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Abstract

So-called sensor nodes combine means for sensing environmental parameters, pro¬

cessors, wireless communication capabilities, and autonomous power supply in a

single compact device. Networks of these untethered devices can be deployed

unobtrusively in the physical environment in order to monitor a wide variety of

real-world phenomena with unprecedented quality and scale while only marginally

disturbing the observed physical processes.

Due to the close integration of sensor networks with the real world, the cate¬

gories time and location are fundamental for many applications of sensor networks,

for example to interpret sensing results (e.g., where and when did an event occur)
or for coordination among sensor nodes (e.g., which nodes can when be switched

to idle mode). Hence, time synchronization and sensor node localization are fun¬

damental and closely related services in sensor networks.

Existing solutions for these two basic services have been based on a rather

narrow notion of a sensor network as a large-scale, ad hoc, multi-hop, unpartitioncd
network of largely homogeneous, tiny, resource-constrained, mostly immobile sensor

nodes that would be randomly deployed in the area of interest. However, recently

developed prototypical applications indicate that this narrow definition does not

cover a significant portion of the application domain of wireless sensor networks.

Our thesis is that applications of sensor networks span a whole design space

with many important dimensions. Existing solutions for time synchronization and

node localization do not cover important parts of this design space. Substantially

different approaches are required to support these regions adequately. Such solutions

can actually be provided.
We support this thesis by proposing a design space of wireless sensor networks

where concrete applications can be located at different points of the space. We

identify two important regions in the design space that are not appropriately sup¬

ported by existing methods for time synchronization and node localization. We

also propose, implement, and evaluate new solutions that cover these regions. The

practical feasibility of our approaches is demonstrated by means of a typical sensor

network application which requires time synchronization and node localization.

Our approach to time synchronization supports applications where network

connectivity is intermittent. The idea underlying our Time-Stamp Synchronization
method is to avoid proactive synchronization of the clocks of all nodes in a network.

Instead, the clocks of the sensor nodes run unsynchronized, each defining its own

local time scale. Only if clock readings are exchanged among nodes as time stamps
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contained in network messages, these time stamps are transformed from the time

scale of the sender to the time scale of the receiver. This approach is scalable, since

time is only synchronized on demand where and when needed by the application.

The approach is also resource efficient, since it piggybacks on existing message

exchanges.
Our approach to node localization supports tiny sensor nodes known as Smart

Dust. The Lighthouse Location System is based on a single beacon device that

emits particular optical signal patterns. Sensor nodes can autonomously infer their

location by passively observing these signals. This approach is scalable, since each

node infers its location independent of other nodes. A single beacon device emits

long-range signals in broadcast mode and can support arbitrary network densities.

The approach is resource efficient, since the sensor nodes do not actively emit any

signals. Only a tiny, energy-efficient optical receiver is needed to infer locations.



Zusammenfassung

Sensoren zur Erfassung von Umwcltparametern, Prozessoren, drahtlose Kommu¬

nikationseinheiten sowie autarke Energiequellen sind in sogenannten Sensorknoten

auf kleinstem Raum integriert. Netze aus vielen solchen Knoten können unauf¬

dringlich in die Alltagswelt ausgebracht werden, um eine Reihe verschiedener Um-

weltphänomenc grossräuming und mit hoher Genauigkeit zu erfassen, ohne die

beobachteten Vorgänge wesentlich zu beeinflussen.

Aufgrund der Einbettung von Sensornetzen in die reale Welt spielen die Katego¬

rien Raum und Zeit eine fundamentale Rolle für viele Anwendungen, beispielsweise

zur Interpretation von Beobachtungen (z.B. wo und wann wurde ein Ereignis fest¬

gestellt) oder für die Koordination der Sensorknoten untereinander (z.B. welche

Knoten können wann in einen cnergiesparenden Schlafzustand geschaltet werden).
Daher sind Zeitsynchronisation und Lokalisierung von Sensorknoten grundlegende

und eng verwandte Dienste in Sensornetzen.

Bestehende Ansätze zur Realisierung dieser Dienste gehen von einer vergleichs¬

weise engen Definition eines Sensornetzes aus, derzufolge ein Sensornetz aus ei¬

ner sehr grossen Zahl von homogenen, winzigen und daher ressourcenbeschränkten

Knoten besteht, die vorwiegend immobil sind, nachdem sie zufällig im Zielge¬

biet verteilt wurden. Ferner geht man davon aus, das Sensornetze unpartitionierte

Multi-Hop-Ad-Hoc-Netze sind. In jüngerer Zeit wurde jedoch eine Vielzahl proto¬

typischer Anwendungen von Sensornetzen vorgestellt, denen eine solche enge Defi¬

nition nicht gerecht wird.

Unsere These ist daher, dass Applikationen von Sensornetzen einen umfangrei¬

chen Entwurfsraum aufspannen, der eine Vielzahl wichtiger Dimensionen urnfasst.

Bisher existierende Methoden zur Zeitsynchronisation und Lokalisierung decken

wichtige Bereiche dieses Entwurfsraums nicht ab. Vielmehr benötigt man neuarti¬

ge Herangehensweisen, um diese Bereiche adäquat zu unterstützen. Entsprechende

Techniken können tatsächlich bereitgestellt werden.

Wir untermauern diese These, indem wir den Entwurfsraum von Sensornetzen

explizit machen und zeigen, dass konkrete Applikationen tatsächlich verschiede¬

nen Punkten in diesem Raum zugeordnet werden können. Wir identifizieren zwei

spezifische Bereiche im Entwurfsraum, welche nicht hinreichend durch bestehende

Ansätze zur Zeitsynchronisation und Lokalisierung unterstützt werden. Um diese

Bereiche abzudecken, schlagen wir neue Lösungsansätze vor, zeigen prototypische

Realisierungen auf und evaluieren diese. Die praktische Umsetzbarkeit dieser Me¬

thoden zeigen wir anhand einer konkreten Applikation, die Synchronisation und
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Lokalisierung voraussetzt.

Unser Ansatz zur Zeitsynchronisation unterstützt Anwendungsszenarien, in de¬

nen Netzverbindungen nur sporadisch bestehen. Die grundlegende Idee für das

Verfahren der Zeitstempelsynchronisation besteht darin, die Uhren der Sensorkno¬

ten nicht zu synchronisieren, so dass die lokale Uhr eines jeden Knotens eine un¬

abhängige Zeitskala definiert. Zeitstempel, die durch Auslesen der lokalen Uhr ent¬

stehen, haben daher zunächst nur lokale Gültigkeit. Wird ein solcher Zeitstempel

jedoch als Teil einer Nachricht im Netz verschickt, so wird dabei der Zeitstempel

von der Zeitskala des Senders in die Zeitskala des Empfängers transformiert. Dieser

Ansatz ist skalierbar, da Synchronisation nur dann stattfindet, wenn sie tatsächlich

von der Applikation benötigt wird. Ferner kann diese Methode effizient implemen¬

tiert werden, da die für die Zeitstempeltransformation notwendige Kommunikation

in vielen Fällen Huckepack auf bereits existierenden Nachrichten realisiert werden

kann.

Unser Ansatz zur Lokalisierung unterstützt winzige, sehr ressourcenarme Sen¬

sorknoten, die unter dem Namen "Smart Dust" bekannt sind. Unser Verfahren mit

dem Namen Leuchtturmlokalisierung verwendet eine spezielle Basisstation, die spe¬

zifische optische Signale aussendet. Sensorknoten können allein durch passive Be¬

obachtung dieser Signale autonom ihre Position mit hoher Genauigkeit bestimmen.

Dieser Ansatz ist skalierbar, da jeder Knoten völlig unabhängig von anderen Kno¬

ten seine Position bestimmt. Eine einzige Basistation kann daher beliebig dichten

Netzen zur Lokalisierung dienen. Da die Sensorknoten für die Lokalisierung selbst

keinerlei Signale aussenden müssen, ist das Verfahren auf der Seite der Sensorkno¬

ten sehr ressourceneffizient. Sensorknoten benötigen nur einen einfachen optischen

Empfänger, der auf kleinstem Raum realisiert werden kann.
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Chapter 1

Introduction

Enabled by technological advancements in wireless communications and embedded

computing, wireless sensor networks were first considered for military applications

in the 1980-ies, where large-scale wireless networks of autonomous sensor nodes

would enable the unobtrusive observation of events in the real-world. Since then,

the use of sensor networks has also been considered for various civil application

domains. This thesis is devoted to two fundamental services required by sensor

networks: time synchronization and node localization.

In this inaugural chapter, we introduce the research area of wireless sensor

networks, motivate the need for time synchronization and localization in sensor

networks, and give a brief overview of the main contributions of our work. We

conclude this chapter with an overview of the remainder of this thesis.

1.1 Motivation

In the late 1980-ies, technology advanced to a stage where it became possible to

build relatively small, battery-powered computing devices equipped with sensors

and wireless communication with manageable effort and cost by leveraging off-

the-shelf hardware components. While systems with similar functionality had been

built earlier, these required costly custom hardware design processes or exhibited a

power consumption that did not allow battery operation for longer periods of time.

Having observed the speed of technological advancements over the past, one

could envision at that time that in the near future it would be possible to build even

smaller untethered computing, communicating, and sensing devices with marginal

cost per device. While the low per-device cost would allow mass production, small

size and untctheredness would enable an unobtrusive deployment.

This prospect triggered researchers to think of implications and applications of

this emerging new technology. Perhaps one of the first individuals to articulate this

trend, to envision possible applications, and to speculate about societal impacts

was Mark Weiser, who coined the term Ubiquitous Computing in his seminal article

[106]. From then on, this vision was further refined and substantiated by a number

of visionaries and research projects. This development was evidenced by several
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CHAPTER. 1. INTRODUCTION 2

new terms such as Pervasive Computing, Ambient Intelligence, and also Wireless

Sensor Networks (WSN).
Common to these slightly different terms and underlying visions is the goal of

bridging the long-standing gap between the physical world where we live in and the

traditional virtual world of computers and other information-technology artifacts.

The key to realization of these visions is the use of large collections of these unobtru¬

sive networked computers that could perceive and control aspects of the real world

via sensors and actuators on the one hand, and that would provide an intuitive in¬

terface to human users on the other hand. While projects classified as Ubiquitous

Computing, Pervasive Computing, and Ambient Intelligence arc somewhat focused

on issues related to interfacing these unobtrusive networked computing devices to

human users, this component is of lesser significance in projects that examine sen¬

sor networks. Rather, research on wireless sensor networks focuses on the technical

aspects of observing the real world with best possible quality, using as few as pos¬

sible resources, and minimizing the impact of the observation tool on the observed

physical processes. We examine the subtle differences of the above research areas

in more detail in Chapter 2. Our work, however, is focused on wireless sensor

networks.

WSN have been initially considered for military applications, where real-world

events (e.g., vehicles and troops passing) must be unobtrusively observed in inac¬

cessible or hostile environments. For example, DARPA initiated the Distributed

Sensor Networks program in the 1980-ies. For these military tasks, large numbers

of sensor nodes would be deployed in the area of interest and form a wireless net¬

work to observe events in the physical environment. These long-lived, unattended

networks would be unobtrusive due to the small size and untetheredness of indi¬

vidual nodes, could operate without the use of additional hardware infrastructure,

and would be robust due to the redundant deployment of nodes. Later on, it was

suggested that these features would render sensor networks a useful tool also in

a number of civil application domains [35], for example as a scientific tool for en¬

vironmental monitoring or in building automation. In Chapter 2 we examine a

number of concrete civil applications of WSN.

Time and space are fundamental categories in the physical world. Since wireless

sensor networks arc a tool for observing, influencing, and reasoning about phenom¬

ena of the physical word, time and space are also of utmost importance in WSN.

They are essential elements for obtaining and interpreting real-world observations

(e.g., where and when did an event occur, how large and fast was an observed

object), for tasking a sensor network (e.g., where and when to look for events), for

interfacing wireless sensor networks with the real-world (e.g., what node density

and sampling frequency is needed to observe a certain object), and for coordination

among sensor nodes (e.g., which nodes can when be switched to idle mode).

There arc two basic services to enable these functions: time synchronization

and localization of sensor nodes. Time synchronization allows a sensor node to

estimate current time with respect to a common time scale. Localization allows a

node to estimate its current location with respect to a common coordinate system.
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1.2 Contributions

This thesis is devoted to time synchronization and node localization in the context

of wireless sensor networks. What makes the provision of these services challeng¬

ing are the specific technical characteristics and requirements of wireless sensor

networks and their applications. A number of earlier research projects and com¬

monly used hardware prototypes of sensor nodes led to a rather narrow view on

these characteristics and requirements, which resulted in a de facto definition of a

wireless sensor network that is adopted by most research projects. Consequently,

existing work on time synchronization and node localization is mostly based on

this narrow view.

One of the contributions of this thesis is to show that such a narrow view

on the characteristics and requirements of WSN does not meet the diversity of

concrete applications of wireless sensor networks. Motivated by a study of concrete

applications of WSN, we propose to replace this narrow definition with a multi¬

dimensional design space that captures influential and significant dimensions of

wireless sensor networks and their applications. We substantiate the relevance of

such a design space by showing that concrete prototypical applications of wireless

sensor networks can indeed be located at a diverse set of points in the design space.

We show that existing approaches to time synchronization and node localization

fail to cover important parts of this design space. In particular, we identify two

regions in the design space which are not sufficiently supported by existing solu¬

tions. The main contribution of this thesis is to propose novel approaches to node

localization and time synchronization to support these regions. We present and

evaluate prototypical implementations of our solutions. In addition, we support

the practical feasibility of our algorithms by incorporating them into a concrete

application for tracking mobile objects with a wireless sensor network.

One further contribution of this thesis is the provision of a unified view on time

synchronization and node localization in the context of wireless sensor networks.

While research in these two domains has been largely separated in the past, we

show that models, requirements, techniques, and algorithms of the two domains

are rather similar and in some respects closely related. In particular, we point

out a number of structural elements that are shared by many existing distributed

algorithms for time synchronization and node localization.

The major contributions of this thesis have also been published in scientific

conferences, journals, and books, most notably in [34, 80, 82, 83, 84, 85, 86].

1.3 Structure

This thesis first discusses general aspects of wireless sensor networks, before pre¬

senting a unified framework for the discussion of time and space. Based on this

framework, we discuss time synchronization and node localization separately. We

then rejoin our discussion on time and space by showing how our solutions are
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employed in a common prototypical application. In more detail, the thesis is struc¬

tured as follows:

Chapter 2 is devoted to general aspects of wireless sensor networks. We char¬

acterize wireless sensor networks by showing how they draw from other research

domains and point out important differences with respect to these domains. We

then propose the design space of wireless sensor networks and justify it by showing

that existing applications do indeed cover different regions in this space. We dis¬

cuss different classes of sensor-node prototypes and show how they cover various

regions of the design space. We then discuss how different regions in the design

space are associated with different technical challenges and conclude the chapter

with design principles that are helpful in dealing with these challenges.

Chapter 3 presents a unified framework for the discussion of aspects related to

space and time in sensor networks. We first present applications of space and time

in sensor networks, before developing a common model for time synchronization

and node localization. Based on this common model, we present requirements

and possible conceptual approaches for time synchronization and node localization.

Then we examine the structure of distributed algorithms for time synchronization

and node localization, pointing out five important structural elements that can

be found in most distributed algorithms of both domains. Finally, we discuss

various limitations and trade-offs of these distributed algorithms with respect to

the technical challenges presented in Chapter 2.

Chapters 4 and 5 are devoted to in-detail examinations of time synchronization

and node localization, respectively. The structure of these two chapters is very

similar. Following the framework developed in Chapter 3, we first review funda¬

mental concepts and techniques. Based on these concepts, we present and discuss

concrete existing algorithms. We then show how these approaches fail to meet the

requirements of certain important regions in the design space that was developed in

Chapter 2. Finally, we present and evaluate our solutions for these specific regions

in the design space.

In Chapter 6 we show the practical feasibility of our solutions for time synchro¬

nization and node localization by means of a concrete prototypical application.

Chapter 7 concludes this thesis by summarizing the results, by discussing limi¬

tations, and by providing an outlook on future work.



Chapter 2

Wireless Sensor Networks

Research on wireless sensor networks goes back to a number of US-based research

projects, where the use of large networks of tiny wireless sensor devices was ex¬

plored in a military domain. Initial work mainly focused on the development of

hardware prototypes and energy-efficient networking protocols. These early ef¬

forts established a de facto definition of a wireless sensor network as a large-scale,

wireless, ad hoc, multi-hop, unpartitioncd network of homogeneous, tiny, mostly

immobile sensor nodes that would be randomly deployed in the area of interest.

Since then, the use of wireless sensor networks has also been considered for

a number of civil applications. Wireless sensor networks have been suggested as

a scientific tool for better understanding real-world phenomena, as an enabling

technology for making our daily life more comfortable, as a tool for improving the

efficiency of industrial processes, and as a mechanism for dealing with issues such

as environmental protection and law enforcement. In these application domains,

wireless sensor networks are deemed a promising technology with the potential for

changing the way we live by bridging the gap between the real world and the virtual

world of existing information technology.

The diverse set of potential applications has two important implications.

Firstly, wireless sensor networks cannot any longer be characterized by a single,

narrow definition. Rather, wireless sensor networks span a broad design space with

vastly varying requirements and characteristics. Secondly, wireless sensor networks

have become a truly multidisciplinary domain, where close cooperation between

users, application domain experts, hardware designers, and software developers is

needed to realize efficient systems for specific applications.

In this chapter, we characterize wireless sensor networks in a number of dif¬

ferent ways. We first informally define wireless sensor networks in Section 2.1,

also pointing out the research areas that are influential. In Section 2.2 we make

the design space of wireless sensor networks explicit by identifying its important

dimensions. We consider existing and envisioned applications of wireless sensor

networks in Section 2.4 and show that these applications do indeed cover various

regions in the design space. In Section 2.5 we discuss four classes of sensor node

prototypes and show how these can cover different areas in the design space. Sec-
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tion 2.6 is devoted to prominent technical challenges that can be found at different

points in the design space. Design principles that can help mitigate these technical

challenges arc presented in Section 2.7.

2.1 Characterization

Sensor networks consist of sensor nodes - untethered computing devices that in¬

clude a power source, a transceiver for wireless communication, a processor, mem¬

ory, sensors, and potentially also actuators. Although the exact properties and

capabilities of these components may vary, a common property of sensor nodes is

their resource scarcity.

Multiple sensor nodes form a wireless network, whose topology and other prop¬

erties do also depend on the application context. A large class of sensor networks

can be characterized as multi-hop ad hoc networks, where sensor nodes do not only

act as data sources, but also as routers that forward messages on behalf of other

nodes, such that no additional communication infrastructure (e.g., base stations)

is required for operating the network.

The sensor nodes participating in a network can vary in their capabilities and

configuration. For example, sensor nodes may be equipped with different types of

sensors; some sensor nodes might be equipped with a more powerful processor and

more memory to perform sophisticated computations; some nodes might be con¬

nected to a other networks and can act as gateways to a background infrastructure.

Wireless sensor networks are deployed in the physical environment in order to

monitor a wide variety of real-world phenomena with unprecedented quality and

scale (by placing many sensor nodes close to the phenomenon of interest), while only

marginally disturbing the observed physical processes (due to the unobtrusiveness

of individual sensor nodes).

Using attached sensors, nodes can observe a partial state of the real world

in their close physical neighborhood. By integrating observations of many sensor

nodes, a more detailed and geographically extensive observation of a partial state

of the real world can be obtained. Due to the relatively small effective range of

sensor nodes, sensor networks often consist of many, densely deployed sensor nodes.

While individual sensor nodes have only limited functionality, the global be¬

havior of a sensor network can be quite complex. The true value of the network is

in this emergent behavior: the functionality of the whole is greater than the sum

of its parts. For example, a sensor network may estimate the velocity of a moving

object even though sensor nodes are not equipped with velocity sensors. Instead,

velocity estimates can be obtained by correlating object sightings from spatially

dispersed sensor nodes, which requires only sensors for detecting the proximity of

objects.
The output of the sensor network may be used for various purposes. In the

most basic form, the output is delivered to a human user for further evaluation.

