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2 Abstract

The overall aim of this thesis was to apply techniques from algebraic geometry to prob-
lems in economics. Algebraic geometry has found many applications in various areas of
mathematics and in several other fields. We have encountered three major approaches
to employing these tools to economics. First, there are the symbolic methods from
computer algebra (Greuel and Pfister, 2002). One possible avenue of approach here is
Gröbner bases, which have already been used to great effect in integer programming (Lo-
era et al., 2006) and also in economics (Kubler and Schmedders, 2010). Second, there is
the numerical algebraic geometry route. There one uses Berstein’s or Bezout’s theorem,
which give information on the isolated solutions of a square system of polynomial equa-
tions (Sommese and Wampler, 2005). The basic idea is to construct a homotopy and
trace the paths leading to those isolated solutions. It is a very active field of research
and applications range from optimal control (Rostalski et al., 2011) to biology (Hao et
al., 2011). Lastly there is the real algebraic geometry route. It was recently discovered
(Parrilo, 2000; Lasserre, 2001b) that representation results for positive polynomials can
be used to relax polynomial optimization problems into convex optimization problems.
Since then it has been shown that this is a promising approach to solving various prob-
lems, for instance in combinatorial optimization (Lasserre, 2001a) and also game theory
(Laraki and Lasserre, 2012).

Over recent years I have looked at the last two of these approaches. The results have
been presented in the form of several papers, two of which have already been published
and the last of which is being revised at the time of writing.

The first paper is entitled “Finding all pure-strategy equilibria in games with contin-
uous strategies” (Judd et al., 2012). Static and dynamic games are widely used tools for
policy experiments and estimation studies. The multiple Nash equilibria in such models
can potentially invalidate the results thus obtained. This problem of multiplicity has
been well known for decades and there are several easy models in which it occurs (Fu-
denberg and Tirole, 1983a). However, it has been largely ignored in most publications
thus far. In this paper we want to illustrate how to address this problem by means of
the all solutions homotopy optimization approach (Sommese and Wampler, 2005). To
apply this approach we require our problem to be polynomial with isolated optimal so-
lutions. We then reformulate the problem by using the Karush-Kuhn-Tucker conditions
to obtain a square system of polynomial equations. The basic idea of the homotopy
approach is to use an easier version of the model, where all solutions are known. This
easy system is then transformed via a function called homotopy to KKT conditions.
The resulting paths are traced by numerical methods. The same ideas can be used in all

5



2 Abstract

situations in which a version of the implicit function theorem holds. But in general this
approach cannot compute all solutions. However, in the polynomial case, if we perturb
the homotopy path randomly and choose an appropriate starting system, then we can
reach all isolated solutions. We use the software package Bertini (Bates et al., 2005),
which implements the homotopy solution approach, to solve a Bertrand price game and
a stochastic dynamic model of cost-reducing investment.

My contribution to this paper was to describe the mathematics behind this approach
and also to compute the various examples.

The second paper is entitled “A polynomial optimization approach to principal agent
problems” (Renner and Schmedders, 2013). In it we deal with a canonical model in
economics, the principal agent problem. The principal hires an agent to, for instance,
manage a company. She knows the agent’s preferences but cannot observe the agent’s
actions in the subsequent period. So, to maximize her own utility, she has to set the
right incentives for the agent. This leads to a bi-level optimization problem in which
both players optimize their expected utilities. Unless we impose restrictive assumptions
on the functions used, this leads in general to a non-convex lower-level problem. Thus
usual methods from bi-level optimization do not apply. We assume that the lower-
level problem is polynomial with a compact feasible set. Then we use ideas developed
in Lasserre, 2001b; Parrilo, 2000 to, in some cases, reformulate, and in others relax
the lower level into a convex optimization problem. We solve the resulting nonlinear
program with a numerical optimization routine.

My part in this work was the idea of using the Positivstellensätze to replace the
lower level problem. Thus I also wrote the mathematical part of this paper and again
computed the examples.

The third and final paper is entitled “Computing Generalized Nash Equilibria by Poly-
nomial Programming” (Couzoudis and Renner, 2013). The Generalized Nash equilibrium
is a solution concept that extends the classical Nash equilibrium to situations in which
the opponents decision influences the player’s constraints. To compute these equilib-
ria the literature usually assumes convexity or quasi-convexity of the player’s problems.
However, in many situations it is desirable to use non-convex objective functions. We
adapted the method developed in the previous paper to be able to solve this problem
for the non-convex case. Our assumptions are that the functions are polynomials with
compact feasible sets. We then again use real algebraic geometry to relax these problems
into convex optimization problems which then can be solved using standard methods.
As an example we compute a model of the New Zealand electricity spot market using a
real data set.

Again I proved the relevant theorems, wrote the overview for the relaxation methods,
and computed the example.
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3 Zusammenfassung

Das Ziel dieser Arbeit war es die Techniken der algebraischen Geometrie und Compu-
ter Algebra auf Problem aus der Ökonomie anzuwenden. Algebraische Geometrie hat
mittlerweile viele Anwendungen in verschieden Gebieten der Mathematik und anderen
Forschungsrichtungen gefunden. Uns sind drei mögliche Ansätze begegnet, um dieses
Ziel zu erreichen. Der erste Ansatz bedient sich der symbolischen Methoden, welche
von der Computer Algebra kommen (Greuel und Pfister, 2002). Ein wichtiges Werkzeug
dort sind die Gröbner Basen. Diese wurden bereits sowohl in ganzzahliger Optimierung
(Loera u. a., 2006) und in den Wirtschaftswissenschaften benutzt (Kubler und Schmed-
ders, 2010). Als weiter Möglichkeit gibt es die Methoden der numerischen algebraischen
Geometrie. Mit Hilfe von den Sätzen von Bezout und Bernstein können alle isolierten
Nullstellen von polynomialen Gleichungssystemen berechnet werden. Die grundlegende
Idee ist eine Homotopie von einem einfachen System zu dem Ursprünglichen zu konstru-
ieren (Sommese und Wampler, 2005). Dann folgt man mit numerischen Methoden den
resultierenden Pfaden. Diese Methoden haben bereits viele Anwendungen, zum Beispiel
in optimaler Steuerung (Rostalski u. a., 2011) und Biologie (Hao u. a., 2011), gefunden.
Eine dritte Möglichkeit ist die reelle algebraische Geometrie (Parrilo, 2000; Lasserre,
2001b). Dabei werden die Repräsentationssätze für positive Polynome benutzt um ein
polynomiales Optimierungsproblem zu einem konvexen Programm zu relaxieren. Dieser
Ansatz hat sich als sehr vielversprechend erwiesen und hat bereits Anwendungen in zum
Beispiel kombinatorischer Optimierung (Lasserre, 2001a) und Spieltheorie (Laraki und
Lasserre, 2012) gefunden.

Meine Arbeit der letzten Jahre hat zu drei Artikel geführt, welche sich der letzten
beiden Ansätzen bedienen. Zwei Papiere sind bereits veröffentlicht und das Dritte ist
im Moment im Begutachtungsprozess.

Der erste Artikel ist “Finding all pure-strategy equilibria in games with continuous
strategies” (Judd u. a., 2012). Statische und dynamische Spiele sind weit verbreitete Mo-
delle für Strategie Experimente und Planspiele. Mehrere Nash Gleichgewichte in solchen
Situationen können potentiell die Resultate verfälschen und sogar unbrauchbar machen.
Diese Problematik ist seit Jahrzehnten bekannt und selbst in einfachen Modellen kann
sie vorkommen (Fudenberg und Tirole, 1983a). Trotz den signifikanten Folgen wurde
dies in der Literatur weitgehend ignoriert. In diesem Artikel wollen wir zeigen, wie, in
gewissen Situationen, mehrfache Gleichgewichte gefunden werden können. Für das Opti-
mierungsproblem setzen wir voraus, dass die Lösungen isoliert sind und die Funktionen
Polynome. Die Karush-Kuhn-Tucker Bedingungen liefern dann ein quadratisches Sy-
stem von polynomialen Gleichungen. Dieses kann dann mit der Software Bertini (Bates
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3 Zusammenfassung

u. a., 2005) gelöst werden. Wir betrachten Bertrand-Wettbewerb und ein stochastisches
dynamisches Modell mit Kosten reduzierendem Investment.

Mein Beitrag zu diesem Papier war die Beschreibung der zugrunde liegenden Mathe-
matik und die Berechnung der Beispiele.

Das zweite Papier heisst “A polynomial optimization approach to principal agent pro-
blems” (Renner und Schmedders, 2013). Das Prinzipal-Agenten Modell ist eines der
kanonischen Modelle der Wirtschaftswissenschaften. Der Prinzipal schliesst einen Ver-
trag mit einem Agenten ab, zum Beispiel ein Eigentümer stellt einen Manager ein. Das
Spezielle an diesem Problem ist, dass der Prinzipal nicht die Aktion des Agenten in der
folgenden Periode beobachten kann. Er kennt lediglich die Nutzenfunktion des Agen-
ten, die möglichen Resultate und deren Wahrscheinlichkeiten. Dies führt zu einem zwei
Ebenen Problem, wobei die optimale Aktion des Agenten teil der Restriktionen des
Prinzipal sind. Beide Spieler optimieren hierbei ihren erwarteten Nutzen. Ausser unter
starken Restriktionen, führt dies im Allgemeinen zu einer nicht konvexen unteren Ebe-
ne. Standardmethoden der Bilevel Optimierung greifen hier nicht mehr. Wir nehmen
an, dass die untere Ebene eine Polynomiales Optimierungsproblem ist mit kompakter
zulässiger Menge. Dann verwenden wir Ideen aus Lasserre, 2001b; Parrilo, 2000, um
die untere Ebene im eindimensionalen Fall zu reformulieren und im Mehrdimensiona-
len zu relaxieren. Das resultierende nicht lineare Optimierungsproblem lösen wir mit
numerischer Optimierungssoftware.

Mein Anteil war die Idee die Positivstellensätze zur Umformulierung der unteren
Ebene zu benutzen. Somit habe ich auch den mathematischen Teil geschrieben und
auch die Beispiele berechnet.

Der letzte Artikel hat den Titel “Computing Generalized Nash Equilibria by Polynomi-
al Programming” (Couzoudis und Renner, 2013). Verallgemeinerte Nash Gleichgewichte
sind ein Lösungskonzept, welches das klassische Konzept von Nash erweitert, indem die
Entscheidung der Gegenspieler sich auch auf die eigenen Nebenbedingungen auswirkt.
Der übliche Ansatz ist es Konvexität oder zumindest Quasi-Konvexität für die einzelnen
Spielerprobleme anzunehmen. Es ist aber in gewissen Situationen interessant sich nicht
konvexe Probleme anzusehen. Wir haben die Methodologie, welche im vorangegangenen
Papier Anwendung gefunden hat, auf diese Situation angepasst. Wir nehmen an, dass
die Funktionen Polynome sind und dass die zulässige Mengen der Spieler kompakt sind.
Wir verwenden reelle algebraische Geometrie, um die einzelnen Spielerprobleme zu ei-
nem konvexen Optimierungsproblem zu relaxieren. Diese können dann wiederum mit
Standardmethoden gelöst werden. Als ein Anwedungsbeispiel berechnen wir ein Modell
des neuseeländischen Elektrizitätsmarktes.

Ich habe wieder die relevanten Sätze bewiesen, die Relaxierungsmethoden beschrieben
und das Beispiel berechnet
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4 Finding all pure-strategy equilibria in
games with continuous strategies12

Abstract

Static and dynamic games are important tools for the analysis of strategic inter-
actions among economic agents and have found many applications in economics.
Such models are used both for policy experiments and for structural estimation
studies. It is well-known that equilibrium multiplicity poses a serious threat to
the validity of such analyses. This threat is particularly acute if not all equilibria
of the examined model are known. Often equilibria can be described as solu-
tions of polynomial equations (which must also perhaps satisfy some additional
inequalities.) In this paper we describe state-of-the-art techniques developed in
algebraic geometry for finding all solutions of polynomial systems of equations and
illustrate these techniques by computing all equilibria of both static and dynamic
games with continuous strategies. We compute the equilibrium manifold for a
Bertrand pricing game in which the number of pure-strategy equilibria changes
with the market size. Moreover, we apply these techniques to two stochastic dy-
namic games of industry competition and check for equilibrium uniqueness. Our
examples show that the all-solution methods can be applied to a variety of static
and dynamic models.

4.1 Introduction

Multiplicity of equilibria is a prevalent problem in equilibrium models with strategic
interactions. This problem has long been acknowledged in the theoretical literature but
until now been largely ignored in applied work even though simple examples of mul-
tiple equilibria have been known for decades, see, for example, the model of strategic
investment in Fudenberg and Tirole, 1983a. Until recently this criticism was also true
of one of the most prolific literatures of applied game-theoretic models, namely that

1(Judd et al., 2012)
2We are indebted to five anonymous referees and co-editor Elie Tamer for very helpful comments on

an earlier version of the paper. We thank Guy Arie, Paul Grieco, Felix Kubler, Andrew McLennan, Walt
Pohl, Mark Satterthwaite, Andrew Sommese, Jan Verschelde, and Layne Watson for helpful discussions
on the subject. We are very grateful to Jonathan Hauenstein for providing us with many details of
the Bertini software package and for his patient explanations of the underlying mathematical theory.
We are also grateful for comments from seminar audiences at the University of Chicago ICE workshops
2009–11, the University of Zurich, ESWC 2010 in Shanghai, the University of Fribourg, and the Zurich
ICE workshop 2011. Karl Schmedders gratefully acknowledges the financial support of Swiss Finance
Institute.
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4 Finding all pure-strategy equilibria in games with continuous strategies

based on the framework for the study of industry evolution introduced by Ericson and
Pakes, 1995. This framework builds the foundation for very active areas of research in
industrial organization, marketing, and other fields—See the survey by Doraszelski and
Pakes, 2007. Some recent work in this field is a great example of the growing interest in
equilibrium multiplicity in active areas of modern applied economic analysis. Besanko
et al., 2010 state that, to their knowledge, “all applications of Ericson and Pakes’ (1995)
framework have found a single equilibrium.” They then show that multiple Markov-
perfect equilibria can easily arise in a prototypical model in this framework. Borkovsky
et al., 2010 and Doraszelski and Satterthwaite, 2010 present similar examples with mul-
tiple Markov-perfect equilibria. But findings of multiple equilibria are not confined to
stochastic dynamic models. Bajari et al., 2010 show that multiple equilibria may arise in
static games with incomplete information and discuss a possible approach to estimating
such games. Clearly the difficulty of equilibrium multiplicity is not restricted to the
cited papers. In fact in many other economic applications we may often suspect that
there could be multiple equilibria.

In many economic models equilibria can be described as solutions to polynomial equa-
tions (which perhaps also must satisfy some additional inequalities.) Recent advances in
computational algebraic geometry have led to several powerful methods and their easy-
to-use computer implementations that find all solutions to polynomial systems. Two
different solution approaches stand out—all-solution homotopy methods and Gröbner
basis methods, both of which have their advantages and disadvantages. The methods
which use Gröbner bases (Cox et al., 2007; Sturmfels, 2002) can solve only rather small
systems of polynomial equations but can analyze parameterized systems. For an applica-
tion of these methods to economics, see the analysis of parameterized general equilibrium
models in Kubler and Schmedders, 2010. The all-solution homotopy methods (Sommese
and Wampler, 2005) are purely numerical methods that cannot handle parameters but
can solve much larger systems of polynomial equations. It is these homotopy methods
that are the focus of the present paper.

All-solution homotopy methods for solving polynomial systems derived from economic
models have been discussed previously in both the economics and mathematics litera-
ture on finite games. McKelvey and McLennan, 1996 mentions the initial work on the
development of all-solution homotopy methods such as Drexler, 1977, Drexler, 1978, and
Garcia and Zangwill, 1977. Herings and Peeters, 2005 outlines how to use all-solution
homotopies for finding all Nash equilibria of generic finite n-person games in normal
form but neither implements an algorithm nor solves any examples. Sturmfels, 2002
surveys methods for solving polynomial systems of equations and applies them to find-
ing Nash equilibria of finite games. Datta, 2010 shows how to find all Nash equilibria of
finite games by polyhedral homotopy continuation. Turocy, 2008 describes progress on
a new implementation of a polyhedral continuation method using the software package
PHCpack (Verschelde, 1999) in the software package Gambit (McKelvey et al., 2007).
The literature on computing one, some, or all Nash equilibria in finite games remains
very active—See the introduction to a recent symposium by von Stengel, 2010 and the
many citations therein. For a recent application of all-solution homotopy ideas to calcu-
lating asymptotic approximations of all equilibria for static discrete games of incomplete
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4.1 Introduction

information see Bajari et al., 2010. In the present paper, we do not consider finite games
but instead analyze static and dynamic games with continuous strategies. Such games
have many important economic applications. To our knowledge, the present paper is
the first application of state-of-the-art all-solution homotopy methods to such games.
In addition, this paper presents the first application of advanced techniques such as the
parameter continuation method or the system-splitting approach to economic models.3

The application of homotopy methods has a long history in economics—See Eaves
and Schmedders, 1999. Kalaba and Tesfatsion, 1991 proposes an adaptive homotopy
method to allow the continuation parameters to take on complex values to deal with
singular points along the homotopy path. Berry and Pakes, 2007 uses a homotopy
approach for the estimation of demand systems. The homotopy approach was first
applied to stochastic dynamic games by Besanko et al., 2010, Borkovsky et al., 2010
and Borkovsky et al., 2012. These three papers report results from the application
of a classical homotopy approach to the computation of Markov-perfect equilibria in
stochastic dynamic games. They show how homotopy paths can be used to find multiple
equilibria. When the homotopy parameter is itself a parameter of the economic model,
all points along the path represent economic equilibria (if the equilibrium equations are
necessary and sufficient.) Whenever the path bends back on itself multiple equilibria
exist. While this approach can detect equilibrium multiplicity it is not guaranteed to
find all equilibria. Only the all-solution homotopy techniques presented in this paper
allow for the computation of all equilibria. However, the classical homotopy approach
has the advantage of finding (at least) one equilibrium of much larger economic
models with thousands of equations which do not have to be polynomial. Currently
available computational power may not allow us to solve systems with more than a
few dozen equations depending on the degree of the polynomials. As we explain below,
however, the all-solution homotopy methods are ideally suited to parallel computations.
Our initial experience with an implementation on a computer cluster is very encouraging.

3In this paper we neither prove any new theorems nor present the most recent examples of fron-
tier applications. Instead we follow the traditional approach in computational papers and describe a
numerical method and apply it to examples that are familiar to most readers. This paper, as many
previous computational papers have done, aims to educate the reader regarding the key ideas underlying
a useful numerical method and illustrates these techniques in the context of familiar models. It does
so in a way that makes it easy for readers to see how to apply these methods to their own particu-
lar problems, and points them to the appropriate software. To clarify what we mean by “traditional
method” we should give a few examples. First, the paper by Kloek and Dijk, 1978 introduced Monte
Carlo methods to basic econometrics using examples from the existing empirical literature and also
focused on the methods as opposed to examining breakthrough applications. Second, Fair and Taylor,
1983 demonstrated how to use Gauss-Jacobi methods to solve rational expectation models. Again, the
paper neither presented new theorems nor used frontier applications as examples. Instead it focused on
very simple examples that made clear the mathematical structure of the algorithm and related it to the
standard structure of rational expectation models. Third, Pakes and McGuire, 2001 showed how to use
stochastic approximation to accelerate the Gauss-Jacobi algorithm that they had previously introduced
in Pakes and McGuire, 1994 for the solution of stochastic dynamic games. Again, the paper did not
analyze new applications and proved only one (convergence) theorem. Instead the paper educated the
reader about stochastic ideas and illustrated their value in a well-known example. In this paper we
follow the tradition of this literature.
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4 Finding all pure-strategy equilibria in games with continuous strategies

The remainder of this paper is organized as follows. Section 4.2 describes a motivating
economic example. We provide some intuition for the all-solution homotopy methods in
Section 4.3. Next, Section 4.3.3 describes the theoretical foundation for the all-solution
methods and Section 4.4 briefly comments on an implementation of such methods. In
Section 4.5 we provide more details on the computations for the motivating example.
Section 4.6 provides a description of the general set-up of dynamic stochastic games. In
Section 4.7 we present an application of the all-solution methods to a stochastic dynamic
learning-by-doing model. Similarly, Section 4.8 examines a stochastic dynamic model of
cost-reducing investment with the all-solution homotopy. Finally, Section 4.9 concludes
the paper and provides an outlook on future developments. The Appendix provides
more mathematical details on four advanced features of all-solution homotopy methods.

4.2 Motivating example: Duopoly game with two
equilibria

Before we describe details of all-solution homotopy methods, we motivate the application
of such methods in economics by reporting results from applying such a method to a
static duopoly game. Depending on the value of a parameter, this game may have no,
one, or two pure-strategy equilibria. This example illustrates the various steps that
are needed to find all pure-strategy Nash equilibria in a simple game with continuous
strategies.

4.2.1 Bertrand price game

We consider a Bertrand price game between two firms. There are two products, x and
y, two firms with firm x (y) producing good x (y), and three types of customers. Let px
(py) be the price of good x (y). Dx1, Dx2, and Dx3 are the demands for product x by
customer type 1, 2, and 3, respectively. Demands Dy1, etc. are similarly defined. Type
1 customers only want good x, and have a linear demand curve,

Dx1 = A− px; Dy1 = 0.

Type 3 customers only want good y and have a linear demand curve,

Dx3 = 0; Dy3 = A− py.

Type 2 customers want some of both. Let n be the number of type 2 customers. We
assume that the two goods are imperfect substitutes for type 2 customers with a constant
elasticity of substitution between the two goods and a constant elasticity of demand for
a composite good. These assumption imply the demand functions

Dx2 = np−σx
(
p1−σx + p1−σy

) γ−σ
−1+σ ; Dy2 = np−σy

(
p1−σx + p1−σy

) γ−σ
−1+σ .

12



4.2 Motivating example: Duopoly game with two equilibria

where σ is the elasticity of substitution between x and y, and γ is the elasticity of

demand for the composite good
(
q
σ−1
σ

1 + q
σ−1
σ

2

) σ
(σ−1)

. Total demand for good x (y) is

given by Dx = Dx1 +Dx2 +Dx3 (Dy = Dy1 +Dy2 +Dy3). Let m be the unit cost of
production for each firm. Profit for good x is Rx = (px−m)Dx; Ry is similarly defined.
Let MRx be marginal profits for good x; similarly for MRy. Equilibrium prices satisfy
the necessary conditions MRx = MRy = 0.

Firm x (y) is a monopolist for type 1 (3) customers. The two firms only compete in
the large market for type 2 customers. And so we may envision two different pricing
strategies for the firms. The mass market strategy chooses a low price so that the firm
can sell a large quantity to the large number of type 2 customers that would like to
buy both goods but are price sensitive. Such a low price leads to small profits from the
customers dedicated to the firm’s product. The niche strategy is to just sell at a high
price to the few customers that want only its good. Such a high price leads to small
demand for its product among the price-sensitive type 2 customers.

We want to demonstrate how we can find all solutions even when there are multiple
equilibria. The idea of our example is to find values for the parameters where each firm
has two possible strategies. We examine a case where one firm goes for the high-price,
small-sales (niche) strategy and the other firm goes after type 2 customers with a mass
market strategy. Let

σ = 3, γ = 2, n = 2700, m = 1, A = 50.

The marginal profit functions are as follows.

MRx = 50− px + (px − 1)

(
2700

p6x
(
p−2x + p−2y

)3/2 − 8100

p4x
√
p−2x + p−2y

− 1

)
+

2700

p3x
√
p−2x + p−2y

MRy = 50− py + (py − 1)

(
2700

p6y
(
p−2x + p−2y

)3/2 − 8100

p4y
√
p−2x + p−2y

− 1

)
+

2700

p3y
√
p−2x + p−2y

4.2.2 Polynomial equilibrium equations

We first construct a polynomial system. The system we construct must contain all the
equilibria, but it may have extraneous solutions. The extraneous solutions present no
problem because we can easily identify and discard them.

We need to eliminate the radical terms. Let Z be the square root term

Z =
√
p−2x + p−2y ,

which implies
0 = Z2−

(
p−2x + p−2y

)
.

This is not a polynomial. We gather all terms into one fraction and extract the nu-
merator, which is the polynomial we include in our polynomial system to represent the
variable Z,

0 = −p2x − p2y + Z2p2xp
2
y. (4.1)

13



4 Finding all pure-strategy equilibria in games with continuous strategies

We next use the Z definition to eliminate radicals in MRx and MRy. Again we gather
terms into one fraction and extract the numerator. The second and third equation of
our polynomial are as follows:

0 = −2700 + 2700px + 8100Z2p2x − 5400Z2p3x + 51Z3p6x − 2Z3p7x, (4.2)

0 = −2700 + 2700py + 8100Z2p2y − 5400Z2p3y + 51Z3p6y − 2Z3p7y. (4.3)

Any pure-strategy Nash equilibrium is a solution of the polynomial system (4.1,4.2,4.3).

4.2.3 Solution

Solving the above system of polynomial equations (see Section 4.5.1 for details) we find
18 real and 44 complex solutions. Nine of the 18 real solutions contain at least one
variable with a negative value and are thus economically meaningless. Table 4.1 shows
the remaining 9 solutions. We next check the second-order conditions of each firm. This

px 1.757 8.076 22.987 2.036 5.631 2.168 25.157 7.698 24.259
py 1.757 8.076 22.987 5.631 2.036 25.157 2.168 24.259 7.698

Table 4.1: Real, positive solutions of (4.1,4.2,4.3)

check eliminates five more real solutions and reduces the set of possible equilibria to
four, namely (

p1x, p
1
y

)
= (1.757, 1.757) ,

(
p2x, p

2
y

)
= (22.987, 22.987) ,(

p3x, p
3
y

)
= (2.168, 25.157) ,

(
p4x, p

4
y

)
= (25.157, 2.168) .

