical or
blocking functions,

• all T-frame declarations,

• all T-stack definitions,

• all E-frame declarations,

• all declarations of yield point functions,

• all definitions of translated function-static variables, and
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• all thread execution function definitions.

3.5.5.1. Frames and Stacks

The function estacks generates the E-frames and E-stacks of the E-code application. It
makes use of the call graph that has been determined by the Analysis stage. We again
omit such environmental information from the function signatures in this section for
clarity.

Function 3.14: estacks ::
[Function] -- the list of all critical functions

in IR
→ ( -- a tuple consisting of

[CDeclaration], -- the list of E-frames, and
[CDeclaration] -- the list of E-stacks

)

As explained in Section 3.2, the E-stack contains the union of all E-frames of the critical
functions that are involved in a thread. And for a given critical function, the E-frame
contains the declarations of all non-critical variables that are not function parameters (cf.
Figure 3.3b). This covers both variables that originate from the T-code application and
variables that have been introduced by the Front-end.

All members of an E-frame have unique names within the scope of that frame. Thus
collecting them into a single structure and addressing them from the thread execution
functions is possible. Likewise, all E-frames have unique names as well. If an E-frame is
empty, it is completely omitted. Similarly, if an E-stack is empty, it is also completely
omitted.

The function tstacks generates the T-stacks and T-frames of the E-code application.
As explained in Section 3.2, there is one T-stack per thread and one T-frame for each
critical function and yield point function.

Function 3.15: tstacks ::
[CDeclaration] -- the list of blocking function

declarations in ASR
→ [Function] -- the list of critical functions in IR
→ [CDeclaration] -- one T-frame per critical function or

yield point function, and one T-stack
per thread execution function, each in
ASR

All members of a T-frame have unique names within the scope of that frame. It is
therefore possible to collect them in a structure and to address them from the thread
execution functions. Likewise, a T-stack is a variable with file scope, local linkage, and a
unique name.

3.5.5.2. Thread Execution Functions

Finally, everything is prepared to actually perform the translation from threads to events.
The threads function generates the thread execution functions of the E-code application
(cf. Section 3.2.2).
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node basic statement statement
label label: ; label: ;
continuation expression ?= expression ?=

function(parameters); tstack.tframe.result;
expression expression; expression;
goto goto target; goto target;
if if (condition) if (condition)

goto target1; goto target1;
else goto target2; else goto target2;

return

void return; goto *tstack.tframe.cont;
expression return expression; tstack.tframe.result = expression;

goto *tstack.tframe.cont;
TSF return; return;

critical call
CF function(e1, e2); tstack.tframe.p1 = e1;

tstack.tframe.p2 = e2;
tstack.tframe.cont = &&label;
goto function_label;

YPF function(e1, e2); tstack.tframe.p1 = e1;
tstack.tframe.p2 = e2;
tstack.tframe.cont = &&label;
function(&tstack.tframe);
return;

Table 3.5.: Expansion of IR nodes to language statements: We refer to Table 3.1 for a
list of IR nodes. “TSF” means “thread start function”, “CF” means critical
function, and “YPF” means “yield point function”.

Function 3.16: threads ::
[Function] -- the list of critical functions in IR

→ [CDeclaration] -- zero or one E-stack per thread
→ [CFunctionDef] -- one thread execution function per thread

A thread execution function is a function definition with external linkage whose name
is unique, reflects its source code order, and is well-known to the PAL. Embedding a
critical function into a thread execution function implies translating its IR to ASR. This
comes down to translating basic blocks and nodes to statements. The first basic block in
control flow order is the one named by the entry label of the function. The subsequent
basic blocks follow in a depth-first order of the control flow. However, basic blocks that
start with a label node and are only targeted by a single exit node are excluded from this
sequence. Instead, these basic blocks are inlined as described further below.

When translating a basic block, its nodes are expanded in order. As listed in Table 3.5,
a label node is expanded into a label statement using the IR label of the basic block as the
label’s identifier. In case of a continuation node, an expression statement is generated that
assigns the return value of the previously called critical function to the left-hand side of
the critical call. The return value is hereby copied from the T-stack. Middle nodes are
simply unwrapped.
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Ignoring inlining of basic blocks for now, both goto and if nodes are also simply
unwrapped. In contrast, a return node yields a computed goto statement that resumes
execution as indicated by the caller’s continuation that is stored in the T-frame. If the
basic return statement that is contained in the IR node has a return expression, then this
return expression is assigned to the result variable of the T-frame in advance. In case of
a thread start function, a return node yields a single return statement instead. This
makes the thread execution function return without previously invoking a yield point
function, thus terminating the thread.

A critical call node is expanded into a sequence of statements that perform the critical
call as explained in Section 3.2.2. This involves assigning values to the callee’s function
parameters, saving the continuation address, and performing a goto to the callee’s entry
label. In case of a yield point function, a function call is performed instead, followed by a
return.

Inlining a basic block first involves expanding its middle nodes and its exit node to
a list of statements as described above. This list then replaces the goto statement that
would otherwise be expanded from the goto or if node that targets that basic block.
This simple optimization reduces the code size and avoids unnecessary redirections at
run-time.

While expanding IR nodes, expressions are scanned for variables that have to be
replaced. If the variable is non-critical and not a function parameter, it is replaced with the
corresponding variable from the E-stack. If the variable is critical or a function parameter,
it is replaced with the corresponding variable from the T-stack. And finally, in case of a
function-static variable, the variable is replaced with the corresponding static variable
with file scope.

3.5.6. Printer

The Printer is the fifth and last stage of the compiler pipeline. It translates abstract syntax
into concrete syntax. Like the parser, the implementation of the printer makes use of the
Language.C library [57].

Function 3.17: print ::
CTranslationUnit -- an E-code application in ASR

→ E-Code -- the E-code application in CSR

Code formatting is subject to long disputes in the software engineering community.
Due to the E-code debugger, the formatting of the E-code application is not important,
as the software developer never has to deal with it directly. Nevertheless, the code is
reasonably formatted, as somebody who wants to improve the T-code compiler has still
to be able to read it.

3.6. Summary

In this chapter we presented the primary goal of our thesis: a compiler-assisted thread
abstraction. Starting from the big picture we explained the main principles as well as
the limitations of our approach. This was followed by a conceptual explanation of the
translation from threads to events, illustrated by a small but complete example application.
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Subsequently we defined what equivalent T-code and E-code applications are, based on
the observable behavior of their operational semantics. This enabled us to informally
show the correctness of the transformation.

The platform abstraction layer, which we addressed next, connects the generated E-
code application with the existing operating system. We specified the API assumed
by E-code applications, presented a complete implementation for Contiki as well as a
proof-of-concept for TinyOS, and explained how application-specific abstraction layers
can be generated.

Finally, we took a detailed, but still abstract view at the compiler pipeline and its five
stages. We carefully specified the respective input and output domains while documenting
which C99 language features are either supported or reliably rejected.

Overall, the contribution of this chapter was to introduce a comprehensive, yet efficient
thread abstraction which is suitable for resource-constrained system such as WSN motes.
The key of our approach is to employ a dedicated compiler which translates C99-compliant
T-code into equivalent E-code.
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4. Debugger: From E-code to T-code

This chapter addresses the second goal of our work, which is enabling fault diagnostics of
T-code. To this end, we have both developed the concepts and implemented a prototype
of a T-code debugger. This chapter covers the conceptual aspects while Section 5.2 covers
the prototype.

Our goal is not to advance the state-of-the-art in source-level debugging. Instead, we
want to focus on providing major source-level debugging capabilities for our compiler-
assisted thread abstraction (cf. Section 2.1.6). Most existing WSN programming abstrac-
tions are not capable of sustaining the abstraction during fault diagnostics (cf. Section 2.2).
This forces the user to understand the technical details of the underlying run-time system
nevertheless. Worse, the user is additionally faced with the complexity of the imple-
mentation of the abstraction, because he or she has to identify faults in the abstract
application from observing the run-time behavior of the generated application. We argue
that a comprehensive abstraction should sustain the abstraction level for the complete
development cycle.

Support for fault diagnostics conceptually requires the compiler to record each trans-
lation step. This information enables the debugger to map run-time information back
to source code. Figure 4.1 shows the role of the T-code debugger in the overall project
structure. The left side is a condensed version of Figure 3.2, the structure of a T-code
project. What is new is that both the T-code and the E-code compiler generate additional
debugging information along with the actual output. This information is used by the
respective debugger on the right side to perform the back-mapping from the low-level exe-
cution of the application to its high-level representation. E-code compilers and debuggers
are actually already employing this technique successfully, only that they tend to integrate
the debugging information into the generated object file [35, 43, 90]. Conceptually there
is, however, no difference to store that information in a separate file.

Just like T-code and E-code compilers are chained, so are E-code and T-code debuggers,
i.e., what is the higher abstraction level for the E-code debugger is the lower abstraction
level for the T-code debugger. Overall, the T-code debugger executes and controls the
E-code debugger, which in turn executes and controls the target binary.

Figure 4.2 provides a detailed view of the modular architecture of the T-code debugger.
The central component is the Core module, which implements the actual logic of mapping
E-code execution to T-code source. It is interacting with three other components: a
front-end, the T-code compiler, and a back-end.

The Front-end interface, as described in Section 4.1, is a set of commands that the
Core module provides to a front-end that is controlled by a user. A possible client is, for
instance, a graphical user interface (GUI) like the one we implemented for the prototype
(cf. Section 5.2.3.1). An obvious alternative would be a command line interface (CLI)
similar to what GDB provides. User interaction can also be simulated by a test suite
front-end, which is what we make use of in the evaluation (cf. Section 6.6).

The debug information file interfaces the execution of the T-code compiler with the
Core module. Section 4.2 explains, what kind of information is included in that file and
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Figure 4.1.: System overview: debugging: The compiler generates debugging informa-
tion which the debugger uses to provide the abstraction level of the input
application.
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Figure 4.2.: Debugger architecture: The Core module provides a User interface and uses
debug information generated by the T-code compiler as well as a Back-end
interface to interact with the E-code debugger.
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how this information is determined within the compiler pipeline. Finally, the Back-end
interface provides means to execute and control an E-code debugger. As Section 4.3 will
explain, this interface is heavily influenced by the GDB and the only implementation
that we provide is a GDB module (Section 5.2.3.3). In principle, however, it should be
possible to implement the Back-end interface for other debuggers as well, because it only
uses very basic features.

The GDB module executes a GDB instance and controls it via GDB’s Machine Interface
(MI) (Section 27 of [129]) (not shown in Figure 4.2). The GDB on its part supports many
architectures and so-called targets, i.e., means of connecting to the target binary. For
example, the Remote target allows to use a small GDB server that is executed on a device
and connected to the GDB instance on the host via a serial cable. The Exec target, in
contrast, directly executes a binary file on the host machine. Our evaluation, for instance,
makes use of that target (cf. Section 6.6). Of course, the Back-end interface is agnostic to
these details.

With the previous sections at hand, Section 4.4 finally explains, how the Core module
makes use of all these components to perform its task. Along with Section 4.2 this
constitutes the actual innovation of our work. Nevertheless, the other sections provide
substantial groundwork.

To focus on our goal, the design and the techniques of the T-code debugger resemble
known debuggers like the GDB [129] and Eclipse [132]. Furthermore, the provided
features are all limited to the T-code application in general and critical functions in
particular. In fact, extending these features to also cover auxiliary functions, utility
modules, and libraries only involves copying what E-code debuggers already do.

4.1. Interfacing the User

The Front-end interface defines a set of commands that can be grouped as follows: The
first group is covered by Section 4.1.1 and concerns the execution of the debugger and the
inferior (Section 4.9 of [129]), i.e., the executed target binary. Section 4.1.2 explains how
preprocessor directives in the T-code application are dealt with. The next group concerns
managing breakpoints, and it is covered by Section 4.1.3. And finally, 4.1.4 investigates
evaluating arbitrary expressions containing program variables. All of these commands
operate on the abstraction level of the T-code application, i.e., their semantics assume no
knowledge about the existence of an E-code debugger.

The set of supported features is minimalistic, but it is sufficient to emulate more
advanced features. For example, stepping from one source code row to the next can be
achieved by setting a breakpoint at each possible next source code row and continuing
the execution. Likewise, watching variables can be replaced by issuing a corresponding
query repeatedly. Although such workarounds are hardly acceptable from a usability
point of view, they demonstrate that the supported features are conceptually complete.

4.1.1. Execution

Figure 4.3 shows the state machine of the T-code debugger. The initial state is called
waiting. By issuing the run command, the inferior is started and the state changes to
running. The execution of the inferior can stop for two reasons. The most obvious one
is that a breakpoint has been reached, in which case the debugger goes into the stopped
state. This is, however, not sufficient from a user’s point of view. If the execution gets
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Figure 4.3.: Debugger state machine: This figure shows all states, commands, and
events.

unanticipatedly trapped in an endless loop, or by chance always takes a control flow path
that never hits a breakpoint, there must be a way to regain control. The Front-end interface
therefore provides the interrupt command which can be issued at any point in time.
Just like a breakpoint, it suspends the execution of the inferior and brings the debugger
into stopped state. Resuming the execution is possible via the continue command,
which changes the state from stopped to running. Finally, at any point in time, the
shutdown command can be issued, which brings the debugger into shutdown state.

Figure 4.4 shows how the state of a thread is changed by the debugger’s execution
commands. At first, a thread is in the waiting state. As soon as the PAL calls its
thread start function for the first time, it transitions to the running state. If it calls a
yield point function, it goes into blocked state where it stays until the PAL resumes its
execution. This behavior is defined by the execution semantics of a T-code application
(cf. Section 3.3.1).

There is one additional state during fault diagnostics, which is the state stopped. If the
debugger stops, either due to a breakpoint or due to the interrupt command, a running
thread stops as well. Note that according to the T-code semantics there is at most one
running thread at any point in time when the debugger is running. For the debugger this
implies that there is at most one stopped thread when the debugger is stopped. We refer
to the single thread that is either running or stopped as the current thread. If the current
thread is stopped, then the current row is the row number of the instruction that is going
to be executed next when continuing that thread. If there is no current thread, then there
is no current row either.

Whenever the state of a thread changes, the implementation of the Front-end interface
sends an informative update event to the front-end. By displaying this information to the
user, he or she is able to follow the execution of the individual threads.
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Figure 4.4.: Thread state machine: This figure shows all states, commands, and events.

4.1.2. Preprocessing

A T-code application is a preprocessing translation unit that contains preprocessing
directives, and the first stage of the compiler pipeline processes these directives to obtain
the so-called P-code (cf. Section 3.5.2). As expanding macros can produce significant
changes, such as additional critical calls that are not obvious in the T-code, the user might
be interested in seeing the P-code while tracing the execution of the application. On the
other hand, preprocessing also introduces a lot of external definitions which originate
from inclusion directives. Additionally, some macros expand to rather large and confusing
code fragments. This suggests to not show P-code to the user.

To support both use cases, the Front-end interface provides a function that translates
source code rows from T-code to P-code and vice versa. Actually, the Front-end interface
operates on P-code rather than on T-code, as the factual transformation from threads to
events is a translation from P-code to E-code. So, depending on the user’s interactions,
the front-end has to perform a translation.

For instance, the GUI front-end, which is part of the prototype implementation (Sec-
tion 5.2.3.1), makes use of this functionality by automatically scrolling the view ports for
T-code and P-code to always show corresponding source code rows. This allows the user
the seamlessly switch between T-code and P-code as needed.

4.1.3. Breakpoints

A breakpoint is an annotation of a source code row which stops the execution of the
inferior if the control flow reaches that row. In a T-code application, each thread has its
own control flow, which is why breakpoints are augmented with a thread filter. A thread
filter is a set of thread IDs, and a thread ID is a unique number that identifies a thread.
The ID of a thread is equal to the source code order of the corresponding thread start
function.

A breakpoint causes a stop only if the ID of the current thread is included in the thread
filter of that breakpoint. This is useful for re-entrant functions, because it allows to ignore
context switches and focus on a specific thread instead. If a breakpoint is unreachable
for one of the threads of its thread filter, it cannot be added. This feature is supposed to
reveal apparent misconceptions early. It is, however, only supported for breakpoints in
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critical functions.
Besides the thread filters that are specific to breakpoints, there is also a global thread

filter. A breakpoint causes a stop only if the ID of the current thread is actually included
both in the breakpoint’s thread filter and in the global one. This allows to quickly restrict
the debugger’s view to a specific thread without changing all breakpoints. See Section 6.6
for a usage example.

Breakpoints can, of course, not only be added, but also listed and removed. They are
identified by a unique number that is assigned to them when added. Also, issuing any of
these commands is only possible if the debugger is waiting or stopped. None of this is
really interesting in itself, so we avoid the details here.

4.1.4. Variables

In order to query the state of the application, the user can create arbitrary expressions
that may involve application variables. The Front-end interface provides a command to
evaluate such expressions in the context of the current execution and return the result
value. This evaluation is sensitive to both the current thread and the surrounding scope of
the current row for two reasons. First, inner scopes can shadow identifiers declared in
surrounding scopes. And second, each local variable of a re-entrant function is instantiated
once for each invoking thread. Evaluating expressions is only possible when the debugger
is stopped, because the current row is not defined otherwise.

4.2. Interfacing the T-code Compiler

As one might anticipate from the previous section, the implementation of the Front-
end interface necessitates both static and run-time information of the application. As
Figure 4.2 already showed, run-time information is provided by the back-end, while the
static information has been determined and stored into the debug information file by the
T-code compiler. This section investigates the details of the latter.

While advanced debugging formats such as DWARF [35] support a wide range of
different languages and compilers, the debugging information presented in the following
is very specific to the compiler described in the previous chapter. This particularly means
that both the debugging information and the debugger might have to be adapted if a future
compiler employs more aggressive optimizations, for instance.

The documentation of the compiler pipeline in Section 3.5 is actually simplified, as
it does not cover the debugging aspect. Figure 4.5 completes Figure 3.12 by actually
showing the Debug stage. It is responsible for compiling the debugging information
that has been collected by previous stages of the compiler pipeline into the format that
is expected by the T-code debugger. How this information is actually used by the Core
module is not discussed until Section 4.4. Also, the storage format and other details are
not specified until Section 5.2.2.

The following sections introduce the pseudo functions and pseudo data types of the
Debug stage. Section 4.2.1 and Section 4.2.2 explain how T-code, P-code, and E-code
rows can be converted into each other. Translating arbitrary T-code expressions to
E-code expressions involves replacing variables and is investigated by Section 4.2.3.
Finally, Section 4.2.4 completes the specification of the debug information with additional
auxiliary information. These sections also provide updated specifications of both the
pseudo functions of the compiler pipeline and the various code representations.