However, the output may also be used to control the operation of the sensor net¬

work without human intervention by enabling/disabling sensors, or by controlling
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operation parameters of sensors (e.g., sampling rate, sensitivity, orientation, posi¬

tion). In addition, actuators may be triggered based on the output of the sensor

network. Using the output of the sensor network to control sensors or actuators can

effectively create a closed-loop system that strives to achieve a particular nominal

condition in the sensor network or in the real world.

Sensor networks are a multidisciplinary area of research which is related to

and draws from a number of other research domains. However, due to a number

of novel characteristics and requirements of sensor networks, results from other

research domains typically cannot be directly applied to sensor networks. Below

we further characterize wireless sensor networks by discussing closely related and

influential research domains. In particular, we point out how sensor networks differ

from typical assumptions and models in these domains.

2.1.1 Distributed Systems

According to [7], a distributed system is an information-processing system that

contains a number of independent computers that cooperate with one another over

a communications networks in order to achieve a specific objective. Based on

this definition, wireless sensor networks are clearly distributed systems: sensor

nodes nodes cooperate by means of wireless communication in order to process

information about the real world.

In the sensor network context, computers and communications network differ

significantly from many traditional distributed systems. The unobtrusive deploy¬

ment of large-scale sensor networks requires that sensor nodes be untethered, small,

and cheap. Size and cost constraints in turn imply that sensor nodes arc limited

in their resources (computing, storage, communication) and energy budget. Com¬

munication is wireless, typically short range, low bandwidth, and unreliable. In¬

teraction with a harsh physical environment may lead to a high degree of network

dynamics (e.g., topology changes, network partitions, node failures, communication

failures) typically not found in traditional distributed systems.

Traditional distributed systems are mostly decoupled from the real world. In

contrast, sensor networks are inherently and closely integrated with the real world,

with data about the physical environment being captured and processed automat¬

ically, online, and in real time. The input of a sensor network can be characterized

as a continuous stream of data with low information density (raw sensory data con¬

tains few information per bit), with high data volume (since many nodes frequently

sample their sensors), with many redundancies and correlations (since many phys¬

ical phenomena are continuous in time and space), and with a high level of noise

(since data is obtained by measurements using low-cost sensors). The desired

output typically has opposite characteristics: high information density, low date

volume, low redundancy, and high accuracy.

Sensor nodes cooperate with the goal of distilling the essence of information

contained in a large amount of dispersed sensor readings, taking into account the

limitations of individual nodes and the limitations of the communications network.
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2.1.2 Ubiquitous Computing

The term "Ubiquitous Computing" [106] refers to a world where computers are

unobtrusively integrated into our natural environment in order to support us in¬

tuitively in fulfilling our tasks. This vision is based on the observation that using

today's general purpose computers often requires complex and non-intuitive in¬

teraction patterns. Humans have to pay special attention to the computer, are

distracted from the task to be solved - ultimately making the computer a very vis¬

ible component of our current world. In contrast, using a "ubiquitous computer"

should not require abilities that are not immediately related to the task at hand.

In addition to this smooth integration into our natural environment, ubiquitous

computers are also physically embedded into our environment and interact with

the physical world by means of sensors and actuators.

One possible way to approach this vision is to integrate computing and

information-processing capabilities into familiar artifacts or into our physical envi¬

ronment - resulting in so-called "smart things" and "smart environments". Here,

the term "smart" refers to an augmented functionality that is both intuitive and

useful. In contrast to traditional general purpose computers, smart things and

environments are highly specialized for a particular application. The comput¬

ers embedded into smart things and smart environments communicate with each

other or with a background infrastructure via a wireless network in order to provide

complex services.

Important for the intuitive or smart behavior of ubiquitous computing systems

is the notion of context. According to [29], context is any information that charac¬

terizes the situation of an entity (e.g., person, place, object). While this is a very

broad characterization, context information (e.g., location, time, light, tempera¬

ture, presence/absence of other entities) can often be circumscribed as the state of

an entity and its close physical environment. In most cases, sensors are used to ac¬

quire context information. Context is a key to intuitive usage, since it is a primary

source of information for adapting system behavior to the current situation and

expectations of users. In the ubicomp literature, such context-driven adaptation is

referred to as "context awareness".

From the above description, wireless networks of embedded sensing and com¬

puting devices are a key enabling technology for ubicomp and have been used in

many prototypical ubicomp applications to date. Despite this, it is interesting to

note that the ubicomp and WSN research communities are largely separated both

in terms of research groups and venues for presenting research results.

One reason for this might be the somewhat different research foci of the two

communities. Typical topics in ubicomp research are user-interface issues, applica¬

tions and their implications, high-level aspects of context acquisition and context

awareness. The WSN community often focuses on networking aspects, distributed

algorithms, and distributed signal processing. One further difference is related to

the use of networked sensors in ubicomp and WSN. Sensors for context acquisition

in ubicomp are often incorporated into specific artifacts, resulting in a predefined

and fixed association of sensors to a particular artifact. Detecting the context of
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such instrumented entities typically involves only a single or few networked sensors.

Deriving context information from raw sensor readings is often performed outside

of the "sensor network".

In contrast, typical wireless sensor networks are embedded into the environment

to monitor phenomena occurring within this environment. Often, these phenomena

cannot be directly instrumented with sensors for observation. As a consequence,

there may be no predefined or fixed association of sensor nodes to a monitored

phenomenon. Also, a large number of sensor nodes may be involved in the obser¬

vation of a single phenomenon. A changing set of sensor nodes may be involved in

monitoring a single phenomenon over time. Raw sensor readings are often (pre-)

processed inside the sensor network.

Despite these subtle differences, the transition between ubicomp and WSN is

rather smooth, which will also be reflected by the design space we propose later in

this chapter.

2.1.3 Peer-to-Peer Systems

Peer-to-peer (P2P) systems can be defined as self-organizing, decentralized dis¬

tributed systems where nodes have symmetric roles. While originally conceived

for file sharing in the Internet, the scalability and resilience of P2P systems lends

itself to a growing domain of applications. Most P2P research is concerned with

the establishment of so-called overlay networks on top of existing communication

infrastructures such as the Internet. Such techniques effectively shield application

designers from the complexities of organizing and maintaining an overlay topology,

of tolerating node failures, of balancing load, and of locating application objects.

P2P systems share a number of properties with wireless sensor networks, namely

they are both large-scale, self-organizing, decentralized distributed systems. Hence,

there is a high potential for P2P techniques in the sensor network context. However,

there are also a number of differences between typical P2P systems and WSN,

which make an adoption non-trivial. Most prominently, P2P systems are typically

designed for wired networks, where nodes do not suffer from resource and energy

constraints. Also, neighbor nodes in overlay networks often map to distant nodes

in the underlying physical network. In the sensor network context, this may result

in poor performance and high energy consumption.

2.1.4 Embedded Systems

Many artifacts of our daily life such as consumer electronics, other consumer prod¬

ucts, and vehicles contain computers, which are commonly referred to as embedded

systems. These embedded computing systems monitor and control certain aspects

of the containing system. In contrast to general purpose computing systems, em¬

bedded system perform a single or tightly knit set of application-specific functions,

are often subject to real-time constraints, and must meet stringent dependability

requirements.
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Embedded computing systems show a high level of diversity, ranging from cen¬

tralized, highly cost/resource/energy-constrained systems (e.g., a pocket remote

control), to high-performance distributed embedded systems (e.g., an aircraft au¬

topilot). Most distributed embedded systems use wired communication, because it

is less prone to communication errors and offers more deterministic behavior than

wireless communication.

An embedded system consists of hardware and software components, where

the allocation of functions to hardware and software is highly dependent on the

requirements of the actual system For performance and security reasons, part

of the functionality may be provided by application-specific hardware components.

The use of software in conjunction with programmable hardware provides flexibility

and support for more complex features.

What differentiates wireless sensor networks from traditional embedded systems

is the large number of participating nodes, the use of wireless communication,

and often severe rcsource/cost/energy constraints of sensor nodes. Traditional

embedded systems are typically a fixed part of highly engineered structures, that

is, the actual "embedding" takes place at production time and does not change

during the lifetime of the embedded system. In contrast, wireless sensor nodes may

be deployed in a natural setting with little control over the actual placement and

distribution of the nodes. Also, the embedding (i.e., deployment) of sensor nodes

into the physical environment is not tied to the production time of the sensor node

and may change during the lifetime of a sensor node.

2.1.5 Remote and Wired Sensing

Many existing systems for observing real-world phenomena are based on few sen¬

sors with a relatively long range, such as satellites for earth observation, weather

stations, or sonars. Due to the long range, these systems can observe phenomena

that are far away from the sensors. However, the resolution of these systems de¬

creases with the observation distance. Moreover, many systems require a free line

of sight between the sensors and the observed phenomenon.

Wireless sensor nodes are equipped with short range sensors. Many of these

devices are placed in the close vicinity of the observed phenomenon. Since the

average distance between the observed phenomenon and the sensors is small and

since many redundant sensors observe a single phenomenon, the effective monitor¬

ing resolution of a wireless sensor network can be better than that of a remote

sensing approach. The placement of the sensors close the phenomenon allows the

use of wireless sensor networks also in cluttered environments where line-of-sight

paths are rather short.

Many existing systems make use of distributed, wired sensors that are connected

to a central computing device (e.g., sensors in cars and engines, sonar arrays).

Such an approach has a number of advantages: sensors do not need separate power

supplies, the wired network has a fixed topology, small and deterministic delays,

communication errors are very rare. On the other hand, the wiring limits the

flexibility and scale of such wired sensor networks.
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2.1.6 Wireless, Mobile, and Ad Hoc Networks

Wireless communication, especially with focus on short communication range and

low power consumption, is a key enabling technology for wireless sensor networks.

In mobile networks, computers capable of wireless communication can change their

physical position over time, resulting in dynamically changing network topologies.

Ad hoc networks are wireless networks that do not require an external infrastructure

such as base stations in mobile phone networks. The nodes of an ad hoc network

act both as sources/sinks of messages and as routers that forward messages on

behalf of other nodes. Nodes can join and leave the network anytime. Although

ad hoc networks may also consist of immobile nodes, they often contain mobile

nodes. Power awareness is an important issue in the context of mobile networks,

since mobile computing devices are often powered by batteries. Recent research in

mobile ad hoc networks focuses on routing, mobility management, power manage¬

ment, self-configuration, and the radio interface (including the radio hardware and

medium access techniques).
It is anticipated that many wireless sensor networks will be implemented as a

mobile ad hoc network (MANET). However, results from MANET research often

cannot be directly applied to wireless sensor networks, since resource and energy

constraints arc typically more stringent here. Typical MANET research focuses

on handheld devices or laptops with renewable batteries. The computing, storage,

communication resources of these devices are comparable to desktop computers.

In contrast, sensor node batteries are often not replaceable; range, bandwidth,

reliability of wireless communication links, computing and memory resources, and

available energy may be orders of magnitude smaller compared to more traditional

MANET nodes.

Wireless sensor networks may also rely on infrastructure-based mobile networks.

For example, mobile phone companies arc currently exploring the value of mobile

phones for sensor networks. Such networks could either solely consist of mobile

phones equipped with sensors, or a mobile phone could act as a gateway con¬

necting an ad hoc sensor network to the phone network. Such combinations of

infrastructure-based and ad hoc networks would allow remote access to sensor net¬

works and an integration with existing computing infrastructures.

2.1.7 Digital Signal Processing

Digital signal processing (DSP) can be defined as the analysis and modification of

discrete time signals (i.e., sequences of numbers). It is a key technology for systems

that process signals from the real world. While wireless sensor networks do process

real-world signals, there are quite a number of differences between many traditional

signal processing systems and sensor networks.

First of all, many traditional DSP application are centralized, that is, data from

possibly many sources is collected at a single processor for evaluation. Depending

on the bandwidth of the input signals, this approach may require high-bandwidth

communication channels and a very powerful centralized processor.
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In typical sensor networks, the effective channel bandwidth and processing

power is typically rather limited. Hence, centralized processing of digital signals

is often not desirable. Rather, input signals should be preproccssed locally on

the originating sensor nodes to extract relevant features that can be communi¬

cated more efficiently. Hence, DSP in sensor networks is often decentralized and

distributed over the sensor nodes.

2.2 The Sensor Network Design Space

In the recent past, wireless sensor networks have found their way into a wide variety

of applications and systems with vastly varying requirements and characteristics.

As a consequence, it is becoming increasingly difficult to discuss typical require¬

ments regarding hardware issues and software support. This is particularly prob¬

lematic in a multidisciplinary research area such as wireless sensor networks, where

close collaboration between users, application domain experts, hardware designers,

and software developers is needed to implement efficient systems.

Initial research into wireless sensor networks was mainly motivated by military

applications, with DARPA continuing to fund a number of prominent research

projects (e.g., Smart Dust, NEST) that are commonly regarded as the cradle of

sensor-network research. The type of applications considered by these projects

led to a de facto definition of a wireless sensor network as a large-scale (possibly

thousands of nodes, covering large geographical areas), wireless, ad hoc, multi-hop,

unpartitioned network of homogeneous, tiny (hardly noticeable), mostly immobile

(after deployment) sensor nodes that would be randomly deployed in the area of

interest.

More recently, other, civilian application domains of wireless sensor networks

have been considered, such as environmental and species monitoring, agriculture,

production and delivery, healthcare, etc. (see Section 2.4). Concrete projects

targeting these application areas indicate that the above definition of a wireless

sensor network does not necessarily apply for these applications - networks may

consist of heterogeneous and mobile sensor nodes, the network topology may be

as simple as a star topology, networks may make use of existing communication

infrastructures, etc. To meet this general trend towards diversification, we will

discuss important dimensions of the sensor network design space in the following

subsections. We will informally characterize each of the dimensions and, where

appropriate, identify (possibly orthogonal) property classes in order to support a

coarse-grained classification of sensor network applications.

It is certainly debatable which issues are important enough to be explicitly

considered as dimensions in the design space and one could argue in favor of adding

more dimensions or removing some from our suggestions detailed below. In fact,

wc expect that this might become reasonable in the future as the field and its

applications evolve. However, wc have tried to ensure that our initial suggestion

consisted of a sensible set of dimensions, by basing our choice on the following two

principles. Firstly, there should be notable variability between applications with
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respect to dimensions. Secondly, a dimension should have a significant impact on

the design and implementation of technical solutions.

In the subsequent section we show that existing and envisioned applications

of wireless sensor networks can indeed be located at different points in the design

space, with a number of important implications.

2.2.1 Deployment

The deployment of sensor nodes in the physical environment may take several

forms. Nodes may be deployed at random (e.g., by dropping them from an aircraft)

or installed at deliberately chosen spots. Deployment may be a one-time activity,

where the installation and use of a sensor network arc strictly separate activities.

However, deployment may also be a continuous process, with more nodes being

deployed at any time during the use of the network - for example, to replace failed

nodes or to improve coverage at certain interesting locations.

The actual type of deployment affects important properties such as the expected

node density, node locations, regular patterns in node locations, and the expected

degree of network dynamics.
We suggest the following coarse-grained classification with respect to deploy¬

ment: random vs. manual; one-time vs. iterative.

2.2.2 Mobility

Sensor nodes may change their location after initial deployment. Mobility can

result from environmental influences such as wind or water, sensor nodes may be

attached to or carried by mobile entities, and sensor nodes may possess automotive

capabilities. In other words, mobility may be either an incidental side effect, or

it may be a desired property of the system (e.g., to move nodes to interesting

physical locations), in which case mobility may be either active (i.e., automotive)

or passive (e.g., attached to a moving object not under the control of the sensor

node). Mobility may apply to all nodes within a network or only to subsets of

nodes. The degree of mobility may also vary from occasional movement with long

periods of immobility in between, to constant travel.

Mobility has a large impact on the expected degree of network dynamics and

hence influences the design of networking protocols and distributed algorithms. The

actual speed of movement may also have an impact, for example on the amount of

time during which nodes stay within communication range of each other.

We suggest the following coarse-grained classification with respect to mobility:

immobile vs. partly vs. all; occasional vs. continuous; active vs. passive.

2.2.3 Cost, Size, Resources, and Energy

Depending on the actual needs of the application, the form factor of a single sensor

node may vary from the size of a shoe box (e.g., a weather station) to a microscop¬

ically small particle (e.g., for military applications where sensor nodes should be
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almost invisible). Similarly, the cost of a single device may vary from hundreds of

Euros (for networks of very few, but powerful nodes) to a few Cents (for large-scale

networks made up of very simple nodes).
Since sensor nodes are untethered autonomous devices, their energy and other

resources are limited by size and cost constraints. Varying size and cost constraints

directly result in corresponding varying limits on the energy available (i.e., size,

cost, and energy density of batteries or devices for energy scavenging), as well as

on computing, storage, and communication resources. Hence, the energy and other

resources available on a sensor node may also vary greatly from system to system.

Power may be either stored (e.g., in batteries) or scavenged from the environment

(e.g., by solar cells).
These resource constraints limit the complexity of the software executed on

sensor nodes. For our classification, wc have partitioned sensor nodes roughly into

four classes based on their physical size: brick vs. matchbox vs. grain vs. dust.

2.2.4 Heterogeneity

Early sensor network visions anticipated that sensor networks would typically con¬

sist of homogeneous devices that were mostly identical from a hardware and soft¬

ware point of view. Some projects, such as Amorphous Computing [1], even as¬

sumed that sensor nodes were indistinguishable, that is, they did not even possess

unique addresses or IDs within their hardware. This view was based on the obser¬

vation that otherwise it would not be feasible to cheaply produce vast quantities

of sensor nodes.

However, in many prototypical systems available today, sensor networks consist

of a variety of different devices. Nodes may differ in the type and number of at¬

tached sensors; some computationally more powerful "compute" nodes may collect,

process, and route sensory data from many more limited sensing nodes; some sen¬

sor nodes may be equipped with special hardware such as a GPS receiver to act as

beacons for other nodes to infer their location; some nodes may act as gateways to

long-range data communication networks (e.g., GSM networks, satellite networks,

or the Internet).
The degree of heterogeneity in a sensor network is an important factor since it

affects the complexity of the software executed on the sensor nodes and also the

management of the whole system.

We suggest the following coarse-grained classification with respect to hetero¬

geneity: homogeneous vs. heterogeneous.

2.2.5 Communication Modality

For wireless communication among sensor nodes, a number of communication

modalities can be used such as radio, diffuse light, laser, inductive and capaci¬

tive coupling, or even sound.

The most common modality is radio waves, since these do not require a free
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line of sight, and communication over medium ranges can be implemented with

relatively low power consumption and relatively small antennas (a few centimeters

in the common sub-GHz frequency bands). Using light beams for communication

requires a free line of sight and may interfere with ambient light and daylight, but

allows for much smaller and more energy-efficient transceivers compared to radio

communication. Smart Dust [49], for example, uses laser beams for communication.

Inductive and capacitive coupling only works over small distances, but may be

used to power a sensor node. Most passive Radio Frequency Identification (RFID)

systems use inductive coupling, for example. Sound or ultrasound is typically used

for communication under water or to estimate distances based on time-of-flight

measurements. Sometimes, multiple modalities are used by a single sensor network

system.
The communication modality used obviously influences the design of medium

access protocols and communication protocols, but also affects other properties

that are relevant to the application.

We suggest the following coarse-grained classification with respect to commu¬

nication modality: radio vs. light vs. inductive vs. capacitive vs. sound.

2.2.6 Infrastructure

The various communication modalities can be used in different ways to construct an

actual communication network. Two common forms are so-called infrastructure-

based networks on the one hand and ad hoc networks on the other hand. In

infrastructure-based networks, sensor nodes can only directly communicate with

so-called base station devices. Communication between sensor nodes is relayed

via the base station. If there are multiple base stations, these have to be able

to communicate with each other. The number of base stations depends on the

communication range and the area covered by the sensor nodes. Mobile phone

networks and Smart Dust [49] are examples of this type of network.

