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citizen of Röthenbach im Emmenthal, Switzerland

accepted on the recommendation of

Prof. Dr. Peter Widmayer, ETH Zurich, Switzerland
examiner

Prof. Dr. Guido Proietti, University of L’Aquila, Italy
co-examiner

2009



ii



iii

Abstract

Communication networks such as the Internet are ubiquitous today,
and play a key role in modern society. Given their widespread use,
measures must be taken to ensure the continued operation of these
networks even in the presence of failures of individual parts. It is
particularly important to efficiently deal with transient faults, since
these are predominant in many network environments. This tenet is
the main motivation for this dissertation, which provides algorithmic
solutions for transient faults in communication networks. In this con-
text, we consider network environments with varying characteristics,
from rather static to highly dynamic networks.

For handling transient faults in static networks, we use the swap
approach, which has been designed specifically for this environment:
In the absence of any faults, a spanning tree of the underlying network
is used for communication. When a link fails, the tree is split into
two components, which are then reconnected in a best possible way
by adding a single backup link, called a best swap. This small and
local modification is well-suited for handling transient faults, because
it quickly re-establishes communication without a large restructuring
effort. Moreover, since the network topology is static, a best swap
can be precomputed for every link in the spanning tree before using
the network. We present efficient algorithms for precomputing best
swaps, for a variety of spanning tree types. In addition, we show
how to route messages efficiently through a network using the swap
approach.

If too many faults occur in a network, the services it provides will
break down. We therefore study the threshold of tolerable faults in
networks where transient failures are very frequent. To that end, we
consider one of the most fundamental problems in distributed com-
puting, the consensus problem, in synchronous networks. In this
problem, a number of agents, who can only communicate by ex-
changing messages through a network, must negotiate a globally unan-
imous decision. We provide a precise characterization of the number
of tolerable failures for reaching such a consensus using a given net-
work.

Finally, we investigate highly dynamic networks, such as wire-
less ad hoc networks, where in addition to frequent transient faults,
the network topology keeps constantly changing as well. In such a
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setting, it may be impossible to gather information about the entire
network topology. Therefore, a completely different approach is nec-
essary: The task of computing a global solution is distributed among
the nodes of the network, and each node only communicates with
nearby nodes. Surprisingly, it is possible to find such so-called lo-
cal algorithms, for some fundamental problems in wireless networks.
We give efficient local distributed algorithms for two such problems:
Computing a maximal independent set, which is a basic building
block for distributed coordination, and computing a small connected
dominating set, which is useful for energy-efficient message broad-
cast.
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Zusammenfassung

Kommunikationsnetze wie das Internet sind heutzutage allgegenwär-
tig, und spielen eine wichtige Rolle in der modernen Gesellschaft.
In Anbetracht ihrer verbreiteten Nutzung ist es wichtig, Massnah-
men zu treffen, um das Funktionieren dieser Netze zu gewährleisten,
selbst wenn einzelne Komponenten davon ausfallen. Es ist besonders
wichtig, effiziente Mittel gegen kurzzeitige Fehler zu finden, da sol-
che Fehler in vielen Netzwerkumgebungen die Mehrheit ausmachen.
Dieser Grundgedanke ist die Motivation für diese Dissertation, wel-
che algorithmische Lösungen für kurzzeitige Fehler in Kommunikati-
onsnetzen anbietet. In diesem Zusammenhang werden Netzwerkum-
gebungen mit verschiedenen Charakteristika betrachtet, von eher sta-
tischen bis zu hochgradig dynamischen Netzen.

Um kurzzeitige Fehler in statischen Netzen zu handhaben, benut-
zen wir das Konzept von Austauschkanten, welches für genau diesen
Zweck ausgerichtet ist: Solange kein Fehler auftritt, wird zur Kom-
munikation ein Spannbaum des zugrundeliegenden Netzes benutzt.
Wenn eine Verbindung ausfällt, zerfällt das Netz in zwei Komponen-
ten, welche dann auf bestmögliche Weise wieder verbunden werden,
indem eine Ersatzkante, die sogenannte beste Austauschkante, zum
Netz hinzugefügt wird. Diese kleine und lokale Modifikation eig-
net sich für das Überbrücken von kurzzeitigen Fehlern, weil sie den
Nachrichtenaustausch schnell wieder herstellt, ohne eine aufwändige
Umstrukturierung des Netzes zu erfordern. Überdies kann, da das
Netz statisch ist, für jede Netzkante eine beste Austauschkante vor
dem Einsatz des Netzes vorberechnet werden. Wir präsentieren ef-
fiziente Algorithmen für die Vorberechnung von besten Austausch-
kanten, für eine Auswahl von Spannbaum-Typen. Zudem zeigen wir,
wie Nachrichten auch während des Einsatzes von Austauschkanten
effizient durch das Netz gelenkt werden können.

Wenn in einem Netz zu viele Fehler auftreten, kann es seine Dien-
ste nicht mehr verrichten. Daher interessieren wir uns für das maxi-
mal erträgliche Mass an kurzzeitigen Fehlern, das ein gegebenes Netz
tolerieren kann. Zu diesem Zweck betrachten wir eines der grundle-
gendsten Probleme im Gebiet des verteilten Rechnens, das Konsens-
Problem, in taktgesteuerten Netzen. In diesem Problem muss eine
Anzahl von Akteuren, welche nur durch den Austausch von Nach-
richten über ein Netz kommunizieren können, eine global einstim-
mige Entscheidung aushandeln. In diesem Teil der Arbeit geben wir
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eine exakte Charakterisierung für die maximale Anzahl von Fehlern
in einem gegebenen Netz, welche für das Konsens-Problem tolerier-
bar sind.

Schliesslich untersuchen wir hochgradig dynamische Netze, wie
zum Beispiel kabellose Ad Hoc Netze, in denen nicht nur viele kurz-
zeitige Fehler auftreten, sondern sich auch die Topologie ständig än-
dert. In solchen Netzen kann es unmöglich sein, eine Gesamtübersicht
über die Netzwerktopologie zu gewinnen. Daher ist ein völlig anderer
Ansatz notwendig: Die Aufgabe, eine globale Lösung zu berechnen,
wird unter den Knoten im Netz aufgeteilt, und jeder Knoten kom-
muniziert nur mit Knoten in seiner Nähe. Erstaunlicherweise ist es
möglich, solche sogenannten Lokalen Algorithmen für verschiedene
grundlegende Probleme in kabellosen Netzen zu finden. Wir entwer-
fen effiziente lokale verteilte Algorithmen für zwei solche Probleme:
Die Berechnung einer maximalen unabhängigen Menge, welche ein
grundlegendes Hilfsmittel für verteilte Koordination ist, und die Be-
rechnung einer kleinen zusammenhängenden Menge, welche nützlich
für energie-effizienten Nachrichtenversand ist.
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Chapter 1

Transient Faults in
Communication
Networks

Communication networks are ubiquitous today, and provide key ser-
vices in the everyday life of many people. The Internet is certainly
one of the most important examples, some of whose services have
largely replaced their traditional counterparts. Besides, many other
technologies such as landline and mobile phones, television broad-
cast, and cash machines (ATMs), also rely on communication net-
works.

With the widespread use of communication networks grows our
dependence on them. Yet, when a communication network reaches
a certain size, it is inevitable that some of its components fail from
time to time. For important networks, measures must hence be taken
to prevent breakdown of communication in case of failures. It is often
acceptable that the quality of service might degrade when a failure oc-
curs, as long as a certain standard remains guaranteed. To guarantee
communication even when some links in the network fail, for exam-
ple, one can install additional backup links which are only used while
a failure is present.

The nature of failures of course strongly depends on the particu-
lar type of network at hand. Some networks are relatively static, that

1



2 Chapter 1. Transient Faults in Communication Networks

is, their topology does not change often, and failures are relatively
rare. This description applies for example to the fiber optic networks
which form the backbones of today’s Internet: In these networks, fail-
ures occur roughly once a day, and they are predominantly confined
to a single link [42, 56]. Furthermore, these networks are typically
sparse, because the high bandwidth of fiber optic links makes it feasi-
ble and economical to bundle traffic in few links rather than in many
redundant separate links of smaller capacity.

Other networks are much more dynamic, and constantly change
their topology. An important class of networks with these character-
istics are wireless networks: Transmitting a signal by radio is much
more error-prone than using a wire, since there is almost no control
over external sources causing interference. Moreover, wireless net-
works are often used for mobile devices that people carry around with
themselves, which leads to even more changes in the network topol-
ogy. Wireless networks constitute an important part of the Internet,
because their use for the last hop to the end device extends Internet
access to public places. More recently, so-called wireless ad hoc net-
works have emerged, which employ a more radical approach — these
networks operate without any auxiliary infrastructure (such as access
points), by relaying messages wirelessly from device to device. This
approach is already used in some real applications, for example for
environmental monitoring [7], for agricultural management targeted
at Indian farmers [72], and even for keeping cows inside a virtual
fence [13], and promises to be a useful concept in many additional ap-
plication areas. Wireless networks have a particular structure, which
can be exploited to develop algorithms that run faster than their coun-
terparts for general topologies.

The above examples of communication networks have in common
that a typical link fault does not persist for a long time: In wired
networks, a link failure is immediately detected and will be repaired
within a short period of time; in wireless networks, many failures are
caused by random noise, perhaps a truck passing between sender and
receiver, or another sender in the vicinity. In this thesis, we therefore
consider transient failures, which are characterized by the fact that
they only occur for a short period of time. Since transient failures
occur in various types of networks, it is important to study solutions
for dealing with them.
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Outline and Overview of Results

The goal of this thesis is to extend the knowledge about how to deal
with transient failures in communication networks. We focus on the
theoretical foundations of these solutions, and consider extreme points
of the spectrum: In Part I, we consider almost completely static net-
works, where at any given time at most one failure is present. In
Part II we look at an intermediate case, where there can be more than
one concurrent failure, and determine the maximum number of faults
that any computation which requires global coordination can toler-
ate. Finally, in Part III, we consider highly dynamic networks. More
specifically, the contents of this thesis are the following:

Part I

In the first part of this thesis, we consider networks whose topology
is relatively static, with transient failures of links occurring only from
time to time. A canonical example of such a network is the backbone
infrastructure of the Internet, which is mostly based on fiber optic
cables. In these important networks, faults will usually be repaired
relatively quickly. Given this fact, it is more reasonable to remedy a
link failure by a small local modification than to globally restructure
the network. These networks typically have a tree-like topology, be-
cause few cables with large bandwidth suffice to provide the required
capacities between all pairs of nodes. In our work, we make two sim-
plifying assumptions: that the network used for communication is in-
deed a tree, and that at any time, there is at most one faulty link in the
network. We study the swapping approach, which has been designed
for exactly this scenario: In a fault-free period, a spanning tree (which
optimizes some objective) is used for communication. When an edge
of the tree fails, thus disconnecting the network into two components,
a so-called swap edge (taken from the network graph) is added to the
spanning tree to re-establish connectivity. A best swap edge is one for
which the resulting swap tree optimizes a given objective (which is
generally related to the objective for the initial spanning tree). To pre-
pare for the failure of any edge in the initial spanning tree, it is best to
precompute, for every edge in the tree, a best swap edge. We obtain
efficient algorithms for precomputing best swap edges in minimum
diameter spanning trees and tree spanners, and describe a simple and
efficient routing scheme on trees which is suitable for the swapping
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approach.
Specifically, for a graph with n nodes and m edges, we obtain the

following results:

• All best swaps of a minimum diameter spanning tree can be
computed in O(m log n) time and O(m) space. Prior to our
work, the fastest known algorithm required O(n

√
m) time and

O(m) space, which is significantly slower for sparse graphs [65].

• In a distributed setting, all best swaps of a minimum diameter
spanning tree (MDST) can be computed in time linear in the
hop-diameter of the network, and using O(n∗ +m) messages.
Here, n∗ denotes the size of the transitive closure of the MDST,
if all its edges are directed towards the node which initiates
the computation. We also give a matching lower bound for
the number of messages. Hence, our algorithm is optimal in
terms of messages as well as in terms of runtime. To the best of
our knowledge, this is the first non-trivial lower bound on the
message complexity of a distributed swap edge computation.

• For tree spanners, which are spanning trees that minimize the
maximum stretch in the distance between any pair of nodes
(compared to their distance in the original graph), all best swaps
can be computed in O(m2 log n) time and O(m) space, and in
O(n3) time andO(n2) space for graphs with unit length edges.
Best swap edge computation in tree spanners had not been con-
sidered in the literature prior to our work.

We also present a compact routing scheme for trees which efficiently
supports the use of precomputed swap edges. To the best of our
knowledge, no such routing scheme had been previously described
in the literature.

Part II

In the second part, we are interested in an intermediate case, where
the network topology is still static, but transient failures are very fre-
quent: What if many links of the network may concurrently fail at any
given time? Clearly, there is a threshold for the number of bearable
failures, above which any distributed computation becomes impossi-
ble. But where does this threshold lie?
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To answer this question, we look at one of the most fundamental
problems in distributed computing, the consensus problem, in syn-
chronous networks. In this problem, a number of processors have to
take a global decision, while communication is only possible through
sending messages across unreliable links. The consensus problem
is fundamental because it is one of the simplest distributed compu-
tations one can ask for: If the processors cannot even take a global
decision, then any more advanced global computation is bound to
fail. In our work, we characterize precisely how many failures (of a
given type) per round in a given network topology render consensus
impossible.

For a given network, modeled by a connected graph G, we are
interested in the number of transmission failures that can be tolerated
per round. These transmission faults can affect any link in the net-
work, and the set of links affected by a fault may change in every
round. We distinguish between three different types of faults: omis-
sions, which are transmissions where a message is sent but none is re-
ceived; corruptions, which are transmissions where the message that
the receiver gets is different from the message that was sent; and addi-
tions, which are transmissions where a processor receives a message
although none was sent (this models for example man-in-the-middle
attacks). For this setting, we show that consensus is impossible if the
number of possible faults reaches the following thresholds, where c
denotes the edge-connectivity of G:

• c or more omissions

• c or more additions and corruptions

• dc/2e or more Byzantine faults (i.e., any combination of the
three fault types is allowed).

Prior to our work, the best corresponding bounds were ∆, ∆ and
d∆/2e, where ∆ denotes the maximum degree of any node inG. Our
new bounds are tight, as shown by previously known algorithms [85].

Part III

Finally, we consider highly dynamic networks, such as wireless com-
munication networks, in which there are not only frequent transient
faults, but also frequent changes of the network topology. Wireless
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communication links are far less reliable than wired links, and there-
fore a completely new approach is necessary. Indeed, in the third part,
we do not even consider failures explicitly. Instead, we strive for so-
called local algorithms. Intuitively, local algorithms have the property
that the outcome of the computation at a node x only depends on the
part of the graph that is “close” to x. Formally, however, local algo-
rithms are typically defined as distributed algorithms whose running
time grows only very slowly with the number of nodes (significantly
slower than linear). Some authors require that a local algorithm must
even have constant running time [62, 57], while others also consider
non-constant time algorithms as local [47]. A general consensus is
that the running time of a local algorithm can be at most polyloga-
rithmic in the number of nodes.

Local algorithms are well-suited for highly dynamic networks for
two reasons: First, as shown in a seminal paper [6], any algorithm for
a static synchronous network can be transformed into an algorithm
for dynamic asynchronous networks, with the same asymptotic run-
ning time. Although the transformation works for any algorithm, the
communication overhead is linear in the running time of the static al-
gorithm. For a local algorithm, the overhead of this transformation is
hence negligible. This is quite intuitive: If some small part of the net-
work changes, then the outcome of a complete recomputation would
only differ in some area close to the changed part. Hence, it suf-
fices to repeat the computation only on the affected parts of the graph.
Second, having a short running time is advantageous in dynamic net-
works because it minimizes the risk that a topological change will
happen during some computation.

We model wireless networks by the class of so-called growth-
bounded graphs, which include for example unit disk graphs. In this
setting, we look at two fundamental structures in wireless networks:
Maximal independent sets, which are a basic building block for many
distributed algorithms, and can be used to coordinate the actions of
the involved processors, and minimum connected dominating sets,
which can serve as an energy-efficient “virtual backbone” for trans-
mitting messages in a wireless sensor network.

For the problem of computing a maximal independent set in such
a graph on n nodes, we give a randomized distributed synchronous al-
gorithm with a running time of O(log log n log∗ n), where each mes-
sage contains O(log n) bits. Prior to our work, the fastest known al-
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gorithm was deterministic and had a running time of O(log ∆ log∗ n)
and message size O(log n) bits, where ∆ denotes the maximum de-
gree of a node in the graph. For the problem of computing a minimum
connected dominating set in growth-bounded graphs, which is NP-
hard, we give a distributed approximation scheme which completes
within O(TMIS + 1/εO(1) · log∗ n) rounds of synchronous compu-
tation, where TMIS is the number of rounds needed to compute a
maximal independent set. We can prove that the computed connected
dominating set has constant stretch, constant degree, and therefore a
linear number of edges. Moreover, a recent lower bound implies that
any constant approximation in unit disk graphs requires Ω(log∗ n)
time [52], which shows, together with a recent optimal MIS algo-
rithm [89], that the running time of our algorithm is asymptotically
optimal.





Chapter 2

Preliminaries

2.1 Some Notions from Graph Theory

Throughout the thesis, we use a few basic graph theory concepts. For
the sake of completeness, we define these notions here (for an intro-
duction to graph theory, see e.g. [23]).

A graph is a pair G = (V,E) of sets, where E is a subset of the
2-element subsets of V . The elements of V are the nodes, and the
elements of E the edges of the graph G. We use n = |V | to denote
the number of nodes, and m = |E| for the number of edges. Each
edge e = (u, v) inE is said to join u and v. The nodes u and v are the
endpoints of e. We say that u and v are adjacent nodes, or neighbors,
and that node u and edge e are incident with each other, as are v and
e. The number of edges incident to a node u is called the degree of
u, and denoted by δu. The set of neighbors of a node z (excluding z
itself) in a graph G is written as N̄G(z).

If V ′ ⊆ V and E′ ⊆ E, then G′ = (V ′, E′) is a subgraph of
G = (V,E), written as G′ ⊆ G. If G′ ⊆ G and G′ contains exactly
the edges (u, v) ∈ E with u, v ∈ V ′, then G′ is an induced subgraph
of G. We say that V ′ induces G′ and write G′ = G[V ′].

A path P is a sequence 〈p1, . . . , pr〉 of adjacent nodes pi ∈ V ,
and it is called a simple path if all pi are distinct. Throughout the
thesis, we consider simple paths unless explicitly stated otherwise.

Each edge e ∈ E has a non-negative rational length l(e). The

9
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length |P| of a path P = 〈p1, . . . , pr〉, pi ∈ V , is the sum of the
lengths of its edges, and the distance dG(x, y) between two nodes
x, y is the length of a shortest path between x and y in the graph G.
Similarly, we define the distance between two sets A,B ⊆ V as the
distance of two closest nodes a ∈ A and b ∈ B, i.e., dG(A,B) =
min{dG(a, b)|a ∈ A, b ∈ B}. When the intended graph is clearly
defined by the context, we sometimes omit the subscript and write
d(·, ·) instead of dG(·, ·). If all the edges of a graph have length one,
we call it an unweighted graph. Note that in such a graph, the distance
between two nodes a, b is equal to the number of edges, which is then
also called the number of hops from a to b. For a graph with non-
uniform edge lengths, the number of hops between two nodes is to be
understood in the corresponding graph where all edges have length
one.

A graph G is called connected if there exists a path between any
two of its nodes. It is called k-connected, for k ∈ N and for any
U ⊆ V with |U | ≤ k−1, the graphG[V \U ] is connected. It is called
k-edge-connected, for k ∈ N, if between any two of its nodes, there
exist k edge-disjoint paths. Let U be an inclusion-maximal subset of
V for which G[U ] is connected (i.e., G[U ∪ {v}] is disconnected for
any v ∈ V \U ). Then G[U ] is a connected component of G.

Given a connected graph G = (V,E), we say that T = (V,ET ),
ET ⊆ E is a spanning tree ofG if T is connected and |ET | = |V |−1.
In this context, we call the edges in ET tree edges and the edges in
E\ET non-tree edges.

A partition of V into two sets {V1, V2} defines a cut F ⊆ E,
which is the set of edges in E that have one endpoint in V1 and one
endpoint in V2. We say that an edge f ∈ F crosses the cut. The size
of a cut F is f = |F |. For a node v ∈ V , the set of nodes in the same
connected component as v in G′ = (V,E\F ) is called v’s side of the
cut.

Sometimes we will also consider directed graphs, in which the
edges are ordered pairs: an edge (u, v), where u, v ∈ V , is an edge
from u to v. A spanning tree T = (V,ET ) can be directed by choos-
ing a root r ∈ V : Every edge in (u, v) ∈ ET is then directed towards
the root, as shown in Figure 2.1. We say that v is the parent of u, and
conversely u is a child of v. The set of children of v is denoted by
C(v). A node v is an ancestor of u if v lies on the path in T from
u to the root r. The nearest common ancestor of two nodes a and
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root r

v

u

x Tx

T

Figure 2.1: An example of a directed tree T rooted at node r, and a
subtree Tx of T rooted at node x.

b, denoted by nca(a, b), is the node v which is both an ancestor of a
and of b whose distance from r is maximum. Moreover, let Tx be the
subtree of T rooted at node x, including x. The height of a subtree
Tx = (Vx, Ex) is defined as maxv∈Vx

{dT (v, x)}.
Throughout this thesis, we use log n to denote the binary loga-

rithm of n, and lnn for the natural logarithm of n. Furthermore,
α(m,n) denotes a functional inverse of the Ackermann function as
defined in [91], which is a function that grows very slowly.

2.2 Models of Computation

More than one model of computation is considered in this thesis:
some of the results assume that a central authority has complete knowl-
edge of the present network topology, while other results assume that
the problem at hand is solved collaboratively by a number of separate
entities communicating through messages. Naturally, the objectives
in these two settings are quite different. In the following, we specify
the models of computation and the corresponding measures used in
this thesis.
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2.2.1 Centralized

The model we use for our centralized algorithms is often referred to
as a “pointer machine” in the literature. Although this term is some-
what ambiguous [8], we need not define our model more formally.
The crucial point is that our algorithms are “pointer algorithms” in
the sense of [8], i.e., the only way we need to access a memory loca-
tion is by following pointers (we never require indirect addressing).
Furthermore, we assume that identifiers of nodes and lengths of edges
are atomic, that is, we cannot access their representation in our algo-
rithms. The only operations that can be performed (at unit cost) on
edge lengths are additions, subtractions, and binary comparisons. On
identifiers, only comparisons can be performed, also at unit cost.

The one exception where we consider another model for a central-
ized algorithm is Section 3.4, where we improve upon a result which
uses the RAM-model of computation. In the latter model, the edge-
weights are represented as bit-strings, which can be accessed by the
algorithm, and it is possible to specify arbitrary memory locations to
be read or written in constant time.

The time complexity of a centralized algorithm is the number of
unit cost operations that it performs in the worst case (expressed as
a function of the input size). The space complexity of a centralized
algorithm is the maximum amount of memory that it requires at any
time during its execution, expressed as a function of the input size.
In the centralized model, our two main objectives are to minimize the
worst-case time and space complexity of the designed algorithm.

2.2.2 Distributed

Some of our algorithms are distributed, meaning that the computa-
tion is not performed by a single entity, but by a group of n indi-
vidual processors which interact by exchanging messages. Typically,
each processor can exchange messages only with a subset of the other
processors, which are called its neighbors. For communication with
other processors, messages have to be relayed through intermediate
processors. We use a graph to model the network topology, where
processors are modeled as nodes, and two nodes are joined by an
edge exactly if their corresponding processors are neighbors. In the
distributed setting, initially each processor only knows its neighbor-
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ing processors (the connectivity information), and the lengths of the
edges leading to them. Hence, although the complete network topol-
ogy is specified by the union of the initial knowledge of all processors,
no processor has a global view. Each processor has a unique identi-
fier consisting of O(log n) bits. Every processor executes the same
algorithm, whose input consists of the processor’s identifier, the pro-
cessor’s problem-specific input, and received messages. The message
complexity of a distributed algorithm is the total number of messages
sent in the worst case during its execution. We need to distinguish
between synchronous and asynchronous network models: In syn-
chronous networks, the computation proceeds in rounds. Each round
consists of three phases: In the “compute” phase, a processor per-
forms some local computation. Then, in the “send” phase, it decides
on the messages that are to be sent to its neighbors. Finally, in the
“receive” phase, every processor may receive a message from each of
its neighbors, provided that this neighbor has sent one. All processors
start executing synchronously in the first round. The time complexity
of a synchronous algorithm is the number of rounds required from its
start until all processors complete their computation in the worst case
(with respect to the network topology and to the assignment of the
identifiers to the nodes). In the asynchronous model, processors may
start executing their algorithm at different times. Each processor per-
forms the “receive-compute-send” cycle, but its timing is independent
of all other processors. A message sent to another processor can have
an arbitrary (but finite) delay. Once the message has arrived, the re-
ceiving processor will detect the message the next time that it enters
the “receive” phase. The time complexity of an asynchronous algo-
rithm is the maximum number of “receive-compute-send” cycles that
are performed by any processor, in a worst-case instance, assuming
that sending a message requires at most one time unit.

There exists a wide variety of models for distributed computa-
tion. For our purposes, it suffices to distinguish between two classes
of models, namely the LOCAL model and the CONGEST model,
as described in [76]. In the CONGEST model, each message that
is sent from one processor to another can contain at most O(log n)
bits. It hence focuses on the amount of information that is sent during
a computation, and on the effects of congestion on the time com-
plexity and message complexity of an algorithm. On the other hand,
the LOCAL model is intended to focus on the fact that the further
two processors are apart, the longer it takes to exchange a message
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between them. To stress this so-called “locality” aspect of distributed
computation, theLOCALmodel ignores congestion by allowing mes-
sages of unlimited size. Furthermore, this model assumes a syn-
chronous network.

In distributed algorithms for the CONGEST model, which we
present in Chapters 5, 7 and 11, our objective is to minimize both
the time complexity and the message complexity. In distributed al-
gorithms for the LOCAL model, as presented in Chapter 12, our ob-
jective is solely to minimize the time complexity. Note that in both
variants of the distributed model, local computation of a processor is
free, i.e., it is not part of our objective function. Yet, in our algorithms
the time and space complexity of local computations will always be
polynomial in the size of the input.



Part I

Swap Edge Computation
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Chapter 3

Introduction

3.1 Motivation

Communication networks are ubiquitous today, and many services
of everyday life depend on them. Due to this dependence, it is cru-
cial that networks remain operational even if some of its components
fail. The resilience of a network to failures is called its survivability,
and was studied intensively, see e.g. the overview [39]. When, in
the 80s, the core networks of the Internet were gradually transformed
from the traditional copper wires to fiber optic cables, network sur-
vivability became even more crucial: Given the large bandwidth of
fiber optic links, it is economically beneficial to use as few links as
possible, i.e., making the network as sparse as possible. If all nodes
are connected using the smallest number of links, the subset forms
a spanning tree of the network. In addition to the economical ben-
efits, since only one path exists between any communication pair, a
spanning tree simplifies routing and allows small routing tables [31].
However, having fewer links also means that the impact of individual
link faults increases — in a tree network, even a single link fault will
lead to two disconnected parts.

Depending on the purpose of the network, there is a variety of
desirable properties of a spanning tree. In the following, we consider
the minimum diameter spanning tree (MDST), i.e., a tree that mini-
mizes the largest distance between any pair of nodes, as a canonical
example. The importance of MDSTs is widely recognized [12], and

17



18 Chapter 3. Introduction

it is also the subject of Chapters 4 and 5. In Chapter 6, we consider
tree spanners, another important spanning tree type.

One downside of using a spanning tree is that the failure of a
single link, say e ∈ ET , disconnects the network. One extreme way
to cope with such a link failure is to reoptimize, that is, to use the
optimal spanning tree of the remaining networkG−e (in our example,
the spanning tree of G − e with minimum diameter). This solution

G MDST (G) MDST (G− e)

e

Figure 3.1: An example of a graph G and a MDST of it, where the
new MDST after the failure of an edge has only one edge in common
with the old MDST.

by definition yields the best possible spanning tree for the remaining
network, but at a high cost, since the new spanning tree may be very
different from the one used before the failure (see Figure 3.1 for an
example). Provided that the failure of an edge is a permanent one,
these high costs may be justifiable. However, in real networks, a
failing link will normally be repaired, and even relatively quickly:
For example, a recent study [56] shows that in IP backbone networks,
about 60% of all single link faults are repaired in less than 2 minutes,
and 90% of all single link faults are repaired in less than 20 minutes.
The same study also shows that about 70% of the failures occurring
in such a network are confined to a single link.

Therefore, in this thesis we assume that link failures are transient,
i.e., a failed link soon becomes operational again. We further assume
that at any given time, there is at most one link failing. Although this
assumption is somewhat extreme, we believe that it is reasonable, for
two reasons: First, if even one link fault is relatively rare, then two



3.1. Motivation 19

or more concurrent faults are even less likely, and so preparing for
more than one fault may simply not be worth the necessary overhead.
Second, the approach that we will use can still be applied if there are
several faults present, as long as the faults are distant enough in some
sense.

When link faults are transient, the best possible way of momen-
tarily reconnecting the network is to replace the failed link by a single
other link, called a swap link, and leaving all other links in the net-
works unchanged. Among all possible swap links, one should choose
a best swap w.r.t. the original objective1, that is in our example, a
swap that minimizes the diameter of the resulting swap tree. Note
that the swap tree is different from a minimum diameter spanning
tree of the underlying graph without the failed link. The reason for
preferring the swap tree to the latter lies in the effort that a change
of the current communication tree requires: If we were to replace
the original MDST by a tree whose edge set can be very different,
we would need to put many edges out of service, many new edges
into service, and adjust many routing tables substantially — and all
of this for a transient situation. For a swap tree, instead, only one
new edge goes into service, routing can be adjusted with little effort,
and messages can even be rerouted “on the fly” (as we will show in
Chapter 7). An additional advantage of this approach is that once the
failing link has been repaired, we can quickly revert back to using the
original spanning tree. Interestingly, this choice of swapping against
using a completely reoptimized tree often even comes at a moderate
loss in the objective value: Taking the MDST as an example, the swap
tree diameter is at most a factor of 2.5 larger than the diameter of an
entirely reoptimized tree [65].

In order to keep the required time for swapping (and for the as-
sociated adjustment of routing tables) small, we advocate to precom-
pute a best swap edge for each edge of the tree. We show in the fol-
lowing chapters that the computation of all best swaps typically has
the further advantage of gaining efficiency (against computing swap
edges individually), because dependencies between the computations
for different failing edges can be exploited. Furthermore, precomput-
ing all best swaps is advantageous from a management point of view,

1Sometimes, there is more than one natural definition for the best swap: e.g. in a
shortest paths tree, minimizing the average distance of all nodes from the root is just
as natural as minimizing the maximum of these distances.
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because it shows in advance how much the quality of the network
topology depends on its individual links (see also Section 3.3.5).

3.2 Problem Statement and Terminology

In this section, we formally define the all best swaps problem. We
use the basic graph terminology that was introduced in Section 2.1.

We model a communication network as a 2-edge-connected, undi-
rected graph G = (V,E), with n = |V | nodes and m = |E| edges,
where each edge e ∈ E has a length l(e) ∈ Q+. Consider a span-
ning tree T = (V,ET ) of G, which minimizes some objective func-
tion ôbj : T → Q+, where T denotes the set of spanning trees of
G. For the following terminology on swap edges, see Figure 3.2.

e

f

Figure 3.2: The graph T − e has two connected components. The
dashed lines denote swap edges, which are the edges crossing the cut
induced by these two components.

The removal of any edge e ∈ ET partitions the spanning tree T
into two disjoint trees. A swap edge f for e is any edge in E\ET
that (re-)connects the two trees, i.e., for which the graph Te/f :=
(V, (ET \{e}) ∪ {f}) is a spanning tree of G. In other words, a
swap edge for e is any edge in E\ET which crosses the cut in-
duced by the two connected components of T − e. Let S(e) be the
set of swap edges for e. We define the set of swap trees for T as
T := {Te/f |e ∈ ET , f ∈ S(e)}. To formalize our objective, we
define the objective function obj : T → Q+ (in the example of the
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MDST, obj(Υ) would yield the diameter of Υ). Note that obj may
depend on the input graph G (not only on the swap tree itself), but for
simplicity we neglect this dependence in our notation. A best swap
edge for e is any edge f ∈ S(e) for which obj(Te/f ) is minimum.
Throughout the thesis, we use e to denote a failing edge and f to de-
note a swap edge. We can now formally define the All-Best-Swaps
problem:

Definition 3.1 (All-Best-Swaps (ABS) problem). The input to the All-
Best-Swaps problem is a 2-edge-connected graph G, a spanning tree
T of G for which ôbj(T ) is minimum, and an objective function obj.
The output must specify, for each edge e ∈ ET , a best swap edge f
with respect to the given objective function obj.

It is often natural to define obj := ôbj, that is, a best swap edge
should optimize the same objective function which the given span-
ning tree T optimizes. This is the case for example in minimum di-
ameter spanning trees, in minimum spanning trees, and other variants.
There are exceptions, however: For example in shortest paths trees,
although a characterizing objective ôbj exists, the choice obj := ôbj
is only one of the natural options (see Section 3.3.2). Another ex-
ception arises when the computed swaps should minimize the routing
adaptation time, which is completely independent of the objective that
the spanning tree minimizes (see Sections 7.3 and 7.4).

In this part of the thesis, we study the All-Best-Swaps problem in
the centralized as well as in the distributed setting. Our results for
the centralized model are relatively insensitive to the precise input
representation. We can assume for example that the input consists
of two lists, one containing the nodes of the input graph, and one
containing all edges of the input graph, where each edge which also
belongs to the given spanning tree is marked. The output is a list of
n − 1 pairs of edges, where the first edge in each pair is an edge of
the spanning tree, and the second edge is a best swap edge for it.

In the distributed setting, specifying the problem is slightly more
subtle: It must be specified which nodes know which part of the in-
put at the outset of the computation, and also which nodes need to
know a best swap to which edges at the end of the computation. Re-
garding the input specification, a customary assumption in distributed
computing is that each node has a list of all its neighboring nodes in
the input graph, as well as the list of all edges incident to it, among
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which those edges which are also part of the given spanning tree are
marked. The output specification is that at the end of the computa-
tion, each node knows a best swap for all its incident edges. This
latter requirement has no customary counterpart, but is motivated by
our proposed routing protocol for swapping (see Section 7).

Remark: The assumption that the underlying network graph is
2-edge-connected is made for ease of exposition. All our algorithms
can be easily modified to detect the situation where there is no swap
edge for some tree edges, without affecting their efficiency. After this
modification, they can be applied to arbitrary connected graphs.