76



CHAPTER 4. DEBUGGER 4.2. INTERFACING THE T-CODE COMPILER
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Figure 4.5.: Compiler pipeline with debugging support: The actual compiler pipeline has
an additional final Debug stage.

4.2.1. Mapping T-code and P-code Rows

As discussed in Section 4.1.2, the Front-end interface provides functions to translate
T-code rows to P-code rows and vice versa. To actually implement these functions, the
Core module needs the following information.

Data 4.1: MapTP =
T-Row -- the maximum row number of the T-code
P-Row -- the maximum row number of the P-code
[(T-Row, P-Row)] -- a list of matching T-code and P-code rows

The semantics of the first two values is obvious and determining them is trivial. Con-
cerning the third one, the semantics are as follows: The list contains tuples of T-code
and P-code rows and is sorted in ascending order of the former. Each tuple defines a
section in both the T-code and the P-code, which means that all subsequent rows match
consecutively until the beginning of the next section. While for a given T-code row there
is always a matching P-code row, the same does not necessarily hold in the other direction,
as P-code usually contains a lot of lines that have been included from headers.

Before a simple example can clarify this, we need to understand how preprocessing
works. C99 specifies seven different kinds of preprocessor directives [C99: 6.10]. The
most relevant ones are:

1. conditional inclusion: depending on the value of a conditional constant expression
portions of the translation unit may be skipped.

2. source file inclusion: this directive is replaced by the complete contents of a source
file or header [C99: 7.1.2-1].
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1 #include <stdio.h>
2
3 int function() {
4 return 0;
5 }
6
7 #include <stddef.h>
8
9 void print() {

10 printf("%d\n", function());
11 }

(a) T-code

T-code row P-code row
1 4
2 847
8 858

(b) mapping

1 # 1 "input.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "input.c"
5 # 1 "/usr/include/stdio.h" 1 3 4
6 # 28 "/usr/include/stdio.h" 3 4

≈ ≈
845 # 936 "/usr/include/stdio.h" 3 4
846
847 # 2 "input.c" 2
848
849 int function() {
850 return 0;
851 }
852
853 # 1 "/usr/lib/gcc/x86_64-linux-gnu/4.4.5/include/stddef.h" 1 3 4
854 # 149 "/usr/lib/gcc/x86_64-linux-gnu/4.4.5/include/stddef.h" 3 4
855 typedef long int ptrdiff_t;
856 # 323 "/usr/lib/gcc/x86_64-linux-gnu/4.4.5/include/stddef.h" 3 4
857 typedef int wchar_t;
858 # 8 "input.c" 2
859
860 void print() {
861 printf("%d\n", function());
862 }

(c) P-code

Figure 4.6.: Mapping between T-code rows and P-code rows: CPP line markers tie input
and output rows. The input T-code file is called “input.c” in this example.

3. macro replacement: defining macro names and replacement lists that cause “each
subsequent instance of the macro name to be replaced by the replacement list” [C99:
6.10.3-9].

Preprocessing resolves these directives, resulting in a translation unit that does not contain
any directives or macro names any more. A lot of details of this process are, however,
not specified by C99. For example, it is both left open what “skipping” means and
what should happen to source code lines that contain a directive other than a source file
inclusion directive. We therefore have to resort to an implementation-dependent solution
to map T-code and P-code rows as follows:

The GCC preprocessor (CPP) [128] emits special line markers (Section 9 of [128])
using the non-directive syntax [C99: 6.10.1-3]. Such a line marker particularly contains
the file name and the line number from which the subsequent lines originate. If the
referred file is the translation unit of the T-code application, then the indicated line
number is a T-code row, and the line number of the line marker itself is the corresponding
P-code row. The only exception is the very first line marker which simply specifies the
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name of the T-code input file.
Figure 4.6 shows an example which shows how entries in the mapping table correspond

directly to line markers. In this example, T-code row 4, for instance, belongs to the second
section and maps to P-code row 849, as 847 + (4 − 2) = 849. In contrast, there is no
mapping for P-code row 7, for instance, because 1 + (7 − 4) > 2, which is the start of the
next section.

The Debug stage provides the following function which determines the mapping
between T-code rows and P-code rows.

Function 4.1: map_t2p ::
T-Code -- the T-code application in concrete syntax

→ P-Code -- the preprocessed T-code application in concrete
syntax

→ MapTP -- T-code row ↔ P-code row

Both T-code and P-code are obtained from the output of the preprocess function, as
this functions actually is defined as follows:1

Function 4.2: preprocess′ ::
Path -- T-code application file

→ String -- preprocessor command line
→ Either -- either

[Error] -- a list of errors, or
(T-Code, P-Code) -- the contents of the file specified

by Path, and the output from the
preprocessor

As already mentioned, map_t2p assumes that the CPP has been used to turn T-code into
P-code. The reason why CPP keeps track of source line origins is that this information
is needed to generate debugging information for the GDB. As any reasonable C tool
chain entails a debugger, any preprocessor has to record the same mapping in one way
or another. We are therefore confident that adapting map_t2p to other preprocessors is
always possible.

4.2.2. Mapping P-code and E-code Rows

Being able to translate P-code rows to E-code rows and vice versa is a major capability of
the Core module. As Section 4.4 will elaborate on, this is, for instance, needed to turn
T-code breakpoints into E-code breakpoints and to determine the current T-code row from
an E-code backtrace (Section 8.2 of [129]). Both cases consider only rows that could
potentially become the current row. Simply stated, this concerns rows that contain either
a statement other than a compound statement or a null statement, or a declaration with an
initializer.

In contrast to the previous section, P-code rows and corresponding E-code rows do
not constitute a one-to-one mapping. Instead, a single P-code row can yield multiple
E-code rows for the following two reasons. First, the translation from threads to events
turns some input statements such as critical calls into a sequence of E-code statements (cf.
Section 3.5.4.5), and each statement tends to be put on a separate row by the printer. And

1The prime symbol indicates an update to the function.
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second, re-entrant critical functions are inlined into multiple thread execution function
(cf. Section 3.5.5.2). To cover all of these possibilities, the T-code compiler generates for
each P-code row a mapping as follows:

If the P-code row corresponds to an auxiliary function, then it maps to a single E-code
row. This is correct because auxiliary functions are not altered by the translation. If the
P-code row corresponds to a critical function instead, then it maps to a different list of
E-code rows for each thread calling that function. Also, rows containing a call to a yield
point function are flagged, as this information is needed by the Core module to trace the
execution of the T-code threads (Section 4.4.2). This leads to the following data structure:

Data 4.2: MapPE =
[( -- a list of tuples containing

Location, -- a code location, and
[E-Row] -- a list of E-code rows

)]

Data 4.3: Location =
P-Row -- a P-code row number
Maybe ThreadID -- a threadID or nothing
Boolean -- call to a yield point function?

The information in MapPE serves four purposes. First, for auxiliary functions, it can
be used to query the matching E-code row for a given P-code row. In this case, there
is no thread ID, the list of E-code rows contains only one element, and the Boolean
flag is always false. Second, for critical functions, it can be used to retrieve the list of
matching E-code rows for a given tuple of P-code row and thread ID. Third, it can be
used to obtain the E-code row for each call to a yield point function. And last, for a given
E-code row, it can be used to find the matching P-code row, if existent, and, if applicable,
the corresponding thread.

In order to determine this mapping, each translating step of the compiler pipeline has to
record which output statement originates from which P-code row. Also, the printer has to
log which statement was rendered to which row of the E-code. Merging this information
yields the required mapping from P-code rows to T-code rows.

The Location data type bridges the gap between P-code and E-code. While the
contained row number is a P-code row number, the Boolean flag marks calls to yield
point functions which only exist in the E-code. This means, if the flag is set, then the
corresponding list of E-code rows holds a single E-code row only, and that row contains a
call to a yield point function.

Collecting the debug information necessitates to extend the code representations used
within the pipeline. Section 4.2.2.1 therefore provides an update to the specifications
from Chapter 3. Likewise, the signature and the functionality of some pipeline functions
change as well, which is covered by Section 4.2.2.2. Also, the Debug stage adds a new
function which generates the required mapping. Section 4.2.2.3 completes the discussion
with a small, illustrative example.

4.2.2.1. Representations

The compiler pipeline makes use of two distinct representations, the abstract syntax (cf.
Appendix A) and the intermediate representation (cf. Section 3.5.1). In order to collect
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debugging information while processing, the compiler pipeline makes use of the fact that
most AST nodes can be attributed with user-defined values.

The parse function returns an AST which is attributed with node infos (NI).

Data 4.4: NodeInfo =
Path -- the file name of the original source

file or header
(T-Row, T-Column) -- start of the annotated node in the

source file or header
(T-Row, T-Column) -- end of the annotated node in the source

file or header

The parser, which is a third-party implementation, actually fails to adequately determine
column numbers in the presence of macro names, which is why we do not use this
information. Also, the reported row numbers are T-code row numbers, which is what a
suspected user of that library would probably expect. For our purpose, we are, however,
interested in the P-code row numbers instead, as the Front-end interface operates on them.
Nevertheless, the compiler pipeline consistently uses T-code row number until the Debug
stage converts them into P-code row numbers via MapTP.

Early in the compiler pipeline, node infos are turned into enriched node infos (ENI),
which come in three flavours. First, for AST nodes that belong to auxiliary functions,
the enriched node info is just a wrapper around a node info. This is a trivial case and is
thus not discussed any further. Second, some AST nodes are generated without having
an origin in the T-code and are thus attributed by a special undefined node info (UNI).
Examples of such nodes include T-stacks, declarators of thread execution functions, the
computed goto statement from the prologue of these functions, etc. Finally, for AST
nodes that belong to critical functions, the enriched node is defined as follows:

Data 4.5: EnrichedNodeInfo =
T-Row -- start row of the annotated node
ThreadId -- the ID of the thread whose execution function

contains the annotated node
Boolean -- call to a yield point function?

The latter two values are set by the threads function, while the first one is kept
up-to-date by each involved stage of the compiler pipeline.

The intermediate representation is also able to attribute its nodes. When generating the
IR, the basic_blocks function copies the ENI from the corresponding AST node to the
IR node. Likewise, the threads function attributes each AST node with the ENI of the
corresponding IR node. By these means the debugging information is conserved when
translating from abstract syntax to IR and vice versa. Stages of the compiler pipeline that
operate on the IR have therefore no concern with debugging information.

4.2.2.2. Pseudo Functions

The desugar function is the first stage of the compiler pipeline that actually replaces
statements and introduces new ones. It therefore is the first function whose signature
changes to consider debugging information.
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input pattern attributed output
while (condition) } label1UNI: ;
body ifeni(while) (!(condition))

} gotoeni(while) label1;
body

gotoeni(while) label1;
switch (expression){ int var1 =eni(switch) expression;
case const1: ifeni(switch) (var1 == const1)
body1 gotoeni(switch) label1;
default: gotoeni(switch) label3;
body2 label1UNI: ;

} body1

label2UNI: ;
body2

label3UNI: ;

Figure 4.7.: Tracking row numbers: eni is a function that turns the node info of its
parameter into an enriched node info by copying the row information.

Function 4.3: desugar′ ::
[CBlockItem NI] -- the body of a critical function

→ ( -- a tuple consisting of
[CStatement ENI], -- the translated body of the input

function, and
[Variable] -- the list of new IR variables

)

In addition to its basic functionality, desugar turns NI attributes into ENI attributes
with adequate row information. This becomes explicit by the type variables NI and ENI
that complete the polymorphic AST types.

Figure 4.7 augments two examples of substituted statements from Table 3.3 by showing
how the new statements are attributed. A basic statement label is attributed by the UNI,
because it has a null statement attached. This row is therefore never really executed, so
tracking it is not necessary. All the other new statements are attributed with the T-row
number of the AST node which they substitute. Likewise, goto statements that substitute
continue or break statements are attributed with the row number of the latter.

If short_circuit replaces a statement that contains a short-circuit evaluation with a
list of statements that emulate that behavior, the latter are attributed with the ENI of the
former.

Function 4.4: short_circuit′ ::
[CStatement ENI] -- the body of a critical function

→ ( -- a tuple consisting of
[CStatement ENI], -- the translated body of the input

function, and
[Variable] -- a list of new IR variables

)
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If normalize replaces a statement that contains a critical call with a list of statements
that contain critical calls only in normal form, the latter are attributed with the ENI of the
former.

Function 4.5: normalize′ ::
[CStatement ENI] -- the body of a critical function

→ ( -- a tuple consisting of
[CStatement ENI], -- the translated body of the input

function, and
[Variable] -- a list of new IR variables

)

As described in Section 3.5.4.5, the basic_blocks function introduces, among other
things, explicit return nodes if there is a code path in the input function that reaches
the closing brace before reaching a return statement. These explicit return nodes will
become return or goto statements in the E-code, and the question is, which P-code
row should be assigned to them. The obvious choice, which is also implemented by the
GDB, is to use the P-code row that contains the closing brace. Therefore, basic_blocks
receives an extra argument, which is an ENI pointing to the row of that brace.

Function 4.6: basic_blocks′ ::
[CStatement ENI] -- the body of a critical function

→ ENI -- referring to the function’s closing
brace

→ Body -- the translated body of the function

The threads function both turns IR nodes (T-code) into AST nodes (E-code) and
creates additional AST nodes. Those additional nodes are always attributed by the UNI,
while nodes that originate from IR nodes are attributed with the ENI of the corresponding
IR nodes.

Function 4.7: threads′ ::
[Function] -- the list of critical functions in IR

→ [CDeclaration NI] -- the E-stacks
→ [CFunctionDef ENI] -- the thread execution functions

Each CFunctionDef is the thread start function of one thread, and threads attributes
each of its child nodes with the thread ID of the corresponding thread. Also, the AST
nodes that represent calls to yield point functions are flagged.

The print function turns the abstract syntax of E-code into its concrete syntax. In
addition to that, it also collects a printer log.

Function 4.8: print′ ::
CTranslationUnit ENI -- an E-code application in ASR

→ ( -- a tuple consisting of
E-Code, -- the E-code application in CSR,

and
PrinterLog -- the printer log

)
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Data 4.6: PrinterLog =
[( -- a list of tuples containing

ENI, -- (T-Row, ThreadID, Boolean), and
E-Row -- the E-code row number

)]

The attributes of all AST nodes are either the UNI or they are an ENI that refers to
the T-code row from which that node originates. In the latter case, the print function
associates the E-code row to which an AST node was rendered with the ENI of that node.
While the printer is a third-party implementation, we had to extend it to actually support
logging. Section 5.1.3.2 describes the details.

Finally, the Debug stage provides a function that turns the printer log into a mapping
from P-code rows to T-code rows. It uses MapTP to translate the T-code rows of the
enriched node infos of the printer log to P-code rows.

Function 4.9: map_p2e ::
PrinterLog -- the printer log

→ MapTP -- T-code row ↔ P-code row
→ MapPE -- P-code row ↔ E-code row

4.2.2.3. Example

Figure 4.8 shows a small example that includes the re-entrant function c, the auxiliary
function f, the blocking function b and the two thread start functions s1 and s2. Just like
Figure 3.6, this example omits implementation details like the applied scheme of unique
names.

For instance, P-code row 6 is mapped to various E-code rows. This is because, first,
the function c is re-entrant and is thus embedded into both thread execution functions.
And second, this is because row 6, just like row 9 and 12, contains a critical call, which
leads to a sequence of E-code rows. In each case, the single row that contains the call to
the yield point function b is flagged. The mapping for the rows 7, 10, 13 is caused by the
explicit return nodes added by the basic_blocks′ function.

The same is, however, not done for row 4, as it belongs to an auxiliary function. As
already mentioned at the beginning of this chapter, our current compiler pipeline does not
extend its functionality towards auxiliary functions, so the necessary analysis to identify
implicit return statements is not performed for them. Instead, the Back-end simply
wraps the NI of each AST node that could become part of the current row into an ENI.
This leads to the mapping between the P-code row 3 and the E-code row 25.

4.2.3. Mapping Variables

Figure 4.8 also shows how local variables of the P-code become global variables in the
E-code. If, for instance, the current row is 6 and the current thread is the one of s1,
then the P-code expression i refers to the E-code expression tstack_s1.frames.c.i.
Similar translations are necessary for E-stack variables as well as function-static variables,
which is why the T-code generates an according translation map.
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1 __attribute__((tc_block)) void b(int i);
2 int f(int i) {
3 return i + 1;
4 }
5 void c(int i) {
6 b(f(i));
7 }
8 __attribute__((tc_thread)) void s1() {
9 c(23);

10 }
11 __attribute__((tc_thread)) void s2() {
12 c(42);
13 }

(a) P-code

Location
PRow ThreadID Boolean [ERow]

3 n/a f 25
6 0 f 37, 38, 40
6 0 t 39
7 0 f 42
9 0 f 31, 32, 33

10 0 f 35
6 1 f 54, 55, 57
6 1 t 56
7 1 f 59

12 1 f 48, 49, 50
13 1 f 52

(b) mapping

1 typedef struct {
2 void * cont;
3 int i;
4 } tframe_b_t;

≈ ≈
24 int f(int i) {
25 return i + 1;
26 }
27 void thread_0(void* cont)
28 {
29 if (cont) goto* cont;
30 s1_1: ;
31 tstack_s1.frames.c.i = 23;
32 tstack_s1.frames.c.cont = &&s1_2;
33 goto c_1;
34 s1_2: ;
35 return;
36 c_1: ;
37 tstack_s1.frames.c.frames.b.i = f(tstack_s1.frames.c.i);
38 tstack_s1.frames.c.frames.b.cont = &&c_2;
39 b(&tstack_s1.frames.c.frames.b);
40 return;
41 c_2: ;
42 goto * (tstack_s1.frames.c.cont);
43 }
44 void thread_1(void* cont)
45 {
46 if (cont) goto* cont;
47 s2_1: ;
48 tstack_s2.frames.c.i = 23;
49 tstack_s2.frames.c.cont = &&s2_2;
50 goto c_1;
51 s2_2: ;
52 return;
53 c_1: ;
54 tstack_s2.frames.c.frames.b.i = f(tstack_s2.frames.c.i);
55 tstack_s2.frames.c.frames.b.cont = &&c_2;
56 b(&tstack_s2.frames.c.frames.b);
57 return;
58 c_2: ;
59 goto * (tstack_s2.frames.c.cont);
60 }

(c) E-code

Figure 4.8.: Mapping P-code rows to E-code rows: A small example with re-entrant and
auxiliary functions.
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Data 4.7: VarMap =
[( -- a tuple list consist. of

(P-Row, P-Row), -- the first and the last row of a
scope, and

[Rename] -- a list of re-namings of variables
)]

Data 4.8: Rename =
( -- a tuple consisting of

String, -- the P-code name, and
FQN -- the E-code “name”
Maybe ThreadID -- possibly a corresp. thread

)

The first stage of the compiler pipeline that deals with variables is the collect function.
It not only removes declarations from the function body, but it also renames them to
guarantee their uniqueness. To enable scope-based queries in the T-code debugger, the
function collect additionally augments a newly created variable with information about
the scope of its visibility.