We next need to check global optimality for each player in each potential equilibrium.
The key fact is that the global max must satisfy the first-order conditions given the
other player’s strategy. So, all we need to do is to find all solutions to a firm’s first-order
condition at the candidate equilibrium, and then find which one produces the highest
profits. We keep the candidate equilibrium only if it is the global maximum.

First consider
(
p1x, p

1
y

)
. We first check to see if player x’s choice is globally optimal

given py. Since we take py as given, the equilibrium system reduces to the Z equation
and the first-order condition for player x, giving us the polynomial system

0 = 0.32410568484991703p2x + 1− Z2p2x
0 = −2700 + 2700px + 8100Z2p2x − 5400Z2p3x + 51Z3p6x − 2Z3p7x

This system has 14 finite solutions, 8 complex and 6 real solutions. One of the solutions
is px = 25.2234 where profits equal 607.315. Since this exceeds 504.625, firm x’s profits at(
p1x, p

1
y

)
, we conclude that

(
p1x, p

1
y

)
is not an equilibrium. A similar approach shows that(

p2x, p
2
y

)
is not an equilibrium. Given p2y = 22.987, firm x would receive a higher profit

from a low price than from p2x. When we examine the remaining two candidate equilibria,

14



4.3 All-solution homotopy methods

we find that these are two asymmetric equilibria,
(
p3x, p

3
y

)
and

(
p4x, p

4
y

)
. This may not

appear to be an important multiplicity since the two equilibria are mirror images of each
other. However, it is clear that if we slightly perturb the demand functions to eliminate
the symmetries that there will still be two equilibria that are not mirror images.

In the equilibrium
(
p3x, p

3
y

)
= (2.168, 25.157), firm x chooses a mass-market strategy

and firm y a niche strategy. The low price allows firm x to capture most of the market of
price-sensitive type 2 customers while it forgoes most of the possible (monopoly) profits
in its niche market of type 1 customers. Firm y instead charges a high price (just below
the monopoly price for the market of type 3 customers) to capture most of its niche
market. In the equilibrium

(
p4x, p

4
y

)
= (25.157, 2.168) the strategies of the two firms are

reversed.

This example demonstrates that the problem of finding all Nash equilibrium reduces
to solving a series of polynomial systems. The first system identifies a set of solutions for
the firms’ first-order conditions, which are only necessary but not sufficient. The second
step is to eliminate all candidate equilibria where some firm does not satisfy the local
second-order condition for optimization. The third step is to check the global optimality
of each firm’s reactions in each of the remaining candidate equilibria. This step reduces
to finding all solutions of a set of smaller polynomial systems.

Figure 4.1 displays the manifold of a firm’s equilibrium prices for values of the market
size parameter n between 500 and 3400. For 500 ≤ n ≤ 2470 there is a unique equilib-
rium. The competitive market of type 2 customers is so small that each firm chooses a
niche strategy and charges a high price to focus on the few customers that only want its
good. For 3318 ≤ n ≤ 3400 there is again a unique equilibrium. The competitive market
of type 2 customers is now sufficiently large so that each firm chooses a mass market
strategy and charges a low price to sell a high quantity into the mass market of type 2
customers. For 2481 ≤ n ≤ 3020 there are two equilibria. At these intermediate values
of n, the two firms prefer complementary strategies, one firm chooses a (high-price) niche
strategy and the other firm a (low-price) mass market strategy. And finally there are
two regions with no pure-strategy equilibria, namely for 2471 ≤ n ≤ 2480 and also for
3021 ≤ n ≤ 3317.

4.3 All-solution homotopy methods

In this section we introduce the mathematical background of all-solution homotopy
methods for polynomial systems of equations. Polynomial solution methods rely on
results from complex analysis and algebraic geometry. For this purpose we first review
some basic definitions.

4.3.1 Mathematical background

We define a polynomial in complex variables.

15
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Figure 4.1: Equilibrium prices as a function of n

Definition 4.1. A polynomial f over the variables z1, . . . , zn is defined as

f(z1, . . . , zn) =
d∑
j=0

( ∑
d1+...+dn=j

a(d1,...,dn)

n∏
k=1

zdkk

)
with a(d1,...,dn) ∈ C, d ∈ N.

For convenience we denote z = (z1, . . . , zn). The expression a(d1,...,dn)
∏n

k=1 z
dk
k for

a(d1,...,dn) 6= 0 is called a term of f . The degree of f is defined as deg f =

maxa(d1,...,dn) 6=0

∑n
k=1 dk. The term

∑
d1+...+dn=j

a(d1,...,dn)
∏n

k=1 z
dk
k is called the homo-

geneous part of degree j of f and is denoted by f (j).

Note that f (j) being homogeneous of degree j means f (j)(cz) = cjf (j)(z) for any
complex scalar c ∈ C. We now regard a polynomial f in the variables z1, . . . , zn as a
function f : Cn → C. Then f belongs to the following class of functions.

Definition 4.2. Let U ⊂ Cn be an open subset and f : U → C a function. Then we call
f analytic at the point b = (b1, . . . , bn) ∈ U if and only if there exists a neighborhood V
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4.3 All-solution homotopy methods

of b such that

f(z) =
∞∑
j=0

( ∑
d1+...+dn=j

a(d1,...,dn)

n∏
k=1

(zk − bk)dk
)
, ∀z ∈ V,

where a(d1,...,dn) ∈ C, i.e. the above power series converges to the function f on V . It is
called the Taylor series of f at b.

Obviously every function given by polynomials is analytic with one Taylor expansion
on all of Cn. However note that in general V $ U and that the power series is divergent
outside of V . For functions in complex space we can state the Implicit Function Theorem
analogously to the case of functions in real space.

Theorem 4.1 (Implicit Function Theorem). Let

H : C× Cn −→ Cn with (t, z1, . . . zn) 7−→ H(t, z1, . . . zn)

be an analytic function. Denote by DzH =
(
∂Hj
∂zi

)
i,j=1,...n

the submatrix of the Jacobian

of H containing the partial derivatives with respect to zi, i = 1, . . . , n. Furthermore
let (t0, x0) ∈ C × Cn such that H(t0, x0) = 0 and detDzH(t0, x0) 6= 0. Then there
exist neighborhoods T of t0 and A of x0 and an analytic function x : T → A such that
H(t, x(t)) = 0 for all t ∈ T . Furthermore the chain rule implies that

∂x

∂t
(t0) = −DzH(t0, x0)

−1 · ∂H
∂t

(t0, x0).

Next we define the notion of a path.

Definition 4.3. Let A ⊂ Cn be an open or closed subset. An analytic4 function x :
[0, 1]→ A or x : [0, 1)→ A is called a path in A.

Definition 4.4. Let H(t, z) : Cn+1 → Cn and x : [0, 1]→ Cn an analytic function such
that H(t, x(t)) = 0 for all t. Then x defines a path in {(t, x) ∈ Cn+1 | H(t, x) = 0}. We
call the path regular, iff {t ∈ [0, 1) | H(t, x(t)) = 0, detDzH(t, x(t)) = 0} = ∅.5

Note that for general homotopy methods the regularity definition is less strict. One
usually only wants the Jacobian to have full rank. Here we also impose which part of it
has full rank. Such a definition is reasonable for polynomial homotopy methods since,
as we see later, we can ensure this property for our paths.

Definition 4.5. Let A ⊂ Cn. We call A pathwise connected, iff for all points a1, a2 ∈ A
there exists a continuous function x : [0, 1]→ A such that x(0) = a1 and x(1) = a2.

Lastly we need the following notion from topology.

4The usual definition of a path only requires continuity, but all paths we regard are automatically
given by analytic functions.

5We see below why we can exclude t = 1 from our regularity assumption.
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4 Finding all pure-strategy equilibria in games with continuous strategies

Definition 4.6. Let U, V ⊂ Cn be open subsets and h0 : U → V , h1 : U → V be
continuous functions. Let

H : [0, 1]× U −→ V
(t, z) 7−→ H(t, z)

be a continuous function such that H(0, z) = h0(z) and H(1, z) = h1(z). Then we call
H a homotopy from h0 to h1.

4.3.2 Building intuition from the univariate case

Homotopy methods have a long history in economics, see Eaves and Schmedders, 1999,
for finding one solution to a system of nonlinear equations. Recent applications of such
homotopy methods in game-theoretic models include Besanko et al., 2010 and Borkovsky
et al., 2010. Homotopy methods for finding all solutions of polynomial systems were first
introduced by Garcia and Zangwill, 1977 and Drexler, 1977. These papers initiated an
active field of research that is still advancing today, see Sommese and Wampler, 2005 for
an overview. In this subsection, following Sommese and Wampler, 2005 and the many
cited works therein, we provide some intuition for the theoretical foundation underlying
all-solution homotopy continuation methods.

The basic idea of the homotopy approach is to find an easier system of equations and
continuously transform it into our target system. We first illustrate this for univariate
polynomials. Consider the univariate polynomial f(z) =

∑
i≤d aiz

i with ad 6= 0 and
deg f = d. The Fundamental Theorem of Algebra states that f has precisely d com-
plex roots, counting multiplicities.6 A simple polynomial of degree d with d distinctive
complex roots is g(z) = zd − 1, whose roots are rk = e

2πik
d for k = 0, . . . , d − 1. (These

roots are called the d-th roots of unity.) Now we can define a homotopy H from g to f
by setting H = (1− t)g + tf . Thus H is a polynomial in t, z and therefore an analytic
function. Under the assumption that ∂H

∂z
(t, z) 6= 0 for all (t, z) satisfying H(t, z) = 0

and t ∈ [0, 1] the Implicit Function Theorem (Theorem 4.1) states that each root rk of g
gives rise to a path that is described by an analytical function. The idea is now to start
at each solution z = rk of H(0, z) = 0 and to follow the resulting path until a solution
z of H(1, z) = 0 has been reached. The path-following can be done numerically using a
predictor-corrector method (see, for example, Allgower and Georg, 2003). For example,
Euler’s method is a so-called first-order predictor and obtains a first step along the path
by choosing an ε > 0 and calculating

x̃k(0 + ε) = xk(0) + ε
∂xk
∂t

(0),

where the ∂xk
∂t

(0) are implicitly given by Theorem 4.1. Then this first estimate is cor-
rected using Newton’s method with starting point x̃k(0 + ε). So the method solves the
equation H(ε, z) = 0 for z and sets xk(ε) = z.

6Any univariate polynomial of degree d over the complex numbers can be written as f(z) = c(z −
b1)r1(z − b2)r2 · · · (z − bl)

rl with c ∈ C \ {0}, b1, b2, . . . , bl ∈ C, and r1, r2, . . . , rl ∈ N. The exponent rj
denotes the multiplicity of the root bj . For example, the polynomial z3 has the single root z = 0 with
multiplicity 3.
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Figure 4.2: Homotopy paths in Example 4.1 and the projection to C.

Example 4.1. As a first example we look at the polynomial f(z) = z3 + z2 + z + 1.
The zeros are {−1,−i, i}. As a start polynomial we choose g(z) = z3 − 1. We define a
homotopy from g to f as follows,

H(t, z) = (1− t)(z3 − 1) + t(z3 + z2 + z + 1).

This homotopy generates the three solution paths shown in Figure 4.2. The starting
points of the three paths, −1

2
−
√
3
2
i, −1

2
+
√
3
2
i, 1, respectively, and are indicated by

circles. The respective end points, −i, i, and −1 are indicated by squares.

This admittedly rough outline captures the fundamental idea of the all-solution ho-
motopy methods. This method can potentially run into difficulties. First, the paths
might cross and, secondly, the paths might bend sideways and diverge. We illustrate
these problems with an example and also show how to circumvent them.

Example 4.2. Let f(z) = 5− z2 and g(z) = z2 − 1. Then a homotopy from g to f can
be defined as

H(t, z) = t(5− z2) + (1− t)(z2 − 1) = (1− 2t)z2 + 6t− 1. (4.4)

Now H(1
6
, z) = 2

3
z2 has the double root z = 0, so detDzH(1

6
, 0) = 0. Such points are

called non-regular and the assumption of the Implicit Function Theorem is not satisfied.
Non-regular points are also problematic for the Newton corrector step in the path-
following algorithm. But matters are even worse for this homotopy since H(1

2
, z) = 2,

which has no zero at all, i.e. there can be no solution path from t = 0 to t = 1. The
coefficient of the leading term (1−2t)z2 has become 0 and so the degree of the polynomial
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Figure 4.3: Homotopy paths in Example 4.2 and the projection to C. One path is colored
red, the other is colored blue.

H drops at t = 1
2
. Figure 4.3 displays the set of zeros of the homotopy. The two paths

starting at
√

5 and −
√

5 diverge as t→ 1
2
.

The general idea to resolve the technical problems illustrated in Example 4.2 is to
“walk around” the points that cause us trouble. For a description of this idea we need
the following theorem which describes one of the differences between complex and real
spaces.

Theorem 4.2. Let F = (f1, . . . , fk) = 0 be a system of polynomial equations in n
variables, with fi 6= 0 for some i. Then Cn \ {F = 0} is a pathwise connected and dense
subset of Cn.7

This statement does not hold true over the reals. Take for instance n = 2, k = 1 and
set f1(x1, x2) = x1. (Note that f1 is not identically zero.) Now we restrict ourselves to the
real numbers, (x1, x2) ∈ R2. If we remove the zero set {(x1, x2) ∈ R2 : f1(x1, x2) = 0},
which is the vertical axis, then the resulting set R2 \ {(x1, x2) ∈ R2 | x1 = 0} consists of
two disjoint components. Thus it is not pathwise connected.

Example 4.3. Returning to Example 4.2 we temporarily regard t also as a complex
variable and thus {(t, z)|H(t, z) = 0} ⊂ C2. Due to theorem 4.1 we only have a path if
locally the determinant is nonzero. The points that are not regular are characterized by
the equations

(1− 2t)z2 + 6t− 1 = 0

detDzH = 2z(1− 2t) = 0.
(4.5)

7This is a simpler version of the theorem that is actually needed. But for simplicity we avoid the
general case.
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4.3 All-solution homotopy methods

Points at which our path is interrupted are given by

1− 2t = 0. (4.6)

In this case we can easily determine that the only solution to (4.5) is (1
6
, 0) and the

solution to (4.6) is {t = 1
2
}. The union of the solution sets to the two equations is

exactly the solution set of the following system of equations

((1− 2t)z2 + 6t− 1)(1− 2t) = 0

(2z(1− 2t))(1− 2t) = 0.
(4.7)

Theorem 4.2 now implies that the complement of the solution set to system (4.7) is
pathwise connected. In other words, we can find a path between any two points without
running into problematic points. To walk around those problematic points we define a
new homotopy by multiplying the start polynomial z2−1 by eiγ for a random γ ∈ [0, 2π):

H(t, z) = t(5− z2) + eiγ(1− t)(z2 − 1) = (eiγ − t− teiγ)z2 + teiγ − eiγ + 5t. (4.8)
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Figure 4.4: Homotopy paths in Example 4.3 after application of the gamma trick.

Now we obtain DzH = 2(eiγ − t − teiγ)z which has z = 0 as its only solution if
eiγ /∈ R and t ∈ [0, 1]. Furthermore if eiγ /∈ R then H(t, 0) = teiγ − eiγ + 5t 6= 0 for all
t ∈ [0, 1]. Additionally the coefficient of z2 in (4.8) does not vanish for t ∈ R and thus
H(t, x) = 0 has always two solutions for t ∈ [0, 1] due to the Fundamental Theorem of
Algebra. Therefore this so-called gamma trick yields only paths that are not interrupted
and are regular. Figure 4.4 displays the two paths; the left graph shows the paths in
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4 Finding all pure-strategy equilibria in games with continuous strategies

three dimensions, the right graph shows a projection of the paths on C. It remains to
check how strict the condition eiγ /∈ R is. We know eiγ ∈ R⇔ γ = kπ for k ∈ N. Since
γ ∈ [0, 2π) these are only two points. Thus for a random γ the paths exist and are
regular with probability one.

This example concludes our introductory discussion of the all-solution homotopy ap-
proach. In the next subsection we describe technical details of the general multivariate
homotopy approach. A reader who is mainly interested in the quick implementation of
homotopies as well as economic applications may want to skip this part and continue
with Section 4.4.

4.3.3 The multivariate case

When we attempt to generalize the outlined approach from the univariate to the multi-
variate case we encounter a significant difficulty. The Fundamental Theorem of Algebra
does not generalize to multiple equations and so we do not know a priori the number
of complex solutions. However, we can determine upper bounds on the number of solu-
tions. For the sake of our discussion in this paper it suffices to introduce the simplest
such bound.

Definition 4.7. Let F = (f1, . . . fn) : Cn → Cn be a polynomial function. Then the
number

d =
∏
i

deg fi

is called the total degree or Bezout number of F .

Theorem 4.3 (Bezout’s Theorem). Let d be the Bezout number of F . Then the poly-
nomial system F = 0 has at most d isolated solutions counting multiplicities.

This bound is tight, in fact, Garćıa and Li, 1980 show that generic polynomial sys-
tems have exactly d distinct isolated solutions. But this result does not provide any
guidance for specific systems, since systems arising in economics and other applications
will typically be so special that the number of solutions is much smaller.

Next we address the difficulties we observed in Example 4.2 for the multivariate case.
Consider a square polynomial system F = (f1, . . . , fn) = 0 with di = deg fi. Construct
a start system G = (g1, . . . , gn) = 0 such that

gi(z) = zdii − 1. (4.9)

Note that the polynomial gi(z) only depends on the variable zi and has the same degree as
fi(z). The polynomial functions F and G have the same Bezout number. Now construct
a homotopy H = (h1, . . . , hn) : C × Cn → Cn from the square polynomial system
F (z) = 0 and the start system G(z) = 0 that is linear in the homotopy parameter t. As
a result hi(z) is a polynomial of degree di in the variables z1, . . . , zn and coefficients that
are linear functions in t,

hi(z) =

di∑
j=0

( ∑
c1+...+cn=j

a(i,c1,...,cn)(t)
n∏
k=1

zckk

)
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4.3 All-solution homotopy methods

In a slight abuse of notation we denote by ai(t) the product of the coefficients of the
highest-degree monomials of hi(z). As before we need to rule out non-regular points
and values of the homotopy parameter for which the system H(t, z) = 0 may have no
solution. Non-regular points are solutions to the following system of equations.

hi = 0 ∀i
detDzH = 0.

(4.10)

Additionally, values of the homotopy parameter for which one or more of our paths
might get interrupted are all t that satisfy the following equation,∏

i

ai(t) = 0. (4.11)

For a t′ satisfying the above equation it follows that the polynomial H(t′, z) has a lower
Bezout number than F (z).8 Analogously to example 4.3 we can cast (4.10) and (4.11)
in one system of equations,

hi
∏
j

aj(t) = 0 ∀i

det (DzH)
∏
i

ai(t) = 0.
(4.12)

Theorem 4.2 states that the complement of the solution set to this system of equations
is a pathwise connected set. So as before we can “walk around” those points that cause
difficulties for the path-following algorithm. In fact, if we choose our paths randomly just
as in Example 4.3 then we do not encounter those problematic points with probability
one.

Theorem 4.4 (Gamma trick). Let G(z) : Cn → Cn be our start system and F (z) :
Cn → Cn our target system. Then for almost all9 choices of the constant γ ∈ [0, 2π) the
homotopy

H(t, z) = eγi(1− t)G(z) + tF (z) (4.13)

has regular solution paths and |{z | H(t1, z) = 0}| = |{z | H(t2, z) = 0}| for all t1, t2 ∈
[0, 1).

We say that a path diverges to infinity at t = 1 if ‖z(t)‖ → ∞ for z(t) satisfying
H(t, z(t)) = 0 as t→ 1 where ‖ · ‖ denotes the Euclidean norm. The Gamma trick leads
to the following theorem.

Theorem 4.5. Consider the homotopy H as in (4.13) with a start system as in (4.9).
For almost all parameters γ ∈ [0, 2π), the following properties hold.

8Note that after homogenization, which we introduce in Section 4.10.1, this no longer poses any
problem.

9Throughout this paper the terminology “almost all” means an open set of measure one. All stated
results in fact hold on so-called Zariski-open sets, but for simplicity we omit a proper definition of this
term.
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4 Finding all pure-strategy equilibria in games with continuous strategies

1. The preimage H−1(0) consists of d regular paths, i.e. no paths cross or bend
backwards.

2. Each path either diverges to infinity or converges to a solution of F (z) = 0 as
t→ 1.

3. If z̄ is an isolated solution with multiplicity10 m, then there are m paths converging
to it.

By construction the easy system G(z) = 0 has exactly d isolated solutions. Each
of these solutions is the starting point of a smooth path along which the parameter t
increases monotonically, that is, the Jacobian has full rank and the path does not bend
backwards. To find all solutions of F (z) = 0 we need to follow all d paths and check
whether they diverge or run into a solution of our system. In light of the aforementioned
result by Garćıa and Li, 1980 that generic polynomial systems F (z) = 0 have d isolated
solutions, Theorem 4.5 implies that the homotopy H gives rise to d distinct paths that
terminate at the d isolated roots of F . So, generically the intuition of the univariate
case carries over to the multivariate case.

4.3.4 Advanced features

The described method is intuitive but has two major drawbacks that make it impractical.
First, the paths diverging to infinity are of no interest in economic applications. Second,
the number of paths grows exponentially in the number of nonlinear equations. A
practical homotopy method needs to spend as little time as possible on diverging paths.
In addition, it will always be advantageous to keep the number of paths as small as
possible. Advanced all-solution homotopy methods address both these problems. In the
appendix we describe the underlying mathematical approaches.

The diverging paths are of no interest for finding economically meaningful solutions
to systems of equations derived from an economic model. The diverging paths typically
require much more computational effort than converging paths. And their potential
presence requires a computer program following the paths to decide whether a path
is diverging or only very long but converging. The decision when to declare that a
path is diverging cannot be made without the risk of actually truncating a very long
converging path. A reliable and robust computational method thus needs some feature
to handle diverging paths. It is possible to “compactify” the diverging path through a
homogenization of the polynomials. Appendix 4.10.1 describes this approach.

The number of paths d grows rapidly with the degree of individual equations. It also
grows exponentially in the number of equations (if the equations are not linear). For
many economic models we believe that there are only a few (if not unique) equilibria, that
is, our systems have few real solutions and usually even fewer economically meaningful
solutions. As a result we may have to follow a large number of paths that do not yield

10Multiplicity of a root for a system of polynomial equations is similar to multiplicity in the univariate
case. We forgo any proper definition for the sake of simplicity.
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4.4 Implementation

useful solutions. Also, if there are only a few real and complex solutions then many
paths must converge to solutions at infinity. There may even be continua of solutions
at infinity which can cause numerical difficulties, see Example 4.4 in Appendix 4.10.1
below. Therefore it would be very helpful to reduce the number of paths that must be
followed as much as possible. Appendices 4.10.2 and 4.10.3 describe two methods for a
reduction of the number of paths.

4.4 Implementation

We briefly describe the software package Bertini and the potential computational gains
from a parallel version of the software code.

4.4.1 Bertini

The software package Bertini, written in the programming language C, offers solvers for
a few different types of problems in numerical algebraic geometry, see Bates et al., 2005.
The most important feature for our purpose is Bertini’s homotopy continuation routine
for finding all isolated solutions of a square system of polynomial equations. In addition
to an implementation of the advanced homotopy of Theorem 4.7 (see Appendix 4.10.1)
it also allows for m-homogeneous start systems as well as parameter-continuation ho-
motopies as in Theorem 4.8, see Appendices 4.10.2 and 4.10.3. Bertini has an intuitive
interface which allows the user to quickly implement systems of polynomial equations,
see Sections 4.5.1 and 4.5.2 for examples of code that a user must supply. Bertini can
be downloaded free of charge under http://www.nd.edu/~sommese/bertini/ .

All results in this paper were computed with Bertini on a laptop, namely an Intel
Core 2 Duo T9550 with 2.66 GHz and 4GB RAM.

4.4.2 Alternatives

Two other all-solution homotopy software packages are PHCpack (Verschelde, 1999)
written in ADA and POLSYS PLP (Wise et al., 2000) written in FORTRAN90 and
which is intended to be used in conjunction with HOMPACK90 (Watson et al., 1997), a
popular homotopy path solver. Because of its versatility, stable implementation, great
potential for parallelization on large computer clusters and its friendly user interface we
use Bertini for all our calculations.

4.4.3 Parallelization

The overall complexity of the all-solution homotopy method is the same as for other
methods used for polynomial system solving. The major advantage of this method,
however, is that it is naturally parallelizable. Following each path is a distinct task,
i.e. the paths can be tracked independently from each other. Moreover, the information
gathered during the tracking process of a path cannot be used to help track other paths.
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4 Finding all pure-strategy equilibria in games with continuous strategies

This advantage coincides with the recent developments in processing technology. The
performance of a single processor will no longer grow as in the years before, since power
consumption and the core temperature have become big issues in the production of
computer chips. The new strategy of computer manufactures is to use multiple cores
within a single machine to spread out the workload.

The software package Bertini is available in a parallel version. As of this writing,
we have already successfully computed examples via parallelization on 200 processors
at the CSCS cluster (Swiss Scientific Computing Center). In order to spread the work
across many more processors a modest revision of the Bertini code is necessary. We are
optimistic that we will soon be able to solve problems on clusters with thousands of
processors. Such a set-up will allow us to solve problems that are orders of magnitude
larger than those described below.

4.5 Bertrand price game continued

We return to the duopoly price game from Section 4.2. We now show how to solve the
problem with Bertini. We also show how to use some of the advanced features from
Appendices 4.10.1–4.10.3.