3.3 Related Work

In this section, we review the growing body of literature on the all best
swaps problem and some related areas. We state the most relevant
results, and discuss some of the techniques used.

3.3.1 Minimum Spanning Trees

The minimum spanning tree (MST), which is a spanning tree mini-
mizing the total length of its edges, is probably the most well-known
spanning tree type. For a MST, using swap edges is particularly at-
tractive: it is easy to see that when using a best swap edge to replace
a failing edge, the swap tree is again a MST of the graph deprived
of the failing edge. Furthermore, the best swap for a MST edge is
simply the shortest edge across the cut induced by the failing edge.

Due to these peculiar properties, computing all best swaps of a
MST is closely related to the sensitivity analysis problem: Given a
graph G and a MST T of it, compute for each edge e of T , by how
much l(e) can change without affecting the minimality of T . For the
tree edges (i.e., edges in T ), this is essentially equivalent to comput-
ing, for each edge e of T , the length of a shortest edge across the
cut induced by e: if the length of e is increased above this thresh-
old, then T is no longer a MST. Sensitivity analysis for MSTs can be
performed in O(mα(m,n)) time and O(m) space using a so-called
transmuter data structure [93]. The same algorithm also yields all
best swap edges of a MST. Since transmuters are a key data structure
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in various best swap computations, we describe them separately at the
end of this section.

In subsequent work, a randomized algorithm for sensitivity anal-
ysis of MSTs with O(m) expected running time was discovered [24],
which can also be used for computing all best swaps of a MST in
linear expected time. However, this algorithm requires a somewhat
stronger model than we usually consider in this thesis: Although edge
costs can only be compared, added, or subtracted at unit cost, “side
computations” for look-up tables are performed on a random-access
machine (RAM) with word size Ω(log n) bits. Remarkably, in the
same paper a deterministic algorithm is given which is proven asymp-
totically optimal, but the precise bound remains unknown. Recently,
the O(mα(m,n)) time bound of Tarjan [93] was reduced down to
O(m logα(m,n)) by Pettie [80], which however also requires side
computations on a RAM.

In the context of MSTs, the related problem of computing all best
sets of swap edges for node failures has also been studied: When a
node fails, the spanning tree may be split into more than two con-
nected components, and hence adding one swap edge is not always
sufficient. Yet, the best swap edges for node failures in a MST can
be computed in O(mα(m,n)) time and O(m) space [68]. For the
special case of planar graphs, the time bound can even be improved
to O(m), which is asymptotically optimal [33].

In the distributed setting, the same problem can be solved using
O(n∗r) messages, where n∗r is the size of the transitive closure of
Tr\{r}, where all edges are directed towards the root r from which
the computation starts [29].

Using a Transmuter for Computing Best Swap Edges

A transmuter is an auxiliary graph, which can be used e.g. for sensi-
tivity analysis of MSTs [93]. Given a graph G and a spanning tree T
of it, let T (f) denote the path in T connecting the two endpoints of f .
A transmuter is a directed acyclic graphD which represents the set of
fundamental cycles of G with respect to T . More precisely, D con-
tains one source node s(e) for each edge e in ET , one sink node t(f)
for each edge f in E\ET , possibly some internal nodes, and has the
property that there exists a path from a given source s(e) to a given
sink t(f) if and only if edge e lies on the path T (f) (in other words,
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if and only if f is a swap edge for e). Using a transmuter D, for each
edge e of T , the length of a shortest edge across the cut induced by e
can be computed as follows:

Algorithm 3.2 (see also [93]). Given a graph G and a spanning tree
T of G, compute its corresponding transmuter D. Process the nodes
of D in reverse topological order. To process a sink t(f), label it with
the length l(f) of the edge it represents. To process a node which is
not a sink, label it with the minimum of the labels of its (immediate)
successors.

Note that when all nodes have been processed, each source node
s(e) is labeled with the length of the shortest edge among its swap
edges. It is trivial to maintain the actual edge with shortest length
along with this process. Hence, computing all best swaps of a MST
takes only linear time in the size of the transmuter.

For any graph G with m edges and n nodes, a transmuter can
be constructed using O(mα(m,n)) time and space [92], and so all
best swaps of a MST can be computed in O(mα(m,n)) time and
space. By processing the non-tree edges in groups, the space bound
can even be decreased to O(m) [93]. In conclusion, all best swaps of
a MST can be computed inO(mα(m,n)) time andO(m) space using
a transmuter. Moreover, note that Algorithm 3.2 is not restricted to
MSTs; in fact, it is applicable whenever two competing swap edges
can be compared independently of the tree edge they are to replace:

Observation 3.3. Consider any swapping problem where one can
assign constants to all non-tree edges, such that whenever two swap
edges f and g are both swaps for a failing edge e, the better one has
a lower constant. Then, Algorithm 3.2 can be applied to compute all
best swaps in O(mα(m,n)) time and O(m) space.

This observation is used in various swapping papers discussed in
the following sections. Two concrete examples of how to use the
transmuter for swap edge computation are given in Section 7.4.

3.3.2 Shortest Paths Trees

The All-Best-Swaps problem has been thoroughly studied in single-
source shortest paths trees (SPTs). A single-source shortest paths tree
T of a given graph G with a designated source node r is a spanning
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Figure 3.3: Illustration for the different objective definitions.

tree which contains, for each node t ∈ V , a shortest path (in G) from
r to t. Consequently, it holds: ∀t ∈ V : dT (r, t) = dG(r, t).

Shortest paths trees can be characterized with our formalism as
minimizing the objective ôbj(Υ) := maxt∈V (dΥ(r, t) − dG(r, t)):
For any SPT T , it holds ôbj(T ) = 0, and any spanning tree T ′ with
ôbj(T ′) = 0 is a SPT.

Setting obj := ôbj then means that the best swap should minimize
the maximum additive increase of any node from the root when going
from G to the swap tree. Indeed, this definition has been studied
and was named “the {r,∆}-problem” [67]. Apart from this variant,
the cited paper considers several natural alternatives. To define their
objective functions, let e = (x, p(x)) denote the failing edge, and let
x be the root of the subtree that is disconnected from the source node
r (see also Figure 3.3). Furthermore, let f = (u, v) be the swap edge,
where v lies within the subtree that is disconnected from the source.
The considered variants are:

(i) the {r, x}-problem: obj(Υ) = dΥ(r, x)

(ii) the {p(x), x}-problem: obj(Υ) = dΥ(p(x), x)

(iii) the {r,min}-problem: obj(Υ) = dΥ(r, v)

(iv) the {r,max}-problem: obj(Υ) = maxt∈Tx
{dΥ(r, t)}

(v) the {r,Σ}-problem: obj(Υ) =
∑
t∈Tx
{dΥ(r, t)}
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Variants (i)-(iii), as well as the {r,∆}-problem, can be solved in
O(mα(m,n)) time and O(m) space, using the transmuter approach
as described in Section 3.3.1. Depending on the variant, the con-
stant assigned to each non-tree edge must be chosen differently. Inter-
estingly, in another independent work, an alternative algorithm with
running time O(m + n log n) is given in [9], which works for vari-
ants (i)-(iii) as well as the {r,∆}-problem. This approach does not
use a transmuter, but first computes a set of O(n) swap candidates
which contains a best swap for each edge, by computing the mini-
mum weight spanning forest of an auxiliary graph. Note, however,
that the running time of this approach is never better than using a
transmuter, since mα(m,n) is in O(m+ n log n).

Variants (iv) and (v) cannot be solved in the same way. The solu-
tions in [67] require O(n

√
m) time and O(m) space for variant (iv),

and O(n2) time and space for variant (v). Some further variants of
(iii)-(v) are studied in [67], where r is replaced by p(x) in the objec-
tive function for the swap tree. These “dual” variants can all be solved
similarly and with the same asymptotic complexity as their counter-
parts. Later, an improved solution was obtained for variant (v), with
O(mα(m,m) log2 n) time andO(m) space, by mapping the problem
to a geometric setting [22, 10]2. We give an alternative algorithm for
variant (iv) with time O(m log n) in Section 4.7.

In addition to these theoretical results, an experimental study on
shortest paths trees of random graphs shows that the average quality
of a swap tree is much better than the worst-case bounds [81].

For shortest paths trees, there exist distributed algorithms which
compute all best swap edges for several objectives [28,30,71]. These
algorithms all proceed in a similar fashion, using three phases: In
a preprocessing phase, some information (for example, the distance
of each node to the root) is computed using O(m) messages. In the
second phase, for each edge e = (x, p(x)) of the spanning tree, a
separate computation is started for computing its best swap: Using a
broadcast which starts at the node x directly below the edge e, say,
some information is sent to all the nodes in the disconnected subtree
below e. This information allows each node inside Tx to compute a
best swap candidate among all swaps incident to itself. In the third
phase, a globally best among all these locally best swap edges is se-

2The cited manuscript corrects a detail in the original paper, which slightly in-
creases the stated running time from O(m log2 n) to O(mα(m,m) log2 n).
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lected using a convergecast which starts at the leaves of Tx.
Although the given high-level description applies to all mentioned

distributed algorithms for best swap computation, the actual informa-
tion which is computed and processed in both phases differs, as it
must depend on how the quality of a swap edge is defined. For the
variant (i) described above, a distributed algorithm for the All-Best-
Swaps problem uses O(n∗r) messages, where again n∗r is the size of
the transitive closure of Tr\{r}, where all edges are directed towards
the root [28]. Distributed algorithms with the same message complex-
ity were later also found for the variant (ii) [71], and for the variants
(iv), (v) and the {r,∆}-problem [30]. As a technical detail, note that
in these solutions it is assumed that only the “lower” endpoint x of the
failing edge emust know the best swap at the end of the computation,
which is why in the n∗r measure the root r need not be considered
(therefore, e.g. in a star graph where r is the center, no messages
need to be exchanged at all). In our definition of the distributed All-
Best-Swaps problem, also node p(x) needs to know the best swap.

3.3.3 Minimum Routing-Cost Spanning Tree

More recently, the All-Best-Swaps problem was generalized from the
single-source shortest paths tree to the minimum routing-cost span-
ning tree (MRCST), which minimizes the sum of the distances from
a given set of sources to all nodes in the tree. Best swaps are defined
using the natural choice obj := ôbj. For the case of two sources,
all best swap edges can be computed in O(m log n + n2) time, and
in O(mn) for cases with more sources [96]. When all nodes of
the tree are sources, the All-Best-Swaps problem can be solved in
O(n2 + mα(n, n) log n) time [10]. Note that computing a MRCST
is in general NP-hard. Motivated by this fact, it is also shown lat-
ter work that if the original spanning tree is an approximate MRCST
with certain additional properties (such a MRCST can be constructed
in polynomial time), then using a swap tree is still a constant approx-
imation of a new optimal MRCST.

3.3.4 Minimum Diameter Spanning Trees

Computing all best swaps of a MDST was one of the first swap prob-
lems that were studied. In [65], a centralized algorithm for this prob-
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lem is given which requiresO(n
√
m) time andO(m) space. For each

of the n − 1 different tree edges, this algorithm uses somewhat aug-
mented topology trees to select O(

√
m) best swap candidates, then

evaluates the quality of each of the O(
√
m) candidate swap edges in

O(1) amortized time, and selects the best among them. In order to ob-
tain the O(1) amortized time for computing the diameter of the swap
tree associated with a given swap edge, information from a prepro-
cessing phase is used, and combined with an inductive computation
that uses path compression.

3.3.5 Most Vital Edges and Nodes

In this section, we discuss related work in an area which is closely re-
lated to best swap edge computation, namely the computation of most
vital edges. Here, again transient failures of edges are considered.
The focus is different, however: One wants to find out which edge is
most vital to the network, in the sense that if it fails, the degradation
of service will be worst. In fact, the concrete approaches typically
define a measure for each edge, which reflects the degradation of the
network if this edge fails. This knowledge is useful from a manage-
ment point of view, because it highlights the important edges, so that
measures can be taken to protect these particularly well from failures.

The most vital edge (MVE) problem was so far only studied for
the shortest path between two nodes r and t in a graph G: There,
the degradation caused by the failure of an edge e on the shortest
path from r to t is defined as the length of a shortest path from r
to t in G − e, i.e., dG−e(r, t). This MVE problem can be solved
in O(m + n log n) time and O(m) space [55, 86]3. If one deviates
from the pointer-machine model which is typically used in this area,
and uses a RAM-model instead, the same problem can be solved in
O(mα(m,n)) time [64]. As an aside, we show in Section 3.4 that
in the RAM-model, there is actually a linear time solution to this
problem.

Depending on the motivating application, the degradation of a
shortest path due to an edge failure can also be defined differently:
For a failing edge e = (x, y), let x be the endpoint of e which comes
first on the shortest path from r to t. It can happen that a message
travels from r to t on the shortest path, and notices the failure only

3The cited report corrects an error in the analysis of the original paper.
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when arriving at x. To bypass the failure, the message then travels
along a shortest path in G− e from x to t. Therefore, it makes sense
to define the length of the caused detour, i.e., dG−e(x, t) − dG(x, t),
as the degradation measure, which leads to the detour-critical edge
problem, which can be solved in O(m+ n log n) time [63]. Another
variant uses the ratio dG−e(x, t)/dG(x, t) to define the degradation.
A published algorithm for this variant requires O(mn) time [90], but
since the algorithm in [63] actually computes dG−e(x, t) for every
edge e and every node x, and dG(x, t) is trivially obtained from the
input, it can be solved in O(m+ n log n) time as well.

The detour-critical edge problem has also been studied for short-
est paths trees, where it can be solved in O(mα(m,n)) time [97].
Note that this solution is faster than the corresponding one for a sin-
gle shortest path, which may look like a contradiction at first. The
explanation is that in [97], a SPT of the original graph is part of the
input, which can be used in the computation, whereas in [63] only a
shortest path is given.

As in the swap edge problems, one can also consider transient
node failures instead of edge failures, and determine the most vital
nodes. For example, the most vital node of a shortest path can be
computed in O(m+ n log n) time and O(m) space [66].

3.4 Computing the Most Vital Edge
of a Shortest Path in Linear Time

We revisit the most vital edge problem of a shortest path P between
two nodes r and t in a graph G. Using a RAM-model, Nardelli et
al. [64] give an algorithm with running time O(m · α(m,n)). Their
algorithm proceeds as follows: First, a shortest paths tree SG(r) of
G rooted at r is computed, which is possible in O(m) time in their
model (they assume that the edge lengths are not atomic, but repre-
sented as floating point numbers). Then, a shortest paths tree SG(t)
of G rooted in t is computed. They prove that a shortest path from
r to t in G − e can always be obtained by first traveling on SG(r),
then using a single edge f = (u, v) which crosses the cut induced by
e, and then continuing from v on SG(t) to t. Since the length of this
path is independent of the failing edge e, the problem becomes iden-
tical to a swap edge problem where the cost of a swap is constant. For
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each edge which does not lie on P , the correct constant is obtained
in constant time using the two computed shortest paths trees. Then,
the transmuter approach mentioned in Section 3.2 is applied, which
yields the degradation for each failing edge in O(mα(m,n)) time.

We use the following observation to improve this last step: Since
all considered failing edges lie on a path (as opposed to forming a
general tree), every edge f not on P is a swap edge for a contiguous
sequence of edges of P . Furthermore, it is easy to determine, for
every such edge f , the two nodes a and b on P which delimit this
sequence. Since each swap edge can be evaluated by its assigned
constant, finding a best swap for each failing edge on P reduces to
finding the lower envelope of a collection of O(m) horizontal line
segments. This problem can be solved in O(m) time in the RAM-
model (see [3], Section 5, the solution to problem P2). We therefore
obtain an algorithm for the MVE problem running in O(m) time,
which is asymptotically optimal. Note that the same modification
also works for the longest-detour problem discussed in [64].



Chapter 4

A Centralized Algorithm
for Minimum Diameter
Spanning Trees

4.1 Motivation

In this and the next chapter, we consider the swap edge approach
using a minimum diameter spanning tree (MDST) as the communi-
cation tree, i.e., a tree that minimizes the worst-case length of the
transmission path between any pair of nodes. The importance of min-
imizing the diameter of a spanning tree has been widely recognized
(see e.g. [12]); essentially, the diameter of a network provides a lower
bound (and often even an exact one) on the computation time of dis-
tributed algorithms which require global communication. Formally,
the objective function here is ôbj : T → Q+, where

ôbj(T ) := max
x,y∈V

{dT (x, y)},

and we use the natural choice obj := ôbj for defining best swaps.
Consequentially, a best swap edge in our case minimizes the diame-
ter of the resulting swap tree. The MDST minimizes the worst-case
length of any transmission path, even if edge lengths are not uniform.

31
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Interestingly, for MDSTs, the swap tree diameter is at most a fac-
tor of 5/2 larger than the diameter of an entirely reoptimized tree [65].
Hence, MDSTs are particularly well-suited for the swapping approach.

In this chapter, we consider the All-Best-Swaps problem in the
centralized setting. The provided algorithm can serve as a planning
tool for a network designer: For any given network, all swap edges
can be computed efficiently, as well as the resulting diameter of every
swap tree. Once a network design has been fixed, the information
about the best swaps can be stored at suitable positions in the network,
which then allows decentralized handling of edge failures during the
actual network operation (see Chapter 7).

In some scenarios, this centralized solution for computing all best
swaps is not convenient, for example if swapping is to be introduced
into a network already in existence, and nobody has complete infor-
mation about its entire topology. In this case, it is natural to solve the
All-Best-Swaps problem in a distributed setting. We give a solution
to the distributed All-Best-Swaps problem in Chapter 5.

4.2 Summary of Results

Our main result in this chapter is an algorithm for computing all best
swap edges for a MDST, which proves the following:

Theorem 4.1. Given a 2-edge-connected graph G = (V,E) with
n = |V | nodes and m = |E| edges, and a minimum diameter span-
ning tree T of G, all best swap edges of T can be computed in
O(m log n) time and O(m) space.

For m = o
(
n2/log2 n

)
, this improves upon the time complex-

ity of the previously best known solution [65], using O(n
√
m) time

and O(m) space, without increasing the space complexity. Our tech-
niques also solve the {r,max}-problem of [67], which asks for all
best swap edges in a shortest paths tree, in time O(m log n) instead
of O(n

√
m).

This improvement over the previous bounds is based on two key
ingredients: First, partitioning the set of tree edges into two partic-
ular sets, and computing their best swap edges separately using two
different techniques, and second, utilizing an essential observation
(Lemma 4.3) to simplify the computation of the diameter in a given
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Figure 4.1: A MDST T rooted at a node s on its diameter D(T ),
a failing edge e, and a swap edge f = (u, v) for e. The bold line
segments denote the diameter D(T ) of T .

swap tree. Our new observations allow for a simpler algorithm than
the previous; we use only fundamental data structures.

This chapter is organized as follows: In Section 4.3, we introduce
some terminology specific to MDSTs. Section 4.4 contains some key
observations for evaluating swap edges in MDSTs. We explain how
to compute all best swaps for failing edges lying on the diameter in
Section 4.5, and for failing edges not lying on the diameter in Sec-
tion 4.6. Finally, Section 4.7 explains how our results carry over to
the {r,max}-problem in shortest paths trees considered in [67].

The results in this chapter are the sole work of the author of this
dissertation. They have been published in [35].

4.3 Terminology

The following notation is illustrated in Figure 4.1. Given a spanning
tree T = (V,ET ) of G, let D(T ) := 〈d1, d2, . . . , dk〉 denote a diam-
eter of T , that is, a longest path in T . In the rest of this chapter, we
measure distances in the given spanning tree T , not in the underlying
graph G itself. Moreover, although G may have several MDSTs, the
symbol T shall always refer to the same MDST of G, that is, the one
given in the input. Similarly, we assume that D(T ) always denotes
the same diameter of T . We denote by Pe/f a longest path in Te/f
among all paths containing the swap edge f .
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4.4 The Quality of a Swap Edge f

for a Failing Edge e

We start with a number of observations, all of which are used in our
algorithm. Our first observation is that if the diameter of Te/f is
longer than |D(T )|, then the new diameter must go through f . More
precisely:

Lemma 4.2. For a given failing edge e of the MDST T , the length of
the diameter of Te/f is

|D(Te/f )| = max{|D(T )|, |Pe/f |}.

Proof. Let T1 and T2 be the parts into which T is split if e is removed.
It is easy to see that

|D(Te/f )| = max{|D(T1)|, |D(T2)|, |Pe/f |}. (4.1)

Since T is a MDST, we have

|D(Te/f )| ≥ |D(T )|. (4.2)

Because T1 and T2 are contained in T ,

|D(T1)| ≤ |D(T )| and |D(T2)| ≤ |D(T )|. (4.3)

If |Pe/f | ≥ |D(T )|, it is clear that |Pe/f | is a largest term in (4.1), so
the claim holds. On the other hand, if |Pe/f | < |D(T )|, then either
T1 or T2 must contain a diameter of length exactly |D(T )| (otherwise,
either (4.2) or (4.3) would be violated). Thus, the claim holds also in
this case.

In our algorithm, we always judge swap edges only according to
|Pe/f |, instead of |D(Te/f )|. This causes no problem because any
swap edge f for which |Pe/f | < |D(Te/f )| is a best swap edge for e,
since in this case |D(Te/f )| = |D(T )|.

For a given tree T = (V,ET ), and a given node r ∈ T , letL(T, r)
denote the length of a longest simple path in T which starts in node r.
Note that for f = (u, v), Pe/f is composed of three parts: the longest
path in T − e starting in u, the longest path in T − e starting in v,
and the edge f itself. Thus, we have |Pe/f | = l(f) + L(T − e, u) +
L(T − e, v). The following lemma shows how to compute L(T, r)
efficiently for any given node r ∈ V .
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Figure 4.2: Illustration for Lemma 4.3.

Lemma 4.3. Let T = (V,ET ) be a tree, and letD(T ) = 〈dS , . . . dE〉
be a diameter of T with endpoints dS and dE . Then, the length of a
longest simple path inside T starting in r ∈ V is

L(T, r) = max
{
d(r, dS), d(r, dE)

}
.

Proof. In contradiction, assume there exists a node w ∈ V such that
it holds d(r, w) > max{d(r, dS), d(r, dE)}. If r is a node on D(T ),
it follows that there exists a path of length

d(r, w) + min{d(r, dS), d(r, dE)} >

max{d(r, dS), d(r, dE)}+ min{d(r, dS), d(r, dE)} = |D(T )|

in T , a contradiction.
If r is not on D(T ), let u be the node on D(T ) closest to r (see

Figure 4.2). If u lies on the path from r to w, then the above case
shows that starting from u, no path, including the path leading to w,
can be longer than max{d(r, dS), d(r, dE)}. Hence, u cannot lie on
the path from r tow. Let z be the node on the path from r tow closest
to u (possibly, z = r). From d(r, w) > max{d(r, dS), d(r, dE)}, we
have

d(z, w) > max{d(z, dS), d(z, dE)} ≥ max{d(u, dS), d(u, dE)}

and d(u,w) > max{d(u, dS), d(u, dE)}. But this implies that the
simple path from w to u and further to dS or dE , whichever is fur-
ther from u, has length d(u,w) + max{d(u, dS), d(u, dE)} > 2 ·
max{d(u, dS), d(u, dE)} ≥ |D(T )|, a contradiction.
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We now show how, given the endpoints of a diameter of T , one
can compute L(T, r) for any given node r in constant time, after a
preprocessing step requiring O(n) time. We root the tree T at any
node, and augment it with

• a labeling of the nodes which allows to obtain the nearest com-
mon ancestor (called nca(a, b) for two nodes a, b) of two given
nodes in constant time [40];

• in every node x, store its distance to the root, called toRoot(x);

This information allows to compute the distance between two arbi-
trary nodes a and b in the tree T (and thus L(T, r)) in constant time:

d(a, b) = d(a,nca(a, b)) + d(b,nca(a, b))
= toRoot(a) + toRoot(b)− 2 · toRoot(nca(a, b)).

In our algorithm, we distinguish between failing edges on the di-
ameter, called diameter edges, and failing edges not on the diameter,
called non-diameter edges. If the given tree has several diameters, we
select one and use the same throughout the algorithm. This guaran-
tees that each edge is either a diameter edge or a non-diameter edge,
and that this classification is consistent.

4.5 Best Swap Edges for Failing Diameter
Edges

In this section, we show how to compute the best swap edges for all
failing edges which lie on the diameter D(T ) in time O(m log n) and
O(m) space.

Due to Lemma 4.2, a given swap edge f for a failing edge e can be
evaluated by computing the lengths of the two longest paths starting
at its endpoints. It turns out that these lengths can always be found by
only considering paths which visit the diameter:

Lemma 4.4. Consider a tree T = (V,ET ), a diameter D(T ) of it
with endpoints dS , dE , a failing edge e on D(T ), and an arbitrary
node r ∈ V . Let u be the node on D(T ) closest to r. One of the
longest paths in T − e starting from r contains the node u.
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Proof. Assume w.l.o.g. that r lies in the same connected component
of T−e as dS . The proof resembles the proof of Lemma 4.3: Assume
in contradiction that no longest path in T starting from r contains u,
and let 〈r, . . . , w〉 be such a path. Let z be the node on the path from
r to w closest to u (possibly, z = r). We have d(z, w) > d(z, dS),
therefore also d(u,w) > d(u, dS). This is a contradiction, because
the path in T going from dE to u and further to w would then be
longer than |D(T )|.

Due to the above lemma, a longest path starting in any endpoint
r of a given swap edge can always be found by first going to the
node u ∈ D(T ) closest to r. From there, a longest path may either
continue to the end of the diameter (dS or dE), or cross at least one
edge towards the failing edge e, and possibly leave the diameter again.
Note that going from u towards dS , but leaving the diameter again,
cannot be longer than continuing until dS .

For finding the length of a longest path starting from u efficiently,
we compute two values µS(di, di+1) and µE(di, di+1) for every node
di, i = 1, . . . , k − 1 on the diameter. By µS(di, di+1) (respectively
µE(di, di+1)), we denote the length of a longest path in T starting
at dS (dE) and not crossing the edge (di, di+1). Formally, we have
(dS := d1, dE := dk):

µS(d1, d2) = µE(dk−1, dk) = 0
µS(di, di+1) = max{µS(di−1, di), d(dS , di) + h(di)}

for i = 2, 3, . . . , k − 1, and

µE(di, di+1) = max{µE(di+1, di+2), d(dE , di+1) + h(di+1)}
for i = k−2, k−3, . . . , 1, where h(di) denotes the length of a longest
path starting in di, and not using any edges on the diameter dS , . . . dE .
It is easy to see that if T is rooted at a node on the diameter, then h(di)
can be computed for all di on the diameter inO(n) time by traversing
T in postorder. Thus, the values µS(di, di+1), µE(di, di+1) can be
computed for all di on the diameter in O(n) time.

The following lemma describes how to efficiently compute the
longest path in T − (di, di+1) starting from any node r.

Lemma 4.5. Consider any fixed diameter dS , . . . , dE of a tree T , any
node r of T , and a failing edge (di, di+1) on the diameter. Let u be



38 Chapter 4. A Centralized Algorithm for MDSTs

the node on the diameter closest to r. The length of a longest path in
T − (di, di+1) starting in r is given by

d(r, u) + max{d(u, dS), µS(di, di+1)− d(u, dS)}

if r lies in the same connected component of T − (di, di+1) as dS ,
and

d(r, u) + max{d(u, dE), µE(di, di+1)− d(u, dE)}

otherwise.

Proof. We only prove the case where r lies in the same connected
component of T − (di, di+1) as dS (the other is completely symmet-
ric). Lemma 4.4 shows that a longest path first goes from r to u
without loss of generality. We now distinguish two cases, depend-
ing on whether a longest path starting from u inside T − (di, di+1)
can be achieved by using the edge incident to u which leads to-
wards dS . In this case, a longest path is clearly the one that goes
from u until dS (any other path cannot be longer in this case because
dS , . . . , dE is a diameter of T ). Otherwise, there must exist a path in
T − (di, di+1) starting in u which is longer than d(u, dS), and which
does not use the edge incident to u leading towards dS . In this case,
the length of such a path is exactly µS(di, di+1) − d(u, dS). Fur-
thermore, in this case a longest path in T − (di, di+1) starting in dS
must consequently be longer than 2d(u, dS), that is, µS(di, di+1) >
2d(u, dS). Hence, in any case the correct length can be expressed as
d(r, u) + max{d(u, dS), µS(di, di+1)− d(u, dS)}.

4.5.1 Using Virtual Swap Edges

For any node v, let nc(v) be the node on the diameter which is closest
to v (possibly, nc(v) = v). According to Lemma 4.5, the value |Pe/f |
of a particular swap edge f = (u, v) for any failing edge e on the
diameter is one of the following four terms (assuming that u lies in
the same component of T −e as dS , and v lies in the same component
of T − e as dE):

1. d(u, dS) + d(v, dE) + l(f)

2. d(u, dS) + µE(e)− d(nc(v), dE) + d(v,nc(v)) + l(f)
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Figure 4.3: Replacing a swap edge f by three virtual swap edges
f1, f2, f3.

3. µS(e)− d(nc(u), dS) + d(u,nc(u)) + d(v, dE) + l(f)

4. µS(e)−d(nc(u), dS)+d(u,nc(u))+µE(e)−d(nc(v), dE)+
d(v,nc(v)) + l(f).

Note that in all above terms, the part depending on the failing edge
e is independent of f . Thus, if two swap edges f ′ and f ′′ for edge e
are such that their values |Pe/f ′ | and |Pe/f ′′ | both correspond to the
same of the four terms above, then we can omit the terms µS(e) and
µE(e) when comparing their quality, without affecting the compari-
son.

Furthermore, note that since µS(di, di+1) is monotonically in-
creasing in i, all the failing edges (di, di+1) for which the equation

max{d(u, dS), µS(di, di+1)− d(u, dS)} = d(u, dS)

holds form a connected path, as do all the failing edges for which
max{d(u, dS), µS(di, di+1)− d(u, dS)} = µS(di, di+1)− d(u, dS)
(the same holds for dE). Thus, for a given swap edge f = (u, v),
the set of diameter edges can be divided into at most three sets, each
composing a path, such that for each set, f ’s value is defined by a
specific one of the four terms above. We denote the endpoints of
these paths by q1, q2, q3, q4. Note that q1 = nc(u) and q4 = nc(v).

The above observations lead to the idea of introducing virtual
swap edges which replace the original swap edges, as follows (see
also Figure 4.3):

A virtual swap edge fi consists of its two endpoints, its type, and
its value. The two endpoints define a path on the spanning tree T ,
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which is equal to the set of diameter edges for which fi is a swap
edge. The type of a virtual swap edge is a number in 1, 2, 3, 4. By
definition, two virtual swap edges can only be compared if they have
the same type. The value of a virtual swap edge is a rational number.
By construction, the quality of each virtual swap edge for a given
failing edge e is identical to the quality of the original swap edge
which it is replacing. Each swap edge f is replaced by at most three
“virtual” swap edges f1, f2, f3 in the following way:

• The endpoints are: f1 = (q1, q2), f2 = (q2, q3), f3 = (q3, q4).

• For every failing edge e on D(T ) such that f ∈ S(e), exactly
one of f1, f2, f3 is a swap edge.

• The value of each fi = (u, v) is one of the terms shown above,
except for the part depending on e. Thus, it is either of

1. d(u, dS) + d(v, dE) + l(f),

2. d(u, dS)− d(nc(v), dE) + d(v,nc(v)) + l(f),

3. d(v, dE)− d(nc(u), dS) + d(u,nc(u)) + l(f),

4. d(u,nc(u))−d(nc(u), dS) +d(v,nc(v))−d(nc(v), dE)
+ l(f).

The number of the term used to compute this value corresponds
to the type of the virtual swap edge fi.

Note that although there are four different types of virtual swap
edges, each individual (original) swap edge is replaced by at most
three different virtual swap edges, whose types are all different. In
the following, we assume that a swap edge f is replaced by exactly
three virtual swap edges; if fewer virtual swap edges are required,
the adaptation of the method we describe is straightforward. Let us
summarize.

Lemma 4.6. The set of all swap edges can be replaced by at most
three times as many virtual swap edges, each having one of four types
and a value, such that the quality of two swap edges of the same
type can be compared based solely on their values. Moreover, this
transformation can be carried out using O(m log n) time and O(m)
space.
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Proof. For each swap edge f which may replace a failing edge on
the diameter, we sequentially compute the virtual swap edges re-
placing it, as defined above. To obtain q2, q3, one needs to find
the node di′ for which max{d(u, dS), µS(di′ , di′+1) − d(u, dS)} 6=
max{d(u, dS), µS(di′−1, di′)−d(u, dS)} and the node di′′ for which

max{d(v, dE), µE(di′′ , di′′+1)− d(v, dE)} 6=
max{d(v, dE), µE(di′′−1, di′′)− d(v, dE)}.

Using binary search on the sequence of diameter edges from (d1, d2)
to (dk−1, dk), this can be easily accomplished in O(log n) time per
swap edge, amounting toO(m log n) time in total. Then, q2 is defined
as the node among di′ , di′′ which is closer to dS , and q3 the other node
among di′ , di′′ .

Using the virtual swap edges, we compute, for each of the four
types t ∈ {1, 2, 3, 4} separately, the best virtual swap edge for all
failing edges on the diameter in O(m log n) time and O(m) space,
with the following simple scanline algorithm:

1. Initialize an empty Heap Ht. The virtual swap edges which are
later inserted into Ht are to be (heap-)ordered by their values.

2. Consider all failing edges ei = (di, di+1) on the diameter se-
quentially, for i = 1, 2, . . . , k. For each ei = (di, di+1):

• add toHt all those virtual swap edges whose left endpoint
(i.e., the one closer to d1) is di.

• remove from Ht all those virtual swap edges whose right
endpoint is di.

• store the current minimum of Ht as best(ei, t).

Then, for each ei and each type t, replace the virtual swap edge
best(ei, t) by its corresponding swap edge. This yields at most four
potential best swap candidates for each diameter edge ei, one of which
is a best swap. The best swap edges are then found in time O(n) by
simply computing |Pe/f | explicitly (and in constant time) for each of
these selected O(n) candidates.

As we have shown above, replacing each and every swap edge
by its virtual swap edges requires O(m log n) time and O(m) space,
and increases the number of swap edges by a factor of at most three.
Summarizing, we have:
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Theorem 4.7. All best swap edges for failing edges on a chosen di-
ameter can be computed in O(m log n) time and O(m) space.

4.6 Best Swap Edges for Failing
Non-Diameter Edges

In this section, we describe an algorithm to compute the best swap
edges for those tree edges which do not lie on the chosen diameter
D(T ) of the given MDST T . We will show that this algorithm runs
in O(m log n) time and requires O(m) space.

For our approach, we root T in an arbitrary node on the diameter,
and label all edges by their occurrence in a postorder traversal.