In ad hoc networks, nodes can directly communicate with each other without

an infrastructure. Nodes may act as routers, forwarding messages over multiple

hops on behalf of other nodes.

Since the deployment of an infrastructure is a costly process, and the installation

of an infrastructure may often not be feasible, ad hoc networks are preferred for

many applications. However, if an infrastructure is already available anyway (such

as the GSM network), it might also be used for certain sensor network applications.

Combinations of ad hoc networks and infrastructure-based networks are some¬

times used, where clusters of sensor nodes are interconnected by a wide area

infrastructure-based network.

Note that the above arguments not only apply to communication, but also

to other infrastructures, such as localization or time synchronization (e.g., GPS

satellites).
We suggest the following coarse-grained classification with respect to infrastruc¬

ture: infrastructure vs. ad hoc.
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2.2.7 Network Topology

One important property of a sensor network is its diameter, that is, the maximum

number of hops between any two nodes in the network. In its simplest form, a

sensor network forms a single-hop network, with every sensor node being able to

directly communicate with every other node. An infrastructure-based network with

a single base station forms a star network with a diameter of two. A multi-hop

network may form an arbitrary graph, but often an overlay network with a simpler

structure is constructed such as a tree or a set of connected stars.

The topology affects many network characteristics such as latency, robustness,

and capacity. The complexity of data routing and processing also depends on the

topology.
We suggest the following coarse-grained classification with respect to network

topology: single-hop vs. star vs. networked stars vs. tree vs. graph.

2.2.8 Coverage

The effective range of the sensors attached to a sensor node defines the coverage

area of a sensor node. Network coverage measures the degree of coverage of the

area of interest by sensor nodes. With sparse coverage, only parts of the area of

interest are covered by the sensor nodes. With dense coverage, the area of interest

is completely (or almost completely) covered by sensors. With redundant coverage,

multiple sensors cover the same physical location. The actual degree of coverage is

mainly determined by the observation accuracy and redundancy required. Coverage

may vary across the network. For example, nodes may be deployed more densely

at interesting physical locations.

The degree of coverage also influences information-processing algorithms. High

coverage is a key to robust systems and may be exploited to extend the network

lifetime by switching redundant nodes to power-saving sleep modes.

We suggest the following coarse-grained classification with respect to coverage:

sparse vs. dense vs. redundant.

2.2.9 Connectivity

The communication ranges and physical locations of individual sensor nodes define

the connectivity of a network. If there is always a network connection (possibly

over multiple hops) between any two nodes, the network is said to be connected.

Connectivity is intermittent if the network may be occasionally partitioned. If

nodes are isolated most of the time and enter the communication range of other

nodes only occasionally, we say that communication is sporadic. Note that despite

the existence of partitions, messages may be transported across partitions by mobile

nodes.

Connectivity mainly influences the design of communication protocols and

methods of data gathering.
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We suggest the following coarse-grained classification with respect to connec¬

tivity: connected vs. intermittent vs. sporadic.

2.2.10 Network Size

The number of nodes participating in a sensor network is mainly determined by

requirements relating to network connectivity and coverage, and by the size of the

area of interest. The network size may vary from a few nodes to thousands of sensor

nodes or even more. The network size determines the scalability requirements with

regard to protocols and algorithms.

2.2.11 Lifetime

Depending on the application, the required lifetime of a sensor network may range

from some hours to several years. The necessary lifetime has a high impact on the

required degree of energy efficiency and robustness of the nodes.

2.2.12 Other QoS Requirements

Depending on the application, a sensor network must support certain quality-

of-service aspects such as real-time constraints (e.g., a physical event must be

reported within a certain period of time), robustness (i.e., the network should re¬

main operational even if certain well-defined failures occur), tamper-resistance (i.e.,

the network should remain operational even when subject to deliberate attacks),

eavesdropping-resistance (i.e., external entities cannot eavesdrop on data traffic),

unobtrusiveness or stealth (i.e., the presence of the network must be hard to de¬

tect). These requirements may impact on other dimensions of the design space

such as coverage and resources.

2.3 Implications of the Design Space

There are several important consequences of the design space as discussed above.

Clearly, a single hardware platform will most likely not be sufficient to support the

wide range of possible applications (cf. Section 2.5). In order to avoid the devel¬

opment of application-specific hardware, it would be desirable, however, to have

available a (small) set of platforms with different capabilities that cover the design

space, A modular approach, where the individual components of a sensor node can

be easily exchanged, might help to partially overcome this difficulty. Principles and

tools for selecting suitable hardware components for particular applications would

also be desirable.

As similar observation can be made regarding algorithms and software in gen¬

eral. As with hardware, one could try to cover the design space with a (larger)

set of different protocols, algorithms, and basic services. Note that this does in

particular apply to algorithms for locating sensor nodes in space and time as will
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be discussed in Chapter 3. The selection of appropriate software components for

the application at hand and perhaps also dynamic adaptation during runtime of

an application should be supported by appropriate frameworks.

In traditional distributed systems, middleware has been introduced to hide

such complexity from the software developer by providing programming abstrac¬

tions that are applicable for a large class of applications. This raises the question,

whether appropriate abstractions and middleware concepts can be devised that are

applicable for a large portion of the sensor network design space. This is not an

easy task, since some dimensions of the design space (e.g., network connectivity)

are very hard to hide from the system developer. Moreover, exposing certain appli¬

cation characteristics to the system and vice versa is a key approach for achieving

energy and resource efficiency in sensor networks. Even if the provision of ab¬

straction layers is conceptually possible, they often introduce significant resource

overheads - which is problematic in highly resource-constrained environments such

as sensor networks.

In addition to these more technical issues, the design space wc advocate can

hopefully bring more clarity to the often somewhat diffuse discussions about typical

or right characteristics and requirements of wireless sensor networks.

2.4 Applications

Wireless sensor networks can be considered as a tool for observing real-world pro¬

cesses. In particular, the use of WSN might be a worthwhile option for observation

tasks with one or more of the following properties:

• The observation environment is cluttered and can be hardly observed from

afar.

• Any instrumentation for observation must be unobtrusive to avoid influencing

observation results.

• The phenomenon of interest or its close physical environment can be instru¬

mented for observation.

• A high spatial and temporal monitoring resolution is required.

• The signal-to-noise ratio of signals emitted by the phenomenon of interest is

low or decreases significantly over distance.

• Traditional observation methods are very costly due to the involvement of

human personnel.

• The observation environment is very harsh, inaccessible, or even toxic.

• The observation must be continuously performed during long periods of time

or over large geographical areas.
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The above problem characterization applies to a wide range of problem domains

some of which we will sketch in the following sections. For each of these domains

we describe some representative applications. We also show that these applications

can be located at different points in the design space. In addition to these concrete

applications, we briefly sketch application ideas and visions that have not yet been

realized or which are not well-documented.

2.4.1 Species Monitoring

Wireless sensor networks can be used to observe the behavior of animals in their

natural habitats. Ccrpa et al [22] give an overview and motivation of this applica¬

tion domain.

Bird Observation at Great Duck Island

A WSN is being used to observe the breeding behavior of a small bird called

Leach's Storm Petrel [58] on Great Duck Island, Maine, USA. These birds are

easily disturbed by the presence of humans, hence WSN seems an appropriate

way of better understanding their behavior. The breeding season lasts for seven

months from April to October. The biologists are interested in the usage pattern

of their nesting burrows, changes in environmental conditions outside and inside

the burrows during the breeding season, variations among breeding sites, and the

parameters of preferred breeding sites.

Sensor nodes are installed inside the burrows and on the surface. Nodes can

measure humidity, pressure, temperature, and ambient light level. Burrow nodes

are equipped with infrared sensors to detect the presence of the birds. The burrows

occur in clusters and the sensor nodes form a multi-hop ad hoc network. Each

network cluster contains a sensor node with a long-range directional antenna that

connects the cluster to a central base station computer. The base station computer

is connected to a database back-end system via a satellite link. Sensor nodes sample

their sensors about once a minute and send their readings directly to the database

back-end system.

Deployment manual, one-time

Mobility immobile

Resources matchbox

Cost approx. 200 USD per node

Energy battery, solar panel

Heterogeneity weather stations, burrow nodes, gateways

Modality radio

Infrastructure base station, gateways

Topology star of subgraphs

Coverage dense (every burrow)

Connectivity connected
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Size tens to hundreds (about 100 deployed)

Lifetime 7 months (breeding period)

ZebraNet

A WSN is being used to observe the behavior of wild animals within a spacious

habitat (e.g., wild horses, zebras, and lions) [48] at the Mpala Research Center in

Kenya. Of particular interest is the behavior of individual animals (e.g., activity

patterns of grazing, graze-walking, and fast moving), interactions within a species,

interactions among different species (e.g., grouping behavior and group structure),

and the impact of human development on the species. The observation period is

scheduled to last a year or more. The observation area may be as large as hundreds

or even thousands of square kilometers.

Animals are equipped with sensor nodes. An integrated GPS receiver is used

to obtain estimates of their position and speed of movement. Light sensors are

used to give an indication of the current environment. Further sensors (head up or

down, body temperature, ambient temperature) are planned for the future. Each

node logs readings from its sensors every three minutes. Whenever a node enters

the communication range of another node, the sensor readings and the identities

of the sensor nodes are exchanged (i.e., data is flooded across network partitions).

At regular intervals, a mobile base station (e.g., a car or a plane) moves through

the observation area and collects the recorded data from the animals it passes.

Deployment manual, one-time

Mobility all, continuous, passive

Resources matchbox

Energy battery

Heterogeneity nodes, gateway

Modality radio

Infrastructure base station, GPS

Topology graph

Coverage dense (every animal)

Connectivity sporadic

Size tens to hundreds

Lifetime one year

Further Applications in Species Monitoring

A variety of different sensor devices are used to monitor the behavior of Whale

Sharks [137] around the Seychelles. The so-called archival pop-off tag is attached

to the shark and uses light and pressure sensors to monitor the diving behavior.

After a certain time, the tag detaches from the shark and floats to the surface,

from where it sends off collected data to a satellite.

Sensor devices are also used to observe social interactions among seals [127] in
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the Northern Sea. A sensor node [37] is attached to each seal which can detect the

distance to and the identity of another nearby tag (and seal). These sightings are

collected and sent off to a satellite.

A project at CENS intends to use a sensor network for detection and classi¬

fication of marine microorganisms (e.g., alga) that are toxic to marine life and

dangerous to human health [123]. Work in this project has so far focused on the

development of appropriate sensors. Obviously, these sensors cannot be attached

to microorganisms, but have to be installed in an area of interest in the ocean.

2.4.2 Environmental Monitoring

Besides animals, a number of other environmental phenomena can be observed

with wireless sensor networks.

Glacier Monitoring

A sensor network is being used to monitor sub-glacier environments at Briksdals-

brcen, Norway, with the overall goal of better understanding the Earth's climate

[62]. Of particular interest are displacements and the dynamics inside the glacier.

A lengthy observation period of months to years is required.

Sensor nodes arc deployed in drill holes at different depths in the glacier ice

and in the till beneath the glacier. Sensor nodes are equipped with pressure and

temperature sensors and a tilt sensor for measuring the orientation of the node.

Sensor nodes communicate with a base station deployed on top of the glacier.

The base station measures supra-glacial displacements using differential GPS and

transmits the data collected via GSM. Nodes are not recoverable after deployment.

Radio communication through ice and water is a major problem.

Deployment manual, one-time

Mobility all, continuous, passive

Resources brick

Energy battery

Heterogeneity nodes, base station

Modality radio, GSM

Infrastructure base station, GPS, GSM

Topology star

Coverage sparse

Connectivity connected

Size 9 deployed (potential for tens to hundreds)

Lifetime several months

Bathymetry

A sensor network is being used to monitor the impact on the surrounding environ¬

ment of a wind farm off the coast of England [61]. Of particular interest here is
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the influence on the structure of the ocean bed (e.g., formation of sand banks) and

the influence on tidal activity.

Sensor nodes are deployed on the ocean bed by dropping them from a ship

at selected positions, their location being fixed on the ocean bed by an anchor.

Each sensor node is connected via a cable to a buoy on the ocean surface that

contains the radio equipment and GPS, since radio communication under water is

virtually impossible. The sensor nodes are able to measure pressure, temperature,

conductivity, current, and turbidity, and form a self-organized ad hoc network.

Deployment manual, one-time

Mobility all, occasional, passive

Resources brick

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure GPS

Topology graph

Coverage sparse (500m - 1km apart)

Connectivity connected

Size 6 deployed, 50 planned (potential for up to hundreds)

Lifetime several months

Ocean Water Monitoring

The ARGO project [112] is using a sensor network to observe the temperature,

salinity, and current profile of the upper ocean. The goal is a quantitative descrip¬

tion of the state of the upper ocean and the patterns of ocean climate variability,

including heat and freshwater storage and transport. Intended coverage is global,

and observation is planned to last for several years. Measurement data is available

almost in real-time.

The project uses free-drifting profiling sensor nodes equipped with temperature

and salinity sensors. The nodes are dropped from ships or planes. The nodes

cycle to a depth of 2000m every ten days. Data collected during these cycles is

transmitted to a satellite while nodes are at the surface. The lifetime of the nodes

is about 4-5 years.

Deployment random, iterative

Mobility all, continuous, passive

Resources brick

Cost approx. 15000 USD per node

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure satellite
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Topology star

Coverage sparse

Connectivity intermittent

Size 1300 deployed (3000 planned)
Lifetime 4-5 years

Further Applications in Environmental Monitoring

Several projects explore the use of sensor networks for monitoring water quality.

The European project SEWING [129] is currently concerned with the development

of sensors for certain chemicals. It is, however, anticipated to construct complete

sensor nodes for water quality monitoring. At CENS, a similar project intends to

observe water quality and to monitor transport of contaminants with ground water

using sensor networks [118].
In [107], as wireless sensor network for monitoring volcanic eruptions is pre¬

sented. The system consists of several infrasound monitoring nodes, which report

low-frequency acoustic signals to an aggregator node, which preprocesses the data

and sends aggregated values to a remote base station via a long-range radio link.

A GPS node is used to synchronize the infrasound monitoring nodes. The system

can be used to monitor and locate volcanic eruptions.

Sensor networks can be used to monitor seismic activity and the structural

response of buildings [51]. A number of experiments with seismic sensor networks

in buildings have been carried out within CENS [109, 128]. A sensor network is

also used to monitor the influence of winds on Golden Gate Bridge in San Francisco

[133].
Another application of sensor networks is the observation of micro climates and

their changes over time [27, 122]. One particularly interesting application in this

context is the use of sensor networks for detecting signs of life on other planets

(e.g., on Mars) [28].

2.4.3 Agriculture

Wireless sensor networks can also be used to increase the efficiency of plant breeding

and livestock husbandry.

Grape Monitoring

A WSN is being used to monitor the conditions that influence plant growth (e.g.,

temperature, soil moisture, light, and humidity) across a large vineyard in Ore¬

gon, USA [11]. The goals include supporting precision harvesting (harvesting an

area as soon as the grapes in it arc lipe), precision plant care (adapting the wa¬

ter/fertilizer/pesticide supply to the needs of individual plants), frost protection,

predicting insect/pest/fungi development, and developing new agricultural models.



CHAPTER 2. WIRELESS SENSOR NETWORKS 24

In a first version of the system, sensor nodes are deployed across a vineyard

in a regular grid about 20 meters apart. A temperature sensor is connected to

each sensor node via a cable in order to minimize false sensor readings due to heat

disseminated by the sensor nodes. A laptop computer is connected to the sensor

network via a gateway to display and log the temperature distribution across the

vineyard. The sensor nodes form a two-tier multi-hop network, with nodes in the

second tier sending data to a node in the first tier. Nodes in the first tier also

collect sensor data, but do additionally act as data routers.

Deployment manual, one-time

Mobility immobile

Resources matchbox

Cost 200 USD per node

Energy battery

Heterogeneity sensors, gateway, base station

Modality radio

Infrastructure base station

Topology tree (two-tiered multi-hop)

Coverage sparse (20m apart)

Connectivity connected

Size 65 deployed (potential for up to hundreds)

Lifetime several months (growth period)

Cattle Herding

A WSN is being used to implement virtual fences, with an acoustic stimulus being

given to animals that cross a virtual fence line [18]. Movement data from the cows

controls the virtual fence algorithm that dynamically shifts fence lines. Such a

system can reduce the overheads of installing and moving physical fences and can

improve the usage of feedlots.

For the first experiment, each sensor node consists of a PDA with a GPS re¬

ceiver, a WLAN card, and a loudspeaker for providing acoustic stimuli to the cattle

as they approach a fence. These devices are attached to the neck of the cows. The

nodes form a multi-hop ad hoc network, forwarding movement data to a base sta¬

tion (a laptop computer). The base station transmits fence coordinates to the

nodes.

Deployment manual, one-time

Mobility all, continuous, passive

Resources brick

Cost approx. 1000 USD per node

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure base station, GPS



CHAPTER 2. WIRELESS SENSOR NETWORKS 25

Topology graph

Coverage dense (every cow)

Connectivity intermittent

Size 10 deployed (potential for up to hundreds)

Lifetime days to weeks

Further Applications in Agriculture

The Hogthrob project [135] intends to use sensor networks for sow monitoring. In

particular, movement data is intended to be used to detect the sow's heat period

and to detect abnormal behavior which could be caused by diseases.

The PlantCare project [53] uses a sensor network to monitor soil humidity of

plants and to control a robot to water indigent plants.

2.4.4 Production and Delivery

In this section we consider the use of wireless sensor networks for monitoring the

production and delivery of goods.

Cold Chain Management

The commercial Securifood system [78] is a WSN for monitoring the temperature

compliance of cold chains from production, via distribution centers and stores, to

the consumer. Clients receive an early warning of possible breaks in the cold chain.

The system consists of four major components: sensor nodes, relay units, access

boxes, and a warehouse. Sensor nodes are transported with the products and collect

temperature data. Relay units collect and store temperature data from sensor nodes

- they are more powerful devices with a permanent power supply. Multiple relay

units form a multi-hop ad hoc network. An access box is an even more powerful

embedded Linux device that acts as a gateway between the network of relay units

and the Internet. There is one access box per production site. An Internet-hosted

data warehouse acts as a central server, collecting data from all the access boxes.

The data warehouse provides an online image of all the sensor data in the system

and acts as a central data repository for applications.

Deployment manual, iterative

Mobility partly (sensors), occasional, passive

Resources matchbox (sensors), brick (relays)

Energy battery

Heterogeneity sensor units, relay units, access boxes, warehouse

Modality radio

Infrastructure relays, access boxes

Topology tree (three-tiered multi-hop)

Coverage sparse
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Connectivity intermittent

Size 55 sensor units and 4 relays deployed (potential for hundreds)

Lifetime years

Further Applications in Production and Delivery

Wireless sensor networks can also be used to monitor and manage the life cycle

of production tools [9]. This applies in particular to tools that wear off and need

regular treatment to avoid failures. Additionally, sensor network technology can

help improve the availability of mobile tools and equipment. Intel research, for

example, is examining the use of vibration sensors for early detection of problems

with the cooling equipment in a semiconductor fabrication unit [136]. A similar

approach could also be used to detect potential problems in oil wells and pipelines

[76]. A number of ongoing projects at BP [16] use sensor networks for monitoring

ship vibrations and pipeline integrity.

2.4.5 Disaster Relief

Wireless sensor networks can be used in emergency situations, for example, to

coordinate and increase the efficiency of rescue actions.