4.5.1 Solving the Bertrand price game with Bertini

To solve the system (4.1,4.2,4.3) in Bertini we write the following input file:

CONFIG

MPTYPE: 0;

END;

INPUT

variable_group px,py,z;

function f1, f2, f3;

f1 = -(px^2)-py^2+z^2*px^2*py^2;

f2 = -(2700)+2700*px+8100*z^2*px^2-5400*z^2*px^3+51*z^3*px^6-2*z^3*px^7;

f3 = -(2700)+2700*py+8100*z^2*py^2-5400*z^2*py^3+51*z^3*py^6-2*z^3*py^7;

END;

The option MPTYPE:0 indicates that we are using standard path-tracking. The polyno-
mials f1,f2,f3 define the system of equations. The Bezout number is 6×10×10 = 600.
Thus, Bertini must track 600 paths. With the above code, we obtained 18 real solutions,
44 complex solutions, 270 truncated infinite paths and 268 failures.11 In Appendix 4.10.1
we show that, if we homogenize the above equations, then we have continua of solutions
at infinity as illustrated in Example 4.4. Such solutions are responsible for the large
number of failures since at these solutions the rank of the Jacobian drops. Of course,

11In those cases the path tracker failed to converge on a solution at infinity. Note that Bertini uses
random numbers to define the homotopy, so the number of failed paths varies.
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4.5 Bertrand price game continued

such paths with convergence failures represent a serious concern. Fortunately, Bertini
offers the option MPTYPE: 2 for improved convergence. This command instructs Bertini
to use adaptive precision which handles singular solutions much better but needs more
computation time. We then find the same 18 real and 44 complex solutions as before.
But in contrast to the previous run, we now have 538 truncated infinite paths and no
failures. Bertini lists the real solution in the file real_finite_solutions and all finite
ones in finite_solutions.

Next we show how to reduce the number of paths with m-homogenization (see Ap-
pendix 4.10.2). Replace variable_group px,py,z; by

variable_group px;

variable_group py;

variable_group z;

By separating the variables in the different groups, we indicate how to group them for
the m-homogenization. As a result we have only 182 paths to track. However each new
variable group adds another variable to the computations12 and decreases numerical
stability. Therefore we always have to consider the problem of reducing the number of
paths versus increasing the number of variables.

A key point to note is that the number of solutions is much smaller than the Bezout
number. The Bezout number of the system (4.1,4.2,4.3) is 600 but there are only 62
finite solutions. This fact may be surprising in the light of the theorem that says that
systems such as (4.1,4.2,4.3) would generically have 600 finite complex solutions, see
Garcia and Li (1980). However, (4.1,4.2,4.3) is not similar to the generic system since
most monomials of degree 6 are missing from (4.1), and most monomials of degree 10 are
missing from (4.2,4.3). The absence of so many monomials often implies a far smaller
number of finite complex solutions. For many games this fact makes our strategy much
more practical than we would initially think.

Another key point to note is that the all-solution methods can only be applied to
polynomial systems, that is, when all variables have exponents with non-negative integer
values. We cannot apply such a method to equations with irrational exponents. Such
systems would occur in the Bertrand game, for example, if an elasticity were an irrational
number such as π. In addition, an important prerequisite for Bertini to be able to
trace all paths is that the Bezout number remains relatively small. The conversion of
systems with rational exponents with large denominators to proper polynomial systems,
however, leads to polynomial systems with large exponents. For example, the conversion
of equations with exponents such as 54321/10000 will lead to very difficult systems that
require tracing a huge number of paths. In addition, such polynomial terms with very
large exponents will likely generate serious and perhaps fatal numerical difficulties for
the path tracker. Therefore, we face some practical constraints on the size of the rational
exponents appearing in our economic models.

12We repeatedly solve square systems of linear equations. Bertini performs this task with conven-
tional methods with a complexity of roughly 1

3n
3, where n is the number of variables. Thus increasing

the number of variables by m adds 1
3 (m3 + 3m2n + 3n2m) to the complexity for each iteration of

Newton’s method.
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4 Finding all pure-strategy equilibria in games with continuous strategies

4.5.2 Application of parameter continuation

To demonstrate parameter continuation, which we describe in Appendix 4.10.3, we
choose n as the parameter and vary it from 2700 to 1000. Note that in Bertini the
homotopy parameter goes from 1 to 0. So to do this we define a homotopy just between
those two values

n = 2700t+ (0.22334546453233 + 0.974739352i)t(1− t) + 1000(1− t).

Thus for t = 1 we have n = 2700 and if t = 0 then n = 1000. The complex number in
the equation is the application of the gamma trick. We also have to provide the solutions
for our start system. We already solved this system. We just rename Bertini’s output
file finite_solutions to start which now provides Bertini with the starting points for
the homotopy paths. In addition, we must alter the input file as follows.

CONFIG

USERHOMOTOPY: 1;

MPTYPE: 0;

END;

INPUT

variable px,py,z;

function f1, f2, f3;

pathvariable t;

parameter n;

n = t*2700 + (0.22334546453233 + 0.974739352*I)*t*(1-t)+(1-t)*1000;

f1 = -(px^2)-py^2+z^2*px^2*py^2;

f2 = -(n)+n*px+3*n*z^2*px^2-2*n*z^2*px^3+51*z^3*px^6-2*z^3*px^7;

f3 = -(n)+n*py+3*n*z^2*py^2-2*n*z^2*py^3+51*z^3*py^6-2*z^3*py^7;

END;

If we run Bertini we obtain 14 real and 48 complex solutions. Note that the number
of real solutions has dropped by 4. Thus if we had not used the gamma trick some
of our paths would have failed. There are only five positive real solutions. The first

px 3.333 2.247 3.613 2.045 24.689
py 2.247 3.333 3.613 2.045 24.689

Table 4.2: Real, positive solutions for n = 1000

three solutions in Table 4.2 fail the second-order conditions for at least one firm. The
fourth solution fails the global-optimality test. Only the last solution in Table 4.2 is an
equilibrium for the Bertrand game for n = 1000.
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4.5 Bertrand price game continued

4.5.3 The manifold of real positive solutions

The parameter continuation approach allows us to compare solutions and thus equilibria
for two different (vectors of) parameter values q0 and q1 of our economic model. Ideally
we would like to push our analysis even further and, in fact, compute the equilibrium
manifold for all convex combinations sq1 + (1− s)q0 with s ∈ [0, 1].

Observe that Theorem 4.8 in Appendix 4.10.3 requires a path between q0 and q1 of
the form

ϕ(s) = eiγs(s− 1) + sq1 + (1− s)q0
with a random γ ∈ [0, 2π). Note that for real values q0 and q1 the path ϕ(s) is not real
and so all solutions to F (z, ϕ(s)) = 0 are economically meaningless for s ∈ (0, 1). This
problem would not occur if we could drop the first term of ϕ(s) and instead use the
convex combination

ϕ̃(s) = sq1 + (1− s)q0
in the definition of the parameter continuation homotopy. Now an examination of the
real solutions to F (z, ϕ̃(s)) = 0 would provide us with the equilibrium manifold for all
ϕ̃(s) with s ∈ [0, 1]. Unfortunately, such an approach does not always work. As we
have seen in the previous section, while the number of isolated finite solutions remains
constant with probability one, the number of real solutions may change. A parameter
continuation homotopy with ϕ̃(s) does not allow for this change.

To illustrate the described difficulty, we examine two parameter continuation homo-
topies in Bertini. We vary the parameter n first from 2700 to 3400 and then from 2700
to 500. Figure 4.5 displays the positive real solutions as a function of n over the entire
range from 500 to 3400. For a clear view of the different portions of the manifold we
separate it into two graphs.

For the first homotopy the number of positive real, other real, and complex (within
nonzero imaginary part) solutions does not change as n is increased from 2700 to 3400.
Therefore, in this case, the described approach to obtain the manifold of (positive) real
solutions encounters no difficulties. Things are quite different for the second homotopy
when n is decreased from 2700 to 500. As n approaches 1188.6 the paths for the two
largest production quantities converge and then, when n is decreased further, move into
complex space. The same is true for two paths in the lower graph of Figure 4.5. Bertini
reports an error message for all four paths and stops tracking them. At n = 1188.6 the
number of real solutions changes from 18 to 14, while the number of (truly) complex
solutions with nonzero imaginary part increases from 44 to 48. A similar change in the
number of real and complex solutions occurs for n = 813.8.

To determine the equilibrium manifold, we need to check the second-order and global
optimality conditions for all positive real solutions. Doing so yields the equilibrium
manifold in Figure 4.1 in Section 4.2.

In sum, we observe that a complete characterization of the equilibrium manifold is not
a simple exercise. When we employ the parameter continuation approach with a path of
parameters in real space then we have to allow for the possibility of path-tracking failures
whenever the number of real and complex solution changes. The determination of the
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Figure 4.5: Real positive solutions as a function of n
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4.6 Equilibrium equations for dynamic stochastic games

entire manifold of positive real solutions may, therefore, require numerous homotopy
runs. Despite these difficulties we believe that the parameter continuation approach is
a very helpful tool for the examination of equilibrium manifolds.

We can continue our analysis for larger values of the market size n. Figure 4.6 shows
the unique equilibrium price px = py for 3400 ≤ n ≤ 10000. The market of type 2
customers is so large that both firms choose a mass market strategy and charge a low
price. While the number of equilibria remains constant for large values of n, the number
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n

Figure 4.6: Unique equilibrium for large values of n

of real solutions changes twice in the examined region. Recall that there are 18 real
solutions for n = 3400. This number decreases to 16 at about n = 5104.5 and further
to 14 at about n = 5140.8.

4.6 Equilibrium equations for dynamic stochastic games

In this section we first briefly describe a general set-up of dynamic stochastic games.
Such games date back to Shapley, 1953, for a textbook treatment see Filar and Vrieze,
1997. Subsequently we explain how Markov-perfect equilibria (MPE) in these games can
be characterized by nonlinear systems of equations.

31



4 Finding all pure-strategy equilibria in games with continuous strategies

4.6.1 Dynamic stochastic games: general formulation

We consider discrete-time infinite-horizon dynamic stochastic games of complete infor-
mation with N players. In period t = 0, 1, 2, . . ., player i ∈ {1, 2, . . . , N} is characterized
by its state ωi,t ∈ Ωi. The set of possible states, Ωi, is finite and without loss of generality

we thus define Ωi = {1, 2, . . . , ω̂i} for some number ω̂i ∈ N. The product Ω =
∏N

i=1 Ωi is
the state space of the game; the vector ωt = (ω1,t, ω2,t, . . . , ωN,t) ∈ Ω denotes the state
of the game in period t.

Players choose actions simultaneously. Player i’s action in period t is ai,t ∈ Ai(ωt),
where Ai(ωt) is the set of feasible actions for player i in state ωt. In many economic
applications of dynamic stochastic games Ai(ωt) is a convex subset of RM , M ∈ N, and
we adopt this assumption here to employ standard first-order conditions in the analysis.
We denote the collection of all players’ actions in period t by at = (a1,t, a2,t, . . . , aN,t)
and the collection of all but player i’s actions by a−i,t = (a1,t, . . . , ai−1,t, ai+1,t, . . . , aN,t).

Players’ actions affect the probabilities of state-to-state transitions. If the state in
period t is ωt and the players choose actions at, then the probability that the state in
period t+ 1 is ω+ is Pr(ω+|at;ωt). In many applications the transition probabilities for
player i’s state are assumed to depend on player i’s actions only and to be independent
of other players’ actions and transitions in their states. We follow this custom and
make the same assumption. Denoting the transition probability for player i’s state by
Pri ((ω

+)i |ai,t;ωi,t), the transition probability for the state of the game therefore satisfies

Pr
(
ω+|at;ωt

)
=

N∏
i=1

Pri
((
ω+
)
i
|ai,t;ωi,t

)
.

If the state of the game is ωt in period t and the players choose actions at then player
i receives a payoff πi(at, ωt). Players discount future payoffs using a discount factor
β ∈ (0, 1). The objective of player i is to maximize the expected net present value of all
its future cash flows,

E

{
∞∑
t=0

βtπi(at;ωt)

}
.

Economic applications of dynamic stochastic games typically rely on the equilibrium
notion of a pure strategy Markov-perfect equilibrium (MPE). That is, attention is re-
stricted to pure equilibrium strategies that depend only on the current state and are
independent of the history of the game. We can thus drop the time subscript. Player
i’s strategy Ai maps each state ω ∈ Ω into its set of feasible actions Ai(ω). The ac-
tions of all other players in state ω prescribed by their respective strategies are denoted
A−i(ω) = (A1(ω), . . . , Ai−1(ω), Ai+1(ω), . . . , AN(ω)). Finally, we denote by Vi(ω) the
expected net present value of future cash flows to player i if the current state is ω. The
mapping Vi : Ω→ R is player i’s value function.

For given Markovian strategies A−i of all other players, player i faces a discounted
infinite-horizon dynamic programming problem. As Doraszelski and Judd, 2012 point
out, Bellman’s principle of optimality implies that the optimal solution for this dynamic
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4.6 Equilibrium equations for dynamic stochastic games

programming problem is again a Markovian strategy Ai. That is, a Markov-perfect equi-
librium remains subgame perfect even without the restriction to Markovian strategies.
The Bellman equation for player i’s dynamic programming problem is

Vi(ω) = max
a∈Ai(ω)

{
πi(a,A−i(ω);ω) + βE

[
Vi(ω

+)|a,A−i(ω);ω
]}

(4.14)

where the expectation operator E[ · | · ] determines the conditional expectation of the
player’s continuation values Vi(ω

+) which are a function of next period’s state ω+, which
in turn depends on the players current action a, the other players’ actions A−i(ω), and
the current state ω. We denote by

hi(a,A−i(ω);ω;Vi) = πi(a,A−i(ω);ω) + βE
[
Vi(ω

+)|a,A−i(ω);ω
]

the maximand in the Bellman equation. Player i’s optimal action Ai(ω) ∈ Ai(ω) ⊂ RM

in state ω is given by

Ai(ω) = arg max
a∈Ai(ω)

hi(a,A−i(ω);ω;Vi). (4.15)

For each player i = 1, 2, . . . , N , equations (4.14) and (4.15) yield optimality conditions
on the unknowns Vi(ω) and Ai(ω) in each state ω ∈ Ω. A Markov-perfect equilibrium
(in pure strategies) is now a simultaneous solution to equations (4.14) and (4.15) for all
players and states.

4.6.2 Equilibrium conditions

Doraszelski and Satterthwaite, 2010 develop sufficient conditions for the existence of a
Markov-perfect equilibrium for a class of dynamic stochastic games. A slightly modified
version of the existence result in their Proposition 2 holds in the described model under
the assumptions that both actions and payoffs are bounded and the maximand function
hi(·, A−i(ω);ω;Vi) is strictly concave for all ω ∈ Ω, other players ’ strategies A−i, and
value functions Vi satisfying the Bellman equation. Under these assumptions the max-
imand hi(·, A−i(ω);ω;Vi) has a unique maximizer Ai(ω). This unique maximizer could
lie on the boundary of or be an interior solution of the set of feasible actions Ai(ω).
(As Vi changes so will the maximizer and there could be several consistent solutions and
thus equilibria.)

For the purpose of this paper we restrict attention to models that satisfy two further
assumptions which are frequently made in economic applications. First, the function
hi(·, A−i(ω);ω;Vi) is continuously differentiable. Second, we assume that the maximizer
in equation (4.15) is always an interior solution. Under these assumptions we can equiv-
alently characterize players’ optimality conditions (4.14) and (4.15) by a set of necessary
and sufficient first-order conditions.

0 =
∂

∂a
{πi(a,A−i(ω);ω) + βE [Vi(ω+)|a,A−i(ω);ω]}

∣∣∣∣
a=Ai(ω)

(4.16)

Vi(ω) = πi(a,A−i(ω);ω) + βE [Vi(ω+)|a,A−i(ω);ω]
∣∣∣
a=Ai(ω)

(4.17)
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4 Finding all pure-strategy equilibria in games with continuous strategies

Thus we have M + 1 equations for each state ω ∈ Ω and for each player i =
1, 2, . . . , N . Any simultaneous solution of pure strategies A1(ω), . . . , AN(ω) and values
V1(ω), . . . , VN(ω) for all states ω ∈ Ω yields an MPE.

If the payoff functions πi and the probability functions Pr(ω+|·;ω) are rational func-
tions then the nonlinear equilibrium equations can be transformed into a polynomial
system of equations. In the next two sections we examine two economic models that
satisfy these assumptions.

4.7 Learning curve

In many industries the marginal cost of production decreases with the cumulative output,
this effect is often called learning-by-doing. The impact of learning-by-doing on market
equilibrium has been studied in the industrial organization literature for decades. Early
work in this area includes Spence, 1981 and Fudenberg and Tirole, 1983b. Besanko et al.,
2010 analyze learning-by-doing and organizational forgetting within the framework of
Ericson and Pakes, 1995.

In this section we examine a basic learning-by-doing model in the Ericson and Pakes,
1995 framework. Although the functional forms for the price functions and transition
probabilities are not polynomial we can derive a system of polynomial equations such
that all positive real solutions of this system are Markov-perfect equilibria.

4.7.1 A learning-by-doing model

There are N = 2 firms and two goods. Firm i produces good i, i = 1, 2. The output of
firm i is denoted by qi which is the firm’s only action. (In the language of our general
formulation, ai = qi.) The state variable ωi for firm i is a parameter in the firm’s
production cost function ci(qi;ωi). In our numerical example we assume ci(qi;ωi) = ωiqi
implying that the state ωi is firm i’s unit cost of production. For simplicity we assume
w.l.o.g. that ωi ∈ Ωi = {1, 2, . . . , ω̂i}.

In each period the two firms engage in Cournot competition. Customers’ utility func-
tion over the two goods (and money M) is

u (q1, q2) = w
γ

γ − 1

(
q
σ−1
σ

1 + q
σ−1
σ

2

) (γ−1)σ
γ(σ−1)

+M

where σ is the elasticity of substitution between goods 1 and 2, γ is the elasticity of

demand for the composite good
(
q
σ−1
σ

1 + q
σ−1
σ

2

) σ
(σ−1)

, and w is a weighting factor. The

resulting market clearing prices for the two goods are then

P1(q1, q2) = wq
− 1
σ

1

(
q
σ−1
σ

1 + q
σ−1
σ

2

) γ−σ
γ(σ−1)

, P2(q1, q2) = wq
− 1
σ

2

(
q
σ−1
σ

1 + q
σ−1
σ

2

) γ−σ
γ(σ−1)

,

where Pi(q1, q2) = ∂
∂qi
u(q1, q2) denotes the price of good i if sales of the two goods are

(q1, q2). And so, if the two firms produce the quantities (q1, q2) in state ω = (ω1, ω2),
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4.7 Learning curve

their resulting payoffs are

πi(qi, q−i;ω) = Pi(q1, q2)qi − ci(qi;ωi). (4.18)

Note that in this model firm i’s payoff does not explicitly depend on the other firm’s
state but only implicitly via the other firm’s production quantity.

The dynamic aspect of the model arises from changes in the unit cost ωi. Through
learning-by-doing the firms can reduce their unit cost. In our numerical example we use
the popular functional form (see Pakes and McGuire, 1994, Borkovsky et al., 2012, and
many other papers) for the transition probabilities

Pri[ωi − 1|qi;ωi] =
Fqi

1 + Fqi
, Pri[ωi|qi;ωi] =

1

1 + Fqi
, 0 otherwise (4.19)

with some constant F > 0 for ωi ≥ 2. The lowest-cost state ωi = 1 is an absorbing
state. Note that outside the absorbing state the higher a firm’s production quantity
the higher its probability to move to the next lower cost state. We assume that the
transition probability functions are independent across firms.

Substituting the expressions (4.18) and (4.19) into the equilibrium equations (4.16)
and (4.17) yields a system of equilibrium equations for the learning-by-doing model.
This system has 4 equations for each state ω = (ω1, ω2) and thus a total of 4|ω̂1||ω̂2|
equations and unknowns.

Solving the system of equations is greatly simplified by the observation that the nature
of the transitions in this model induces a partial order on the state space Ω. The unit cost
ωi can only decrease but never increase during the course of the game. Instead of solving
one large system of equations we can successively solve systems of 4 equations state by
state. For the lowest-cost state (1, 1) we only need to find the static Cournot equilibrium
and calculate the values Vi(1, 1). Next we can successively solve the systems for the
states (ω1, 1) with ω1 = 2, 3, . . . , ω̂1 and for the states (1, ω2) with ω2 = 2, 3, . . . , ω̂2.
Next we can do the same for all (ω1, 2) with ω1 = 2, 3, . . . , ω̂1, for all nodes (2, ω2) with
ω2 = 3, . . . , ω̂1 and so on. For symmetric games we can further reduce the workload. We
only need to solve system of equations for the states (ω1, ω2) with ω2 ≤ ω1, that is, for
(1, 1), (ω1, 2) for ω1 = 2, 3, . . . , ω̂1, (ω1, 3) for ω1 = 3, . . . , ω̂1, and so on.

4.7.2 Solving the equilibrium equations with Bertini

We compute Markov-perfect equilibria for the learning-by-doing game for the following
parameter values. We consider a utility function with σ = 2, γ = 3/2, and w = 100/3.
The parameter for the transition probability function is F = 1/5. The firms use the
discount factor β = 0.95. We only examine symmetric cases with Ω1 = Ω2.

Similar to the static game in Section 4.5, the equilibrium equations in this model
contain fractions and radical terms. The transformation of the equations into polynomial
form forces us to introduce auxiliary variables Q1, Q2, Q3 that are defined as follows,

Q2
1 = q1, Q2

2 = q2, Q2
3 = Q1 +Q2.
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4 Finding all pure-strategy equilibria in games with continuous strategies

The introduction of these new variables enables us to eliminate the value function terms
Vi(q1, q2) of both firms. For each state (ω1, ω2) we obtain a system of five equations in
the five unknowns q1, q2, Q1, Q2, Q3. There is a multiple root at 0. To remove it we add
another variable t and a normalization equation tQ1−1 = 0, thereby obtaining a system
with six variables and six equations.

We solve four different types of polynomial systems. First, we solve the system of the
absorbing state (1, 1). The monomials with the highest degrees of the six equations are

tQ1, Q
3
3, Q

2
1, Q

2
2, −Q1Q3(Q1 +Q2), −Q2Q3(Q1 +Q2),

respectively, resulting in a Bezout number of 23 · 33 = 216. Using m-homogeneity the
number of paths to track reduces to 44. Bertini tracks these 44 paths in just under 4
seconds.

Next we solve the equations for the states (1, ω2) for ω2 ≥ 2. The highest degree terms
of the six equations are

tQ1, Q
3
3, Q

2
1, Q

2
2, −Q1Q3(Q1 +Q2), (9F 2ω2)Q1Q2Q3q

2
2 + (9F 2ω2)Q

2
2Q3q

2
2,

respectively, resulting in a Bezout number of 23 · 32 · 5 = 360. Thanks to m-homogeneity
we need to track 140 paths and this takes us with Bertini about 1 minute for each ω2.

Then we solve the equations for state (2, 2), where the highest-degree terms are

tQ1, Q
3
3, Q

2
1, Q

2
2, (9F 4ω1)Q

2
1Q3q

2
1q

2
2 + (9F 4ω1)Q1Q2Q3q

2
1q

2
2,

(9F 4ω2)Q1Q2Q3q
2
1q

2
2 + (9F 4ω2)Q

2
2Q3q

2
1q

2
2.

So the Bezout number is 23·3·72 = 1176. Exploiting m-homogeneity we have to track 364
paths which takes about 5 minutes. There are 152 real and complex (finite) solutions.

For the remaining states we can now use parameter continuation since the degree
structure of the systems is identical to that of the equations for state (2, 2). The Bezout
number remains the same as for state (2, 2), but now we only have to track 152 paths
since that was the number of solutions to the system at (2, 2). (To check whether 152
is indeed the maximal number k of isolated finite solutions as in Theorem 4.8 we solve
a few systems with randomly chosen coefficients but the same degree structure. In all
cases there are 152 isolated finite solutions.) Tracking these 152 paths takes about 25
seconds for each state. Again we observe that tracking paths ending at finite solutions
takes much less time than tracking paths that end at points at infinity. The reason is
again that some of the solutions at infinity lie within continua of solutions and thus
cause numerical difficulties.

We solved instances of the described learning-by-doing model with many states for
each firm. We wrote a C++ script that solved the problem by backwards induction by
calling Bertini at each state.13 To keep the presentation of the results manageable we
report here the results for a symmetric game with ω̂1 = 5. In all our systems there was
a unique real positive solution for all variables. Therefore, we found a unique Markov-
perfect equilibrium for the learning-by-doing model. Table 4.3 reports the production

13The script is available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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quantities q1 and the values of the value function V1 of firm 1. For example, in state
(ω1, ω2) = (3, 4) firm 1 produces q1 = 11.385 and the game has a value of V1 = 982 for
the firm. By symmetry the corresponding values for firm 2 are (q2, V2) = (8.620, 913).

ω1 \ ω2 5 4 3 2 1
5 7.202 874 7.108 861 7.009 851 6.889 843 6.626 838
4 8.850 939 8.748 925 8.620 913 8.464 905 8.137 899
3 11.475 996 11.385 982 11.233 969 11.016 959 10.573 953
2 16.921 1042 16.840 1027 16.699 1014 16.401 1003 15.714 997
1 38.228 1072 38.171 1057 38.056 1043 37.773 1032 36.600 1025

Table 4.3: Production quantities q1 and value function V1 of firm 1

Table 4.4 reports running times on a laptop (Intel Core 2 Duo T9550 with 2.66 GHz
and 4GB RAM) for the learning-by-doing model. The running times grow approximately

ω̂1 = ω̂2 3 5 7 10
time (sec) 477 745 1359 2852

Table 4.4: Running Times

linearly in the number of states ω̂1 × ω̂2 and so we could easily solve games with many
more states per firm.

4.8 Cost-reducing investment and depreciation

In models of cost-reducing investment, spending on investment reduces future produc-
tion cost, see, for example, Flaherty, 1980 and Spence, 1984. In models of irreversible
investment, current investment spending increases future production capacity, see Fu-
denberg and Tirole, 1983a. Besanko and Doraszelski, 2004 presents a model with both
capacity investments and depreciation within the Ericson and Pakes, 1995 framework.
Depreciation tends to offset investment. In this section we describe a stochastic dynamic
game model in which the marginal cost of production may decrease through investment
or increase through depreciation.