To begin, let f = (u, v) be an edge in E\ET such that u is a
descendant of v in T , and such that the path from u to v in T does
not contain any edge of the diameter D(T ). We call such an edge
a backedge. For a backedge f = (u, v), we call the endpoint u the
lower endpoint of f , and v the upper endpoint of f . In the follow-
ing, we assume for ease of exposition that all edges in E\ET are
backedges. In Section 4.6.6, we describe how to adapt our algorithm
to work without this assumption.

Consider the sequence of (non-diameter) tree edges e1, . . . , ek in
the path from u to v, starting with the edge incident to u: how does
|Pei/f | depend on the ei? Since the failing edge ei is not on the
diameter D(T ), the connected component of T − ei containing v still
contains D(T ). According to Lemma 4.3, the longest path in T − ei
starting in v is therefore the same for all edges e1, . . . , ek, and thus
L(T − ei, v) = L(T, v).

On the other hand, the longest path in T − ei starting in u may be
different for different failing edges ei. To characterize the structure of
these paths, we introduce a new concept: The central edge of a tree’s
diameter is the edge on the diameter which contains the center of the
diameter. More precisely, this is the diameter edge whose removal
splits it into two parts whose difference in length is minimum (there
could be two edges satisfying this definition; any of them can be cho-
sen). Note that the position of the central edge determines in which
direction a longest path starting in a particular node goes (again using
Lemma 4.3): all longest paths which start on one side of the central
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Figure 4.4: Grouping of swap edges according to their endpoints in
Tx. Sets of endpoints whose swap edges are grouped together are
enclosed in dashed shapes.

edge go to the opposite end of the diameter.

We now focus on a particular failing (non-diameter) edge e =
(x, p(x)) for which the best swap is to be computed. Let (h, p(h)) be
the central edge of Tx. By Lemma 4.3, the longest path starting in u
inside Tx will contain (h, p(h)). This fact allows to partition the set
S(e) of swap edges for e into groups as follows (see Figure 4.4):

• All swap edges having their lower endpoint below the central
edge (h, p(h)) will have a longest path going up towards this
edge, and then further on to the furthest node in Tx (this furthest
node is the endpoint of the diameter of Tx which lies outside of
Th, and which is precomputed). We call this the lower group,
and denote it by Glower(x). Formally, Glower(x) := {(u, v) ∈
E\ET |u ∈ Th ∧ v /∈ Tx}.
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• All swap edges having their lower endpoint u above the central
edge (i.e., not in Th) will have a longest path which first leads
to some node on the path from p(h) to x, then continue down
towards the central edge, and finally going into a deepest leaf in
Th (this node is the endpoint of Tx’s diameter which lies inside
Th, which is also precomputed). We can partition these swap
edges into groups distinguished by the nodew = nca(u, h), the
first node on the path from p(h) to x contained in their longest
path in T − e starting in u. These groups are called the upper
groups, and denoted by Gupper(x,w). Formally:
Gupper(x,w) := {(u, v) ∈ E\ET |u ∈ Tx\Th ∧ nca(u, h) =
w ∧ v /∈ Tx}.

This grouping is helpful for computing best swap edges, due to the
following fact:

Lemma 4.8. In any group Gupper(x,w) or Glower(x), a best swap
candidate for the failing edge e = (x, p(x)) is a swap edge f = (u, v)
for which L(T, v) + l(f) + toRoot(u) is minimum.

Proof. For swap edges in the lower group, all “longest paths” in Tx
are identical after crossing the central edge. For each upper group
corresponding to some node w, all “longest paths” in Tx are identical
after reaching w.

In order to compare the best candidates of different upper groups,
an additional offset has to be added to each candidate’s value, such
that the so-called updated value of a candidate f is exactly equal to
|Pe/f |. For f = (u, v) with nca(u, h) = w, this updated value is

L(T, v) + l(f) + toRoot(u)− toRoot(w) + d(w, vdeep), (4.4)

where vdeep is the endpoint of D(Tx) in Th. For the following, it is
useful to denote by GR(x) the union of all groups associated with a
given edge e = (x, p(x)).

4.6.1 Relations between Groups for Different Non-
Diameter Tree Edges

There is a close connection between the central edges of a subtree Tx
rooted at a node x and the central edges of the subtrees of this node’s
children. Indeed, the following lemma is easy to prove:
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Lemma 4.9 (Proof omitted). Consider a tree edge e = (x, p(x)) and
the child c ∈ C(x) for which the central edge ofD(Tx) is either (c, x)
or an edge in Tc. Then, the central edge of D(Tx) lies on the path
from the central edge of D(Tc) to e (possibly, the central edges of
D(Tc) and of D(Tx) are identical).

Thus, the central edge only moves “upwards” when failing edges
are visited in postorder: it never occurs that the central edge of Tx lies
below the central edge of Td for any descendant d of x. This implies
that for any particular backedge f = (u, v), if a longest path in T −ei
starting in u does not visit any child of u, then nor will a longest path
in any T − ej , j > i.

Recall that we consider all (non-diameter) failing edges in a pos-
torder. In the following, we show how the groups of swap edges for
a non-diameter tree edge e = (x, p(x)) relate to the groups of previ-
ously considered failing edges. Later, we exploit these relations using
a collection of suitable data structures.

The set of swap edges for edge e = (x, p(x)) can be expressed as

S(e) = start-at(x) ∪
 ⋃
q∈C(x)

S((q, x))

 \ end-at(x),

where start-at(x) is the set of swap edges whose lower endpoint is x,
and end-at(x) is the set of swap edges whose upper endpoint is x. We
now describe how S(e) is partitioned into the lower group and all the
upper groups of e.

Let c ∈ C(x) be the child of x for which the central edge of
D(Tx) is either (c, x) or an edge in Tc. Furthermore, let (g, p(g))
be the central edge of D(Tc) and let (h, p(h)) be the central edge of
D(Tx) (see Figure 4.5).

Clearly, all swap edges which belong to the upper group of e as-
sociated with w = x are

Gupper(x, x) = start-at(x) ∪
 ⋃
q∈C(x),q 6=c

S((q, x))

 \ end-at(x)

= start-at(x) ∪
 ⋃
q∈C(x),q 6=c

GR(q)

 \ end-at(x).
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Figure 4.5: A failing edge e = (x, p(x)), the central edge (h, p(h))
of D(Tx), the child c ∈ C(x) whose subtree contains h, and the
central edge (g, p(g)) of D(Tc).

For any w 6= x on the path from p(h) to c, thanks to Lemma 4.9, we
can express the set of swap edges in the upper group of e associated
with w as

Gupper(x,w) = Gupper(c, w) \ end-at(x).

Finally, the swap edges belonging to the lower group of e are

Glower(x) = S((c, x)) ∩
{ ⋃
d∈Th

start-at(d)

}
\ end-at(x)

=

Glower(c) ∪
 ⋃
d∈〈p(g),...,h〉

Gupper(c, d)


 \ end-at(x).

4.6.2 Our Data Structure

Our approach visits all non-diameter tree edges in postorder, and
computes a best swap edge for each of them sequentially. In order to
leverage our observations about connections between best swaps for
different edges, we associate a compound data structure, denoted by
GroupsDS(x), with each considered edge e = (x, p(x)). This struc-
ture contains a representation of the group Glower(x) and all groups
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Gupper(x,w) for w ∈ 〈p(h), . . . , x〉 (recall (h, p(h)) denotes the cen-
tral edge), from which a best swap for e can be extracted in constant
time. Moreover, it is designed such that GroupsDS(x) can be effi-
ciently composed of their counterparts of previously visited edges.

Lemma 4.9 implies that visiting all (non-diameter) failing edges
in postorder results in a corresponding sequence of central edges that
is also in postorder (although this may be only a subset of all tree
edges). This is crucial for the correctness of our approach, because
once we used a data structure GroupsDS(x′) associated with a pre-
viously visited edge (x′, p(x′)) to compute GroupsDS(x), the old
data structure GroupsDS(x′) is no longer available (as it has been
altered/merged into GroupsDS(x)).

In GroupsDS(x), each group is represented by a Fibonacci-Heap
(short F-Heap in the following). It is widely known that F-Heaps
support all of the operations

• make-heap,

• insert(·),

• find-min,

• merge(·,·)

in O(1) amortized time, and the operations delete(·) as well as
delete-min in O(log n) amortized time, where n is the number of
elements in the F-Heap [32].

Each swap edge f contained in a group G is stored in the corre-
sponding F-Heap, using the value L(T, v)+ l(f)+toRoot(u), which
we call the invariant value of f , as its key1. Note crucially, that this
value is independent of the failing edge, and according to Lemma 4.8
the minimum element in the F-Heap corresponding to a group is the
best swap (in this group) for the currently considered failing edge.
Furthermore, even when this F-Heap is later altered, by inserting or
deleting some swap edges, or by merging the F-Heap with another,
the value associated with a given swap edge need never be changed.
Specifically, GroupsDS(x) contains:

1Technically speaking, the key must be made unique by using the tuple (L(T, v)+
l(f) + toRoot(u), f) as key, where comparisons are based mainly on the first com-
ponent, and the second is only used to break ties. We omit this detail in the main text
for ease of exposition.
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1. the diameter D(Tx) (given by the labels of its endpoints)

2. the central edge of D(Tx): (h, p(h)) (given by the labels of h
and p(h)). If x is a leaf node in T , h is undefined, and in this
case, it is assumed that p(h) = x.

3. the child c ∈ C(x) which contains the central edge (h, p(h)).
More precisely: either (c, x) is the new central edge, or the
central edge is contained in the subtree Tc (see Figure 4.5).

4. a list heaplist(x) of F-Heaps, containing, for each node w on
the path from p(h) to x, an F-Heap FHupper(x,w) of all swap
edges in Gupper(x,w). The order of the F-Heaps in the list
corresponds to the order of the respective nodesw (lowest node
first).

5. an F-Heap FHlower(x) of all swap edges whose lower endpoint
lies in Th.

In principle, the best swap for e is found by choosing the candidate
with minimum updated value among the best of each group. Do-
ing this naively would require at least linear time in the number of
groups, i.e., at least linear in the number of nodes between e and the
central edge. To expedite this process during the induction, we use
an ordinary minimum heap which contains the updated values of the
best candidate from each upper group. The best swap edge is then
either the minimum element in this heap, or the best candidate from
the lower group. Thus, GroupsDS(x) additionally contains the fol-
lowing item:

6. an ordinary minimum heap CandHeap(x), containing for each
F-Heap in heaplist(x) the best swap candidate, (heap-)ordered
by their quality (i.e., their Pe/f - lengths as defined in Equa-
tion 4.4).

From this information, a best swap edge for (x, p(x)) is found in
constant time by comparing the best candidate in CandHeap(x) with
the best candidate in FHlower(x), and taking the better of the two:

Lemma 4.10. Given the data structure GroupsDS(x) associated
with the non-diameter tree edge e = (x, p(x)), a best swap edge
for e can be obtained in constant time.
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4.6.3 A Preprocessing Step

In this section, we explain how to compute the first three items of
GroupsDS(x) for all x, i.e. the diameter D(Tx), the central edge of
D(Tx) and the child c ∈ C(x) containing it, in O(n) time.

First, we traverse all nodes of the tree in postorder, to precompute
the following information: In addition to toRoot(x), we associate
with every node x the height of its subtree Tx, called height(x). Sec-
ond, we compute D(Tx) for every node x ∈ V . This can be done
in O(n) time by traversing the tree in postorder, using induction: the
diameter of the subtree rooted at a node x is either equal to the largest
diameter found in any of its subtrees, or it is (roughly speaking) a path
composed of the longest paths in those two of its subtrees which are
deepest when first prolonged by the edge leading to x. Furthermore,
it is straightforward to associate with each node x the child c ∈ C(x)
which contains the center of D(Tx).

During the same inductive computation, we associate with every
node x the central edge of D(Tx). All of these central edges can be
found in O(n) time as follows: for every non-diameter edge ei =
(xi, p(xi)) in postorder, find the central edge mi = (hi, p(hi)) by
considering all non-diameter edges in the same order, and checking
for each (in constant time) whether it is the central edge of D(Txi

).
Due to Lemma 4.9, we know that either mi = mi−1, or mi must
come later than mi−1 in the given postorder. Thus, we consider each
non-diameter edge at most once during this traversal.

4.6.4 Our Inductive Approach

Let us see how GroupsDS(x) can be constructed efficiently when
visiting a new tree edge e = (x, p(x)) in the postorder traversal. First,
we associate with each node x ∈ V a list start-at(x) containing all
swap edges whose lower endpoint is x, and a list end-at(x) containing
all swap edges whose upper endpoint is x, in O(m) total time.

Lemma 4.11. In the base case of the induction, when x is a leaf,
constructing GroupsDS(e) takesO(1+|start-at(x)|) amortized time.

Proof. Note that the central edge is undefined in this case, so we as-
sume p(h) = x. Hence, FHlower(x) is the empty heap, which is con-
structed in constant time. heaplist(x) contains one entry, namely the
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F-Heap FHupper(x, x), which is created by inserting into an empty F-
Heap all edges in start-at(x), using their invariant values for the heap
order. This step takes O(1 + |start-at(x)|) amortized time.

Lemma 4.12. Consider any tree edge e = (x, p(x)), where x is
not a leaf node of T . Provided that for all children q ∈ C(x),
GroupsDS(q) is available, the data structure GroupsDS(e) can be
computed inO(log n+ |C(x)|+(|start-at(x)|+ |end-at(x)|) · log n+
αx · log n) amortized time, where αx = (

∑
q∈C(x) |heaplist(q)|) −

|heaplist(x)|.

Proof. Let c be the child of x which contains the central edge of
D(Tx), as computed in Section 4.6.3. We consider the path Q =
〈p(g), . . . , h〉 from the central edge of D(Tc) to the central edge of
D(Tx). For the moment, ignore the fact that swap edges in end-at(x)
must be removed. Using the relations from Section 4.6.1, we proceed
as follows: FHupper(x, x) is obtained by merging all F-Heaps corre-
sponding to a group in GR(q), for q ∈ C(x), q 6= c, and inserting
all edges in start-at(x) into the resulting F-Heap, using their invariant
values as keys. This step takes

O

(start-at(x) +
∑

q∈C(x),q 6=c
|heaplist(q)|

)
log n


amortized time. Similarly, FHlower(x) is obtained by merging all
F-Heaps FHupper(c, d), for d ∈ 〈p(g), . . . , h〉, and merging the re-
sulting F-Heap with FHlower(c). This step takes O((|heaplist(c)| −
|heaplist(x)|) log n) amortized time. Still ignoring the swap edges in
end-at(x), note that for each w ∈ 〈p(h), . . . , c〉, we have

FHupper(x,w) = FHupper(c, w).

It remains to delete all swap edges in end-at(x) from all these
data structures. This can be achieved in O(|end-at(x)| log n) amor-
tized time, as follows. For each edge f = (u, v) ∈ end-at(x), we
compute w = nca(u, h) in constant time, and distinguish two cases:
(i) If w 6= h, we know by construction that f must be contained in
FHupper(x,w) (and in no FHupper(x,w′), w 6= w′ ). We simply
remove the edge from this F-Heap2. (ii) If w = h, then by con-

2In order to find the element in the given heap in O(logn) time, a dictionary is
required. For simplicity, we omit this detail in the main text.



4.6. Best Swap Edges for Failing Non-Diameter Edges 51

struction f must lie in FHlower(x). In this case, we remove f from
FHlower(x). In both of these cases, if the removed element was the
current minimum element of the F-Heap, then the corresponding en-
try in CandHeap(x) must be deleted, and the new minimum element
inserted (unless the F-Heap is now empty).

Due to Lemma 4.9, heaplist(x) can be obtained from heaplist(c),
where all F-Heaps corresponding to nodes on Q are removed, and
adding the new F-Heap FHupper(x, x). In CandHeap(x), the can-
didate corresponding to each of these removed F-Heaps must be re-
moved as well.

Furthermore, the best candidate of the new F-Heap FHupper(x, x)
must be inserted in CandHeap(x) (unless FHupper(x, x) is empty).
The exact value for this candidate, say f , is

L(T, v) + l(f) + toRoot(u)− toRoot(x) + d(x, vdeep),

where vdeep is the endpoint of D(Tx) which lies below the current
central edge. Note that d(x, vdeep) = l((x, c)) + height(Tc).

4.6.5 Analysis

Theorem 4.13. All best swap edges for failing edges not lying on
the chosen diameter can be computed in O(m log n) time and O(m)
space.

Proof. We have already seen in Section 4.6.3 that the preprocessing
step can be completed in O(n) time. It remains to analyze the total
cost of all the inductive computations during the postorder traversal.

By Lemmas 4.11 and 4.12, the amortized time for visiting a tree
edge (x, p(x)) is bounded by O(log n + |C(x)| + (|start-at(x)| +
|end-at(x)|) · log n+ αx · log n) amortized time, where

αx =

 ∑
q∈C(x)

|heaplist(q)|
− |heaplist(x)|.

Furthermore, it is easy to see that∑
x∈V ′

|end-at(x)| ≤ m,
∑
x∈V ′

|start-at(x)| ≤ m, and
∑
x∈V ′

|C(x)| ≤ n,
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where V ′ ⊂ V is the set of nodes v for which (v, p(v)) does not lie
on the diameter of T . Finally, we have∑
x∈V ′

αx ≤
∑

x∈V,x 6=root
αx

=
∑

x∈V,x 6=root

( ∑
q∈C(x)

|heaplist(q)|
)
− |heaplist(x)|


=
(∑
x∈V
|heaplist(x)|

)
−

∑
x∈V,x 6=root

|heaplist(x)|)

= |heaplist(root)|,
and since |heaplist(r)| ≤ n for any node r,

∑
x∈V ′ αx ≤ n.

Hence, summing up the time for traversing all tree edges, we ob-
tain O(n log n + n + m log n + m log n + n log n) = O(m log n).
As to the space complexity, note that at any time during the induc-
tive computation, each swap edge is contained in at most one F-Heap.
Therefore, the total amount of space required for these heaps isO(m)
at all times. For the other data structures used in our algorithm, the
O(m) space bound is obvious.

4.6.6 Transforming Non-Tree Edges to Backedges

So far, we have assumed that all swap edges are backedges. We
now describe how to replace any edge f by at most two “virtual”
backedges, whose lengths are defined in such a way that the best
swap edge computed by our algorithm is correct. That is, if the com-
puted best swap for a given failing edge e is a virtual backedge, then
replacing the virtual backedge by the edge f it represents yields a
(non-backedge) swap edge for e with the same quality. Formally, we
replace f = (u, v) by f1 := (u, v1) and f2 := (v, u2) (recall that
these tuples are ordered), with lengths l(f1) := l(f) + d(v, v1) and
l(f2) := d(u, u2). If the path from u to v in T uses one or more edges
of D(T ), we define v1 := nc(u) and v2 := nc(v). Otherwise, we de-
fine v1 := nca(u, v) and u2 := nca(u, v). If it happens that u = v1,
we omit f1, and if v = u2, we omit f2. To see why this replacement
works, note that in both cases f1 represents f exactly for all failing
edges on the path in T from u to v1, and f2 represents f exactly for
all edges from v to u2 (i.e., for each non-diameter tree edge, exactly
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one of {f1, f2} represents f ). Furthermore, the lengths of f1 and f2

are defined exactly such that for any failing edge e for which fi is a
swap edge, it holds |D(Te/fi

)| = |D(Te/f )|. Summarizing, we have:

Theorem 4.14. All best swap edges for failing edges not on a chosen
diameter can be computed in O(m log n) time and O(m) space.

4.7 Improved Swap Edge Computation for
Shortest Paths Trees

In this section, we briefly outline how the results presented so far can
be adapted to the “{r,max}-problem” as defined in Section 3.3.2,
for which the best previous algorithm required O(n

√
m) time and

O(m) space [67]. We show that our results can be applied to this
problem by giving a reduction: Suppose a graph G, a source node
r and a shortest paths tree T are given. Choose a value q which is
larger than the total length of all the edges in G. We add to this graph
two new nodes v1, v2, and three new edges: (r, v1) with length q,
(r, v2) with length q/2, and (v1, v2) with length q/2. We denote the
thus obtained graph by G′. Clearly, G′ is again 2-edge-connected.
Moreover, the edge (r, v1) is so long that for every failing edge e of
T , and for every swap edge candidate f for e, every diameter of Te/f
must either contain the edge (r, v1) or, alternatively, the edges (r, v2)
and (v1, v2). Therefore, the resulting diameter of any such swap edge
will be the distance from its endpoint in S1 to v1. Note that this is
exactly the distance from its endpoint in S1 to r plus q. Moreover,
note that if we add to T the edges (r, v1) and (v1, v2), we obtain a
MDST of the extended graph G′ (clearly, no other spanning tree of
G′ can have a smaller diameter). Since our algorithm for computing
best swap edges in a MDST always evaluates a given swap f for e by
the value |Pe/f | (and not by |D(Te/f )|), applying it to G′ will always
yield a swap edge for which |Pe/f | is minimum. By construction,
for any e and f , |Pe/f | is exactly q plus the maximum distance from
r to any point in S2 (measured in the swap tree Te/f ). Hence, for
every edge e of T , a best swap for e in G′ (measured by the resulting
diameter) is also a best swap for e in G (measured as the maximum
distance from r to any node in S2). The above transformation clearly
takes only linear time in m and n, and so we have:

Theorem 4.15. Given a 2-edge-connected graph G = (V,E) with
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n = |V | nodes and m = |E| edges, a root node r ∈ V and a short-
est paths tree T of G rooted in r, all best swap edges of T can be
computed in O(m log n) time and O(m) space.



Chapter 5

A Distributed Algorithm
for Minimum Diameter
Spanning Trees

5.1 Motivation

In this chapter, we solve the distributed All-Best-Swaps problem for
minimum diameter spanning trees (MDSTs) in a time- and message-
efficient fashion. The provided algorithm complements the central-
ized solution of the previous chapter. It is useful if the network at
hand is not planned by a central authority, and no global view of the
network is available. In such a distributed setting, it is crucial that all
best swaps are precomputed before a failure occurs: once a link fail-
ure is present, the network is disconnected, and finding a best swap
at this time would be very difficult, if not impossible. Our solution
addresses this setting in an efficient way: the costs of computing all
best swap edges with our method are easily subsumed by the costs
of constructing a MDST distributively using the state-of-the-art dis-
tributed algorithm [12]. Thus, it is cheap to precompute all the best
swaps in addition to constructing a MDST initially.

We assume for our solution that no failures occur during the dis-
tributed computation of all best swaps. This may seem unrealistic
under the assumption that transient failures occur, for which we want

55
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to use swap edges. However, note that the distributed algorithm we
propose is rather fast (its running time is linear in the hop-diameter
of the network), so it is unlikely that even a single failure occurs dur-
ing this short period of time (if a link does fail, we can just run the
computation again once it has been repaired). Moreover, the pre-
computation of best swaps will usually be performed soon after the
network has been set up, when its components are still new and there-
fore less prone to errors. On the other hand, during the operational
lifespan of the network, which naturally lasts much longer than the
initial computation of best swaps, failures are bound to occur.

5.2 Summary of Results

We give an asynchronous distributed algorithm for computing all best
swaps of a MDST using no more than O(n∗ + m) messages of size
O(1) each. Here, the size of a message denotes the number of atomic
values that it contains, such as node labels, edge lengths, path lengths
etc., and n∗ is the size of the transitive closure of the MDST with
edges directed towards the node of the tree which initiates the com-
putation. Therefore, under the natural assumption that each such
value can be represented using O(log n) bits, our algorithm com-
plies with the restrictions of the CONGEST model. Both n∗ and
m are very natural bounds: When each subtree triggers as many
messages as there are nodes in the subtree, the size of the transi-
tive closure describes the total number of messages. Furthermore,
it seems inevitable that each node receives some information from
each of its neighbors in G, taking into account each potential swap
edge, resulting in Ω(m) messages. Indeed, we show in Section 5.7
that Ω(n∗ +m) messages are necessary under some natural assump-
tion. Our algorithm runs in O(‖D‖) time (in the standard sense, as
explained in Section 2.2.2), where ‖D‖ is the hop-length of the diam-
eter path of G; note that this is asymptotically optimal. The message
and time costs of our algorithm are significantly lower than the costs
of computing a MDST, which requires O(n) time complexity and
uses O(nm) messages [12].

The main structure of our algorithm is the same as in the related
work discussed in Chapter 3.3.2. Just like the best swaps algorithms
for shortest paths trees (see [28, 71, 30]), our algorithm (like many
fundamental distributed algorithms) exploits the structure of the tree



5.3. Terminology 57

d1

dk

dc

dc+1dc−1

T

VC VRVL

Figure 5.1: A minimum diameter spanning tree T .

under consideration. The minimum diameter spanning tree, however,
is substantially different from shortest paths trees in that it requires
a significantly more complex invariant to be maintained during the
computation: We need to have just the right collection of pieces of
information available so that on the one hand, these pieces can be
maintained efficiently for changing failing edges, and on the other
hand, they can be composed to reveal the diameter at the correspond-
ing steps in the computation.

In Section 5.3, we introduce the terminology specific to this chap-
ter. Section 5.4 states our assumptions about the distributed setting
and explains the basic idea of our algorithm. In Section 5.5, we study
the structure of diameter paths after swapping, and we propose an al-
gorithm for finding best swaps. The algorithm uses information that
is computed in a preprocessing phase, described in Section 5.6. In
Section 5.7, we show that the message complexity of our algorithm is
optimal under certain assumptions.

The results of this chapter were obtained in collaboration with
Peter Widmayer and Nicola Santoro [36].

5.3 Terminology

Note that throughout this chapter, we measure distances in the given
spanning tree T , not in the underlying graph G itself. The hop-length
‖P‖ := r − 1 of a path P = 〈p1, . . . , pr〉 is the number of edges
that P contains. Like in the previous chapter, given a spanning tree
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Figure 5.2: A swap edge f = (u, v) for e = (x, p(x)).

T = (V,ET ) ofG, letD(T ) := 〈d1, d2, . . . , dk〉 denote a diameter of
T , that is, a longest path in T (see Figure 5.1). Where no confusion
arises, we abbreviate D(T ) with D. Furthermore, define the center
dc of D as a node such that the lengths of DL := 〈d1, d2, . . . , dc〉
and DR := 〈dc, dc+1, . . . , dk〉 satisfy |DL| ≥ |DR| and (under this
condition) have the smallest possible difference |DL| − |DR|. We
consider T to be rooted at dc. Let VL (L stands for “left”) be the
set of nodes in the subtree rooted at dc−1, VR the set of nodes in the
subtree rooted at dc+1, and VC all other nodes.

A local swap edge of node z for some failing edge e is an edge in
S(e) incident to z. Throughout this chapter, let e = (x, p(x)) denote
a failing edge and f = (u, v) a swap edge, where v is a node inside
Tx, and u a node in T\Tx.

5.4 Algorithmic Setting and Basic Idea

In this chapter, we assume the asynchronous distributed model as de-
scribed in Chapter 2.2.2. Each node knows its own neighbors in T and
in G, and for each neighbor the length of the corresponding edge. At
the end of the distributed computation, for every edge e = (x, p(x))
of T , the selected best swap edge f (if any exists) must be known to
the nodes x and p(x) (but not necessarily to any other nodes). Each
message sent from some node to one of its neighbors arrives eventu-
ally (there is no message loss). Furthermore, nodes do not need to
know the total number of nodes in the system (although it is easy to
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count the nodes in T using a convergecast).

5.4.1 The Basic Idea

Our goal is to compute, for each edge of T , a best swap edge. A swap
edge for a given failing edge e = (x, p(x)) must connect the subtree
of T rooted at x to the part of the tree containing p(x). Thus, a swap
edge must be incident to some node inside Tx. If each node in Tx
considers its own local swap edges for e, then in total all swap edges
for e are considered. Therefore, each node inside Tx finds a best lo-
cal swap edge, and then participates in a minimum finding process
that computes a (globally) best swap edge for e. The computation
of the best local swap edges is composed of three main phases: In a
first (preprocessing) phase, a root of the MDST is chosen, and various
pieces of information (explained later) are computed for each node.
Then, in a second (top-down) phase each node computes and for-
wards some “enabling information” (explained later) for each node
in its own subtree. This information is collected and merged in a
third (bottom-up) phase, during which each node obtains its best lo-
cal swap edge for each (potentially failing) edge on its path to the
root. The efficiency of our algorithm will be due to our careful choice
of the various pieces of information that we collect and use in these
phases.

To give an overview, we now briefly sketch how each node com-
putes a best local swap edge. First observe that after replacing edge
e by f , the resulting diameter is longer than the previous diameter
only if there is a path through f which is longer than the previous
diameter, in which case the path through f is the new diameter. In
this case, the length of the diameter equals the length of a longest
path through f in the new tree. For a local swap edge f = (u, v)
connecting nodes v ∈ V (Tx) and u ∈ V \V (Tx), such a path consists
of

(i) a longest path inside T\Tx starting in u,

(ii) edge f , and

(iii) a longest path inside Tx starting in v.

Part (i) is computed in a preprocessing phase, as described in Sec-
tion 5.6. Part (ii) is by assumption known to v, because f is incident
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to v. Part (iii) is inductively computed by a process starting from the
root x of Tx, and stopping in the leaves, as follows. A path starting in
v and staying inside Tx either descends to a child of v (if any), or goes
up to p(v) (if p(v) is still in Tx) and continues within Tx\Tv . For the
special case where v = x, node x needs to consider only the heights
of the subtrees rooted at its children, where the height of a subtree
denotes the maximum length of any path from the subtree root to a
leaf in the subtree. All other nodes v in Tx additionally need to know
the length of a longest path starting at p(v) and staying inside Tx\Tv .
This additional enabling information will be computed by p(v) and
then be sent to v.

Once the best local swap edges are known, a best (global) swap
edge is identified by a single minimum finding process that starts at
the leaves of Tx and ends in node x. To compute all best swap edges
of T , this procedure is executed separately for each edge of T . This
approach will turn out to work with the desired efficiency:

Theorem 5.1. All best swap edges of a MDST can be computed in an
asynchronous distributed setting with O(n∗ + m) messages of con-
stant size, and in O(‖D‖) time.

Note that a naive algorithm, in which each node sends its topol-
ogy information to the root, where the solution is computed and then
broadcast to all nodes, would be a lot less efficient than the above
bounds in several respects: Since the root must receive Θ(m) edge
lengths in this naive algorithm, possibly through only a constant num-
ber of edges (e.g. if the MDST has constant degree), its running
time would be Ω(m), possibly much higher than O(‖D‖) (which
is O(n)). Furthermore, sending information about the m edges to
the root would require Ω(mn) constant size messages in some cases,
as the information might have to travel through Ω(n) intermediate
nodes. Reducing the number of messages to O(n) would be possible
by increasing the message size from constant to O(m), which how-
ever does not seem practical.

We will prove the above theorem in the next sections, by proving
that the preprocessing phase can be realized with O(m) messages,
and after that the computation of all best swap edges requires at most
O(n∗) additional messages.

Our algorithm requires that each node knows which of its neigh-
bors are children and which neighbor is its parent in T . Although
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this information is not known a priori, it can be easily computed in
a preprocessing phase, during which a diameter and a root of T are
selected.

5.5 How to Pick a Best Swap Edge

In our distributed algorithm, we compute for each (potentially) failing
edge the resulting new diameter for each possible swap edge candi-
date. This approach can be made efficient by exploiting the structure
of changes of the diameter path, as described in the following.

5.5.1 The Structure of Changes of the Diameter Path

For a given failing edge e, let Pe/f be a longest path in Te/f that goes
through swap edge f for e. Then, recall Lemma 4.2 from Chapter 4:
The length of the diameter of Te/f is

|D(Te/f )| = max{|D(T )|, |Pe/f |}.

That is, for computing the resulting diameter length for a given
swap edge f = (u, v) for e, we only need to compute the length of a
longest path in Te/f that goes through f . For node v in the subtree Tx
of T rooted in x, and u outside this subtree, such a path Pe/f consists
of three parts. To describe these parts, let L(H, r) denote a longest
path starting in node r and staying inside the graph H . The first part
is a longest path L(T\Tx, u) in T\Tx that starts in u. The second part
is the edge f itself. The third part is a longest path L(Tx, v) starting
in v and staying inside Tx. This determines the length of a longest
path through f as |Pe/f | = |L(Tx, v)|+ l(f) + |L(T\Tx, u)|.

5.5.2 Distributed Computation of |L(Tx, v)|
For a given failing edge e = (x, p(x)), each node v in Tx needs its
|L(Tx, v)| value to check for the new diameter when using a swap
edge. This is achieved by a distributed computation, starting in x.
As x knows the heights of the subtrees of all its children (from the
preprocessing), it can locally compute the height of its own subtree
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Tx as |L(Tx, x)| = maxq∈C(x){l(x, q) + height(Tq)}, where C(x)
is the set of children of x. For a node v in the subtree rooted at x,
a longest simple path either goes from v to its parent and hence has
length |L(Tx\Tv ∪ {(v, p(v))}, v)|, or goes into the subtree of one
of its children and hence has length |L(Tv, v)| (see Figure 5.3). The
latter term has just been described, and the former can be computed
by induction by the parent r of v and can be sent to v. This inductive
step is identical to the step just described, except that v itself is no
candidate subtree for a path starting at r in the induction. In total,
each node r computes, for each of its children q ∈ C(r), the value of

|L(Tx\Tq ∪ {(q, r)}, q)| = l(q, r) +
max

{
|L(Tx\Tr ∪ {(r, p(r))}, r)|,

max
s∈C(r),s6=q

{l(r, s) + height(Ts)}
}
,

and sends it to q, where we assume that |L(Tx\Tr ∪ {(r, p(r))}, r)|
was previously sent to r by p(r).

A bird’s eye view of the process shows that each node v first com-
putes |L(Tx, v)|, and then computes and sends |L(Tx\Tq∪{(q, v)}, q)|
to each of its children q ∈ C(v). Computation of the |L(Tx, v)| val-
ues finishes in Tx’s leaves. Note that a second value will be added to
the enabling information if (x, p(x)) ∈ D, for reasons explained in
the next section.

5.5.3 Distributed Computation of |L(T\Tx, u)|
In the following, we explain how v can compute |L(T\Tx, u)| for a
given swap edge f = (u, v). In case the failing edge e = (x, p(x)) /∈
D, we show below that the information obtained in the preprocessing
phase is sufficient.