Data 4.9: Variable′ =
String -- original name
CDecl -- renamed declaration
[Flag] -- flags
(T-Row, T-Row) -- scope (first row, last row)

The scope information is taken from the NI of the respective current surrounding
CCompound statement, which is why it is represented as T-code rows rather then P-code
rows. Just as in Section 4.2.2, the Debug stage will determine the corresponding P-code
rows later.

While subsequent stages of the compiler pipeline introduce additional variables, none
of them actually exists in the original T-code, which means they will not be queried by the
user of the T-code debugger. So, the next involved stage is the Back-end which introduces
the E-code variables. For each variable that has been gathered by collect, it records its
so-called fully qualified name (FQN) in the E-code.

The FQN of a variable is a CExpression in concrete syntax that addresses that variable
uniquely. For example, the FQN of a critical variable could be tstack_s1.frames.c.i,
while the FQN of a non-critical variable could be estack.wait.now (cf. Figure 3.6).
These two examples show that the same variable can have multiple FQNs, one for each
thread that invokes the function that declares that variable. Finally, the FQN of a function-
static variable simply is its unique name, as the Back-end generates identifiers with file
scope for them. In this case, there is no associated thread, as all threads see the same
variable instance (cf. Section 3.3.1).

More precisely, a minor function of the Back-end stage takes care of function-static
variables, while local variables are handled by threads.
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Function 4.10: threads′′ ::
[Function] -- critical functions

→ [CDeclaration NI] -- E-stacks
→ ( -- a tuple consisting of

[CFunctionDef ENI], -- thread exececution functions,
and

[(Variable, FQN)] -- variables and their
corresponding FQNs

)

With this information at hand, the Debug stage can finally create the mapping for
variables.

Function 4.11: map_var ::
MapTP -- the mapping between T-code and P-code

rows
→ [(Variable, FQN)] -- the list of variables and their

corresponding FQN
→ VarMap -- T-code variable ↔ E-code FQNs

4.2.4. Debugging Information

The debug information shared between T-code compiler and T-code debugger actually
contains additional auxiliary information. This entails references to both the T-code and
the E-code file, the P-code itself and information about the T-code threads.

The T-code file is used by the debugger front-end to retrieve the T-code in order to
display it to the user. Likewise, the P-code, as returned by the preprocess function, is
intended to be displayed by the front-end. The E-code, in contrast, should not be shown
to the user, because the purpose of the T-code debugger is exactly to hide the details of
the E-code abstraction level. Nevertheless, when developing the debugger itself, seeing
the E-code is very useful, which is why we left a reference to it in the debug information.
The data types MapTP, MapPE, and VarMap have been covered by the previous sections.
What is left is the information about the thread functions. This information is needed to
trace the execution of the threads, as Section 4.4.2 will explain. From this information
the T-code debugger can additionally deduce the number of threads and their IDs.

Data 4.10: DebugInfo =
Path -- the T-code file
String -- the P-code
Path -- the E-code file
MapTP -- T-code row ↔ P-code row
MapPE -- P-code row ↔ E-code row
VarMap -- T-code variable ↔ E-code FQNs
[( -- a list of tuples consisting of

String, -- name of a thread start function
String -- name of the corresponding thread execution

function
)]
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4.3. Interfacing the E-code Debugger

The Back-end interface serves the communication between the Core module and the
respective back-end. As already mentioned, this interface is heavily influenced by the
GDB back-end. Nevertheless, the Back-end interface is conceptually agnostic to the
respective implementation, as it only uses basic features that any other back-end should
be able to provide as well.

As described in Section 4.1, the user has to be able to interrupt the execution of the
inferior at any point in time. Since this entails asynchronism, the Back-end interface con-
sists of a set of commands and events. Similar to the Front-end interface, the commands
and events can be grouped into execution, breakpoints, and evaluation of expressions.

Executing the back-end and the inferior involves the commands setup, run, interrupt,
continue, and shutdown. While the setup command is issued by the Core module
on start-up, all the other commands are directly related to the equally named Front-end
commands. So, the overall state machine of the back-end resembles the state machine of
the Core module as depicted in Figure 4.3. All of these functions are synchronous.

Also similar to the Front-end interface, breakpoints are identified by unique numbers.
When a new breakpoint is set, the set_breakpoint function expects a location and
returns the breakpoint number. There are various possibilities to specify a location, among
which only file name plus function name and file name plus row number are currently
used. The function remove_breakpoints expects a possibly empty list of breakpoint
numbers which are then removed. The Back-end interface provides no function to query
the list of breakpoints. Instead, the Core module is expected to keep track of the added and
removed breakpoints by itself. Whenever the control flow of the inferior hits a breakpoint,
a BreakpointHit event containing the number of the respective breakpoint is sent to
the Core module. As the corresponding state transition from running to stopped is
asynchronous, it may interleave with invocations of the interrupt command.

The function evaluate takes a C expression in concrete syntax and returns either an
error or the value of that expression as a string. As already mentioned in Section 4.1.4,
evaluating expressions is sensitive to the current state of the execution, particularly
the current row. In order to make this information accessible to the Core module, the
Back-end interface provides the backtrace function which returns the current call stack.

Data 4.11: Stack =
[Frame] -- the list of stack frames

Data 4.12: Frame =
String -- the name of the respective function
Path -- the name of the respective source file
E-Row -- the source code row

The head of the list of frames is the current stack frame. The source code row of that
frame is the current row, while the rows of the other frames are the respective row of the
function call which caused the previous frame of the list.
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4.4. The Core Module

The major duty of the Core module is to map E-code run-time information back to the
T-code abstraction. Technically stated, it uses the debug information from Section 4.2
and the Back-end interface from Section 4.3 to implement the Front-end interface as
described in Section 4.1. Its central data structure is the following.

Data 4.13: Core =
State -- waiting, running, stopped, or shutdown
[Breakpoint] -- the list of back-end breakpoints
[(Int, Int)] -- mapping from front-end to back-end breakpoint

numbers
[Int] -- the global thread filter
[Thread] -- the list of T-code threads

The transitions of the state have been described in Figure 4.3 and the corresponding
front-end commands implement just that state machine. The only corner case is the
interrupt command as it might interleave with a BreakpointHit event from the back-
end, but handling this case is trivial. The commands and the three data members that
involve breakpoints are described in Section 4.4.1. Section 4.4.2 explains how the Core
module tracks the execution of the T-code threads by observing the execution of the
corresponding thread execution functions. Next, Section 4.4.3 investigates how arbitrary
T-code expressions can be evaluated.

Most parts of the Core module involve querying the MapTP, the MapPE, and the VarMap
data structures. Although the involved algorithms are not always straight forward, they
are still rather intuitive and not very interesting by themselves. We therefore do not cover
them here but refer to the source code distribution of our work for details.

4.4.1. Breakpoints

The Core module distinguishes three types of breakpoints. First, a front-end breakpoint
is a breakpoint that has been added via the Front-end interface. Second, a back-end
breakpoint is a breakpoint that is added via the Back-end interface. And third, an internal
breakpoint is a back-end breakpoint that is not a front-end breakpoint. Section 4.4.2 will
make use of these to trace the execution of the T-code threads.

While there is one back-end breakpoint for each front-end breakpoint, both types of
breakpoints have an independent set of unique numbers. This is necessary to maintain
a linearly increasing, and thus intuitive, numbering of front-end breakpoints despite of
possible internal breakpoints. Therefore, the Core module maintains not only a list of
back-end breakpoints but also a mapping from front-end breakpoint numbers to back-end
breakpoint numbers.

The implementation of the front-end breakpoint commands is straight forward, as it
basically requires only to translate the P-code row to an E-code row and add the back-end
breakpoint. Implementing the additional analysis for unreachable breakpoints is possible,
as the MapPE data structure lists the thread IDs of all threads whose control flow might
execute a given E-code row. If a BreakpointHit event is received, the reaction depends
on the involved thread filters. If the current thread is included in the breakpoint’s thread
filter as well as in the global thread filter, then the state of both that thread and the Core
transitions to stopped. Otherwise, the continue command is issued to the back-end,
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i.e., this breakpoint is effectively ignored.

4.4.2. Thread Execution

In order to keep track of the execution of the T-code threads, the Core module installs a
series of internal breakpoints. First, one for the entry of each thread execution function
via locations based on file name plus function name. And second, one for each call of a
yield point function via locations based on file name plus row number. The list of yield
point functions is part of the debug information, and the list of all calls to yield point
functions can be extracted from the MapPE field of the debug information.

Every time a breakpoint of the first category is hit, the Core changes the state of the
corresponding thread from either waiting or blocked to running (cf. Figure 4.4).
Likewise, every time a breakpoint of the second category is hit, the Core changes the
state of the corresponding thread from running to blocked. In any case, the continue
command is issued to the back-end to resume the execution of the inferior, as these
internal breakpoints are not supposed to become visible to the user. The state of a thread
is stored in the following data type.

Data 4.14: Thread =
Int -- the thread ID
String -- the thread start function
State -- waiting, running, blocked, or stopped
Maybe P-Row -- the current row if existent

Each time the status of a thread changes, the front-end is informed to make this change
visible to the user, while the name of the thread start functions is supposed to help the user
to identify the individual threads. The P-code row is updated whenever the thread changes
its state to blocked or stopped. The current row is thereby obtained by querying the
current Stack from the back-end and translating the source code row of the top-most
Frame. As already explained in Section 4.2.2, this fails if the respective E-code row is not
included in the mapping. By construction, the only situation where this can happen is if
the execution is interrupted. Then, either all threads are blocked, or one thread is indeed
running but its current row is still somewhere in the prologue of the thread execution
function, i.e., the thread has not really resumed yet.

4.4.3. Evaluating Expressions

Evaluating arbitrary T-code expressions requires a series a consecutive steps. As most
groundwork is already established, the Core module overall only correlates the right
sources of information with each other.

First of all, as already explained in Section 4.1.4, evaluating expressions depends on
the current row. The Core module therefore determines it by querying backtrace and
translating the source code row of the top-most Frame from E-code to P-code. Next, it
tries to find a scope in the VarMap data structure that encloses the current row. If that fails,
then the current row is not within a critical function, which means the expression can be
handed over to the back-end unchanged. Otherwise, the variables within the expression
have to be translated.

The Core module therefore uses a sub-component of the parser to turn the given
expression from concrete syntax to abstract syntax. This syntax tree can now be walked
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to find and replace all sub-expressions that are in fact variables. Given the current thread,
there is at most one matching FQN for each of these variables in the VarMap data structure.
If there is one, the variable is replaced by a new variable whose “name” becomes that
FQN. If there is none, then, by construction, the variable is a global variable and therefore
needs no translation. A sub-component of the printer is used to turn the new expression
from abstract syntax back to concrete syntax. While, technically, a FQN most of the
time is not a valid identifier, the printer is not confused by this and generates a proper
expression string nevertheless. This string is finally handed over to the back-end for
evaluation.

Evaluating a T-code expression can fail for three different reasons. First, if there is no
current row, then the evaluation can obviously not be performed. Second, if the expression
is syntactically ill-formed, the parser fails to interpret it. And third, if the expression is
semantically wrong, the back-end fails to evaluate the translated expression. Examples
of the latter include expressions that involve non-existent variables, or performing array
indexing on a variable that has no array type, etc. Any of these cases is reported to the
front-end as it is up to the user to resolve the problem.

4.5. Summary

In this chapter we presented the second goal of our thesis: fault diagnostics for our
thread abstraction. Starting from the overall setup of T-code and E-code compilers and
debuggers, we explained the architecture of the T-code debugger.

We addressed the user interface, covering the basic features that our debugger provides.
Subsequently, we explained which information the T-code debugger needs from the
T-code compiler, and how the latter had to be extended to actually collect this information.
We also specified the interface to the back-end which communicates with the E-code
debugger. Finally, we discussed how the previously introduced components are integrated
in order to actually perform the back-mapping from E-code run-time to T-code source
code.

Overall, the contribution of this chapter was to demonstrate how fault diagnostics
can be supported for a compiler-assisted programming abstraction. To focus on this,
our debugger heavily imitates known debugger tools and provides only a limited, but
conceptually complete feature set.
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5. Prototypes

This chapter provides a documentation of core parts of the two prototypes that we have
developed in the context of this work. Providing a complete documentation of the
implementations is beyond the scope of this thesis. Instead, we focus on the following
three aspects and refer to the source code distribution [6] otherwise.

First, we explain the respective overall architecture and provide references to the
sections that cover the concepts of the individual modules. Second, we investigate major
interfaces that are necessary to extend the functionality of the prototypes and port them
to different platforms. And finally, we explain details of a few selected problems with
non-trivial solutions that we encountered during the implementation of the prototypes.
Section 5.1 investigates Ocram, the T-code compiler prototype, and Section 5.2 covers
Ruab, the T-code debugger prototype. Both sections are structured according to these
three aspects.

The source distribution involves various programming languages, namely Haskell [4], C
[64], Java [45], JavaScript [65], Python [133], and Jinja2 [114]. Some of these languages
are required by the given environment of our work, while others reflect our subjective
choice of the right tool for the given problem. Ocram and Ruab are implemented in
Haskell, because Haskell’s expressiveness facilitates quick evaluation of ideas and rapid
development of prototypes (cf. Section 2.3). C is obviously used to implement the various
case study applications of the evaluation in Chapter 6. Java is the language in which Cooja
[150], the network simulator used for the evaluation, is written. Consequently, our Cooja
plugin, which collects various measurements during the evaluation, is written in Java as
well. The individual experimental runs are scripted by small JavaScript snippets which are
executed by Cooja via Rhino1, a Java-based open-source implementation of JavaScript.
Python is used to implement all kinds of infrastructure scripts, such as verification scripts
for the evaluation and PAL generator scripts. The latter make in particular use of Jinja2, a
template engine for Python. Apart from the short introduction to Haskell in Section 2.3,
explaining all these languages goes beyond the scope of this thesis and we refer to the
cited documentations instead.

5.1. Ocram: T-code Compiler

This section covers three aspects of the Ocram, our T-code compiler prototype. The first
aspect concerns the overall software architecture and is discussed in Section 5.1.1. The
second aspect in 5.1.2 addresses key interfaces of Ocram. And finally, Section 5.1.3
highlights a few challenges of the implementation.
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module section description
Analysis 3.5.3 perform static analysis

CallGraph 3.5.3 call-graph analysis and query functions
FGL n/a extensions to the Functional Graph Library
Filter 3.5.3 enforce global and critical constraints
Types n/a data types of the Analsysis module

Backend 3.5.5 generate E-code
EStack 3.5.5.1 generate E-frames and E-stacks
ThreadExecutionFunction 3.5.5.2 generate thread execution functions
TStack 3.5.5.1 generate T-frames and T-stacks
Utils n/a common utility functions

Debug 4.2 compile debug information
DebugInfo 4.2 map_t2p, map_p2e, map_var, etc.
Enriched 4.2.2.1 ENI definition and utility functions
Types n/a data types of the Debug module

Intermediate 3.5.4 determine the IR
BooleanShortCircuiting 3.5.4.3 perform explicit short-circuit evaluation
BuildBasicBlocks 3.5.4.5 abstract syntax to to IR
CollectDeclarations 3.5.4.1 separate declarations from statements
CriticalVariables 3.5.4.7 distinguish non-critical variables
DesugarControlStructures 3.5.4.2 substitute statements with basic statements
Filter 3.5.4.8 enforce additional constraints
NormalizeCriticalCalls 3.5.4.4 establish normal form of critical calls
Optimize 3.5.4.6 perform basic optimizations
Representation 3.5.1 definition of the IR data types

IO n/a perform non-pure I/O operations
Main n/a integration
Names n/a naming schemes of unique names
Options n/a process command line options
Print 5.1.3.2 pretty printing with printer log
Query n/a query functions for AST nodes
Ruab 5.2.2 interfacing Ruab
Symbols n/a retrieve the identifier of an AST node
Text n/a render errors
Util n/a utility functions

Table 5.1.: The Ocram architecture: The responsibilities of the various modules and
sub-modules in alphabetical order.
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Main

Analysis BackendIntermediate Debug

IO

Print Ruab

Figure 5.1.: The Ocram modules: We only show top-level modules and omit dependencies
to infrastructure modules.

5.1.1. Architecture

This section provides an overview of the architecture of Ocram. Table 5.1 provides the
complete list of Haskell modules that constitute the T-code compiler, while Figure 5.1
shows an excerpt of the dependency graph of these modules. The concepts behind most
modules are described by the referenced sections. Due to the expressiveness of Haskell,
the difference between these descriptions and the actual implementation is manageable.
Given the background of the these sections, it should therefore be possible to understand
the code, given a basic familiarity with Haskell, of course. We therefore refer to the
source distribution of this thesis and do not go into further details here. In the following,
we will say a few words about the modules whose concepts are not covered in other
sections.

The Functional Graph Library (FGL)2 provides data structures and algorithms for
inductive graphs, i.e., integer nodes with directed edges, both attributed with user-defined
values. The Analysis module makes use of the FGL to represent the call graph and defines
the appropriate data types in the Types sub-module. While the FGL includes several
helpful graph algorithms like breadth first search and spanning trees, the Analysis module
requires a few more. The FGL module therefore particularly implements a loop detection
algorithm which is used by the critical_constraints function to detect recursive
critical functions.

The IO module hosts all operations that involve input or output. That is to say, all the
other modules of Ocram contain only pure functions. The non-pure functions of the IO
module read input files, invoke external programs, and write output files.