4.8.1 A cost-reducing investment model

The model of Cournot competition is the same as in the learning-by-doing model with
the only exception that a firm’s production quantity does not affect its unit cost. The
dynamic aspect of the model arises again from changes in the unit cost ωi. Both increases
and decreases of the unit cost are possible. Firms may be hit by a depreciation shock
resulting in a cost increase but they can also make a cost-reducing investment. A
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4 Finding all pure-strategy equilibria in games with continuous strategies

depreciation shock increases the unit cost from ωi to ωi+ 1 and has probability δ > 0. If
firm i makes a cost-reducing investment yi at a cost cri(yi) then it achieves a probabilistic
reduction of its cost state. In our numerical examples we assume a quadratic investment
cost function, cri(y) = Diy

2. Total per-period payoff is then the difference of the Cournot
profit and the investment cost,

πi(qi, yi, q−i, y−i;ω) = πCi (qi, q−i;ω)− cri(yi) = Pi(q1, q2)qi − ci(qi;ωi)−Diy
2
i .

We assume a transition function of the form (4.19) with the investment level yi replacing
the Cournot quantity. Assuming independence of the depreciation probabilities and
the investment transition function then results in the transition probabilities (see also
Besanko and Doraszelski, 2004)

Pri[ωi − 1|yi;ωi] =
Fyi

1 + Fyi
(1− δ) 2 ≤ ωi ≤ ω̂i (4.20)

Pri[ωi + 1|yi;ωi] =
1

1 + Fyi
δ 1 ≤ ωi ≤ ω̂i − 1 (4.21)

Pri[ωi|yi;ωi] =1− Pri[ωi − 1|yi;ωi]− Pri[ωi + 1|yi;ωi] 2 ≤ ωi ≤ ω̂i − 1 (4.22)

The remaining transition probabilities are

Pri[1|yi; 1] = 1− Pri[2|yi; 1] (4.23)

Pri[ω̂i|yi; ω̂i] = 1− Pri[ω̂i − 1|yi; ω̂i] (4.24)

Substituting the expressions for payoffs and transition probabilities into the equilib-
rium equations (4.16) and (4.17) yields a system of equilibrium equations for the model.
The static Cournot game played in each period does not affect the transition probabilities
and so we can solve the two equations at each state that are derived from differentiating
with respect to the production quantities q1 and q2 independently from the remaining
equations. The remaining system consists of 4 equations for each state ω = (ω1, ω2) and
thus has a total of 4|ω̂1||ω̂2| equations and unknowns. The degree of each equation is 4.

4.8.2 Solving the equilibrium equations with Bertini

Since the unit cost ωi may increase or decrease we cannot solve the equations state by
state as in the learning-by-doing model. Instead we need to solve a single system of
equations14.

Two states for each firm

We describe the solution of the cost-reducing investment game with depreciation for the
following parameter values, β = 0.95, D1 = D2 = 1, F = 0.2, δ = 0.1. The parameters

14We perform all calculations and derive the final system in Mathematica. The Mathematica file is
available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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4.8 Cost-reducing investment and depreciation

for the utility functions are again σ = 2, γ = 3/2, and w = 100/3. Each firm can be in
one of two states. We set Ω1 = Ω2 = {1, 5} (in a slight abuse of previous notation).

We first solve the Cournot game for each state. The production quantities of firm 1
are

q1(5, 5) = 3.2736, q1(5, 1) = 2.4664, q1(1, 5) = 38.224, q1(1, 1) = 36.600.

For this model with 2 × 2 = 4 states there are 16 equations and variables. The
resulting Bezout number is 416 = 4, 294, 967, 296. By utilizing symmetry we simplified
our problem to 8 equations and variables with a total Bezout number of 48 = 65, 536.
Utilizing m-homogeneity we reduce the number of paths to 3328. It took us 1 hour 40
minutes to solve this problem. We found a total of 589 finite, i.e. complex and real,
solutions that lie in affine space, 44 of which are real. We had no path failures, when
using adaptive precision.15 Only one of those real solutions is economically relevant.
The investment levels of firm 1 are

y1(5, 5) = 3.306, y1(5, 1) = 3.223, y1(1, 5) = 0.763, y1(1, 1) = 0.736,

resulting in the following values of the value function,

V1(5, 5) = 816.313, V1(5, 1) = 794.329, V1(1, 5) = 926.059, V1(1, 1) = 895.570.

Three states for each firm

We choose Ω1 = Ω2 = {1, 5, 10} and our other parameters as in the two-state case. The
production quantities of firm 1 in the additional high-cost states are q1(10, 10) = 1.1574
and

q1(10, 5) = 1.0648, q1(10, 1) = 0.70015, q1(5, 10) = 3.3975, q1(1, 10) = 37.915.

Solving the system of equilibrium equations for the three-state model now poses signifi-
cantly more problems than the two-state case. The initial system has 36 equations and
unknowns. The Bezout number is 436 ≈ 4.72 ·1021. After exploiting symmetry and using
some algebraic operations to simplify some equations we obtain a system that has 21
equations and unknowns. Its Bezout number is 1, 528, 823, 808. This system, however,
is still unsolvable on a single laptop if we use the standard homotopy approach. For this
reason we now apply the splitting approach from Appendix 4.10.4. We split the system
into two subsystems which are both small enough to be solvable. In our example the
first system has M1 = 358 nonsingular solutions. The second system has M2 = 4510
nonsingular solutions. Therefore, if we focus only on the nonsingular solutions we have
358 × 4510 = 1, 614, 580 paths to track when we combine the two subsystems via a
parameter continuation homotopy. Note that this is an order of magnitude smaller than

15If we do not use adaptive precision we can finish computations in just under 3 minutes. However,
then 396 paths fail to converge. Nevertheless we still obtain all finite solutions. Clearly, if we could
prove that all equilibria are regular solutions to the polynomial system of equilibrium equations then
we could relax the precision parameters in Bertini and thus significantly reduce both the computational
effort and running times.
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4 Finding all pure-strategy equilibria in games with continuous strategies

taken the system as a whole. We obtain a unique nonsingular equilibrium, see Table 4.5.
The time to solve this on a single core is over a week.16

ω1 \ ω2 10 5 1
10 3.42 705.00 3.31 680.31 3.24 663.01
5 3.78 820.36 3.70 789.73 3.62 765.53
1 0.86 945.48 0.83 911.76 0.80 878.89

Table 4.5: Equilibrium investment levels y1 and value function V1

4.9 Conclusion

We summarize the paper and discuss the current limitations of all-solution methods.

4.9.1 Summary

This paper describes state-of-the-art techniques for finding all solutions of polynomial
systems of equations and illustrates these techniques by computing all equilibria of both
static and dynamic games with continuous strategies. The requirement of polynomial
equations may, at first, appear very restrictive. In our first application, a static Bertrand
pricing game, we show how certain types of non-polynomial equilibrium conditions can be
transformed into polynomial equations. We also show how with repeated application of
the polynomial techniques we can deal with first-order conditions that are necessary but
not sufficient. Finally, this example also depicts the power of the parameter-continuation
homotopy approach. This approach greatly reduces the number of homotopy paths that
need to be traced and, therefore, increases the size of models that we can analyze. When
handled carefully, it even allows us to trace out the equilibrium manifold.

We also apply the all-solution techniques to two stochastic dynamic games of in-
dustry competition and check for equilibrium uniqueness. In the first application, a
learning-by-doing model of industry competition, the equilibrium system separates into
many small systems of equations which can be solved sequentially. As a result we can
solve specifications of this model with many states. In our second application, a model
with cost-reducing investment and cost-increasing depreciation, such a separation of the
equilibrium system is impossible. Solving the resulting equilibrium system requires the
tracing of a huge number of paths. On a single laptop we can solve specifications of the
model with only a small number of states.

4.9.2 Current limitations and future work

For stochastic dynamic games, the number of equations grows exponentially in the num-
ber N of players and polynomially (with degree N) in the number of states. In turn, the

16The files are available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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Bezout number grows exponentially in the number of nonlinear equations. Additionally
the degree of the polynomials is essential which limits the parameter choice for the ex-
ponents in the utility functions. As a result, the number of paths that an all-solution
method must trace grows extremely fast in the size of the economic model. This growth
clearly limits the size of problems we can hope to solve.

Modern policy-relevant models quickly generate systems of polynomial equations with
thousands of equations. For example, the model in Besanko et al., 2010 has up to 900
states and 1800 equations. Finding all equilibria of models of this size is impossible with
the computer power available as of the writing of this paper and it will remain out of
reach for the foreseeable future. However, we will likely be able to solve smaller models
such as the dynamic model of capacity accumulation of Besanko and Doraszelski, 2004
with at most 100 states within a few years. Progress will come on at least three frontiers.
First, computer scientists have yet to optimize the performance of software packages such
as Bertini. Second, the all-solution homotopy methods are ideally suited for parallel
computations. Our initial experience has been very promising. And so, as soon as the
existing software will have been adapted to large parallel computing systems, we will see
great progress in the size of the models we can analyze with the methods described in
this paper. And third, methodological advances such as the equation splitting approach
will also help us to solve larger systems.

4.10 Appendix

4.10.1 Homogenization

The all-solution homotopy method presented in Section 4.3.3 has the unattractive feature
that it must follow diverging paths. Homogenization of the polynomials greatly reduces
the computational effort to track such paths.

Definition 4.8. The homogenization f̂i(z0, z1, . . . , zn) of the polynomial fi(z1, . . . , zn)
of degree di is defined by

f̂i(z0, z1, . . . , zn) = zdi0 fi

(
z1
z0
, . . . ,

zn
z0

)
.

Effectively, each term of f̂i is obtained from multiplying the corresponding term of fi
by the power of z0 that leads to a new degree of that term of di. So, if the term originally
had degree dij then it is multiplied by z

di−dij
0 . Performing this homogenization for each

polynomial fi in the system
F (z1, . . . , zn) = 0 (4.25)

leads to the transformed system

F̂ (z0, z1, . . . , zn) = 0. (4.26)

For convenience we use the notation ẑ = (z0, z1, . . . , zn) and write F̂ (ẑ) = 0. By con-
struction all polynomials f̂i, i = 1, . . . , n, are homogeneous and so for any solution b̂ of
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F̂ (ẑ) = 0 it holds that F̂ (λb̂) = 0 for any complex scalar λ ∈ C. So, the solutions to
system (4.26) are complex lines through the origin in Cn+1.

Definition 4.9. The n-dimensional complex projective space CP n is the set of lines in
Cn+1 that go through the origin. The space Cn+1 is called the affine space.

A point in projective space CP n corresponds to a line through the origin of the
affine space Cn+1. Let [b̂] ∈ CP n denote a point in CP n then there is a point b̂ =
(b̂0, b̂1, . . . , b̂n) ∈ Cn+1 \ {0} that determines this line. We denote the line [b̂] by (b̂0 : b̂1 :
. . . : b̂n) to distinguish it from a single point. The notation (z0 : z1 : . . . : zn) is called
the homogeneous coordinates of CP n. Note however that this notation is not unique,
we can take any λb̂ with λ ∈ C \ {0} as a representative. Furthermore (0 : 0 : . . . : 0)
is not a valid point in projective space. Thus for any point (b̂0 : . . . : b̂n) there exists at
least one element b̂i 6= 0.

There is a one-to-one relationship between the solutions of system (4.25) in Cn and
the solutions of system (4.26) in Cn+1 with b̂0 6= 0. If b is a solution to (4.25) then the
line through b̂ = (1, b), that is, [b̂] ∈ CP n, is a solution to (4.26). For the converse,

if (b̂0 : b̂1 : . . . : b̂n) with b̂0 6= 0 is a solution to (4.26) then the point ( b̂1
b̂0
, . . . , b̂n

b̂0
) is a

solution of (4.25).
One of the advantages of the homogenized system (4.26) is that it can model “infinite”

solutions. If we have a line {(λb) | λ ∈ C} ⊂ Cn, b ∈ Cn \ {0} and look at the
corresponding line {(1 : λb1 : . . . , λbn) | λ ∈ C} in projective space then for any λ,
( 1
λ

: b1 : . . . : bn) is also a valid representation of that point on the projective line. So
if ‖λ‖ → ∞ then ‖ 1

λ
‖ → 0 and we are left with the point (0 : b1 : . . . : bn). Note that

‖λ‖ → ∞ in the affine space means ‖λb‖ → ∞. Thus we traverse the line to “infinity”.
This observation leads to the following definition.

Definition 4.10. Consider the natural embedding of Cn with coordinates (z1, . . . , zn)
in the projective space CP n with homogeneous coordinates (z0 : . . . : zn). Then we call
points (0 : b1 : . . . : bn) ∈ CP n points at infinity.

The value b̂0 = 0 for a solution b̂ to F̂ implies f̂i(b̂0 : b̂1 : . . . : b̂n) = f
(di)
i (b̂1, . . . , b̂n) = 0.

Therefore the solutions at infinity of F̂ (ẑ) = 0 correspond to the solutions to the system

(f
(d1)
1 , . . . , f

(dn)
n ) = 0. The fact that we now have a representation of solutions at infinity

leads to a new version of Bezout’s theorem for projective space.

Theorem 4.6 (Bezout’s theorem in projective space CP n). If system (4.26) has only
a finite number of solutions in CP n and if d is the Bezout number of F , then it has
exactly d solutions (counting multiplicities) in CP n.

If we view the system of equation (4.26) in affine space Cn+1 instead of in complex pro-
jective space CP n then it is actually underdetermined because it consists of n equations
in n + 1 unknowns. For a computer implementation of a homotopy method, however,
we need a determinate system of equations. For this purpose we add a simple normal-
ization. Using the described relationship between solutions of the two systems (4.25)
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and (4.26) we can now introduce a third system to find the solutions of system (4.25).
Define a new linear function

u(z0, z1, . . . , zn) = ξ0z0 + ξ1z1 + . . .+ ξnzn

with random coefficients ξi ∈ C. (The nongeneric cases are where the normalization line
is parallel to a solution “line”.) Now define

f̃i(z0, z1, . . . , zn) := f̂i(z0, z1, . . . , zn), i = 1, . . . , n,

f̃0(z0, z1, . . . , zn) := u(z0, z1, . . . , zn)− 1.
(4.27)

The resulting system of equations

F̃ = (f̃0, f̃1, . . . , f̃n) = 0 (4.28)

has n + 1 equations in n + 1 variables. Note that the system F̃ (ẑ) has the same total
degree d as the system F (z) in the original system of equations (4.25). As a start system
we choose

Gi(z0, z1, . . . , zn) = zdii − zdi0 , i = 1, . . . , n,

G0(z0, z1, . . . , zn) = u(z0, z1, . . . , zn)− 1.
(4.29)

We write the resulting system as G(ẑ) = 0 and define the homotopy

H(t, ẑ) = tF̃ (ẑ) + eγi(1− t)G(ẑ) (4.30)

for a γ ∈ [0, 2π). To illustrate a possible difficulty with this approach we examine
the system of equations (4.1,4.2,4.3) that we derived for the Bertrand price game in
Section 4.2.2.

Example 4.4. After homogenization of the equilibrium system (4.1,4.2,4.3) in the vari-
ables px, py, and Z with the variable x0 we obtain the following polynomial equations.

0 = −p2xx40 − p2yx40 + Z2p2xp
2
y

0 = −2700x100 + 2700pxx
9
0 + 8100Z2p2xx

6
0 − 5400Z2p3xx

5
0 + 51Z3p6xx

1
0 − 2Z3p7x

0 = −2700x100 + 2700pyx
9
0 + 8100Z2p2yx

6
0 − 5400Z2p3yx

5
0 + 51Z3p6yx

1
0 − 2Z3p7y

The solutions at infinity are those for which x0 = 0. In this case the system simplifies
as follows

Z2p2xp
2
y = 0, −2Z3p7x = 0, −2Z3p7y = 0.

After setting Z = 0 all equations hold for any values of px and py. There is a continuum of
solutions at infinity. Such continua can cause numerical difficulties for the path-following
procedure.

The following theorem now states that in spite of the previous example our paths
converge to the relevant isolated solutions.
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Theorem 4.7. Let the homotopy H be as in (4.30) with Bezout number d. Then the
following statements hold for almost all γ ∈ [0, 2π):

1. The homotopy has d continuous solution paths.

2. Each path will either converge to an isolated nonsingular or to a singular17 solution,
i.e. one where the rank of the Jacobian drops.

3. If b is an isolated solution with multiplicity m, then there are m paths converging
to it.

4. Paths are monotonically increasing in t, i.e. the paths do not bend backwards.

Now we can apply the homotopy H as defined in equation (4.30) and find all solutions
of the system (4.28). There will be no diverging paths. From the solutions of (4.28) we
easily obtain the solutions of the original system (4.25).

An additional advantage of the above approach lies in the possibility to scale our
solutions via u. If a solution component zi becomes too large, then this will cause
numerical problems, e.g. the evaluation of polynomials at such a point becomes rather
difficult. Thus if something like this happens we pick a new set of ξi. Furthermore we
eliminated the special case of infinite paths and we do not have to check whether the
length of the path grows too large. Instead every diverging path has become a converging
one. So while tracking a path we do not need to check whether the length of the path
exceeds a certain bound.

Theoretically we have eliminated the problem of solutions at infinity. Note that the
problem of diverging paths still remains in practice. A solution b belongs to a diverging
path if b0 = 0. We still need to decide when b0 becomes zero numerically. Thus there
is no absolute certainty if a path converges to a solution at infinity or if the solution is
extremely large. However, we are in the convergence zone of Newton’s method and can
quickly sharpen our solutions to an arbitrary precision.

Remark. Here we attempt to give some intuition for the problem of infinite paths. Take
two lines L1 = {(x1, x2)|x1 + a12x2 + b1 = 0} and L2 = {(x1, x2)|x1 + a22x2 + b2 = 0}
with a12, a22 ∈ R. Then there are three possibilities for L1 ∩ L2. First L1 ∩ L2 = L1

so a12 = a22 and b1 = b2. Secondly L1 ∩ L2 = {p} for some point p ∈ R2. Lastly we
have L1 ∩ L2 = ∅, i.e. the lines are parallel and so a12 = a22 but b1 6= b2. By using
projective space we eliminate the last possibility by adding infinity where the two lines
can meet. So in projective space the lines are given by the zero sets of the two polynomials
x1 +a12x2 + b1x0 and x1 +a22x2 + b2x0. Clearly (0 : −a12 : 1) is a common zero for these
polynomials if a12 = a22. So in projective space CP n, n linear homogeneous polynomials
which are not pairwise identical intersect at exactly one point.

Bezout’s theorem generalizes this idea to n polynomials. However the theorem implic-
itly embeds the system of polynomials in projective space. Therefore we have to consider

17This might be an isolated root with multiplicity higher than one, e.g. a double root of the system
F , or a non-isolated solution component as in Example 4.4.
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the possibility that solutions are at infinity and thus the paths that belong to those diverge.
The case that one of those intersection points lies at infinity is equivalent to demand-
ing that z0 = 0. This is clearly a non-generic case. But the systems that interest us
are highly non-generic, the reason being that they are sparse. That means for a degree
d polynomial in n variables there are

(
n+d
d

)
monomials of degree equal or smaller than

d but most of their coefficients are zero which is a non-generic condition. Thus those
systems tend to have many solutions at infinity.

4.10.2 m-homogeneous Bezout number

The number of paths d grows rapidly with the degree of individual equations. For many
economic models we believe that there are only a few (if not unique) equilibria, that
is, our systems have few real solutions and usually even fewer economically meaningful
solutions. As a result we may have to follow a large number of paths that do not yield
useful solutions. As we have seen in Example 4.4, there may be continua of solutions
at infinity which can cause numerical difficulties. Therefore it would be very helpful to
reduce the number of paths that must be followed as much as possible.

Two approaches for a reduction in the number of paths exist. The first approach
sets the homogenized polynomial system not into CP n but in a product of m projective
spaces CP n1 × . . .× CP nm . For this purpose the set of variables is split into m groups.
In the homogenization of the original polynomial F each group of variables receives a
separate additional variable, thus this process is called m-homogenization. The resulting
bound on the number of solutions, called the m-homogeneous Bezout number, is often
much smaller than the original bound and thus leads to the elimination of paths tending
to solutions at infinity. In this paper we do not provide details on this approach but
only show its impact in our computational examples. We refer the interested reader to
Sommese and Wampler, 2005 and the citations therein. The first paper to introduce
m-homogeneity appears to be Morgan and Sommese, 1987.

The second approach to reduce the number of paths is the use of parameter con-
tinuation homotopies. We believe that this approach is perfectly suited for economic
applications.

4.10.3 Parameter continuation homotopy

Economic models typically make use of exogenous parameters such as risk aversion
coefficients, price elasticities, cost coefficients, or many other pre-specified constants.
Often we do not know the exact values of those parameters and so would like to solve
the model for a variety of different parameter values. Clearly solving the model each time
“from scratch” will prove impractical whenever the number of solution paths is very large.
The parameter continuation homotopy approach enables us to greatly accelerate the
repeated solution of an economic model for different parameter values. After solving one
instance of the economic model we can construct a homotopy that alters the parameters
from their previous to their new values and allows us to track solutions paths from the
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4 Finding all pure-strategy equilibria in games with continuous strategies

previous solutions to new solutions. Therefore, the number of paths we need to follow
is greatly reduced.

The parameter continuation approach rests on the following theorem which is a special
case of a more general result, see (Sommese and Wampler, 2005, Theorem 7.1.1).

Theorem 4.8 (Parameter Continuation). Let F (z, q) = (f1(z, q), . . . , fn(z, q)) be a sys-
tem of polynomials in the variables z ∈ Cn with parameters q ∈ Cm,

F (z, q) : Cn × Cm → Cn.

Additionally let q0 ∈ Cm be a point in the parameter space, where k = maxq |{z |
F (z, q) = 0; det

(
∂F
∂z

(z, q0)
)
6= 0}| is the number of nonsingular isolated solutions. For

any other set of parameters q1 and a random γ ∈ [0, 2π) define

ϕ(s) = eiγs(s− 1) + sq1 + (1− s)q0

Then the following statements hold.

1. k = |{z | F (z, q) = 0; det
(
∂F
∂z

(z, q)
)
6= 0}| for almost all q ∈ Cm.

2. The homotopy F (z, ϕ(s)) = 0 has k nonsingular solution paths for almost all
γ ∈ [0, 2π).

3. All solution paths converge to all isolated nonsingular solutions of F (z, ϕ(1)) = 0
for almost all γ ∈ [0, 2π).

The theorem has an immediate practical implication. Suppose we already solved the
system F (z, q0) = 0 for some parameter vector q0. Under the assumption that this
system has the maximal number k of locally isolated solutions across all parameter
values, we can use this system as a start system for solving the system F (z, q1) = 0 for
another parameter vector q1. The number of paths that need to be tracked is k instead
of the Bezout number d or some m-homogeneous Bezout number. In our applications k
is much smaller (sometimes orders of magnitude smaller) than these upper bounds. As a
result the parameter continuation homotopy drastically reduces the number of paths that
we must track. More importantly, no path ends at a solution at infinity for almost all
q1 ∈ Cn. As we observe in our examples, exactly these solutions often create numerical
problems for the path-tracking software, in particular if there are continua of solutions
at infinity as in Example 4.4. And due to those numerical difficulties the running times
for tracking these paths is often significantly larger than for tracking paths that end at
finite solutions. In sum, we believe that the parameter continuation homotopy approach
is of great importance for finding all equilibria of economic models.

A statement similar to that of Theorem 4.8 holds if we regard isolated solutions of some
fixed multiplicity. But we then have to track paths which have the same multiplicity.
Tracking such paths requires a lot more computational effort than non-singular paths.
The homotopy continuation software Bertini enables the user to track such paths since
it allows for user-defined parameter continuation homotopies.
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4.10.4 A splitting approach for solving larger systems

In our application of the all-solutions methods to dynamic stochastic games we quickly
run into problems that are too large to be solved on a single computer. We now briefly
describe an approach that enables us to increase the size of problems we can solve.

A splitting approach18 breaks the square system

F (z1, z2, . . . , zn) = (f1, f2, . . . , fn) (z1, z2, . . . , zn) = 0

of polynomial equations into two sub-systems F1 = (f1, . . . , fp) and F2 = (fp+1, . . . , fn).
Similarly, the variables are grouped

(z1, z2, . . . , zn) = (x, y) = (x1, . . . , xp, y1, . . . yn−p).

Thus, we can write the entire system as follows,

F1(x1, . . . , xp, y1, . . . yn−p) = (f1, . . . fp)(x1, . . . , xn, y1, . . . yn−p) = 0

F2(y1, . . . , yn−p, x1, . . . xp) = (fp+1, . . . fn)(y1, . . . , yn−p, x1, . . . xp) = 0.

Clearly, F1 and F2 are not square systems of polynomial equations. We now solve the
systems

F1(x1, . . . , xp, y1, . . . yn−p) = 0

yi = ai, i = 1, . . . , n− p,

and

F2(y1, . . . , yn−p, x1, . . . xp) = 0

xj = bj, j = 1, . . . , p,

where a ∈ Cn−p and b ∈ Cp are random complex numbers. Each of these two new square
systems has a smaller (m-homogeneous) Bezout number than the original system.

Now suppose that we obtain finite solution sets M1 and M2 for each of the two systems,
respectively. Any pair (x∗, a, y∗, b) ∈ M1 × M2 is a solution to the following square
system of polynomial equations in the unknowns x1, . . . , xp, y1, . . . , yn−p, r1, . . . , rn−p,
and s1, . . . , sp,

F1(x1, . . . , xp, r1, . . . rn−p) = 0

ri − ai = 0, i = 1, . . . , n− p,
F2(y1, . . . , yn−p, s1, . . . sp) = 0

sj − bj = 0, j = 1, . . . , p.

18We thank Jonathan Hauenstein for suggesting this method to us.
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This system is now the start system for the following parameter continuation homotopy,
where r and s are the parameters,

F1(x1, . . . , xp, r1, . . . rn−p) = 0

(1− t)(ri − ai) + t(ri − yi) + (1− t)teiγ = 0, i = 1, . . . , n− p,
F2(y1, . . . , yn−p, s1, . . . sp) = 0

(1− t)(sj − bj) + t(sj − xj) + (1− t)teiγ = 0, j = 1, . . . , p,

with all elements in M1 ×M2 being start points. Thus there are |M1| · |M2| paths to
track. Observe that for t = 1 we obtain a system that is equivalent to the original system
F (z) = 0.