For the sake of clarity, we analyze two cases separately, starting
with the simpler case.
Case 1: The removed edge e is not on the diameter. For this
case, we know from [65] that at least one of the longest paths in
T\Tx starting from u contains dc. If u ∈ VL, we get a longest
path from u through dc by continuing on the diameter up to dk, and
hence we have |L(T\Tx, u)| = d(u, dc) + |DR|. If u is in VC or
VR, some longest path from u through dc continues on the diameter
up to d1, yielding |L(T\Tx, u)| = d(u, dc) + |DL|. Remarkably, in
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this case |L(T\Tx, u)| does not depend on the concrete failing edge
e = (x, p(x)), apart from the fact that (u, v) must be a swap edge for
e.
Case 2: The removed edge e is on the diameter. We analyze the
case e ∈ DL, and omit the symmetric case e ∈ DR. If u ∈ VL or
u ∈ VC , we know from [65] that again, one of the longest paths
in T\Tx starting at u contains dc. Thus, for u ∈ VL we are in
the same situation as for the failing edge not on the diameter, lead-
ing to |L(T\Tx, u)| = d(u, dc) + |DR|. For u ∈ VC , after dc a
longest path may continue either on DR, or continue to nodes in
VL

1. In the latter case, the path now cannot continue on DL until
it reaches d1, because edge e lies on DL. Instead, we are interested
in the length of a longest path that starts at dc, proceeds into VL,
but does not go below the parent p(x) of x on DL; let us call this
length λ(p(x)). As announced before, we include the λ(p(x)) value
as a second value into the enabling information received by p(x);
then, we get |L(T\Tx, u)| = d(u, dc) + max{|DR|, λ(p(x))}. The
remaining case is u ∈ VR. For this case (see Figure 5.4), we know
(from [65]) that at least one of the longest paths in T\Tx starting at u
passes through the node u′ closest to u on D(T ). After u′, this path
may either

(i) continue on DR up to dk, or

(ii) continue through dc going inside VC , or

(iii) continue through dc going inside VL (without crossing e =
(x, p(x))), or

(iv) continue towards dc only up to some node di on DR, going
further on non-diameter edges inside VR.

Option (i) yields a length of d(u, dk) = d(u, u′) + d(u′, dk) =
d(u, u′)+(|DR|−d(dc, u′)). Option (ii) requires the term γ, denoting
the length of a longest path starting in dc and consisting only of nodes
in VC . The length of the path using this option is then d(u, dc) + γ.
Option (iii) yields the length d(u, dc) + λ(p(x)).

It remains to show how the length of a longest path of the last
type (Option (iv)) can be found efficiently. We propose to combine

1The option of going back into VC can be ignored because it cannot yield a path
longer than DR.
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Figure 5.3: Illustration of the tree Tx\Tv ∪ {(v, p(v))}.

three lengths, in addition to the length of the path from u to u′. The
first is the length of a longest path inside VR that starts at dk; let
us call this length µR. In general, this path goes up the diameter
path DR for a while, and then turns down into a subtree of VR, away
from the diameter, at a diameter node that we call ρR (see Figure
5.4). Given µR, the distance from u′ to ρR, and the distance from
ρR to dk, the desired path length of an upwards turning path inside
VR is d(u, u′) + d(u′, ρR) + µR − d(dk, ρR). Note that while it may
seem that ρR needs to lie above u′ on DR, this is not really needed
in our computation, because the term above will not be larger than
Option (i) if ρR happens to be at u′ or below. Furthermore, in this
case Option (iv) cannot be better than Option (i) and thus need not be
considered. In total, we get

|L(T\Tx, u)| = max
{
d(u, dk), d(u, dc) + γ,

d(u, dc) + λ(p(x)),
d(u, u′) + d

(
u′, ρR

)
+ µR − d

(
dk, ρR

)}
.

All of these path length computations can be carried out locally
with no message exchanges, if the constituents of these sums are
available locally at a node. We will show in the next section how
to achieve this in an efficient preprocessing phase.

5.5.4 The BESTDIAMSWAP Algorithm

For a given edge e = (x, p(x)) that may fail, each node v in the
subtree Tx rooted at x executes the following steps:
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Figure 5.4: Computing |L(T\Tx, u)| if e ∈ DL, v ∈ VL and u ∈ VR.

(i) Wait for the enabling information from the parent (unless x =
v), and then compute |L(Tx, v)|. Compute the enabling infor-
mation for all children and send it.

(ii) For each local swap edge f = (u, v), compute |L(T\Tx, u)| as
described in Section 5.5.3.

(iii) For each local swap edge f = (u, v), locally compute

|D(Te/f )| = max
{
|D(T )|,

|L(Tx, v)|+ l(f) + |L(T\Tx, u)|
}
.

Among these, choose a best swap edge f∗local and store the re-
sulting new diameter as |D(Te/f∗local

)|. If no local swap edge
exists, then create a “dummy” candidate whose diameter length
is∞.

(iv) From each child q ∈ C(v), receive the node label of a best
swap edge candidate f∗q and its resulting diameter |D(Te/f∗q )|.
Pick a best swap edge candidate f∗b among these, i.e., choose
b := arg minq∈C(v) |D(Te/f∗q )|. Compare the resulting diame-
ter of f∗b and f∗local, and define fbest as the edge achieving the
smaller diameter (or any of them if their length is equal), and
its diameter as |D(Te/fbest

)|.

(v) Send the information fbest, |D(Te/fbest
)| to the parent.
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The above algorithm computes the best swap edge for one (poten-
tially) failing edge e, based on the information available after the pre-
processing phase. In order to compute all best swap edges of T , we
execute this algorithm for each edge of T independently. A pseu-
docode description of algorithm BESTDIAMSWAP is given in Algo-
rithm 1. BESTDIAMSWAP in turn uses algorithm LONGEST, which
is described in Algorithm 2.

Analysis of the Algorithm

We now show that the proposed algorithm indeed meets our efficiency
requirements:

Theorem 5.2. After preprocessing, executing the BESTDIAMSWAP
algorithm independently for each and every edge e ∈ ET costs at
most O(n∗) messages of size O(1) each, and O(‖D‖) time.

Proof. Correctness follows from the preceding discussion. Prepro-
cessing ensures that all precomputed values defined for the other end
u of a candidate swap edge are available locally at v (these values
are required to compute, e.g., |L(T\Tx, u)|). As to the message com-
plexity, consider the execution of the BESTDIAMSWAP algorithm for
one particular edge e = (x, p(x)). Starting in node x ∈ V \{dc},
each node in Tx sends a message containing the “enabling informa-
tion” (i.e., L(Tx\Tq, q) and possibly λ(p(x))) containing O(1) items
to each of its children. Furthermore, each node in Tx (including fi-
nally x) sends another message with size O(1) up to its parent in the
minimum finding process. Hence, two messages of sizeO(1) are sent
across each edge of Tx, and one message is sent across e. Thus, the
computation of a best swap for e requires 2·|ETx

|+1 = 2·|V (Tx)|−1
messages. The number of messages exchanged for computing a best
swap edge for each and every edge (x, p(x)) where x ∈ V \{dc} is∑
x (2 · |V (Tx)| − 1) = 2n∗ − (n− 1).

As to the time complexity, note that the best swap computation of
a single edge according to the BESTDIAMSWAP algorithm requires
at most O(‖D‖) time. Now note that this algorithm can be executed
independently (and thus concurrently) for each potential failing edge:
In this fashion, each node x in T sends exactly one message to each
node in Tx during the top-down phase. Symmetrically, in the bottom-
up phase, each node z in T sends exactly one message to each node
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Algorithm 1: BESTDIAMSWAP(x, v).

Describes how node v computes a best swap for e = (x, p(x)).1

BESTDIAMSWAP(x, v) is executed for each tree edge e ∈ ET
separately and concurrently, using a farthest-first contention
resolution policy.
if v = x then2

m := 03

else4

{ z 6= x }5

Wait until m = |L(Tx\Tv ∪ {(v, p(v))}, v)| is received6

from parent.
if x ∈ D then wait for information λ(p(x)) from parent.7

end8

|L(Tx, v)| := max
{
m,maxq∈C(v){l(v, q) + height(Tq)}

}
9

for each local swap edge f = (v, u) do10

|Pe/f | := |L(Tx, v)|+ l(f)+ LONGEST(e, f)11

|D(Te/f )| := max{|Pf |, |D(T )|}12

end13

for each child q ∈ C(v) do14

compute the enabling information:15

|L(Tx\Tq ∪ {(q, v)}, q)| :=16

l(v, q) + max
{
m,maxs∈C(v),s6=q{l(v, s) + height(Ts)}

}
if x ∈ D then append λ(p(x)) to the enabling information17

and send it to q.18

end19

wait until all children have sent back their best swap candidate20

currentbest := a best among these and the local swap21

candidates
if there is no swap candidate then { all children have sent a22

“dummy” candidate, and there are no local swap candidates }
currentbest := a “dummy” candidate whose diameter23

length is∞.
if v = x then24

store currentbest as the best swap edge for e25

inform p(x) about the best swap edge currentbest.26

else { v 6= x }27

send that swap edge to p(v)28
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Algorithm 2: LONGEST(e = (x, p(x)), f = (u, v)).
Input: an edge e = (x, p(x)) whose best swap edge shall be

computed, and a local swap edge f = (u, v).
Output: the length |L(T\Tx, u)| of a longest path in T\Tx

that starts in u.
if e is on the diameter (i.e., x ∈ D) then1

if x ∈ VL then { e ∈ VL }2

if u ∈ VL then3

{ one longest path containing f goes through dc: }4

return d(u, dc) + |DR|5

else if u ∈ VC then6

{ one longest path containing f goes through dc: }7

return d(u, dc) + max{|DR|, λ(p(x))}8

else if u ∈ VR then9

{ Let u′ be the nearest ancestor of u on the10

diameter. One longest path from u must go through
u′. }

11 d(dk, ρR) := |DR| − d(ρR, dc)11

d(u′, ρR) := |d(u′, dc)− d(ρR, dc)|12

d(u′, dk) := |DR| − d(u′, dc)13

14 d(u, u′) := d(u, dc)− d(u′, dc)14

from-u′ := µR − d(dk, ρR) + d(u′, ρR)15

return d(u, u′) + max{d(u′, dk), d(u′, dc) +16

λ(p(x)), from-u′}
end17

else {x ∈ VR : symmetric to x ∈ VL }18

{ code omitted because it is completely symmetric to19

the above case }
else { e not on the diameter }20

if u ∈ VL then21

return d(u, dc) + |DR|22

else { u ∈ VC or VL, and |DL| ≥ |DR| }23

return d(u, dc) + |DL|24

end25
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on its path to the root. The crucial point here is to avoid that some of
these messages block others for some time (as only one message can
traverse a link at a time). Indeed, one can ensure that each message
reaches its destination inO(‖D‖) time as follows. A node z receiving
a message with destination at distance d from z forwards it only after
all messages of the protocol with a destination of distance more than
d from z have been received and forwarded. By induction over the
distance of a message from its destination, this “farthest-first” con-
tention resolution policy (see also [51]) allows each message to tra-
verse one link towards its destination after at most one time unit of
waiting. Thus, the O(‖D‖) time complexity also holds for the entire
algorithm.

Instead of sending many small messages individually, we can
choose to sequence the process of message sending so that messages
for different failing edges are bundled before sending (see also [28,
30] for applications of this idea). This leads to an alternative with
fewer but longer messages:

Corollary 5.3. After preprocessing, the distributed All-Best-Swaps
problem can be solved using O(n) messages of size O(n) each, and
in O(‖D‖) time.

5.6 The Preprocessing Phase

The preprocessing phase serves the purpose of making the needed
terms in the sums described in the previous section available at the
nodes of the tree. Details of this phase can be found in the pseudocode
given as algorithm Preprocessing 1 in Algorithm 3, and algorithm
Preprocessing 2 in Algorithms 5, 6 and 7.

5.6.1 Algorithms

In the preprocessing phase, a diameter D of T is chosen, and its two
ends d1 and dk as well as its center dc are identified. This can be done
essentially by a convergecast, followed by a broadcast to distribute the
result (see e.g. [82]); the details are standard and therefore omitted.
After preprocessing exchanges O(n) messages, each node knows the
information that is requested in (A) and (C) below. It is crucial that
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Algorithm 3: Preprocessing 1 for node z: Finding a diameter.

{ Let T̃s be the connected component of T − {(s, z)}1

containing s. Each message
Ms = (deepestnode, height, source, diamLen, d1, dk) from
neighbor s contains the identifier of a deepest node in T̃s,
height(T̃s) + l(s, z), the neighbor s that sent the message, the
length of a diameter of T̃s, and its two endpoints d1 and dk. }
Diams := {}; Heights := {}2

if z is a leaf then3

last := the only node in N̄T (z)4

5 Send (z, l(z, last), z, 0, z, z) to last.5

else { z not a leaf }6

Wait until at least |N̄T (z)| − 1 neighbors’ messages have7

been received.
last := node in N̄T (z) whose message has not yet been8

received, or was received last.
for each message Ms from neighbor s ∈ N̄T (z)\{last} do9

(deepestnode, height, s, diamLen, d1, dk) := Ms10

Insert (deepestnode, height, s) into Heights.11

Insert (diamLen, d1, dk) into Diams.12

end13

(diamLen∗, d∗1, d
∗
k) := Update(Heights, Diams)14

(a, heighta, sa) := a tuple in Heights with highest15

heighta.
Send (a, heighta + l(z, last), sa, diamLen∗, d∗1, d

∗
k) to16

last.
end17

Wait until a message (from last) is received.18

if the message is Mlast from last and id(z) < id(last) then19

{ Locally compute the global diameter of T : }20

21 Insert (deepestnode, height) from Mlast into Heights21

Insert (diamLen, d1, dk) from Mlast into Diams22

(diamLen∗, d∗1, d
∗
k) := Update(Heights, Diams)23

Send “D = (d∗1, d
∗
k, diamLen

∗)” to all neighbors.24

else if the message is “D = (d1, dk, |D|)” then25

Forward “D = (d1, dk, |D|)” to all other neighbors.26

end27

Start Preprocessing 2.28
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Procedure Update(Heights, Diams)

(a, heighta, sa) := a tuple in Heights with highest heighta.1

(b, heightb, sb) := a tuple in Heights\{(a, heighta, sa)}2

with highest heightb.
3 Insert (heighta + heightb, a, b) into Diams.3

return (diamLen∗, d∗1, d
∗
k) := a triple in Diams with highest4

diamLen∗.

Algorithm 5: Preprocessing 2 for node z: Computing informa-
tion about the diameter.
{ Determine if z is itself on the diameter D:1

After Preprocessing 1, every node knows D, d1 and dk. If no2

message containing d1 (dk) as the deepest node was received,
then d1 (dk) must be in T̃last: }

3 Find (d1, height1, s1) tuple in Heights, set s1 := last if none3

found.
Find (dk, heightk, sk) tuple in Heights, set sk := last if none4

found.
if (s1 = sk) then { z is not on D }5

Upon receiving M∗ from neighbor q,6

set (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),7

|DL|, |DR|, V∗, d(z, dc), u, d(u, dc)) := M∗ , where8

V∗ ∈ {VL, VC , VR}; set parent := q; and send
M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, V∗, d(z, dc) + d(z, r), u, d(u, dc)) to every9

neighbor r ∈ N̄T (z)\{parent}.
{ Send the message M ′ across each non-tree edge: }10

Send M ′ := (d(z, dc), V∗, u′, d(u′, dc)) to all neighbors11

z′ ∈ N̄G(z)\N̄T (z).
return12

end13

14 { z is on D. In this case, z knows at least one of the distances14

d(z, d1) = height(T̃d1) and d(z, dk) = height(T̃dk
). }

if s1 = last then height1 := |D| − heightk15

if sk = last then heightk := |D| − height116

{ height1 = d(z, d1) and heightk = d(z, dk). }17

Continued on the next page.18
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Algorithm 6: Preprocessing 2, continued (1)

1 if
(
height1 ≥ heightk

) ∧ (height1 − l(z, s1) <1

heightk + l(z, s1)
)

then { z is dc }
2 λ(dc) := 0; |DL| := height1; |DR| := heightk2

3 Send
(
λ(dc), l(s1, z)

)
to s1 and

(
λ(dc), l(sk, z)

)
to sk3

Receive
(
µ, ρ, d(ρ, dc), d1

)
from s1 and4 (

µ′, ρ′, d(ρ, dc)′, d′k
)

from sk, and set
(µL, ρL, d(ρL, dc) :=

(
µ, ρ, d(ρ, dc), d1

)
,5

(µR, ρR, d(ρR, dc) :=
(
µ, ρ, d(ρ, dc), dk

)
.

Forward M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),6

|DL|, |DR|, VL, 0) to dc−1.7

Forward M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),8

|DL|, |DR|, VR, 0) to dc+1.9

Forward M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),10

|DL|, |DR|, VC , 0) to all neighbors11

in NT (dc)\{dc−1, dc+1}.12

Continued on the next page.13

during preprocessing, each node obtains enough information to later
carry out all computational steps to determine path components (i),
(ii) and (iii). More precisely, each node gets the following global
information (the same for all nodes):

(A) The endpoints d1 and dk of the diameter, the length |D| of the
diameter, and the lengths |DL| and |DR|.

(B) The length µR of a longest path starting in dk that is fully inside
Tdc+1 , together with the node ρR on D where this path leaves
the diameter, and the distance d(ρR, dc). Figure 5.5 illustrates
such a longest path µR. Symmetrically, the values µL, ρL and
d(ρL, dc) are also required.

In addition, each node z obtains the following information that is spe-
cific for z:

(C) For each child q ∈ C(z) of its children, the height of q’s subtree
Tq .

(D) Whether z is on the diameter D or not.
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Algorithm 7: Preprocessing 2, continued (2)

else { z 6= dc }1

Wait for the message containing λ and d(z, dc).2

(i, heighti, si) := a tuple in Heights\{(s1, ·, ·), (sk, ·, ·)}3

with largest heighti.
4 Compute λ(z) := max{λ, d(z, dc) + heighti}.4

Send
(
λ(z), d(z, dc) + l(z, s1)

)
to s1, and5 (

λ(z), d(z, dc) + l(z, sk)
)

to sk.
6 if z is d1 then6

µ(d1) := 07

Send
(
µ(d1), d1, d(d1, dc), d1

)
to sk8

else if z is dk then9

µ(dk) := 010

Send
(
µ(dk), dk, d(dk, dc), dk

)
to s1.11

else { z is on D, but z /∈ {d1, dc, dk} }12

Upon receiving
(
µ, ρ, d(ρ, dc), d∗

)
, where13

d∗ ∈ {d1, dk}, compute
µ(z) := max{µ, d(d∗, z) + heighti} and set ρ(z) := z
and dist := d(z, dc) if µ(z) > µ, and ρ(z) := ρ and
dist := d(ρ, dc) otherwise.

14 Forward
(
µ(z), ρ(z), dist

)
along the diameter.14

Upon receiving M∗ from one neighbor on the diameter,15

set (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, V∗, d(z, dc)) := M∗,16

where V∗ ∈ {VL, VC , VR}, send17

M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),18

|DL|, |DR|, V∗, d(z, dc) + d(z, q)) to the other19

neighbor q on the diameter, and send
M∗ := (µL, ρL, d(ρL, dc), µR, ρR, d(ρR, dc),
|DL|, |DR|, V∗, d(z, dc) + d(z, r), u, d(u, dc)) to all
other neighbors r ∈ N̄T (z)\{q}.

Send M ′ := (d(z, dc), V∗, u′, d(u′, dc)) to all neighbors20

z′ ∈ N̄G(z)\N̄T (z).
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d1

dk

dc

dc+1

dc−1

di

λ(di)
µR

ρR

T

Figure 5.5: Definition of λ(di), µR and ρR.

(E) The distance d(z, dc) from z to dc.

(F) The identification of the parent p(z) of z in T .

(G) To which of VL, VC and VR does z belong.

(H) If z /∈ D, the closest ancestor u of z on the diameter; the dis-
tance d(u, dc) from u to dc.

(I) If z is on the left (right) diameter DL (DR), with z = di, the
length λ(di) of a longest path in T starting at dc and neither
containing the node dc+1 (dc−1) nor the node di−1 (di+1), nor
any node from VC (see Figure 5.5).

(J) For each of the neighbors z′ of z in G, which of VL, VC and
VR contains z′; the distance d(z′, dc) from z′ to dc; the nearest
ancestor u′ of z′ on D, the distance d(u′, dc).

Computing the Additional Information

Recall that the first preprocessing part ends with a broadcast that in-
forms all nodes about the information described in (A) and (C). The
second part of the preprocessing phase follows.

A node z receiving the message about D can infer from the pre-
vious convergecast whether it belongs to D itself by just checking
whether the paths from z to d1 and dk go through the same neighbor
of z.
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Information (E) is obtained by having the center node send a “dis-
tance from dc” message to both neighbors dc+1 and dc−1 onD, which
is forwarded and updated on the diameter2. This information is used
by the diameter nodes for computing λ(di), required in (I). The cen-
ter initiates the inductive computation of λ(di):

• λ(dc) = 0.

• For each dj , 1 ≤ j < c,

λ(dj) = max{λ(dj+1), d(dc, dj) + h2(dj)},

h2 being the height of a highest subtree of dj apart from the
diameter subtree.

• For each dj , c < j ≤ k,

λ(dj) = max{λ(dj−1), d(dc, dj) + h2(dj)}.

In order to compute µL and µR as required in (B), we define µ(di) for
each node di on DL as the length of a longest path starting in d1 that
is fully inside Tdi

, together with the node ρ(di) on DL where such a
path leaves the diameter. For di on DR, the definition is symmetric.
We then have µL = µ(dc−1) and µR = µ(dc+1). The inductive
computation of µ(di) is started by d1 and dk, and then propagated
along the diameter:

• µ(d1) = µ(dk) = 0;

• for each dj , 1 < j < c,

µ(dj) = max{µ(dj−1), d(d1, dj) + h2(dj)};

• for each dj , c < j < k,

µ(dj) = max{µ(dj+1), d(dk, dj) + h2(dj)}.
2The message is updated as follows: when forwarded through an edge on the di-

ameter, the length of this edge is added to the forwarded distance. This ensures that
each node which receives the message obtains its own distance from dc. Details are
described in Algorithm 6.
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Along with µ(dj), ρ(dj) and d(ρ(dj), dc) can be computed as well.
The computation stops in dc, which receives the messages

(µ(dc−1), ρ(dc−1), d(ρ(dc−1), dc)) = (µL, ρL, d(ρL, dc))

and

(µ(dc+1), ρ(dc+1), d(ρ(dc+1), dc)) = (µR, ρR, d(ρR, dc)).

Altogether, this second preprocessing part operates along the diame-
ter and takes O(‖D(T )‖) = O(n) messages.

Distributing the Information

When the computation of the two triples (µL, ρL, d(ρL, dc)) and
(µR, ρR, d(ρR, dc)) completes in dc, the center packs these values
plus the values |DL| and |DR| into one message M∗. It adds the
appropriate one of the labels “VL”,“VR” and “VC” to M∗, before for-
warding M∗ to dc−1, dc+1 and any other neighbor of dc in T and
then flooding the tree. Additionally, M∗ contains the “distance from
dc” information which is updated on forwarding, such that all nodes
know their distance to the center3. When M∗ is forwarded from a
node u ∈ D to a node not on D, it is extended by the “distance from
u” information, which is also updated on forwarding. In addition,
d(u, dc) is appended to M∗. Finally, if node z receives M∗ from
node v, then z learns that v is its parent.

At the end of this second part of the preprocessing phase, each
node z′ sends a message M ′ to each of its neighbors z in G\T . Note
that this is the only point in our solution where messages need to be
sent over edges in G\T . M ′ contains d(z′, dc) and exactly one of
{ “z′ ∈ VL”, “z′ ∈ VC” , “z′ ∈ VR” }, whichever applies. Further-
more, let u′ be the nearest ancestor of z′ on D; the distance d(u′, dc)
is also appended to M ′.

As a consequence, after each node has received its version of the
messageM∗, the information stated in (B), (E), (F), (G), (H) is known
to each node. Furthermore, each node that has received M ′ from all
its neighbors in G knows the information stated in (J). The distribu-
tion of this information requires O(‖D(T )‖) time and O(m) mes-
sages. Let us summarize.

3The nodes onD already have that information at this point, but all other nodes still
require it.
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Lemma 5.4. After the end of the two parts of the preprocessing phase,
which requires O(‖D‖) time, all nodes know all information (A)–(J),
and O(m) messages have been exchanged.

Recognizing Swap Edges Using Labels

A node v ∈ Tx must be able to tell whether an incident edge f =
(v, w) is a swap edge for e = (x, p(x)) or not. We achieve this by the
folklore method of attaching two labels to each node: The first label
is the node’s number in a preorder traversal, while the second is its
number in a reverse preorder traversal. For any two nodes, a simple
comparison of both respective labels tells whether one node lies in
the subtree of the other node (see, e.g., [28, 30]). In Section 7.2, we
describe this labeling in detail, and show how it can even be used for
a compact routing scheme with swap capability.

5.7 Message Lower Bound for Best Swaps
Computation

In this section, we show that any distributed algorithm requires to
send Ω(n∗ + m) messages in the worst case to solve the distributed
All-Best-Swaps problem in a minimum diameter spanning tree. Thus,
the distributed algorithm that was presented in this chapter is asymp-
totically optimal in terms of the number of messages. The lower
bound exploits the fact that information about a best swap edge must
travel from one of the best swap’s endpoints to one endpoint of the
corresponding failing edge. It requires the assumption that the iden-
tifiers of edges are atomic and hence incompressible. That is, if k
edge identifiers are to be communicated through a link, then Ω(k)
messages must be sent across that link.

We construct a family of graphs G on n nodes, and a subset Ê of
the edges of Gs MDST, such that no two different edges of Ê have
the same best swap. Then, for every failing edge e ∈ Ê and its best
swap f , we consider the shortest path in terms of hops (in G) that
connects either endpoint of the failing edge with either endpoint of
its (unique) best swap edge. Since the identifier of the best swap f
(which is initially only available at the endpoints of f ) must somehow
reach the endpoints of e, we know that the sum of the hop-lengths
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Figure 5.6: An example of the graph used for the Ω(n∗ + m) lower
bound, and some of its best swap trees, for k = 3.

of all these paths is an asymptotic lower bound for the number of
messages sent by any algorithm which solves the distributed All-Best-
Swaps problem. For our lower bound proof, we require the following
lemma:

Lemma 5.5. For two edges e, f of a graph Q, let ||e, f ||Q denote the
minimum number of hops required to go from either endpoint of e to
either endpoint of f in Q. For every n, there exists a graph G with at
least n nodes, with root r, whose MDST T is unique, and there is a
subset Ê of T ’s edges, such that

• no non-tree edge f is a best swap for two different edges in Ê,
and for every edge e ∈ Ê, there is exactly one best swap edge
bestswap(e), and

• it holds that

8 ·
∑
e∈ bE
||e, bestswap(e)||G ≥ n∗r ,
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where n∗r is the size of the transitive closure of T , if all edges
are directed towards r.

Proof. W.l.o.g., let n be such that n = 4k + 2 for some k ∈ N.
We define G as follows: V := {1, 2, . . . , n}, and E :=

{
(i, i +

1)|i ∈ {1, 2, . . . , n−1}}∪{(j, j+ 2k+ 1)|j ∈ {1, 2, . . . , 2k+ 1}}.
The edge lengths are l(i, i + 1) := 1 for i ∈ {1, 2, . . . , n − 1} and
l(j, j + 2k + 1) := 2k + 2 for j ∈ {1, 2, . . . , 2k + 1}. The root r is
node 2k + 1. Figure 5.6 shows an example for k = 3.

It is easy to verify that the unique MDST of G is the path con-
sisting of the edges {(i, i + 1)|i ∈ {1, 2, . . . , n − 1}, which has
diameter n − 1 = 4k + 1. We will focus on failing edges Ê :={

(2h + 1, 2h + 2)|h ∈ {k, k + 1, . . . , 2k}}. For every such edge
e = (2h + 1, 2h + 2), the unique best swap is (h + 1, h + 2k + 2),
whose endpoints bisect the two paths in T − e, leading to a diameter
of 4k + 2. Note that replacing e by any other swap edge would yield
a longer diameter, and hence no two edges in Ê have a common best
swap edge.

In the following, letHQ(a, b) be the distance in hops from node a
to node b in the graph Q. It remains to compute ||e, bestswap(e)||G
for every edge e ∈ Ê. To that end, we first prove the following
claim: “For any two nodes a, b for which HT (a, b) ≤ k, it holds that
HT (a, b) = HG(a, b).” We show this as follows: Let x := HT (a, b).
Consider any path from a to b in G. When moving from a to b along
edges of G, moving along an edge of T changes the number of the
current node by 1 modulo 2k + 1. However, moving along any other
edge of G does not change the number of the current node modulo
2k + 1. Therefore, the hop-length of any path from a to b in G is
lower bounded by the hop-length of the shortest path from ā := a
mod (2k + 1) to b̄ := b mod (2k + 1) in the cycle consisting of
the nodes 0, 1, . . . , 2k, as shown in Figure 5.7. We need to determine
the length of a shortest path from ā to b̄ in this cycle. The only two
candidates are the two simple paths from ā to b̄. Since HT (a, b) = x,
there exists a path of length x from ā to b̄ in this cycle. It follows
that the alternative path (which is disjoint from the former) has length
2k + 1 − x. By assumption, x ≤ k, so 2k + 1 − x ≥ k + 1 ≥ x.
Hence, it follows that HG(a, b) ≥ x, which proves our claim.

Returning to ||e, bestswap(e)||G, where e = (2h+1, 2h+2) and
bestswap(e) = (h+1, h+2k+2), we require a bound on the length
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Figure 5.7: The “modulo 2k + 1 view” for bounding the length of
a shortest path in terms of hops from a to b, showing the example
ā = 8, b̄ = 3.

of a shortest path connecting any of the four pairs (2h + 1, h + 1),
(2h+1, h+2k+2), (2h+2, h+1), (2h+2, h+2k+2), because each
of these connects one endpoint of the failing edge with one endpoint
of its best swap edge. In the following, we only consider the pair
(2h + 2, h + 2k + 2) and bound ||e, bestswap(e)||G by noting that
the shortest path connecting any of the other three pairs can be at most
two hops shorter.

By the claim proved above, the shortest path from 2h + 2 to h +
2k + 2 in G is the path 〈2h + 2, . . . , h + 2k + 2〉 in T , because
HT (2h+ 2, h+ 2k + 2) = 2k − h ≤ k.

We have
∑
e∈ bE ||e, bestswap(e)||G

=
∑

h∈{k,k+1,...,2k}
||(2h+ 1, 2h+ 2), (h+ 1, h+ 2k + 2)||G

≥
∑

h∈{k,k+1,...,2k}
2k − h− 2 =

1
2
k2 − 3

2
k − 2.
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On the other hand,

n∗r =
∑

v∈V \{r}
HT (v, r)

=

(
2k∑
i=1

2k − i+ 1

)
+

(
4k+2∑
i=2k+2

i− (2k + 1)

)
= 4k2 + 4k + 1.

We have to show that 8 · ( 1
2k

2 − 3
2k − 2) ≥ 4k2 + 4k + 1, which is

equivalent to ( 8
2 − 4)k2 + ( 3·8

2 − 4)k ≥ 1 + 2 · 8. It is easy to verify
that this condition is satisfied for any k ≥ 3, from which the lemma
follows.

From the above lemma, we immediately have an Ω(n∗) lower
bound for the message complexity of computing all best swaps in a
MDST (if we let r be the node which initiates the computation):

Theorem 5.6. Any distributed algorithm for solving the distributed
All-Best-Swaps problem requires to send at least Ω(n∗) messages in
the worst case.

Since in the family of graphs used for the proof, the number of
edges is m = O(n), and n∗ ∈ Ω(n), we also obtain a lower bound
Ω(m) for the case m = Θ(n). Moreover, one can easily modify the
above family of graphs by adding more edges (up to Θ(k2) = Θ(n2))
of sufficient length between the nodes {1, . . . , k}, without changing
the MDST nor the best swap edge for any of the edges in Ê and thus
without decreasing the number of required messages. Since the lower
bound for the number of messages is Ω(n2) in our construction, the
above theorem in fact holds for any asymptotic growth of m.

Corollary 5.7. Any distributed algorithm for solving the distributed
All-Best-Swaps problem requires to send at least Ω(n∗ + m) mes-
sages in the worst case.

A similar comment applies to the asymptotic growth of n∗. In
the proof above, n∗ = Θ(n2), but the construction can be modified
easily to slow down the growth of n∗ with respect to n down to any
rate between Θ(n) and Θ(n2). To that end, we use several copies
of the constructed graph, each consisting of o(n) nodes (the exact
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number depends on the desired asymptotic growth of n∗), but place
the root r at the node 1, and join these copies together by identifying
the root node. Using very similar arguments as in Lemma 5.5, one can
again show that the required number of messages is lower bounded
by Ω(n∗).



Chapter 6

Algorithms for
Minimum-Stretch Tree
Spanners

6.1 Motivation

In the last two chapters, we were concerned with swap edge compu-
tation in minimum diameter spanning trees. While such trees min-
imize the longest distance any message may need to travel to reach
its destination, MDSTs can be in some sense unfair: There might be
a pair of nodes a, b whose distance in the underlying topology G is
rather small, but whose distance in any MDST will be much larger,
as shown in Figure 6.1. This calls for an alternative which tries to
keep the increase in distance between every pair of nodes as small
as possible. Indeed, such a spanning tree type has been proposed in
the literature: so-called tree spanners [14]. A spanning tree T of G
is called a t-spanner, for some t ∈ N, if for every pair a, b ∈ V , it
holds that dT (a, b) ≤ t · dG(a, b). The smallest t for which T is a
t-spanner of G is called its stretch. An optimal tree spanner for G
is a spanning tree whose stretch is minimum. Hence, an optimal tree
spanner minimizes the largest multiplicative increase in distance that
any pair of nodes experiences when routing inside the tree instead of
the entire network. Unfortunately, it is NP-complete to compute the

83
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Figure 6.1: An example where using a MDST leads to much longer
paths between some pairs of nodes, compared to the underlying graph
G.

optimal tree spanner of a given graph [14].
In this chapter, we deal with the problem of computing best swaps

in optimal tree spanners. Formally, we have

ôbj(T ) := max
a,b∈V

dT (a, b)/dG(a, b)

and
obj := ôbj,

so we use a definition for the best swap edge which is natural accord-
ing to our framework. Note that we measure the stretch of a swap
tree still with respect to the original graph, which includes the failed
edge. One may consider to measure the stretch with respect to the
graph without the failing edge. However, in weighted graphs such a
stretch definition would be very unstable. Indeed, with such a defi-
nition it could happen that the swap tree used during an edge failure
has a lower stretch than the stretch of the initial optimal tree span-
ner, which we consider rather unnatural1. Interestingly enough, by
merely going for the best swap, for graphs with unit edge lengths we
are guaranteed to find a tree that is not all that bad even in comparison
with an entirely new optimal tree spanner: We show that the stretch of

1For example, let G be the unweighted cycle on n nodes: The optimal tree spanner
of G has stretch n − 1, but for any failing edge e, the (unique) swap tree, which is
exactly the graph G− e, has stretch 1.
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a swap tree T ′ obtained by adding a best swap edge is at most twice
that of an optimal tree spanner of G− e (measured w.r.t. distances in
G).