The Names module defines naming schemes used by the various stages of the compiler
pipeline. The examples in this thesis do not consider these schemes for clarity. And in fact,
due to the T-code debugger which hides E-code details, the only thing that matter is that
new identifiers are guaranteed to be unique. As already mentioned in Section 3.5.3, the
current implementation uses a reserved prefix to define its own name space of identifiers.
Within this name space, each stage defines its own subspace to avoid conflicts with

1https://developer.mozilla.org/en-US/docs/Rhino
2http://hackage.haskell.org/package/fgl
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1 runCompiler :: IO ()
2 runCompiler = do
3 argv <- getArgs
4 prg <- getProgName
5 cwd <- getCurrentDirectory
6
7 opt <- exitOnError "options" $ options prg cwd argv
8 (tcode, pcode, tAst) <- exitOnError "parser" =<< parse opt
9 ana <- exitOnError "analysis" $ analysis tAst

10
11 ir <- exitOnError "front-end" $ ast_2_ir ana
12 let (eAst, pal, vm) = tcode_2_ecode ana ir
13 let (ecode, pl) = render_with_log eAst
14 let di = create_debug_info opt tcode pcode ana vm pl ecode
15
16 _ <- exitOnError "output" =<< generate_pal opt ana pal
17 _ <- exitOnError "output" =<< dump_ecode opt ecode
18 _ <- exitOnError "output" =<< dump_debug_info opt di
19 _ <- exitOnError "output" =<< dump_pcode opt pcode
20
21 return ()
22
23 exitOnError :: String -> Either [Error] b -> IO b

Figure 5.2.: The Ocram Main module

others. And finally, each stage numbers new identifiers consecutively, which overall
yields distinct unique names.

The Options module defines and processes command line options of the Ocram exe-
cutable. Possible options concern the paths to input and output files, external tools like
the preprocessor and the PAL generator, etc. Invoking the Ocram executable with “–help”
prints a documented list of all possible options.

The Query module provides query functions for AST nodes. One function, for instance,
returns the parameter list of a function definition. Another function identifies thread start
functions via function attributes. Similarly, the Symbols module provides a family of
functions that determine the identifier behind a given AST node. This could be a function
definition, a variable or an external declaration, for instance. Both of these modules
contain functions which could be of general interest, which is why we are planning to
contribute them back to the Language.C library.

The Text module defines the text-based output interface of the Ocram compiler. It
particularly provides functions to format compiler errors consistently to achieve a user-
friendly description of the encountered problem. And finally, the Util module contains
various utility functions used throughout the project.

Most modules and sub-modules are paired with an extensive set of unit and integration
tests. Theses tests are based on the HUnit3 and the test-framework4 libraries. Invoking
the Ocram executable with “–test” executes the tests while appending “–help” prints a list
of possible command line options to configure their execution.

The Main module integrates all the other modules into the actual Ocram application.
Figure 5.2 shows an excerpt, for which Section 2.3.2 actually provides (almost) all
required knowledge.

The right hand side of a left arrow is a monadic value; in this case of the I/O monad
(lines 3–11, 16–19). The right hand side of an equal sign is, in contrast, a pure value,
which is assigned to a pattern of names via let (lines 12–14). Functions that can fail have

3http://hackage.haskell.org/package/HUnit
4http://hackage.haskell.org/package/test-framework
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1 schroot -c contiki -p -- \
2 msp430-gcc -mmcu=msp430x1611 \
3 -DCONTIKI=1 -DUIP_CONF_IPV6_RPL \ # more Contiki-specific macro definitions
4 -I. -I$(CONTIKI)/platform/sky -I$(CONTIKI)/cpu/msp430 \ # more include paths
5 -DOCRAM_MODE \
6 -E -o -

Figure 5.3.: Preprocessing the Contiki applications: Preprocessing is highly dependent
on the environment.

a return type of Either [Error] b for any given b, sometimes as a pure value (lines 7,
9, 11) and sometimes as a monadic value (lines 8, 16–19). In any case, exitOnError
takes the result of such functions, fails the compiler in case of a Left [Error] and
wraps the Right b value into the I/O monad otherwise. As the I/O monad executes
sequentially, this makes the compiler fail as soon as the first stage of its pipeline fails.
The operator =<< is same as >>=, but with arguments interchanged. This is how monadic
values are passed to exitOnError. Pure values are, in contrast, passed to exitOnError
via the operator $, which is a simple function application with low precedence, thus
saving a few braces. The output functions return either a list of errors or unit, which is
why the left-hand sides of lines 16 to 19 discard these values via the wild-card pattern _.

When we abstract from all these details, the general structure of lines 3 to 19 is the
same: the names on the left-hand sides are bound to the values of the right-hand sides.
Following the usage of those names reveals the data flow of the Ocram compiler. For
example, line 11 invokes the Front-end to receive the intermediate representation of the
T-code application. The result value (ir) is then passed to the invocation of the Back-end
in line 12. The result of this function is the AST of the E-code (eAst), the PAL footprint
(pal), and the VarMap (vm). These values are in turn used at later stages of the pipeline.

This completes the presentation of the software architecture of Ocram. Please consult
our source code distribution [6] for more details.

5.1.2. Interfaces

This section addresses key interfaces of the Ocram architecture that are required to either
extend or port the compiler. Section 5.1.2.1 documents the interface to the external
preprocessor that turns T-code to P-code. Next, Section 5.1.2.2 specifies the interface to
the external PAL generator script. And finally, Section 5.1.2.3 addresses the inclusion of
additional optimization passes into the compiler pipeline.

5.1.2.1. Preprocessor

The Parser stage of the compiler pipeline depends on an external C preprocessor to turn
T-code into P-code. This section explains the expected interface.

The command line that invokes the preprocessor is passed to Ocram as a command line
option. The preprocess function of the Parser stage reads the T-code application from
the file system and passes it to the standard input of a subprocess as specified by the given
command line. The resulting P-code is expected on the standard output of this subprocess.
Thus, a minimal command line for the GCC would be “gcc -E -o -”, for instance.

Usually, things are, however, more involved. Figure 5.3 shows an excerpt of the
command line of the preprocessor that we use for the evaluation of the Contiki-based case
study applications. This example clearly shows why preprocessing is highly depending on
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#ifdef OCRAM_MODE
#define TC_RUN_THREAD __attribute__((tc_thread))
#define TC_BLOCKING __attribute__((tc_block))
#else
#define TC_RUN_THREAD
#define TC_BLOCKING
#endif

TC_BLOCKING _Bool sleep(int until);
TC_RUN_THREAD void blinky() {
//...

}

Figure 5.4.: Handling C tools without support for GNU C extensions: OCRAM_MODE is
only enabled when generating P-code for Ocram.

the environment. First, the schroot command performs a chroot system call to change
the root directory to the installation of the Contiki distribution. Therefore msp430-gcc
refers to the MSP430 port of the GCC [79] as installed in that distribution. By specifying
the right hardware architecture, the preprocessor automatically includes the correct system
headers. In addition, a series of Contiki-dependent macros are specified to perform various
configurations. Also, a long list of include directories is required to help the preprocessor
in finding the Contiki and the application headers.

While line 6 implements the required interface as described above, line 5 is part of a
technique that addresses C tools which do not support GNU C extensions. The idea is
to insert the function attributes that mark thread start functions and blocking functions
only when Ocram mode is enabled, and to enable that mode only when generating P-code
for Ocram. Therefore, all the other C tools are not confronted with function attributes,
which are a GNU C extension and might therefore not be supported. Figure 5.4 shows
the implementation of this technique.

As this example shows, preprocessing can be quite involved and it is hard to predict the
requirements of future platforms Ocram might be ported to. We have therefore chosen
the described generic input-output interface via external program to stay flexible.

5.1.2.2. PAL Generator Script

As Section 3.4.4 describes, Ocram depends on the PAL generator script, an external tool
that generates an application-dependent platform abstraction layer. This section specifies
the interface assumed by Ocram.

The PAL generator script is a program that reads the PAL footprint (cf. Section 3.5.5)
from standard input, takes the application footprint (cf. Section 3.4.4) as command line
arguments, and prints the PAL to standard output. More precisely, the PAL footprint is
a list of external declarations in concrete syntax that are supposed to be included in the
PAL right after all include directives. These external declarations define the E-frames,
the yield point functions, and the T-stack and T-frames of all critical functions that are
used by the application. The application footprint is given as one list of comma-separated
names of invoked yield point functions per thread. Figure 5.5 shows a Python stub that
implements this interface and assigns proper values to a set of environmental variables.

While almost any programming language is capable of generating the application-
specific PAL, we have chosen to use the Jinja2 template engine for the Contiki PAL
generator (cf. Section 3.4.4). Figure 5.6 shows the Contiki template in excerpts. In
this case, the Python stub from Figure 5.5 invokes the Jinja2 engine on that template,
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numberof_threads = len(sys.argv) - 1
thread_ypfs = map(lambda desc: desc.split(","), sys.argv[1:])
all_ypfs = set(itertools.chain(*thread_ypfs))
pal_code = sys.stdin.read()

sys.stdout.write(generate_pal())

Figure 5.5.: Stub of a PAL generator: Reading the PAL footprint from standard input and
parsing the program arguments to retrieve the application footprint.

configuring it to scan for directives within C comments (slash-asterisk); as opposed to
C++ style comments (slash-slash) which are considered as literal text. Overall, Jinja2
passes literal text unprocessed to the output, substitutes environmental variables, and
processes simple directives like if and for. Instantiating the template from Figure 5.6
results in a Contiki PAL similar to the one from Figure 3.8.

The first two lines of the Contiki template include general OS-specific headers, while
lines 4–7 include headers specific to the used yield point functions. After including all
required headers, line 9 inserts the PAL footprint. Subsequently, lines 11–16 define the
enumeration of yield point functions, while lines 18–25 define for each involved yield
point function a data structure that holds the respective context (which is in contrast
to Figure 3.8). Line 27–34 make use of these structures to create the ThreadContext
structure, which is instantiated once for each thread in line 36. Next, Line 39–44 add the
implementations of all involved yield point functions. As opposed to Figure 3.8, event
handler code for the various yield point functions is grouped into a single function (lines
46–54), which is invoked individually by the event handler of each process that drives the
execution of a T-code (lines 56–65). Line 66 and line 68 contain additional code which
creates the required process structures and registers them with the autostart mechanism of
Contiki. Please consult our source code distribution for details.

We think that a template engine like Jinja2 is a good choice to generate platform
abstraction layers. As already mentioned in Section 3.4.3, a PAL generator script for plat-
forms like TinyOS is, however, more involved. We have therefore chosen the previously
described generic input-output interface via external program described to allow for such
cases.

5.1.2.3. Optimizations

The main advantage of our compiler-assisted approach to cooperative threads is the
efficiency of the generated code. Future work might therefore focus on adding additional
optimization passes to the compiler pipeline. This section addresses this concern.

In general, there are two types of optimization passes: intra-procedural and inter-
procedural ones. The first type of optimization performs optimizations on single critical
functions while the second type performs optimizations on thread execution functions,
which contain multiple critical functions. Consequently, there are two different points of
the compiler pipeline where such optimizations should take place.

In order to make use of Hoopl [108], a rich implementation of the Lerner-Grove-
Chambers algorithm for interleaved analysis and transformation [75], optimizations
should operate on the IR, i.e., be functions from and to Function. Intra-procedural
optimizations can easily be inserted into the pipeline after the optimize function. Inter-
procedural optimizations, in contrast, could be performed right before the threads
function or might have to be weaved into it right before turning the T-code in IR to E-code
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1 #include "contiki.h"
2 // additional include directives
3
4 /*{ if "sleep" in all_ypfs }*/
5 #include "clock.h"
6 /*{ endif }*/
7 // additional conditional include directives
8
9 /* pal_code */

10
11 typedef enum {
12 YPF_none = 0,
13 /*{ for ypf in all_ypfs }*/
14 YPF_/*ypf*/,
15 /*{ endfor }*/
16 } YPF;
17
18 /*{ for ypf in all_ypfs }*/
19 typedef struct {
20 tframe_/*ypf*/_t* frame;
21 /*{ if ypf == "sleep" }*/
22 struct etimer et;
23 /*{ endif }*/
24 } ctx_/*ypf*/_t;
25 /*{ endfor }*/
26
27 typedef struct {
28 union {
29 /*{ for ypf in all_ypfs }*/
30 ctx_/*ypf*/_t /*ypf*/;
31 /*{ endfor }*/
32 } ctx;
33 YPF ypf;
34 } ThreadContext;
35
36 ThreadContext threads[/*numberof_threads*/];
37 ThreadContext* thread;
38
39 /*{ if "sleep" in all_ypfs }*/
40 void sleep(tframe_tc_sleep_t* frame) {
41 // implementation of the sleep yield point function
42 }
43 /*{ endif }*/
44 // additional yield point functions
45
46 static void* event_handler(process_event_t ev, process_data_t data) {
47 if (0) { }
48 /*{ if "sleep" in all_ypfs }*/
49 else if (thread->ypf == YPF_sleep) {
50 // handler for the sleep yield point function
51 }
52 /*{ endif }*/
53 // additional handlers for other yield point functions
54 }
55
56 /*{ for ypfs in thread_ypfs }*/
57 void thread_/*loop.index0*/(void*);
58 static char event_handler_thread/*loop.index0*/(
59 struct pt* process_pt, process_event_t ev, process_data_t data) {
60 thread = threads + /*loop.index0*/;
61 // implementation of the PAL event handler using the generic event_handler function
62
63 thread_/*loop.index0*/(continuation);
64 return PT_YIELDED;
65 }
66 // generate process structure
67 /*{ endfor }*/
68 // generate code to automatically start all processes

Figure 5.6.: The Contiki PAL generator template: Jinja directives are escaped by C
comments. The variables have been previously assigned by Figure 5.5.
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in ASR. One should, however, carefully check if the intended optimization is already
performed by the E-code compiler, because what is an inter-procedural optimization for
Ocram might in fact be an intra-procedural optimization for the E-code compiler.

Section 6.5 names a few optimizations of both types that we envision to be worthwhile
to implement because we expect them to increase the efficiency of E-code. Optimizing
auxiliary functions in Ocram makes little sense because the E-code compiler is likely to
already perform these optimizations. This is in contrast to critical functions, in which
case the E-code compiler might not be able to compensate for missed optimization
opportunities, as Section 6.5 also explains.

5.1.3. Implementation

This section highlights two interesting problems of the compiler’s implementation and
explains our solutions. Section 5.1.3.1 is concerned with traversing abstract syntax trees
without manually writing repetitive traversal code. And Section 5.1.3.2 addresses our
modifications to the printer to enable the collection of the printer log.

5.1.3.1. Traversal of Syntax Trees

Various steps of the compiler pipeline involve traversing a syntax tree either to query
information or to transform the tree. Each of these traversals involve a lot of “boilerplate
code”, i.e., repetitive code fragments which are technically required but reflect little
application-specific knowledge, if any.

In our case, the boilerplate code necessary to perform a top-down query of an ab-
stract syntax trees, for example, is to provide one function for each AST data type (cf.
Appendix A). Such a function would take a set of query functions, a log and an AST
node of the respective type. It would then apply any matching query function to the
node, merge the results into the log, call the respective function for each of the children
of the node in order, passing the query functions and the current log in each case, and
continuously update the log by merging the respective results and returning it finally.
Similarly, transforming a syntax tree involves functions that unpack a node, transform
its children in order and rebuild a new node with potentially new children. Usually, the
extent of boilerplate code compared to “real” code, which actually implements the query
or transformation logic, is huge. Worse, each kind of transformation or query tends to
require its own set of boilerplate.

In an object-oriented environment like Java this calls for the visitor pattern, and in fact
our first approach to this problem was to write a generic visitor-like framework to traverse
abstract syntax trees. The problem with this however is that the framework and the
traversal functions either have to be generic enough to accommodate all kinds of required
query and transformation operation or there has to be a distinct set of traversal functions
for each category of query and transformation operations. Unfortunately, both possibilities
are not satisfying. The first one imposes its full complexity even to the simplest query
and transformation operations, making them complicated and cumbersome to implement.
The second way, on the other hand, requires to re-implement similar traversal code again
and again, adding a lot of redundancy and opportunities for faults to the code.

In [71], Lämmel and Peyton Jones investigated this problem in the context of Haskell,
resulting in a library for “generic programming” called Data.Generics. The key idea is to
separate concerns by implementing the traversal of mutual recursive data types once in
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1 data Error = MainFunction | NestedFunction
2
3 global_constraints :: CTranslationUnit a -> [Error]
4 global_constraints = everything (++) (mkQ [] scanExtDecl ‘extQ‘ scanBlockItem)
5
6 scanExtDecl :: CExternalDeclaration -> [Error]
7 scanExtDecl (CFDefExt fd)
8 | name fd == "main" = [MainFunction]
9 | otherwise = []

10 scanExtDecl _ = []
11
12 scanBlockItem :: CCompoundBlockItem a -> [Error]
13 scanBlockItem (CNestedFunDef _) = [NestedFunction]
14 scanBlockItem _ = []

Figure 5.7.: Scrap your boilerplate: Scanning for global constraints.

a generic way and to provide “type extensions” and “generic traversal combinators” to
make use of this. A generic traversal combinator implements a specific traversal strategy
for a given tree of mutually recursive data types. To this end, it needs to know how such a
tree can in fact be traversed. This is encapsulated in the Data type class which must be
implemented by all involved data types. The traversal combinator additionally needs a
query or transformation function which is applied to the nodes of the tree and implements
the actual logic of the traversal.

As different tree nodes have different types, the query or transformation function must
be generic in some way. This is where the type extension functions come into play. A
type extension function takes a query or transformation function that is specific to one
data type and turns it into a generic function that takes an arbitrary type. The generic
function wraps the specific function, calling it if the real type of its argument happens to
match with the specific type, and performing a void operation otherwise. To facilitate this,
it is required that both the specific input type and the arbitrary output type implement the
Typeable type class, so that casting the types into each other is possible. Such a generic
function is suitable to be used by a generic traversal combinator.

While conceptually the Typeable and Data instantiations have to be implemented for
a given set of mutual recursive data types, the Glasgow Haskell Compiler (GHC) [85]
can automatically generate them via the DeriveDataTypeable language extension. The
Language.C library, which we make extensive use of in the prototypes, utilizes this fea-
ture by annotating all AST data type definitions with a deriving (Data, Typeable)
clause. This makes GHC generate all the boilerplate code, thus drastically simplifying
the implementation of query and transformation algorithms.

For example, Figure 5.7 shows a simplified implementation of the function global_constraints.
Given a translation unit, the function returns a possibly empty list of errors, which, for the
purpose of this example, can either be the presence of a main function or the definition
of a nested function. This is a query operation and we use the generic traversal com-
binator everything to perform a top-down, left-to-right traversal. The first argument
to everything is a function that is supposed to be used to merge the individual query
results. In this example this is the list concatenation function ++.