To see why this approach works, note that our parameters r and s have been chosen
randomly. Statement (1) of Theorem 4.8 states that for almost all choices of those
parameters we have the maximal number of isolated roots. Thus all the requirements of
the theorem are met and our homotopy converges to all isolated solutions.

A judicious separation of the original equations produces two subsystems with respec-
tive Bezout numbers that are roughly equal to the square root of the Bezout number of
the original system. This significant reduction in the number of paths to be tracked may
make it feasible to solve the subsystems even if the complete system cannot be solved
in reasonable time. And if the number of finite solutions of the subsystems is also not
too large, then the parameter continuation homotopy will generate all finite solutions of
the original system of equations.

In Section 4.8.2 this splitting approach enables us to solve a system of polynomial
equations that otherwise would have been too large to be solvable on a single laptop.
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5 A polynomial optimization approach
to principal agent problems 12

Abstract

This paper presents a new method for the analysis of moral hazard principal-
agent problems. The new approach avoids the stringent assumptions regarding
the distribution of outcomes made by the classical first-order approach and instead
only requires the agent’s expected utility to be a rational function of the action.
This assumption allows for a reformulation of the agent’s utility maximization
problem as an equivalent system of equations and inequalities. This reformulation
in turn transforms the principal’s utility maximization problem into a nonlinear
program. Under the additional assumptions that the principal’s expected utility
is a polynomial and the agent’s expected utility is a rational function, the final
nonlinear program can be solved to global optimality. The paper also shows that
the polynomial optimization approach, unlike the classical approach, extends to
principal-agent models with multi-dimensional action sets.

5.1 Introduction

In moral hazard principal-agent problems, the principal maximizes her utility subject to
two constraints involving the agent’s utility function, a participation constraint and an
incentive-compatibility constraint. While the participation constraint is rather straight-
forward, just imposing a lower bound on the agent’s expected utility, the incentive
constraint involves an expected utility maximization problem of the agent. As a conse-
quence, principal-agent problems are a type of bi-level optimization problem,3 a class of
optimization problem that is notoriously difficult. The most popular solution approach

1(Renner and Schmedders, 2013)
2We are indebted to Eleftherios Couzoudis, Johannes Horner, Ken Judd, Diethard Klatte, Felix

Kubler, Rida Laraki, George Mailath, Steve Matthews, Walt Pohl, Andy Postlewaite, Gregor Reich,
Che-Lin Su, and Rakesh Vohra for helpful discussions on the subject. We thank seminar audiences at
the University of Zurich, the 2012 Cowles Summer Conference on Economic Theory, and the 2012 ICE
Conference at the Becker Friedman Institute for comments. We are very grateful to Janos Mayer for
detailed comments on an earlier version. Karl Schmedders gratefully acknowledges financial support
from the Swiss Finance Institute.

3The major feature of bi-level optimization problems is that they include two mathematical programs
in a single optimization problem. One of the mathematical programs is part of the constraints of the
other. This hierarchical relationship is expressed by calling the two programs the lower-level- and the
upper-level problem, respectively. In the principal-agent problem, the agent’s problem is the lower-level-
and the principal’s problem is the upper-level problem.
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to principal-agent problems is the first-order approach, which replaces the agent’s maxi-
mization problem by the corresponding first-order condition and leads to an optimization
problem for the principal that is more tractable. Unfortunately, this approach requires
very restrictive assumptions regarding the probability distribution of outcomes; assump-
tions which fail to hold in many economic applications.4 A more widely applicable
solution approach for principal-agent problems is obviously desirable.

In this paper, we present a new method for the analysis of moral hazard principal-agent
problems. The new approach avoids the stringent assumptions regarding the distribution
of outcomes made by the classical first-order approach and instead only requires the
agent’s expected utility to be a rational function of the action. This assumption enables
us to apply ideas from polynomial optimization and to relax the principal-agent problem
to a system of polynomial equations and inequalities. So, similar to the first-order
approach, we transform the principal’s utility maximization problem from a bi-level
optimization problem into a nonlinear program. For the special case of univariate effort,
we obtain an equivalent reformulation. In the multidimensional case we show that our
relaxation converges to the optimal value and that the solution converges to an optimal
solution of the original problem.

For principal-agent problems with a one-dimensional effort set for the agent, our as-
sumption that the agent’s expected utility function is rational in effort allows us to
employ the global optimization approach for rational functions of Jibetean and Klerk,
2006. We transform the agent’s expected utility maximization approach into an equiv-
alent semidefinite programming (SDP) problem via a sum of squares representation of
the agent’s utility function. Semidefinite programs are a special class of convex pro-
gramming problems which can be solved efficiently both in theory and in practice—See
Vandenberghe and Boyd, 1996 and Boyd and Vandenberghe, 2004. We can further re-
formulate the SDP into a set of inequalities and equations, thereby transforming the
principal’s bi-level optimization problem into a “normal” nonlinear program. Under the
additional assumptions that all objective functions and constraints are rational, the ac-
tion set is an interval and, if the set of wages is compact, then the resulting problem
is a polynomial optimization problem, which is globally solvable. We can then use the
methods implemented in GloptiPoly, see Henrion et al., 2009, to find a globally optimal
solution to the principal-agent problem. That is, we can obtain a numerical certificate
of global optimality.

The first-order approach, a widely used solution method for principal-agent prob-
lems, replaces the incentive-compatibility constraint that the agent chooses a utility-
maximizing action, by the first-order condition for the agent’s utility maximization
problem. Mirrlees, 1999 (originally circulated in 1975) was the first to show that this
approach is invalid in general (even though it had frequently been applied in the lit-
erature.) Under two conditions regarding the probability function of outcomes, the
monotone likelihood-ratio condition (MLRC) and the convexity of distribution function

4In economic applications, the first-order approach is, then, often just assumed to be applicable. In
this case, of course, the resulting conclusions may or may not be valid. Needless to say, this custom is
rather unsatisfactory.
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condition (CDFC), Rogerson, 1985 proved the validity of the first-order approach. Mir-
rlees, 1979 had previously surmised that these two assumptions would be sufficient for
a valid first-order approach and so these conditions are also known as the Mirrlees-
Rogerson conditions. The CDFC is a rather unattractive restriction. Rogerson, 1985
pointed out that the CDFC generally does not hold in the economically intuitive case of
a stochastic production function with diminishing returns to scale generating the out-
put. In addition, Jewitt, 1988 observed that most of the standard textbook probability
distributions do not satisfy the CFDC.5 Jewitt, 1988 provided a set of sufficient technical
conditions avoiding the CDFC and two sets of conditions for principal-agent models with
multiple signals on the agent’s effort. Sinclair-Desgagné, 1994 introduced a generaliza-
tion of the CDFC for an extension of the Mirrless-Rogerson conditions to a first-order
approach for multi-signal principal-agent problems. Finally, Conlon, 2009 clarified the
relationship between the different sets of sufficient conditions and presented multi-signal
generalizations of both the Mirrlees-Rogerson and the Jewitt sufficient conditions for the
first-order approach. Despite this progress,6 all of these sufficient sets of conditions are
regarded as highly restrictive—see Conlon, 2009 and Kadan et al., 2011.

Principal-agent models in which the agent’s action set is one-dimensional dominate
both the literature on the first-order approach and the applied and computational lit-
erature—see, for example, (Araujo and Moreira, 2001; Judd and Su, 2005; Armstrong
et al., 2010). However, the analysis of linear, multi-task principal-agent models in Holm-
strom and Milgrom, 1991 demonstrates that multivariate agent problems exhibit some
fundamental differences in comparison to the common one-dimensional models. The the-
oretical literature that allows the set of actions to be multi-dimensional—for example,
Grossman and Hart, 1983, Kadan et al., 2011, and Kadan and Swinkels, 2012—focuses
on the existence and properties of equilibria. To the best of our knowledge, the first-order
approach has not been extended to models with multi-dimensional action sets.

We show how to extend our polynomial optimization approach to principal-agent
models in which the agent has more than one decision variable. When we apply the
multivariate optimization approach of Jibetean and Klerk, 2006 we encounter a theo-
retical difficulty. Un- like univariate nonnegative polynomials, multivariate nonnegative
polynomials are not necessarily sums of squares of fixed degree. This fact has the con-
sequence that we can no longer provide an exact reformulation of the agent’s utility
maximization problem but only a relaxation depending on the degree of the involved
polynomials. The relaxed problem yields an upper bound on the agent’s maximal utility.
We then use this relaxation to replace the agent’s optimization problems by equations
and inequalities including a constraint that requires the upper utility bound not to de-
viate from the true maximal utility by more than some pre-specified tolerance level. We
then prove that as the tolerance level converges to zero, the optimal solutions of the se-

5(LiCalzi and Spaeter, 2003) described two special classes of distributions that satisfy the CDFC.
6(Araujo and Moreira, 2001) introduced a Lagrangian approach different from Mirrlees, 1999. In-

stead of imposing conditions on the outcome distribution, they included more information in the La-
grangian, namely a second-order condition as well as the behavior of the utility function on the boundary
in order to account for possible non-concave objective functions. A number of additional technical as-
sumptions considerably limits the applicability of this approach as well.
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quence of nonlinear programs involving the relaxation converge, and—in fact—the limit
points yield optimal solutions to the original principal-agent problem.

Although our main results are of a theoretical nature, our paper also contributes to
the computational literature on principal-agent problems. Due to the strong assump-
tions of the first-order approach, the computational literature has shied away from it.
Prescott, 1999 and Prescott, 2004 approximated the action and compensation sets by
finite grids and then allowed for action and compensation lotteries. The resulting opti-
mization problem is linear and thus can be solved with efficient large-scale linear pro-
gramming algorithms. Judd and Su, 2005 avoided the compensation lotteries and only
approximated the action set by a finite grid. This approximation results in a mathemat-
ical program with equilibrium constraints (MPEC). Contrary to the LP approach, the
MPEC approach may face difficulties finding global solutions, since the standard MPEC
algorithms only search for locally optimal solutions. Despite this shortcoming, MPEC
approaches have recently received a lot of attention in economics—see, for instance, Su
and Judd, 2012 and Dubé et al., 2012. Our polynomial optimization approach does not
need lotteries and instead allows us to solve principal-agent problems with continuous
action and compensation sets.

The remainder of this paper is organized as follows. Section 5.2 describes the principal-
agent model and the classical first-order approach. In Section 5.3 we introduce our main
result for the polynomial optimization approach. Section 5.4 summarizes the mathe-
matical background for our analysis and provides a proof of the main result. We extend
the polynomial approach to models with multi-dimensional action sets in Section 5.5.
Section 5.6 concludes.

5.2 The Principal-Agent Model

In this section, we briefly describe the principal-agent model under consideration. Next
we review the first-order approach. We complete our initial discussion of principal-agent
problems by proving the existence of a global optimal solution.

5.2.1 The Principal-Agent Problem

The agent chooses an action (“effort level”) a from a set A ⊂ RL. The outcome (“out-
put” or “gross profit”) received by the principal from an action a taken by the agent
can be one of N possible values, y1 < y2 < . . . < yN , with yi ∈ R. Let µ(•|a) be a
parameterized probability measure on the set of outcomes Y = {y1, y2, . . . , yN}. Then
for any yi, µ(yi|•) is a function mapping A into [0, 1]. Of course,

∑N
i=1 µ(yi|a) = 1 for

all a ∈ A.
The principal cannot monitor the agent’s action but only the outcome. Thus, the

principal will pay the agent conditional on the observed outcome. Let wi ∈ W ⊂ R
denote the wage paid to the agent if outcome yi occurs. A contract (“compensation
scheme”) between the principal and the agent is then a vector w = (w1, w2, . . . , wN) ∈
W ≡ WN . The principal has a Bernoulli utility function over income, u : I → R, with
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domain I = (I,∞) ⊂ R for some I ∈ R ∪ {−∞}. For example, if the principal receives
the outcome yi and pays the wage wi, then she receives utility u(yi − wi). The agent
has a Bernoulli utility function over income and actions given by v : J × A → R, with
J = (J,∞) ⊂ R for some J ∈ R ∪ {−∞}. Both the principal and the agent have von
Neumann-Morgenstern utility functions. The expected utility functions of the principal
and agent are

U(w,a) =
N∑
i=1

u(yi − wi)µ(yi|a) and V (w,a) =
N∑
i=1

v(wi,a)µ(yi|a),

respectively. We are now in the position to state the principal-agent problem.

max
w∈W,a∈A

U(w,a)

s.t. a ∈ arg max
b∈A

V (w, b)

V (w,a) ≥ V

(5.1)

The objective of this optimization problem is to maximize the principal’s expected utility.
The first constraint,

a ∈ arg max
b∈A

V (w, b) (5.2)

is the incentive-compatibility constraint for the agent; he will only take actions that
maximize his own expected utility. We assume implicitly that the agent does not work
against the principal, that is, if he is indifferent between several different actions then
he will choose the action most beneficial to the principal. The second constraint is
the participation constraint for the agent. He has an outside option and will accept a
contract only if he receives at least the expected utility V of that outside opportunity.

The principal cannot observe the agent’s actions but knows his utility function. Thus,
the described principal-agent model exhibits pure moral hazard and no hidden informa-
tion. The first-order approach for models of this type has been examined by Mirrlees,
1999, Rogerson, 1985, Jewitt, 1988, Sinclair-Desgagné, 1994, Alvi, 1997, Jewitt et al.,
2008, Conlon, 2009, and others.

5.2.2 The First-Order Approach

In general it is very difficult to find a global optimal solution to the principal-agent
problem (5.1). For the model with a one-dimensional action set, A = [a, ā] with ā ∈
R∪{∞}, the popular first-order approach replaces the incentive-compatibility constraint
(5.2) by a stationarity condition. If the set A is sufficiently large so that the optimal
solution to the agent’s expected utility maximization problem has an interior solution,
the necessary first-order condition is

∂

∂a
V (w, a) =

N∑
i=1

(
∂

∂a
v(wi, a) µ(yi|a) + v(wi, a)

∂

∂a
µ(yi|a)

)
= 0. (5.3)
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For an application of the first-order approach, standard monotonicity, curvature, and
differentiability assumptions are imposed. Rogerson, 1985 introduces the following as-
sumptions (in addition to some other minor technical conditions).

(1) The function µ(y|•) : A→ [0, 1] is twice continuously differentiable for all y ∈ Y .

(2) The principal’s Bernoulli utility function u : I → R is strictly increasing, concave,
and twice continuously differentiable.

(3) The agent’s Bernoulli utility function v : J × A→ R satisfies v(w, a) = ψ(w)− a.
The function ψ : J → R is strictly increasing, concave and twice continuously
differentiable.

These three assumptions alone are not sufficient for the first-order approach to be valid,
since the probabilities µ(yi|a) depend on the action a and thus affect the monotonicity
and curvature of the expected utility functions. Rogerson, 1985 proved the validity of
the first-order approach under two additional assumptions on the probability function,
see also Mirrlees, 1979. We define the following function Fj(a) =

∑j
i=1 µ(yi|a). For

µ(yi|a) >> 0 for all a ∈ A and all i , the conditions of Mirrlees, 1979 and Rogerson,
1985 are as follows.

(MLRC) (monotone likelihood-ratio condition7) The measure µ has the property that

for a1 ≤ a2 the ratio µ(yi|a1)
µ(yi|a2) is decreasing in i.

(CDFC) (convexity of the distribution function condition) The function F has the prop-
erty that F ′′i (a) ≥ 0 for all i = 1, 2, . . . , N and a ∈ A.

According to Conlon, 2009, these assumptions are the most popular conditions in eco-
nomics, even though other sufficient conditions exist, see Jewitt, 1988. Sinclair-Desgagné,
1994 generalized the conditions of Mirrlees, 1979 and Rogerson, 1985 for the multi-signal
principal-agent problem. Conlon, 2009 in turn presented multi-signal generalizations of
both the Mirrlees-Rogerson and the Jewitt sufficient conditions for the first-order ap-
proach. Despite this progress, all of these conditions are regarded as highly restrictive,
see Conlon, 2009 and Kadan et al., 2011.

5.2.3 Existence of a Global Optimal Solution

For the sake of completeness, we show the existence of a global optimal solution to the
principal-agent problem (5.1) without assumptions on the differentiability, monotonicity,
and curvature of the utility and probability functions. For this purpose we introduce
the following three assumptions.

Assumption 5.1 (Feasibility). There exists a contract w ∈ W such that the agent is
willing to participate, that is, V (w,a) ≥ V for some a ∈ A.

7The MLRC implies a stochastic dominance condition, F ′
i (a) ≤ 0 for all i = 1, 2, . . . , N and a ∈ A.
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Assumption 5.2 (Compactness). Both decision variables are chosen from compact do-
mains.

(1) The set A of actions is a non-empty, compact subset of a finite-dimensional Eu-
clidean space, A ⊂ RL.

(2) The set W of possible wages is a nonempty, compact interval [w,w] ⊂ R.

Assumption 5.3 (Continuity). All functions in the model are continuous.

(1) The function µ(y|•) : A→ [0, 1] is continuous for all y ∈ Y .

(2) The principal’s Bernoulli utility function u : I → R is continuous on I.

(3) The agent’s Bernoulli utility function v : J × A→ R is continuous on J × A.

For simplicity we also assume that the expected utility functions U and V are well-
defined on their domain W × A. (Sufficient conditions for this innocuous assumption
are J < w and I < y1−w). Under the stated assumptions, a global optimal solution to
the optimization problem (5.1) exists.

Proposition 5.1. If Assumptions 5.1 – 5.3 hold, then the principal-agent problem (5.1)
has a global optimal solution.

Proof. Consider the optimal value function Ψ : W → R for the agent defined by Ψ(w) =
max{V (w,a) | a ∈ A}. By Assumptions 5.2 and 5.3, the expected utility function V is
continuous on the compact domain W ×A. Thus, (a special case of) Berge’s Maximum
Theorem (Berge, 1963) implies that Ψ is continuous on its domain W . Using the function
Ψ, we can state the feasible region F of the principal-agent problem (5.1),

F = {(w,a) ∈ W × A | V (w,a) = Ψ(w), V (w,a) ≥ V } .

The feasible region F is nonempty by Assumption 5.1. As a subset of W ×A it is clearly
bounded. Since both V and Ψ are continuous functions and the constraints involve only
an equation and a weak inequality, the set F is also closed. And so the optimization
problem (5.1) requires the maximization of the continuous function U on the nonempty,
compact feasible region F . Now the proposition follows from the extreme value theorem
of Weierstrass.

5.3 The Polynomial Optimization Approach for A ⊂ R
The purpose of this section is to state our main result, Theorem 5.1, and illustrate it by
an example.

Recall that a symmetric matrix M ∈ Rn×n is called positive semidefinite if and only if
vTMv ≥ 0 for all v ∈ Rn. We denote such matrices by M < 0. The set of all symmetric
positive semidefinite n× n matrices is a closed convex cone.

Next we introduce an assumption on the agent’s expected utility function.
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5 A polynomial optimization approach to principal agent problems

Assumption 5.4 (Rational Expected Utility Function). The parameterized probability
distribution functions µ(y|•) : A → [0, 1] and the agent’s Bernoulli utility function
v : J × A → R are such that the agent’s expected utility function is a rational function
of the form

−V (w, a) = −
N∑
j=1

v(wj, a)µ(yj|a) =

∑d
i=0 ci(w)ai∑d
i=0 fi(w)ai

for functions ci, fi : W → R with
∑d

i=0 fi(w)ai > 0 for all (w, a) ∈ W × A.8 Moreover,

the two polynomials in the variable a,
∑d

i=0 ci(w)ai and
∑d

i=0 fi(w)ai, have no common
factors and d ∈ N is maximal such that cd(w) 6= 0 or fd(w) 6= 0.

Recall the notation dxe for the smallest integer not less than x. Using this notation,
we define the number D =

⌈
d
2

⌉
.

Without loss of generality we assume for the set of actions, A = [−1, 1] = {a ∈ R |
1 − a2 ≥ 0}. The following theorem9 provides us with an equivalent problem to the
principal-agent problem (5.1).

Theorem 5.1. Let A = [−1, 1] and suppose Assumption 5.4 holds. Then (w∗, a∗) solves
the principal-agent problem (5.1) if and only if there exist ρ∗ ∈ R as well as matrices
Q(0)∗ ∈ R(D+1)×(D+1) and Q(1)∗ ∈ RD×D such that (w∗, a∗, ρ∗, Q(0)∗, Q(1)∗) solves the
following optimization problem:

max
w,a,ρ,Q(0),Q(1)

U(w, a) subject to

(5.4)

c0(w)− ρf0(w) = Q
(0)
0,0 +Q

(1)
0,0 (5.4a)

cl(w)− ρfl(w) =
∑
i+j=l

Q
(0)
ij +

∑
i+j=l

Q
(1)
ij −

∑
i+j=l−2

Q
(1)
ij , l = 1, . . . , d (5.4b)

Q(0), Q(1) < 0 (5.4c)

ρ

(
d∑
i=0

fi(w)ai

)
=

d∑
i=0

ci(w)ai (5.4d)

d∑
i=0

ci(w)ai ≤ −V
(

d∑
i=0

fi(w)ai

)
(5.4e)

−a2 + 1 ≥ 0 (5.4f)

w ∈ W (5.4g)

The new optimization problem (5.4) has the same objective function as the original
principal-agent problem (5.1). Unlike the original problem, the new problem (5.4) is not

8The positivity condition for the denominator is necessary, since a change in sign would lead to
division by zero.

9Note that the row and column indexing of the two matrices in the theorem starts at 0. The reason
for this convention becomes clear in the theoretical arguments presented Section 5.4.1.
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a bilevel optimization problem. Instead the constraint involving the agent’s expected
utility maximization problem has been replaced by inequalities and equations. Problem
(5.4) has the additional decision variables ρ ∈ R, Q(0) ∈ R(D+1)×(D+1), and Q(1) ∈ RD×D.
The optimal value ρ∗ of the variable ρ in problem (5.4) will be −V (w∗, a∗), the negative
of the agent’s maximal expected utility. Constraints (5.4a)–(5.4c) use a sum of squares
representation of nonnegative polynomials to ensure that for a contract w chosen by the
principal, −V (w, a) ≥ ρ for all a ∈ A. That is, −ρ is an upper bound on all possible
utility levels for the agent. Note that equations (5.4a) and (5.4b) are linear in ρ and
the elements of the matrices Q(0) ∈ R(D+1)×(D+1) and Q(1) ∈ RD×D. Constraint (5.4c)
requires that these two matrices are symmetric positive semi-definite. (Later on we sum-
marize properties of positive semi-definite matrices, which show that constraint (5.4c)
can be written as a set of polynomial inequalities.) Next, constraint (5.4d) ensures
that the variable −ρ is actually equal to the agent’s utility for effort a and contract w.
Therefore, this constraint together with the constraints (5.4a)–(5.4c) forces any value of
a satisfying the equation to be the agent’s optimal effort choice as well as the value of
ρ to be the corresponding maximal expected utility value. Put differently, for a given
contract w the first four constraints ensure an optimal effort choice by the agent. The
last three constraints are straightforward. Constraint (5.4e) is the transformed partici-
pation constraint for the agent’s rational expected utility function. Constraint (5.4f) is
a polynomial representation of the feasible action set and constraint (5.4g) is just the
constraint on the compensation scheme from the original principal-agent problem (5.1).

We illustrate the statement of the theorem by a simple example.

Example 5.1. Let A = [0, 1] and W = R+. There are N = 3 possible outcomes
y1 < y2 < y3 which occur with the probabilities

µ(y1|a) =

(
2

0

)
a0(1− a)2, µ(y2|a) =

(
2

1

)
a(1− a), µ(y3|a) =

(
2

2

)
a2(1− a)0.

The principal is risk-neutral with Bernoulli utility u(y − w) = y − w. The agent is
risk-averse and has utility

v(w, a) =
w1−η − 1

1− η − κa2,

where η 6= 1, η ≥ 0 and κ > 0. The agent’s expected utility is

V (w1, w2, w3, a) = (1− a)2
w1−η

1 − 1

1− η + 2(1− a)a
w1−η

2 − 1

1− η + a2
w1−η

3 − 1

1− η − κa2.

The second-order derivative of V with respect to a,

∂2V

∂a2
=

2w1−η
1

1− η −
4w1−η

2

1− η +
2w1−η

3

1− η − 2κ,

changes sign on W × A. Thus, this function is not concave and so the classical first-
order approach does not apply. We apply Theorem 5.1 to solve this principal-agent
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problem. For simplicity, we consider a specific problem with η = 1
2
, V = 0, κ = 2, and

(y1, y2, y3) = (0, 2, 4).
First we transform the set of actions A = [0, 1] into the interval A = [−1, 1] via the

variable transformation a 7→ a+1
2

. The resulting expected utility functions are

U(w, a) =2 + 2a− w1

4
+
aw1

2
− a2w1

4
− w2

2
+
a2w2

2
− w3

4
− aw3

2
− a2w3

4

V (w, a) =− 5

2
+

√
w1

2
+
√
w2 +

√
w3

2
− a− a√w1 + a

√
w3 − a2

√
w2 +

a2
√
w1

2
− a2

2

+
a2
√
w3

2

We observe that V (w, a) is a quadratic polynomial in a. The representation of −V (w, a)
according to Assumption 5.4 has the nonzero coefficients f0(w) = 1 and c0(w) = 5

2
−

√
w1

2
−√w2−

√
w3

2
, c1(w) = 1+

√
w1−

√
w3, and c2(w) = 1

2
−
√
w1

2
+
√
w2−

√
w3

2
. According

to Theorem 5.1, the matrix Q(0) is a 2×2 matrix and Q(1) is just a single number. With

Q(0) =

(
n00 n01

n01 n11

)
and Q(1) = m00

we can rewrite the principal-agent problem following the theorem.

max
w1,w2,w3,a,ρ,n00,n01,n11,m

U(w1, w2, w3, a)

s.t.
5

2
−
√
w1

2
−√w2 −

√
w3

2
− ρ = n00 +m00

1 +
√
w1 −

√
w3 = 2n01

1

2
−
√
w1

2
+
√
w2 −

√
w3

2
= n11 −m00

ρ = −V (w1, w2, w3, a)

n00 ≥ 0, n11 ≥ 0, n00n11 − n2
01 ≥ 0,m00 ≥ 0

V (w1, w2, w3, a) ≥ 0

− a2 + 1 ≥ 0

w1, w2, w3 ≥ 0

We can solve this nonlinear optimization problem with Gloptipoly, see Henrion et al.,
2009, and obtain the globally optimal contract w∗ = (0.3417, 1.511, 3.511) and the re-
sulting optimal effort a∗ = 0.6446. Table 5.1 reports solutions for different levels of the
agent’s risk aversion η. For completion the table also reports the corresponding first-best
solutions10 indexed by FB. For η = 0, when the agent is risk-neutral, a continuum of
contracts exists. However, the intervals of values for w1 and w2 are economically irrele-
vant since for w3 = 1 the optimal effort of a∗ = 1 results in zero probability of outcomes
1 and 2 and the first-best solution.