Rescue of Avalanche Victims

A WSN is being used to assist rescue teams in saving people buried in avalanches

[67]. The goal is to better locate buried people and to limit overall damage by giving

the rescue team additional indications of the state of the victims and to automate

the prioritization of victims (e.g., based on heart rate, respiration activity, and

level of consciousness).
For this purpose, people at risk (e.g., skiers, snowboarders, and hikers) carry

a sensor node that is equipped with an oximeter (a sensor which measures the

oxygen level in blood), and which permits heart rate and respiration activity to be

measured. Additionally, an oxygen sensor is used to detect air pockets around the

victim. Accelerometers are used to derive the orientation of the victim. The rescue

team uses a PDA to receive sensory data from the buried victims.

Deployment manual, one-time

Mobility all, continuous, passive

Resources matchbox

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure rescuer's PDA

Topology star

Coverage dense (every person)
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Connectivity connected

Size tens to hundreds (number of victims)

Lifetime days (duration of a hike)

QoS dependability

Further Applications in Disaster Relief

In flood situations, dams of sank sacks are often used to protect against water.

One common problem with this approach is that sand sacks get wet, which may

eventually lead to water inleakage and to a collapse of the dam. By equipping sand

sacks with sensor nodes, such situations can be detected early on and people can

be guided to the defective place in order to fix them before bad things happen.

(This idea goes back to researchers at the University of Rostock.)

Sensor networks may be used to assist firefighters in defeating large scale forest

fires and can help protect the lives of firefighters [52]. A sensor network may

measure wind direction and speed to help predict direction and speed of spreading

of the fire. For this, a sensor network may be deployed in affected areas during

firefighting.

2.4.6 Building Management and Automation

Modern buildings do already contain a large number of wired sensors and actuators

to control a variety of functions (e.g., heat control, door openers, automatic light

and blind control) [126], It has been argued that replacing these wired sensor by

wireless sensor networks could reduce construction cost and increase flexibility by

removing the cabling. However, wireless sensor networks may also enable a number

of novel applications in this context as indicated below.

Power Monitoring

A WSN is being used to monitor power consumption in large and dispersed office

buildings [50]. The goal is to detect locations or devices that are consuming a lot

of power to provide indications for potential reductions in power consumption.

The system consists of three major components: sensor nodes, transceivers,

and a central unit. Sensor nodes are connected to the power grid (at outlets or

fuse boxes) to measure power consumption and for their own power supply. Sensor

nodes directly transmit sensor readings to transceivers. The transceivers form a

multi-hop network and forward messages to the central unit. The central unit acts

as a gateway to the Internet and forwards sensor data to a database system.

Deployment manual, iterative

Mobility immobile

Resources matchbox

Energy power grid
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Heterogeneity sensor nodes, transceivers, central unit

Modality radio (sensors unidirectional)
Infrastructure transceivers

Topology layered multi-hop

Coverage sparse (selected outlets)

Connectivity connected

Size tens to hundreds

Lifetime years (building lifecycle)

Further Applications in Building Management and Automation

In [87], a wireless sensor network for commercial lighting control is suggested. For

this, sensor nodes arc deployed in a building to sense the occupancy status of

individual rooms. The obtained raw data is fed to a decision system that controls

the lights.
It was also suggested to use sensor networks for calibration of air conditioning

systems to the particular installation environments to reduce the noise level and

power consumption of these systems [46]. For this purpose, a portable sensor

network is installed in the room, providing temperature, humidity, and noise level

distribution. These data can be used to fine tune the configuration of the air

conditioning.

2.4.7 Traffic and Infrastructure

There is a growing trend to instrument cars with more and more sensors and actu¬

ators to improve the drivability and comfort. While past research mostly focused

on single cars, recent developments include networking of cars [117, 119] to reduce

accidents, traffic jams, environmental stress, or to improve fleet management.

Networked Parking Spaces

A sensor network is used to find free parking lots [8]. The system can help find

streets in the locality with vacant spots, can find occupied parking meters within

a certain range which will expire at a certain time, and can locate all vehicles that

reside in expired spots.

In this system, parking meters are equipped with sensor nodes. These nodes

arc equipped with sensors to detect the occupancy status of the according parking

spot and have access to parameters of the parking meter such as time of expiry.

The sensor nodes form a static multi-hop ad hoc network. Cars are also equipped

with sensor nodes that establish a link to the meter network to issue queries about

free parking spots.

Deployment manual

Mobility partly (car nodes)
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Resources matchbox

Energy car power system, solar, battery

Heterogeneity car nodes, meter nodes

Modality radio

Infrastructure ad hoc

Topology multi-hop

Coverage dense

Connectivity intermittent (car - meter network)
Size hundreds to thousands

Lifetime years (lifecycle of meters/cars)
QoS robustness

Further Applications in Traffic and Infrastructure

Sensor nodes installed alongside roads can serve a number of purposes, among

others to improve safety, to improve traffic flow, and to improve environmental

health [72]. Based on local environmental data (e.g., road surface temperature),
such sensor devices can issue warnings or even control vehicle speed. Roadside

sensor nodes can also be used for traffic monitoring and can thus help predict

traffic flow and jams. For example, in [24] a wireless sensor network is presented

for vehicle detection, estimation of vehicle length, and speed measurements.

2.4.8 Home and Office

Sensor networks can also improve the convenience of home and office environments.

Furniture Assembly

A WSN is being used to assist people during the assembly of complex composite

objects such as do-it-yourself furniture [3]. This saves users from having to study

and understand complex instruction manuals, and prevents them from making

mistakes.

The furniture parts and tools are equipped with sensor nodes. These nodes

possess a variety of different sensors: force sensors (for joints), gyroscope (for

screwdrivers), and accelerometers (for hammers). The sensor nodes form an ad

hoc network for detecting certain actions and sequences thereof and give visual

feedback to the user via LEDs integrated into the furniture parts.

Deployment manual, one-time

Mobility all, occasional, passive

Resources matchbox

Energy battery

Cost approx. 100 Euro per node

Heterogeneity different sensors
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Modality radio

Infrastructure ad hoc

Topology star

Coverage sparse

Connectivity connected

Size tens

Lifetime hours (duration of assembly)

Further Applications in Home and Office

In an office environment, sensor nodes can be attached to a number of artifacts such

as coffee mugs [12] or chairs [13] in order to improve the efficiency and convenience

of the environment. Sensor in chairs, for example, can be used to detect whether a

chair is occupied or not. The status of multiple chairs in a room could be used to

derive the occupancy status of the room, which could be displayed at an electronic

doorplate (e.g., to keep people from entering the room), or could be sent to a

central room management system (e.g., to improve room allocation).

2.4.9 Military and Homeland Security

The military and its funding agencies have been one of the main driving forces

behind wireless sensor network research. More recently, the use of wireless sensor

networks has also been considered for improving homeland security.

Vehicle Tracking

A WSN is being used to track the path of military vehicles (e.g., tanks) [134]. The

sensor network should be unnoticcable and difficult to destroy. Tracking results

should be reported within given deadlines.

Sensor nodes are deployed from an unmanned aerial vehicle (UAV). Magne¬

tometer sensors are attached to the nodes in order to detect the proximity of

tanks. Nodes collaborate in estimating the path and velocity of a tracked vehicle.

Tracking results are transmitted to the unmanned aerial vehicle.

Deployment random (thrown from aircraft)

Mobility all, occasional, passive

Resources matchbox

Cost approx. 200 USD per node

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure UAV

Topology graph

Coverage sparse



CHAPTER 2. WIRELESS SENSOR NETWORKS 31

Connectivity intermittent (UAV)
Size 5 deployed (potential for tens to thousands)

Lifetime weeks to years (conflict duration)

QoS stealth, tamper-resistance, real-time

Self-Healing Mine Field

Anti-tank landmines are being equipped with sensing and communication capabil¬

ities to ensure that a particular area remains covered even if the enemy tampers

with a mine to create a potential breach lane [66]. If tampering is detected by the

mine network, an intact mine hops into the breach using a rocket thruster.

The mines form a multi-hop ad hoc network and monitor radio link quality

to detect failed mines. Nodes also estimate their location and orientation using

ultrasonic ranging. When a node failure is detected, one of the mines is selected to

relocate itself using one of eight rocket thrusters.

Deployment manual

Mobility all, occasional, active

Resources brick

Energy battery

Heterogeneity homogeneous

Modality radio, ultrasound (for localization)
Infrastructure ad hoc

Topology graph

Coverage dense

Connectivity connected

Size 20 deployed (potential for up to hundreds)
Lifetime months to years

QoS tamper-resistance

Further Applications in Military and Homeland Security

A number of research and development efforts are dedicated to sensor net¬

works for detection, classification, and tracking of hostile activities (e.g., biolog¬

ical/chemical/radiological attacks, troops, tanks, vessels) in the military context.

The goal of the DARPA-funded project ARGUS [113] was the development of ad¬

vanced remote ground unattended sensors the would be dropped from aircraft to

detect seismic and acoustic signatures and send them to a satellite. The later

project MIUGS [100] focused on the same type of application, but sensors would

form multi-hop ad hoc networks without using satellite communication. A number

of DARPA-funded research projects such as NEST also work on energy-efficient

sensor networks for target tracking [45].
One particularly noticeable effort in this context is the Seaweb project [77],

which tries to accomplish near-real-time data telemetry for a set of widely spaced
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océanographie sensors. Sensor nodes are deployed on the ground of ocean/river/bay
environments and communicate with each other via undersea acoustic signaling

(telesonar). Such a system would be useful for the detection, classification, and

tracking of vessels and mines, but also for the detection of biological, chemical, and

radiological contamination.

2.4.10 Surveillance and Law Enforcement

Being an ideal tool for unobtrusive surveillance, sensor networks may also be used

by executive authorities to enforce laws, to prevent and to elucidate offenses.

Sniper Localization

A WSN is being used to locate snipers and the trajectory of bullets [97], provid¬

ing valuable clues for law enforcement. The system consists of sensor nodes that

measure the muzzle blast and shock wave using acoustic sensors. The sensor nodes

form a multi-hop ad hoc network. By comparing the time of arrival at distributed

sensor nodes, the sniper can be localized with an accuracy of about one meter, and

with a latency of under two seconds. The sensor nodes use an FPGA chip to carry

out the complex signal processing functions.

Deployment manual

Mobility immobile

Resources matchbox with FPGA

Cost approx. 200 USD per node

Energy battery

Heterogeneity homogeneous

Modality radio

Infrastructure ad hoc

Topology graph

Coverage redundant (multiple nodes must recognize a shot)

Connectivity connected

Size 60 deployed (potential for up to hundreds)
Lifetime months to years

QoS real-time

Further Applications in Surveillance and Law Enforcement

Sensor networks might also be helpful for surveillance of transient events such as

construction sites, carnivals, crime scene surveillance, or temporary cubicle moni¬

toring [4]. In these settings, existing surveillance systems often cannot be used due

to their high cost and due to the deployment overhead. Sensor networks might also

be helpful in the surveillance of widespread areas (e.g., border protection), where

the use of traditional equipment would be too expensive or otherwise disadvanta¬

geous (e.g., cluttered environments).



CHAPTER 2. WIRELESS SENSOR NETWORKS 33

2.4.11 Health Care

Networks of wireless sensors can be used to observe the state of health of humans.

A discussion of this application domain can be found in [10, 92].

Vital Sign Monitoring

Wireless sensors are being used to monitor vital signs of patients in a hospital

environment [6]. Compared to conventional approaches, solutions based on wire¬

less sensors are intended to improve monitoring accuracy whilst also being more

convenient for patients.

The system consists of four components: a patient identifier, medical sensors,

a display device, and a setup pen. The patient identifier is a special sensor node

containing patient data (e.g., name) which is attached to the patient when he or

she enters the hospital. Various medical sensors (e.g., electrocardiogram) may be

subsequently attached to the patient. Patient data and vital signs may be inspected

using a display device. The setup pen is carried by medical personnel to establish

and remove associations between the various devices. The pen emits a unique ID

via infrared to limit the scope to a single patient. Devices which receive this ID

form a body area network.

Deployment manual

Mobility all, continuous, passive

Resources matchbox

Energy battery

Heterogeneity medical sensors, patient identifier, display device, setup pen

Modality radio, IR light (for setup pen)
Infrastructure ad hoc

Topology single-hop

Coverage dense

Connectivity connected

Size tens

Lifetime days to months (hospital stay)

QoS real-time, dependability, cavesdropping-resistance

Further Applications in Health Care

Body-worn sensor networks can also be used for automated detection and classifi¬

cation of activities (e.g., running, walking, standing, climbing stairs) and clinical

symptoms (e.g., stress, epileptic seizures) [99]. These basic classifiers can be used

to implement proactive healthcare, for example by assessing the healthiness of a

lifestyle or by detecting diseases early on,

Sensor networks can also be used to assess social interactions [32], for example

to detect and monitor physical and cognitive decline of elderly people [121].
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2.5 Sensor Node Prototypes

The previous section pointed out that different applications require different types

of sensor nodes and even heterogeneous networks consisting of different classes of

sensor nodes. Below wc discuss four prominent classes of devices and instances

thereof.

2.5.1 Motes

The most commonly used class of sensor nodes at the time of writing is often re¬

ferred to as Motes. These devices arc built from commercially available general

purpose electronic circuits. Including a battery, the size of a typical Mote is com¬

parable to a matchbox. The most prominent example of this device class are the

Berkeley Motes [115].
The major components of a Mote are an embedded microcontroller, a radio

transceiver and antenna, interfaces to sensors and actuators, a real-time clock,

circuitry for power conversion, and a battery. Some designs include additional

memory or co-processors for speeding up computations. We will investigate these

components in the following sections.

Microcontroller and Memory

Embedded microcontrollers such as the ATMEL AT Mega series used in many de¬

signs do not only provide a processor core, but program memory, general purpose

memory, and a variety of input/output interfaces. The latter include Universal

Asynchronous Receiver/Transmitters (UART) for serial 10, analog-to-digital con¬

verters, analog voltage comparators, a large number of freely programmable digital

input and output signals, and various standard digital 10 interfaces such as I2C

and SPI, which are directly supported by many digital sensors. Additional general

purpose memory is often provided by a separate chip. The exact capabilities of

microcontrollers may vary, but typical numbers arc a few MIPS processing power,

few hundred kilobytes of program memory, few kilobytes of general purpose mem¬

ory. External memory chips provide additional general purpose memory of tens to

hundreds of kilobytes.

Radio and Antenna

The radio transceiver enables wireless networking of the Motes and is perhaps the

component that varies most among different Mote designs. The most simple radios

support a single communication channel and a simple on-off modulation scheme

(e.g., RFM TR1000 used by early Berkeley Motes). The functionality of such radios

is limited to a simple conversion between a digital signal and a modulated radio

wave. There is no support for medium access control mechanisms such as handling

of collisions. Communication is broadcast, that is, all receivers within communi¬

cation range receive the signal. More elaborate radios such as the ChipCon (used
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by more recent Berkeley Mote designs) support multiple communication channels

and more robust modulation schemes. This type of radio typically has a shared

bandwidth of some tens of kilobits per second and a communication range of few

tens of meters.

Another class of radio are so-called radio modems. These are not simply radio

transceivers on the physical layer, but provide much more sophisticated function¬

ality (including MAC functions). Overall, these devices are somewhat similar to

traditional modems, in that they accept complex commands such as "connect to

X" or "send a packet to X". To support this functionality, they often include a

separate microcontroller. One example of this type of radio is Bluetooth (used by

the BTnode [116]). Bluetooth is connection-based, that is, prior to communication

a connection has to be established between a pair of nodes. A broadcast mode is

also supported, where a message is sent to all connected peers. The basic clement

of a Bluetooth network is the Piconet, which consists of a single master and up

to seven slaves that form a star topology. Multiple Piconcts can be connected

to form multi-hop Scatternets. Bluetooth supports communication ranges of 10

or 100 meters and a shared bandwidth of one Megabit per second. A frequency

hopping technique is used to minimize interference among Piconets and with other

radio signals. While Bluetooth offers a number of advantages (e.g., simple to use,

high bandwidth, standardized), it suffers from two major drawbacks: the energy

consumption is rather high compared to the simple radios described above, and

connection setup may take up to several seconds.

Some sensor node designs even support multiple radio frontends. Older designs

included multiple identical radios in order to enable a node to form robust multi-

hop networks. More recent developments support multiple radio frontends with

vastly varying characteristics (e.g., Bluetooth and a low-power radio) to combine

the advantages of these technologies.
Most radios used for sensor nodes operate in license-free ISM bands (e.g., 868

MHz, 915 Mhz, 2.4 GHz). Typical frequencies range from few hundred MHz to

few GHz. Various kinds of antennas are used for these frequencies: simple wires,

antennas integrated into the circuit board (e.g., "F" or "L" shaped patch antennas),

or more compact chip antennas. The size of a simple wire antenna is typically a

quarter of the wavelength, (i.e., between 5 and 10 cm for the above frequencies).

Sensor/Actuator Interface

Analog sensors map a certain physical quantity (e.g., temperature) to a variable

voltage or current. An analog-to-digital converter (ADC), which is often included

in the microcontroller, maps this analog quantity to a digital number. Digital

sensors do already include an ADC and do often support a bus system such as

I2C. The same applies to actuators (e.g., LEDs, speaker, buzzer): some expect

an analog input, other expect digital input and can be connected to standard bus

systems.

Most sensor node designs do only provide a minimal set of sensors and actua¬

tors (e.g., light sensor, LEDs) on board, mainly for testing purposes. An extension
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slot then allows to connect more sensors or even so-called sensor boards. Besides

sensors, such extension boards may contain ADC, multiplexers to support many

sensors, and even an additional microcontroller to connect analog sensors to stan¬

dard bus systems.

Real-time Clock

Since microcontrollers are clocked circuits, an additional hardware clock is not

strictly necessary. However, some processor cores support dynamic frequency scal¬

ing for power efficiency. Also, the microcontroller may be switched to power-saving

sleep modes. Therefore, an additional external real-time clock chip and oscillator

is often used to implement a stable clock that is independent of a system clock

with variable frequency.

Battery and Power Supply

Sensor nodes may be powered by batteries or may scavenge energy from the en¬

vironment (e.g., vibrations, light). However, the power output of many energy

sources often varies over time (e.g., output voltage of a battery, solar cell) and

often does not match the requirements of the sensor node electronics. Additional

power supply circuitry is needed to transform the output of these power sources.

For example, a so-called step-up converter can be used to power 3.3V circuits from

a single 1.5V battery. It has also been observed that the effective capacity of a bat¬

tery can be increased if power is drained in bursts rather than continuously, allowing

the battery to recover between bursts. An implementation of this strategy requires

conversion circuitry to provide a constant voltage to the sensor node electronics.

Many sensor node designs do also provide switchablc power supplies for individual

subsystems (e.g., radio, sensors) in order to optimize power consumption.

Co-Processors

Microcontrollers may not be sufficient to perform complex signal processing tasks

(e.g., FFT, correlations) which are often required for preprocessing high-volume

sensory data on the sensor nodes. Hence, some sensor node designs provide FPGA

or DSP [73, 130] add-ons for this purpose.

2.5.2 Egrains

Some applications may require the functionality of Motes as described in the pre¬

vious section, but the size of existing prototype systems makes the use of these

devices inconvenient (e.g., body-worn sensors in healthcare applications) or impos¬

sible. Hence, there is a need for Egrains - devices that provide the functionality of

a Mote within the size of a cubic centimeter and less. Currently, two approaches

for achieving the desired size reduction are examined: micro-integration techniques

and system-on-chip solutions.
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Micro integration seeks to improve the packaging density of discrete circuits [74,

114]. This can be achieved in various ways. The simplest approach is to use more

size-efficient chip packaging techniques. One example are so-called Flip Chips (FC),

where the leads are on the bottom of the chip and hence do not require extra space

as do standard Surface Mounted Devices (SMD). Another technique to construct

more compact devices is 3D integration, for example by stacking multiple boards,

or by using flexible boards which can be folded into a stack or other 3D layouts. Yet

another option are so-called Multichip Modules (MCM), where bare silicon dices

(without plastic packaging) arc used to construct a circuit. The resulting circuitry

is than sealed as a whole with plastic.