The first argument of the type extension function mkQ is a default value that is used to
perform possible void operations. Obviously, the empty list is the proper value for this.
The second argument of mkQ is a specific query function. In our example, we actually
want to use two distinct, specific query functions. We therefore use the extQ combinator
which takes care that the void operation is only performed if neither of the two specific
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functions is applicable. Overall, global_constraints is defined in point-free style,
i.e., the function is defined in terms of other functions without mentioning the function
argument.

The individual query functions can focus on their respective task, as the generics
framework makes sure to call them whenever a respective value is encountered during
traversal. For example, if an external definition is a function definition and the name of
that function is “main”, then this is obviously an error which is returned in a list (line
8). If the name is something else (line 9) or the external definition is not a function
definition (line 10), then there is no error, i.e., the returned error list is empty. Similarly,
if a compound block item is a definition of a nested function, then this is reported as an
error as well (line 13). If, in contrast, the compound block item is something else, then
no error is reported (line 14).

This example illustrates two things. First, Haskell’s pattern matching capabilities ease
the implementation of the Ocram compiler. And second, Data.Generics makes it very
simple to traverse trees of mutually recursive data types. This is particularly true in
combination with GHC which generates the boilerplate code automatically. We make use
of the generic programming technique in various places of the compiler and the debugger.

5.1.3.2. Printer Log

As explained in Section 4.2.2, the printer stage of the compiler pipeline memorizes for
each AST node that is attributed by an enriched node info (ENI) where in the output
document that node ended up being rendered to. While we use the pretty printer of the
Language.C library, we had to extend it to support collecting such a log. This section
describes how we did that.5

The pretty printer of the Language.C library itself depends on a second library,
Text.PrettyPrint, whose design and algorithms have been published to provide an example
for the capabilities of functional programming to facilitate software reuse [60]. The basic
idea is to separate the concern of structuring a document from the algorithms that render
documents in a nice way. Then, a client of the library can focus on the former aspect
while the library itself takes care of the latter. To this end, Text.PrettyPrint provides a
Doc data type which represents a document. A document is a recursive data structure,
forming a hierarchical document tree. Various helper functions turn basic values like
text and numbers into leaf documents, while various combinator functions layout partial
documents to form a surrounding parent document. The authors of the Language.C library
on their part provide functions that turn AST nodes into corresponding documents by
using these helper and combinator functions. The root document of an AST node such
as a CTranslationUnit is then passed to the render function that turns the Doc into
a String. The algorithms behind render try to respect the layout information of the
document to turn it into a nicely formatted string using one of currently four pre-defined
strategies.

To support logging we had to extend both Text.PrettyPrint and Language.C. Concerning
the former, we replaced the Doc data type with a polymorphic DocL data type which
expects a type parameter that implements the Monoid type class (cf. Section 2.3.2). The
idea behind this is to separate the concern of creating an empty log (mzero) and adding
new values to it (mappend) from the actual implementation of that log. A trivial monoid is
given by the empty set, represented in Haskell by the unit expression (). We make use of

5The basic idea originates from Simon Meier, Institute of Information Security, ETH Zurich.
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Main Frontend BackendCore

Actor

Figure 5.8.: The Ruab modules: We only show top-level modules and omit dependencies
to infrastructure modules.

this to maintain downwards compatibility by defining type Doc = DocL (). Usually,
however, the log is a list of some user-defined values, while mzero = [] and mappend
= (++).

A DocL is just like a Doc except that it can be augmented with a Logger. A logger is a
function that takes a position and returns a monoid value, i.e., a new log entry. Whenever
a document is rendered to the output string and has an attached logger, that logger is
invoked with the current position of the output string. The printer log starts with mzero
and is accumulated along the way by adding the values returned by the individual loggers
via mappend. The result of the render function is the output string as before plus the final
log.

Next, we changed the pretty print functions of the Language.C library that turn AST
nodes into documents. For our purpose, PrinterLog is a proper log type as it is a list of
pairs consisting of an ENI and an E-code row (cf. Section 4.2.2.2). Whenever an AST
node is attributed by an ENI, its document, which is created as before, is augmented with
a logger. That logger receives the current position and returns a PrinterLog with one
element, the ENI of the AST node paired with the E-code row.

Overall, this is a great example of the expressiveness, composability and flexibility
of functional programming languages. Contributing our changes to these libraries is
currently ongoing.

5.2. Ruab: T-code Debugger

This section follows the structure of Section 5.1 and covers three aspects of Ruab, our
T-code debugger prototype. First, Section 5.2.1 shows the overall software architecture.
Then, Section 5.2.2 documents key interfaces of Ruab. Finally, Section 5.2.3 highlights a
few interesting implementation issues.

5.2.1. Architecture

This section provides an overview of the architecture of Ruab. Table 5.2 lists all Haskell
modules that constitute the T-code debugger, and Figure 5.8 shows an excerpt of the
dependency graph of these modules. Just like in Section 5.1.1, we will only provide a
few comments on the modules whose concepts are not covered elsewhere in this thesis.
Please consult our source code distribution for details.

The various sub-modules of the GDB back-end implement the client-side of the
GDB Machine Interface. This involves data types, parsers and printers for the various
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module section description
Actor 5.2.3.2 functional actors
Backend 4.3 back-end modules

GDB 5.2.3.3 GDB back-end module
Commands n/a GDB/MI commands
IO 5.2.3.3 controlling a GDB instance
Representation n/a GDB/MI data types, parser and utility functions
Responses n/a GDB/MI responses

Core 4.4 the Core module
Internal 4.4.3 evaluating expressions

Front-end 5.2.3.1 a GTK-based front-end
Infos 5.2.3.1 visualizing breakpoints, threads, etc.

Main n/a integration
Options n/a process command line options
Util n/a utility functions

Table 5.2.: The Ruab architecture: The responsibilities of the various modules and sub-
modules in alphabetical order.

commands, responses and notifications. We used the hgdbmi library6 as a starting point
and extended it substantially. Contributing our implementation back to the hgdbmi project
is currently ongoing.

The Main module instantiates the front-end module, which is responsible to setup
the Core module, which in turn starts the back-end module. Overall, this resembles a
model-view-controller architecture.

The Options module defines and processes command line options for the Ruab exe-
cutable. Possible options are the file path to the target binary, the file path to the debug
information file, and an optional file path for a log of GDB/MI communication.

Finally, the Util module provides various utility functions used throughout the project.
Like the Ocram module, the Ruab modules are also paired with unit and integration tests.

5.2.2. Interfaces

This section explains the interface between Ocram and Ruab. This is the only interesting
interface of Ruab that has not been covered previously.

Interfacing Ocram and Ruab is implemented by the Ocram.Ruab module (cf. Sec-
tion 5.1.1). This module is shared by both projects and includes three things. First, it
specifies debug information data types. Second, it defines the storage format of the debug
information via marshalling and unmarshalling functions. And third, it provides functions
to translate T-, P- and E-code rows into each other, because these functions are needed by
both Ocram and Ruab.

The current storage format is based on the JavaScript Object Notation (JSON) [65]
and is implemented via the Text.JSON library7. In principle, any other storage format

6http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hgdbmi
7http://hackage.haskell.org/package/json
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Figure 5.9.: The Ruab GUI: The right-most view port shows E-code only to facilitate the
development of Ruab.

could be used. The only thing to consider is that it has to be able to represent C source
code, as the P-code of the application is stored along with the debug information.

Since both T-code and E-code applications are only referenced via a file path, additional
measures are required to guarantee that Ruab uses the same version of these files as Ocram
did when generating the debug information file. The current implementation therefore
augments each file path with the MD5 sum [112] of the contents of that file.

5.2.3. Implementation

This section highlights a few interesting implementation aspects of Ruab. Section 5.2.3.1
presents our GTK-based front-end. Then, Section 5.2.3.2 explains that the Ruab archi-
tecture is based on actors. Finally, Section 5.2.3.3 documents the implementation of the
GDB back-end module. It particularly covers our implementation of the GDB Machine
Interface.

5.2.3.1. GTK front-end

The only front-end module that we implemented is based on GTK+8, “a multi-platform
toolkit for creating graphical user interfaces”. It employs the Gtk2Hs library9, a GUI li-
brary for Haskell based on GTK+. The GUI is designed with Glade10, “a rapid application
development tool [for the] development of user interfaces for the GTK+ toolkit”.

Figure 5.9 shows a screenshot of the GTK-based Ruab front-end. The three view ports
show T-code, P-code, and E-code. The latter is only added to facilitate the development of
Ruab. An official Ruab release should hide this view port, because hiding E-code details

8http://www.gtk.org/
9http://projects.haskell.org/gtk2hs/

10http://glade.gnome.org/
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is exactly the purpose of the T-code debugger. The three view ports are synchronized to
show corresponding source code rows. The lower-left window shows a history of user
commands and corresponding results while the lower-right window shows the status of
the debugger and the application threads. User commands can be entered via the input
field at the bottom.

In the exemplified session, the DCA application (cf. Section 6.1.2) is loaded in the
T-code debugger. The user issued the scroll command to sync the view ports to the T-
code row number 30. This command is internal to the front-end and returns the translated
P-code and E-code rows. These rows are marked with a hash symbol in the corresponding
view ports. In the E-code case, the result is a list, because in case of re-entrant functions
there is one row per thread (cf. Section 4.2.2.2). Instead of showing all E-code rows
that correspond to a given P-code row and thread, only the smallest one is returned, as it
contains the first corresponding E-code statement.

The command badd has been propagated to the Core to add a new user breakpoint
at the given P-code row. The columns of the three view ports that contain mostly zeros
mark each row that can be augmented with a breakpoint. The T-code row 30 and the
corresponding P-code an E-code rows are marked with a 1 in that column, indicating the
number of the previously added breakpoint.

The subsequent run command has started the debugger such that the previously added
breakpoint was hit next. The status window therefore shows ExStopped, which means
that the debugger is in the stopped state. The next line shows the status of the global
thread filter. Since it has not been set in the given sessions, it still defaults to include all
threads.

The next three lines show the status of the three T-code threads. Each of them names
the thread ID, the thread start function, the state of the thread and its current row. The
first thread is currently blocked at P-code row 431. The second thread has stopped at
breakpoint 1, P-code row 445. And the third thread is still waiting, i.e., it has not been
started yet.

Obviously, the Ruab GUI is not very user friendly. Nevertheless, it covers all concepts
of the T-code debugger.

5.2.3.2. Actors

Haskell is a pure programming language. This means that side effect have to be performed
explicitly. Obviously, the Core module involves a lot of user interaction (i.e., I/O) and
internal state. Additionally, the GTK front-end and the GDB back-end both run their own
mutually independent threads. In order to manage both of these aspects, we have decided
to base Ruab’s software architecture on actors [20].

An actor runs its own thread and encapsulates a state. It receives update functions
that alter that state. This design is borrowed from the actors of the standard library of
Clojure11, a Lisp dialect for the Java Virtual Machine. An update function may perform
additional I/O operations. It can particularly send other update functions to different
actors. This is the basis of the communication between actors.

Figure 5.10 shows that the current implementation of Ruab employs three actors. The
first one implements the state machine of the Core module. It receives commands from
the front-end and notifications from the back-end, and it sends thread status updates to
the front-end.
11http://clojure.org
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State Machine

View Ports Commands

GTK front-end

Core module

Back-end

not implemeted with actors

Figure 5.10.: Actor-based architecture of Ruab: Actors encapsulate a state and send and
receive update functions.

The second actor implements the command interpreter in the GTK front-end. The
command interpreter processes command inputs from the user, and it is stateful because
it supports basic command history. When a valid command is entered, the actor sends
that command either to the Core module or, in case of an internal command, to the third
actor. This actor implements the output side of the graphical user interface. It manages
the view ports for the application source code and displays the current row and all user
breakpoints. The input to this actor are thread status updates from the Core module as
well as internal commands.

While the actor communication crosses module interfaces, the expressiveness of
Haskell allows for keeping these interfaces agnostic to this. In fact, a future Core
module could cease to use an actor and neither the front-end interface nor any of the
front-end implementations would have to be changed. A good example that makes use of
this flexibility is the GDB back-end that is presented in the next section. It does not use
actors only because we don’t want it to depend on them, as we are planning to publish
our GDB/MI implementation separately. The design of the back-end interface and the
implementation of the Core module are, however, not affected by this decision.

5.2.3.3. GDB Machine Interface

The GDB Machine Interface (GDB/MI) is a machine-readable variant of GDB’s text-
based command line interface (Section 27 of [129]). It is intended to be used by debugger
front-ends such as Eclipse and is based on sending and receiving strings via standard
input and standard output.

Our GDB module forks a GDB instance in the background and connects to its standard
input and output via UNIX pipes. It also provides a synchronous function to send com-
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mands and receive responses, as well as an asynchronous interface to receive notifications.
Internally, a single thread reads from a queue of pending commands, renders each of

them in turn to GDB/MI syntax, and sends it to the standard input of the GDB. While there
is exactly one response for each issued command, notifications can occur at any point in
time. Possible notifications include a breakpoint that has been hit or the termination of
the inferior. This requires a second thread that continuously reads the standard output of
the GDB and parses the GDB/MI syntax to obtain either a response or a notification.

When a client issues a new command a new synchronising variable (MVar) is created.
The client call blocks on this variable until the corresponding response is available.
Notifications, in contrast, are delivered to the client via registered callback functions.
Because these callback functions might block, which would freeze the GDB module, they
are invoked in a separate thread. This is cheap, because the Haskell run-time systems
provides lightweight user-land threads.

When the debugger is shut down, the debug instance is terminated via the GDB/MI quit
command and the two internal threads are killed. Also, each of them is joined, leaving
the GDB module in a clean state. Subsequent commands are rejected from then on.

5.3. Summary

In this chapter we provided a basic documentation of our prototypes, Ocram and Ruab.
In each case we presented the architecture, specified major interfaces, and discussed a
few non-trivial implementation problems. Overall, the contribution of this chapter was
to make our source code distribution accessible and to enable future researchers and
engineers to extend or port the prototypes and to perform their own experiments.
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6. Evaluation

Chapter 5 introduced our prototypical implementations of a T-code compiler (cf. Chap-
ter 3) and a T-code debugger (cf. Chapter 4). In this chapter, we will use them to evaluate
both the correctness as well as the performance of our compiler-assisted approach to
thread abstractions for resource-constrained systems. Section 6.1 documents the setup
of the conducted experiments. To make sure that the results of the experiments actually
represent the properties we are interested in, a number of verification steps are taken, as
Section 6.2 explains. Section 6.3 follows with a description of the measurements taken
during the experiments and Section 6.4 presents the results of those. In Section 6.5 we
discuss these results and approach various possibilities to improve them further. All of
the above sections cover the evaluation of the T-code to E-code translation and our T-code
compiler prototype. Section 6.6, in contrast, covers a less extensive evaluation of the
T-code debugger prototype.

6.1. Experiments

To evaluate our compiler-assisted thread abstraction, we have chosen a set of three case
studies. Each of them follows a real WSN application archetype, so that the evaluation
is realistic (Section 6.1.2). Furthermore, we tried to cover a representative range of
application types, programming concepts and concurrency patterns as summarized by
Table 6.1. We implemented each of these case studies in three variants: 1) a native
event-based version, 2) a thread-based version using a thread library, and 3) a T-code
version using Ocram (Section 6.1.1). All nine resulting programs are written for Contiki
[30] and we have executed them via COOJA/MSPsim [38], while an extra COOJA plugin
collected various logs and measurements. Appendix C specifies the details of the setup
and documents how to reproduce the experimental results.

6.1.1. Variants

For each case study application we first implemented a native variant (NAT) using
the event-based paradigm. To this end, we either copied existing code or wrote an
implementation following common programing patterns as encountered in the Contiki
community. This implies using protothreads [31], which disguises that the run-time
system is event-based and adds an overhead of two bytes per protothread. We argue,
though, that this does not significantly bias the ground truth of our evaluation, which is the
performance of a native event-based application. Furthermore, we get a nice comparison
between our comprehensive thread abstraction and the allegedly most efficient, but limited
thread abstraction of protothreads.

Compiler-assisted thread abstractions compete with run-time-based approaches and
in Section 1.4 we have argued why we think that dedicated compilers can produce more
efficient code. To verify this hypothesis, we have secondly written a threaded variant
(TL) which is directly executed using a thread library. For this purpose, we have ported
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DCA COAP RPC
client side n/a yes yes
server side n/a no yes
application layer yes yes no
protocol layer no yes yes
inter-thread communication yes yes yes
thread synchronization no yes yes
re-entrance no yes yes
producer-consumer yes no no
thread pool no no yes

Table 6.1.: Properties of the case study applications

the TinyThreads [88] thread library to Contiki, as it is the only available full-fledged
thread library for cooperative threads in sensor networks. We kept the basic context
switching code and the general scheduler architecture, but we had to adapt the details to
Contiki’s APIs. We also removed support for preemption and dynamic thread creation
to avoid extra overhead for features that our abstraction does not provide. Overall, a
single protothread executes the scheduler and all application-level threads. When an
application invokes a blocking function, the corresponding Contiki operation is triggered
and the context switches back to the scheduler. Likewise, when the corresponding event
is delivered to the scheduler process, context switches back to the application and the
blocking function completes.

Finally, the third variant is the generated variant (GEN) which is an E-code application
that has been generated from a T-code application by Ocram. To enable a fair comparison,
the three variants only differ from each other if the different programming models require
so. They thus share common code via utility modules. Also we copied as many source
code lines between the variants as possible. In particular, the two thread-based variants
differ only in the way threads are declared and started and in the names, but not in the
signatures of the blocking functions. As a single exception to this, the receive operation
for TL needs to pass the network connection of interest because otherwise the single
scheduler protothread cannot demultiplex incoming network packets.

6.1.2. Case Study Applications

Figure 6.1 shows simplified pseudo code for the three case study applications. The pseudo
code resembles a thread-based programming style and we will use the corresponding
terminology consistently to keep things simple in the following. When we use this
terminology while referring to NAT, we mean the corresponding terms. For example, the
term “blocking function” in the context of NAT addresses the corresponding asynchronous
function that triggers the same operation. Such a corresponding thing always exists
because, as we will see later, all three variants pass the same black box test, so all of them
implement the same application in each case.

So, the three applications use the blocking functions sleep, receive, and wait,
and all three of them can be interrupted via notify. Note that both reading sensor
values and sending network packets is a synchronous operation on Contiki and we have
decided against artificially turning them into asynchronous operations to avoid biasing
the comparison with the native variant.