This particular All-Best-Swaps problem appears to be consider-
ably more difficult than the previously studied ones: In all of the
latter, one can evaluate a tree obtained by replacing a failing edge
with a swap edge in constant time, after some suitable preprocessing.
However, for evaluating the stretch of a tree spanner, one needs to
consider (at least implicitly) the stretch of each pair of nodes in the
graph, which seems impossible to do in constant time, without an ex-
pensive precomputation. Furthermore, in the previously studied prob-
lems, the quality of a given swap edge could be described somewhat
independently of the particular failing edge they are going to replace.
Again, this is no longer possible when evaluating swap edges for tree
spanners. For the above reasons, none of the techniques used in ear-
lier studies are directly applicable for computing all best swaps of a
tree spanner.

6.2 Related Work

The concept of graph spanners was introduced by Peleg and Ull-
man [77] who used it to construct good synchronizers for commu-
nication networks. Later, Peleg and Upfal [78] showed that span-
ners are useful as subnets for routing as they optimize both the route
lengths and the space required for storing routing information. Sparse
graph spanners, and in particular tree spanners, are useful in many
applications such as designing communication networks, distributed
systems, and parallel computers [14]. The problem of finding a tree
spanner that minimizes the maximum stretch, called the MMST prob-
lem, is NP-hard [14]. There is a O(log n)-approximation algorithm
for the MMST in graphs with unit edge lengths [26].

6.3 Summary of Results

We first present and analyze a brute force algorithm for solving the
All-Best-Swaps problem in Section 6.4. For a graph with n nodes and
m edges, this algorithm requires O(m2n) time and O(m) space. In



86 Chapter 6. Algorithms for Minimum-Stretch Tree Spanners

Section 6.5, we describe a more efficient algorithm with time com-
plexity O(m2 log n) and space complexity O(m). We also present
an O(n3) time and O(n2) space solution for graphs with unit edge
lengths, also called unweighted graphs, in Section 6.6. Finally, in
Section 6.7 we compare our approach of using swap edges with the
alternative of recomputing an optimal tree spanner for the graph ex-
cluding the faulty edge.

The results of this chapter were obtained in collaboration with
Shantanu Das and Peter Widmayer [21].

6.4 Computing All Best Swaps

6.4.1 Some Definitions and Properties

We use the following definitions throughout this chapter.

Definition 6.1. For any pair of nodes a, b ∈ V (G), the stretch of
(a, b) in a spanning tree T of G is the ratio given by

StretchT (a, b) := dT (a, b)/dG(a, b)

When we replace an edge e = (x, y) in the optimal tree spanner
T by a swap edge f , the stretch of a pair (a, b) of nodes remains
the same in the new tree Te/f if a and b are in the same connected
component of T − e. The following properties further simplify the
computation of the stretch of Te/f .

Property 6.2 (Lemma 16.1.1 in [76]). Let G = (V,E) be any un-
weighted graph and let T be a spanning tree of G. For any pair of
nodes a, b ∈ V with (a, b) /∈ E, there exists an edge (a′, b′) ∈ E such
that StretchT (a′, b′) ≥ StretchT (a, b).

The above property also holds for graphs whose edges have arbi-
trary positive real lengths. Furthermore, we have:

Property 6.3 (Lemma 5.1 in [26]). Let G = (V,E) be an arbitrary
graph and let T be a spanning tree G. For any edge (a, b) ∈ E, such
that l(a, b) > dG(a, b) there exists an edge (a′, b′) ∈ E such that
l(a′, b′) = dG(a′, b′) and StretchT (a′, b′) ≥ StretchT (a, b).
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Based on the above observations, we define the concept of rele-
vant stretch pairs, which will be used in the description of our algo-
rithms:

Definition 6.4. A pair of nodes a, b with (a, b) ∈ E is called a stretch
pair. A stretch pair g = (a, b) is relevant for measuring the stretch of
any swap edge replacing a given failing edge e if the cycle which g
forms with T contains the edge e (in other words, if g is also a swap
edge for e).

6.4.2 Naive Approach

To compute the best swap edge for an edge e ∈ T , we need to
compare the up to Θ(m) possible swap edges for the failing edge
e. Unfortunately, there is no straightforward way of selecting the best
among these candidates without evaluating each possible candidate.
A simple trick such as choosing the swap edge minimizing the detour
around the failure typically does not give an optimal solution. For
instance, see the counterexample shown in Figure 6.2. This example
can be generalized to obtain an arbitrary large difference between the
stretch for the best swap f and the minimum detour edge g.

e

f

g

e

f

g

a

b

Figure 6.2: An example showing that minimizing detour length does
not minimize the stretch: On the left side, a 2-edge-connected graph
G is shown, and on the right side the given tree spanner with stretch
8 is shown. Assuming that all edges have equal length, the swap edge
f minimizes the stretch to the value 9. However, the swap edge mini-
mizing the detour length is g, which yields a stretch of 10, attained by
the stretch pair (a, b).
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We first consider the brute force method for solving the All-Best-
Swaps problem in a tree spanner. For each edge e of T , we can simply
consider each relevant swap edge f , compute the stretch of Te/f and
select a swap edge with smallest stretch as the best swap edge for e.
Notice that there could be Θ(m) relevant swap edges for each edge
e ∈ T . Thus, the algorithm would iterate over Θ(nm) pairs (e, f)
of failing edges and corresponding relevant swap edges. The run-
ning time of this approach clearly depends on how fast the stretch of
a given tree Te/f can be computed. Due to Property 6.2, we know
that for computing the stretch of Te/f , it is sufficient to consider only
those stretch pairs (a, b) where a and b are adjacent in G, as opposed
to all O(n2) pairs of nodes in V . Thus the stretch of the tree Te/f can
be computed in O(m) time, if the stretch of each (a, b) ∈ E can be
computed in constant time. This can be done using some preprocess-
ing as explained next.

Lemma 6.5. After preprocessing in time O(mn+ n2 log n), for any
failing edge e ∈ ET , swap edge f ∈ E\ET , and relevant stretch pair
(a, b), the stretch of (a, b) in Te/f can be computed in O(1) time.

Proof. First, we obtain distances between all pairs of nodes in G in
time O(nm+ n2 log n), using the standard “all-pairs shortest paths”
algorithm. Next, we root the tree T at an arbitrary node r and com-
pute the “to-root” distance dT (r, v) for each node v ∈ V , with a
single preorder traversal of T . Finally, we construct a data structure
which provides the nearest common ancestor of any two given nodes
in constant time. Such a data structure can be computed inO(n) time,
for example using the method described in [40].

After the preprocessing, we consider each relevant stretch pair
(a, b), i.e. each (a, b) ∈ E\ET where a and b lie on different sides of
the failing edge2. For each such pair (a, b) we compute the distance
in Te/f as

dTe/f
(a, b) = dT (a, u) + l(f) + dT (v, b),

where f = (u, v) and u lies on a’s side of the cut induced by e.
Further, dT (a, u) (and similarly dT (b, v)) is computed as

dT (a, u) = dT (a,nca(a, u)) + dT (u,nca(a, u)).

2This can be checked using a “preorder/inverted preorder” labeling. For details, see
Section 7.2 of this thesis.
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Figure 6.3: The cycle that a non-tree edge f forms with the given
spanning tree.

Each of the five terms in the equations above can be computed in con-
stant time. Note that the distance in the tree T between any node a
and one of its ancestors, can be obtained as the absolute difference be-
tween the “to-root” distance of these two nodes (which can be looked
up in the data structure that was precomputed). Finally, to obtain the
stretch of (a, b), we divide dTe/f

(a, b) by dG(a, b), which has already
been precomputed.

To summarize, dTe/f
(a, b) and thus, the stretch of (a, b) can be

computed in constant time, for each of the O(m) relevant stretch
pairs, for a particular e and f . This implies the following result:

Theorem 6.6. The All-Best-Swaps problem in a tree spanner can be
solved in O(nm2) time.

In the next few sections, we present algorithms with better time com-
plexity.

6.5 An O(m2 log n) Time Solution for
General Graphs

In the following, we describe an algorithm which computes all best
swap edges of a tree spanner in O(m2 log n) time and O(m) space.
The idea of the algorithm (called BestSwaps) is the following. We
consider each potential swap edge f ∈ E\ET separately, focusing on
the cycle which f = (u, v) forms with T (see Figure 6.3). This cycle
consists of the edges e1, e2, . . . ek which form a path in T . We use the
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Algorithm 8: BestSwaps

for e ∈ T do1

Current-Best(e) :=∞2

end3

for f = (u, v) ∈ E\T do4

Assign indices to the nodes in G5

Initialize Data Structure H6

for ei ∈ PathT (u, v) do7

Add to H stretch pairs in Starti8

Remove from H stretch pairs in Endi9

St(ei, f) := GetMax(H)10

if St(ei, f) < Current-Best(ei) then11

Update Current-Best(ei)12

end13

end14

end15

nodes of V which lie on the path in T from u = d1 to v = dk+1 to
partition T into subtrees as follows. With each node di on this path,
we associate the subtree Ti, which consists of the connected com-
ponent containing di in the graph T\{e1, e2, . . . , ek}. For a given
failing edge ei = (di, di+1) for which f is a swap edge, the set of
relevant stretch pairs contains all non-tree edges where one endpoint
lies in some subtree T1, . . . , Ti, and the other endpoint lies in some
subtree Ti+1, . . . , Tk+1. We assign to each node the index i of the
subtree Ti containing it. For any edge (a, b) ∈ E \ ET whose end-
points are a relevant stretch pair for f , this defines an order of the
endpoints: if a’s index is smaller than the index of b, we say that a
is the lower endpoint, and that b is the upper endpoint. In order to
evaluate f as a potential swap edge, we need to compute the stretch
for every relevant stretch pair with respect to f and some failing edge
ei. Note that for f = (u, v), the stretch of the pair a, b is given by
(dT (a, u) + l(f) + dT (b, v))/dG(u, v), which is independent of the
failing edge ei.

We consider the potential failing edges e1, e2, . . . , ek, in that or-
der and evaluate f as a potential best swap with respect to each ei
in turn. Observe the following: If S(ei−1) is the set of relevant
stretch pairs when considering f as a swap for ei−1, then S(ei), the
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set of relevant stretch pairs when considering f as a swap for ei, is
S(ei) =

(
S(ei−1)∪Starti

)\Endi,where Starti is the set of stretch
pairs whose lower endpoint is di, and Endi is the set of stretch pairs
whose upper endpoint is di. Therefore, we store the set S(ei) in a data
structure H and update it as we move from ei to ei+1. To compute
S(ei) from S(ei−1), all stretch pairs that become relevant are added
to H and all stretch pairs that become irrelevant are deleted from H .
The data structureH we use to store the set S(ei) can be implemented
as a heap where the priority of a stretch pair (a, b) is defined by the
stretch value StretchT (a, b). Notice that this stretch is independent
of the failing edge ei for a fixed swap edge f , and therefore the pri-
ority of a stretch pair stored in the heap need never be changed. The
largest element in H yields the worst stretch pair for f replacing ei.
We simply check whether this value is smaller than the stretch of the
current best swap edge for ei (which we maintain in a separate data
structure) and update the current swap edge for ei if required. Once
we have performed the above process for every edge f ∈ E \ET , we
have obtained for each edge in T a best swap edge. Hence:

Theorem 6.7. The algorithm BestSwaps computes all the best swap
edges of a tree spanner in O(m2 log n) time and using O(m) space.

Proof. We first show that the algorithm takes O(m2 log n) time. For
each swap edge f = (u, v) ∈ E \ ET , the algorithm does the fol-
lowing. First, it assigns to each node z its index i, which denotes the
subtree Ti in which it is contained, as described above. Assigning
these indices takes O(n) time. The non-tree edges of the graph G
are partitioned into sets Starti and Endi, corresponding to nodes di
in the path from u to v. This can be done in O(m) time. Further,
for each pair (f, e) of a swap edge f and a failing edge e, the algo-
rithm performs a number of insertions and deletions3 on the heap H .
For a fixed swap edge f and all possible failing edges ei, any stretch
pair is inserted at most once and deleted at most once. Thus we re-
quire O(m) heap operations, i.e. O(m logm) time for the process
corresponding to each edge f ∈ E \ ET . Note that we also need to
compute the stretch of a stretch pair before inserting it, which how-
ever this takes only constant time using Lemma 6.5. Thus, in total the
algorithm requires O(m2 logm) = O(m2 log n) time.

3For the deletions, we assume that whenever an element is inserted into the heap, a
pointer to its position in the heap is stored, such that the element can later be found in
constant time and then removed in logarithmic time.
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As for the space requirements, the heap data structure H requires
O(m) space for storing at most m elements. Storing the current best
for each edge e ∈ T requires O(n) space.

6.6 An O(n3) Time Solution for Unweighted
Graphs

In this section, we consider a dynamic programming approach for
computing all best swaps in an unweighted graph. We compute the
best swap edge for each of the n− 1 edges of T in a separate compu-
tation, each requiring O(n2) time and O(n2) space. For each failing
edge e = (l, r), we root the two trees T l (for “left”) and T r (for
“right”) of T − e at the nodes l and r, respectively. Recall that the
stretch of a swap edge f = (u, v) is obtained at some stretch pair
a, b, whose stretch is dTe/f

(a, b)/dG(a, b). In unweighted graphs,
dG(a, b) = 1 and hence the maximum stretch is obtained by the
stretch pair a, b for which dTe/f

(a, b) is maximum. Furthermore, for
u, a ∈ T l and v, b ∈ T r we have dTe/f

(a, b) = dTe/f
(a, u)+l(u, v)+

dTe/f
(v, b) = dT (a, u) + l(a, b) + dT (v, b). Therefore, the stretch of

a swap edge f = (u, v) is equal to the length of a longest simple path
from u to v in G, using only edges of T − e and either exactly one
non-tree edge (a, b) ∈ E\ET , or the edge e 4. In the following, we
call paths of this nature the stretch paths of the node pair u, v. In our
approach, we compute the length of a longest stretch path for each of
the O(n2) node pairs u, v, even for those which are not linked by an
edge in G. It turns out that by partitioning the set of all stretch paths
into nine different types, and by computing the length of the longest
stretch paths of a particular type for each node pair u, v in a suitable
order, all these lengths can be computed in O(n2) time by dynamic
programming. In the following, we describe this approach in detail.

The type of a stretch path P depends on which of the edges in-
cident to u ∈ T l and v ∈ T r it includes. If P contains the edge
(u, p(u)), we say it goes up on the left side. If P contains an edge
(u, q) for some q ∈ C(u), we say it goes down on the left side. Fur-
thermore, if P uses a non-tree edge incident to u (and hence does

4We have to include e here because the stretch is measured with respect to G, not
with respect to G− e.
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not contain any other edge from T l), we say it stays at u. The corre-
sponding definitions hold for the right side of stretch paths. Hence,
we have the following nine types of paths (where the first word cor-
responds to the left side of the path, and the second to the right side):
Stay-Stay, Stay-Down, Down-Stay, Stay-Up, Up-Stay,
Down-Down, Down-Up, Up-Down, Up-Up.

For each TypeA-TypeB combination and each node pair u, v,
we use TypeA-TypeB(u, v) to denote the length of a longest stretch
path from u to v of type TypeA-TypeB. If no stretch path from u to
v of type TypeA-TypeB exists, then we define

TypeA-TypeB(u, v) := −∞.
We compute the longest path of each type with an inductive compu-
tation (dynamic programming) requiring O(n2) time. To that end,
we first explain the necessary recursive equations. We start with
Stay-Stay paths: For a given node pair u, v, the only possible
path of that type is composed of the edge (u, v) (if present). Thus, we
have

Stay-Stay(u, v) =
{

1 if (u, v) ∈ E\ET ∪ {e}
−∞ otherwise.

Clearly, Stay-Stay(u, v) for all u, v ∈ V can be obtained inO(n2)
time. It is easy to see that the length of a longest stretch path of type
Stay-Down satisfies the following recursion:

Stay-Down(u, v) =

1 + max
q∈C(v)

{
max{Stay-Stay(u, q),Stay-Down(u, q)}

}
.

Naturally, the symmetric equation holds for Down-Stay(u, v). Note
that this recursion can be translated into a dynamic program: since
Stay-Stay(u, q) for any u, q ∈ V is already available from the pre-
vious computation, we only need to ensure that Stay-Down(u, q) is
available for all q ∈ C(v) when Stay-Down(u, v) is computed.
This is guaranteed if we consider the pairs u, v in an order in which
the v’s occur in postorder. Thus, the entries Stay-Down(u, v) and
Down-Stay(u, v), for all u, v ∈ V , can be computed inO(n2) time.

To compute all the Stay-Up paths, we need information on paths
of type Stay-Stay as well as of type Stay-Down. More pre-
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u v

q1 q2 q3 q′
1 q′

2 q′
3

Figure 6.4: The possible stretch paths of type Down-Down for the
node pair u, v.

cisely:

Stay-Up(u, v) = max
{

1 + Stay-Stay(u, p(v)), 1 + Stay-Up(u, p(v)),

2 + max
q∈C(p(v)),q 6=v

{Stay-Down(u, q),Stay-Stay(u, q)}
}
.

A symmetric equation holds for Up-Stay(u, v). Assuming that the
values Stay-Stay and Stay-Down have been previously com-
puted for all pairs of nodes, we just need to guarantee that the value
Stay-Up(u, p(v)) is available when computing Stay-Up(u, v). So,
in our dynamic programming algorithm, we consider the pairs u, v in
an order where the v’s occur in preorder. In this way, Stay-Up(u, v)
and Up-Stay(u, v), for all u, v ∈ V , can be computed in O(n2)
time. Consider now a Down-Down stretch path from u to v (see
Figure 6.4). We have:

Down-Down(u, v) =

1 + max
{

max
q∈C(u)

{Stay-Down(q, v),Down-Down(q, v)},

max
q′∈C(v)

{Down-Stay(u, q′),Down-Down(u, q′)}
}
.

In order to write a dynamic program corresponding to this recursion,
the node pairs u, v must be considered in an order such that all chil-
dren of a node are considered before the node itself (i.e. both the trees
Tl and Tr are traversed in postorder). In this way, Down-Down(u, v)
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u v

q1 q2 q3

p(v)

p(p(v))

q′
1 q′

2

Figure 6.5: The possible stretch paths of type Down-Up for the node
pair u, v.

for all u ∈ VTl
, v ∈ VTr can be computed in O(n2) time. Next, let us

focus on the Down-Up paths (see Figure 6.5). Here, we have

Down-Up(u, v) = max
{

1 + Down-Stay(u, p(v)), 1 + Down-Up(u, p(v)),

2 + max
q′∈C(p(v)),q′ 6=v

{Down-Down(u, q′),Down-Stay(u, q′)}
}
.

We omit the equation for Up-Down(u, v), which is completely sym-
metric. By considering all pairs u, v ∈ V such that the v’s occur in
preorder, Down-Up(u, v) and Up-Down(u, v) could be computed in
O(n2) time. Finally, the length of a longest Up-Up stretch path for
u, v (see Figure 6.6) can be expressed as

Up-Up(u, v) = max
{

1 + Up-Stay(u, p(v)), 1 + Up-Up(u, p(v)),
1 + Stay-Up(p(u), v), 1 + Up-Up(p(u), v),
2 + max

q′∈C(p(v)),q′ 6=v
{Up-Down(u, q′),Up-Stay(u, q′)},

2 + max
q∈C(p(u)),q 6=u

{Down-Up(q, v),Stay-Up(q, v)}
}
.

To obtain Up-Up(u, v) for all u, v ∈ V in O(n2) time, the pairs



96 Chapter 6. Algorithms for Minimum-Stretch Tree Spanners

u vq1 q2

p(v)

p(p(v))
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1 q′
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p(u)

p(p(u))

Figure 6.6: The possible stretch paths of type Up-Up for the node
pair u, v.

are considered in an order in which both the u’s and the v’s occur in
preorder.

Each of these dynamic programs fills an (n×n)-matrix, and thus
needs O(n2) space. As mentioned in the beginning, we repeat these
computations for each of the n−1 edges e ∈ ET . Then, the algorithm
computes, for each non-tree edge f = (u, v), the stretch of Te/f as

max
{

Stay-Stay(u, v), Stay-Down(u, v),

Down-Stay(u, v), Stay-Up(u, v), Up-Stay(u, v),

Down-Down(u, v), Down-Up(u, v), Up-Down(u, v),

Up-Up(u, v)
}
,

in constant time. After each such computation, we can delete the
computed matrix from memory, only storing the best swap edge found
for the considered failing edge e. Thus, the total space complexity of
our approach is O(n2). In short, we have the following:

Theorem 6.8. In unweighted graphs, all best swap edges of a tree
spanner can be computed in O(n3) time and O(n2) space.
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6.7 Best Swap Tree versus
Recomputed Tree Spanner

In this section, we investigate how a best swap tree compares with an
optimal tree spanner of G − e, with respect to the maximum stretch.
We show that at least for unweighted graphs, the stretch is at most
twice as large in the swap tree as in the tree spanner.

Lemma 6.9. For any failing edge e in an optimal tree spanner of an
unweighted graphG, the maximum stretch of the swap tree, measured
w.r.t. distances in G, is at most two times larger than the stretch of an
optimal tree spanner of G− e. The bound of two is tight.

Proof. Let T be an optimal tree spanner of G, let k be the stretch of
T , and let T ′ be a best swap tree when e = (x, y) fails. Let (a, b) be a
stretch pair for which the stretch with respect to T ′ is maximum, i.e.

(a, b) = arg max
(i,j)∈E

dT ′(i, j)
dG(i, j)

.

Further, let (u, v) be a best swap edge for e. We have

dT ′(a, b)
dG(a, b)

≤ dT (a, x) + dT (x, u) + l(u, v) + dT (v, y) + dT (y, b)

≤ dT (a, b)− l(x, y) + dT (u, v)− l(x, y) + l(u, v)

≤ dT (a, b) + dT (u, v)− 1
dG(a, b)

≤ k +
dT (u, v)
dG(a, b)

≤ 2k.

For any other spanning tree of G (including the optimal spanner of
G − e), the stretch must be at least k, and hence the result follows.
An example that achieves the bound of two is shown in Figure 6.7.
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optimum tree spanner for G

best swap tree for G− e optimum tree spanner for G− e
stretch = n− 1 stretch = n/2

stretch = n/2the graph G

e e

≈ n/4 nodes

≈ n/4 nodes

f f

Figure 6.7: An example of a graph G where the stretch of any best
swap tree is two times worse than an optimum tree spanner of G− e.



Chapter 7

Routing Issues

A natural question arises concerning routing in the presence of a fail-
ure: After replacing the failing edge e by a best swap edge f , how do
we adjust our routing mechanism in order to guide messages to their
destination in the swap tree Te/f? And how is routing changed back
again after the failing edge has been repaired? Clearly, it is desirable
that the adaptation of the routing mechanism is as fast and inexpen-
sive as possible. The use of swap edges in a communication network
only makes sense if the routing scheme can cope with the necessary
changes required by a swap. To the best of our knowledge, no such
routing scheme has been described in the literature prior to our work.

7.1 Summary of Results

In this chapter, we propose a compact routing scheme for trees which
can quickly and inexpensively adapt routing when a failing edge is
replaced by a best swap edge. Notably, our scheme does not require
an additional full backup table, but assigns a label of c log n bits to
each node (for some small constant c); a node of degree δ stores its
own label and the labels of all its neighbors in the tree, which amounts
to δc log n bits per node, or 2nc log n bits in total. We will show how,
given this labeling, knowledge of the labels of both incident nodes of
a failing edge and the labels of both incident nodes of its swap edge
is sufficient to adjust routing.

99
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Our routing scheme is presented in Section 7.2. Motivated by this
routing scheme, we further consider a different variant of the swap
edge computation problem, where instead of optimizing the quality of
the resulting tree, we minimize the time required for the routing adap-
tation. This is useful whenever recovery of a failed edge is so quick
that the speed of adjusting the routing tables takes priority. This boils
down to replacing each failing edge by a swap edge whose endpoints
are close to the endpoints of the failing edge. For two different vari-
ants of this problem (depending on whether an edge failure is detected
at both of its endpoints or only at one), we give distributed algorithms
with running time O(‖D‖) and message complexity O(n∗ + m) in
Section 7.3. We also give centralized algorithms for both variants,
using O(mα(m,n)) time and O(m) space for the first variant, and
O(m log n) time and O(m) space for the second, in Section 7.4.

The results in Sections 7.2.2 and 7.3 of this chapter were obtained
in collaboration with Peter Widmayer and Nicola Santoro [36]. The
additional results in Section 7.4 were obtained by the author of this
thesis, and have not been published before.

7.2 Compact Routing with Swap Edges

7.2.1 Existing Approaches

The simplest routing scheme uses a routing table of n entries at each
node, which contains, for each possible destination node, the link that
should be chosen for forwarding. But this approach is not well-suited
for adapting to swaps: In order to achieve shortest-path routing in the
tree, a single swap may require changes in the routing tables of most
nodes, which creates a memory issue as n different routing tables
must be stored at each node.

A partial solution is to use two edge-disjoint spanning trees [43].
With this approach, routing can be performed with two routing tables
for the two trees, where a bit in the header of each message indicates
which tree should be used. However, since for this approach the route
of a message during a failure must be disjoint for the initial tree, it
might be much longer than the corresponding path in a best swap tree.
In [44], a somewhat better solution is proposed for shortest paths trees
with only one destination: The basic idea is to use a routing table
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for the fault-free routing, and to have only one backup table which
is used for the path to go from the point of failure to the swap. In
addition, one bit in the message header is required in order to indicate
whether the standard or the backup routing table must be used for this
message (depending on whether the message has already crossed the
swap edge or not). However, this solution does not guarantee that
each message is routed on the shortest possible path in the backup
network, because the swap that is chosen is not always a best swap.
This solution requires that each node with degree δ stores two entries
(one for the default routing table and one for the backup table) of
O(log δ) bits for routing to one destination.

Another partial solution is to store the best swap for each failing
edge only at the two endpoints of the failing edge [28]. Note how-
ever that this approach does not always route messages along shortest
paths in the swap tree: instead, a message will first travel along its
regular path until it reaches the failing edge, and then typically has to
backtrack from there to use the swap edge.

In the following, we propose to use a compact routing scheme for
arbitrary tree types (shortest paths, minimum diameter, or any other),
which is capable of always routing messages along the shortest path
in the swap tree. It requires only δ entries, i.e. δc log n bits, at a
node of degree δ, thus n entries or 2mc log n bits in total, which is
the same amount of space that the interval routing scheme of [83]
requires. The header of a message requires c log n bits to describe its
destination.

7.2.2 Our Routing Scheme

Throughout this chapter, we assume that the tree T in which messages
are routed has a designated root node r. Our routing scheme for trees
is based on the labeling γ : V → {1, . . . , n}2 defined as follows:
Assign a label γ(v) = (a, b) to each node v, where a is the number
of v in a preorder traversal of T , and b is the number of v in the
inverted preorder traversal of T , where children are visited in reversed
order. We define a partial order ≥ on γ: Consider two nodes v and
w, and let (v1, v2) := γ(v) and (w1, w2) := γ(w). Then, we define
γ(v) ≥ γ(w) ⇔ (v1 ≥ w1) ∧ (v2 ≥ w2). It is folklore that this
partial order satisfies

γ(w) ≤ γ(v)⇔ w ∈ Tv,
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and thus allows to decide in constant time, for any two given nodes
a and b, whether a is in the subtree of b. This property is useful for
determining swap edges, since clearly, (v, w) with v ∈ Tx is a swap
edge for edge e = (x, p(x)) if (and only if) w is not a descendant of
x (and w 6= x). Moreover, the same property can be used to route
messages in a tree, as follows:

Basic Routing Algorithm:
A node s routes message M with destination d as follows:

(i) If d = s, M has arrived at its destination.

(ii) If d /∈ Ts, s sends M to p(s).

(iii) Otherwise, s sends M to the child q ∈ C(s) for which
d ∈ Tq .

This algorithm clearly routes each message directly on its (unique)
path in T from s to d. Before describing the adaptation in the presence
of a swap, observe that a node s which receives a message M with
destination d can locally decide whether M traverses a given edge
e = (x, p(x)): edge e is used by M if and only if exactly one of s
and d is in the subtree Tx of x, i.e., if (s ∈ Tx) 6= (d ∈ Tx). Thus,
to adapt routing, it is sufficient to inform all nodes about the failure
of an edge (and later the repair) by two broadcasts starting at its two
incident nodes (the points of failure). However, the following lemma
shows that optimal rerouting is guaranteed even if only those nodes
which lie on the two paths between the points of failure and the swap
edge’s endpoints are informed about the failure.

Lemma 7.1. Let e = (x, p(x)) be a failing edge, and f = (u, v)
a best swap for e, where v is in Tx and u in T\Tx, as shown in Fig-
ure 7.1. If all nodes on the path from x to v know that e is unavailable
and that f = (u, v) is a best swap edge, then any message originat-
ing in s ∈ Tx will be routed on the direct path in Te/f from s to its
destination d. Symmetrically, if all nodes on the path from p(x) to u
know about e and f , then any message originating in s′ ∈ T\Tx will
be routed on the direct path from s′ to its destination d′.

Proof. Let M be any message with source s ∈ Tx. If d ∈ Tx, then
trivially M will be routed on its direct path, because it does not re-
quire edge e. If d ∈ T\Tx, consider the path PT from s to d in T , and
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the path PTe/f
from s to d in Te/f . Consider the last common node

i of PT and PTe/f
in Tx. The path composed of the paths 〈x, . . . , i〉,

〈i, . . . , v〉 is exactly the unique path in T from x to v, so node i lies
on that path. Obviously, M will be routed on the direct path towards

v

f

e

x

p(x)

u
Tx

s

d

i

T

d′

s′

Figure 7.1: Only some nodes need to know about failure of edge
e = (x, p(x)).

d up to i. As i lies on the path from x to v, it knows about the failure
and the swap, and will route M towards v. Because each node on the
path from i to v also knows about the swap, M will proceed on the
direct path to v. At v, M will be routed over the swap edge f , and
from u onwards, M is forwarded on the direct path from u to d.

Given Lemma 7.1, we propose the following “lazy update” pro-
cedure for informing nodes about an edge failure:

Algorithm LAZYSWAP:
If an edge fails, no action is taken as long as no message needs
to cross the failed edge. As soon as a messageM which should
be routed over the failing edge arrives at the point of failure,
information about the failure and its best swap is attached to
message M , and M is routed towards the swap edge. On
its way, all nodes which receive M route it further towards
the swap edge, and remember for themselves the information
about the swap.

Observation (Adaptivity). After one message M has been rerouted
from the point of failure to the swap edge, all messages originating
in the same side of T as M (with respect to the failing edge) will be
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routed to their destination on the direct path in the tree (i.e., without
any detour via the point of failure).

If a failing edge has been replaced by a swap edge, then all nodes
which know about that swap must be informed when the failure has
been repaired. Therefore, a message is sent from the point of failure
to the swap edge (on both sides if necessary), to inform these nodes,
and to deactivate the swap edge.

Of course, one could also decide to always inform the nodes as
specified in Lemma 7.1 about a failure as soon as it occurs. Whether
such a proactive dissemination of failure information is better than
the LAZYSWAP approach depends on the frequency and repair time
of faults in the network at hand.

Remark

The above routing scheme has the disadvantage that each node must
know the labels of all its neighbors. Thus, an individual node is po-
tentially required to store a lot more than O(log n) bits. This draw-
back can be removed by combining the above scheme with a com-
pact routing scheme for the designer-port model, see e.g. [94]: Such
a routing scheme assigns a label of O(log n) bits to every node, such
that the correct forwarding port for a given destination can be com-
puted solely on the basis of the labels of the current position and the
destination. The labels we introduced in our scheme are then only
used to determine whether a message needs to be rerouted (because it
would otherwise attempt to use the failing edge). As this is possible
solely on the basis of the labels of the message’s current position and
its destination, this combination of labels yields a compact routing
scheme which can efficiently adapt to swaps.

7.3 Distributed Computation of Close Swaps

In the routing scheme described in Section 7.2, the time required to
adapt to an edge failure by activating a swap edge depends on the
lengths of the paths between the two points of failure and the corre-
sponding two endpoints of the swap edges. Two different possible
models of failure detection seem reasonable:
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1. The failure of an edge is detected at both of its endpoints con-
currently.

2. The failure of an edge is detected at one of its endpoints only.

Of course, in some systems it might be unknown in advance whether
one or both endpoints will detect a given failure. In such a system,
the latter of the above variants would minimize the worst-case time
to adapt routing.

If the prime goal is to reconnect the network quickly after an edge
failure, and the quality of the resulting tree is less important, then
one should precompute swap edges which are “closest” to the failing
edge. In the following, we present two efficient distributed algorithms
for computing such swap edges in both models of failure detection.
Both of these algorithms employ the same basic principle as the algo-
rithm BESTDIAMSWAP described in Section 5.5.4: For each failing
edge e = (x, p(x)), first all nodes in the subtree Tx compute their
locally best swap edge, and then a minimum finding process finds a
globally best swap edge for e. The difference lies only in the means of
computing the quality of a given local swap edge candidate f , given
a failing edge e. Therefore, in the following sections, we describe
only how to evaluate quality efficiently, and do not again describe the
actual swap edge computation algorithms.

7.3.1 An Edge Failure is Detected at Both Endpoints

If an edge failure is detected at both endpoints of the failing edge, then
the fastest way to inform all nodes which need to be informed in order
to readjust routing, as identified by Lemma 7.1, is to send two mes-
sages, each starting at one endpoint of the failing edge e = (x, p(x)),
to the two respective endpoints of the swap edge f = (u, v). Thus,
the time until this message reaches both destinations is the maximum
length of the two paths connecting f ’s endpoints with e’s endpoints,
i.e., max{d(x, v), d(p(x), u)} (see Figure 7.2).

In order to evaluate a local swap edge candidate f = (u, v) for a
given failing edge e, a node v ∈ Tx must compute

max{d(x, v), d(p(x), u)}.
For a given edge f = (u, v), let ncaf denote the nearest common an-
cestor (in T ) of its endpoints u and v. It is easy to see that d(p(x), u) =
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Figure 7.2: Illustration of the distances d(x, v) and d(p(x), u).

d(p(x),ncaf ) + d(u,ncaf ). We propose to use again the folklore la-
beling described in Section 7.2.2. Using this labeling, there is a sim-
ple solution for providing u and v with all the information required to
compute the terms

d(u,ncaf ), d(p(x),ncaf ) and d(x, v), (7.1)

respectively: The root r sends its own label to all nodes in T . Each
other node z sends the two labels of z and p(z) and the distance
d(z, p(z)) to all nodes in its subtree Tz . In total, each node in the tree
then knows its entire path to the root, including the labels of all nodes
and all distances. This process clearly terminates in O(‖D‖) time
and requires O(n∗) messages. Given this information, a node can
compute distances between two arbitrary ancestors of itself. Hence,
node v can compute d(x, v), and if ncaf were known to both u and
v, then in the same way the other terms listed in (7.1) could also be
computed: v computes d(p(x),ncaf ), and u computes d(u,ncaf ).