In contrast to micro-integration techniques, system-on-chip (SOC) solutions

combine the various circuits on a single silicon die, such that only a few external

components (e.g., quartz oscillator, antenna, power supply) are required to build a

complete sensor node [131, 138]. In the SOC design process it is possible to take a

modular approach, where the various circuits (e.g., microcontroller, radio) are just

laid out and connected on a single piece of silicon without further integration of

the circuits. Otherwise, the development process of SOC is similar to Application-

Specific Integrated Circuits (ASIC).
With both approaches, there are two fundamental limitations for the achievable

size reduction: antennas and batteries. The size of radio antennas is directly linked

to the wavelength of the carrier signal and is a couple of centimeters for commonly

used ISM bands. The use of higher frequency bands (e.g., some tens of GHz) is

possible, but does increase the power consumption of the radio transceiver due to

higher signal attenuation and due to higher dielectrical losses. Since the radio is the

dominating power consumer of a sensor node, savings in antenna size will typically

result in more battery volume.

Since the above miniaturization methods themselves do not significantly reduce

power consumption, power sources with a higher energy density would be required

to reduce the size of the power supply. However, the energy density of electro¬

chemical power sources (e.g., batteries) did only improve by 20 % during the last

twenty years and a significant improvement of this rate in the future is not expected.

2.5.3 Smart Dust

Some applications may require even smaller sensor nodes that resemble the size

of a dust particle. Some applications that may require such tiny devices are the

integration of sensors into coatings (e.g., paint), applications where sensor nodes

have to float in air, or applications where the presence of sensor nodes must be

hardly noticeable (e.g., military).
As explained in the previous section, the use of radio communication presents

some fundamental limits to the integration density of sensor nodes. While Egrains

are just shrunk versions of motes, Smart Dust will likely require the use of other

technologies. This applies in particular to communication techniques.

A project at UC Berkeley examined the use of laser-based communication for
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Smart Dust. A similar approach is also examined by the Speckled Computing

initiative [132]. As described in [49], Berkeley Smart Dust nodes consist of a

small battery, a solar cell, a power capacitor, sensors, a processing unit, an opti¬

cal receiver, and a corner-cube retroreflcctor (CCR) within a space of few cubic

millimeters. Later versions might also contain an active transmitter based on a

semiconductor laser diode. However, the high power consumption of the laser

diode may significantly limit the value of such a component. Therefore, in the near

future, communication will be possible only between sensor nodes and a so-called

base station transceiver (BST).
The BST mainly consists of a steerable laser and a compact imaging receiver.

For downlink communication, the BST points the modulated laser beam at the

optical receiver of a node. For uplink communication, the BST points an unmodu¬

lated laser beam at the node, which modulates the laser beam and reflects it back

to the BST using its CCR. Using its imaging receiver, the BST can receive and

decode transmissions from dust nodes.

The CCR is a special Micro Electro-Mechanical Systems (MEMS) structure

consisting of three mutually perpendicular mirrors. The CCR has the property that

any incident ray of light is reflected back to the source under certain conditions. If

one of the mirrors is misaligned, this retroreflection property is spoiled. The Smart

Dust CCR includes an electrostatic actuator that can deflect one of the mirrors at

kilohertz rates. Using this actuator, the incident laser beam is on-off modulated

and reflected back to the BST, Using a 5-milliwatt laser, data transmission at a bit

rate of up to 1 kilobit per second over a range of up to 150 meters in full sunlight

has been demonstrated [49].
This type of design implies a single-hop network topology, where the nodes

cannot directly communicate with each other, but only with the base station. The

base station can be placed quite far away from the nodes. Communication may

suffer from significant and highly variable delays if the laser beam is not already

pointing at a node which is subject to communication with the BST.

Obviously, this communication scheme has a number of limitations. It requires

a free line of sight between BST and Smart Dust nodes, and nodes must point their

optical receiver and CCR towards the BST. On the other hand, communication is

very energy efficient, since the dust nodes do not actively emit any signals. Also,

the complexity of the transceiver and hence also its energy consumption is rather

low. Moreover, optical receiver and CCR are small enough to fit into few cubic

millimeters.

Recent prototypes of Smart Dust [105] implement the optical receiver, CCR,

a light sensor, a solar cell, and a simple control unit within 16 cubic millimeters.

Future devices are expected to include a complete processing unit instead of the

simple control unit, provide a wider variety of sensors, and are expected to feature

further reductions in size and energy consumption.
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2.5.4 Commodity Devices

In the previous sections, we have described devices that have been deliberately

developed for use as sensor nodes. However, many existing sensor network ap¬

plications do also use existing commodity devices such as mobile phones, PDAs,

embedded PCs, or even cameras and laptop computers. One reason for this is that

many developers prefer to develop early prototypes of an application using such

commodity devices, since software development for these devices is often more

convenient due to established operating systems and tool chains.

Commodity devices may also be included in heterogeneous sensor networks for

a number of reasons [14, 96]. Firstly, commodity devices may act as a gateway be¬

tween the sensor network and a background networking infrastructure. A mobile

phone, for example, may connect a sensor network to the GSM network. Secondly,

many commodity devices offer a user interface that can display monitoring results

to the user or which allows a user to analyze, control, and debug certain aspects

of a sensor network. Thirdly, many commodity devices offer sensors (e.g., audio,

photo, video) and actuators (e.g., audio output, phone ringing) that may be useful

in certain applications. And finally, commodity devices typically offer rich com¬

puting and storage resources to perform more complex tasks. For example, PDAs

and embedded PCs may be used as cluster heads or in the upper layers of tiered

networks, where they serve a large number of more constrained sensor nodes.

The use of commodity devices in conjunction with sensor networks requires the

provision of communication links between these devices and other sensor nodes. If

the sensor network uses standardized communication technology such as Bluetooth,

commodity devices with support for this technology can be directly integrated into

the network. If the sensor network uses a networking technology which is not

directly supported by a commodity device, a sensor node can often be connected

to the commodity device via serial 10, such that the attached sensor node acts as

an external network interface for the commodity device.

2.6 Technical Challenges

The characteristics of wireless sensor networks can present a number of major

challenges to the development of algorithms, protocols, and systems. The existence

and impact of these challenges varies across the design space. Below we present

the main technical challenges and their relationship to the dimensions of the design

space.

2.6.1 Resource and Energy Constraints

Each application has specific constraints on the size and prize of individual sen¬

sor nodes. These constrains directly imply constraints on the available amount

of energy, computing (instructions per time unit), storage (amount of memory),

and communication resources (bandwidth, range) per sensor node. On the other
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Figure 2.1: Sensor nodes send data to base station B along a spanning tree. Nodes

close to the base station will run quickly out of power due to forwarding messages

from nodes further away.

hand, a task to be performed by a sensor node has particular requirements on the

above resources. For example, a required minimum lifetime maps directly to a

requirement on available energy, given a certain power consumption per time unit.

Different implementations of the same task can have vastly varying requirements.

Therefore, the tighter the constraints on available resources and energy, the more

attention must be paid to resource-efficient and energy-efficient implementations.

In many cases, resource and energy efficiency become the primary design goals,

which renders existing solutions for many problems useless, since they have not

been designed for resource and energy efficiency. In particular, many common

technologies (e.g., GPS) may not be applicable due to their high cost, size, and

energy overheads. As explained in Section 2.5.3, the resource requirements of ra¬

dio communication may preclude its use in very constrained setups such as Smart

Dust.

Often it is also important to ensure that resource usage and energy consump¬

tion is equally spread among the nodes of the network. If some nodes exhaust

their battery quickly and fail early, resulting permanent network partitions may

render the network inoperational. Likewise, hotspot usage of resources may lead to

bottlenecks such as network congestions. Figure 2.1 illustrates a typical problem

with asymmetric energy consumption in sensor networks. Sensor nodes send sensor

readings along a spanning tree to a base station B for evaluation. Nodes close to

the base station will run quickly out of power since they forward messages from

nodes further away. Failure of these nodes will create a "dead ring" around the

base station.

2.6.2 Network Dynamics

Depleted batteries and corruptive environmental conditions (e.g., pressure, humid¬

ity, temperature, destructive chemicals) often lead to node failures. Temporary

environmental obstructions (e.g., vehicles, humans) may influence the communica-
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Figure 2.2: Message transport across partition boundaries through node mobility

may result in unidirectional multi-hop paths with unpredictable, unbounded delays.

0

Figure 2.3: Interference may lead to temporal and spatial variations in link quality,

possibly resulting in asymmetric and unidirectional single-hop links.

tion range of nodes. Nodes may be mobile, new nodes may be added to replace

failed ones. All these issues may lead to frequent topology changes in sensor net¬

works. In particular, temporary network partitions are likely to exists in sparse

networks.

Despite intermittent connectivity, messages can be forwarded across partitions

by mobile nodes as illustrated in Figure 2.2. At time ti nodes 1 and 2 are within

communication range of each other only, then node 2 moves towards node 3, such

that at time t2 nodes 2 and 3 are within communication range of each other only.

Node 2 can carry a message from node 1 to node 3 across a partition boundary.

The resulting multi-hop message flow has two challenging properties. Firstly, the

path is unidirectional: it is not possible to send a message from node 3 to node

1 unless there exists a node with an appropriate mobility pattern. Secondly, the

delay of this message flow can be arbitrarily high and is hardly predictable unless

the mobility pattern of node 2 is known in advance.

It has also been observed that due to interference of sensor nodes among each

other and with the environment, communication link quality may vary heavily from

node to node, over time and space [39]. This may lead to a number of temporary

or permanent effects as depicted in Figure 2.3. Although all nodes are identical,

node 2 may not be able send a message to node 1 even if node 1 can send a message

to node 2. Also, node 1 may not be able to send a message to node 3, even though

node 1 is closer to node 3 than to node 2.

Ensuring robust operation of a sensor network in such setups can be a very

challenging task.

OGKD
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2.6.3 Network Size and Density

Depending on the desired observation detail and area, wireless sensor networks

may consist of a large number of sensor nodes. This is due to the fact that sensors

typically have a small effective range, while at the same time a potentially large

geographical area of interest must be covered by the sensors. Also, the quality

and detail of observations can profit from redundant deployment of sensor nodes

(where many sensors cover a certain physical spot) very close to the phenomenon

of interest.

Ensuring that sensor networks scale to large numbers of densely deployed nodes

can be technically challenging. If omnidirectional radios are used for communica¬

tion, for example, the network capacity per node decreases with the node density.

In dense networks, the occurrence of a physical event may trigger communication

at a large number of collocated nodes, which could lead to network congestions and

increased delays.

2.6.4 Unattended and Untethered Operation

Depending on the application, sensor networks may have to be deployed in remote,

unexploited, or hostile geographical areas. In such cases, sensor networks may not

rely on well-engineered or excessive hardware infrastructure (e.g., for communica¬

tion, localization, time synchronization).
After deployment, it may be impossible or prohibitively costly to physically

access sensor nodes for recharging, maintenance, etc. Hence, sensor networks may

have to operate unattended for extended periods of time.

If the sensor network consists of a large number of nodes, manual configuration

of individual nodes may not be an option. Additionally, pre-deployment configura¬

tion is often infeasible because some configuration parameters such as node location

and network neighborhood are typically unknown prior to deployment. Also, node

parameters may change over time, necessitating dynamic re-configuration. Hence,

a means for in-situ configuration after deployment is often necessary. The term self-

configuration is commonly used to express the fact that a sensor network should

configure itself without manual intervention.

2.7 Design Principles

In the previous section wc outlined a number of technical challenges. Fortunately,

there exist general techniques to deal with these challenges or to mitigate their

effect.

2.7.1 Adaptive Tradeoffs

Often, there are tradeoffs between different system parameters such as fidelity, la¬

tency, and energy/resource usage. Improving one of these parameters often implies
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a degradation of other parameters. The requirements on these parameters do not

only vary among different applications, but also during the lifetime of a single ap¬

plication. Algorithms that provide "turning knobs" to dynamically adapt these

tradeoffs to the actual application requirements can help optimize the resource and

energy consumption, for example. If such a parameterization of a single algorithm

is limited or impossible, the provision of a family of algorithms - with different,

but fixed tradeoffs - to select from may be worthwhile option.

2.7.2 Multi-Modality

The concurrent use of different approaches (i.e., modalities) to the same problem

can often help to improve the robustness. For example, wide-band communication

techniques use multiple frequencies concurrently or sequentially (e.g., frequency

hopping, chirp sequences) to improve the robustness to narrow-band interferences.

The detection of an object can be made more robust by using different types of

sensors (e.g., a motion detector and a magnetometer).

2.7.3 Local Interaction

Limiting the interaction of each sensor node to nodes in the direct network neigh¬

borhood can improve scalability, since the number of nodes in the local neighbor¬

hood does not depend on the total number of nodes in the network if the node

density is fixed.

2.7.4 Data Centricity

In many traditional distributed systems, algorithms such as routing and distributed

data storage operate independently of the actual contents and meaning of the data.

In contrast, data-centric approaches make the type of data (e.g., "temperature

reading") and its properties (e.g., "sample obtained at position p") an explicit

input to such algorithms.
Data centricity can improve the robustness of sensor networks, since it can be

used to decouple sensory data from specific sensor nodes. By using a data-centric

query such as "what is the current temperature at position p", any node located

near position p can answer the query, whereas a traditional address-centric query

such as "what is the temperature at node #7" fails if node #7 experiences problems,

even though a nearby node with a different address could answer the query.

Data centricity can also reduce energy and resource consumption, since it sup¬

ports content-based filtering (e.g., "not interested in temperature readings below

T degrees") and placement of sensory data (e.g., storage close to a potential user

of a certain type of data).
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2.7.5 In-Network Data Processing

Instead of sending streams of raw sensory data to a central processor for evalua¬

tion, raw sensory data can be preprocessed by sensor nodes (i.e., in the network),

as the data flows through the sensor network. For example, a sensor node can

filter sensor readings, such that only application-relevant data is sent through the

network. Another example is in-network aggregation and fusion of sensor readings

that originate from different sensor nodes.

In-network data processing can improve the scalability and can reduce the en¬

ergy/resource consumption, since it can significantly reduce the data volume that

has to be routed through the network.

2.7.6 Cross-Layer Interaction

Traditional networked systems are typically based on layered designs and imple¬

mentations (e.g., hardware layer, network layer, application layer), where each layer

provides a service to the layer on top of it. The layers arc mostly independent of

each other in order to enable the exchange of single layers without touching the

other layers. While such an approach ensures genericity and modularity, it may

cause significant overheads, since any single layer has to satisfy the maximum of

the requirements of all possible instances of the layer on top of it. For example,

if the application layer can tolerate the loss of a specific subclass of messages, the

network layer cannot do better that retransmitting all messages, since it does not

know which messages are important to the application layer and which arc not.

Cross-layer interaction relaxes the strict separation of layers by passing useful

bits of information from one layer to another. In the above example, the application

layer may want to pass a classifier for important messages to the network layer.

Hence, cross-layer interaction can improve the energy and resource efficiency.

The information passed across layers can be static (e.g., certain fixed features

of the application or hardware) or dynamic. In the static case, a generic approach

with large overhead can often be collapsed into a specific and more efficient solution

(e.g., application-specific or hardware-specific designs).
The application and hardware layers are particularly valuable sources of infor¬

mation that can improve the efficiency of other layers. For example, the application

layer may pass filter criteria and aggregation rules to the network layer in order to

enable in-network data processing. Some algorithms in the application layer can

exploit knowledge about the quality of a link (e.g., signal strength).

2.8 Summary

This chapter discussed wireless sensor networks in general. We first characterized

WSN, also in the context of related research areas such as ubiquitous computing,

embedded systems, mobile networking, and digital signal processing. Motivated

by a study of concrete applications, we proposed a design space for wireless sensor
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networks as a replacement of the currently adopted narrow view. We showed that

concrete applications occupy different points in this design space. We discussed

implications of the design space and presented four classes of hardware that sup¬

ports different regions in the design space. We also discussed technical challenges

associated with different regions of the design space and sketched design principles

that can be helpful in dealing with these challenges.



Chapter 3

Space and Time in Sensor

Networks

Space and time play a crucial role in wireless sensor networks, since sensor nodes

are used to collaboratively monitor physical phenomena and their spatio-temporal

properties. Consequently, a number of techniques and distributed algorithms for

location estimation and time synchronization have been developed specifically for

sensor networks. However, research in these two domains has been performed by

mostly separated research communities.

A closer look on both research domains reveals that there are many similarities.

This does affect a variety of aspects of location estimation and time synchroniza¬

tion, ranging from applications and requirements to basic approaches and concrete

algorithmic techniques. The purpose of this chapter is to make this close affinity

explicit in order to further a better understanding of both domains. We will base

our detailed discussion of synchronization and localization in the subsequent two

chapters on the common framework we develop in this chapter.

The remainder of this chapter is structured as follows. In Section 3.1 we describe

uses of space and time in sensor networks. Section 3.2 presents a common model for

location estimation and time synchronization and discusses various requirements

and different approaches to location estimation and time synchronization based

on this model. In Section 3.3 we examine the structure of distributed algorithms

for location estimation and time synchronization. In particular, we will point out

that algorithms for both problems arc based on a number of common structural

elements. Section 3.4 discusses various limitations and trade-offs of this class of

algorithms.

3.1 Uses of Space and Time

Figure 3.1 illustrates three important application classes of space and time in sensor

networks. Typically, a sensor network is tasked by and reports results to an external

observer (a). A sensor network also interacts with the physical world through

distributed sensors and possibly also through actuators (c). Finally, the sensor

46
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(a) (b) (c)

Figure 3.1: Applications of space and time, (a) interaction of an external observer

with the sensor network, (b) interaction among sensor nodes, (c) interaction of the

sensor network with the monitored real world.

nodes interact among each other to coordinate distributed computations (b). The

following paragraphs will discuss applications of space and time in these three

domains.

3.1.1 Sensor Network - Observer

In many applications, a sensor network interfaces to an external observer for task¬

ing, reporting results, and management. This external observer may be a human

operator (as depicted in Figure 3.1) or a computer system. Tasking a sensor net¬

work often involves the specification of regions of interest in space and time such

as "only during the night" or "the area south of ...". Since the observer is typically

interested in a physical phenomenon of the real world (and not in individual sensor

nodes), such spacetime addressing is often preferable over addressing individual

nodes or groups of nodes by identifiers.

As a sensor network reports monitoring results to the observer, many spatio-

temporal properties of observed physical phenomena are of interest. For example,

time and location of occurrence of a reported physical event are often crucial to

associate event reports with the originating physical events. Properties such as

size, shape, speed, trajectory, density, frequency do all refer to the categories time

and space.

3.1.2 Sensor Network - Real World

In sensor networks, many different sensor nodes distributed over an area may be in¬

volved in the observation of a single physical phenomenon. One of the key functions

of a sensor network is therefore the assembly of many distributed observations into

a coherent estimate of the original physical phenomenon - a process known as data

fusion. Space and time arc key ingredients for data fusion. For example, many sen¬

sors can only detect the proximity of an observed object. Higher-level information,

such as speed, size, or shape of an object can then only be obtained by correlating
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data from multiple sensor nodes whose locations are known. The velocity of a mo¬

bile object, for example, can be estimated by the ratio of the spatial and temporal

distances between two consecutive object sightings by different sensor nodes. As

another example, the size and shape of a widespread object can be approximated

by the union of the coverage areas of the sensor nodes that concurrently detect the

object.
Since many different instances of a physical phenomenon can occur in spatio-

temporal proximity, one of the tasks of a sensor network is the separation of sensor

samples, that is, the partitioning of sensor samples into groups that each represent a

single physical phenomenon. Spatio-temporal relationships (e.g., distance) among

sensor samples are a key element for separation.