10Omitting the incentive compatibility constraint and maximizing the principal’s expected utility
only subject to the participation constraint leads to the first-best solution.
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η U(w∗1, w
∗
2, w

∗
3, a
∗) a∗ w∗1 w∗2 w∗3 UFB aFB wFB

0 1 1 [0, 1) [0, 1] 3 1 1 3
1
4

0.6760 0.8260 0.2777 1.177 3.344 0.7471 0.7993 2.450
1
3

0.5723 0.7637 0.2879 1.273 3.441 0.6850 0.7541 2.332
1
2

0.3844 0.6446 0.3417 1.511 3.511 0.5814 0.6823 2.148
4
5

0.1292 0.4881 0.5314 1.798 3.296 0.4410 0.5918 1.926
2 -0.3444 0.2413 0.8749 1.817 2.416 0.1349 0.4196 1.544
4 -0.6102 0.1277 0.9657 1.597 1.866 -0.09165 0.3117 1.338

Table 5.1: Numerical solutions to the principal-agent problem as a function of η

5.4 Derivation of the Polynomial Optimization Approach

In this section we first review the mathematical foundation of Theorem 5.1 and then
prove the theorem. We also discuss the assumptions of the theorem as well as the
limitations of the polynomial optimization approach.

5.4.1 Mathematical Framework

First we introduce semidefinite programs, a class of convex optimization problems that
is relevant for our analysis. Next we define sums of squared polynomials and state
representation theorems for such polynomials. Then we describe how the representation
results allow us to simplify constrained polynomial optimization problems. And finally
we describe the extension to rational objective functions.

Semidefinite Programming

For a matrix M = (mij) ∈ Rn×n the sum of its diagonal elements,

tr(M) =
n∑
i=1

mii,

is called the trace of M . Note that

tr(CX) =
n∑

i,j=1

CijXij

for matrices C,X ∈ Sn is a linear function on the set Sn of symmetric n × n matrices.
A semidefinite optimization problem (in standard form) is defined as follows.

Definition 5.1. Let C,Aj ∈ Rn×n for all j = 1, . . . ,m be symmetric matrices and
b ∈ Rm. We then call the following convex optimization problem a semidefinite program
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5 A polynomial optimization approach to principal agent problems

(SDP).

sup
X

tr(CX)

s.t. tr(AjX) = bj j = 1, . . . ,m

X < 0

(5.5)

Note that the (SDP) has a linear objective function and a closed convex feasible region.
Thus, semi-definite programs are a special class of convex optimization problems. In
fact, semidefinite programs can be solved efficiently both in theory and in practice, see
Vandenberghe and Boyd, 1996 and Boyd and Vandenberghe, 2004.

We need to reformulate this into an NLP and so we first look at the following definition.

Definition 5.2. Let M = (mij)i=1,...,n,j=1,...,n ∈ Rn×n a matrix and let I ⊂ {1, . . . , n}.
Then det((mij)i,j∈I×I) is called a principal minor. If I = {1, . . . , k} then det((mij)i,j∈I×I)
is called the leading principal minor.

Proposition 5.2. Let Q ∈ Rn×n be a symmetric matrix with rank m. Then the following
statements are equivalent.

(a) Q is positive semidefinite.

(b) All principal minors of Q are nonnegative.

(c) There exists a matrix V ∈ Rn×m with Q = V V T and m ≤ n.

(d) There exists a lower triangular matrix L ∈ Rn×n with nonnegative diagonal such
that Q = LLT .

(e) All eigenvalues are nonnegative.

Note here that the equivalent statements for positive semidefiniteness can be expressed
by polynomial equations and inequalities. Statement (b) gives a set of polynomial in-
equalities. Statement (c) involves a system of polynomial equations. Statements (d) and
(e) are given by a system of equations and inequalities.

Polynomials and Sums of Squares

For the study of polynomial optimization it is necessary to first review a few fundamental
concepts from the study of polynomials in real algebraic geometry. Our brief review is
based upon the survey by Laurent, 2009 and the book by Lasserre, 2010b.

The expression R[x1, . . . , xn] denotes the ring of polynomials in n variables over the
real numbers. Whenever possible we use the abbreviation R[x] with x = (x1, . . . , xn).
For clarification, we denote the set of nonnegative integers by N. For a vector α ∈ Nn, we
denote the monomial xα1

1 · · ·xαnn by xα. The degree of this monomial is |α| = ∑n
i=1 αi. A

polynomial p ∈ R[x], p =
∑
α aαx

α is a sum of terms aαx
α with finitely many nonzero

aα ∈ R. The degree of p is deg(p) = max{α|aα 6=0} |α|.
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Let g1, . . . , gm ∈ R[x]. Then the set

K = {x ∈ Rn | gi(x) ≥ 0, ∀i = 1, . . . ,m}

is called a basic semi-algebraic set.
A central concept of polynomial optimization is the notion of a sum of squares.

Definition 5.3. A polynomial σ ∈ R[x] is called a sum of squares if there exists finitely
many polynomials p1, . . . , pm ∈ R[x] such that σ =

∑m
i=1 p

2
i . The expression Σ[x] ⊂ R[x]

denotes the set of sums of squares. And Σd[x] ⊂ R[x] denotes the set of sums of squares
up to degree d.

A sum of squares σ is always a nonnegative function. The converse however is not
always true, i.e. not every non negative polynomial is a sum of squares. Also it is clear
that a polynomial can only be a sum of squares if it has even degree. Moreover, the
degree of each polynomial pi in the sum is bounded above by half the degree of σ. To
see the link to positive semi-definite matrices, we consider the vector

vd(x) = (xα)|α|≤d =
(
1, x1, . . . , xn, x

2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

d
n

)T
of all monomials xα of degree at most d. This vector is of dimension

(
n+d
d

)
. There is a

strong connection between sums of squares, the vector vd(x) and positive semi-definite
matrices.

Lemma 5.1. [(Lasserre, 2010b, Proposition 2.1)] A polynomial σ ∈ R[x] of degree
2d is a sum of squares if and only if there exists a symmetric positive semidefinite(
n+d
d

)
×
(
n+d
d

)
matrix Q such that σ = vd(x)TQvd(x), where vd(x) is the vector of

monomials in x of degree at most d.

Sum of Squares and SDP in R

We illustrate the relationship between finding sum of squares representations and SDPs
for the univariate case. For n = 1,

vd(x) =
(
1, x, x2, . . . , xd

)T
.

We can identify a polynomial pi(x) =
∑d

j=0 aijx
j with its vector of coefficients ai =

(ai0, ai1, . . . , aid) and write pi(x) = aivd(x). Next we aggregate m such polynomials in
a matrix-vector product

p1(x)
p2(x)

...
pm(x)

 =


a10 a11 . . . a1d
a20 a21 . . . a2d
...

...
...

...
am0 am1 . . . amd




1
x
...
xd
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Denoting the (m× (d+ 1)) coefficient matrix on the right-hand side by V , we can write
a sum of squares as

σ(x) =
m∑
i=1

p2i (x) = (V vd(x))T (V vd(x)) = vd(x)TQvd(x)

for Q = V TV . By construction the matrix Q is symmetric, positive semi-definite and
has at most rank m. Note that if we start indexing Q with 0 then Qij with i + j = h
contributes to the term of σ with degree h.

Observe that finding a sum of squares representation for the polynomial σ(x) requires
finding a symmetric positive semi-definite matrixQ such that the polynomials on the left-
hand and right-hand side are identical. But that condition just requires the polynomials
to have identical coefficients for all monomials. If σ has degree 2d, then the coefficient
conditions are 2d + 1 linear equations in the (d + 1)2/2 + d + 1 unknown elements
of Q. This set of linear equations together with the requirement that Q is symmetric
positive semi-definite are just the constraints of an SDP. And so finding a sum of squares
representation of a univariate polynomial σ is equivalent to an SDP feasibility problem.

Sum of Squares Representation in R

For polynomials in a single variable x, the set of nonnegative polynomials and the set
Σ[x] of sums of squares are identical.

Lemma 5.2. [(Laurent, 2009, Lemma 3.5)] Any nonnegative univariate polynomial
is a sum of (at most) two squares.

We next consider nonnegative univariate polynomials on closed intervals. For a general
treatment it suffices to examine two cases, [−1, 1] and [0,∞). The next proposition states
that nonnegative polynomials on these intervals can be expressed via two sums of squares
and a polynomial that describes the respective interval via a semi-algebraic set. Note
that [−1, 1] = {x ∈ R | 1− x2 ≥ 0} and [0,∞) = {x ∈ R | x ≥ 0}.

Proposition 5.3. [(Lasserre, 2010b, Theorems 2.6, 2.7), (Laurent, 2009, The-
orems 3.21, 3.23)] Let p ∈ R[x] be of degree d.

(a) p ≥ 0 on [−1, 1] if and only if

p = σ0 + σ1 · (1− x2) σ0, σ1 ∈ Σ[x]

with deg(σ0), deg(σ1 · (1−x2)) ≤ d if d is even and deg(σ0), deg(σ1 · (1−x2)) ≤ d+1
if d is odd.

(b) p ≥ 0 on [0,∞) if and only if

p = σ0 + σ1x σ0, σ1 ∈ Σ[x]

with deg(σ0), deg(xσ1) ≤ d.
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These results depend critically on the specific description of the intervals via the
polynomials 1 − x2 and x, respectively. Other descriptions lead to weaker results with
representations involving higher degree sum of squares polynomials.

Proposition 5.3 can also be used to show more general cases. The univariate poly-
nomial f(x) is nonnegative on K = [a,∞), K = (−∞, b] and K = [a, b] if and only
if

p(x) = f(x+ a) ≥ 0 ∀x ∈ [0,∞),

p(x) = f(b− x) ≥ 0 ∀x ∈ [0,∞),

p(x) = f((x(b− a) + (a+ b))/2) ≥ 0 ∀x ∈ [−1, 1],

respectively.
Next we describe the application of the representation results for nonnegative univari-

ate polynomials to polynomial optimization.

Polynomial Optimization in R

For a polynomial p ∈ R[x] and a nonempty semi-algebraic set K ⊂ R consider the
constrained polynomial optimization problem,

pmin = inf
x∈K

p(x). (5.6)

We can rewrite Problem (5.6) as follows,

sup
ρ
ρ

s.t. p(x)− ρ ≥ 0 ∀x ∈ K.
(5.7)

For any feasible ρ ∈ R the following inequality holds,

ρ ≤ pmin. (5.8)

Note that the constraints of the rewritten problem state that the polynomial p− ρ must
be nonnegative on the set K. Now consider the domain K = [−1, 1] = {x | 1− x2 ≥ 0}.
In this case applying part (a) of Proposition 5.3 enables us to rewrite the infinitely many
constraints of Problem (5.7). With the polynomial g defined by g(x) = 1−x2 we obtain
the following optimization problem,

sup
ρ,σ0,σ1

ρ

s.t. p− ρ = σ0 + σ1g

σ0, σ0 ∈ Σ[x]

(5.9)

Note that the equality constraint here signifies equality as polynomials. Lemma 5.1
enables us to rewrite the optimization problem once more by replacing the unknown
sums of squares σ0 and σ1 by positive semi-definite matrices. We define the number
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dp =
⌈
deg(p)

2

⌉
for a polynomial p ∈ R[x]. According to Proposition 5.3 the number dp is

an upper bound for the degrees of σ0 and σ1. And so we can rewrite the optimization
problem.

sup
ρ,Q(0),Q(1)

ρ

s.t. p− ρ = vTdpQ
(0)vdp + gvTdp−1Q

(1)vdp−1

Q(0), Q(1) < 0

Q(0) ∈ R(dp+1)×(dp+1), Q(1) ∈ Rdp×dp

vdp = (1, x, . . . , xdp)T , vdp−1 = (1, x, . . . , xdp−1)T

(5.10)

Note that the first functional constraint holds if and only if all coefficients (of identical
monomials on the left- and right-hand side) are identical. Thus this functional constraint
reduces to a set of linear constraints which only involve the coefficients of the terms. Let
p =

∑deg(p)
l=0 clx

l and write Q
(0)
ij , i, j = 0, 1, . . . , dp, for the (i, j)-th entry of the matrix

Q(0) (similarly for Q(1)). Then we can rewrite the first constraint of Problem (5.10),

c0 − ρ = Q
(0)
0,0 +Q

(1)
0,0,

cl =
∑
i+j=l

Q
(0)
ij +

∑
i+j=l

Q
(1)
ij −

∑
i+j=l−2

Q
(1)
ij l = 1, . . . , d. (5.11)

This set of constraints is just a set of linear equations in the unknowns ρ and Q
(m)
ij .

In particular we observe that the final optimization problem is an SDP. Note that the
positive semi-definite constraint for the matrices Q(0) and Q(1) can be interpreted as
polynomial inequality constraints. This fact follows from Proposition 5.2.

The following proposition summarizes the relationship between the original problem
and the reformulation.

Proposition 5.4. [(Lasserre, 2010b, Theorem 5.8)] If p(x) =
∑

i cix
i and K =

{x ∈ R | 1 − x2 ≥ 0} = [−1, 1] then problem (5.10) is equivalent to infx∈[−1,1] p(x) and
both problems have an optimal solution.

The optimal solutions satisfy ρ = pmin. In sum, the constrained optimization problem
of minimizing a univariate polynomial on an interval of R reduces to an SDP, a convex
optimization problem. In particular we can write the optimization problem in theorem
5.1 as a maximization and not a supremum.

Rational Objective Function

Jibetean and Klerk, 2006 prove an analogous result for the case of rational objective
functions. Let p(x), q(x) be two polynomials defined on a set K ⊂ Rn. Consider the
following optimization problem,

pmin = inf
x∈K

p(x)

q(x)
. (5.12)

We can rewrite this problem in polynomial form.

64



5.4 Derivation of the Polynomial Optimization Approach

Proposition 5.5. [(Jibetean and Klerk, 2006, Theorem 2)] If p and q have no
common factor and K is an open connected set or a (partial) closure of such a set then

(a) If q changes sign on K, then pmin = −∞.

(b) If q is nonnegative on K, problem (5.12) is equivalent to

pmin = sup{ρ | p(x)− ρq(x) ≥ 0, ∀x ∈ K}.

Now consider the univariate case, so let p, q ∈ R[x] and set d = max(dp, dq). For
K = [−1, 1] and g(x) = 1 − x2, we can again use Proposition 5.3 and reformulate
problem (5.12),

sup
ρ,σ0,σ1

ρ

s.t. p− ρq = σ0 + gσ1

σ0 ∈ Σ2d, σ1 ∈ Σ2(d−1)

(5.13)

And so we can solve the constrained optimization problem (5.12) also as an SDP.

5.4.2 Proof of Theorem 5.1

Now we are in the position to prove Theorem 5.1.

Proof. Note that the upper level problem has not been altered. In particular we still
maximize over U . Thus to show that these problems are indeed equivalent it suffices
to see that any feasible point for (5.4) corresponds to a feasible point for (5.1) and vice
versa.

Let (ŵ, â, ρ̂, Q̂(0), Q̂(1)) be a feasible point for problem (5.4). Then by inequality (5.8)
we have that ρ ≤ mina∈[−1,1]−V (ŵ, a) = −maxa∈[−1,1] V (ŵ, a) ≤ −V (ŵ, a) for any
a ∈ [−1, 1]. Thus by the equality condition −V (ŵ, â) = ρ we have that V (ŵ, â) =
maxa∈[−1,1] V (ŵ, a). Therefore â ∈ arg maxa∈[−1,1] V (ŵ, a) and V (ŵ, â) ≥ V . Hence
(ŵ, â) is a feasible point for (5.1).

Now let (ŵ, â) be a feasible point for (5.1). So â ∈ arg maxa∈[−1,1] V (ŵ, a). By

Proposition 5.5 there exist Q̂(0), Q̂(1) < 0 and a maximal ρ̂ such that the following
system of equations is satisfied

c0(ŵ)− ρ̂f0(ŵ) = Q̂
(0)
0,0 + Q̂

(1)
0,0

cl(ŵ)− ρ̂fl(ŵ) =
∑
i+j=l

Q̂
(0)
ij +

∑
i+j=l

Q̂
(1)
ij −

∑
i+j=l−2

Q̂
(1)
ij , l = 1, . . . , d.

Then ρ̂ = mina∈[−1,1]−V (ŵ, a) = −V (ŵ, â) and therefore (ŵ, â, ρ̂, Q̂(0), Q̂(1)) is feasible
for (5.4).
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The proof establishes that the feasible region of the original principal-agent prob-
lem (5.1) is a projection of the feasible region of the optimization problem (5.4). The
first four constraints of problem (5.4) capture the agent’s expected utility maximization
problem. The constraints (5.4a)–(5.4d) force any value of a in a feasible solution to
be the agent’s optimal effort choice as well as the value of ρ to be the corresponding
maximal expected utility value. Put differently, for a given contract w the first four
constraints ensure an optimal effort choice by the agent.

With some additional assumptions, we can solve the optimization problem (5.4) to
global optimality.

Corollary 5.1. Suppose Assumption 5.4 holds and that the functions ci, fi : W → R (in
Assumption 5.4) are polynomials in w ∈ W . Moreover, assume that U is a polynomial,
A = [−1, 1], and W is a basic semi-algebraic set. Then (5.4) is a polynomial optimization
problem over a basic semi-algebraic set.

Proof. The only problematic constraints are the semi-definiteness constraints for the
matrix. However, the positive definiteness condition on the Q(i) is equivalent to the
condition that the principal minors, that are themselves polynomials, are nonnegative.
Thus the set of constraints defines a semi-algebraic set.

If the conditions of the corollary are satisfied, we can use the methods employed in
GloptiPoly, see Henrion et al., 2009, to find a globally optimal solution to the principal
agent problem. That is, we can obtain a numerical certificate of global optimality. We
use such an approach in Example 5.1 to ensure global uniqueness.

5.4.3 Discussion of the Polynomial Approach’s Assumptions and
Limitations

Theorem 5.1 rests on two key assumptions, namely that the agent’s choice set is a
compact interval and his expected utility function is rational in effort. The review of the
mathematical background and the derivation of the theorem show that we can easily
dispense with the compactness assumption and replace it by an unbounded interval
such as [0,∞). While the second assumption limits the generality of the theorem, it
does include the special case of agents’ utility functions that are separable in wage and
effort and feature a linear cost of effort (together with a rational probability distribution
of outcomes).

Corollary 5.1 imposes additional assumptions on the utility functions and the set of
wages; the principal’s expected utility is polynomial and the agent’s expected utility is
rational in wages; the set of wages is a basic semi-algebraic set. The assumption on the
set of wages appears to be innocuous. The assumptions on the utility functions rule
out many standard utility functions such as exponential or logarithmic utility functions.
Moreover, the principal’s utility cannot exhibit constant risk aversion. Although the
assumption on the principal’s utility function is rather strong, it includes the special
case of a risk-neutral principal and a polynomial probability distribution. Note that the
agent’s utility can be of the CRRA type. If the assumptions of Corollary 5.1 do not
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hold, we can still attempt to solve the final NLP with standard nonlinear optimization
routines. Moreover, by invoking the Weierstrass approximation theorem that every
continuous function can be uniformly approximated as closely as desired on a compact
interval by a polynomial, we can argue that, at least from a theoretical viewpoint, even
the assumptions on the expected utility functions in both the theorem and its corollary
are not as limiting as they may appear at first.

The most serious limitation of our polynomial optimization approach is that it is not
suited for a subsequent traditional theoretical analysis of the principal-agent model. A
central topic of the economic literature on moral hazard problems has been the study
of the nature of the optimal contract and its comparative statics properties. Studies
invoking the first-order approach rely on the KKT conditions for the relaxed principal’s
problem to perform such an analysis. For example, Rogerson, 1985 considers the case
of a separable utility function with linear cost of effort; using our notation, we can
write (slightly abusing notation) v(wi, a) = v(wi) + a. Rogerson, 1985 states the KKT
conditions for the relaxed principal’s problem, part of which are the equations

u′(yi − wi)
v′(wi)

= λ+ δ
µ′(yi|a)

µ(yi|a)
(5.14)

for i = 1, 2, . . . , N with Lagrange multipliers λ and δ. Rogerson, 1985 then uses these
equations not only to prove the validity of the first-order approach but also to show
that the optimal wage contract is increasing in the output. An analogous approach to
the analysis of the optimal contract has been used in many studies, see, for example,
Hölmstrom, 1979, Jewitt, 1988 and Jewitt et al., 2008. The KKT conditions for the re-
laxed principal’s problem are rather simple since that problem has only two constraints,
the participation constraint and the first-order condition for the agent’s problem. The
optimization problem (5.4) stated in Theorem 5.1, however, has many more constraints.
In addition, the constraints characterizing the agent’s optimal effort choice are not intu-
itive. As a result, we cannot follow the traditional approach for analyzing the principal’s
problem based on the new optimization problem (5.10).

Since we cannot follow the traditional theoretical route, we would instead have to
rely on numerical solutions of many instances of problem (5.4) for a further analysis
of the properties of the optimal contract. While at first such a numerical analysis
may look rather unattractive compared to the theoretical analysis based on the first-
order approach, it also offers some advantages. The first-order approach requires very
strong assumptions and so applies only to a small set of principal-agent problems. A
numerical analysis based on our polynomial optimization approach can examine many
other problems that fall outside the classical first-order approach.

Economic theorists often make strong assumptions that allow them to prove theorems.
They will generally acknowledge that their assumptions limit their analysis to a small,
often measure zero, subset of economically interesting specifications of some more general
and realistic theory. The only way they can justify this focus is if they believe that the
results of these special cases are representative of the results in more general cases, even
ones that fall far outside the set of cases their theorems examine. They believe that
the assumptions are mainly necessary for the theoretical analysis leading to theoretical
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results and not for the theoretical results themselves. And, of course, this point certainly
has some logical validity, the failure of sufficient conditions does not imply the failure
of the conclusion. If there are no methods for examining the more general cases, then
this approach is the only option an economist has. This paper allows us to examine the
described belief in the context of principal-agent problems. Our polynomial optimization
approach enables us to examine model properties for much larger classes of models
than previously possible. In particular, a numerical examination of models based on
the polynomial approach offers great advantages over an analysis based on the relaxed
principal’s problem.

The relaxed principal’s problem will generally be a rather difficult nonlinear program
(NLP) for many models. For example, it will have a nonlinear equation as a constraint
(if the optimal effort level is interior), unless the agent’s first-order condition is linear in
both w and a. As a consequence, the principal’s new problem will be a non-convex NLP
for any utility function of the principal. The analysis of non-convex NLPs faces many
theoretical and numerical difficulties. For example, the Karush-Kuhn-Tucker (KKT)
conditions are often only necessary and not sufficient. Among the KKT solutions may
be local maxima that are not solutions of the NLP. NLP solvers, therefore, cannot
guarantee convergence to a global maximum. Furthermore, it is often rather difficult to
prove that a constraint qualification holds, which is an important sufficient condition for
the KKT conditions to even be necessary. However, as far as we can tell, this difficulty
has been largely ignored in the literature on moral hazard problems.11 Our approach
following the corollary and using polynomial methods circumvents these problems. In
fact, the approach guarantees a globally optimal solution.

5.5 The Polynomial Optimization Approach for A ⊂ RL

Principal-agent models in which the agent’s action set is one-dimensional dominate not
only the literature on the first-order approach but also the applied and computational
literature, see for example, Araujo and Moreira, 2001, Judd and Su, 2005, Armstrong
et al., 2010. However, the analysis of linear multi-task principal-agent models in Holm-
strom and Milgrom, 1991 demonstrates that multivariate agent problems exhibit some
fundamental differences in comparison to the common one-dimensional models. For
example, the compensation paid to the agent does not only serve the dual purpose of
incentive for hard work and risk-sharing but, in addition, influences the agent’s atten-
tion among his various tasks. The theoretical literature that allows the set of actions to
be multi-dimensional, for example, Grossman and Hart, 1983, Kadan et al., 2011, and
Kadan and Swinkels, 2012, focuses on the existence and properties of equilibria. To the
best of our knowledge, the first-order approach has not been extended to models with
multi-dimensional action sets.

11For example, Rogerson, 1985 makes no reference to a constraint qualification in his derivation
of (5.14). The same is true for Hölmstrom, 1979, Jewitt, 1988, Conlon, 2009, Sinclair-Desgagné, 1994,
and Jewitt et al., 2008 when they state the same or an analogous first-order condition for the relaxed
principal’s problem.
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We now extend our polynomial optimization approach to principal-agent models in
which the agent has more than one decision variable, so a ∈ A ⊂ RL. For this purpose,
we first describe multivariate polynomial optimization. Subsequently we state and prove
a generalization of Theorem 5.1. We complete our discussion with an illustration of the
multi-dimensional approach by a numerical example.