It remains to show how ncaf can be computed locally. This is
where we make use of the labeling scheme once again: As u knows
the label of p(x), it can determine in constant time whether a given
node t is an ancestor of p(x). Since u knows all nodes on the path
from u to the root (and all their labels), one of which is ncaf , it just
needs to find the lowest node on its path to the root which is still an
ancestor of p(x). Similarly, v can also compute ncaf locally.

As a second step, each node u incident to some swap edge can-
didate f = (u, v) sends d(u,ncaf ) to node v across the edge f
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(note that ncaf depends only on the swap edge, not on the failing
edge). This step requires two messages per non-tree edge, which
amounts to O(m) additional messages in total. Then, node v knows
all the terms in (7.1), and can evaluate the quality of swap edge f =
(u, v) for the given failing edge e = (x, p(x)) as max{d(u,ncaf ) +
d(p(x),ncaf ), d(v, x)}.

Let us summarize. As in Chapter 5, by a message of constant size,
we mean a message which only contains a constant number of atomic
items, such as node identifiers, edge lengths, numbers, etc.

Theorem 7.2. In a network where the failure of an edge is detected at
both endpoints concurrently, all closest swap edges of a spanning tree
can be computed in an asynchronous distributed setting with O(n∗+
m) messages of constant size, and in O(‖D‖) time.

7.3.2 An Edge Failure is Detected at One Endpoint
Only

If the failure of an edge is detected at one of its endpoints only, then
the fastest way of informing all nodes as identified by Lemma 7.1
is to send one message from the point where the failure is detected
to the endpoint of its swap edge on the corresponding side. The
message then must cross the swap edge and continue towards the
other endpoint of the failing edge. Thus, the time used by the mes-
sage to inform all required nodes is proportional to d(x, v) + l(f) +
d(u, p(x)), irrespective of which side of the failing edge detects the
failure. Note that an algorithm for computing the distances d(x, v)
and d(u, p(x)) = d(u,ncaf ) + d(p(x),ncaf ) has already been de-
scribed in Section 7.3.1. A slight modification of this algorithm thus
computes all best swap edges in this scenario, using O(n∗+m) mes-
sages and O(||D||) time.

Theorem 7.3. In a network where the failure of an edge is only de-
tected at one of its endpoints, all closest swap edges of a spanning
tree can be computed in an asynchronous distributed setting with
O(n∗ +m) messages of constant size, and in O(‖D‖) time.
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7.4 Centralized Computation of Close Swaps

If the network at hand is planned in a centralized way, then an algo-
rithm for computing closest swaps is useful. In this section, we there-
fore provide efficient algorithms for the centralized model of compu-
tation.

7.4.1 An Edge Failure is Detected at One Endpoint
Only

This problem can be solved using the transmuter approach as de-
scribed in Section 3.3.1. More precisely: Recall that the quality of
a swap edge f = (u, v) for e = (x, p(x)), where v ∈ Tx, is defined
here as

obj(Te/f ) := dT (v, x) + dT (u, p(x)).

This value depends on the failing edge, and is hence not directly suit-
able for the transmuter approach. However, a simple trick, which is
similar to those in [67, 9], solves this problem: We add to the quality
of edge f the length l(e) of the failing edge. We define

obj′(f) := obj(Te/f ) + l(e)
= dT (v, x) + dT (u, p(x)) + l(x, p(x)) = dT (u, v),

which is independent of the failing edge e. Moreover, adding l(e) to
the quality of all swap edges for e clearly has no effect on the ranking
of swap edges, that is, a best swap measured with respect to obj′ is
also a best swap with respect to obj. Hence, we can assign the value
obj′(f) = dT (u, v) to every non-tree edge f = (u, v), and then
use the transmuter approach to obtain all best swap edges. Note that
dT (u, v) is easily computed in constant time for each non-tree edge
(u, v), as was already explained in Section 7.2.2. Therefore:

Theorem 7.4. In a network where the failure of an edge is detected
at both endpoints concurrently, all closest swap edges of a spanning
tree can be computed in the centralized setting in O(mα(m,n)) time
and O(m) space.
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Figure 7.3: Illustration of the replacement of a swap f by at most
three virtual swap edges.

7.4.2 An Edge Failure is Detected at Both Endpoints

If an edge failure is detected at both endpoints of the failing edge, a
centralized algorithm can again be obtained using a transmuter. How-
ever, since in this case the quality of a swap edge f = (u, v) for
e = (x, p(x)), where v ∈ Tx, is defined as

obj(Te/f ) := max
{
dT (v, x), dT (u, p(x))

}
,

it is somewhat more difficult to assign values to non-tree edges which
describe their quality independent of the failing edge. In fact, it is
necessary to replace the present non-tree edges by virtual swap edges
(similar to Section 4.5.1). Let c be the center node on the path from
u to v in T , and assume w.l.o.g. that v ∈ Tc (it is clear that either u ∈
Tc or v ∈ Tc). Furthermore, let w be the nearest common ancestor
of u and v in T (see Figure 7.3). Note that w can be computed in
O(1) time after linear time preprocessing [40]. Below, we show how
to compute the center node c for all non-tree edges in O(m log n)
time. For any failing edge on the path in T from v to c, we have
obj(Te/f ) = dT (u, p(x)), and for any failing edge on the path in T
from c to u, we have obj(Te/f ) = dT (v, x) if x lies on the path from
c to w in T , or obj(Te/f ) = dT (v, p(x)) if x lies on the path from w
to u in T . Therefore, a first virtual swap edge which we introduce for
representing f is f1 := (c, v). We call this a virtual swap of type 1.
The quality of f1 is defined as obj(Tf1/e) := dT (u, p(x)). Since this
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value depends on the failing edge e, we have to modify it: We subtract
the term dT (r, p(x)) from the quality (note that the subtracted term
only depends on the failing edge e, and will hence be the same for all
swap edges for e). This yields

dT (u, p(x))− dT (r, p(x)) = dT (u,w) + dT (w, p(x))− dT (r, p(x))
= dT (u,w)− d(r, w),

which assigns a value to f1 that is independent of e, and which cor-
rectly reflects the order of virtual swap edges of type 1 by quality.
Thus, a best swap of type 1 for each failing edge can be determined
using a transmuter.

We need additional virtual swap edges for representing f for the
case when the failing edge lies somewhere on the path in T from c
to u. These are defined as follows: f2 := (c, w), and f3 := (w, u).
The quality of f2 is dT (v, x), which depends on e. To make it in-
dependent, we add dT (x, r) to this term, which yields dT (v, x) +
dT (x, r) = dT (v, r). Hence, the transmuter approach can be used to
compute best virtual swap edges of type 2 as well. For f3, the quality
is dT (v, p(x)), which again depends on e. To make it independent,
we add dT (r, p(x)): dT (v, p(x)) + dT (r, p(x)) = dT (v, r), which is
suitable for applying the transmuter approach.

Hence, we obtain in O(mα(m,n)) time, for every tree edge e, at
most three virtual best swap edges (at most one of each type). Among
these, we pick the edge which is best for e, to obtain the best real
swap edge. Since the quality of each swap tree Te/f can be evaluated
in constant time, this last step only costs O(n) time.

It remains to show how we can obtain, for every non-tree edge
f = (u, v), the center node c of the path from u to v in T . We
first compute w = nca(u, v) in constant time. The idea is to find c by
performing two binary searches, one on the path from u tow in T , and
one on the path from v to w in T . Note that we can check in constant
time whether a given node c′ is the center node or not. Yet, for the
binary search we must also be able to jump from a node x in the tree
to an ancestor of x whose depth is roughly half the depth of x. To that
end, we build a data structure in a preprocessing phase consisting of
O(log n) steps. In the first step, we build a tree containing each node
of T , where each node has a pointer to its parent in T . In the second
step, we add to every node a pointer to its nearest ancestor with even
depth. In the third step, we add to every node a pointer to its nearest
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ancestor whose depth is a multiple of 4, and so on. Basically, we are
building a deterministic skip list for every path from a leaf of T to
the root. Building this structure requires O(n log n) time and O(n)
space. With the help of this structure, a center node c can be found in
O(log n) time for any path 〈u, . . . v〉 in T . Hence, the center nodes
corresponding to all non-tree edges can be computed in O(m log n)
time in total. We have:

Theorem 7.5. In a network where the failure of an edge is detected
at only one endpoint, all closest swap edges of a spanning tree can
be computed in the centralized setting in O(m log n) time and O(m)
space.





Chapter 8

Discussion

In Part I, we have presented improved algorithms for computing all
best swap edges in minimum diameter spanning trees, in shortest
paths trees and in tree spanners. While our distributed algorithm for
minimum diameter spanning trees is optimal in both time and mes-
sage complexity, it remains open whether the running times of our
centralized algorithms could be further improved. Although we think
that the considered problems are more difficult than computing all
best swap edges in a minimum spanning tree, which can be done in
almost linear time, proving a lower bound remains a challenge.

In the context of swapping, the subject of node failures is still
wide open, except for minimum spanning trees. In principle, pre-
computing (sets of) swap edges for node failures is still reasonable,
since the total number of swap edges that have to be stored (and pre-
pared for use during a failure) in total for coping with the failure of
any node is not larger than the number of edges in the tree. However,
it seems that efficiently computing these sets is more difficult than
computing best swaps for failing edges.

It might also be interesting to investigate a variant of the swapping
approach where the initial tree is chosen such that the resulting swap
trees are best possible. For example, for a given graph one could
compute a spanning tree for which the maximum diameter of any
swap tree is minimized. It seems likely, however, that computing
such a tree is harder than computing a minimum diameter spanning
tree, possibly even NP-hard.
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Chapter 9

Lower Bounds for
Synchronous Consensus

9.1 Motivation

In the first part of the thesis, we have considered networks where fail-
ures are transient but rare. In the second part, we look at less reliable
networks, where the number of transiently failing links can be much
larger. If there are too many failures, then clearly any distributed
computation becomes impossible. But where does this threshold lie?
To answer this question, we look at one of the most fundamental
problems in distributed computing, the consensus problem, in syn-
chronous networks. In the consensus problem, each processor ini-
tially has a binary input value, and has to negotiate a binary value with
the other processors, which is to be output by all processors within
finite time. The trivial solution of always choosing the same fixed
output bit is forbidden by an additional validity condition, which en-
forces that the output cannot be independent of the input values (there
are different variants of this condition, some weaker than others). The
consensus problem is a cornerstone of fault-tolerant distributed com-
puting, and has been studied in various different models [60, 27, 75].

Nevertheless, the picture is still far from complete: for example,
most of the work assumes that the network topology is a complete
graph. Moreover, the predominant model for failures is the com-
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ponent failure model, where it is assumed that a component which
becomes faulty at some point remains faulty throughout the compu-
tation. In contrast, we consider transient (or dynamic) faults of links:
Although the number of concurrent faults is bounded in our model,
we allow the faults to occur at any link in the network. Hence, by the
time the distributed computation finishes, every link in the network
may have failed once. This model allows more precise statements
about the possibility of achieving consensus, compared to the com-
ponent failure model: In the latter, each link which fails once has to
be declared faulty for the remainder of the computation.

The consensus problem for transient faults in synchronous net-
works was initially studied for complete graphs [84], and later also
for general graphs [85]. In the former setting, the bounds on the num-
ber of tolerable failures were tight for all types of faults, but not in
the setting of general graphs: For these, the bounds were not tight
when the allowed faults were either omissions, a combination of ad-
ditions and corruptions, or Byzantine faults. More specifically, the
lower bounds were expressed in terms of the maximum degree of the
network, while the upper bounds were expressed in terms of the edge-
connectivity of the network. Recently, another variant of synchronous
consensus in complete networks was considered, where the number
of faults on both incoming and outgoing transmissions at every pro-
cessor is bounded in each round [88].

9.2 Summary of Results

We study the consensus problem in synchronous networks with arbi-
trary topology, where communication links experience dynamic fail-
ures. This means that any link in the network may change arbitrarily
between being operational or faulty, as long as at most f links are
faulty in any given round. We give tight lower bounds for the number
of faults which can render consensus impossible in this setting, for
only omission failures, addition and corruption failures, or Byzan-
tine failures: Consensus in a general graph G with edge-connectivity
c(G) is impossible for c(G) omission faults, up to c(G) addition and
corruption faults, or up to dc(G)/2e Byzantine faults. These bounds
are tight, since it has been shown that consensus is possible for up
to c(G) − 1 omission faults, up to c(G) − 1 addition and corruption
faults, and up to dc(G)/2e − 1 Byzantine faults [85].
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We actually study a natural generalization of the consensus prob-
lem, called k-agreement, in which at least k (but not necessarily all)
processors need to decide for the same output bit. The consensus
problem is a special case of the k-agreement problem where k is
equal to the number of processors. For general k-agreement, where
k > dn/2e processes must agree, our bounds are not tight, but im-
prove upon the previously known bounds in [85] for graphs whose
edge-connectivity is lower than their maximum degree.

Technically, our results are obtained by generalizing the main the-
orem of [85]. Our proof is similar in structure to its counterpart
in [85], but has two crucial differences, which we point out in the
next section. The results in this chapter are the sole work of the au-
thor of this dissertation. They have not been published prior to this
dissertation.

9.3 Problem Definition and Terminology

The results of this chapter hold for the synchronous model of dis-
tributed computation. Although we have briefly described this model
in Chapter 2.2.2, we need to specify it in more detail in order to prove
our lower bounds. Most of our notation is taken from [85], some of
which originates from [27]. We consider synchronous systems com-
posed of a set V of n processors p1, p2, . . . , pn, where all processors
start executing their program in the same round. Each processor pi
has a one-bit input register with input value xi ∈ {0, 1}, a one-bit
output register initially containing the null value ⊥ /∈ {0, 1}, and
an unbounded amount of local storage. In particular, it has a mes-
sage register mij for each of its neighbors pj , holding a message
∈M ∪{Ψ} to be sent to pj in the next round. Here, M is a fixed and
possibly infinite message universe, and Ψ is the null element indicat-
ing that no message should be sent over that link. The values of the
registers and of the global clock, together with the program counters
and the internal storage, comprise the internal state of each processor.

The initial state of each processor defines starting values for all
registers except the input register. Each processor acts deterministi-
cally; it can never change the input register nor the clock, and can
change the value of its output register only once, from the null value
⊥ to b ∈ {0, 1}. A processor pi has decided for b ∈ {0, 1} if its
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output register contains b.
A configuration of the system consists of the internal state of all

processors at a given time. In an initial configuration, all processors
are in an initial state. Starting from an initial configuration, the system
evolves as follows: In each round, the system is in some configuration
C. The set of all messages sent in this round is represented by the
n × n message array Λ(C): If pi and pj are neighbors, then the
entry Λ(C)[i, j] contains the message sent by pi to pj (possibly Ψ);
otherwise, we define Λ(C)[i, j] = ∗, where ∗ /∈M is a distinguished
symbol.

Due to communication failures, the set of messages received may
differ from Λ(C). A communication is a pair (α, β) of messages,
where α is the message sent and β is the message received. If α 6=
β, then the communication is faulty, otherwise non-faulty. Let Φ
denote the set of all possible communications (i.e., Φ := M ×M ).
We distinguish between the following three types of communication
faults:

• omissions: O = {(α, β) ∈ Φ | α 6= Ψ = β}
• additions: A = {(α, β) ∈ Φ | α = Ψ 6= β}
• corruptions: C = {(α, β) ∈ Φ | Ψ 6= α 6= β 6= Ψ}
We represent the set of received messages as an n×n transmission

matrix τ for Λ(C), defined as follows: if pi and pj are neighbors, then
τ [i, j] contains the communication (α, β), where α = Λ(C)[i, j] is
what pi sent and β is what pj receives; for non-neighboring pi, pj , we
define τ [i, j] = (∗, ∗).

After the communication specified by τ has occurred, the global
clock is incremented by one time unit; depending on its internal state,
on the current clock and the received messages, each processor pre-
pares a new message for each neighbor, and enters a new internal
state. The system thus enters a new configuration, denoted τ(C),
which is entirely determined by the previous configuration and the
transmission matrix τ , because processors act deterministically. We
call τ an event and the transition from one configuration to the next a
step.

We will distinguish sets of events by the maximum number f of
faulty communications. A set S of events is f-admissible1, f > 0, if

1Note that this definition differs slightly from the one in [85]. In particular, our
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1. for each message array Λ, there is a nonempty set of events
S(Λ) ⊆ S for Λ, and

2. no event in S contains more than f faulty communications.

Informally, this means that for every message array, at least one pos-
sible transmission matrix defining the received messages is contained
in S, in which at most f faulty communications occur.

Let R1
S(C) = {τ(C)|τ ∈ S(Λ(C)) be the set of all possible con-

figurations resulting from C in one step, provided that only events
from S may occur. Every configuration C ′ ∈ R1

S(C) is called a
succeeding configuration of C. More generally, let RtS(C) be the
set of all possible configurations resulting from C in t > 0 steps,
and R+

S (C) = {C ′|∃t > 0, C ′ ∈ RtS(C)} the set of configurations
reachable from C. A configuration reachable from some initial con-
figuration is said to be accessible.

Our results are derived from sets of events (i.e., transmission ma-
trices) which preserve similarities of configurations. Let us stress that
our definitions of adjacency and adjacency-preservation, which fol-
low below, differ crucially from those in [85].

Two configurations C ′ and C ′′ are called f -cut-adjacent with re-
spect to w ∈ V and a cut F ∗ of size at most f in G, if for each
processor p that is not on w’s side of the cut (i.e., all processors that
are not in the connected component of G − F ∗ which contains w),
p’s state is the same in C ′ as in C ′′. If two configurations C ′ and
C ′′ differ in the state of at most one processor, we say that they are
neighboring.

We call a set S of events f -cut-adjacency-preserving if for any
two configurations C ′ and C ′′ that are f -cut-adjacent with respect to
some node w and some cut F ∗, there exist in S two events τ ′ and τ ′′

for Λ(C ′) and Λ(C ′′), respectively, such that τ ′(C ′) and τ ′′(C ′′) are
f -cut-adjacent with respect to the same cut F ∗ and the same node w.

A set S of events is continuous if for any configuration C and for
any two events τ ′, τ ′′ ∈ S for Λ(C), there exists a finite sequence
τ0, . . . , τm of events in S for Λ(C) such that τ0 = τ ′,τm = τ ′′, and
τi(C) and τi+1(C) are neighboring, 0 ≤ i < m.

definition does not require that some event in S contains exactly f faulty communica-
tions.
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A k-agreement protocol P , for k > dn/2e, is a protocol defining
the actions of all processors. It is correct if it satisfies the following
conditions (in every possible execution):

1. Termination. Every processor eventually chooses its output
bit.

2. Agreement. At least k processors choose the same output bit b.

3. Validity. If all processors have the same input bit b′, then at
least k processors must choose the output bit b′.

In the special case where k equals the number of processors (k = n),
a k-agreement protocol is called consensus protocol. Note that for
k ≤ dn/2e, k processors can trivially agree without communica-
tion: each processor simply writes its input bit into the output register.
Therefore, we are only interested in k-agreement for k > dn/2e.

For a fixed k (which denotes the required level of agreement) and
b ∈ {0, 1}, we call a configuration C b-valent if there exists a t > 0
such that in each C ′ ∈ RtS(C), at least k processors have decided for
b. A configuration C is bivalent if R+

S (C) contains both a 0-valent
and a 1-valent configuration.

9.4 Abstract Impossibility Bounds

In this section, we obtain our main theorem, which defines sufficient
conditions to render k-agreement impossible. These conditions are
somewhat abstract; we will use them in Section 9.5 to derive several
concrete impossibility results.

Let C(P, S) be the set of all initial and accessible configurations
when executing the protocol P and the events are those in S.

Theorem 9.1. Consider a graph G = (V,E) on n nodes, in which
for every node v ∈ V , there exists a cut of size at most f > 0 in G,
such that on v’s side of the cut, there are less than (2k−n) nodes. Let
P be a k-agreement protocol, k > dn/2e, forG. Let S be continuous,
f -cut-adjacency-preserving, and f ′-admissible. If C(P, S) contains
two accessible neighboring configurations, where one is 0-valent and
the other 1-valent, then P is not correct in spite of f ′ communication
faults.
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Proof. Assume in contradiction that P is a k-agreement protocol for
G that is correct in spite of f communication faults when the message
system returns only events in S; and let A and B be two neighboring
accessible configurations in C(P, S) that are 0-valent and 1-valent,
respectively. Note that there must be exactly one processor, say w,
whose state in A is different from its state in B. By the theorem’s
assumptions, there exists an f -cut in G, say F ∗, which separates w
from more than 2n− 2k nodes in the graph (i.e., the connected com-
ponent of G − f containing w consists of less than 2k − n nodes).
Thus, the configurations A and B are f -cut-adjacent with respect to
the cut F ∗ and the node w. Let Vw be the set of processors on w’s
side of the cut, and vw := |Vw|. Note that vw < 2k − n.

Since S is f -cut-adjacency-preserving, there exist in S two events,
π for Λ(A) and ρ for Λ(B), such that the resulting configurations
π(A) and ρ(B) are f -cut-adjacent with respect to F ∗ and w. Sim-
ilarly, there exist two events, π′ for Λ(π(A)) and ρ′ for Λ(ρ(B)),
such that the resulting configurations π′(π(A)) and ρ′(ρ(B)) are still
f -cut-adjacent with respect to F ∗ and w. For t > 0, let πt(A) and
ρt(B) be the resulting f -cut-adjacent configurations of iterating this
procedure t times. Since P is correct, there exists a t∗ ≥ 1 such that
in both πt

∗
(A) and ρt

∗
(B), every processor has written its output

register.

Clearly, all processors in V \Vw must take the same decision in
πt
∗
(A) as in πt

∗
(B). Let d0 and d1 be the number of processors in

V \Vw which, at time t∗, have decided for 0 and 1, respectively. We
have d0 + d1 = n− vw.

AsA is 0-valent, in πt
∗
(A) at least k processors in V have decided

for 0; similarly, as B is 1-valent, at least k processors have decided
for 1 in πt

∗
(B). This implies vw+d0 ≥ k and vw+d1 ≥ k. Inserting

d1 = n− vw − d0 into the latter inequality, and then adding it to the
second last inequality, we get vw ≥ 2k−n. However, this contradicts
our earlier conclusion that vw < 2k − n.

We can now prove the main theorem.

Theorem 9.2. Let G = (V,E) be a graph on n nodes in which for
every node v ∈ V , there exists a cut of size at most f > 0, such that
on v’s side of the cut, there are less than (2k − n) nodes. Let S be
continuous, f -cut-adjacency-preserving, and f ′-admissible, f ′ > 0.
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Then no k-agreement protocol for G is correct in spite of f ′ commu-
nication faults in S for k > dn/2e.

Proof. Assume P is a correct k-agreement protocol. The following
two lemmas show that C(P, S) has an initial bivalent configuration,
and that every bivalent configuration in C(P, S) has a succeeding bi-
valent configuration. Thus, there exists an execution of P in which
some processor never decides, which violates the termination condi-
tion.

Lemma 9.3. C(P, S) of Theorem 9.1 has an initial bivalent configu-
ration.

Proof. By contradiction, let every initial configuration be b-valent for
b ∈ {0, 1} and let P be correct. The validity condition implies that
if all input bits are 0, then the initial configuration must be 0-valent,
and vice versa for 1. Thus, if there is no bivalent initial configuration,
there is at least a 0-valent initial configuration A and a 1-valent initial
configuration B. Consider now a sequence of initial configurations,
starting with all input bits being 0, and by sequentially changing each
input bit to 1, arriving at the initial configuration with all input bits
being 1. As each configuration of this sequence is either 0-valent
or 1-valent, the first being 0-valent and the last being 1-valent, there
must be a 0-valent initial configuration and a 1-valent initial configu-
ration which differ only in the input bit of one processor, and hence
are neighboring. Hence, it follows from Theorem 9.1 that P is not
correct.

Lemma 9.4. Every bivalent configuration in C(P, S) of Theorem 9.1
has a succeeding bivalent configuration.

Proof. Let C be a bivalent configuration in C(P, S). If C has no
succeeding bivalent configuration, then C has at least one 0-valent
and at least one 1-valent succeeding configuration, say A and B. Let
τ ′, τ ′′ ∈ S be such that τ ′(C) = A and τ ′′(C) = B. Since S is con-
tinuous, there exists a sequence τ0, . . . , τm of events in S for Λ(C)
such that τ0 = τ ′, τm = τ ′′, and τi(C) and τi+1(C) are neighbor-
ing, for 0 ≤ i < m. Consider now the corresponding sequence of
configurations: A = τ ′(C) = τ0(C), τ1(C), τ2(C), . . . , τm(C) =
τ ′′(C) = B. Since the sequence starts with a 0-valent configuration
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and ends with a 1-valent configuration, it contains a 0-valent config-
uration neighboring a 1-valent one. Therefore, by Theorem 9.1, P is
not correct — we have a contradiction.

9.5 Concrete Impossibility Bounds

In this section, we apply Theorem 9.1 to prove impossibility of con-
sensus and k-agreement under different conditions. More precisely,
we consider the following combinations of faults:

• omissions

• additions and corruptions

• Byzantine failures (omissions, additions and corruptions)

Note that we do not consider the cases of only additions, or only
corruptions, because for these it was shown already that even consen-
sus is possible regardless of the number of faults per round [85].

The following lemma shows continuity for a general class of sets
of events, which we can later apply to each of the different sets of
events we consider.

Lemma 9.5. Let F be the set of allowable communication faults.
Further, let S be the set of all events in which at most k faulty com-
munications from the set F occur, and all other communications are
non-faulty. Then the set S is continuous.

Proof. Starting from the non-faulty event (i.e., the event where all
communications are non-faulty), there exists a sequence of length at
most k to any event in S, in which any two consecutive events differ in
only one transmission. It follows that in the corresponding sequence
of configurations, any two consecutive configurations are neighbor-
ing. Thus, any two events of S can be connected by a sequence of at
most 2k + 1 events (with the non-faulty event in the middle).

9.5.1 Impossibility: Omission Faults

We can now use Theorem 9.2 to show how many omission faults
per round any (correct) k-agreement protocol can tolerate in a given
graph G.
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Informally, the set of events O is the set of all events where at
most c(G) omissions occur, where c(G) is the edge-connectivity of
the graph G. For message array Λ = (αij), let O(Λ) be the set of
all events τ for Λ defined as follows: for at most c(G) pairs (i, j) ∈
E, τ [i, j] = (αij ,Ψ), and for all other pairs (i, j) ∈ E, τ [i, j] =
(αij , αij). Then, O :=

⋃
ΛO(Λ) is the set of all events containing at

most c(G) omission faults.

Lemma 9.6. The setO is c(G)-admissible, continuous and c(G)-cut-
adjacency-preserving.

Proof. O is c(G)-admissible by construction. From Lemma 9.5, it
follows that O is also continuous.
To see thatO is c(G)-cut-adjacency-preserving, consider two config-
urations A and B which are c(G)-cut-adjacent with respect to the cut
F ∗ and the node w. Let Pw be the set of processors of the side of the
cut where the states may differ. Let the events τA and τB be those
corresponding to configurations A and B, respectively, where each
message which is sent from any p ∈ Pw over the cut F ∗ is hit by an
omission fault, and all other messages arrive unaltered. Clearly, τA
and τB are c(G)-admissible and hence in O, and the configurations
τA(A) and τB(B) are c(G)-cut-adjacent with respect to F ∗. Hence
O is c(G)-cut-adjacency-preserving.

From combining Lemma 9.6 with Theorem 9.2, and setting k =
n, it follows that no consensus protocol is correct in spite of c(G)
omission faults. For general k-agreement, the statement we obtain is
somewhat more involved: Let x be the number of possible omission
faults per round. In a graph G with n nodes, k-agreement is impossi-
ble if for every node v in G, there is a cut of size at most x such that
there are less than 2k−n nodes on v’s side of the cut. Intuitively, this
means that if there is no sufficiently large set of nodes (i.e., at least
2k − n elements) in the graph which induces an f -edge-connected
subgraph, then agreement is impossible if we allow up to f omission
faults per round.

For a concrete example of what the above implies, consider a
graph whose topology is a line. In such a graph, it is possible to
cut away any node v using a cut of size one, such that the number of
nodes on v’s side of the cut is at most dn/2e. Therefore, if we allow
only one omission fault per round, the smallest k for which Theo-
rem 9.2 is still applicable is roughly k = 3

4n, implying that for any
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k between 3
4n and n, k-agreement is impossible in such a graph. For

lower values of k, for example k = dn/2e + 1 (“strong majority”),
however, our theorem does not apply anymore, unless we allow two
or more omission faults. Note that for the same example, the bounds
given in [85] only yield that k-agreement for any k > dn/2e is im-
possible with two or more omission faults. With only one omission
fault, these bounds do not show impossibility of k-agreement even
for k = n in this example graph.

9.5.2 Impossibility: Addition and Corruption Faults

As in the previous section, we can use Theorem 9.2 to show how
many faults per round any (correct) k-agreement protocol can tolerate
in a given graph G, if faults can be any combination of additions and
corruptions.

Informally, the set of events AC is the set of all events where
at most c(G) additions or corruptions occur, where c(G) is the edge-
connectivity of the graphG. For message array Λ = (αij), letAC(Λ)
be the set of all events τ for Λ defined as follows: for at most c(G)
pairs (i, j) ∈ E, τ [i, j] = (αij , βij), αij 6= βij , where βij 6= Ψ if
αij 6= Ψ, and for all other pairs (i, j) ∈ E, τ [i, j] = (αij , αij). Then
AC :=

⋃
ΛAC(Λ) is the set of all events containing at most c(G)

additions and corruption faults.

Lemma 9.7. The set AC is c(G)-admissible, continuous and c(G)-
cut-adjacency-preserving.

Proof. AC is c(G)-admissible by construction. By Lemma 9.5, AC
is continuous.
To prove thatAC is c(G)-cut-adjacency-preserving, consider two con-
figurations A and B which are c(G)-cut-adjacent with respect to the
cut F ∗ and the node w. Let Pw be the set of processors on that
side of the cut where the states may differ. Consider the events π
for Λ(A) = {αij} and ρ for Λ(B) = {γij}, where for all (i, j) ∈ E

π[i, j] :=
{

(αij , γij) if (i, j) ∈ F ∗, i ∈ Pw and αij = Ψ
(αij , αij) otherwise,

and

ρ[i, j] :=
{

(γij , αij) if (i, j) ∈ F ∗, i ∈ Pw and αij 6= Ψ
(γij , γij) otherwise.
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It is not difficult to verify that π, ρ ∈ AC and the configurations π(A)
and ρ(B) are c(G)-cut-adjacent with respect to the cut F ∗.

From combining Lemma 9.7 with Theorem 9.2, and setting k =
n, it follows immediately that no consensus protocol is correct in spite
of c(G) addition and corruption faults. For lower k, again the state-
ment is somewhat more involved, but very similar to the case of only
omissions discussed in the previous section.

9.5.3 Impossibility: Byzantine Faults

In this section, we consider Byzantine faults, which can be omissions,
additions and corruptions. Again, we use Theorem 9.2 to prove im-
possibility bounds.

For a message array Λ = (αij), let ACO :=
⋃

ΛACO(Λ) be
the set of all events τ for Λ containing at most dc(G)/2e Byzantine
communication faults, i.e. an arbitrary combination of omission, cor-
ruption or addition faults.

Lemma 9.8. The set ACO is dc(G)/2e-admissible, continuous and
c(G)-cut-adjacency-preserving.

Proof. By definition, ACO is dc(G)/2e-admissible. It follows from
Lemma 9.5 that ACO is continuous.
To prove that ACO is c(G)-cut-adjacency-preserving, consider two
configurations A and B which are c(G)-cut-adjacent with respect to
the cut F ∗ and the node w. Let Pw be the set of processors on that
side of the cut where the states may differ. We split the edges of E
which cross the cut F ∗ into two sets F ∗1 and F ∗2 , each containing at
most dc(G)/2e edges. Now, consider the events π for Λ(A) = {αij}
and ρ for Λ(B) = {γij}, where for all (i, j) ∈ E

π[i, j] :=
{

(αij , γij) if (i, j) ∈ F ∗1 and i ∈ Pw
(αij , αij) otherwise,

and

ρ[i, j] :=
{

(γij , αij) if (i, j) ∈ F ∗2 and i ∈ Pw
(γij , γij) otherwise.

It is not difficult to verify that π, ρ ∈ ACO and the configurations
π(A) and ρ(B) are c(G)-cut-adjacent with respect to the cut F ∗ and
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Fault type Impossibility Bound Possibility Bound
A − ∞
C − ∞
O c(G) (?) c(G)− 1
AC c(G) (?) c(G)− 1
AO c(G) (?) c(G)− 1
CO c(G) (?) c(G)− 1
ACO dc(G)/2e (?) dc(G)/2e − 1

Table 9.1: Summary of the known bounds for synchronous consensus
with transient link faults. New results are marked with (?).

the node w. Furthermore, since each of the cuts F ∗1 and F ∗2 con-
tains at most dc(G)/2e edges, both π and ρ contain at most dc(G)/2e
communication faults. Hence, π, ρ ∈ ACO, and thus ACO is c(G)-
cut-adjacency-preserving.

Combining Lemma 9.8 with Theorem 9.2 and setting k = n
shows that no consensus protocol in a graph G is correct in spite of
dc(G)/2e Byzantine faults. Again, the implications of our results for
general k-agreement are very similar to those mentioned at the end of
Section 9.5.1.

9.6 Discussion

The bounds we have shown strictly improve on those in [85]. In the
case of consensus, that is k = n, Theorem 9.2 states that agreement
is impossible in the cases “only omissions” and “additions and cor-
ruptions” if the number of faults is above the edge-connectivity c(G)
of the graph. It follows trivially that consensus remains impossible
with c(G) faults if the type of faults are “additions and omissions”
or “corruptions and omissions”. For Byzantine faults, the bound is
dc(G)/2e. An overview of these results together with the previous
possibility bounds is given in Table 9.1. For consensus, our im-
possibility bounds are tight, since there exist algorithms in each set-
ting which achieve consensus if the number of faults is below these
bounds.