Spatio-temporal coordination among sensor nodes may also be necessary to

ensure correctness and consistency of distributed measurements [40]. For example,

if the sampling rate of sensors is low compared to the temporal frequency of an

observed phenomenon, it may be necessary to ensure that sensor readout occurs

concurrently at all sensor nodes in order to avoid false observation results. This

is also an issue for sensor calibration as explained in [19]. Likewise, the spatial

distribution of sensors has an impact on the correctness of observation results. For

example, in order to estimate the average of a certain physical quantity over a

certain physical area (e.g., average room temperature), it is typically not sufficient

to simply calculate the average over all sensor nodes covering the area, because then

areas with higher node density would be overrepresented in the resulting average

value.

It is anticipated that in the future large-scale and complex actuation functions

will be realized by coordinated use of many simple distributed actuator nodes that

are part of a sensor network. Similar to distributed measurements, spatio-temporal

coordination will then also be an important ingredient for consistent distributed

actuation.

3.1.3 Within a Sensor Network

Time and location are also valuable concepts for intra-network coordination among

different sensor nodes. As sensor networks are essentially distributed systems, many

traditional uses of the concepts of time and location do also apply to wireless sensor

networks. Liskov [57] points out a number of uses of time in distributed systems

in general such as for concurrency control (e.g., atomicity, mutual exclusion), se¬

curity (e.g., authentication), data consistency (e.g., cache consistency, consistency

of replicated data), and communication protocols (e.g., at-most-once message de¬

livery).
One particularly important example for concurrency control is the use of time-

division multiplexing in wireless communication, where multiple shared access to

a common communication medium may be realized by assigning time slots with

exclusive access to the communicating peers. This may require the participating

sensor nodes to share a common view on physical time. A prominent use of spatial
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information for network coordination is geographic node addressing and routing,

where geographic locations replace the use of node identifiers.

A number of approaches intend to improve energy efficiency by selectively

switching sensor nodes or components thereof into power-saving sleep modes. In

order to ensure seamless operation of the sensor network despite of this, spatio-

temporal coordination among sensor nodes may be required. The algorithm pre¬

sented in [110], for example, extends the lifetime of dense networks by switching

off nodes such that the remaining nodes are sufficient to cover the area of interest.

To ensure coverage, node locations must be known. Another way of extending net¬

work lifetime is to periodically switch off radio transceivers of sensor nodes, since

their power consumption is rather high even when only listening to the network.

Temporal coordination is required to ensure that activity periods of sensor nodes

overlap in time in order to enable communication (see, e.g., [111]).
Another service of importance for sensor network applications is temporal mes¬

sage ordering [81], Many data-fusion algorithms have to process sensor readings

ordered by the time of occurrence (e.g., in the approach for velocity estimation

sketched above). However, highly variable message delays in sensor networks (cf.

Section 2.6.2) imply that messages from distributed sensor nodes typically do not

arrive at a receiver in the order they have been sent. Reordering messages according

to the time of sensor readout requires temporal coordination among sensor nodes.

The close relationship between time and space in the physical world is also

reflected by methods for time synchronization and location estimation themselves.

For example, methods for location estimation based on the measurement of time of

flight or time difference of arrival of certain signals typically require synchronized

time. The other way round, location information may also help to achieve time

synchronization. This is due to the fact that time synchronization approaches

often have to estimate message delays. One component of the message delay is the

time of flight of the carrier signal between two nodes, which can be calculated if

the distance between sender and receiver and the propagation speed of the carrier

signal are known (cf. Section 5.1.1).

3.2 Locating Nodes in Spacetime

In this section we present a common model for location estimation and time syn¬

chronization. Using this model, we will discuss various requirements on and differ¬

ent classes of time synchronization and localization.

One possible way to model physical space is to do this as a three-dimensional

real-valued vector space. Likewise, physical time can be modeled as a one-

dimensional real-valued vector space. These two vector spaces are often combined

to form a four-dimensional vector space known as spacetime. To indicate points

in spacetime, a coordinate system is used, consisting of the vector o (the origin)

and four linearly independent vectors e\,e2,e?ne± (the axes). To avoid relativistic

effects and to simplify our discussion, we assume that a coordinate system has the

following properties: e4 = (0,0,0,t), the e% are mutually orthogonal (i.e., inner
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Figure 3 2: A point p in spacetime and its coordinates pl and p't in two different

coordinate systems

product is zero), and \ei\ — |e2| = |e3|. In other words, the space axes ei,e2,e3

form a Cartesian coordinate system, 64 is the time axis, and |ei| = jc21 = te31 and

|c4j are the space and time units, respectively. Any point p in spacetime can now

be specified by its coordinates (pi,p2,P3,P4) with iespect to the coordinate system

(0, ei, e2, e3, e4), such that p is given by o + piei + p2e2 + p3e2 + p4e4

Under these assumptions, the spatial distance between two points p and q is

given by \/(pi — ci)2 + (p2 — Ç2)2 + (p-s — Qa)2, and the temporal distance is given

by |P4-<?4|.
The above model allows a unified view on localization and time synchronization

as follows. If a sensor node is modeled as a point p in spacetime, localization and

time synchronization can be considered as determining the current coordinates of

p with respect to a given coordinate system. We refer to this process as locating a

sensor node m spacetime.

Note that it is quite common to use different coordinate systems, even in a

single application. However, using a simple coordinate transformation scheme, the

coordinates p, of a given point p can be transformed into coordinates p[ in a primed

coordinate system, as depicted in Figure 3.2 for a two-dimensional coordinate sys¬

tem.

In the remainder of the chapter we will simply use the terms localization /
location as an abbreviation for localization / location in spacetime. We will use

localization / location in time and localization / location in space when specifically

referring to time and space.

Localization in spacetime comes in many different flavors and with many dif¬

ferent requirements and practical constraints, which are discussed in the following

sections

3.2.1 Internal vs. External

With external localization in spacetime, a given coordinate system is used as a

reference. With internal localization, there exists no predefined coordinate system.

The nodes of a sensor network then have to agree on a single coordinate system,
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Figure 3.3: Small sets of nodes may use local coordinate systems. If a point in

spacetime is passed beyond the scope of such a local coordinate system, a coordinate

transformation is applied.

but which one is actually chosen is irrelevant.

Note that external localization is a special case of internal synchronization,

since a coordinate transformation can be applied to map coordinates w.r.t. an

arbitrary coordinate system used for internal synchronization to coordinates w.r.t.

a predefined external coordinate system.

External localization is mostly used when interfacing to the real world and

observers, since there are well-established coordinate systems used in daily life

such as the coordinate system defined by Universal Transverse Mercator (UTM)

space coordinates and Coordinated Universal Time (UTC). For spatio-temporal

coordination among sensor nodes, internal localization is often sufficient.

3.2.2 Global vs. Local

In order to be able to compare two points p and q in spacetime, the coordinates of

the two points must be known w.r.t. a single coordinate system. The most obvious

way to achieve this is to have all network nodes use a single global coordinate sys¬

tem. In this case, any sensor node can easily compare any two points in spacetime

obtained from any two nodes.

However, the use of a single global coordinate system is not the only possible

solution. As illustrated in Figure 3.3, small sets of nodes or even single nodes

may use a local coordinate system each. If points in spacetime remain within the

scope of such a local coordinate system, they can be easily compared. However, if

the coordinates of a point in spacetime are passed across the border between the

scopes of two different local coordinate systems, a coordinate transformation must

be applied to the point.

When to prefer the one or the other approach depends on the actual application.

Maintaining a coordinate system across a set of distributed network nodes requires

communication among the participating nodes. However, comparing points within

the scope of a single coordinate system then comes for free. Local coordinate
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systems typically do not require active communication among nodes using different

coordinate systems. Passing points across a coordinate system boundary, however,

requires to compute a suitable transformation between the two involved coordinate

systems, which then has to be applied to the affected points.

Therefore, a reasonable approach would be to cluster nodes based on their

interaction patterns, where each cluster has a local coordinate system. If two

nodes do frequently exchange points in spacetime, they should end up in the same

cluster. If there is strong interaction among all nodes in the network, using a single

global coordinate system is likely the better choice.

3.2.3 Point Estimates vs. Bounds

Actual implementations of localization in spacetime are based on measurements.

Since measurements are always afflicted with errors, only estimates of the coordi¬

nates of a point in spacetime can be obtained in practice. Despite this, it is often

convenient to use such point estimates as if they were correct in the absolute sense.

Another approach is to explicitly deal with errors in measurements by specifying

bounds on the actual coordinates of a point in spacetime, where one assumes that

the true value lies within the bounds. Common ways of specifying bounds are

bounding boxes and spheroids. In the special case of (one-dimensional) time, both

map to intervals.

Both point estimates and bounds have advantages and disadvantages that in¬

fluence the choice of one over of the other. Basically, point estimates are convenient

to use due to the simplicity of point arithmetic and because statements in terms

of the abstract spacetime model can be directly applied to the point estimates.

However, the use of point estimates may lead to wrong results. For example, for

two point estimates p and q where p4 < <?4 holds, p may despite of this actually

represent a later point in time than q.

While the use of explicit bounds is often more complex and inconvenient, and

sometimes rather imprecise, errors like the above one can be avoided. However,

the use of bounds also introduces situations where it is impossible to decide on a

certain predicate. For example, if intervals are used to represent points in time, it

cannot be determined whether one point is earlier than another if the corresponding

intervals overlap. While the introduction of such undecidable situations may seem

undesirable from a technical point of view, they explicitly represent fundamental

limitations of the system and alert the application or user about it, instead of

making arbitrary and potentially wrong decisions.

Yet another approach to deal with the imprecision of localization algorithms is

the use of probability distributions over spacetime. However, due to the practical

difficulty of dealing with probability distributions, this approach is currently barely

used in distributed algorithms for sensor networks.
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3.2.4 Points vs. Distances

In the previous discussions we assumed that points in spacetime originating from

different nodes in the sensor network need to be compared. However, there arc

also applications where individual nodes locally measure distances between points

in spacetime and where it is sufficient to compare distances measured at different

sensor nodes.

As an example, consider an application where sensor nodes measure the time

during which a certain phenomenon can be sighted and where the sighting durations

at different sensor nodes must be compared (e.g., to estimate the acceleration of

a mobile object). Here, the actual points in time when the phenomenon appeared

or disappeared are irrelevant. However, it is important that different sensor nodes

measure the same duration given identical physical stimuli.

Obviously, measuring and comparing distances is a special case of measuring

and comparing points in spacetime, since a distance can be easily calculated when

the points arc given w.r.t. a common coordinate system.

3.2.5 Scope and Lifetime

A scope defines a subset of nodes where localization in spacetime is required. A

lifetime defines a time interval during which localization is required. The two

extremes are everywhere/continuous and on-demand, where localization is only

performed where and when actually needed.

Both lifetime and scope requirements can vary from application to application

and may change dynamically and in unpredictable ways. In many sensor network

applications, scope and lifetime arc correlated with the occurrence of the observed

physical phenomena. For example, to locate an object moving through a sensor

network, nodes that detect the object might define the scope and the lifetime.

With everywhere/continuous localization, the localization procedure is per¬

formed permanently on all nodes, such that an up-to-date estimate of the current

location in spacetime is immediately available whenever requested by the applica¬

tion. With on-demand localization, the localization procedure is performed only

where (i.e., on a certain node) and when the application requests the current loca¬

tion in spacetime. The result is only available after a delay caused by the execution

of the localization algorithm.
The overheads of the two approaches depend on the frequency of the applica¬

tion requesting localization. If rarely requested, on-demand localization may be

more efficient. If frequently requested, continuous localization is likely to be more

efficient. In sensor networks, where activity is often triggered by the occurrence of

rare physical events, the on-demand approach is certainly a promising technique

for achieving resource efficiency.
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3.2.6 Precision

A localization algorithm yields a point estimate or bounds on a sensor node's

actual position p in spacetime. Precision is a measure for how well this result

matches the ground truth locations p of nodes across the network over time. For

algorithms returning point estimates, the instantaneous precision for a given node

at a given point in time is usually expressed in terms of the distance between the

point estimate and p. Algorithms that return bounds are error-free if p is actually

enclosed by the bounds. However, the precision of bound-based algorithms can be

expressed by the uncertainty of the bounds (e.g., the volume of a bounding box,

the length of an interval).
To derive the overall precision of an algorithm within a given scope and during a

given lifetime, the instantaneous precisions of the nodes have to be combined. The

combined precision then has to be accumulated over time to arrive at a single value

that characterizes precision. Common ways of combining instantaneous precision

values of many nodes arc maximum, average, and standard deviation. A variant

often found in the literature is the maximum error after removing a given percentage

(e.g., 5%) of the largest errors. The combined precision typically improves during

the execution of an algorithm and approaches a stable value in the steady state.

The combined precision in the steady state can be used to express the overall

precision of an algorithm.

Requirements on the precision may heavily vary from application to application.

This applies both to quality and quantity. With respect to quality, an application

might require a certain average precision, other applications may request a certain

maximum error. The requirements on the distribution of precision over the net¬

work and over time may also vary from application to application. With respect to

quantity, required precision is closely related to the temporal frequency and spatial

detail of the phenomena that require localization in spacetime. For localization

in time, precision requirements range from a maximum error of few micro seconds

(e.g., for controlling access to the communication channel) to seconds or even min¬

utes (e.g., for activating a sensor network during certain times of the day). With

respect to location, precision requirements range from a maximum error of some

centimeters (e.g., locating a shooter [97]) to tens or even hundreds of meters (e.g.,

locating an animal herd).
As mentioned in Section 3.2.5, the scope of localization in sensor networks is

often defined by a set of collocated sensor nodes that cooperate in monitoring a

close-by event in the real world. For this kind of application, the precision among

this set of collocated nodes typically must be high. However, the precision among

nodes which arc far apart in space may be of lesser importance. We will return to

this issue in Section 3.4.1.

3.2.7 Other Quality-of-Service Aspects

Besides the aspects discussed so far, a number of additional QoS characteristics of

localization in spacetime are of practical relevance. Two prominent examples are
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Figure 3.4: Client nodes infer their location in spacetime by measuring spatio-

temporal relationships A (e.g., Euclidean distance, message delay) to black refer¬

ence nodes with known locations S in spacetime. The process is iteratively applied.

The figure shows from the left to the right, a sequence of three snapshots.

robustness and security. A robust localization algorithm delivers correct location

estimates even in the presence of well-defined, accidental failures. Another aspect

is secure verification of location estimates, where spoofed locations can be detected

(see, e.g., [21]).

3.3 Distributed Algorithms for Localization in

Spacetime

Many practical distributed algorithms for localization in space (e.g., [17, 36, 69, 75,

88, 89]) and time (e.g., [26, 38, 60, 98, 101]) are based on a few common structural

elements. In this section we point out these structural elements and discuss various

concrete instances of these elements found in existing algorithms.

Consider the example illustrated in Figure 3.4. Part (a) shows two kinds of

nodes: black reference nodes with known locations and white client nodes with

unknown locations. In part (b), a gray client node measures its distance Aj from

a number of neighboring reference nodes. Using the locations Si of the references

and the measured distances A,, the gray node infers its own location in spacetime.

The client node can now also act as a reference for other client nodes in subsequent

iterations of the algorithm as illustrated in part (c). Eventually, all nodes should

be able to measure distances to a sufficient number of neighboring reference nodes

in order to estimate their location in spacetime.

The meaning of the symbols A and S has to be interpreted in a rather broad

sense here. S is any state information of a node that is relevant to a localization

algorithm. Examples for S are time, location, orientation, and address of a node. S

may also include confidence values that characterize the precision of the respective

bits of state information. A is a spatio-temporal relationship between a client

node and one or more reference nodes. Examples include Euclidean distance, hop

distance, message delay, and angle with respect to the orientation of the client. A

o

o
o o
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may also include confidence values.

A pair (S, A) can be interpreted as a constraint on the possible spacetime

locations of a client node. For example, if S is a location of a reference node

in space and A its Euclidean distance, then the location of the client node is

constrained to the hull of a sphere with radius A centered at S. As we will show

in Section 3.3.2, a constraint may also involve multiple reference nodes, such that

A is a relationship among a client node and any number of reference nodes (e.g.,

client node is closer to reference 1 than to reference 2). Also, reference nodes need

not be network neighbors of the client node.

A second structural element of localization algorithms is a procedure for com¬

bining multiple constraints. As pointed out above, a single constraint limits the

possible locations of a client node, but the resulting solution space often does not

satisfy precision requirements. Hence, multiple constraints have to be combined

(e.g., intersected) to further cut down the solution space (e.g., to a single point in

spacetime).
A third important component of localization algorithms arc rules to select con¬

straints. In dense networks with many reference nodes, there is a large set of

possibilities for obtaining constraints that involve different sets of reference nodes.

While a large number of constraints may result in very precise location estimates,

the overhead for combining such numerous constraints may be prohibitive. Hence,

the goal is to select a small number of tight constraints that are sufficient to achieve

a certain precision. This selection process is not trivial, as it depends on a num¬

ber of parameters such as the precision of the state information of the individual

reference nodes, but also on a particular combination of reference nodes. Also,

certain reference nodes may only become available after they have estimated their

location themselves. Often, an overlay structure (e.g., spanning tree, clustering)

is constructed to ease this selection process. For example, a client node may use

its parent in a spanning tree as a reference node. Essentially, constraint selection

can be interpreted as the approach an algorithm takes to structure localization in

multi-hop networks (i.e., across space).
The fourth important element of localization algorithms is an approach to main¬

tain localization over time, since a single estimate of a node's location in spacetime

is quickly invalidated due to the progress of time and due to node mobility. The

conceptually simplest approach to this problem is to repeat a one-shot localization

frequently.
Last but not least, a bootstrapping mechanism is needed to provide initial ref¬

erence nodes that act as seeds for distributed localization algorithms.

An algorithm for localization in spacetime can often be considered as a com¬

bination of concrete instances of the above five categories and additional "glue"

elements. Many practical algorithms consist of several phases in order to improve

precision or other performance metrics. In each phase, different instances of the

five categories may be used. For example, several algorithms consist of a first phase

to obtain rough location estimates for all nodes. In a second phase, the so-called

refinement phase, these initial estimates arc further improved.
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Figure 3.5: Three non-collinear nodes with known mutual distances rfy define a

coordinate system for two-dimensional space.

In the following sections we give a more detailed overview of the above structural

elements. Sections 4.1 and 5.1 discuss concrete instances of these elements for

localization in time and space, respectively.

3.3.1 Bootstrapping

Obtaining constraints typically requires a number of reference nodes with known

locations in spacetime. Bootstrapping consists in providing such initial reference

nodes with location estimates. The most commonly used approach to solve the

bootstrapping problem is the provision of so-called anchor nodes which are able to

estimate their locations by means of an out-of-band localization mechanism such

as GPS, which can provide locations in both time and space. While anchors are

a natural way to solve the bootstrapping problem and allow for good precision

due to providing location "fixpoints" throughout large networks, they also come

with a significant overhead: a certain portion of the nodes must be equipped with

additional hardware (e.g., GPS receivers) and an additional infrastructure is often

needed (e.g., GPS satellites). We will discuss issues with anchors in more detail in

Section 3.4.1.

It is also possible to solve the bootstrapping problem without the use of an¬

chors. Consider for example Figure 3.5, where three nodes 1, 2, and 3 with mutual

Euclidean distances c/]2, d23,d^ are depicted. The nodes define a coordinate sys¬

tem as follows. The origin is given by the position of node 1. The positive x axis

is given by a ray starting at node node 1 passing through node 2. The positive

y axis is given by a ray starting at node 1 that is orthogonal to the x axis and

that extends into the half plane (defined by the x axis) that contains node 3. In

this coordinate system, the coordinates of the three nodes are (0,0), (0, di2), and

(X, ^d\2 - X2), respectively, with X = {d\2 + d213 - d^)/2d12 (e.g., [20, 79]).