5.5.1 Optimization of Multivariate Polynomials

We observed in the previous section that the reformulation of univariate polynomial
optimization problems involves two steps. First, we need to rewrite the optimization
problem such that the optimal value is characterized by a(n infinite) set of nonnegativity
constraints. In the second step, we use a sum of squares representation of nonnegative
polynomials to replace the nonnegativity constraints by finitely many convex (SDP-
style) constraints in order to obtain an equivalent optimization problem. Our method
for multivariate optimization follows the same general two-step reformulation approach.
However, we encounter an important difficulty. While the two sets of nonnegative and
positive polynomials are identical for univariate polynomials, this identity does not hold
true for multivariate polynomials. A classical result of Hilbert, 1888 states that this
identity holds only for quadratic multivariate polynomials and for degree 4 polynomials
in two variables; or, equivalently, it holds for degree 4 homogeneous polynomials in
three variables. The general lack of the identity of the sets of nonnegative and positive
multivariate polynomials forces us to work directly with positive polynomials. As a
result, our final optimization problem is not equivalent to the original principal-agent
problem. Instead, it delivers (only) an upper bound on the optimal objective function
value. Nevertheless this approach also proves very useful.

We again rely on Laurent, 2009 and Lasserre, 2010b for a review of mathematical
results.

Multivariate Representation and Optimization

Putinar’s Positivstellensatz is the analogue of the univariate sum of squares representa-
tion result from Proposition 5.3 for the multivariate case.

Proposition 5.6. [Putinar’s Positivstellensatz, (Lasserre, 2010b, Theorem
2.14)]
Let f, g1 . . . , gm ∈ R[x] be polynomials and K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⊂
Rn a basic semi-algebraic set such that at least one of the following conditions holds,

(1) g1, . . . , gm are affine and K is bounded; or

(2) for some j the set {x ∈ Rn | gj(x) ≥ 0} is compact.

If f is strictly positive on K then

f = σ0 +
m∑
i=1

σigi (5.15)
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for some σ0, . . . , σm ∈ Σ[x].

The assumptions of Putinar’s Positivstellensatz are not as restrictive as they may
appear at first glance. For example, if we know an upper bound B such that ‖x‖2 ≤ B
for all x ∈ K, then we can add the redundant ball constraint B2−∑i x

2
i ≥ 0. Note that

in contrast to Proposition 5.3 for univariate polynomials, Putinar’s Positivstellensatz
does not provide any bounds on the degree of the sums of squares σj.

For a multivariate polynomial p ∈ R[x1, x2, . . . , xn] and a nonempty semi-algebraic
set K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} consider the constrained polynomial opti-
mization problem,

pmin = inf
x∈K

p(x). (5.16)

Similar to the univariate case, we can rewrite this problem,

sup
ρ
ρ

s.t. p(x)− ρ > 0 ∀x ∈ K
(5.17)

Since Putinar’s Positivstellensatz provides a representation for strictly positive polyno-
mials and does not bound the degrees of the sums of squares in the representation,
we cannot provide a reformulation of the optimization problem (5.17) in the same
simple fashion as we did in the univariate case. Instead we now consider a relax-
ation of the problem by restricting the degrees of the involved sums of squares. For
d ≥ max {dp, dg1 , . . . , dgm} consider the relaxation

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρ = σ0 +
m∑
i=1

σigi

σ0 ∈ Σ2d, σi ∈ Σ2(d−dgi )

(5.18)

This problem is again an SDP and thus can be written as

ρd = sup
ρ,Q(0),Q(1),...,Q(m)

ρ

s.t. p− ρ = vTdQ
(0)vd +

m∑
i=1

giv
T
d−dgi

Q(i)vd−dgi

Q(0), Q(i) < 0

Q(0) ∈ R(n+dd )×(n+dd ), Q(i) ∈ R(n+d−dgid−dgi
)×(n+d−dgid−dgi

)

vd vector of monomials xα up to degree d,

vd−dgi vector of monomials xα up to degree d− dgi

(5.19)

The equality constraint here signifies again equality as polynomials. Thus we just have
to compare the coefficients of the polynomials on the left-hand and right-hand side.12 If
the problem is infeasible, then ρd = −∞.

12To avoid a messy notation we will forgo expressively writing out those equations in the multivariate
case.
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The optimal value ρd then converges from below to the optimal value pmin of
infx∈K p(x). In particular even if we do not obtain an explicit solution we obtain a
lower bound on the optimal value pmin. In many cases the convergence is finite, that is,
for some finite d ≥ max {dp, dg1 , . . . , dgm} it holds that ρd = pmin. We have the following
theorem:

Proposition 5.7. [(Lasserre, 2010b, Theorem 5.6)] If the assumptions of Putinar’s
Positivstellensatz hold, then the optimal solution ρd of the relaxed problem (5.18) con-
verges (from below) to the optimal value pmin of the original problem (5.16) as d→∞.

Rational Objective Function

Jibetean and Klerk, 2006 also prove analogous results for the case of multivariate rational
functions. Recall the optimization problem (5.12)

pmin = inf
x∈K

p(x)

q(x)
.

with p, q ∈ R[x] and K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. For such a set K,
the following proposition states that the weak inequality in the definition of pmin in
Proposition 5.5 can be replaced by a strict inequality.

Proposition 5.8. [(Jibetean and Klerk, 2006, Lemma 1)] Suppose that K is the
closure of some open connected set. Also suppose the assumptions of Proposition 5.5
hold. If p and q have no common factor then

pmin = sup{ρ | p(x)− ρq(x) > 0, ∀x ∈ K}.

Similar to the polynomial case we define the relaxation for d ≥ max {dp, dg1 , . . . , dgm},

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρq = σ0 +
m∑
i=1

σigi

σ0 ∈ Σ2d, σ1 ∈ Σ2(d−dgi )

(5.20)

Proposition 5.9. [(Jibetean and Klerk, 2006, Theorem 9)] Under the assumptions
of Proposition 5.5 and Putinar’s Positivstellensatz, the following statements hold.

(a) If pmin = −∞, then ρd = −∞ for all d = 1, 2, . . ..

(b) If pmin > −∞, then ρd ≤ ρd+1 ≤ pmin for all d = 1, 2, . . ., and limd→∞ ρd = pmin.
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5.5.2 The Multivariate Polynomial Optimization Approach

We now consider the principal-agent problem with a multi-dimensional set of actions,
A ⊂ RL. We make the following assumption.

Assumption 5.5 (Set of Actions). The set of actions, A ={
a ∈ RL | g1(a) ≥ 0, . . . , gm(a) ≥ 0

}
, is a compact semi-algebraic set with a nonempty

interior.

A multi-dimensional version of Assumption 5.4, the assumption that the agent has a
rational expected utility function, imposes

−V (w,a) = −
N∑
j=1

v(wj,a)pj(a) =

∑
α cα(w)aα∑
α fα(w)aα

.

Applying the general relaxation (5.19) to the agent’s expected utility optimization prob-
lem, we obtain the following relaxation for that problem.

sup
ρ,Q(0),Q(1),...,Q(m)

ρ

s.t.
∑
α

cα(w)bα − ρ
∑
α

fα(w)bα = vTdQ
(0)vd +

m∑
i=1

giv
T
d−dgi

Q(i)vd−dgi

Q(0), Q(i) < 0

Q(0) ∈ R(n+dd )×(n+dd ), Q(i) ∈ R(n+d−dgid−dgi
)×(n+d−dgid−dgi

)

vd vector of monomials bα up to degree d,

vd−dgi vector of monomials bα up to degree d− dgi
(5.21)

The equality in the first constraint signifies an equality of the polynomials on the left-
hand and right-hand side in the variables b. So, once again we need to equate the
coefficients of two polynomials. These equations in turn are polynomials in the matrix
elementsQ

(l)
ij , l = 0, 1, . . . ,m, and the variable ρ. Next we use Proposition 5.2 and replace

the positive semi-definite matrices Q(i) by L(i)

(
L(i)

)T
, where L(i) are lower triangular

matrices (with a nonnegative diagonal). This transformation allows us to drop the
explicit constraints on positive semi-definiteness.

For a reformulation of the original principal-agent problem from a bilevel problem to a
nonlinear program, we need to characterize the optimal choice of the agent via equations
or inequalities. In the case of one-dimensional effort, this reformulation is (5.4d), the
generalization of which for multi-dimensional effort would be

d∑
i=0

ci(w)ai − ρ
(

d∑
i=0

fi(w)ai

)
= 0.

Unfortunately, due to the relaxation of the agent’s problem we cannot impose this con-
straint, the resulting nonlinear program would most likely be infeasible. Instead, we use
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an idea of Couzoudis and Renner, 2013 who allow for solutions of optimization problems
to be only approximately optimal; we do not force the left-hand side to be zero but
instead only impose a small positive upper bound.

Now we are in the position to state and prove our second theorem, a multivariate
extension of Theorem 5.1.

Theorem 5.2. Suppose the agent’s expected utility maximization problem satisfies As-
sumption 5.5 and the multi-dimensional version of Assumption 5.4. Let vk be the vector
of monomials in b1, . . . , bL up to degree k. Let d ∈ N and ε > 0. Including ρ ∈ R
and lower triangular matrices L(0) ∈ R(n+dd )×(n+dd ) and L(i) ∈ R(n+d−dgid−dgi

)×(n+d−dgid−dgi
)

for
i = 1, . . . ,m, as additional decision variables, define the following relaxation of the
principal-agent problem (5.1):

max
w,a,ρ,L(0),...L(m)

U(w, a) subject to (5.22)

∑
α

cα(w)bα − ρ
∑
α

fα(w)bα = vTdL(0)L
T
(0)vd +

m∑
i=1

giv
T
d−dgi

L(i)L
T
(i)vd−dgi(5.22a)

ε
∑
α

fα(w)aα ≥
∑
α

cα(w)aα − ρ
∑
α

fα(w)aα (5.22b)

d∑
i=0

ci(w)ai ≤ −V
(

d∑
i=0

fi(w)ai

)
(5.22c)

gi(a) ≥ 0 ∀ i = 1, 2, . . . ,m (5.22d)

w ∈ W (5.22e)

This optimization problem has the following properties.

(a) Any feasible point,
(
ŵ, â, ρ̂, L̂(0), . . . , L̂(m)

)
, satisfies the inequality

max
a∈A

V (ŵ,a)− V (ŵ, â) ≤ ε. (5.23)

(b) Let (w,a) be a solution of the principal-agent problem (5.1). Then for any ε >
0 there exists d(ε) ∈ N and ρ, L(0), . . . , L(m), such that

(
w,a, ρ, L(0), . . . , L(m)

)
is

feasible for the relaxation (5.22) for d = d(ε).

(c) Let (w,a) be an optimal solution to (5.1). For any ε, let d(ε) be as in (b). Denote
by u(ε) the optimal value of the relaxation (5.22) for given ε and d = dε. Then
limε→0+ u(ε) = U(w,a).

(d) Again, let (w,a) be an optimal solution to (5.1) and for any ε, let d(ε)
be as in (b). Then, the set of limit points for ε → 0+ of any sequence(
w∗(ε),a∗(ε), ρ∗(ε), L∗(0)(ε), . . . , L

∗
(m)(ε)

)
of optimal solutions to (5.22), projected

onto W × A, is contained in the set of optimal solutions to the original principal-
agent problem (5.1).
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Before we prove the theorem, we briefly describe the optimization problem (5.22). This
problem has the same objective function as the original principal-agent problem (5.1).
Constraint (5.22a) uses a sum of squares representation of positive polynomials to ensure
that for a contract w chosen by the principal, −V (w,a) ≥ ρ for all a ∈ A. It is
important to emphasize that this equation does not only hold for the optimal choice but
in fact for all possible a ∈ A. Therefore, for the purpose of this constraint we need to
duplicate the effort vector a; in the functional equation (5.22a) we denote effort by b.
Thus again b is not a variable in the optimization problem. We obtain the equations by
comparing the coefficients of the polynomials in b. The positive semi-definite matrices
in the relaxation of the agent’s problem (5.21) are represented via products of lower
triangular matrices. Proposition 5.2 shows that any positive semi-definite matrix can
be represented in this fashion (even having the property that all diagonal elements are
nonnegative). Put differently, constraint (5.22a) ensures that −ρ is an upper bound on
the agent’s possible expected utility levels. Next, constraint (5.22b) imposes a lower
bound on the agent’s expected utility level, namely V (w,a) + ε ≥ −ρ. Therefore, the
constraints (5.22a) and (5.22b) force the value of a in any feasible solution to result in
a utility for the agent satisfying −ρ− ε ≤ V (w,a) ≤ −ρ. That is, for a given contract
w the first two constraints ensure an effort choice by the agent that is within ε of
being optimal. The last three constraints are straightforward. Constraint (5.22c) is the
transformed participation constraint for the agent’s rational expected utility function.
Constraint (5.22d) defines the set of the feasible actions and constraint (5.22e) is just
the constraint on the compensation scheme from the original principal-agent problem
(5.1).

Proof. Under the assumptions of the theorem, the agent’s constraints satisfy the condi-
tions of Putinar’s Positivstellensatz and so we obtain the sums-of-squares representation
for the agent’s problem. For fixed d we then restrict the degree of the sum of squares
coefficients as is done in the relaxation.

(a) Every feasible point
(
ŵ, â, ρ̂, L(0), . . . , L(m)

)
provides an upper bound −ρ̂ on the

maximal value of V (ŵ,a) = −
∑

α cα(ŵ)aα∑
α fα(ŵ)aα , since (5.22a) implies that∑

α

cα(w)bα − ρ̂
∑
α

fα(w)bα ≥ 0

and so, −ρ̂ ≥ maxa∈A V (ŵ,a) ≥ V (ŵ, â). Moreover, constraint (5.22b) implies
that

ε ≥ −ρ̂− V (ŵ, â) ≥ max
a∈A

V (ŵ,a)− V (ŵ, â).

Thus, condition (5.23) holds.

(b) Under the assumptions of the theorem, Proposition 5.9 implies that for each fixed w
and a given ε > 0 there exists a d such that V (w,a)−ρ has the representation (5.15)
of Putinar’s Positivstellensatz with degree d coefficients. For this d, problem (5.22)
has a nonempty feasible region.
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(c) Recall the agent’s optimal value function Ψ : W → R from the proof of Proposi-
tion 5.1. The projection of the set of feasible points of problem (5.22) to W × A is
a subset of

S(ε) = {(w,a) ∈ W × A | Ψ(w)− V (w,a) ≤ ε}
and, by (b), contains (w,a). Let v(ε) = max(w,a)∈S(ε) U(w,a). Then

U(w,a) ≤ u(ε) ≤ v(ε).

Furthermore, since Ψ and V are continuous (Berge’s Maximum Theorem), the set
S(ε) is upper hemicontinuous and uniformly compact near 0.13 By Hogan, 1973,
Theorem 5 it follows that v is upper semi-continuous and thus we have

U(w,a) ≤ lim inf
ε→0+

u(ε) ≤ lim sup
ε→0+

u(ε) ≤ lim sup
ε→0+

v(ε) ≤ v(0) = U(w,a)

Therefore, limε→0+ u(ε) = U(w,a).

(d) Consider any limit point (w0,a0) ∈ W × A and any sequence (wε,aε) converging
to it for ε → 0. Condition (c) implies that U(wε,aε) → U(w,a). By continuity of
Ψ and V we also have

lim
ε→0+

(Ψ(wε)− V (wε,aε)) = Ψ(w0)− V (w0,a0) = 0.

Thus (w0,a0) is feasible for (5.1) and attains the optimal value.

This completes the proof of Theorem 5.2.

Some comments on the technical convergence results of Theorem 5.2 are in order. For
the one-dimensional effort case, Theorem 5.1 provides a single well-defined optimization
problem that is equivalent to the original principal-agent problem. Ideally, we would
like to obtain a similar result for the multi-dimensional effort case. Unfortunately, in
general that is impossible. A comparison of the sum of squares representation results
for univariate and multivariate polynomials reveals the critical difference between the
two cases. Proposition 5.3, the ‘Positivstellensatz’ for univariate polynomials, provides
a sum of squares representation of nonnegative univariate polynomials with an explicit
(small) bound on the degree of the involved sums of squares. Proposition 5.6, Putinar’s
Positivstellensatz, provides a sum of squares representation of positive multivariate poly-
nomials; however, there is no a-priori upper bound on the degree of the involved sums
of squares. In fact, from a purely theoretical viewpoint, the necessary degree may be
infinite. As a result, any finite-degree representation as in (5.18) may only constitute a
relaxation of the original polynomial optimization problem.

Once we have computed a solution we can always verify if it is feasible. To accomplish
this we fix w and solve the polynomial optimization problem for the agent to global

13Upper hemicontinuity at 0 means that for any sequence εk → 0, sk ∈ S(εk) and sk → s implies
s ∈ S(0).
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optimality. We use GloptiPoly (Henrion et al., 2009), a program written for Matlab, that
employs the moment relaxation approach to solving polynomial optimization problems.

In light of the theoretical difficulties for general multivariate polynomials, it is of great
interest to characterize polynomial optimization problems that offer a guaranteed con-
vergence of the relaxation for finite d. If both the objective function and the constraints
are s.o.s. convex, then the convergence is finite, see Lasserre, 2010b, Theorem 5.15.14

Also, if the objective function is strictly convex and the constraints are convex, then
convergence is finite, see Lasserre, 2010b, Theorem 5.16. The problem of finite conver-
gence continues to be an active research issue in algebraic geometry. For example, Nie,
2012 proved finite convergence under a regularity condition on the set of constraints.
His approach requires a reformulation of the problem by adding constraints consisting
of minors of a Jacobian derived from the KKT conditions. Unfortunately, it appears to
be rather difficult to check the regularity condition in applications.

As a final remark, we point out that Schmüdgen’s Positivstellensatz, see Schmüdgen,
1991, yields a representation of multivariate positive polynomials that is different than
that of Putinar’s Positivstellensatz. This representation is slightly more general but
requires higher degree sums of squares. Therefore, it appears to be less attractive for
economic applications.

5.5.3 A Multivariate Example

Example 5.2. Let the set of outcomes be {0, 3, 6} with probabilities{
1 + a/2 + b

1 + a+ b
,

b

1 + a+ b
,
a/2− b

1 + a+ b

}
,

satisfying the constraints
b ≥ 0, a− 2b ≥ 0,

which assure that the probability functions are nonnegative. The outcome distribution
has mean and variance

3(a− b)
1 + a+ b

and
9 (2a+ a2 − 3b+ ab− 4b2)

(1 + a+ b)2
,

respectively. Note that the effort a increases both the expected value and the variance
of the outcome. On the contrary, the effort b decreases the expectation and the variance.

The principal’s and the agent’s Bernoulli utility functions are

u(y, w) = − (−6− w + y)2 and v(a, b, w) = (1 + a+ b)

(
−a− b

10
+ log (1 + w)

)
,

respectively. The expected utility of the agent is

1

10

(
−10a− 10a2 − b− 11ab− b2 + 10b log (1 + w2) + 5(a− 2b) log (1 + w3)

)
+(

1 +
a

2
+ b
)

log (1 + w1)

14A polynomial f is called s.o.s. convex, iff ∇2f = WWT for some matrix W .
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and the expected utility of the principal is

−a (36 + 12w1 + w2
1 + w2

3) + 2 ((6 + w1)
2 + b (45 + 12w1 + w2

1 + 6w2 + w2
2 − w2

3))

2(1 + a+ b)
.

We observe that the largest degree in the variables a and b is two. So, we can choose
the relaxation order to be one, that is, all the matrices appearing will be of size 3 × 3,
Lk = (sk,i,j)i,j=1,2,3, where Lk is a lower triangular matrix with nonnegative diagonal.
The sum of squares multipliers now appear as follows

σk =s2k,1,1 + 2ask,1,1sk,2,1 + a2(s2k,2,1 + s2k,2,2) + 2bsk,1,1sk,3,1 + b2(s2k,3,1 + s2k,3,2 + s2k,3,3)+

ab(2sk,2,1sk,3,1 + 2sk,2,2sk,3,2).

Thus the coefficients in the variables a, b of the following polynomial have to be zero

V (a, b, w1, w2, w3) + ρ+ σ0 + bσ1 + (a− 2b)σ2 + (1− a)σ3.

This leads to the following equations

0 =s21,3,1 + s21,3,2 + s21,3,3 − s22,3,1 − s22,3,2 − s22,3,3
0 =

1

2

(
s22,2,1 + s22,2,2

)
− s23,2,1 − s23,2,2

0 =− 1 + s20,2,1 + s20,2,2 + s2,1,1s2,2,1 − 2s3,1,1s3,2,1 + s23,2,1 + s23,2,2

0 =s21,2,1 + s21,2,2 − s22,2,1 − s22,2,2 + s2,2,1s2,3,1 + s2,2,2s2,3,2 − 2(s3,2,1s3,3,1 + s3,2,2s3,3,2)

0 =− 11

10
+ 2(s0,2,1s0,3,1 + s0,2,2s0,3,2) + 2s1,1,1s1,2,1 − 2s2,1,1s2,2,1+

s2,1,1s2,3,1 − 2s3,1,1s3,3,1 + 2(s3,2,1s3,3,1 + s3,2,2s3,3,2)

0 =2(s1,2,1s1,3,1 + s1,2,2s1,3,2)− 2(s2,2,1s2,3,1 + s2,2,2s2,3,2) +
1

2

(
s22,3,1 + s22,3,2 + s22,3,3

)
−

s23,3,1 − s23,3,2 − s23,3,3
0 =− 1

10
+ s20,3,1 + s20,3,2 + s20,3,3 + 2s1,1,1s1,3,1 − 2s2,1,1s2,3,1 + s23,3,1 + s23,3,2 + s23,3,3

0 =ρ+ s20,1,1 + s23,1,1 + log (1 + w1)

0 =− 1

10
+ 2s0,1,1s0,3,1 + s21,1,1 − s22,1,1 + 2s3,1,1s3,3,1 + log (1 + w1)+

log (1 + w2)− log (1 + w3)

0 =− 1 + 2s0,1,1s0,2,1 +
s22,1,1

2
− s23,1,1 + 2s3,1,1s3,2,1 +

1

2
log (1 + w1) +

1

2
log (1 + w3).

We set the reservation utility to 3
2

and solve this problem with Ipopt. We cannot use
Gloptipoly here since the number of variables is too large. We obtain the following
solution,

a = 0.34156, b = 0.17078, w1 = 2.7295, w2 = 4.0491, w3 ≥ 0.

The principal’s expected utility is −73.210 and the agent’s is 3
2
.
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5.6 Conclusion

In this paper we have presented a polynomial optimization approach to moral hazard
principal-agent problems. Under the assumption that the agent’s expected utility func-
tion is a rational function of his effort, we can reformulate the agent’s maximization
problem as an equivalent system of equations and inequalities. This reformulation al-
lows us to transform the principal-agent problem from a bilevel optimization problem to
a nonlinear program. Furthermore, under the assumptions that the principal’s expected
utility is polynomial and the agent’s expected utility is rational in wages (as well as mild
assumptions on the effort set and the set of wage choices), we show that the resulting
NLP is a polynomial optimization problem. Therefore, techniques from global polyno-
mial optimization enable us to solve the NLP to global optimality. After this analysis
of principal-agent problems with a one-dimensional effort choice for the agent, we have
also presented a polynomial optimization approach for problems with multi-dimensional
effort sets. The solution approach for solving such multi-dimensional problems rests
on the same ideas as the approach for the one-dimensional effort model, however, it is
technically more difficult. Most importantly, we cannot provide an exact reformulation
of the agent’s problem but only a relaxation of that problem. Despite this theoretical
limitation, the relaxation appears to be often exact in applications.

Our polynomial optimization approach has a number of attractive features. First, we
need neither the Mirrlees-Rogerson (or Jewitt) conditions of the classical first-order ap-
proach nor the assumption that the agent’s utility function is separable. Second, under
the additional aforementioned assumptions on the utility functions, the final NLP is a
polynomial problem that can be solved to global optimality without concerns about con-
straint qualifications. Third, unlike the first-order approach, the polynomial approach
extends to models with multi-dimensional effort sets.

The technical assumptions underlying the polynomial approach, while limiting, are
not detrimental. The most serious limitation of our polynomial optimization approach
is that it is not suited for a subsequent traditional theoretical analysis of the principal-
agent model. Despite this shortcoming, the polynomial approach can serve as a useful
tool to examine the generality of the insights derived from the very restrictive first-
order approach. The ability of the approach to find global solutions to principal-agent
problems is one of its hallmarks.
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Equilibria by Polynomial
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Abstract

We present a new way of solving generalized Nash equilibrium problems. We
assume the feasible set to be compact. Furthermore all functions are assumed
to be polynomials. However we do not impose convexity on either the utility
functions or the action sets. The key idea is to use Putinar’s Positivstellensatz, a
representation result for positive polynomials, to replace each agent’s problem by
a convex optimization problem. The Nash equilibria are then feasible solutions to
a system of polynomial equations and inequalities. Our application is a model of
the New Zealand electricity spot market with transmission losses based on a real
dataset.

6.1 Introduction

There has been a lot of interest in the computation of normalized Nash equilibria since
Rosen, 1965 introduced them. In essence the approach is to reformulate the problem
either as a variational inequality or to use penalty functions or Nikaido-Isoda-type func-
tions. The one thing all computational papers have in common is the assumption of
player convexity on the utility functions of the players (Facchinei and Kanzow, 2007).

There are some attempts in the literature to extend the solution approach to quasi-
convex problems. However error bounds are only provided under some strong mono-
tonicity assumptions (Aussel et al., 2011; Aussel and Dutta, 2011).

Unlike the usual approaches to generalized Nash equilibrium problems (GNEPs), we do
not need any convexity assumptions on our functions and sets. We are also not restricted
to normalized equilibria. However, since we employ tools from real algebraic geometry
we require every constraint and objective function to be polynomial. Note that the KKT
conditions do not provide sufficient conditions in the case of non-convex functions. Thus,
instead of the usual approach, we replace each agent’s problem with the convex relaxation
obtained by Putinar’s Positivstellensatz. Each of these problems is then a parametrized,
semi-definite optimization problem. The corresponding optimality conditions however
are a system of polynomial equations and inequalities. We show that some equilibria

1(Couzoudis and Renner, 2013)
2We thank Didier Aussel, Hans-Jakob Lüthi, Cordian Riener and two anonymous referees.
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are feasible points to this system and that any other feasible point is almost optimal. In
cases in which we have a representation for a non-negative polynomial, only equilibria
are feasible points. We find those points with the solver Ipopt.