112



CHAPTER 6. EVALUATION 6.1. EXPERIMENTS

receiving:
receive
add values to ring buffer

collecting:
sleep 23 second
read from sensor
add value to ring buffer

sending:
sleep 127 seconds
empty ring buffer
aggregate values
send results to parent

(a) DCA

transactions:
sleep until next timeout
if notified:

add new transaction to queue
else:

send transaction
double transaction timeout

receiver:
receive
cancel pending transaction
otify blockwise transfer

client:
sleep 10 seconds
blockwise transfer PUT request
blockwise transfer GET request

blockwise transfer:
for each block:

create transaction
send transaction
wait

(b) CoAP

server:
receive
if notified:

send response
else:

notify available worker

worker [1-N]:
wait
handle call

handle call:
if read fast sensor:

read sensor
if read slow sensor:

sleep // emulate slow sensor
read sensor

if tell:
send contained call to peer
receive response

notify server

(c) RPC

Figure 6.1.: Pseudo code of the case study applications: We use distinct formatting
to mark thread start functions, re-entrant critical functions, and blocking
functions.
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The first case study is a typical data collection and in-network aggregation (DCA)
application consisting of three tasks. Overall, the application reads values from the local
sensor, receives values from its child node(s) and sends aggregated values to its parent
node. As summarized in Table 6.1, this constitutes a consumer-producer pattern with
inter-thread communication via a shared ring buffer, but no explicit thread synchronization
and no re-entrant code. The major architecture of this case study can be found in many
deployments, such as the PermaSense project [52]. In order to focus on the issues of the
programming model, we implemented this application from scratch, leaving out advanced
data aggregation algorithms, network packet framing, etc.

As we are interested in the performance of the software on a single mote, we do not
simulate large networks. Instead, the simulation for this application only consists of three
motes. One mote is running the respective variant of this application, while two other
motes execute the child and parent application, respectively. The simulation ends as soon
as the parent node receives the fifth packet. This choice is arbitrary but large enough to
cover all code paths and possibly even out transient effects. For the simulations of the
other two applications we have made similar choices, and overall all three applications
have a similar total simulation length.

The second case study is a complete client-side implementation of the CoAP protocol
[121] including block-wise transfer1 [12], and a small application layer. The program
consists of three tasks and overall the client repeatedly sends PUT and GET requests to
the server. The PUT request sets the seed for a random resource on the server, while the
GET request retrieves a possibly large sequence of characters from this resource. Both the
value of the seed and the length of the character sequence are chosen randomly. As listed
in Table 6.1, this application involves both explicit thread synchronization via wait and
notify as well as re-entrant code. The native implementation for this study is taken from
Contiki’s CoAP implementation [70] and the simulation consists of one mote running the
variants of the CoAP client and one mote running the CoAP server. The simulation ends
as soon as the server receives the seventh PUT request.

The third case study is motivated by a programming framework for sensor networks
[95] that offers so-called tell actions. A tell action is a one-to-many remote procedure
call (RPC), which means that a node may instruct one or more other nodes to execute a
potentially blocking operation. The tell action itself blocks until all nodes have finished
executing the command. In a network in which multiple tell actions can occur at any
time, each node should be able to handle multiple RPCs at the same time. This calls for
a thread pool, a common concurrency pattern that can be found in many RPC systems
such as CORBA [47]. Although there are some RPC frameworks for sensor networks
[87, 146], none of them supports concurrent invocations. Thus, we implemented this
framework from scratch.

In order to focus on the programming model again, we only support three basic remote
calls that conceptually cover the whole spectrum of interest: 1) reading a value from a
fast sensor such as a temperature sensor, 2) reading a value from a slow sensor, which
involves some startup time and thus a blocking function on the callee’s side, and 3) a tell
operation, which involves delegating any of these three remote calls to a different node
and thus also requires a blocking function on the callee’s side.

As shown in Table 6.1, the application implements both the client and the server side
of the RPC protocol and involves explicit thread synchronization and re-entrant functions.
The simulation for this application consist of three motes: one client and two peers. The

1application-level payload fragmentation via stop-and-wait
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first peer is the one we evaluate and it runs one of the three application variants, while the
second peer always executes the native variant of this application. The client issues a tell
action to the first peer, which delegates the included call to read from a slow sensor to the
second peer. While the tell call is pending, the client sends an additional call to the first
peer, having it reading from its fast sensor, so that both of its workers become busy at the
same time. As soon as the reply of the tell action arrives at the client, it starts all over
again and performs this loop four times.

6.2. Verification of the Experiments

The verification serves four purposes. First, we want to make sure that there are no
software faults in the T-code compiler. Second, we want to guarantee that we measure
only the effects of the different programming abstractions. Third, we want to test each
variant of each application to rule out software faults. And last, we want to confirm the
correctness of the transformation.

To check the T-code compiler for software faults we have written a large set of unit tests
for each of the steps of the compiler pipeline. We have also written various integration
tests for each of its modules as well as for the whole pipeline. We carefully tried to cover
all cases we could think of and verified the generated code manually in each case. Overall,
we think the software quality of Ocram is good enough to conduct these experiments
in good conscience. However, tests inherently only provide selective verification, and
with regard to the complexity of C99 and GNU C, it would not take us by surprise if
Ocram missed some corner cases. We cover this possibility with the following additional
verification steps.

We wrote a COOJA plugin that collects a log of printf [C99: 7.19.6.3] traces, which
serves as an input to an application-specific verification script. This constitutes a black
box test for each variant of each application, which covers the implementation of each
and indirectly also Ocram’s functionality due to GEN. The same plugin also collects
a log of the observable behavior which is used to compare TL with GEN. As TL de
facto constitutes the execution of the T-code application, this comparison verifies the
correctness of the transformation and its implementation — given there is no software
fault in the thread library that results in the exact same wrong behavior.

In fact, the comparison checks if the observable behaviors are equal, which is easy
to implement, but stronger than what is required by the definition of equality. Time-
dependent parameters such as the sleep duration for calls to sleep may, however, differ
because they depend on when exactly the corresponding get_time function has been
invoked. In these cases, we accept deviations up to six milliseconds and reject anything
else. Note that this does not violate the definition of equality, as slightly earlier or later
calls to get_time are possible for the T-code application, as cooperative threads give no
timing guarantees.

In order to obtain an unbiased comparison of the variants, we used the same COOJA
simulation for all of them, only exchanging the binary under test in each case. This means
that spatial mote distribution, radio model, behavior of neighbor nodes, random seeds, etc.
are constant. That is, the execution environment is deterministic and produces the same
results repeatably. Additionally, we used a difference tool to make sure that the source
code of the three variants only differs when the respective programming abstraction
requires so.
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6.3. Performance Measurements

As a first and simplest measurement, we counted the lines of code required to implement
the application logic for each variant. Lines of code is in general not very significant,
but when using identical code formatting rules, as we did in our evaluation, it provides
a quick estimation of the expressiveness of the programming model. In order to focus
on the effects of the different programming models, we did not include the shared utility
modules into the counting. Similarly, we neither took GEN’s PAL nor TL’s scheduler into
account, as this code needs to be written only once and can thus be regarded as being part
of the operating system, which we did not count either.

Next, we compiled each application for the Tmote Sky platform using the MSP430
port of the GCC [79] version 3.2.3. The compilation process was performed by Contiki’s
build system with SMALL = 1, which amongst other things instructs the linker to remove
unused functions. To obtain static measurements from the resulting ELF [134] binary
we used objdump from GCC’s binutils2 and retrieved the size of the text section (i.e.,
the machine code itself), the size of the initialized data section, and the size of the
uninitialized data section, also known as bss section.

Besides these static measurements, we were also interested in run-time properties. To
obtain a precise count of CPU cycles, we modified the Contiki system3 by introducing
a variable called process_hook with type pointer to void. Right before invoking a
process, the scheduler writes the address of the descriptor of the particular process to
process_hook. And right after the process returns control, process_hook is set to
NULL. Our plugin can thus install a breakpoint for modifications to process_hook, which
enables it to precisely sum up CPU cycles for each process individually. All interrupt
functions and the code that logs the observable behavior signal their invocation via
process_hook as well. The plugin can thus remove these CPU cycles from the current
process’ account, and by considering the cycles for the prologue and the epilogue of the
interrupt handler functions and the cycles for the write operations to process_hook, it
measures the exact number of CPU cycles per process.

For NAT, we counted the CPU cycles of all processes that run an application task,
leaving out any OS processes. For TL, we counted the CPU cycles of the single scheduler
process only, as it executes all application threads. And finally, for GEN, we counted the
CPU cycles of all Contiki processes that execute an application thread (cf. Section 3.4).
Overall, the counted CPU cycles cover the same application functionality in each case.

In order to measure the maximum stack consumption, our plugin installs a breakpoint
for updates to the stack pointer register (SP). For NAT and GEN, tracking the maximum
SP value and subtracting it from the start address of the stack is sufficient. For TL, we
also need to take the stacks of the application threads into account, though. Our plugin
does this accurately and thus obtains the precise amount of bytes required for each stack.
We used these values to set the size of the application stacks, thus reducing the size of
the bss section as much as possible and enabling a fair comparison. As interrupts happen
nondeterministically, a single simulation run might not catch the worst case of interrupt
function invocations, though. Thus, we added a safety margin of 20 bytes to each stack
and so far no stack overflows occurred during our measurements, which of course is also
monitored by the plugin.

One thing that we do not measure is the energy consumption as it is largely driven by

2http://www.gnu.org/software/binutils/
3The patches are included in our source distribution.

116

http://www.gnu.org/software/binutils/


CHAPTER 6. EVALUATION 6.4. RESULTS

radio communication which is part of the observable behavior. As the transformation
preserves the observable behavior, it does not add to the radio-driven energy consumption.

6.4. Results

A major observation of the evaluation is that the results are deterministic. Thus we can
directly interpret these values without any additional statistics methods.

Figure 6.2a shows that in order to implement the same application, T-code requires 8 %
to 17 % less lines of code than a native Contiki implementation. As already mentioned
in the previous section, this measurement does not cover shared utility modules, which
contain additional 2000 lines of code for CoAP and 300 for RPC. As protothreads do
already help in compacting event-based code, this measurement fails to provide the ground
truth of a real event-based application. But as “with protothreads the number of lines of
code was reduced by one third” [31], we can estimate that a T-code application requires up
to 45 % less lines of code than an equivalent event-based application. Although this result
is not precise, it still supports our initial motivation for this work: synchronous operations
and sequential computation provide an easier programming model than asynchronous
operations and event handler functions. The TL variant is close to GEN but higher
because it provides the same programming model as GEN, but requires extra lines to
define the application stacks and to start the threads.

6.4.1. Memory Resources

As there is no free lunch, we expect our thread abstraction to also have some costs. First
of all, we are interested in the overall memory consumption because RAM is very limited
on sensor network devices. In this regard, Figure 6.2b shows the size of the data and the
bss section along with the maximum stack size for each variant of each application. First,
we can see that all three variants have roughly the same amount of initialized data and a
large common block of bss memory. This is because each variant uses the same operating
system that adds its string constants, network stack buffers, etc.

Additionally, we can see that all three variants have roughly equal maximum stack
sizes because none of them uses the hardware stack a lot: Protothreads use function-static
variables, TL uses the stacks of the application threads for local variables, and GEN uses
its T-stacks. As a consequence, we can see TL and GEN having larger bss segments.

The interesting thing is that TL’s overhead is significantly higher which reflects our
initial motivation for this work: comprehensive run-time-based thread abstractions are
not resource-efficient (cf. Section 2.1.3). A second interesting observation is that both
GEN’s overhead of the bss section and its overhead of the total amount of required RAM
is approximately 1 % compared to NAT.

Another limited resource of sensor network devices is ROM space, which means that
we need to compare the binary size of the variants. Figure 6.2c thus shows the size of the
text sections and, in case of the GEN variant, it also distinguishes between code resulting
from the application layer and code added by the PAL. First, we see the overhead of TL’s
scheduler as expected. Similarly, we see the overhead of GEN’s PAL. But we also see
that the generated code itself, i.e., the E-code application not including the PAL, is almost
the same size as the code of the NAT variant. And including the PAL, the overhead is
below 3 %.
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(a) lines of code

(b) RAM

(c) text

Figure 6.2.: Evaluation results: Resource consumption of various resources per variant
and application.
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(a) CPU cycles

(b) text per thread

(c) RAM per thread

Figure 6.3.: Evaluation results: Resources consumption of RPC application per variant
versus number of threads.
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Overall, the results show that Ocram provides the comfort of threads for just a small
amount of extra RAM and ROM space.

6.4.2. CPU Cycles

Next, we want to know if the generated code involves more computation than a native
implementation because keeping the CPU busy prevents the device from going into a
low-power idle state. Referring to this, Figure 6.3a shows the CPU cycle count for each
variant of each application. The absolute range of the values depends on the duration of
the simulation of each application and thus provides little insight. But what we do see is
that TL’s scheduler adds up to 12 % of CPU cycles compared to the NAT variant. And we
see that despite the additional PAL, GEN’s number of CPU cycles is only approximately
2 % higher compared to NAT.

Although we do not know the exact division between the PAL and the application
code, regarding the extra work performed by the PAL, this result suggests that the E-code
actually requires less CPU cycles than the native implementation. An explanation for this
is that all critical functions are inlined in the E-code, thus saving extra cycles for function
prologue and epilogues. But of course, this comes at the cost of a larger binary size in
case of re-entrant functions.

6.4.3. Per-Thread Consumption

To analyse the costs of inlining critical functions, we varied the number of worker threads
of the RPC application from one to four and performed the measurements for each
configuration. In each case, we adapted the client mote to send the right amount of
concurrent remotely blocking RPC calls to have all worker threads busy at the same time.
The previous figures showed results for the RPC application with two worker threads and
using more than four workers already exceeds the limited resources of the Tmote Sky.

Figure 6.3b shows the size of the text section of all three variants versus the number of
worker threads. Additionally, it shows the PAL’s share by plotting the GEN variant with
the text section of the PAL removed. In the case of a single worker thread, we see the
overhead of TL’s scheduler once again. But we also see that with 101 bytes per worker
TL has the lowest slope of all. The explanation for this is that increasing the number of
worker threads only involves starting another application thread, while the rest of TL’s
code is generic in that sense and can be reused. For NAT, we have a slope of 187 bytes
per worker. This originates from the additional protothreads that run the extra workers.
Although they share common code, the basic stub of each protothread is always required.

And finally for GEN, we see the biggest slope of 619 bytes per worker including the
PAL and 559 bytes per worker without the PAL. The share added by the PAL has the
same origin as in the NAT case. And the share added by the E-code application reflects
the trade-off that we have chosen for the translation scheme: By inlining critical functions,
we save CPU cycles and RAM, but we pay in the case of re-entrant critical functions. For
applications like DCA and COAP, which have almost no re-entrant code, this trade-off

yields good results. The thread pools of the RPC application are, however, a worst case
scenario for it, because virtually all critical functions are re-entrant.

Concerning RAM consumption, however, the compiler-assisted approach still shows its
strengths. In Figure 6.3c we see that GEN has almost the same slope as NAT, i.e., 182 vs.
158 bytes per worker. In contrast, TL has a slope of 310 bytes per worker which has two
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major reasons. First, as already explained, each thread’s stack needs an extra margin to be
able to host any occurring interrupt handler functions. And second, the generic nature of
a thread library indeed saves in binary size, but it pays in RAM because it has to support
all possible cases. For example, given a thread that only calls one particular blocking
function, its meta information as stored by the scheduler still provides space for all other
blocking functions because the run-time system cannot know that they will actually never
be called. Likewise, a thread library cannot distinguish critical variables from non-critical
ones which is why it keeps all local variables on the preallocated stacks. GEN in contrast
shares RAM for non-critical variables and uses preallocated storage only for critical ones.
Given the limited RAM size of many platforms, those savings are significant and the lack
of static analysis is what kept thread libraries from improving their performance [89].
With compiler-assisted thread abstractions we aim to exploit exactly this possibility.

6.5. Discussion

The performance evaluation results mainly show three things. First, the thread-based pro-
gramming paradigm leads to more compact code compared to event-based programming,
which is an indication for what is generally perceived as being an easier programming
model. Second, the performance overhead of generated E-code compared to hand-written
event-based code is very minor, making the comfort of threads affordable for resource-
constrained WSN devices. And third, the run-time performance of generated E-code
is better than what can currently be achieved with thread libraries. All of these aspects
strengthen our initial motivation for this work, and we think that the comfort of a com-
prehensive thread abstraction justifies the small overhead of the E-code. Also, we argue
that although a dedicated threads-to-events compiler is a huge initial effort, the achieved
performance makes it worthwhile.

This is particularly true when considering further optimizations that would improve
the efficiency of E-code even more. For example, the Front-end could perform dead code
elimination, constant folding, and other standard optimizations on the IR of each critical
function. Also, E-frames can be compacted by having non-critical variables share memory
if they are not both used on the same code path from one yield point to a subsequent one.
Finally, E-code applications involve quite some temporary variables that could be avoided
sometimes. For example, if the return value of a critical function is the result value of
a critical call, then the normalization into second normal form introduces a temporary
variable which is immediately copied to the result variable of the function’s T-frame. A
more advanced translation could avoid this temporary variable and copy the return value
from the callee’s T-stack to the return value of the caller’s T-stack directly.

Likewise, the Back-end can perform inter-procedural optimizations. For example, if
a critical function is only called once in the whole T-code application, the continuation
variable can be omitted from its T-frame and its body can be inlined, avoiding the two
goto statements to call that function and return from it. Similarly, if a function has only
one callee and if one of its function parameters is only read and never modified, this
parameter can be omitted from the T-frame of that function and the function can access
the required value from the T-frame of its callee instead. Also, function parameters that
are non-critical variables could be stored on the E-stack instead of the T-stack, which
makes calling critical functions more involved, but is more memory efficient.

In general, E-code generation could be adapted such that optimizations of the employed
E-code compiler are triggered. The obvious example is to preserve switch statements
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instead of substituting them with a sequence of if statements. More precisely, while a
switch statement still would have to be modelled by a number of basic blocks, the IR
could have additional meta information so that the Back-end is able to turn them back
into a switch statement. Other examples include restoring while and for loops as well,
using the const type qualifier [C99: 6.7.3] whenever appropriate, and supporting GNU C
annotations for variables and type declarations.