Note, however, that this is only one possible coordinate system, any other co¬

ordinate system could have been used as well. Hence, in contrast to anchor-based

approaches, anchor-free approaches are not suitable for external localization (cf.
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Section 3.2.1). Also, the above coordinate system changes when one of the initial

reference nodes moves, invalidating the location estimates of all nodes whose posi¬

tions have been estimated with respect to this coordinate system. The precision of

anchor-based algorithms is often superior to anchor-free approaches, since anchor

nodes may be distributed over the network to act as fixpoints for localization. With

anchor-free approaches, nodes far away from the reference nodes that define an ini¬

tial coordinate system may experience significant imprecision due to accumulating

errors.

3.3.2 Obtaining Constraints

The general form of a constraint is ({Si,..., Sn}, A), where N reference nodes and

their respective state information Si are involved. A represents a spatio-temporal

relationship among these reference nodes and the client node. While Si arc typically

retrieved from a reference node by means of message exchanges, A is usually a

measured quantity. In most cases, A is cither represented by a point estimate

(e.g., distance = X) or by bounds (e.g., distance > X and/or distance < Y).

For localization in time, the delay of network messages is typically used as

a foundation for A measurements. For example, a round-trip message exchange

between client and reference can be used to derive lower and upper bounds on

the message delay between reference and client (e.g., [80]). The average of these

bounds can be used as a point estimate of the temporal distance (e.g., [38, 101]).

For localization in space, distance-dependent properties of propagating signals

(e.g., sound, radio) such as received signal strength or time of flight are typically

used as a foundation for A measurements. Two common forms of constraints

are based on Euclidean distances (e.g., bounds or point estimates for the distance

from a reference) and angles (e.g., bounds or point estimates for the direction of

arrival of a signal from a reference). Two common constraints that involve multiple

references are "closer to" relationships (e.g., client is closer to reference 1 than to

reference 2) and distance differences (e.g., client is X meters closer to reference 1

than to reference 2).

3.3.3 Combining Constraints

A single constraint can be interpreted as a region in spacetime that contains the

location of a client. Combining multiple constraints typically consists of two steps.

In a first step, "bad" constraints are eliminated from the set of available con¬

straints. One example of such bad constraints are outliers that represent a region

in spacetime that does not overlap with the regions defined by some or all other

constraints. After this step, the remaining constraints should have a non-empty

intersection that contains the prospective location estimate of the client.

In a second step, the intersection or a point in the intersection of the remaining

constraints is computed. In many cases, this can be achieved analytically, for

example by solving an equation system. In some cases, a closed-form solution
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cannot be derived or the computational overhead may be prohibitively high. An

approximative solution that trades off computational overhead for memory is to

subdivide the solution space into pixels, where the intersection region is defined by

the pixels that are contained in all constraints (e.g., [44]).
Due to measurement errors, it may happen that there is no sufficiently large

subset of constraints with a non-empty intersection. This is often the case if the

constraints use A relationships that are point estimates (e.g., distance = X) rather

than bounds. Here, an optimization problem may be set up that requires the

solution point to minimize a certain error metric. A commonly used error metric

is the distance between a point and a constraint, which is defined as the minimal

distance to any point contained in the region defined by the constraint. A typical

objective function for the optimization problem is then to minimize the sum of the

squared distances between the solution point and each constraint.

For localization in time, constraints define regions that are either points or

intervals. In case of intervals, the intersection interval can be computed as the

maximum of the lower bounds and the minimum of the upper bounds. In case of

point estimates, the average of all constraints is typically used, which minimizes

the sum of the squared error distances.

Let us consider some commonly used examples for constraint combination in

algorithms for localization in space. A very simple approach is based on centroids

(e.g., [17]), where multiple distance-bound constraints are given (i.e., distance from

reference is at most X). Here, each constraint defines a sphere. A point close to

the intersection of such a set of spheres can be obtained by computing the centroid

of the locations of the according reference points.

Another commonly used approach is multilateration to combine multiple dis¬

tance constraints, where the region defined by each such constraint can be inter¬

preted as the hull of a sphere. Multilateration finds the intersection point of a set

of at least 4 spheres in three-dimensional space. In case of exactly four spheres,

a linear equation system can be derived and solved to find the intersection point.

For more than 4 constraints a minimum-square-error optimization problem can be

derived, also resulting in a linear equation system (e.g., [71, 88, 89]).
One further approach is based on triangle tests, where a node performs a check

to see whether it is located inside the triangle formed by three reference nodes (e.g.,

[44]).

3.3.4 Selecting Constraints

At each point during the execution of a localization algorithm, a certain set of

reference nodes are available. Using these reference nodes, a number of "good"

constraints must be selected out of the large set of possible constraints. This

selection is based on the quality of the state information of the reference nodes,

on the quality of the spatio-temporal relationship and on temporal aspects. For

example, a better set of references may become available in a future iteration.

However, the algorithm might not be able to proceed if a node chooses to wait for
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better references to become available, since the node itself then cannot act as a

reference for other nodes.

There arc two different ways to approach this problem. Structured approaches

first construct an overlay topology that controls selection of reference nodes and

triggers client nodes to start measurements. A common overlay topology are trees.

For each anchor, a spanning tree of the network is constructed with the anchor

at the root. A client node becomes active as soon as its parent has estimated its

location and can thus act as a reference (e.g., [26, 38, 101]). Another typical overlay

topology are clusters, where nodes in a cluster establish a local coordinate system

and estimate their locations in terms of this reference grid. Adjacent clusters must

share a number of nodes to allow for the derivation of a coordinate transformation

between these clusters (e.g., [20, 33]).
While such structured approaches guide the selection of reference nodes, there is

an additional overhead for constructing and maintaining the overlay topology. For

example, if nodes fail or move, the overlay topology has to be updated to reflect this

change. In contrast, unstructured approaches do not explicitly construct an overlay

topology (e.g., [60, 89]). Instead, each node actively monitors its neighborhood for

a sufficient set of references to become available. While this approach avoids the

overheads of topology construction, it introduces an overhead due to a potentially

large number of constraints.

Approaches for localization in time often use structured approaches, since a

small number of constraints is usually sufficient to achieve the requested level of

precision. With localization in space, significant measurement errors and a high

degree of freedom due to the three dimensions of space typically requires the use of

as many constraints as possible. Hence, many approaches for localization in space

are unstructured.

3.3.5 Maintaining Localization over Time

A single run of a localization algorithm allows each node to estimate its location

in spacetime at a certain point in real time. However, as time progresses, the

precision of this one-shot estimate may decrease quickly due to node mobility or

due to the progress of time. Obviously, an algorithm can be executed one more time

to obtain up-to-date estimates. The resulting precision over time then depends on

the frequency of execution. However, since each execution of the algorithm takes

a certain amount of time, this frequency cannot be arbitrarily increased. Hence,

the maximum precision over time is also limited. Alternatively, if a certain target

precision is requested by the application, the execution frequency may be calculated

to be just high enough to provide the requested precision (see, e.g., [101]). For

localization in space it is also possible to limit re-execution to nodes that have

changed their location (e.g., [88]) in the meantime.

One way to further improve precision over time is the use of sensors to measure

the location in spacetime locally without referring to other nodes. This technique

is also known as dead reckoning. Hardware clocks, for example, are dead-reckoning
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devices for estimating the current time. Accelerometers may be used to measure

movements and can hence provide estimates of the current position in space (see,

e.g., [102]). However, dead-reckoning techniques typically suffer from significant

errors that accumulate over time and can therefore only be used to bridge the

short gap between two consecutive runs of a localization algorithm. For example,

typical hardware clocks suffer from an unknown clock drift between 10 and 100

parts per million. After one minute, the deviation from real time is then between

0.6 and 6 milliseconds. For location estimation using accelerometers, there is a

quadratic relationship between accélérâtion-measurement errors and errors in the

computed location estimate.

Another way of improving the precision is prediction, where based on location

estimates from the past a current estimate is computed. Besides the past behavior,

prediction requires a model of how a node can move through spacetime. With

respect to time, such a model is rather simple as real-time progresses at a constant

rate. The situation gets more complicated for space, where nodes can move in

complex patterns. However, it is often possible to derive constraints on the possible

locations (e.g., only on roads), bounds on speed and acceleration. For example,

if there is an upper bound on the speed of a node, we can derive bounds on the

possible locations of a node at time ti given the node's location at time t0 < *i-

Technically, prediction can be achieved by fitting a curve (often a polynomial with

low degree) to a set of locations in spacetime observed in the recent past. As with

dead reckoning techniques, prediction often experiences significant errors.

3.4 Limitations and Trade-offs

Sensor networks are subject to various challenges that have to be met by algorithms

for localization in spacetime. In the following subsections wc discuss typical trade¬

offs and limitations of distributed algorithms for localization in spacetime with

respect to the technical challenges presented in Section 2.6.

3.4.1 Anchor Infrastructure

In many applications, sensor networks have to be deployed in remote, unexploited,

or hostile regions. Sensor networks therefore often cannot rely on sophisticated

hardware infrastructure. However, anchor-based algorithms require an anchor in¬

frastructure, where the number, distribution, and arrangement of anchor nodes in

a network is a key parameter for the algorithm performance. In this section, we

discuss various issues with such an anchor infrastructure.

In order to obtain precise location estimates, the anchors must define an unam¬

biguous coordinate system at the least. With respect to time, the local time scale

of any single node defines such an unambiguous time coordinate system. For space,

at least four anchors are required. Three anchors typically result in two possible

coordinate systems, but one of them can often be excluded due global constraints

on possible locations of nodes.
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Figure 3.6: Collocated nodes (white) may end up with a large relative error due to

using different chains of reference nodes (gray).

However, such a minimum number of anchors is often not sufficient. Energy

considerations and interference issues often limit the effective range of anchors.

With radio communication, for example, the energy consumption grows with range

to the power of k, where typically 2 < k < 4. Hence, in large networks with

small anchor range, typically a significant portion of nodes cannot directly obtain

constraints for a sufficient number of anchor nodes. In this case, an iterative

approach can be applied, where nodes first estimate their locations using anchors

and then act as "secondary" references for other nodes. As measurement errors

accumulate along such chains, the error in the estimated location is the larger,

the more iterations are required (i.e., the larger the distance to the anchor is).

Depending on the precision of the A, this error can be significant. With some

approaches for measuring A in practice (e.g., measuring Euclidean distance based

on received radio signal strength), the error can be as high as 50% of the true

distance in realistic settings [88].
One particular problem with using a small number of anchors is that collocated

nodes may end up with large relative errors due to using different chains of reference

nodes as depicted in Figure 3.6. This can be problematic, since collocated sensor

nodes often cooperate in observing a nearby physical event and thus may need

a very small relative error. For example, estimates of the distance between the

collocated nodes may include significant errors if the nodes use different paths.

Local refinement procedures as described in [88] can somewhat improve the local

consistency.

To achieve a reasonable precision, typically a large number of anchors is re¬

quired, such that the maximum distance of any client node from a sufficient number

of anchors is small. In [88], between 5% and 10% of all nodes, and in [89], between

10% and 20% of all nodes are anchors. An out-of-band mechanism is required to

provide the anchors with precise location estimates. Such an out-of-band mecha¬

nism may present a serious drawback, since it typically implies additional hardware

infrastructure, and special hardware must be attached to the sensor nodes. One

typical example for such an out-of-band mechanism is GPS with its satellite in¬

frastructure and resulting constraints, where anchor nodes must be equipped with

expensive and energy-intensive GPS receivers.

In order to ensure that each node in the network has a sufficient number of

neighbors which can act as references, the network must have a certain minimum

density. This also implies that nodes at the edge of the network (with a lower
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Figure 3.7: Localization error depends on the constellation of reference nodes.

number of neighbors) typically experience a reduced precision. Network density

is particularly important if the collected constraints are loose, since then many

constraints arc needed to achieve precise location estimates. In [88], for example,

each node must have an average of 7 to 12 neighbors on average in order to achieve

a reasonable precision.

The arrangement of the anchors is also of importance for the achieved precision

of localization in spacetime. Obviously, anchors should be evenly distributed across

the sensor network in order to ensure that any node has a sufficient number of an¬

chors in its vicinity. However, also the relative arrangement of anchors with respect

to each other has an influence on the localization accuracy. For example, collinear

anchors (i.e., anchor nodes that fall on a line in 3D space) and also approximately

collinear anchors result in significantly reduced precision for localization in space.

This is illustrated for localization in 2D in Figure 3.7. In part (a), the error e2 in

distance measurement results in a small error in the estimated location (dotted cir¬

cle) w.r.t. the actual location of the node (solid circle). In part (b), where anchor

nodes arc almost collinear (i.e., fall on a point in 2D), the same error e2 results in

a much larger error in the estimated location.

3.4.2 Energy and Other Resources

As noted in Section 3.2.5, it is quite common that applications do only require a

very limited scope and lifetime of localization, where actual scope and lifetime re¬

quirements depend on the occurrence of events in the physical environment. Hence,

a significant amount of resources and energy could be saved if localization is only

performed where and when needed and with the required precision.

However, distributed algorithms for localization in spacetime are often not well

suited for on-demand localization. This is due to two main reasons. Firstly, lo¬

calization of a single node typically requires the cooperation of many other nodes

to act as references for obtaining constraints. For on-demand localization, (re¬

cursively) providing a sufficient number of reference nodes on-demand would be

needed. However, managing this process is a complex task. For example, as noted

in the previous section, the number and relative arrangement of the anchors must be

considered by such mechanisms, as this is crucial for the achieved precision. More-
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over, such selective localization may induce significant management overheads.

Secondly, many algorithms require a significant amount of convergence time for

achieving the requested precision. For example, [60] reports a convergence time

of 10 minutes in a network of only few tens of nodes. Hence, if a node requests

localization, a significant amount of time will elapse before a location estimate with

sufficient precision can be provided.

3.4.3 Network Dynamics

In Section 2.6.2 wc discussed various effects of network dynamics found in sensor

networks. These effects may have a significant impact on the performance and

applicability of localization algorithms.
An important implicit assumption of many localization algorithms is that before

the location of a node can be estimated, the node must obtain constraints involving

a sufficient number of reference nodes. These references in turn must also be able

to obtain constraints from a sufficient number of other reference nodes, and so

on. Overall, in order to locate a node, there must be "constraint paths" from a

client node to a sufficient number of anchors. This typically means that a sufficient

portion of the network must be connected before localization can be performed.

However, a number of application projects (e.g., [48]) explore settings, where

sensor nodes are mobile and network connectivity is sporadic. In such settings,

there may not be a network connection between nodes that require localization

in spacetime with respect to a common coordinate system. Algorithms with the

above implicit connectivity assumption cannot be used for such applications. We

will address this problem in Chapter 4.

As noted in the previous section, many algorithms take a significant amount of

convergence time before delivering the requested precision. It is typically assumed

that the network remains stable during the execution of the algorithm. However,

node mobility and other effects of network dynamics may invalidate this assump¬

tion. This may lead to significantly increased convergence times (see, e.g., [98]),

or may also prevent the algorithm from converging at all. In the latter case, the

effective precision may reduce significantly.
Some algorithms construct an explicit overlay topology as noted in Section

3.3.4. Network dynamics may break these topologies or make them inefficient.

Maintaining these topologies under a high degree of network dynamics may become

an unacceptable resource overhead.

3.4.4 Configuration

Localization algorithms may require a number of configuration parameters whose

values differ from node to node. In order to allow unattended operation, configu¬

ration must be performed with little or no support from human operators.

Typical examples for configuration parameters are the set of reference nodes to

use, network link calibration parameters (e.g., minimum delay of a wireless link),
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and sensor calibration parameters (e.g., for distance measurements). While some

of these parameters can be automatically configured and adapted, this is not so

easy for other parameters. For example, calibration may be a particularly tricky

issue in sensor networks, because typical low-cost sensors used on sensor nodes are

very sensitive to environmental parameters such as temperature and humidity. If

these sensors are exposed to a harsh and dynamic physical environment, the out¬

put of the sensors includes significant errors. In [108], for example, the authors

observed an average error of approx. 75% for distance measurements with uncali-

brated sensors based on time of flight of an ultrasound signal. Additionally, sensor

orientation, wear, and dirt lead to systematic but dynamically changing errors.

Hence, calibration parameters often cannot be statically configured, but must be

dynamically updated to reflect the changing setup.

3.5 Summary

This chapter discussed issues related to time and space in wireless sensor networks.

We presented a common framework that supports a unified view on space and

time. In particular, we presented applications of space and time and classified

these into three broader categories: applications related to interfacing a sensor

network to an external observer, applications related to interfacing a sensor net¬

work to the observed real-world, and applications related to coordination among

sensor nodes. We also discussed various requirements and general approaches that

apply both to time synchronization and localization: internal vs. external localiza¬

tion/synchronization, local vs. global scales, the use of point estimates vs. bounds

to represent points in time/space, the need for synchronized points vs. distances,

scope and lifetime of synchronization/localization, precision, and other QoS re¬

quirements. Then we considered distributed algorithms for synchronization and

localization and pointed out five common structural elements of many algorithms:

bootstrapping, obtaining constraints, combining constraints, selecting constraints,

and maintaining localization/synchronization over time. Wc then showed that

these algorithms are affected by a number of limitations and trade-offs in four

broader categories: with respect to anchor infrastructures, energy and resource

consumption, network dynamics, and with respect to configuration.



Chapter 4

Time Synchronization

The significance of physical time for sensor networks has been reflected by the

development of a number of time synchronization algorithms in the recent past.

However, most of these approaches have been designed for "traditional" sensor

networks, covering only a small region of the design space discussed in Section 2.2.

We will identify an important region in the design space that is not sufficiently

supported by existing approaches. In order to fill this gap, we present and evaluate

an algorithm called "Time-Stamp Synchronization".
We begin our discussion in Section 4.1 by studying fundamental system models

and by presenting concrete algorithmic techniques for synchronization. The discus¬

sion will be structured according to the common framework we developed in the

previous chapter. Referring to these techniques, we present existing algorithms for

time synchronization in Section 4.2. Our algorithm will be motivated and presented

in Sections 4.3 and 4.4.

4.1 Background

This section reviews models and concepts for time synchronization. The discussion

is structured according to Section 3.3.

4.1.1 Clock and Communication Models

In the following two subsections we discuss models of communication and of hard¬

ware clocks. Communication is fundamental for measuring temporal relationships

among nodes. Hardware clocks arc an important tool for maintaining synchroniza¬

tion over time.

Clock Models

Most computer systems in use today are based on clocked circuits and hence con¬

tain so-called digital clocks. Such hardware clocks are a valuable tool for time

66
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synchronization, since they can be used to maintain synchronization over time as

discussed in Section 3.3.5.

A typical hardware clock consists of a quartz-stabilized oscillator and a counter

that is incremented by one every oscillation period (e.g., upon detection of a falling

or rising edge). If the periodic time T of the oscillator is known, the counter h can

be used to obtain approximate measurements of real-time intervals in multiples of

T.

More formally, the clock counter displays value h(t) at real time t and is in¬

cremented by one at a frequency of /. The rate of the counter is defined as

f(t) — dh(t)/dt. An ideal digital clock would have a rate of 1 at all times. How¬

ever, the periodic time of the oscillator and hence the clock rate depend on various

parameters such as age of the quartz, supply voltage, environmental temperature

and humidity. This so-called clock drift is formally defined as the deviation of the

rate from 1 or

P(t) = /(I) - 1 (4-1)

Since sensor nodes are typically operated under a well-defined ranges of the above

parameters, it is reasonable to assume a maximum possible drift pmax, such that

|p(t)|<Pmax (4.2)

for all t. Typical values for pmex arc lppm to lOOppm, where lppm = 10~6.

Some researchers make additional assumptions about the clock rate such as

bounded drift variation or constant clock rate. The latter may not be a reasonable

model for sensor networks that are exposed to significant changes of environmental

parameters.

Communication Models

Obtaining temporal constraints (cf. Section 3.3.2) is typically implemented by

communication among sensor nodes. There are three major characteristics of com¬

munication that affect time synchronization.

Firstly, a communication network has the multicast/broadcast capability if a

single message can be received by multiple/all nodes within the communication

range of the sender. Since commonly used sensor nodes use radio communica¬

tion, message broadcasts are typically supported. Broadcasts can, for example,

be exploited to synchronize an arbitrary number of nodes with a fixed number of

messages.