We could also do this, with just slight modification, for rational functions. The relevant
theorems to apply this approach for rational functions can be found in Jibetean and
Klerk, 2006. Our attention is on a non-cooperative, single stage game in normal form,
a onetime situation without reoccurrence, and a finite number of players who move
simultaneously.

Let N ∈ N be the finite number of players in the examined N -person game. Ev-
ery player ν ∈ I with I := {1, . . . , N} chooses his strategy xν from the strategy set
Xν(x

−ν) ⊆ Rnν , where nν is a positive integer. For the sake of simplicity the strategy
set of all other players except ν is given by x−ν := (xν

′
)Nν′=1,ν′ 6=ν ∈ Rn−ν . The complete

strategy vector of all players is specified with x := (xν)Nν=1 ∈ Rn and n :=
∑N

ν=1 nν .
Hence n−ν = n−nν and therefore the tuple of strategies for the whole game has dimen-
sion n:

x := (xν , x−ν)T = (x1, . . . , xν−1, xν , xν+1, . . . , xN)T ∈ Rn.

The scope of action Xν(x
−ν) for every player ν in this game is influenced by the

strategies of the opponents x−ν . For ν = 1, . . . , N let Xν : Rn−ν ⇒ Rnν be a point-
to-set-mapping and for every fixed x−ν a subset of Rnν .The allowed strategy set of the
player ν has then the following form:

Xν(x
−ν) := {xν | (xν , x−ν) ∈ X}.

TherebyX ⊆ Rn is assumed to be nonempty and compact which implies the compactness
of every set Xν(x

−ν). For this work X has the following structure

X := {x ∈ Rn | gν(x) ≥ 0, hν(x
ν) ≥ 0 ∀ν = 1, . . . , N}

where the functions gν : Rn → Rlν are constraints influenced by other players, hν :
Rnν → Rmν are constraints specific to each player ν and lν ,mν are positive integers.
Combining the two set declarations X and Xν gives us

Xν(x
−ν) := {xν | gν(xν , x−ν) ≥ 0, hν(x

ν) ≥ 0} ∀ν = 1, . . . , N

and at the same time the possibility to define the feasible set for any point x ∈ Rn:

Ω(x) := X1(x
−1)× · · · ×XN(x−N).

The last and yet missing basic element is the payoff. The assessment of the player’s
strategy set Xν and therefore the choice of action xν of player ν depends on the corre-
sponding utility or payoff function θν : Rn → R. A finite N -person game is defined by
the triple (I, (Xν)ν∈I , (θν)ν∈I).

Furthermore a theoretical construct is needed to decide which player choices are ra-
tional and optimal. In this case the payoff function θν is assumed to be a cost or loss
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function. Every player ν tries to minimize his loss given the exogenous decision of the
competition:

Rv(x
−ν) : min

xν∈Rnν
θν(x

ν , x−ν)

s.t. xν ∈ Xν(x
−ν).

The solution set mapping Rv is also the best-response mapping of player ν.

Definition 6.1. A strategy x? ∈ Ω(x?) is a Generalized Nash Equilibrium (GNE), if
and only if x?,ν satisfies the following inequality:

θν(x
?,ν , x?,−ν) ≤ θν(x

ν , x?,−ν) ∀xν ∈ Xν(x
?,−ν), ∀ν ∈ {1, . . . , N}.

The Nash Equilibrium is therefore, for any player ν, the optimal decision given the
expected choice x?,−ν of the fellow players.

6.2 The Model

“The [Electricity] Authority [of New Zealand] is responsible for ensuring the effective
day-to-day operation of the electricity system and markets through the operation of
core system and market services in accordance with the [Electricity Industry Participa-
tion] Code [2010].”3 The corresponding tasks are assigned to these market operation
service providers: Registry Manager, Reconciliation Manager, Pricing Manager, Clear-
ing Manager, Information System Manager, System Operator and Inter-island Financial
Transmission Rights Manager.4 Our focus here lies on the Independent System Operator
(ISO) and on Part 13 of the Electricity Industry Participation Code 2010 which sets out
the trading arrangements.

New Zealand consists of two main islands, the energy demanding north and the energy
producing south with a High Voltage Direct Current (HVDC) Link between them. Our
highly abstract network is therefore composed of only two nodes and two directed edges.
The arc t1 is directed from the north island to the south island and t2 is the inverted
arc of t1. The power flow capacity of both arcs is t̄.

“Each [Energy Producer (EP) or] generator ... must submit an offer to the system
operator for each trading period in the schedule period, under which the generator is
prepared to sell electricity to the clearing manager, and ensure that the system operator
receives an offer at least 71 trading periods before the beginning of the trading period
to which the offer applies.”5 An offer submitted by a generator may have a maximum of
5 price bands for each trading period and may not exceed, for each trading period, the
generator’s reasonable estimate of the quantity of electricity capable of being supplied
at that node. The price offered in each band must increase progressively from band to
band as the aggregate quantity increases. An exception are intermittent generators with

3Electricity Authority NZ, 2012
4Electricity Authority NZ, 2012
5Electricity Authority NZ, 2010b, p. 13.6

81



6 Computing Generalized Nash Equilibria by Polynomial Programming

a maximum of 1 price band for each trading period and co-generators with a maximum
of 2 price bands for each trading period.6 “For each price band, an ... offer must specify a
quantity expressed in megawatt [MW ] to not more than 3 decimal places. The minimum
quantity that may be bid or offered in a price band for a trading period is 0.000 MW .”7

“Prices in ... offers must be expressed in dollars and whole cents per megawatthour
[MWh] ... There is no upper limit on the prices that may be specified and the lower
limit is $0.00 per MWh ....”8

It is clear that the inverse supply function of the power producers would be piecewise
linear and an extension to the here presented model is straightforward. In the literature
the approach for the New Zealand electricity spot market is to make an quadratic ap-
proximation of the inverse supply function. This is shown in Aussel et al., 2012 which
in turn is based on Hobbs et al., 2000 and yields in Aussel’s example depending on the
control variables quadratic or even non-convex cubic polynomials as revenue functions.

For this proof of concept we restrict the offers from energy producers to one price
band with a lower level of zero and a static demand δN for the north island and δS
for the south island. Hence, in this scenario there are only two kinds of players, the
Independent System Operator and the Energy Producers. The price per Gigawatt-hour
[GWh] of each EP is denoted by aν and qν is the maximum amount of power offered in
GWh. The ISO can choose for any energy offer qν the effective fraction cν . Then the
revenue function for each EP is given by aνcνqν . All terms are with respect to one time
period which is one day. This is in accordance to the pricing manager who sets the final
prices on a daily basis.

The ISO wants to achieve the social optimum in minimizing the expenditure for the
needed energy and the loss through transporting energy.

min
cν , t1, t2

N∑
ν=1

aνcνqν

s.t.
i∑

ν=1

cνqν − t1 − λ(t1)
2 + t2 − λ(t2)

2 − δN ≥ 0

N∑
ν=i+1

cνqν − t2 − λ(t2)
2 + t1 − λ(t1)

2 − δS ≥ 0

0 ≤ cν ≤ 1 ∀ν = 1, . . . , N

t̄ ≥ t1 ≥ 0, t̄ ≥ t2 ≥ 0.

(6.1)

The objective function is linear and the constraint set is convex, so the ISO problem
is clearly convex. Both network constraints are pretty self explanatory except for the

quadratic terms λ
(
t{1,2}

)2
. Transmitting power is not lossless hence we form a term for

6Electricity Authority NZ, 2010b, pp. 13.9, 13.12
7Electricity Authority NZ, 2010b, p. 13.16
8Electricity Authority NZ, 2010b, p. 13.15
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the arising heat loss using Joule’s and Ohm’s laws (Tipler et al., 2000):

P = UI
Ploss = I2R

}
Ploss = R ·

(
P

U

)2

= R′ · l ·
(
P

U

)2

=
R′ · l
U2
· P 2.

The unit of P is watt and not equal to watt hour unit of t{1,2} thus a conversion is
necessary:

R′ · l
U2
·
(
Ph
24

)2

· 24 =
R′ · l
U2 · 24

· (Ph)2 = λ · (Ph)2 .

The meanings of the different terms are:
P : power R: electrical resistivity at 20◦C
U : voltage R′: electrical resistivity/km at 20◦C
I: current l: length of transmission line.

For the cost function of the EPs we seek a technology-driven approach. If something
is burned up, the produced heat can be measured in Joule [J]. The heat conversion
rate ην now answers the question how much of that heat can be converted into electric
energy. This principle can of course be extended into non heat based technologies. The
player-specific cost function for the EPs has now the following form:

Cν(q
ν) =

GJ/GWh×GWh︷ ︸︸ ︷
(ην · qν) · (φν + τν)︸ ︷︷ ︸

fuel price: $/GJ

+

$/GWh︷︸︸︷
oν qν .

The parameter ην is technology dependent. The fuel price consists of the commodity
price φν and the delivery costs τν . The coefficient for other variable costs such as
operation and maintenance is denoted as oν . Furthermore each EP ν has a limited
power generating capacity κν given in GWh. The optimization problem for the profit
maximizing EPs is then as follows:

max
aν , qν

aνcνqν − (ηνc
νqν) (φν + τν)− oνcνqν

s.t. κν ≥ qν ≥ 0,

aν − ην(φν + τν)− oν ≥ 0,

N∑
i 6=ν

aiciqi − aνcν
N∑
i=1

ciqi ≥ 0,

N∑
i=1

qi − λ
(
(t1)

2 + (t2)
2
)
− δN − δS ≥ 0.

(6.2)

A static upper bound on the price is an invitation to a price agreement. All producers
would settle at this upper bound. On the other hand competitive behavior is to underbid
your opponents, as long as your price is above your marginal costs, and given you are
chosen by the ISO. So the two constraints on αν do exactly that. The last constraint is
introduced to avoid the infeasibility of the ISO’s problem.
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Obviously the constraint set is compact. The Eigenvalues of the Hessian of the objec-
tive function are {−cν , cν} with cν ∈ [0, 1]. Thus the Hessian is indefinite for non trivial
cν and therefore this simple model does not have a distinct curvature. With this game
we can obviously take full advantage of our approach.

6.3 Sum of Squares Optimization

In outlining the theory behind our solution approach we follow Laurent, 2009 and
Lasserre, 2010b. We will use the following notations:

• R[x1, . . . , xn] the ring of polynomials in n variables over the real numbers.

• x = (x1, . . . , xn) as shorthand notation.

• f ∈ R[x], f(x) =
∑

α aαx
α where α ∈ Nn and xα = xα1

1 · · ·xαnn . Then deg(f) =
max{α|aα 6=0} |α| = max{α|aα 6=0}

∑
i αi.

• For any polynomial g ∈ R[x] denote dg =
⌈
deg(g)

2

⌉
.

6.3.1 Basic Definitions and Theorems

First we will introduce the class of convex optimization problems that is of interest to
us here. To do this we need a few basic notions from linear algebra.

Definition 6.2. A symmetric matrix Q ∈ Rn×n is called positive semidefinite, if and
only if wTQw ≥ 0 for all w ∈ Rn. It is denoted Q < 0.

In the next proposition we recall a condition for a matrix to be positive semidefinite.

Proposition 6.1. Let Q ∈ Rn×n be a symmetric matrix with rank m. Then the following
statements are equivalent

(a) Q is positive semidefinite.

(b) There exists a lower triangular matrix L ∈ Rn×n with nonnegative diagonal such
that Q = LLT .

Note here that the equivalent statement for positive semidefiniteness can be expressed
by polynomial equations and inequalities.

Now we introduce some basic notions from real algebraic geometry.

Definition 6.3. Let g1, . . . , gk ∈ R[x]. We call the set

K = {x | g1(x) ≥ 0, . . . , gk(x) ≥ 0}

a basic semi-algebraic set.
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Definition 6.4. (a) A polynomial σ ∈ R[x] of degree 2d is called a sum of squares, if
and only if there exists polynomials p1, . . . , pm ∈ R[x] such that σ =

∑
i p

2
i .

(b) Let Σ[x] ⊂ R[x] denote the set of sum of squares.

(c) Let Σ2d[x] ⊂ R[x] denote the set of sum of squares up to degree 2d.

Since a sum of squares is always a nonnegative function it is easy to see that a polyno-
mial can only be a sum of squares if it has even degree. The question whether a positive
polynomial is a sum of squares however is much more involved. There is the following
representation result.

Theorem 6.1 (Putinar’s Positivstellensatz). Lasserre, 2010b, Th.2.14
Let f, g1 . . . , gm ∈ R[x] be polynomials and

K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⊂ Rn

a semi-algebraic set such that one of the following holds,

• gi are affine and K is a bounded polyhedron.

• For some j the set {x ∈ Rn | gj(x) ≥ 0} is compact.

If f is strictly positive on K then

f = σ0 +
m∑
i=1

σigi (6.3)

for some σ0, . . . , σm ∈ Σ[x].

The conditions for this theorem to hold are not as restrictive as it might seem at first
glance. If we know an N such that ‖x‖2 ≤ N for all x ∈ K, we then can add the
redundant ball constraint

∑
i x

2
i ≤ N2. The problem with the theorem is that we do

not know the degrees of the coefficients σi. There exist bounds on their degree Lasserre,
2010b, Th.2.16, however for practical purposes these are of no use to us.

In an example below we will later see that we can use this kind of representation even
without the compactness assumption. Additionally in many models one has an intuitive
idea about the form of the solution and can pick an N accordingly.

6.3.2 Optimization of Polynomials over Semialgebraic Sets

Let p, g1, . . . , gm ∈ R[x] and K = {x | g1(x) ≥ 0, . . . , gm(x) ≥ 0} . We want to solve the
following optimization problem

inf
x∈K

p(x). (6.4)
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Assuming the supremum over the empty set is −∞, this is equivalent to the following
semi infinite optimization problem

sup
ρ
ρ

s.t. p(x)− ρ > 0 ∀x ∈ K
(6.5)

In general this is a difficult problem. However there are several representation results
for positive polynomials over basic semi-algebraic sets. If K satisfies the conditions of
theorem 6.1 then we can reformulate the problem into

sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρ = σ0 +
∑
i

σigi

σ0, σi ∈ Σ[x].

(6.6)

Note that the equality here means equality as polynomial functions. This is equivalent
to the coefficients on the left and on the right hand side being equal.

Since Putinar’s Positivestellensatz does not give a degree bound on the coefficients we
have to look at a relaxation of the previous problem. Fix d ∈ N

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρ = σ0 +
∑
i

σigi

σ0 ∈ Σ2d[x], σi ∈ Σ2(d−dgi )[x].

(6.7)

Let wk be the vector of monomials up to degree k in the variables x then (6.7) can be
formulated as the following semidefinite program (SDP)9

sup
ρ,M0,M1,...,Mm

ρ

s.t. p− ρ = wTdM0wd +
∑
i

wTd−dgiMiwd−dgigi

M0 ∈ R(n+dd ), Mi ∈ R(n+d−dgid−dgi
)×(n+d−dgid−dgi

)

M0 < 0, Mi < 0.

(6.8)

Again note that the equality in (6.8) is an equality as functions. Thus we have only
to compare coefficients. The equality constraints we obtain this way are linear. In
particular x is not a variable in the above optimization problem.

The relaxation (6.8) gives in general a lower bound on the objective of (6.4). We have
the following theorem relating the solutions of (6.8) to (6.6).

Theorem 6.2. Lasserre, 2010b, Th.5.6 Let the assumptions of Putinar’s Positivstellen-
satz hold. Then the optimal solution of the relaxed problem ρd converges for d → ∞ to
the optimal solution.

9See e.g. Boyd and Vandenberghe, 2004.
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6.4 Reformulating the GNEP

We now return to the GNEP problem from section 1. We have to deal with the
parametrized optimization problem of each agent. In Lasserre, 2010a the dual prob-
lem is considered.

Fix ν and d ∈ N sufficiently large. We look at player ν’s optimization problem

min
xν

θν(x
ν , x−ν)

s.t. hν(x
ν) ≥ 0, gν(x

ν , x−ν) ≥ 0
(6.9)

We now regard x−ν as a parameter and formulate a relaxation as in (6.7). We obtain
the following parametrized optimization problem

sup
ρν ,Mν

i ,N
ν
j

ρν

s.t. θν(∗, x−ν)− ρν = wTdM
ν
0wd +

∑
i

wTd−dgν,iM
ν
i wd−dgν,igν,i(∗, x

−ν)+∑
j

wTd−dhν,j
N ν
j wd−dhν,jhν,j(∗)

Mν
0 ∈ R(n+dd ), M ν

i ∈ R
(n+d−dgν,i
d−dgν,i

)×(n+d−dgν,i
d−dgν,i

)
, M ν

i < 0,

Nν
j ∈ R

(
n+d−dhν,i
d−dhν,i

)×(
n+d−dhν,i
d−dhν,i

)
, N ν

i < 0.

(6.10)

Note that, since x−ν is regarded as a parameter, dhν,j only refers to the degree of hν,j in
the xν . Furthermore in an abuse of notation let wk denote the monomials in the variables
xν up to degree k. The ∗ signifies an equality as functions in the entries it replaces. Here
this means that we compare the coefficients of the variables xν which themselves depend
on the parameters x−ν . In particular those equations are polynomials in the variables
M ν

i , N
ν
j , ρ

ν and x−ν .
Now we use Proposition 6.1 and perform a change of coordinates replacing Mν

i with
Lνi (Lνi )

T and N ν
j with T νj (T νj )T , where Lνi and T νj are lower triangular matrices with

nonnegative diagonal. This results in a system of polynomial equations and inequalities
in the variables ρν , Lνi , T

ν
j and x−ν .

For each ν we now have a problem of the form (6.10) but without the positive semidef-
inite constraint. To find an equilibrium we need an optimality condition or a relaxation
thereof to replace the optimization. We propose the following:

Theorem 6.3. Let the assumptions of Putinar’s Positivstellensatz hold and ε > 0, d ∈ N
sufficiently large. Furthermore let (x−ν , ρν , Lνi , T

ν
j ) for all ν, j, i be values in R satisfying

the following polynomial system of equations and inequalities

θν(∗, x−ν)− ρνd =wTd L
ν
0 (Lν0)T wd+∑

i

wTd−dgν,iL
ν
i (Lνi )

T wd−dgν,igν,i(∗, x
−ν)+∑

j

wTd−dhν,j
T νj
(
T νj
)T
wd−dhν,jhν,j(∗)

(6.11)
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ε ≥θν(xν , x−ν)− ρν (6.12)

gν,i(x
ν , x−ν) ≥0

hν,j(x
ν) ≥0

(T νj )l,l ≥ 0, (Lνi )k,k ≥ 0

Lν0 ∈ R(n+dd ), Lνi ∈ R
(n+d−dgν,i
d−dgν,i

)×(n+d−dgν,i
d−dgν,i

)
,

T νj ∈ R
(
n+d−dhν,i
d−dhν,i

)×(
n+d−dhν,i
d−dhν,i

)
,

Lν0, L
ν
i , T

ν
j lower triangular.

Then for all ν the point x = (x1, . . . , xN) satisfies the following inequality

|θν(xν , x−ν)− min
y∈Xν(x−ν)

θν(y, x
−ν)| ≤ ε (6.13)

Additionally let x be any equilibrium then there exists k ∈ N and ρν , Lνi , T
ν
j for all ν such

that x is a solutions to the above system of equations and inequalities.

Proof. For any feasible point x̂ν , ρ̂νd, L̂
ν
i , T̂

ν
j we have that ρ̂νd is a lower bound on the

optimum of θν(x
ν , x̂−ν). So

ρ̂νd ≤ min
xν∈Xν(x̂−ν)

θν(x
ν , x̂−ν) ≤ θν(x̂

ν , x̂−ν).

Since ε ≥ θν(x̂
ν , x̂−ν)− ρ̂νd, constraint (6.12), we obtain the following

0 ≤ min
xν∈Xν(x̂−ν)

θν(x
ν , x̂−ν)− ρ̂νd ≤ θν(x̂

ν , x−ν)− ρ̂νd ≤ ε.

Thus we know that θν(x̂
ν , x̂−ν) satisfies the inequality (6.13).

If x is an equilibrium, then due to Theorem 6.2 we know that for any ε > 0 and
any ν there exists a kν such that θν(y, x

−ν) − ρνkν has a Putinar representation with
|miny∈Xν(x−ν) θν(y, x

−ν) − ρνkν | < ε and relaxation order kν . Now we just have to set k
to the maximum of the kν and then x is feasible.

Once we computed a feasible point we can check whether it is a true equilibrium. To
accomplish this we solve the polynomial optimization problem for each player to global
optimality. We use Gloptipoly (Henrion et al., 2009) a program written for Matlab that
employs the moment relaxation approach to solving polynomial optimization problems.
This is the dual approach to the here presented sum of squares method.

Next we want to illustrate how to reformulate a GNEP into a system of equations and
inequalities using our approach.

Example 6.1. We are looking at a simplified version of our model. To avoid confusion
with exponents, we will write the players’ number in the index. Let the number of
players be two with objective function

max
aν ,qν

aνqν − kνqν
s.t. g(a1, q1, a2, q2) ≥ 0,

(6.14)
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where (k1, k2) = (1, 1
2
) and g(a1, q1, a2, q2) = 1−a21−q21−a22−q22. We obtain a relaxation

of order 1, i.e. the degree of σ0 and giσi does not exceed 2. Therefore the multiplier
of our constraint is just a nonnegative real number denoted my mν . We look at the
following equation.

−a1q1 + k1q1 − ρ1 = wT1 LL
Tw1 +m1g(a1, q1, a2, q2) (6.15)

−a2q2 + k2q2 − ρ2 = wT2MMTw2 +m2g(a1, q1, a2, q2), (6.16)

where L =

 L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

 ,M =

 M1,1 0 0
M2,1 M2,2 0
M3,1 M3,2 M3,3

 and wν =

 1
aν
qν

 .

We write out equation (6.15).

−q1 + a1q1 + ρ1 + L2
1,1 + 2a1L1,1L2,1 + a21L

2
2,1 + a21L

2
2,2+

2q1L1,1L3,1 + 2a1q1L2,1L3,1 + q21L
2
3,1 + 2a1q1L2,2L3,2+

q21L
2
3,2 + q21L

2
3,3 +m1 − a22m1 − a21m1 − q22m1 − q21m1 = 0

Comparing coefficients in a1, q1 and adding the other constraints gives for player one the
following equations and inequalities.

ρ1 + L2
1,1 + 2m1 − a22m1 − q22m1 = 0

−1 + 2L1,1L3,1 = 0

2L1,1L2,1 = 0

L2
3,1 + L2

3,3 −m1 = 0

L2
2,1 + L2

2,2 −m1 = 0

1 + 2L2,1L3,1 + 2L2,2L3,2 = 0

m1 ≥ 0

g(a1, q1, a2, q2) ≥ 0

a1q1 − q1 + ρ1 = 0

For ε = 0 and relaxation order 1, we obtain the following equilibrium

a1 = 0.5, q1 = 0.86602, a2 = 0.00002, q2 = 0.00323.

6.5 Computational Results

We now return to the model of the New Zealand electricity spot market. First we present
a real data set, second solve the model and lastly verify the solutions. All terms are
with respect to a single time period which is a day.

The specific data for the HVDC Link in New Zealand are as follows: The power flow
capacity of both arcs is t̄ = 16.8GWh. Given the value of the electrical resistivity/km

89



6 Computing Generalized Nash Equilibria by Polynomial Programming

κν ην φν τν oν δ
Technology [GWh] [GJ/GWh] [$/GJ ] [$/GJ ] [$/GWh] [GWh]

North 93.09 65.67
Coal 16.84 10500 4.006 0 9600

Diesel 0.15 11000 25.000 0 9600
Gas 33.74 7686.626 6.500 1.0625 5076

Geothermal 16.72 12000 1.000 0 6174
Hydro 20.18 3600 1.000 0 0
Wind 4.52 3600 1.000 0 12038

Wood Waste 0.93 12000 2.000 0 11800
South 47.02 38.69

Hydro 46.54 3600 1.000 0 0
Wind 0.47 3600 1.000 0 16000

Total 140.12 104.46

Table 6.1: Coefficients for the New Zealand electricity spot market model based on real
data.

at 20◦C of 0.0139 Ω/km, the length of transmission line of 607km and the operating
voltage of 350′000V the result is λ = 0.0689 for t{1,2} in GWh. Listed in table 6.1 are
all the coefficients for our electricity spot market model of New Zealand which are based
on the Electricity Authority NZ, 2011, 2010a. The demands and the capacities for the
climate-based technologies corresponds to the average of the daily data of 2011.

We set ε = 0 and d = 2. We solve the model with the Ipopt solver in GAMS with a
residual of 10−9. The running time is 17.45 seconds on an Intel E3-1290 with 8GB of
RAM. The results for bid, production and profit can be found in table 6.2. We verified
the results using GloptiPoly and SeDuMi.

Price offer Prod. offer Cleared Profit Transport to
Technology [$/GWh] [GWh] [GWh] [M $] [GWh]

North 2.42
Coal 63206.1 16.8 9.33 0.11

Diesel 28233.1 0 0 0
Gas 63206.1 28.99 14.64 0

Geothermal 35127.3 16.72 16.72 0.28
Hydro 34159 20.18 20.18 0.62
Wind 63206.1 4.52 2.79 0.13

Wood Waste 30714.1 0 0 0
South 0

Hydro 31645.5 46.54 41.51 1.16
Wind 32260.5 0 0 0

Table 6.2: Solution for the New Zealand electricity spot market model.

90
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With a homogeneous good one would usually expect a Bertrand competition. In
contrast to this our simple model has a constant demand and so the consumer’s demand
is perfectly inelastic with respect to the price. Additionally we are capacity constrained
and so price equal marginal costs is out of question. Basically we are looking at a
continuum of non obvious Cournot Equilibria where always some of the EPs do not offer
their marginal costs.

The consumption-weighted average price of the here presented equilibrium is 40712.3
$/GWh and is of the same magnitude as the reference node Stratford (SFD2201) with
a consumption-weighted average price of 43130.1 $/GWh.
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