For general k-agreement, the bounds are not necessarily tight: for
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n processors in a graph of n nodes forming a path, our results show
that agreement of more than roughly 3

4n is impossible with one omis-
sion fault per round, but it is not clear whether agreement is possible
for smaller values of k. Yet, currently not even a dn/2e+1-agreement
protocol that can tolerate one omission fault per round is known.
We conjecture that no such protocol exists, that in fact on the path
with only one omission failure per round, even dn/2e+ 1-agreement
(strong majority) is impossible. Proving tight lower bounds for k-
agreement, however, seems to require a method different from the
bivalency arguments that we used for consensus: Using our methods,
one can prove that no fixed set of processors can achieve unanimity
in their decision values in this setting. Yet, in the execution of an
agreement protocol, the subset of processors whose decision value
will agree in the end need not be predetermined by its initial state, but
may depend on the failures that occur. It is this freedom which makes
it difficult to prove tight lower bounds for general k-agreement.
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Chapter 10

Introduction

10.1 Motivation

In this part of the thesis, we consider algorithms for wireless ad hoc
networks. A wireless ad hoc network typically consists of a large
number of nodes, each equipped with wireless communication capa-
bility, modest computational power, and a battery with limited capac-
ity. Two nodes can communicate directly if they are within mutual
communication range; to talk to distant nodes, a node can forward
messages via intermediate nodes. Wireless sensor networks are used
in an increasing number of current applied research projects, in a vari-
ety of applications ranging from agricultural management targeted at
Indian farmers [72] to body area networks for human activity recog-
nition [45]. To assist these developments, it is becoming ever more
important to find solutions to the fundamental problems in employing
such networks.

Wireless networks are much more dynamic than wired ones, for
at least two different reasons: First, communication via radio is much
more error-prone than using a wire, because there may be numerous
external sources causing interference, which are beyond the control
of the network operator. Second, devices which have wireless com-
munication capability are often mobile. As they move, some devices
may come within communication range, while others may become
out of range. These constant changes make it unreasonable to pre-
compute the actions to take in case a link becomes unavailable. An
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additional difficulty in highly dynamic networks is that a node in the
network may not be able to gather information about the entire net-
work topology, since any information that is received from faraway
nodes will be outdated when it reaches the node. Therefore, algo-
rithms for wireless networks must be local, which means that their
running time is so short that a node can only gather information about
the part of the network in its close neighborhood. Local algorithms
have the additional advantage that they can be designed without ex-
plicitly taking link faults into account, since there exists a general
method to transform any local algorithm for a static network into a lo-
cal algorithm for dynamic networks with negligible overhead [6]. In
this part, we give efficient local algorithms for two fundamental struc-
tures in wireless ad hoc networks: Maximal independent sets, which
are a basic building block for many distributed algorithms, since they
can be used to coordinate the actions of the involved processors, and
minimum connected dominating sets, which can serve as an energy-
efficient “virtual backbone” for transmitting messages in a wireless
sensor network.

To model the particular connectivity structure inherent to wireless
networks, usually a restricted class of graphs (as opposed to general
graphs) is considered in the literature. By far the most prominent
such class are unit disk graphs (UDGs). However, for various rea-
sons UDGs are a very idealized model of real wireless networks, and
many generalizations have been proposed [70,87]. We adopt the class
of growth-bounded graphs (defined below), which seems relatively
general since it contains UDGs and many other models as special
cases.

10.2 Terminology and Network Model

Terminology

Consider an unweighted graphG = (V,E). The neighborhood N(v)
of a node v ∈ V is defined as the set of all nodes w ∈ V with
dG(v, w) ≤ 1 (including v, in contrast to N̄(v)). The neighborhood
of a set S ⊆ V is defined as N(S) :=

⋃
s∈S N(s). Likewise, the i-

neighborhood of a set of nodes S is defined recursively as N0(S) :=
S, and Ni(S) := Ni−1(N(S)) for i ≥ 1.
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A maximal independent set (MIS)M in a given graphG = (V,E)
is a subset M ⊆ V such that for every v, w ∈ M we have v /∈
N(w) (independence) and furthermore no proper superset M ′ ⊃ M
with the latter property exists (maximality). A maximum independent
set (MaxIS) is a MIS of largest cardinality. For a subset S ⊆ V ,
MaxIS(S) is a maximum independent set on the induced subgraph
G[S]. A dominating set (DS) D for a given graph G = (V,E) is a
subset D ⊆ V such that for every v ∈ V there is a w ∈ D such that
v ∈ N(w). Note that a MIS is always a DS. A connected dominating
set (CDS) for a given graph G = (V,E) is a dominating set M with
the additional requirement that the nodes in M induce a connected
subgraph of G. A minimum (or optimal) connected dominating set
(MCDS) is a CDS of smallest possible cardinality, and the minimum
connected dominating set problem is the problem of providing such
a MCDS for a given graph. We are interested in a special class of
graphs, called growth-bounded graphs.

Definition 10.1. A class of graphs is called growth-bounded if there
is a polynomial bounding function f(r) such that for any graph G =
(V,E) of this class, the size of any MIS in the neighborhood Nr(v) of
any node v ∈ V is at most f(r), ∀r ≥ 0. Furthermore, we say that
a graph G is growth-bounded if it belongs to a growth-bounded class
of graphs.

An example of a growth-bounded graph class are unit disk graphs,
which are often used to model wireless communication networks. A
graph G = (V,E) is a unit disk graph if it can be represented by
placing a point pv for each node v ∈ V on the Euclidean plane R2,
such that an edge (u, v) ∈ E exists if and only if the distance ‖pv −
pu‖2 is at most 1. Furthermore, all edges in a unit disk graph have
length one by definition (they are “unweighted”).

Unit disk graphs are growth-bounded with a bounding function
f(r) ∈ O(r2), which is easily proved as follows: Consider any node
v and any independent set I ⊆ Nr(v), for some r ≥ 0. The corre-
sponding points of two (independent) nodes in I must have distance
greater than one. Thus each point corresponding to a node in I exclu-
sively occupies a disk of radius 1/2 with an area of (1/2)2π. As all
these disks must lie inside a circle of radius r + 1/2, it follows that
|I| ≤ (r+1/2)2π

(1/2)2π = 4r2 +4r+1. In addition to unit disk graphs, most
other graph classes used to model wireless ad-hoc networks such as
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quasi unit disk graphs, cover area graphs and other intersection graphs
are growth-bounded [50, 70].

When discussing the asymptotic running time of our algorithms,
we tacitly assume that each input graphG belongs to the same class C
(for example all unit disk graphs).

Network Model

All algorithms in this part of the thesis use the synchronous model of
distributed computation as described in Section 2.2.2. Each node has
a unique identifier and knows which nodes are within its transmission
range. When we say that a distributed algorithm computes a CDS (or,
respectively, a MIS), we mean that each node knows after executing
its code whether it is part of the CDS (MIS) or not. Assuming that a
MAC layer for direct communication of neighbors has already been
established, we do not consider collisions.



Chapter 11

Maximal Independent
Sets

11.1 Motivation and Related Work

The efficient distributed construction of a maximal independent set
(MIS) of a graph is of fundamental importance and has been studied
for many years [18, 54, 5, 53]. This problem asks for a subset S of
the nodes of a graph with the property that no two nodes of S share
an edge and such that there is no strict superset of S with the same
property. Its importance stems from the fact that it serves as a basic
building block for many distributed algorithms, and that it captures
the essence of symmetry breaking. Furthermore, it is a nice example
of a graph-theoretical problem that admits a trivial greedy solution in
a centralized setting, but is nevertheless a challenging research topic
for the distributed computation community.

With the advent of wireless ad hoc and sensor networks, the study
of distributed MIS computation has received further attention [59,74].
This is because algorithms for topology control and routing in such
networks often construct a MIS in an initial phase [34,19,2,79]. Typi-
cally, the time required for this phase dominates the total running time
of the algorithms. For example, constructing a (1 + ε)-approximate
minimum dominating set is possible in timeO(TMIS +log∗ n/εO(1))

137
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in growth-bounded graphs1, where TMIS is the time for MIS com-
putation [47]. Furthermore, as we show in Chapter 12, a (1 + ε)-
approximate minimum connected dominating set, which can be used
as a “virtual backbone” for routing, can be obtained in the same time,
again in growth-bounded graphs.

Various approaches for distributively computing a MIS in UDGs
are available. However, many of them have a worst-case running time
of O(n), e.g. [2]. As an interesting variant, [49] considers the dis-
tributed computation of a MIS in a setting where nodes are embedded
in a metric space, and some geometric information about the embed-
ding is available to the nodes. It is shown that if each node knows the
distance to each of its neighbors, one can compute a MIS inO(log∗ n)
rounds. If nodes are located in the Euclidean plane, and each node
knows its position, a MIS can even be computed in constant time.
Thus, very fast running times can be achieved under the above as-
sumptions. However, it seems debatable whether these features are
implementable in a practical scenario. It may be that the energy they
require is unacceptable for the wireless devices at hand, or these fea-
tures (e.g. measuring distance) may simply not be available, due to
hardware constraints or the type of deployment of the sensors. In any
case, a distance measuring device might increase the hardware costs
considerably.

In this respect, one might want to compute a MIS without us-
ing these features, yet being similarly fast. We therefore propose to
use randomization instead of distance measuring. This seems like a
natural choice, as intuitively, randomization should ease symmetry-
breaking. Moreover, randomization has proved successful in com-
puting a MIS in general graphs: While the fastest known determinis-
tic algorithm for general graphs due to Panconesi and Srinivasan [73]
runs in O(nd

√
1/ logn) (where d is a constant), Luby proposed an al-

most exponentially faster O(log n) randomized algorithm [54]. This
is close to the Ω(

√
log n/log log n) lower bound given in [48]. The

question whether a polylogarithmic deterministic algorithm for the
MIS problem exists is still open.

In contrast, for growth-bounded graphs a deterministic MIS algo-
rithm with running time O(log ∆ log∗ n) exists [46] (where ∆ is the
maximum degree of the graph), while the best known lower bound for

1log∗ n is the minimum integer t such that t times iterating the logarithm on n
yields a value smaller than 1.
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this class is Ω(log∗ n) (even for randomized algorithms) [53,61]. This
raises the question whether randomization enables a running time
improvement of the same magnitude as in general graphs. Our re-
sults, summarized in the next section, show that using randomization,
one can indeed compute a MIS in growth-bounded graphs almost as
quickly as with the help of distance information.

Determ. Alg. Rand. Alg. Lower Bound

(a) O
(
nd
√

1/ logn
)

O(log n) Ω
(√

logn
log logn

)
[5, 73] [54] [48]

(b) O(log ∆ log∗ n) O(log log n log∗ n) Ω(log∗ n)
[46] [this chapter] [53, 61]

(c) O(log∗ n) Ω(log∗ n)
[18] [53, 61]

(d) O(log∗ n) Ω(log∗ n)
[49] [53, 61]

Table 11.1: Summary of known results (prior to our work) on the dis-
tributed computation of a MIS in different graph classes: (a) General
Graphs, (b) Growth-Bounded Graphs, (c) Constant-Degree Graphs,
(d) UDGs with distance information. The lower bounds hold also for
randomized algorithms.

11.2 Summary of Results

Our main contribution is a synchronous randomized distributed algo-
rithm for computing a MIS in growth-bounded graphs with n nodes
running in O(log log n log∗ n) rounds with high probability. By high
probability, we mean that the probability is 1−O(1/nk) for any fixed
k > 3 (k affects the constant factor hidden in the asymptotic nota-
tion). Note that besides the running time bound which is probabilis-
tic, the correctness of our algorithm is guaranteed, i.e., it is a “Las
Vegas” algorithm. The nodes require only connectivity information
about the graph, and all messages are of size O(log n), that is, our
algorithm runs in the CONGEST model of computation. In view of
the Ω(log∗ n) lower bound for randomized algorithms [61, 53], our
solution is close to optimal. One year after our work, a determin-
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istic algorithm for computing a MIS in O(log∗ n) rounds in growth-
bounded graphs was found, which is asymptotically optimal [89].

The main technical novelty introduced in this chapter is a new
randomized algorithm to find a 2t-ruling set with low induced max-
imum degree in O(t) rounds. Even in general graphs, our approach
finds an O(log log ∆)-ruling set with induced degree O(log5 n) in
O(log log ∆) rounds (with high probability), which might be of inde-
pendent interest. In each step of this algorithm, a subset of the nodes
is selected. This subset consists of three different sets, which are
designed such that their combination guarantees the desired ruling-
property and a rapidly decreasing maximum degree. Two of these
sets are chosen deterministically, and the third set is chosen randomly
using an approach resembling Luby’s algorithm [54], but with a dif-
ferent choice of probabilities.

The results of this chapter were obtained in joint work with Elias
Vicari [37], and also appeared in his Ph.D. thesis [95].

11.3 Terminology

The size dv of a node v ∈ V is the size of N(v), that is, the degree
of v plus one2. Let ∆ denote the maximum degree of any node in
G. For convenience, we define ∆ := ∆ + 1. A set T ⊆ V is a
k-ruling set if every node of G is within distance k from some node
of T . Note that a MIS is a 1-ruling set. Throughout this chapter, we
denote the probability of an event E by P [E ], and the expected value
of a random variable X by E [X].

11.4 Distributed MIS Algorithm

In this section, we present the Algorithm MAXINDEPSET, which
computes a MIS in growth-bounded graphs withinO(log log n log∗ n)
rounds with very high probability. First, we outline the structure of
the algorithm.

In the first phase of Algorithm MAXINDEPSET, a subset T ⊆ V
of G’s nodes is selected, such that

2This +1 increment leads to simpler terms in our analysis, but is not of particular
importance.
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• T is a O(log log n)-ruling set of G, and

• the subgraph induced by T has a maximum degree ofO(log5 n).

This set is obtained by repeatedly applying Algorithm RANDSTEP
(see below), using V as the initial set. Then in a second phase, the set
T is further thinned out, such that the remaining set of nodes T ′ is an
independent O(log log n)-ruling set of G. As in the first phase, this
is achieved by repeatedly selecting particular subsets of the previous
set (starting with T ). Finally, in a third phase, this sparse independent
set T ′ is extended into a maximal independent set.

The main novelty of our approach lies in the first phase of the al-
gorithm, where the logarithm of the maximum degree induced by the
remaining nodes decreases geometrically in each step, using random-
ization. For the second and the third phase, we use two deterministic
algorithms from [46].

Note that the transition from the first phase to the second is trig-
gered by a threshold of O(log5 n) for the maximum degree of the
remaining graph. Not knowing n, the nodes cannot know within
reasonable time (i.e., locally) when the maximum degree has been
reduced enough. This is why we “interleave” the executions of the
algorithms for the first two phases. We will argue that this does not
harm the effectiveness of either phase.

The next sections describe the building blocks of our algorithm in
more detail. We will show that with high probability, each phase re-
quires at mostO(log log n log∗ n) rounds (Phase 1 usesO(log log ∆)
rounds with high probability), leading to the following result.

Theorem 11.1. There exists a randomized algorithm that computes
a MIS for any growth-bounded graph G within O(log log n log∗ n)
rounds of synchronous distributed computation with probability at
least 1 − O(1/nk) (for any k > 3) in the message-passing model.
All messages are of size O(log n) bits.

11.4.1 Phase 1: An O(log log n)-Ruling Set with Small
Induced Degree

This phase consists of repeated executions of the Algorithm RAND-
STEP: Let T1 be the set of nodes returned by the first execution of
RANDSTEP. This set induces a graph G[T1], on which RANDSTEP
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is applied again, yielding T2 and a new graph G[T2]. In this way, we
obtain a sequence of sets Ti which are increasingly sparse, while at
the same time remaining O(log log n)-ruling.

The central idea behind Algorithm RANDSTEP is to choose a ran-
dom subset of all nodes, such that the maximum degree of the induced
subgraph decreases rapidly, i.e., from ∆ to ∆c with c < 1, but assur-
ing that the remaining set of nodes is a 2-ruling set of the previous
graph. The key question then is how to choose the probabilities such
that nodes with large degree will have small degree afterwards: If all
nodes have the same degree d, and each node decides independently
with probability p = 1/d1/4 whether to stay in the set, then the ex-
pected degree is d3/4. This achieves that the maximum degree (or,
correspondingly, size) decreases from ∆ to ∆c with high probability,
and furthermore the probability that a node and all of its neighbors
leave the set is rather low. Clearly, when nodes have different degrees,
they will use different probabilities, so the above reasoning does not
work. As we will see however, if the degrees of neighboring nodes
do not differ too much, then one can still obtain a similarly fast de-
creasing maximum degree (with high probability).

Algorithm 9: RANDSTEP

Input: A growth-bounded graph G = (V,E).
Output: A 2-ruling set T ⊆ V of G.
R := ∅1

S := {u ∈ V ∣∣ d2
u < dv for some v ∈ N(u)}2

U := N(S)\S3

B := V \(U ∪ S) (B is the set of black nodes)4

Each u ∈ B independently joinsR with probability p = 1

d
1/4
u

.5

(R is the set of red nodes)
G := B\(N(R) ∪N(U)) (G is the set of green nodes)6

return T := S ∪R ∪ G7

Algorithm RANDSTEP works as follows (see Figure 11.1): First,
nodes which have a neighbor with size much larger than their own
know that they have a relatively low size, so they can simply stay in
the graph for the next round (this is the set S in the algorithm). Addi-
tionally, their neighbors (set U in the algorithm) can safely leave the
graph because they are sure to have a neighbor who stays. All other



11.4. Distributed MIS Algorithm 143

S
U
R
G

Figure 11.1: Illustration of Algorithm RANDSTEP. The sets S, R
and G, which are drawn as filled disks, remain in the graph. Their
union S ∪R ∪ G is a 2-ruling set of G.

nodes then have only neighbors with similar sizes. We refer to these
nodes as black nodes and denote them by the set B. A black node u
becomes red (and stays in the graph) independently with probability
p = 1/d1/4

u . The respective set is calledR in Algorithm RANDSTEP.
Finally, with low probability, there may be black nodes for which no
node within distance two stays in the graph. In order to guarantee the
2-ruling property (in contrast to merely knowing a high probability
bound for it), we add these nodes to the set of green nodes G which
also stays in the graph3.

For convenience, the algorithm is formulated in a global fashion,
but a distributed version, where each node can execute these steps by
communicating only with its direct neighbors, is immediate.

Analysis

In the following, we prove that with high probability, iterating Algo-
rithm RANDSTEP forO(log log n) times yields aO(log log n)-ruling
set whose induced subgraph has a maximum degree of O(log5 n).

First, we examine the ruling property of Algorithm RANDSTEP
when applied repeatedly.

Lemma 11.2. After iterating Algorithm RANDSTEP t times, the ob-

3For ensuring the 2-ruling property, it would suffice to define G := B\(N2(R) ∪
N(U)), but replacing N2(R) by N(R) simplifies the analysis.
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tained set Tt is a 2t-ruling set.

Proof. Consider an iteration from Ti to Ti+1. Note that after every
execution i of Algorithm RANDSTEP, the sets S, U and B form a
partition of Ti. Any node in S stays in the set. Any node in U is
dominated by some node in S. R∪G is by construction a dominating
set of B\N(U). Thus, the only nodes in Ti that may not be dominated
by S ∪ R ∪ G are those in N(U)\U . These nodes by definition have
a 2-hop neighbor in S. Thus, after each iteration, S ∪ R ∪ G is a
2-ruling set of Ti. The claim now follows by induction over i (as
initially, T0 = V is a 0-ruling set).

For the further analysis, we consider only one execution of Algo-
rithm RANDSTEP on the graph G = (V,E). During the exposition
and the analysis of the algorithms, the sizes and neighbors of a node
are to be understood with respect to the current graph. In the anal-
ysis we choose the constants quite arbitrarily to yield simple terms.
A more careful selection might lead to smaller constant factors in the
running time.

The first lemma states that the sizes of neighboring nodes in B do
not differ too much.

Lemma 11.3. For any u ∈ B, and for each v ∈ N(u), we have

(dv)1/2 ≤ du ≤ (dv)2.

Proof. By the lemma’s assumption we have u /∈ S, and thus d2
u ≥

maxw∈N(u) dw ≥ dv , which implies the left inequality. From u ∈ B
we further have u /∈ U and hence v /∈ S . So d2

v ≥ maxw∈N(v) dw ≥
du and thus the right inequality follows.

Lemma 11.4. The probability that a node u ∈ B with d := du ≥
k2 ln2 n becomes green is at most 1

nk , for k > 1.

Proof. Let u ∈ B be a node with the property that N(u) consists of
only black nodes. Only such nodes may potentially become green.
If, after the algorithm’s execution, one of the nodes in N(u) becomes
red then u does not become green.

As the d− 1 neighbors are all black, their sizes are all at most d2

by Lemma 11.3. Thus, each of them becomes red with probability
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at least d−1/2. The probability that neither u nor any of its d − 1
neighbors become red is therefore at most(

1− d−1/2
)d
≤ e−d1/2

,

using the basic inequality 1−x ≤ e−x. So for d ≥ k2 ln2 n, we have
P [u becomes green] ≤ 1

nk .

As we show in the following Lemmas, as long as the maximum
degree ∆ of G is at least Ω(log5 n), one iteration of RANDSTEP al-

most surely decreases ∆ of the graph to 2∆
7/8

or less.

Lemma 11.5. For any k > 1, the probability that a black node u ∈ B
with d ≥ 9k2 ln2 n has more than 2d7/8 red neighbors (including
itself) is at most 1

nk .

Proof. Recall that each black node v becomes red with probability
1

d
1/4
v

, independent of the choices of its neighbors.

Let X be the number of red neighbors of u, plus one if u is red,
i.e., X := |N(u)∩R| (this possibly includes u itself). X is a random
variable which is the number of successes in d independent Poisson
trials (see e.g. [58]), where a “success” means that some neighbor of
u (or u itself) joins R. Each of these trials (of joining R) may have
a different success probability, but by Lemma 11.3 all neighbors of u
(and u itself) have size at least d1/2, so each neighbor of u (and u too)
joins with probability at most 1

d1/8 . Clearly, E [X] ≤ d · 1
d1/8 = d7/8.

Using the Chernoff bound [16]

P [X ≥ (1 + δ)E [X]] ≤ e−E[X]δ2/3 for 0 < δ ≤ 1,

with δ = 1 and d ≥ 9k2 ln2 n, we obtain

P
[
X ≥ 2d7/8

]
≤ e− 1

3d
7/8 ≤ e−(k lnn) ≤ 1

nk
.

Lemma 11.6. The probability that a node u ∈ B with d := du ≥
9k4 ln4 n has more than 2d7/8 neighbors (including itself) in R ∪ G
is at most 2

nk−1 , k > 1.
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Proof. Let A be the event that u has more than 2d7/8 red neighbors,
and letB be the event that u has any green neighbor. By Lemma 11.3,
all neighbors of u have at least size 3k2 ln2 n, so by Lemma 11.4
every neighbor of u becomes green with probability at most 1

nk . From
the union bound4, it follows that the probability of u having any green
neighbor is at most 1

nk−1 , because u can have at most n neighbors.

Using this fact and Lemma 11.5 for the second inequality, we have

P [A ∪B] ≤ P [A] + P [B] ≤ 1
nk

+
1

nk−1
≤ 2
nk−1

.

Lemma 11.7. Let ∆ be the maximum degree of the subgraph induced
by Ti after i ≥ 0 iterations of Algorithm RANDSTEP. Assume that
∆ ≥ 6k5 ln5 n, k > 2 (recall ∆ = ∆ + 1). After one more iteration,
the maximum size of the subgraph induced by Ti+1 is at most 2∆

7/8

with probability at least 1− 2
nk−2 .

Proof. Consider any node u ∈ Ti with du ≥ 2∆
7/8

. This node
will only be in Ti+1 after the next iteration if it is in S ∪ R ∪ G.
However, clearly u cannot be in S (because otherwise there would
exist a node v with dv > d2

u ≥ 4∆
14/8 ≥ ∆, a contradiction.). So u

is either in R or in G. Moreover, by construction any node in B has
no neighbors in S , so its size is the number of neighbors in R ∪ G.
As du ≥ 2∆

7/8 ≥ 2(6k5 ln5 n)7/8 ≥ 9k4 ln4 n, Lemma 11.6 can be

applied, so the size d′u of u after the iteration satisfies d′u ≤ 2∆
7/8

with probability at least 1 − 2
nk−1 . Hence the probability that any of

the nodes with size d ≥ 6k5 ln5 n has a size≥ 2∆
7/8

is at most 2
nk−2 ,

again using the union bound.

The above bounds together yield a high-probability bound for the
number of RANDSTEP iterations required to reduce the maximum
degree to polylogarithmic size. Note that this result holds for arbitrary
graphs, not only for growth-bounded graphs.

4The union bound upper bounds the probability that any of the events
E1, E2, . . . , En occurs:
P
ˆSn

i=1 Ei

˜ ≤ Pn
i=1 P [Ei], even if these events are not independent (see e.g.

[58]).
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Theorem 11.8. For any constant k > 3, and some suitable con-
stant c = c(k), when RANDSTEP is run on any graph G = (V,E)
with maximum degree ∆, then with probability at least 1 − 2c/nk−3

the maximum degree in the subgraph of G induced by Ti is at most
6k5 ln5 n after no more than c ln ln ∆ iterations.

Proof. We call an iteration (of RANDSTEP) successful if the current
maximum size of any node in the subgraph induced by Ti is reduced
from ∆ to 2∆

7/8
. Thus, after m successful iterations, the degree is at

most

21+7/8+(7/8)2+...+(7/8)m−1 ·∆(7/8)m

= 2821−(7/8)m

∆
(7/8)m

≤ 512∆
(7/8)m

.

In order to reduce the degree to below 6k5 ln5 n, m must satisfy

512∆
(7/8)m

≤ 6k5 ln5 n,

which holds for m ≥ c ln ln ∆ for some constant c = c(k).

By Lemma 11.7, each iteration is successful with probability at
least 1 − 2

nk−2 as long as the degree is at least 6k5 ln5 n. Since we
require at most c ln ln ∆ successes and each iteration succeeds with
probability at least 1 − 2

nk−2 , as long as the maximum degree is big
enough (Lemma 11.7), the probability that all rounds are successful
is high. Formally, let Ai be the event that round i is not success-
ful. There are at most c ln ln ∆ iterations that could potentially fail.
Hence, the probability that at least one of these iterations fails is at
most

P
[⋃

Ai

]
≤
∑
i

P [Ai] ≤ 2c ln ln ∆
nk−2

≤ 2c
nk−3

.

By taking into account that ∆ might reach the threshold 6k5 ln5 n
earlier in the algorithm’s execution, the probability that it ends within
c ln ln ∆ iterations only grows. Thus, after c ln ln ∆ iterations, ∆ ≤
6k5 ln5 n and hence the maximum degree of the graph is at most
6k5 ln5 n with high probability.
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11.4.2 Phase 2: A Deterministic Algorithm for an
O(log log n)-Ruling Set

As the maximum degree of the remaining graph becomes smaller,
RANDSTEP becomes less effective in reducing it. This is because
a node u in B with small du will only be removed from the graph
with a small probability (and its neighbors, too). On the other hand,
the deterministic algorithm SPARSIFY from [46] (called Algorithm 1
in that paper), which computes a MIS in growth-bounded graphs in
O(log ∆ log∗ n) rounds, guarantees to halve the maximum degree of
a growth-bounded graph in a constant number of steps. Thus, the
latter algorithm is slower than ours while ∆ is large, but is faster
than RANDSTEP once ∆ is only polylogarithmic. The algorithm

Algorithm 10: SPARSIFYSTEP

Input: A growth-bounded graph G = (V,E).
Output: A 2-ruling set T ⊆ V of G
Send an invitation to one arbitrarily chosen neighbor.1

Accept one invitation, if any was received.2

E′ :=
{

(u, v) ∈ E
∣∣3

u accepts the invitation of v or vice versa
}

Compute a MIS T on the edge-induced subgraph4

G := G(V,E′).
return T5

SPARSIFY is roughly described as follows: In each iteration, called
SPARSIFYSTEP here, a subgraph G of G is selected such that every
node in G has degree 1 or 2, and each node of G has a neighbor in
G. Due to the bounded degree of G, a MIS of G can be computed
in time O(log∗ n), using the algorithm from [18]. Only nodes in this
MIS stay in the graph for the next iteration. This subset is a 2-ruling
set of the nodes in G.

It can be seen from the proof of Lemma 5 in [46] that this algo-
rithm halves the degree of the graph after a constant number of itera-
tions. Furthermore, inspection of this proof also shows that adding in-
terleaved iterations of RANDSTEP does not harm the analysis. Hence:

Lemma 11.9. For a growth-bounded graph, SPARSIFY reduces the
maximum degree of the graph from ∆ to ∆/2 in h = O(1) iterations.



11.4. Distributed MIS Algorithm 149

Each iteration needs O(log∗ n) rounds, and all messages are of size
O(log n) bits.

11.4.3 Combining Phase 1 and Phase 2:
The Independent Ruling-Set Algorithm

The key observation for obtaining Algorithm RULINGSET which is
fast in both of these phases is that the two algorithms can be “inter-
leaved”: after executing one call of RANDSTEP, we execute one call
of SPARSIFYSTEP. This is possible because for both algorithms, one
iteration takes a growth-bounded graph as input, and returns as out-
put a subset of its nodes which is a 2-ruling set of the input graph.
Hence, after t iterations of the combined algorithm, the remaining

Algorithm 11: RULINGSET

Input: A growth-bounded graph G = (V,E)
Output: An independent ruling-set I of G
I := V1

while I is not independent do2

I := RANDSTEP(G[I])3

if I independent then exit while-loop4

I := SPARSIFYSTEP(G[I])5

end6

return I7

set of nodes is a 4t-ruling set of the original graph. Furthermore,
Theorem 11.8 still holds for the combined algorithm, as the inserted
iterations of SPARSIFYSTEP never increase the degree of any node.
Once the degree of the remaining subgraph is at most ∆ ≤ 6k5 ln5 n,
by Lemma 11.9 the deterministic steps guarantee that the degree is
quickly decreased to zero (i.e., all remaining nodes are independent)
within O(log(6k5 ln5 n)) = O(log log n) iterations of the combined
algorithm, as also the iterations of the RANDSTEP algorithm never
increase any node’s degree.

Of course, interleaving one single step of the deterministic algo-
rithm (and not the required h steps to guarantee the bisection of the
degree) deteriorates the constant factor of the running time, but allows
on the other hand the execution of the algorithm without knowledge
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of h. Summarizing, the following theorem holds.

Theorem 11.10. For any k > 1 and any growth-bounded graph
G, Algorithm RULINGSET computes anO(log log n)-ruling indepen-
dent set ofG inO(log log n log∗ n) rounds of synchronous distributed
computation, with probability at least 1−O(1/nk). All messages are
of size O(log n) bits.

11.4.4 Phase 3: Obtaining the Maximal
Independent Set

At this point the O(log log n)-ruling independent set computed by
Algorithm RULINGSET is condensed to yield a maximal independent
set. We invoke the condensing algorithm from [46] (Algorithm 2),
which extends any t-ruling independent set to a MIS in O(t · log∗ n)
rounds in growth-bounded graphs, using only messages of O(log n)
bits. Thus, we get a MIS in O(log log n log∗ n) rounds. For the sake
of completeness we describe shortly how this algorithm works. It is,
in turn, split into two stages: the first stage condenses the existing
ruling set until the resulting set is 3-ruling. This is achieved by letting
every active node (i.e., a node in current independent set) compute
an independent set in its 4-neighborhood under the constraint that ev-
ery node in the 3-neighborhood is dominated by an active node. The
resulting new set might be no longer independent, but the growth-
bounded property of the graph permits to efficiently compute an in-
dependent set out of this denser set of active nodes. This process is
repeated until the final set is 3-ruling and takes O(log log n log∗ n)
rounds.

For the final stage, i.e. the task of producing the desired MIS
from the 3-ruling set, we define a clustergraph that enables the local
completion of the independent set achieved so far. A coloring of the
clustergraph defines an order of precedence on the active nodes that,
in turn, ensures that the final set is independent. Again, the efficiency
of the algorithm relies on the bounded growth property of the original
graph, which leads to the final MIS in O(log∗ n) rounds.

Combined, Theorem 2 and Lemma 8 from [46] imply the follow-
ing:

Theorem 11.11. For a growth-bounded graph G, Phase 3 trans-
forms a O(log log n)-ruling independent set of G into a MIS of G
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in O(log log n log∗ n) rounds of synchronous computation. All mes-
sages are of size O(log n) bits.

11.4.5 Removing Global Coordination

This section deals with issues that arise when the algorithms which
we formulated in a global way are to be transformed into local dis-
tributed algorithms. We assume these techniques to be well-known,
but include some explanations for the sake of completeness.

In the descriptions of our algorithms so far, we have used global
criteria at some stages. For example, in Algorithm 11 (RULINGSET)
we sequentially call two different distributed algorithms. The call
to RANDSTEP is easy to implement locally, because its execution re-
quires the same (constant) number of rounds at each node. The call to
SPARSIFYSTEP, however, is more subtle: As a part of its execution, a
MIS is computed with the algorithm from [18], whose global termina-
tion time is not available to the nodes. The third global criteria used
in Algorithm RULINGSET is the termination of the while loop (which
determines when Phase 3 of our algorithm is started). If this condition
had to be checked globally as stated, then the running time of the al-
gorithm would be at least linear in the network diameter. Fortunately,
this is not required: One can replace the global termination condition
by a local termination condition for each node, as follows: Each node
u terminates Algorithm RULINGSET as soon as it has either joined
the independent set I or has been removed from G without joining
I (in both cases, it is determined whether node u will be part of the
independent set when Algorithm RULINGSET terminates globally).
Thus, some nodes may terminate Algorithm RULINGSET earlier than
others.

If fact, all the global termination conditions we have just men-
tioned have the following two crucial properties: There is a local ter-
mination condition for each node, such that the global termination
condition is true if and only if all local termination conditions are
true. Furthermore, no local termination condition can become false
again once it has become true in some round.

In the following, we describe how an algorithm which is split into
several phases, where the termination condition of each phase has this
structure, can be implemented without global coordination. The idea
is to delay the execution of nodes which are ahead of their neighbors,
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thus locally maintaining synchrony. More precisely, a node u which
has completed Phase i starts Phase i + 1 only when all its neighbors
have also completed Phase i. If some neighbor of node u has not yet
completed Phase i, node u enters a “waiting” state and sends a “pause
i + 1” message to all those neighbors which have already completed
Phase i. Upon receiving a “pause i + 1” message, a node forwards
it to all neighbors which have not yet completed Phase i + 1. Then,
if it has already completed Phase i, it enters a “waiting” state itself.
Otherwise, it continues its computation, and enters the “waiting” state
only after completing Phase i.

Whenever a node u has completed Phase i, it informs all its neigh-
bors. This may allow some nodes (those which now have only neigh-
bors that have completed Phase i) to start with Phase i+ 1, thus they
in turn inform all neighbors to which they have sent a “pause i + 1”
message with a “continue i+ 1” message. A node in waiting state in
Phase i+ 1 continues its execution as soon as it has received a “con-
tinue i+ 1” message from all neighbors which have previously sent a
“pause i+ 1” message, and in turn sends a “continue i+ 1” message
to all neighbors waiting for it.

It should be clear that by this procedure, the execution is equiv-
alent to one in which the beginning of a new phase is globally co-
ordinated. Note that the mechanism just described is related to the
synchronizers from [4], viewing the different phases of the algorithm
as rounds in the synchronized model which must be ensured to be in
synchrony in the asynchronous setting.