The results of the evaluation also show that the performance of the translation scheme
depends on application properties. We have seen that the RPC application is a worst case
for the current translation scheme because it makes heavy use of re-entrant functions.
Obviously, a different translation scheme should be used in such a case, either selected by
a compiler switch or determined by an automatic classification of the input application.
In [8] we have examined a different translation scheme that avoids inlining of critical
functions and performs a run-time lookup to retrieve the set of local variables that belong
to the current thread. Other translation schemes could experiment with dynamically
allocated stack frames similar to what Capriccio does [139]. Although we do not expect
dynamic memory allocation to be a good approach for embedded systems in general,
there might be a class of applications for which it is a good choice nevertheless. We think
that there are many more possibilities that could be explored to utilize the potential of
compiler-assisted thread abstractions to its maximum. Also, a production-ready T-code
compiler would have to include support for all the features that our prototype rejects to
translate. This not only includes the excluded C99 features and GNU C extensions for
critical functions, but also a compatibility mode for E-code compilers that do not support
GNU C extensions, and support for multiple translation units.

Overall, the development and the evaluation of the translation scheme and its implemen-
tation gave us two major insights. First, the set of applied optimizations can be partitioned
into two groups: optimizations that require knowledge about the thread semantics and
optimizations that don’t. Existing E-code compilers provide pretty good implementations
for the latter group, so ideally a T-code compiler should only get involved in the former
one. However, with the current architecture of chaining T-code and E-code compiler,
this separation is not always possible, which is our second major insight. If the T-code
compiler fails to remove unused or avoidable temporary variables, which is a standard
optimization performed by E-code compilers, these variables become part of E-frames
and T-frames. As their storage duration is static instead of automatic, the E-code compiler
is unable to remove them.

These considerations have led to a vision of a modified compilation architecture. In
this architecture, the T-code compiler still analyzes the T-code application to extract
the required information. But instead of applying the threads to events transformation
on it, the E-code compiler is invoked on the T-code application next. The result is an
assembly of the T-code applications to which all standard optimizations have been applied.
The T-code compiler then performs the transformation from threads to events on this
representation, which has the additional benefit that the T-code compiler does not have to
cope with the complexity of C99 and GNU C but with a rather clear execution semantic
of the respective assembler language instead.

We think that the LLVM framework [72] lends itself nicely to this approach, because
it provides a type safe and platform-agnostic assembler language [1], a framework to
implement code optimizations, and a substantial set of existing optimizer passes. This not
only permits the T-code compiler to still perform a generic transformation independent
of the mote hardware, but also the generated E-code could subsequently by optimized
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by the same LLVM optimizers. Thus, the T-code compiler could focus on translating
threads to events and on performing optimizations that require knowledge about the
thread semantics. It is, however, currently unclear to us how supporting fault diagnostics
of T-code applications could be achieved with this compilation architecture. This could
be an interesting question for future research in this field.

6.6. Evaluating the Debugger

Evaluating a debugger is very different from evaluating a compiler. In the literature,
there are mainly three different methodologies to this end: measuring interesting system
properties [125, 131, 146, 147], finding a priori unknown software faults [131], and
conducting a user study [146]. For the evaluation of the T-code debugger, we have,
however, chosen a different methodology, as none of the usual ones is applicable in our
case.

First, there are no meaningful measurements that would reflect interesting system
properties. The reason for this is that the T-code debugger is designed to run on a host
system, controlling an E-code debugger that takes care of the rest. Thus, things like probe
effects, resource consumption of the debugger target, and communication overhead are
determined by the E-code debugger only.

Second, finding unknown software faults requires existing code that uses our abstrac-
tion, which of course can not exist yet, as we are just introducing our abstraction to the
community. To compensate for this, one could consider to port existing WSN applica-
tions to our abstractions. This methodology is, however, disputable, since porting can
introduce new software faults or hide existing ones. This is particularly true if the initial
programming abstraction differs greatly from the T-code abstraction, as protothreads do
for example [31]. Apart from protothreads applications there are, however, no WSN
applications that both make use of cooperative threads and are used in a deployment — at
least, we are not aware of any that are publicly available. We suspect that this is due to
the fact that existing thread abstractions either provide incomplete semantics or require
too much resources, which is one of the initial motivations for our work.

And third, user studies, which could investigate the usability of the user interface or the
effectiveness of the employed fault diagnosis technique, are out of the scope of this work.
Our goal is not to advance the state-of-the-art in source-level debugging, which is why
the T-code debugger resembles existing debuggers such as the GDB [129] and Eclipse
[132]. These tools have been used productively and professionally for decades, which is
why we do not expect any new insights from studying the effectiveness of their features.
We also do not claim to provide a user-friendly application.

Instead, we only claim that completing the programming abstraction by enabling fault
diagnosis for the thread-based application that runs on an event-based OS is possible. We
think that the only meaningful way to support this claim is to present a proper prototype
and verify its correctness, for instance via tests. This is why we provide an additional
implementation of Ruab’s Front-end interface. This front-end is special, as it consists of
a script interpreter that allows the simulation of user interaction by running arbitrary test
scripts.

Each script executes a single debugging session while focusing on a particular feature of
the T-code debugger. It starts with a single command and follows with an chronologically
ordered list of expected responses. Each response is possibly augmented with a single
command, which is issued when the expected response is received. Additionally, an
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|__attribute__((tc_thread)) void collect() {
| uint32_t now = get_time();
| uint16_t value;
A| while(true) {
| sleep(now + dt);
C| now += dt;
| value = read_sensor();
| log((uint8_t*)&value, sizeof(value));
| }
|}

|__attribute__((tc_thread)) void receive() {
B| while(true) {
| uint8_t buffer[10];
| size_t len;
| receive(buffer, sizeof(buffer), &len);
| log(buffer, len);
| }
|}

Figure 6.4.: Debugging with thread filter: A, B, and C are breakpoints. Whether B is hit
when resuming from A depends on the thread filter.

expected response carries values which are compared with the values of the factual
response from Ruab’s Core module. By these means, the test scripts can verify that the
various features of the debugger work as intended — at least in the case of the employed
example application, which is the DCA application (cf. Section 6.1.2).

We have written various scripts to test the different features of the T-code debugger.
For example, we test breakpoints in critical functions with and without local thread filters,
as well as breakpoints in auxiliary functions. These tests cover features that an E-code
debugger would also provide. Tests that are more interesting verify that expressions
involving local variables both for critical and auxiliary functions can be evaluated. A user
of the E-code debugger would have to understand the renaming scheme that the T-code
compiler applies to various identifiers to be able to issue correct queries. With the T-code
debugger at hand, the user does, in contrast, not care about renaming of identifiers, as he
or she can simply use the T-code identifiers for the queries.

A last group of tests cover a second major advantage of the T-code debugger, which is
following the control flow at yield points. Figure 6.4 shows a simplified excerpt of the data
collection application used in the evaluation, and the tests install the three breakpoints A,
B, and C as indicated. Between breakpoint A and C there is a critical call to the function
sleep. If breakpoint A is hit and the execution is continued, the behavior of the debugger
depends on the status of the thread filter. If the filter is open, then breakpoint B is hit
next, thus switching the context from the collect task over to the receive task. This is
just what a user of an E-code debugger would experience. If the filter is limited to the
collect task, breakpoint B is skipped instead, and breakpoint C is hit next. Thus, the
context and hereby the user focus stays on the current task, enabling him or her to “step”
through the collect function while inspecting the values of the local variables.

Overall, the tests show and verify that the T-code debugger sustains the abstraction
level of the T-code during fault diagnostics.

6.7. Summary

In this chapter we described the setup of a series of experiments which we conducted
with our prototypes. We also presented the experimental results.

In case of the compiler prototype, these results showed three things. First, thread-based
programming leads to more compact code compared to the event-based paradigm. Second,
our compiler-assisted thread abstraction is clearly more efficient that run-time based thread
libraries. And third, the resource-wise costs of our compiler-assisted abstraction is very
minor.
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In case of the debugger, the evaluation mainly showed the correctness of both the con-
cepts as well as the implementation of our fault diagnostics tool for T-code applications.

Overall, the contribution of this chapter was a reproducible verification and evaluation
of our compiler-assisted approach to thread-based programming.
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The primary goal of this thesis was to overcome the seemingly inherent trade-off between
expressiveness and completeness of a thread abstraction for resource-constrained systems.
We established our work in the context of wireless sensor networks (WSN). In this domain,
Moore’s Law is applied towards reducing costs, size, and power consumption instead of
the usual increase in capabilities. It therefore constitutes an extreme environment with
respect to the scarcity of resources. We additionally assume that limited resources will
stay a major design requirement in this domain, particularly because the energy density
and capacity of batteries is not expected to increase significantly in the future.

We have exemplified why the predominant paradigm of event-based programming
makes development, testing, deployment, and operations expensive and gives rise to
security issues. Since the complexity of deployed WSN applications is constantly es-
calating, and because they interact with the real world and become connected to the
Internet, software faults are an increasingly demanding problem in this domain. Thread-
based programming provides a higher abstraction level via sequential control flows and
synchronous functions, and it is known to overcome most of the issues of event-based
programming. The challenge is to provide a comprehensive abstraction with an efficient
implementation that meets the scarce resources of WSN devices.

In this thesis we present a solution to this problem. The results of our performance
evaluation yield three major results. First, they support our claim that thread-based pro-
gramming provides a higher abstraction level than event-based programming. They also
confirm the general opinion that thread abstractions have to trade their completeness to
facilitate an efficient implementation. However, this is only true for traditional approaches
that implement threads at run-time. Compiler-assisted thread abstractions can, in contrast,
overcome this trade-off. This was the initial motivation of our work. The evaluation
results show that, with our approach, thread-based programming can in fact be almost
as efficient as event-based programming. The overhead of RAM is approximately 1 %,
for ROM below 3 %, and concerning CPU cycles the overhead is below 2 %. This is the
primary result of this thesis.

Compiler-assisted approaches exploit the duality of threads and events by employing a
dedicated compiler that turns a thread-based application into an equivalent event-based
application. This approach enables efficient implementations because the run-time system
remains event-based. Additionally, compilers can analyze application properties and
apply optimizations specific to the application.

We have chosen cooperative threads over preemptive ones for two reasons. First,
cooperative threads minimize concurrency issues due to implicit critical sections. And
second, because cooperative threads cannot be interrupted at any time, the associated state
per thread can be kept comparatively small. The consequence of this choice, however, is
that our work only targets the application and the service layer of WSN applications, as
cooperative threads cannot provide timing guarantees.

In order to develop a translation scheme from thread-based T-code to event-based
E-code, we defined the execution semantics of T-code and E-code applications. Further-
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more, as the translation should turn a valid T-code application into an equivalent E-code
application, we define what equivalence means on basis of the observable behavior of
the two applications. The core of the translation scheme that we present in this thesis
consists of two parts. The translation of the control flow turns critical functions into
event handlers, while preserving the order of language statements. And the translation
of the data flow replaces local variables with variables that are statically allocated, thus
preserving their values over subsequent invocations of event handlers. Static analysis
hereby assists in spending preallocated storage only when needed, keeping variables on
the shared hardware stack whenever possible.

Ocram is our prototypical implementation of the translation scheme, and we used it to
thoroughly evaluate our approach. To this end, we have chosen three archetypes of WSN
applications and implemented three variants of each: one that uses native events, one
that uses a thread library, and one that uses Ocram. After taking various means to verify
the correctness of the translation scheme, its implementation and the implementation of
the nine test applications, we performed a sequence of measurements. First, the number
of source code lines were counted to provide an estimate of the expressiveness of the
programming abstractions. Second, we determined the size of the machine code and the
size of the initialized and uninitialized data sections of the application binaries. Third,
we counted the number of CPU cycles required to execute the application logic of each
variant. And finally, we measured the maximum stack consumption in each case. The
last two measurements where obtained by executing the nine applications in a network
simulator. Overall, we took thorough care to enable a fair comparison.

The secondary goal of this thesis was to demonstrate how our thread abstraction can
be sustained for fault diagnostics. We argue that, just like programming, fault diagnostics
is a question of abstraction. A comprehensive programming abstraction should therefore
consider the whole development cycle. Previous programming abstractions have mostly
failed to do so. This breaks the abstraction by forcing the user to cope with the event-based
run-time system after all. Worse, a software developer additionally has to understand the
implementation details of the abstraction itself in order to identify the software fault in
the abstract program via run-time observations of the generated code. We consider this a
major obstacle for the adoption of programming abstractions in practice.

The challenge in supporting fault diagnostics is to sustain the abstraction level used
for programming. This thesis presents a solution to this problem. We have managed to
demonstrate how to provide basic features of source-level debugging on the abstraction
level of threads. The user is never confronted with the generated event-based application
and can therefore reason about the application on an abstract level.

In order to preserve the abstraction level, the compiler has to gather information that
can be later used by the debugger to undo the performed mapping. This approach is
well-known and followed by many existing compiler tool chains. We adapted it to fit the
requirements of cooperative threads. We identified necessary debugging information and
investigated how to collect them during compilation.

We added these capabilities to Ocram. It particularly logs how to map source code
rows and how to map variable names. Ruab is our prototypical implementation of the
debugger that uses this information to perform a back-mapping from E-code to T-code at
run-time. To this end, it controls an instance of an E-code debugger, which is a standard
source-level debugger for C such as the GDB. Besides supporting breakpoints, evaluation
of expressions and a few other basic commands, Ruab provides a thread filter. This
enables software developers to follow the control flow of a single thread across yield
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points.
We verified the functionality of Ruab via automated tests that emulate user interaction.

The tests cover all features of Ruab on the basis of one of the case study applications.
Future work in the area of this thesis could investigate improved optimizations to

utilize the potential of compiler-assisted thread abstractions to its maximum. First,
standard optimizations such as constant folding and dead code elimination are known to
improve the efficiency of generated code. We additionally envision various optimizations
specific to translating threads to events. Examples include avoiding temporary variables,
compacting E-frames, and determining continuations at compile-time whenever possible.
Also, the back-end could be tailored towards targeting optimizations of the E-code
compiler.

Another interesting research direction would be the investigation of alternative trans-
lation schemes. The translation scheme of this thesis trades CPU cycles and RAM
consumption for binary size. While the evaluation shows that this seems to be a good
choice in general, it has also revealed that applications with mainly re-entrant code
constitute a worst case. A future compiler should therefore be equipped with multiple
translation schemes. Heuristics could determine relevant application properties in order
to select the most efficient translation scheme. We expect it to be challenging to general-
ize the debugging information to support fault diagnostics independent of the selected
translation.

When we started investigating compiler-assisted thread abstractions we did not an-
ticipate how complex it is to provide a tool that reliably rejects invalid code. With our
experience today, we think that translating threads to events on the level of (platform
independent) assembler code is a promising alternative. The major advantage would be
that existing compilers would deal with the complexity of C99 and GNU C. Also, existing
optimization passes could be used, both before and after translating threads to events. It
is, however, an open question to us how to still enable fault diagnostics on the level of the
C program.

We believe that Ocram is a practical solution for three reasons. First, generated code
integrates seamlessly with existing event-based code. Then, the set of supported features
already allows for the development of realistic WSN applications. Nevertheless, the
current implementation rejects many features that could be supported in the future. And
finally, Ocram can easily be ported to other event-based kernels, because implementing
a thin platform abstraction layer is a one-time effort. Ruab is also conceptually feature
complete, but would require additional work to become user friendly. Overall, we think
that this thesis improves the state-of-the-art in providing programming abstractions for
resource-constrained systems.
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This section is intended to define the terms used in Section 3.5 and to clarify the various
steps of the compiler pipeline. To this end, it shows a subset of the C grammar as it is
used by the parser (cf. Section 3.5.2).

The listing is an alphabetically sorted excerpt of the data type definitions of the Lan-
guage.C library [57]. Therefore, is uses the Haskell syntax for algebraic data types. Please
consult 2.3.2 and Chapter 4 of the Haskell Language Report 2010 [4] for clarification.

Most types are polymorphic with respect to the type of the attached annotation, i.e.,
the type parameter a. See Chapter 4.2.2.1 for details.