Next, we argue that the asymptotic running time of the algorithm
is not increased by replacing the global termination conditions by lo-
cal conditions. To that end, consider any critical node, i.e., a node
whose computation has advanced the least. Such a node does not need
to wait for any neighbor. If it is in the waiting state when it becomes
critical, then it will receive a “continue” message in the next round.
Thus, any critical node will continue its execution at most one round
after becoming critical. Hence it follows that the worst-case time for
completing each phase is at most doubled, and hence the asymptotic
running time of the algorithm is not increased by replacing the global
termination conditions by local conditions.

In addition, note that using the α-synchronizer of [4], our algo-
rithm also terminates in O(log log n log∗ n) time in an asynchronous
setting, at the cost of a somewhat increased message complexity.



Chapter 12

Connected Dominating
Sets

12.1 Motivation

In contrast to wired networks, where usually a dedicated backbone
infrastructure with high-throughput capabilities is available for long-
distance routing, ad hoc networks do not have any a priori means to
manage the routing and scheduling of messages. Another specialty of
wireless ad hoc networks is mobility of the nodes, which may contin-
uously cause changes in the topology.

In the absence of an organized routing scheme, simple flooding
(i.e., the first time a message is received from any neighbor, it is for-
warded to all other neighbors) could be used to transmit messages.
However, this is very wasteful in terms of energy and causes interfer-
ence problems if many nodes transmit a message at the same time. To
organize routing more cleverly, a virtual backbone can be computed,
i.e., a subset of the nodes which participate in multi-hop routing. If
messages are then forwarded by flooding them only within this virtual
backbone, the energy savings are significant.

When modeling the network as a graph, the most widely used con-
cept for defining a backbone is the connected dominating set (CDS).
The energy savings are higher if the number of nodes in the CDS
is small. However, computing a minimum CDS (MCDS) is NP-hard

153
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even on unit disk graphs [17], and would require global information1.
Considering the highly dynamic nature of ad hoc networks, it is im-
portant that the CDS can be computed locally within a short time; a
linear running time in the diameter of the network (as required to ob-
tain global information) is clearly inappropriate. Moreover, a MCDS
lacks some desirable properties which we demand from an efficient
backbone. For instance, routing a message from a node v to node a
w should not need many more intermediate hops than a shortest path
in the original network. The maximum ratio over all node pairs be-
tween these two hop-distances is called the stretch factor. The stretch
factor of a MCDS can be as bad as linear in the number of nodes (for
instance, consider a ring network), and one would like to prevent this
effect. Another desirable property is that nodes have constant degree
in the CDS-induced graph, which might help to address interference
issues. For these reasons, a natural trade-off is to find a CDS with
only near-minimum size but fulfilling the aforementioned properties.

12.2 Related Work

The concept of a virtual backbone (in analogy to backbones in wired
networks) was introduced in [20]. Since then, the construction of
small connected dominating sets in unit disk graphs (UDGs) has been
intensively studied. A recent overview can be found in [11]. For the
centralized setting with given coordinates of the nodes (which are
embedded in the Euclidean plane), a polynomial-time approximation
scheme (PTAS) was proposed in [15]. The approach of [19] (as well
as our own approach) yields a PTAS that does not require coordinate
information about the nodes.

However, many of the early distributed algorithms either did not
guarantee a good approximation ratio in the worst case, or had a lin-
ear running time (see [11]). The first approach achieving a constant
approximation ratio in polylogarithmic time was [74]. Alzoubi et
al. [1] were the first to provide an algorithm for computing a CDS
with low stretch and low degree, which was named well-connected
CDS in [74]. Recently, Czygrinow et al. [19] presented a distributed
algorithm with running timeO(1/ε6 · log(1/ε) · log3 n) achieving the

1To see this, consider a ring topology: since any optimal solution must contain
exactly all but two adjacent nodes, computing a minimum CDS in a ring is as hard as
electing a leader.
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approximation ratio 1 + ε for any ε > 0, but without proving any
stretch or degree bounds. Related to the minimum connected domi-
nating set problem is the minimum dominating set problem, in which
the desired set need not be connected. For this problem, a central-
ized approximation scheme for UDGs is given in [41]. In UDGs, the
minimum dominating set problem even admits a distributed approxi-
mation scheme [47].

In general graphs, the best known distributed algorithm for the
MCDS problem has polylogarithmic running time and achieves an
approximation ratio ofO(log ∆), where ∆ is the maximum degree of
the network [25].

12.3 Summary of Results

In this chapter we present a distributed approximation scheme for the
problem of finding a minimum connected dominating set in the class
of growth-bounded graphs. An important feature of our algorithm
is that the only information required by the nodes is the set of their
direct neighbors. Distance estimation between them or even coordi-
nate information are not required. Our algorithm complies with the
LOCALmodel of computation, but not with the stricter CONGEST
model.

The algorithm computes a well-connected (1 + ε)-approximation
of a minimum connected dominating set, for any ε > 0. This takes
O(TMIS + 1/εO(1) · log∗ n) rounds of synchronous computation,
where TMIS is the number of rounds needed to compute a maximal
independent set (MIS). For growth-bounded graphs, a deterministic
distributed algorithm for computing a MIS in O(log∗ n) time has re-
cently been found [89]. Prior to this result, the fastest known MIS al-
gorithm was randomized and requiredO(log log n · log∗ n) time [37].

Thus, we improve on the running time for computing a (1 + ε)-
approximate MCDS, while adding the guarantee that the computed
CDS has constant stretch, constant degree, and therefore a linear num-
ber of edges. Moreover, a recent lower bound implies that a con-
stant approximation of a MCDS in unit disk graphs requires Ω(log∗ n)
time [52], showing that the running time of our algorithm is asymp-
totically optimal.

The algorithm we propose builds substantially on the approach
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of Nieberg et al. [69] for computing a (1 + ε)-approximate minimum
dominating set (for growth-bounded graphs): In a nutshell, their solu-
tion partitions the graph into clusters of appropriate radius, computes
an optimal DS on each of these, and takes the union of these sets
to yield a DS for the graph. Employing the same idea, we cluster
the graph and compute an optimal CDS for each cluster. However,
we let the clusters overlap such that the union of the small CDS so-
lutions forms a connected DS of the graph. We prove the approxi-
mation ratio of the CDS by adapting the proof from [69], which re-
quires an additional non-trivial step, i.e., Lemma 12.7. In the proof of
Lemma 12.7, ideas related to [19] are used. In addition, we prove the
(well-)connectedness of the computed set, which has no equivalent
in [69,19]. In order to turn our centralized approximation scheme for
CDS into a distributed algorithm, we follow the lines of [47].

This combination and modification of known techniques yields
a distributed approximation scheme which runs substantially faster
than the previously known solution [19], and additionally guarantees
well-connectedness.

The results of this chapter were obtained in joint work with Elias
Vicari [38], and also appeared in his Ph.D. thesis [95].

12.4 Preliminaries

We require a few definitions which are specific to this chapter: Two
sets S, T ⊆ V are called 2-separated2 if and only if d(S, T ) ≥ 3. For
any two points p, q in the plane, we denote their Euclidean distance
by ‖p − q‖2. For a graph G = (V,E) and a subset V ′ ⊆ V , the
reduced neighborhood Γj(v, V ′) of a node v ∈ V ′ is defined for all
j ≥ 0 as Nj(v) on the graph induced by V ′.

We define the function C(A), where A ⊆ V is a subset of all
nodes, as follows: C(A) ⊆ N(A) is a minimum connected set of
nodes that dominates all nodes in A, under the condition that only
nodes in N(A) are used. It is crucial that this set may contain nodes
from V \A. To end this section, we introduce two properties of min-
imum connected dominating sets in growth-bounded graphs, which
we use in our approach.

2We use the term 2-separation because any shortest path between S and T contains
at least two nodes outside S ∪ T .
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Lemma 12.1. For any growth-bounded graph G = (V,E) from a
class with bounding function f , there is a polynomial p(r) ≤ 3 · f(r)
such that for any v ∈ V , it holds |C(Nr(v))| ≤ p(r), ∀r > 0.

Proof. Let f(r) be the polynomial bounding function of the growth-
bounded graph G. For any node v ∈ V , consider a maximal inde-
pendent set I of Nr(v) (for a fixed r ≥ 0) and set Q := I . In the
following, we extend Q to a connected dominating set of Nr(v). Let
k = |I| be the number of components of G[I]. We proceed by in-
duction over k. If k = 1, G[Q] is connected and the claim follows.
Otherwise, since I is also a dominating set of Nr(v), we can find
two connected components A,B ⊆ Q such that d(A,B) ≤ 3. By
adding to Q the nodes of a shortest path between them, we decrease
the number of components by at least one and we increase |Q| by at
most two. We proceed inductively untilQ induces a connected graph.
Since k = |I|, we get |C(Nr(v))| ≤ |Q| ≤ |I| + 2|I| ≤ 3f(r). As
this holds for every r > 0, the claim is proved.

Lemma 12.2. Let G = (V,E) be a growth-bounded graph with
bounding function f , and choose a S ⊆ V that induces a connected
subgraph. Then for any MISM ofG[S], it holds: |M | ≤ f(1)·|C(S)|.

Proof. As C(S) dominates S, each node in M must have a neighbor
in C(S) (or be in C(S) itself). But by definition, at most f(1) nodes
in M can have the same neighbor in C(S), so the claim follows.

12.5 Finding a Small Connected Dominat-
ing Set

In the following, we describe a (sequential) procedure to construct
for each ε > 0 a connected dominating set of size at most (1 + ε)
times the minimum. This procedure can be executed efficiently in a
centralized way, and thus leads to a PTAS. Moreover, in Section 12.6,
we show that the same procedure can be implemented efficiently in a
distributed way, using the same technique as in [47].

The CDS is constructed by computing optimal connected domi-
nating sets for small parts of the graph, and taking the union of these
CDSs. We will construct the small CDSs such that their union leads
to a connected set, as required. Each small CDS is an optimal solution
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of a small cluster specified as follows: In the subgraph G[V ′], where
V ′ ⊆ V , choose any node v ∈ V ′, and consider the r-neighborhood
of v for increasing values of r = 0, 1, 2, . . . until we find a large
enough r∗ such that∣∣MaxIS

(
N(Γr∗(v, V ′))\Γr∗(v, V ′)

)∣∣ ≤ ε · ∣∣MaxIS
(
Γr∗(v, V ′)

)∣∣
(12.1)

holds. We call this operation an expansion of v. Initially, we set
V ′ = V . As we show in Lemma 12.4 below, r∗ is bounded by a
function in O(1/ε · log(1/ε)) depending solely on ε for any class of
growth-bounded graphs.

Our algorithm for finding a CDS for G proceeds as follows: start-
ing with an empty set D, it chooses any node v1 ∈ V of G, finds
a corresponding r∗1 such that Inequality 12.1 holds, and adds the set
C(Γr∗1+4(v1, V )) to the current solution D. After that, it removes all
nodes in Γr∗1+2(v1, V ) from the graph G and we denote the set of
remaining nodes by V ′. Note that here we do not remove all nodes
that are dominated by the current solution D from the graph. This
is an important difference to the approach in [69]. As we will show,
this modification guarantees that the final solution will be a connected
dominating set.

In the reduced graph, the algorithm chooses another node v2 ∈
V ′, considers growing neighborhoods of v2, until a r∗2 satisfying In-
equality 12.1 is found. Note that the bounding function f of the origi-
nal graph is still valid for the reduced graph, because any set which is
independent in the reduced graph is also independent in the original
graph. Furthermore, recall that C(Γr∗2 (v2, V

′)) and C(Γr∗2+4(v2, V
′))

may contain some nodes from the original graph G as dominators
which are outside V ′ because they are already dominated. Then,
C(Γr∗2+4(v2, V

′)) is added to the current solution D, and all nodes
in Γr∗2+2(v2, V

′) are removed from the graph, just as before. Then,
this procedure is repeated until all nodes have been removed from the
graph.

The algorithm is described formally in Algorithm 12. Since the
set of remaining nodes should always be clear from the context, we
omit the second argument of Γ(·, ·) in the rest of the chapter.

For proving the correctness of our algorithm, we need the follow-
ing two Lemmas.

Lemma 12.3. Consider any class of growth-bounded graphs with
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Algorithm 12: Computes a
(
1 +O(ε)

)
-approximate MCDS

Input: A growth-bounded graph G = (V,E), ε > 0
Output: An

(
1 +O(ε)

)
-approximate MCDS of G

D := {}1

{ For analysis: i := 1 }2

while V 6= {} do3

Choose any v ∈ V4

r := 05

while
∣∣MaxIS

(
N(Γr(v))\Γr(v)

)∣∣ > ε · ∣∣MaxIS
(
Γr(v)

)∣∣ do6

r := r + 17

end8

D := D ∪ C(Γr+4(v))9

10 V := V \Γr+2(v)10

{ For analysis: Si := Γr(v); Ti := Γr+4(v); i := i+ 1 }11

end12

return D13

bounding function f , and a graph G = (V,E) of this class. Then for
any r ≥ 1 and any v ∈ V it holds:∣∣MaxIS

(
N(Γr(v))\Γr(v)

)∣∣ ≤ f(2) · ∣∣MaxIS
(
Γr(v)\Γr−1(v)

)∣∣
Proof. Clearly, each node in MaxIS(N(Γr(v))\Γr(v)) has a neigh-
bor in Γr(v) in G. As MaxIS(Γr(v)\Γr−1(v)) is a dominating set of
Γr(v)\Γr−1(v), each node in MaxIS(N(Γr(v))\Γr(v)) has a node
in MaxIS(Γr(v)\Γr−1(v)) within distance at most two. However, the
number of nodes in MaxIS(N(Γr(v)\Γr(v)) that lie within two hops
of the same node in MaxIS(Γr(v)\Γr−1(v)) can be at most f(2), as
otherwise these nodes could not be mutually independent.

Lemma 12.4. Consider any class of growth-bounded graphs with
bounding function f . Then, for any ε > 0, there is aR∗f (ε) = O

(
1/ε·

log(1/ε)
)

such that for each graph G of this class, and each node v
of G, it holds∣∣MaxIS

(
N(Γr∗(v))\Γr∗(v)

)∣∣ ≤ ε · ∣∣MaxIS
(
Γr∗(v)

)∣∣
for some r∗ ≤ R∗f .
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Proof. Fix an ε > 0 and assume in contradiction that no such R∗f
exists. This implies that for arbitrarily large values r′, there is a graph
in the class such that for some node v, |MaxIS(N(Γr′(v))\Γr′(v))| >
ε · |MaxIS(Γr′(v))| holds for all 0 ≤ r ≤ r′. Consider such a value
r′ ≥ 2. From∣∣MaxIS

(
N(Γr′(v))\Γ′r(v)

)∣∣ > ε · ∣∣MaxIS
(
Γr′(v)

)∣∣
≥ ε · ∣∣MaxIS

(
Γr′−2(v)

)∣∣
and Lemma 12.3, we have∣∣MaxIS

(
Γr′(v)\Γr′−1(v)

)∣∣ > ε̄ · ∣∣MaxIS
(
Γr′−2(v)

)∣∣,
for ε̄ = ε/f(2). Hence, for all r: 2 ≤ r ≤ r′ we have∣∣MaxIS

(
Γr(v)

)∣∣ ≥ ∣∣MaxIS
(
Γr(v)\Γr−1(v)

)∣∣+
∣∣MaxIS

(
Γr−2(v)

)∣∣
> (1 + ε̄) · ∣∣MaxIS

(
Γr−2(v)

)∣∣.
Assume for the moment that r′ is an even number. Then we have∣∣MaxIS

(
Γr′(v)

)∣∣ > (1 + ε̄) · ∣∣MaxIS
(
Γr′−2(v)

)∣∣
> (1 + ε̄)2 · ∣∣MaxIS

(
Γr′−4(v)

)∣∣
> . . .

> (1 + ε̄)
r′
2 · ∣∣MaxIS

(
Γ0(v)

)∣∣ = (1 + ε̄)
r′
2 .

Since |MaxIS(Γr′(v))| grows only polynomially in r′, but the term
(1 + ε̄)

r′
2 grows exponentially in r′ (note that (1 + ε̄)1/2 > 1), the

above inequality will be violated for some large enough r′, which is
a contradiction. If r′ is odd, the same reasoning can be applied.
The claimed bound on R∗f follows easily from the inequality (1 +
ε̄)1/ε̄ > e− 1, for ε̄ small enough.

It is clear that Algorithm 12 terminates, and thatD then contains a
dominating set, because only dominated nodes are removed from the
graph. Let S1, S2, . . . , Sk and T1, T2, . . . , Tk be the sets Γr(vi) and
Γr+4(vi) respectively as chosen in each iteration of the outer while-
loop of Algorithm 12. We now show that the computed solution D,
which consists of the union of the C(Ti), forms a connected subgraph
of G.
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Lemma 12.5. The union D :=
⋃k
i=1 C(Ti) induces a connected sub-

graph of G.

Proof. First, we show that any two nodes a, b ∈ D with distance
d(a, b) = 2 in G are part of the same connected component in (the
subgraph induced by) D. To that end, consider any node w ∈ V and
its neighbors N(w) (see the left part of Figure 12.1). Let s be the
first node among N(w) (including w) that is removed in line 10 of
Algorithm 12. When s is removed in the i-th iteration, it holds that
s ∈ Γr∗i +2(vi) and so all nodes in N(w) are in Ti = Γr∗i +4(vi),
whereby v1, v2, . . . represent the centers of the expansions. Hence
they are dominated by C(Γr∗i +4(vi)). Therefore, any pair of nodes in
D ∩ N(w) is connected by a path of length at most p(R∗ + 4) + 1
hops consisting only of nodes in D (recall p from Lemma 12.1).

Second, consider any pair u, v /∈ D of nodes adjacent in G (see
the right part of Figure 12.1). We show that there must exist nodes
u′ ∈ N(u)∩D and v′ ∈ N(v)∩D such that u′ and v′ are connected
by a path of length at most p(R∗+ 4) + 1 consisting only of nodes in
D. To that end, assume w.l.o.g. that u is removed (line 10) before or
at the same time as v. When u is removed in the j-th iteration (i.e.,
u ∈ Γr∗j +2(vj)), also v is dominated by C(Γr∗j +4(vj)). The second
claim follows. Combining this with the first claim, we have that any
two nodes a, b ∈ D with distance d(a, b) = 3 in G are connected by
a path of length at most 3p(R∗ + 4) + 1 consisting only of nodes in
D.

These two facts together imply that D induces a connected sub-
graph. Indeed, if D were disconnected, then the shortest path in G
between two closest components of D would consist solely of nodes
in V \D. However, such a path cannot be of length two or three by the
above facts, and not longer either, because then D would not domi-
nate all the nodes.

Now that we have shown that the setD computed by Algorithm 12
is a connected dominating set, we prove that its size is at most 1 + ε
times larger than the optimum. To this end, we need two lemmas.

Lemma 12.6. Let ε > 0 and r > 0 be such that the following in-
equality is satisfied:∣∣MaxIS

(
N(Γr(v))\Γr(v)

)∣∣ ≤ ε · ∣∣MaxIS
(
Γr(v)

)∣∣.
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w

s

u v

v′
u′

≤ p(R∗ + 4)− 1

Figure 12.1: Illustration of Lemma 12.5. The filled dots represent
nodes that have already joined D. The other nodes are represented
by empty dots.

Then, for ε′ := ε · (3f(4) + 3) · f(1), it follows:∣∣C(Γr+4(v))
∣∣ ≤ (1 + ε′) · ∣∣C(Γr(v))

∣∣.
Proof. We show how to extend C(Γr(v)) to a connected dominating
set of the graph induced by Γr+4(v) by adding only relatively few
nodes so that the claim follows. Let M be a maximal independent
set of the graph induced by Γr+1(v)\Γr(v). Any node in Γr+4(v)
lies within 3 hops of some node in Γr+1(v)\Γr(v), and thus within 4
hops of some node in M . Thus, all nodes in Γr+4(v) are dominated
if we add to our solution the set C(Γ4(w)) for each w ∈ M (note
that |C(Γ4(w))| ≤ p(4) ≤ 3f(4)). In order to connect these sets to
C(Γr(v)), we need to add at most 3 additional nodes for eachw ∈M .
Thus in total, we obtain a connected dominating set of Γr+4(v) of size
at most

|C(Γr(v))|+ (3f(4) + 3) · |MaxIS(Γr+1(v)\Γr(v))|
≤ |C(Γr(v))|+ (3f(4) + 3) · |MaxIS(N(Γr(v))\Γr(v))|
≤ |C(Γr(v))|+ ε · (3f(4) + 3) · |MaxIS(Γr(v))|
≤ |C(Γr(v))|+ ε · (3f(4) + 3) · f(1) · |C(Γr(v))|,

using Lemma 12.2 for the last inequality.

Let V ∗ be the set of nodes chosen as centers v for the growing
neighborhoods in the algorithm. As for each v ∈ V ∗, Γr+2(v) is
removed from the graph before choosing a new node, the collection
{S1, S2, . . . , Sk} consists of 2-separated sets. We have the following
lower bound for the size of an optimal CDS for G.
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Lemma 12.7. Let S1, S2, . . . , Sk be the collection of 2-separated sets
in G = (V,E) computed by Algorithm 12. Then,

(1 + ε′′) · ∣∣C(V )
∣∣ ≥ ∣∣ k⋃

i=1

C(Si)
∣∣,

for ε′′ := 4f(1)ε and ε ≤ 1
4f(1) .

The latter assumption is without loss of generality: If ε > 1
4f(1) , we

can set ε = 1
4f(1) , which only improves the approximation ratio.

Proof. Since the Si are 2-separated, the sets N(Si) are pairwise dis-
joint, so the sets C(V ) ∩ N(Si) are pairwise disjoint, too. Further-
more, as C(V ) must dominate all nodes of G, including those in Si,
the set C(V )∩N(Si) must dominate all nodes in Si. To complete the
proof, we now show that |C(Si)| ≤ (1 + ε′′) · |C(V ) ∩N(Si)| for all
i, and thus, |C(V )| ≥∑k

i=1 |C(V ) ∩N(Si)| ≥ 1
1+ε′′ ·

∑k
i=1 |C(Si)|.

To that end, we add some nodes to C(V ) ∩N(Si) in order to ob-
tain a connected set which dominates Si. Let x be the number of
connected components in C(V ) ∩ N(Si) and suppose that x ≥ 2,
otherwise C(V ) ∩ N(Si) is connected and hence |C(Si)| ≤ (1 +
ε′′) · |C(V )∩N(Si)| is trivial. Then the individual connected compo-
nents of C(V )∩N(Si) can be connected by adding at most 2x nodes
(see the proof of Lemma 12.1). Note that each connected compo-
nent of C(V ) ∩N(Si) must contain one node from N(Γr(v))\Γr(v)
to ensure the global connectivity of the solution. Thus, by choos-
ing one such node for each connected component of C(V ) ∩ N(Si),
we obtain an independent set of size x. Therefore, we have x ≤
|MaxIS(N(Si)\Si)|. By construction of the Si, |MaxIS(N(Si)\Si)| ≤
ε · |MaxIS(Si)|, and by Lemma 12.2, |C(Si)| ≥ |MaxIS(Si)|/f(1).
This shows that

|C(Si)| ≤ |C(V ) ∩N(Si)|+ 2x ≤ |C(V ) ∩N(Si)|+ 2εf(1)|C(Si)|
and hence

|C(V ) ∩N(Si)| ≥
(
1− 2εf(1)

)|C(Si)|.
The claim now follows by choosing ε′′ = 2f(1)ε

1−2f(1)ε ≤ 4f(1) · ε, if
ε ≤ 1

4f(1) .
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Theorem 12.8. The setD computed by Algorithm 12 is a
(
1+O(ε)

)
-

approximation for the connected dominating set problem.

Proof. Let {S1, S2, . . . , Sk} and {T1, T2, . . . , Tk} be as defined in
Algorithm 12. By Lemma 12.6, it holds that |C(Ti)| ≤ (1 + ε′) ·
|C(Si)| for all i = 1, . . . , k, and D =

⋃k
i=1 C(Ti). Hence we have

|D| = ∣∣ k⋃
i=1

C(Ti)
∣∣ ≤ k∑

i=1

∣∣C(Ti)∣∣ ≤ (1 + ε′) ·
k∑
i=1

|C(Si)|

= (1 + ε′) · ∣∣ k⋃
i=1

C(Si)
∣∣ ≤ (1 + ε′)(1 + ε′′) · |C(V )|,

where the last inequality follows from Lemma 12.7.

We now shortly discuss how Algorithm 12 can be implemented in
a centralized fashion to obtain a PTAS. Most steps of the algorithm
can be trivially computed efficiently. The crucial part is the computa-
tion of the maximum independent sets MaxIS(N(Γr(v))\Γr(v)) and
MaxIS(Γr(v)), and of C(Γr∗+4(v)). Note that r is bounded by the
constant R∗ for any fixed ε, so from the growth-bounded property
we know that the size of the MaxIS is bounded by a constant. Thus,
by enumerating all node subsets of cardinality at most f(r), and se-
lecting the largest of those which is both independent and maximal,
a maximum independent set is found in polynomial time. Since the
considered subsets have only constant size, independence and maxi-
mality of the subsets can be checked in constant time. The same argu-
ments apply to the computation of C(Γr∗+4(v)), due to Lemma 12.1.
Hence, Algorithm 12 has polynomial time complexity for any fixed
ε > 0, but exponential time complexity in 1/ε.

12.6 A Distributed Approximation Scheme

The main goal of this chapter is to provide a fast distributed algo-
rithm that computes a (1 + ε)-approximation for the MCDS prob-
lem in growth-bounded graphs. The algorithm we describe here is an
adaptation from [47], adjusted to computing a CDS instead of a DS.
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A naive distributed implementation would be that in each round
all nodes which have the highest ID within their 2R∗ + 9-hop neigh-
borhood are expanded concurrently. However, this approach requires
a linear number of rounds in the worst case, because there can be
a linear waiting chain of nodes. The observation that every expan-
sion affects only neighbors within a small radius leads to a more
efficient algorithm: expansions of nodes with sufficient mutual dis-
tances can be scheduled concurrently. Roughly speaking, this can
be achieved by computing a MIS of G, and then coloring this MIS
with few colors such that two nodes with the same color are distant
enough. The coloring is achieved using a clustergraph Ḡ of radius
c = c(ε) with centers W ⊆ V : Ḡ = (V̄ , Ē), where V̄ := W and
for every u, v ∈ W , we let (u, v) ∈ Ē if and only if dG(u, v) ≤ c.
Note that if W is an independent set and G is growth-bounded, Ḡ has
a maximum degree of ∆Ḡ = O(f(c)). Hence using a MIS of G to
construct a clustergraph Ḡ of radius c, Ḡ can be colored with O(∆2

Ḡ
)

colors in O(c · log∗ n) time [53]. Note that a communication round in
the clustergraph costs O(c) rounds in the original graph. The color-
ing is then used to schedule the expansion of neighbors of MIS-nodes.
We choose c = 2R∗ + 11 for reasons that will become apparent in
the proof of Lemma 12.10. A more detailed description is given in
Algorithm 13.

Lemma 12.9. Algorithm 13 terminates inO(TMIS+1/εO(1) ·log∗ n)
time.

Proof. Computing a MIS of G takes time TMIS. Then, the cluster-
graph can be constructed in constant time, as its edges only span at
most distance 2R∗ + 11 = O(1/ε · log(1/ε)). Furthermore, Ḡ can
be colored with O(∆2

Ḡ
) = O

(
f2(R∗)

)
colors in O(R∗ · log∗ n) time

using the algorithm of [53].

The outer for-loop is executed O(∆2
Ḡ

) times. Inside the for-loop,
the number of different MaxIS that each node u (as in line 8) must
compute is 2r∗ = O(R∗) = O(1/ε · log(1/ε)). For computing each
MaxIS and MCDS for a neighborhood of radius r, u collects all infor-
mation about Γr(u) and then computes the set locally. As r ≤ R∗, all
steps in lines 8 to 12 can be executed in O(1/ε · log(1/ε)) time.

Lemma 12.10. The setD computed by Algorithm 13 is a
(
1+O(ε)

)
-

approximate minimum connected dominating set.
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Algorithm 13: Computes a
(
1+O(ε)

)
-approximate MCDS dis-

tributively
Input: A growth-bounded graph G, ε > 0, R∗ (according to

Lemma 12.4)
Output: An

(
1 +O(ε)

)
-approximate MCDS of G

Compute a MIS I of G;1

Construct the clustergraph Ḡ of I using radius 2R∗ + 11;2

Color Ḡ with γ = O(∆2
Ḡ

) colors;3

D := {};4

for k := 1 to γ do5

for every v ∈ I with color k do in parallel6

if N(v) ∩ V 6= {} then7

8 For some u ∈ N(v) ∩ V, find the smallest r∗ such8

that
|MaxIS(N(Γr∗(v))\Γr∗(v))| ≤ ε·|MaxIS(Γr∗(v))|;
Compute C(Γr∗+4(u));9

Inform Γr∗+4(u) about r∗ and C(Γr∗+4(u));10

D := D ∪ C(Γr∗+4(u));11

12 V := V \Γr∗+2(u);12

end13

end14

end15

return D16

Proof. By construction, any two nodes that are concurrently used for
an expansion have distance at least 2R∗+ 9, because they are respec-
tive neighbors of two MIS nodes of distance at least 2R∗ + 11. The
radius used by either expansion is at most R∗, and since each expan-
sion only involves the nodes within a radius of at most R∗ + 5, all
concurrent expansions would have the same result if they were exe-
cuted sequentially. Therefore, there exists an execution of the sequen-
tial Algorithm 12 which computes the same setD as Algorithm 13. It
follows that Algorithm 13 achieves the same approximation ratio as
Algorithm 12.

These two lemmas lead to our main theorem.

Theorem 12.11. For any ε > 0, Algorithm 13 computes a
(
1 +

O(ε)
)
-approximate minimum connected dominating set inO(TMIS+
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1/εO(1) · log∗ n) time.

12.7 Well-Connectedness

The connected dominating set computed by our Algorithm 12 is not
only a (1 + ε)-approximation of a minimum CDS, but has additional
properties which are desirable for its usage as a backbone in a wireless
network. Let G′ = (V ′, E′) be the graph induced by the CDS of the
(growth-bounded) graph G = (V,E) computed by Algorithm 12.
Then, the following statements hold for any ε > 0:

1. The backbone graph G′ has maximum degree O(1/εO(1)), and
therefore it has only O(1/εO(1) · |V ′|) edges.

2. UsingG′ as a routing backbone guarantees stretchO(1/εO(1)).

We assume in the following that source s and destination d of a rout-
ing request are both members of the CDS. If this is not true for either
or both of them, then we can easily choose a neighbor inside the CDS
as a representative. This will add at most two hops to the routing path,
so if the stretch is low for any pair s, d inside the CDS, the stretch of
any pair s, d inside G is also low.

To make the second statement precise, define

λ := max
u,v∈V ′

dG′(u, v)
dG(u, v)

as the hop-stretch of G′. Furthermore, if G is a UDG and if DG(u, v)
denotes the geometric length of a shortest path in G, then the geomet-
ric stretch of G′ is µ := maxu,v∈V ′

DG′ (u,v)
DG(u,v) .

Lemma 12.12. Let CDSA be the CDS computed by Algorithm 12.
The subgraph G′ of G induced by the nodes in CDSA has maximum
degree O(1/εO(1)).

Proof. First, note that each partial CDS C(Ti) computed by the al-
gorithm covers a subgraph with diameter O(R∗), so according to
Lemma 12.1, |C(Ti)| ∈ O(f(R∗)). Therefore the maximum degree
in the graph induced by C(Ti) is also at most O(f(R∗)). Second,
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each node u of G can only be contained in O(f(R∗)) many dif-
ferent C(Ti), because any expansion that leads to some C(Tj) con-
taining u must have as its center a MIS-node in distance at most
R∗ + 4 = O(1/ε · log(1/ε)) from u (and there are only O(f(R∗))
MIS nodes within distance O(R∗) of v).

Lemma 12.13. For any ε > 0, the hop-stretch γ ofG′ isO(f(R∗)) =
O(1/εO(1)). Further, if G is a UDG, then the geometric stretch λ of
G′ is also O(1/εO(1)).

Proof. Let D be the CDS computed by Algorithm 12. Consider any
source s and destination d in V ′. Let P = 〈p1, p2, . . . , pk〉 be the
sequence of nodes in a shortest path in G from s = p1 to d = pk. We
define a new path Q going through intermediate nodes q1, q2, . . . , qk
as follows: qi := pi if pi ∈ D. Otherwise, let qi be any node in
D ∩ N(pi) (such a node exists because D is dominating). Note that
qi ∈ D, ∀i : 1 ≤ i ≤ k. From the proof of Lemma 12.5, we can
conclude that between any pair (qi, qi+1), ∀i : 1 ≤ i ≤ k − 1, there
is a path in D of length at most 3p(R∗ + 4) + 1 = O(f(R∗)). Hence
there is a path Q of length ≤ k(3p(R∗ + 4) + 1) = k ·O(f(R∗)) =
k ·O(1/εO(1)) from q1 to qk solely consisting of nodes in D.
For the geometric stretch in UDGs, note that in the path R := 〈t1 =
s, t2, . . . tk = d〉 of shortest geometric length, the outer two of any
three consecutive nodes ti, ti+1, ti+2 must have distance at least 1:
‖ti − ti+2‖2 ≥ 1, ∀i ∈ {1, . . . , k − 2}. So R with k hops has
length at least (k − 1)/2. On the other hand, the path with the fewest
number of hops (at most k) has length at most k. Since we have shown
just before that G′ includes a path with hop-stretch γ = O(1/εO(1))
between any pair of nodes, it follows that the geometric stretch λ of
G′ is at most 2k ·γ/(k−1) ≤ 4γ = O(1/εO(1)), ∀k ≥ 2. For k = 1,
the path with fewest hops has length at most γ = O(1/εO(1)), which
completes the claim.

Summarizing, we have the following.

Theorem 12.14. The CDS computed by Algorithm 12 / Algorithm 13
is well-connected.
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Discussion

Concerning Part III, there seem to be no immediate questions that
remain open: one year after the publication of our randomized al-
gorithm for computing a MIS, an asymptotically optimal algorithm
was discovered [89]. As for the MCDS problem, the running time
our distributed approximation scheme was shown to be asymptoti-
cally optimal by later work [52]. Nevertheless, many open questions
remain in a more general context. Especially intriguing is the role of
randomness for computing a MIS in general graphs: While a simple
randomized distributed algorithm requires only O(log n) time with
high probability [54], the best known deterministic algorithm is much
slower and a lot more complicated [73]. Is there a deterministic al-
gorithm for the maximal independent set problem in general graphs
with polylogarithmic running time?

169
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