The top-level type is CTranslationUnit.

data CBuiltinThing a
= CBuiltinVaArg -- ’__builtin_va_arg’

(CExpression a) -- expression
(CDeclaration a) -- type
a

| CBuiltinOffsetOf -- ’__builtin_offsetof’
(CDeclaration a) -- type
[CPartDesignator a] -- designator list
a

| CBuiltinTypesCompatible -- ’__builtin_types_compatible_p’
(CDeclaration a) -- left hand side
(CDeclaration a) a -- right hand side

data CCompoundBlockItem a
= CBlockStmt -- statement

(CStatement a)
| CBlockDecl -- local declaration

(CDeclaration a)
| CNestedFunDef -- nested function (GNU C)

(CFunctionDef a)

data CDeclaration a
= CDecl -- declarations

[CDeclarationSpecifier a] -- specifiers (type, storage, ...)
[( -- list of declarations

Maybe (CDeclarator a) -- declared object
, Maybe (CInitializer a) -- initial value
, Maybe (CExpression a) -- size
)]
a

data CDeclarationSpecifier a
= CStorageSpec (CStorageSpecifier a)
| CTypeSpec (CTypeSpecifier a)
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| CTypeQual (CTypeQualifier a

data CDeclarator a
= CDeclr -- declaration of an object
(Maybe Ident) -- name
[CDerivedDeclarator a] -- indirections
(Maybe (CStringLiteral a)) -- assembler names
[CAttribute a]
a

data CDerivedDeclarator a
= CPtrDeclr -- pointer declarator

[CTypeQualifier a] -- pointer type
a

| CArrDeclr -- array declarator
[CTypeQualifier a] -- array type
(CArraySize a) -- array size
a

| CFunDeclr -- function declarator
(Either -- parameters
[Ident] -- parameter names (K&R-style)
( -- parameters (new style)
[CDeclaration a] -- declaration

, Bool -- flag
)

)
[CAttribute a] a

data CEnumeration a
= CEnum -- enumeration

(Maybe Ident) -- name
(Maybe [( -- enumeration constants

Ident -- name
, Maybe (CExpression a) -- value
)]

)
[CAttribute a]
a

data CExpression a
= CComma -- comma operator
[CExpression a] -- expressions, n >= 2
a

| CAssign -- assignemnt operation
CAssignOp -- operator

(CExpression a) -- lvalue
(CExpression a) -- rvalue
a

| CCond
(CExpression a) -- conditional
(Maybe (CExpression a)) -- true-expression (opt. in GNU C)
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(CExpression a) -- false-expression
a

| CBinary -- binary operation
CBinaryOp -- operator
(CExpression a) -- left hand side
(CExpression a) -- right hand side
a

| CCast -- type cast
(CDeclaration a) -- type name
(CExpression a) -- operant
a

| CUnary -- unary operation
CUnaryOp -- operator
(CExpression a) -- operant
a

| CSizeofExpr -- ’sizeof(expr)’
(CExpression a) -- operant
a

| CSizeofType -- ’sizeof(type)’
(CDeclaration a) -- operant
a

| CAlignofExpr -- ’__alignof__(expr)’ (GNU C)
(CExpression a) -- operant
a

| CAlignofType -- ’__alignof__(type)’ (GNU C)
(CDeclaration a) -- operant
a

| CComplexReal -- real part of complex number
(CExpression a) -- operant
a

| CComplexImag -- imaginary part of complex number
(CExpression a) -- operant
a

| CIndex -- array subscripting
(CExpression a) -- array
(CExpression a) -- index
a

| CCall -- function call
(CExpression a) -- callee
[CExpression a] -- parameters
a

| CMember -- member access
(CExpression a) -- structure
Ident -- member name
Bool -- de-reference? (true => ’->’)
a

| CVar -- variable or enumeration constant
Ident -- name
a

| CConst -- literal
(CConstant a)
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| CCompoundLit -- compound literal
(CDeclaration a) -- target type
(CInitializerList a) -- initialiser list
a

| CStatExpr -- statement as expression (GNU C)
(CStatement a) a

| CLabAddrExpr -- address of a label (GNU C)
Ident -- label name
a

| CBuiltinExpr -- built-in expressions (GNU C)
(CBuiltinThing a)

data CExternalDeclaration a
= CDeclExt -- global declaration

(CDeclaration a)
| CFDefExt -- function definition

(CFunctionDef a)
| CAsmExt -- assembler code

(CStringLiteral a) a

data CFunctionDef a
= CFunDef -- function definition

[CDeclarationSpecifier a] -- return type and specifiers
(CDeclarator a) -- the declarator
[CDeclaration a] -- parameters (K&R-style only)
(CStatement a) -- body
a

data CInitializer a
= CInitExpr -- assignment expressoin

(CExpression a) a
| CInitList -- initilizer list
(CInitializerList a) a

type CInitializerList a = [( -- initializer list
[CPartDesignator a] -- desigators

, CInitializer a -- value
)]

data CPartDesignator a
= CArrDesig -- array position designator

(CExpression a) a -- index
| CMemberDesig -- member designator

Ident a -- name of the member
| CRangeDesig -- array range designator (GNU C)

(CExpression a) -- from
(CExpression a) -- to
a

data CStatement a
= CLabel -- label
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Ident -- name
(CStatement a) -- subsequent statement
[CAttribute a]
a

| CCase -- case statement
(CExpression a) -- constant expression
(CStatement a) -- subsequent statement
a

| CCases -- case range (GNU C)
(CExpression a) -- lower bound
(CExpression a) -- upper bound
(CStatement a) -- subsequent statement
a

| CDefault -- default statement
(CStatement a) a

| CExpr -- expression statement
(Maybe (CExpression a))
a

| CCompound -- block/scope
[Ident] -- not used
[CCompoundBlockItem a] -- contained block items
a

| CIf -- if statement
(CExpression a) -- condition
(CStatement a) -- ’then’ branch
(Maybe (CStatement a)) -- ’else’ branch
a

| CSwitch -- switch statement
(CExpression a) -- controlling expression
(CStatement a) -- body
a

| CWhile -- do or while loop
(CExpression a) -- condition
(CStatement a) -- body
Bool -- true => do loop
a

| CFor -- for loop
(Either -- initializer

(Maybe (CExpression a))
(CDeclaration a)

)
(Maybe (CExpression a)) -- controlling expression
(Maybe (CExpression a)) -- increment expression
(CStatement a) -- body
a

| CGoto -- goto
Ident -- target
a

| CGotoPtr -- computed goto (GNU C)
(CExpression a) -- target
a

135



APPENDIX A. ABSTRACT SYNTAX TREE TYPES

| CCont a -- ’continue’
| CBreak a -- ’break’
| CReturn -- return

(Maybe (CExpression a)) -- return value
a

| CAsm -- assembly statement
(CAssemblyStatement a) a

data CStorageSpecifier a
= CAuto a -- ’auto’
| CRegister a -- ’register’
| CStatic a -- ’static’
| CExtern a -- ’extern’
| CTypedef a -- ’typedef’
| CThread a -- ’__thread’: GNU C thread local storage

data CStructTag
= CStructTag -- ’struct’
| CUnionTag -- ’union’

data CStructureUnion a
= CStruct -- structure or union

CStructTag -- ’struct’ or ’union’
(Maybe Ident) -- name
(Maybe [CDeclaration a]) -- member declarations
[CAttribute a]
a

data CTranslationUnit a
= CTranslUnit -- translation unit

[CExternalDeclaration a] -- external (global) declarations
a

data CTypeQualifier a
= CConstQual a -- ’const’
| CVolatQual a -- ’volatile’
| CRestrQual a -- ’restricted’
| CInlineQual a -- ’inline’
| CAttrQual -- ’__attribute__((name))’

(CAttribute a)

data CTypeSpecifier a
= CVoidType a -- ’void’
| CCharType a -- ’char’
| CShortType a -- ’shor t’
| CIntType a -- ’int’
| CLongType a -- ’long’
| CFloatType a -- ’float’
| CDoubleType a -- ’double’
| CSignedType a -- ’signed’
| CUnsigType a -- ’unsigned’
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| CBoolType a -- ’_Bool’
| CComplexType a -- ’_Complex’
| CSUType -- struct or union

(CStructureUnion a)
a

| CEnumType -- Enumeration specifier
(CEnumeration a)
a

| CTypeDef -- typedef name
Ident -- type name
a

| CTypeOfExpr -- ’typeof(expr)’
(CExpression a)
a

| CTypeOfType -- ’typeof(type)’
(CDeclaration a)
a

137





B. Short-circuit Evaluation

The short_circuit function from Section 3.5.4.3 is based on two sub-functions, namely
traverse and transform.

Function B.1: traverse ::
CExpression -- an arbitrary expression

→ ( -- a tuple consisting of
CExpression, -- a substituting expression, and
[CStatement], -- a list of statements emulating

short-circuit behavior (if
required), and

[Variable] -- a list of new variables
)

Function B.2: transform ::
CStatement -- a basic statement

→ [CStatement] -- a list of statements emulating
short-circuit behavior (if required)

traverse takes an expression and returns a new expression, a list of statements and a
list of IR variables. The new expression can replace the old one if the given statements are
executed in advance. Also, the new expression makes use of the returned new variables.
traverse is a recursive function, as expressions are recursive themselves. If there is
a base case such as a variable or a constant at hand, the new expression equals the old
one and the list of statements and the list of variables is empty. In most other cases,
the expression is decomposed into its subexpressions, traverse is applied to these
subexpressions in turn, and the recursive results are composed into a new expression
and concatenated into the list of statements and list of variables. The interesting case is
the one of a binary operation that uses a logical operator and contains a critical call (cf.
Figure 3.13).

In such a case, traverse is again applied recursively to the subexpressions, but the
results are composed differently. First of all, the new expression is just a new variable
of type _Bool, whose IR is returned as the single element of the list of new variables.
Additionally, the list of returned statements is built up as follows: It starts with the list
of traversed statements of the left-hand side. According to the semantics of traverse,
these statements have to be executed before the new expression of the left-hand side may
be used. This expression is assigned to a new Boolean variable next. A subsequent if
statement redirects the control flow to the end of the list of statements that is currently
built if the value of the Boolean variable is false in case of a logical and-expression or
true in case of a logical or-expression. Otherwise, the control flow continues with the
next statement, which is the start of the list of traversed statements of the right-hand side.
Again, these statements have to be executed before the new expression of the right-hand
side may be used. This expression is finally assigned to the Boolean variable. Overall, if
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this list of statements is executed, the Boolean variable, which resembles the returned new
expression, holds the value of the logical operation. Thus, the semantics of traverse are
implemented correctly. At the same time, the right-hand side of the logical operation is
not evaluated when indicated, which is how the short-circuit semantics are implemented.

The transform function matches all possible statements, calls the function traverse
on the interior expressions, and composes from the results a new statement, which is
prepended by the list of statements returned by traverse. Note that if none of the
sub-expressions of a statement contains a critical call, transform effectively returns the
same statement and the list of new variables is empty. In Figure 3.13a, however, line
1–4 are the list of statements returned by traverse when invoked on “c() || y” and
line 5 is the original statement with the logical operation replaced by the new expression
that was returned by traverse. In Figure 3.13b, line 1–8 resemble the list of statements
returned by traverse when invoked on the whole expression of the return statement.
Also, line 9 shows that return statement with the new expression substituting the old one.
Recursively, line 1–4 are the list of statements returned by traverse when invoked on
the left-hand side of the logical or-expression. And line 5 shows how the new expression
returned by the same traverse invocation is used to the new Boolean variable, just like
line 1 one level down the recursion. Overall, short_circuit invokes transform on
each input statement while collecting the new variables.
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C. Reproducing the Experiments

This section is intended to enable independent third parties to reproduce and verify
our experimental results. We specify the version of each involved software component,
and we document each step we took to produce the results. Different version of the
employed software components or alternative implementations might work as well, so
the documented dependencies are not strict.

The following sections assume to be processed in order. Each section will start
with a list of dependencies followed by a sequence of shell commands. We used the
Z shell (http://zsh.sourceforge.net/) on Ubuntu GNU/Linux (maverick, 64-bit)
(http://www.ubuntu.com) to execute these commands.

Some files contain hard-coded path names which reflect our local installation. In order
to reproduce the experiments in different environments these paths have to be adapted. A
full list is provided at the end of this section.

Ocram

This section documents how to build the Ocram binary.

Dependencies

• git 1.7.1 - version control
http://git-scm.com

• Haskell Platform 2012.2.0.0 - basic development environment
http://www.haskell.org/platform

• GHC 7.4.1 - Haskell implementation
http://www.haskell.org/ghc

• cabal-dev 0.9.1 - sandbox management
http://github.com/creswick/cabal-dev

Steps

# download the Ocram project
$ git clone git://github.com/copton/ocram.git

# enter the Ocram project tree
$ cd ocram

# remember project path
$ export OCRAM=`pwd`

# switch to the thesis branch
$ git checkout thesis
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# enter build environment
$ source ./setup

# enter Ocram source tree
$ cd ocram

# build the binary
$ cabal-dev install

# execute the test suite
$ ./cabal-dev/bin/ocram �test

Contiki

This section documents how to prepare Contiki.

Dependencies

• Contiki 2.5.x - “The Open Source OS for the Internet of Things”
http://contiki-os.org

• JDK 1.6.0_30 - Java Development Kit
http://www.oracle.com/technetwork/java/javase

• Ant 1.7.1 - build system
http://ant.apache.org/

Steps

# download the Contiki project
$ git clone git://contiki.git.sourceforge.net/gitroot/contiki/contiki

# enter Contiki project tree
$ cd contiki

# remember project path
$ export CONTIKI=`pwd`

# checkout the correct commit
$ git checkout -b local 92765b384ec87de96e97529dd463c48a8d199ec3

# apply patches
$ git apply $OCRAM/patches/contiki/*.patch

# enter Cooja path
$ cd tools/cooja

# build Cooja
$ ant build

Our patches to Contiki are:

1. local-modifications.patch: disable radio duty cycling and add our Cooja
plugin to both Cooja and MSPsim configuration

2. OcramCoojaPlugin.patch: add a symbolic link of the Ocram plugin to the
mspsim directory.
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3. disable-wrong-assertion.patch: disable an assertion that is spuriously trig-
gered in head-less executions of Cooja.

4. detailed-CPU-cycle-tracking-for-processes.patch: introduce the process_hook
API of our Ocram plugin and instrument the MSP430 platform to enable accurate
measurement of CPU cycles.

Measurements

This section documents how to run the experiments and obtain the results.

Dependencies

• gcc-msp430 3.2.3 - MSP430-port of the GCC
http://mspgcc.sourceforge.net

• binutils-msp430 2.17-2 - MSP430-port of GNU binutils
http://mspgcc.sourceforge.net

• GNU Make 3.81 - build system
http://www.gnu.org/software/make/

• schroot 1.4.7 - chroot management
http://wiki.debian.org/Schroot

• Python 2.6.6 - dynamic scripting language
http://www.python.org

• Jinja2 2.5.2 - template language
http://jinja.pocoo.org/docs/

• GNU Plot 4.4 - graphing utility
http://www.gnuplot.info/

Steps

The build system assumes a schroot environment called contiki which includes the
installation of the 32-bit MSP430 tool chain.
# enter Ocram project
$ cd $OCRAM

# enter build environment
$ source ./setup

# enter case study application path
$ cd applications/contiki

# build applications
$ make

# run experiments
$ make plot
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If everything goes right, the results can be found in
$OCRAM/applications/contiki/{dca,coap,rpc?}/bench.results
and the plots can be found in
$OCRAM/applications/contiki/plots/*.png.

Ruab

This sections document how to build and test Ruab.

Dependencies

• GDB 7.4-2012.02 - The GNU Debugger
http://http://www.gnu.org/software/gdb/

Steps

The tests assume a schroot environment called precise which includes the installation
of the GDB.
# enter Ocram project
$ cd $OCRAM

# enter build environment
$ source ./setup

# enter simulation OS path
$ cd applications/simulation_os

# enter build environment
$ source ./setup-linux

# build OS and case study applications
$ make

# test OS and case study applications
$ make test

# enter Ruab tree
$ cd $OCRAM/ruab

# build binary
$ cabal-dev install

# run tests
$ ./cabal-dev/bin/ruab -test

Hard-coded Paths

The following files contain hard-coded paths that have to be adapted for different environ-
ments:

• $CONTIKI/tools/cooja/apps/mspsim/src/mspmote/
plugins/OcramCoojaPlugin.java

is a symbolic link to
$OCRAM/applications/contiki/OcramCoojaPlugin.java.
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• $OCRAM/setup contains references to the Haskell installation.

• $OCRAM/applications/contiki/
{coap,dca,rpc2}/{generated,native,runtime}
Makefile{,.contiki}

contain references to $CONTIKI.

• $OCRAM/ruab/src/Ruab/Backend/GDB/Test.hs contains references to $OCRAM.

• $OCRAM/applications/contiki/test.py contains a reference to $CONTIKI.
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D. Free and Open Source Software

This work has been established mainly with the help of free and open source software.
The spirit of free and open source software is close to the spirit of science, i.e., building
upon the work of others and contributing back to the public. One major incentive for
participation is reputation. Therefore, we want to gratefully mention each project that
directly or indirectly enabled us in creating this work, even if the individual software
licences may not force us to do so.

• Development Tools

– Ant
a build system
http://ant.apache.org/

– cabal-dev
a tool for managing development builds of Haskell projects
http://hackage.haskell.org/package/cabal-dev

– Dia
a diagram creation program
https://live.gnome.org/Dia

– GDB
the GNU project debugger
http://www.gnu.org/software/gdb/

– git
a distributed version control system
http://git-scm.com/

– Glade
a RAD for GTK+ user interfaces
http://glade.gnome.org/

– GNU Make
a build system
http://www.gnu.org/software/make/

– hlint
lint-like behavior for Haskell
http://community.haskell.org/~ndm/hlint/

– Vim
a text editor
http://www.vim.org

– wdiff
a word per word difference tool
http://www.gnu.org/software/wdiff/
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• Text Generation Tools

– TEX
a typesetting system
Donald E. Knuth: Digital Typography. University of Chicago Press, 1999,
ISBN 1-57586-010-4

– Gnuplot
a graphing utility
http://www.gnuplot.info/

– Inkscape
a vector graphics editor
http://inkscape.org/

– LATEX
a document markup language and document preparation system for TEX
http://www.latex-project.org/

– pdftex
a TEXdistribution
http://www.tug.org/applications/pdftex/

– xpdf
a PDF suite
http://www.foolabs.com/xpdf/

– evince
a document viewer
http://www.gnome.org/projects/evince/

• Programming Language Implementations

– Glasgow Haskell Compiler
a compiler and interactive environment for Haskell
http://www.haskell.org/ghc/

– GNU Compiler Collection
a compiler and a standard library implementation for C
http://gcc.gnu.org/

– Jinja2
a full featured template engine for Python
http://jinja.pocoo.org/

– MSP430 GCC
a GCC port for the MSP430 platform
http://mspgcc.sourceforge.net/

– OpenJDK
an implementation of the Java Platform, Standard Edition
http://openjdk.java.net/

– Python
a general-purpose, interpreted, and dynamically typed programming language
http://www.python.org
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– zsh
an interactive shell and scripting language
http://www.zsh.org/

• Evaluation

– Contiki
“the operating system for the Internet of Things”
http://www.contiki-os.org/

– Cooja
a cross-level sensor network simulator
http://www.contiki-os.org/

– GNU binutils
a collection of binary tools
http://www.gnu.org/software/binutils/

– Linux
Unix-like operating system kernel
http://www.kernel.org

– schroot
a management tool for chroot environments
http://www.debian-administration.org/articles/566

– TinyOS
an operating system for low-power wireless devices
http://www.tinyos.net/

• Haskell Libraries

– bytestring
efficient, compact and immutable byte strings
http://hackage.haskell.org/package/bytestring

– Data.Generics
generic programming in Haskell
http://hackage.haskell.org/package/syb

– fgl
a functional graph library
http://hackage.haskell.org/package/fgl

– gtk2hs
a GUI library based on GtK+

http://projects.haskell.org/gtk2hs/

– hgdbi
an implementation of the GDB Machine Interface
http://hackage.haskell.org/package/hgdbmi

– hoopl
higher-order optimization
http://hackage.haskell.org/package/hoopl
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– HUnit
a unit test library
http://hackage.haskell.org/package/HUnit

– json
a JSON parser and printer library
http://hackage.haskell.org/package/json

– Language.C
analysis and generation of C code
http://hackage.haskell.org/package/language-c

– nano-md5
efficient bytestring bindings to OpenSSL
http://hackage.haskell.org/package/nano-md5

– parsec
an industrial-strength parser library
http://hackage.haskell.org/package/parsec

– pretty
print out text in a consistent format of your choosing
http://hackage.haskell.org/package/pretty

– stm
software transactional memory
http://hackage.haskell.org/package/stm

– test-framework
a generic test framework
http://hackage.haskell.org/package/test-framework

In the context of this work we contributed to the following projects: Cooja, pretty,
Language.C, hgdbmi, hlint, MSPsim
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