Secondly, a communication link is said to be symmetrical if it can be used in

both directions. A link is asymmetrical if it can be used in one direction only. For

example, some algorithms rely on the ability to measure round-trip-delays, which

requires symmetrical links (cf. Section 2.6.2).

Thirdly, the latency or delay characteristics of a communication link are of

utmost importance for time synchronization. Known constant delays can be easily

compensated by including a respective constant offsets in time synchronization
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algorithms. However, the latency of a communication link typically varies over

time (cf. Section 2.6.2). These variable delays can be attributed to four major

sources:

• Send time, lasting from when the application issues a "send" command to the

operating system, until when a raw network message has been constructed

that could be delivered to the communication medium. Variable delays result

from operating system context switches, network protocol processing, and

from hardware interrupts.

• Medium access time. The communication medium is typically shared by

many network nodes, such that immediate access may not be possible, causing

additional variable delays. For example, random backoff mechanisms arc

often used to resolve collisions. Since the channel bandwidth is rather low for

sensor networks (few tens of kilobit per second), this delay component may

vary between zero and few tens of milliseconds.

• Propagation time. The time it takes for the radio signal to travel from the

sender to the receiver depends on the distance between the nodes. These de¬

lays are often negligible for radio communication due to the high propagation

speed and since the communication range is often rather small (few tens of

meters). Typical values are between zero and few tens of nanoseconds.

• Receive time, lasting from the arrival of the signal at the antenna of the re¬

ceiver, until when the application is notified about the arrival of the message.

There is often a variable delay in the order of the duration of one bit until

the radio hardware triggers a receive interrupt to the processor. As for the

send time, additional variable delays are caused by context switches, network

protocol processing, and interrupts.

There are two important approaches to eliminate or to limit the impact of these

variable delays. The first approach is to implement time synchronization in the

MAC layer, thus eliminating send and medium access time, as well as most of the

receive time. Another approach is to synchronize a set of nodes by sending a single

broadcast message to them, such that all nodes experience identical send time and

medium access time.

4.1.2 Obtaining Constraints

As discussed in Section 3.3.2, a client node that is to be synchronized has to obtain

temporal constraints on its local time with respect to a time scale defined by a

reference node. Such a constraint typically involves the state S of the reference

node and a temporal relationship A between the client node and the reference node.

For time synchronization, S typically consists of the local time hr of the reference

node, and A is a delay for sending a message from the reference node to the client

node or vice versa. The client node can also refer to its current local time hc that
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Figure 4.1: Obtaining temporal constraints, (a) Unidirectional, (b) round-trip, and

(c) reference broadcast.

is defined by its (unsyiichronized) hardware clock. The goal is to derive constraints

on the synchronized time h'c of the client node.

Figure 4.1 illustrates three basic approaches for obtaining such constraints. In

(a), the reference node R sends a single message to the client node C at real time

ii, which is received by the client node at i2. Note that nodes do not have access to

real time t, only hr(t\) and hc(t2) (i.e., the values of the local clock counters at the

respective real-time instants) is known to them. If the message delay d = t2 — ti

were known, a valid constraint would be h'c(t2) = hr(ti) + d. Here, hr(ti) would

represent the state information S of the reference node, and d would represent

the temporal relationship A. However, d is unknown to both reference and client

nodes. If upper and lower bounds dmin < d < dmax are known, the following would

be possible constraints:

K(t2) > hr(tl)

K(t2) > hT(ti) + dmin

K(h) < hr(ti) + d,ruix

Kfo) — K(h)

Kfo) — hr(ti) + dmin

h'M = hr(ti) + dmax

Kfo) — hr(ti) + (dmir + dmax)/2

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Note that constraints 4.3-4.5 are correct bounds, while constraints 4.6-4.9 are only

approximations. Perhaps the most commonly used constraint is 4.6, because it

does not require knowledge of bounds and is a good approximation if MAC layer

techniques are used to eliminate send, medium access, and receive times. Note that

this technique can be used to synchronize an arbitrary number of clients with one

broadcast message.
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In Figure 4.1 (b), the client node first sends a request message to the reference,

which is immediately answered with a reply (an additional delay between receipt

of the request and sending of the reply can be easily measured and compensated).

Here, some notable constraints are;

K(h) > hr(t2) (4.10)

h'c(t3) > hr(t2) + dmUi (4.11)

K(h) < K(t2) + (hc(t3) - hM) (4.12)

K(t3) = hr(t2) + (hc(t3)-hc(ti))/2 (4.13)

Note that constraints 4.10 and 4.12 give upper and lower bounds on h'c.(t3) without

knowledge of dmin and dmax. Constraint 4.13 is a good approximation if both

messages have about the same delay (i.e., t2 — ti « ia — t2). Note that the number

of required messages grows linearly with the number of clients.

In Figure 4.1 (c), an additional beacon node B sends a broadcast to both the

reference and the client node. A commonly used constraint with this approach is

h'c(t2) = hr(h) (4.14)

This is a good approximation, since both nodes will receive the message almost con¬

currently as explained in Section 4.1.1. Note that exact bounds cannot be derived

unless bounds on the message delay are known a priori. A single broadcast message

can be used to synchronize an arbitrary number of clients, but additional message

exchanges are required to transmit hT(ri) from the reference to the client(s).

4.1.3 Combining Constraints

Although a single constraint may be sufficient to derive synchronized time h'c at

the client node, multiple constraints can significantly improve the achieved pre¬

cision. Let us first consider the case where multiple constraints are available on

h'c(t0) for some real-time instant i0. This might for example be achieved by con¬

currently requesting synchronization with multiple reference nodes. As discussed

in the previous section, these constraints are either bounds or approximations.

If bounds are used, each pair of lower and upper bound can be considered

as an interval. The intervals are open at one end if only lower or upper bounds

are available. The combined interval is then computed as the intersection of all

available intervals. If some or all intervals are closed, then this intersection may be

empty. Hence, outlier rejection is often performed to eliminate intervals that would

lead to an empty intersection. In general, different subsets of intervals result in a

non-empty intersection. Various criteria can be applied to select such a subset, for

example, minimizing the number of rejected intervals, or minimizing the length of

the intersection interval.

If approximations are used, the average of all constraints can serve as the com¬

bined constraint. Outlier rejection can also be performed in order to reject false
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Figure 4.2: Prediction of synchronized time using a hardware clock, (a) Point

estimates, (b) bounds.

constraints. One criterion for this would be to remove all constraints that deviate

from the average by more than a certain threshold.

Sometimes it is possible to derive a confidence value for each constraint.

The higher the confidence value, the better the constraint. With the round-

trip technique in Figure 4.1 (c), for example, the inverse of the round-trip time

l/(hc(h) - hc(ti)) could be used as a confidence for the approximation h'c(t3) =

hr(t2) + (hc(t3) - hc(ti))/2. If such confidence values are available, a weighted av¬

erage can be computed. The confidence values can also be used to control outlier

rejection.

4.1.4 Maintaining Synchronization

In the previous section we described how constraints on h'c(tx) can be obtained for a

real-time instant tx. These constraints directly result in a estimate for the synchro¬

nized time of the client node at real time tx. In order to obtain such an estimate

for another instant ty, the procedure of obtaining and combining constraints can

be repeated as discussed in Section 3.3.5. However, there are two problems with

this approach. Firstly, as discussed in Section 3.3.5, such an approach may exhibit

significant overheads in terms of communication and computation. Secondly, the

application may request synchronized time at tx, but due to processing delays the

constraints refer to tx + e. In Figure 4.1 (a), for example, after the client applica¬

tion requests synchronized time at i0, the client node must wait until it receives a

synchronization message from the reference node in order to obtain constraints on

h'c(t2), where t2 > t0.

In order to approach these problems, the client node may use its local hardware

clock to predict h'c(ty), where no measured constraints are available for real time

ty. For this, a mapping from hc(t) to h'c(t) must be derived, given a set of measured

constraints on h'c(txJ for different real-time instants tx. as illustrated in Figure 4.2.

In (a), each circle indicates a data point (hc(tx.), h'c(tXi)) where a point estimate for

h'c(tXt) is known. In (b), lower (v) and upper bounds (A) for h'c(tXi) are known.
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Figure 4.3: Using a phase-locked loop to establish a mapping between hardware

clock and synchronized time.

Various methods can be applied to derive the desired mapping of hc(t) to h'c(t),

given the above sets of constraints. A commonly used approach is to assume a

linear relationship

h'c (t) = ahl:(t) + ß (4.15)

Note that a can be interpreted as the relative drift or rate difference between

synchronized time and the hardware clock, and ß indicates the offset between

synchronized time and the hardware clock. Once a and ß are known, the linear

function 4.15 can be used to derive the current (predicted) synchronized time using

the current hardware clock reading.

Line fitting techniques such as linear regression can be used to obtain estimates

for a and ß as illustrated by the line in Figure 4.2 (a). If bounds are used, a

steepest and a flattest line can be fitted as illustrated by the dashed in lines in

(b). The resulting values for a and ß for the two lines can then be used as lower

and upper bounds for rate and offset differences between synchronized time and

the hardware clock. Alternatively, the line defined by the average of the a and ß

values of the two lines can be used. Yet another approach is the use of convex hulls,

where two lines are fitted such that they cut off minimal half planes that contain

all upper and all lower bounds, respectively. This is illustrated by the solid lines

in Figure 4.2 (b). Note that the latter technique can also be applied if only lower

or upper bounds are available.

An important question with the above techniques is how many data points (i.e.,

constraints) should be included in the line fitting procedure. With small numbers,

few outliers can have a significant impact on the fitting result. This can be diluted

by including a larger number of data points, which, however, results in increased

memory footprint.
In practice, the relationship between synchronized time and hardware clock is

often not linear. By repeating the line fitting procedure frequently, a piecewisc

linear approximation of that nonlinear relationship can be achieved. This approx¬

imation is the better, the fewer data points are included in each fitting procedure.

Often it is mandatory to ensure that this piecewise approximation is continuous,

which may require the introduction of additional constraints on the fitted lines.

A different approach to derive a mapping of hc(t) to h'c(t) is the use of phase-

locked loops (PLL). As depicted in Figure 4.3, a PLL consists of at least three
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Figure 4.4: Commonly used overlay topologies, (a) Stars, (b) tree, (c) hierarchy,

and (d) clusters.

components. A variable frequency oscillator (VFO) is a component that produces

an estimation h"(t) for synchronized time h'c(t). The frequency dh"(t)/dt can be

controlled by an input signal of the VFO. The generation of the output signal is

usually based on the hardware clock signal hc(t), which therefore represents the

second input to the VFO. The phase detector (PD) estimates the phase offset of

its two input signals and generates an output signal that is proportional to the

observed phase difference. The first input of the PD is the sequence of estimates

h'c(tXt), the second input is the output h"(t) of the VFO. The output of the PD is

fed to a filter that integrates the observed phase differences over time and produces

an output signal to control the frequency of the VFO. Overall, a PLL can be

considered as a feedback loop that adjusts the frequency and phase of the VFO

to the discrete input signal h'c(tXt). Hence, the output h"(t) of the VFO is an

approximation of synchronized time h'c(t).
In contrast to the line fitting approach, a PLL requires only minimal state

information and docs not assume a linear relationship. However, due to the delay

introduced by the filter, it may take minutes before the VFO output converges to

a stable frequency.
Note that both of the above approaches are a combination of prediction and

dead reckoning (cf. Section 3.3.5). The hardware clock can be considered a "time

sensor" that is calibrated using the observed past behavior of synchronized time.

4.1.5 Selecting Constraints

As discussed in Section 3.3.4, there are two basic approaches to control the selection

of reference nodes by a client node: structured and unstructured approaches. With

structured approaches, an overlay topology is constructed and maintained, which

can be interpreted as a subgraph of the network. A client node then only consid¬

ers neighbors in this overlay topology as potential references. With unstructured

approaches, a client node may consider any of its neighbors as references.

As depicted in Figure 4.4, commonly used overlay topologies are stars, trees,

hierarchies, and clusters. With stars, a number of anchor nodes (black) are dis¬

tributed across the network, such that each client node (white) has one or more

anchors in its one-hop neighborhood. The anchors arc synchronized with each
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other by means of an out-of-band mechanism. With trees, a single anchor node

forms the root of a spanning tree. The nodes in the tree synchronize top-down with

their parents, such that each node has exactly one reference node. Hierarchies are

directed acyclic graphs with one or more anchors at the top. Nodes synchronize

top-down with their parents. With clustering, nodes are grouped into clusters, such

that adjacent clusters share common gateway nodes (gray). The nodes in a clus¬

ter are synchronized in some way with each other. Gateway nodes independently

participate in the synchronization process of each adjacent cluster, such that they

can translate between the time scales of the clusters they participate in.

4.2 Related Work

This section presents and discusses existing approaches for time synchronization.

We first discuss related and influential approaches from other domains, pointing out

their shortcomings in the context of sensor networks. Our main focus is, however,

on algorithms which have been specifically developed for sensor networks. These

arc based on the models and concepts presented in the previous section.

4.2.1 Logical Time

Logical time [54, 64] provides mechanisms to time-stamp events (e.g., receipt or

sending of a message). For example, C(ei) is the logical time stamp of event eY. If

a second event e2 is causally dependent on e\ (i.e., ei —» e2), then C(ei) < C(e2)

will hold with respect to some ordering relation "<" on time stamps. Two events

are causally dependent if they happened in the same process or if there is a message

path connecting ei and e2.

In sensor networks, where sensor events are triggered by real-world phenomena,

sensor events arc only causally related if they have been generated by the same

sensor node. Hence, temporal reasoning on events originating from different nodes

cannot be supported by logical time. Moreover, it is often necessary to measure the

amount of real-time elapsed between two sensor events, which cannot be achieved

with logical time. Therefore, physical time must be used to relate events in the

physical world.

4.2.2 Offline Time Synchronization

Time synchronization algorithms typically perform synchronization during the ex¬

ecution of a distributed application. Offline time synchronization performs syn¬

chronization only after a distributed application has finished execution. For this,

each node logs events (e.g., message sent, message received) during the execution

of the application. Each logged event is tagged with the time of occurrence using

the unsynchronized hardware clock of the node. This results in an event log for

each node. These logs are than provided as input to an offline time synchroniza-
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tion algorithm. For each pair of nodes, the algorithm then computes a coordinate

transformation between the local timescalcs of the nodes.

Such event logs are collected over extended periods of time (e.g., hours). Exist¬

ing algorithms [5, 31] typically assume that the rate difference between the hard¬

ware clocks and the message delays are constant during the logging period.

In the context of sensor networks, offline approaches are of limited applicability,

since synchronized time is often required during the execution of an application.

Secondly, both message delays and clock rates may be subject to significant varia¬

tion in sensor networks (cf. Section 4.1.1).

4.2.3 Network Time Protocol (NTP)

NTP [68] has been designed for large-scale networks with a rather static topology

(such as the Internet). Nodes arc externally synchronized to a global reference

time that is injected into the network at many places via a set of master nodes,

so-called "stratum 1" servers. These master nodes are synchronized out of band,

for example via GPS. Nodes participating in NTP form a hierarchy: leaf nodes are

called clients, inner nodes are called stratum L servers, where L is the level of the

node in the hierarchy. The parents of each node must be specified in configuration

files at each node. A node in the hierarchy uses round-trip measurements to obtain

bounds on synchronized time with respect to its parents. Outliers are removed from

the resulting set of intervals. From the intersection of the remaining intervals, a

point estimate of synchronized time is computed and used as input for a PLL that

eventually outputs synchronized time.

While NTP has been successfully applied in the Internet, it fails to meet many

of the technical challenges discussed in Section 2.6. Many of these limitations are

closely related to the issues discussed in Section 3.4.

Resource and energy constraints. Resource constraints may preclude the use

of GPS or other technologies for out-of-band synchronization of NTP master nodes.

NTP is also not optimized for energy efficiency, simply because this is not an issue

in traditional distributed systems. Energy overhead in NTP results from several

sources. Firstly, the service provided by NTP typically cannot be dynamically

adapted to the varying needs of an application. Hence, with NTP all nodes would

be continuously synchronized with maximum precision, even though only subsets

of nodes might occasionally need synchronized time with less-than-maximum pre¬

cision.

Secondly, NTP uses the processor and the network in ways that would lead to

significant overhead in energy expenditure in sensor networks. For example, NTP

maintains a synchronized system clock by regularly adding small increments to the

system-clock counter. This behavior precludes the processor from being switched

to a power-saving idle mode. In addition, NTP servers must be prepared to receive

synchronization requests at any point in time. However, constantly listening is an

energy-wise costly operation in sensor networks; many sensor-network protocols
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therefore switch off the radio whenever possible.

Network dynamics. The operation of NTP is largely independent of the un¬

derlying physical network topology. In the NTP overlay hierarchy, a master and a

client can be separated by many hops in the physical network, even though they

are neighbors in the overlay hierarchy. As discussed in Section 2.6.2, multi-hop

paths may be very unstable and unpredictable in a sensor network. NTP, however,

depends on the ability to accurately estimate the delay characteristics of multi-hop

network links.

NTP implicitly assumes that network nodes that shall be synchronized are

a priori connected by the network. However, this assumption may not hold in

dynamic sensor networks with mobile nodes as discussed in Section 2.6.2.

Infrastructure. In order to improve the precision and availability of synchro¬

nization in large networks, reference time is injected at many points into the net¬

work. Hence, any node in the network is likely to find a source of reference time

in a distance of only a few hops. However, such an approach requires an external

infrastructure of reference-time sources which have to be synchronized with some

out-of-band mechanism. Where this is not feasible, NTP would have to operate

with a single master node, which uses its local time as the reference time. In

large sensor networks, the average path length from a node to this single master

is long, leading to reduced precision. If collocated nodes end up using different

synchronization paths, they will be poorly synchronized (cf. Section 3.4.1).

Configuration. NTP requires the specification of one or more potential synchro¬

nization masters for each node. This is an appropriate solution for networks with

a rather static topology, where configurations remain valid for extended periods

of time. In sensor networks, however, network dynamics necessitate a frequent

adaptation of configuration parameters.

4.2.4 Time Synchronization for Sensor Networks

In this section we review time synchronization approaches that have been specif¬

ically devised for sensor networks. Note that most of these algorithms have been

proposed after our work presented in Section 4.4.

Reference-Broadcast Synchronization (RBS)

RBS [33] denotes some nodes as beacons which frequently broadcast messages

to a set of client nodes that should be synchronized as illustrated in Figure 4.1

(c) on page 69. Clients that receive such a broadcast exchange their respective

reception times to obtain mutual constraints. Each client collects multiple such

constraints and uses linear regression to compute relative time offsets and rate

differences to the other client nodes. The offset and rate difference between a pair of
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client nodes defines a coordinate transformation between the local time scales (i.e.,

coordinate systems) of these nodes. To extend this scheme to multi-hop networks,

the network is clustered such that a single beacon can synchronize all nodes in

its cluster. Gateway nodes that participate in two or more clusters independently

take part in the reference-broadcast procedure of all adjacent clusters. By knowing

offsets and rate differences to nodes in all clusters, gateway nodes can compute

coordinate transformations between all adjacent clusters. Time synchronization

across multiple hops is then provided by transforming clock readings between the

local time scales (i.e., coordinate systems) of the nodes.

In experiments it has been shown that adjacent Berkeley Motes can be synchro¬

nized with an average error of 11 ps by using 30 broadcasts. Over multiple hops,

the average error grows with 0(y/n), where n is the number of hops.

Tiny-Sync and Mini-Sync (TS/MS)

Tiny-Sync and Mini-Sync [95] are methods for pairwise synchronization of sensor

nodes. Both Tiny-Sync and Mini-Sync use multiple round-trip measurements and

a line-fitting technique to obtain the offset and rate difference of the two nodes.

For this, a constant clock rate is assumed. To obtain data points for line fitting,

multiple round-trip measurements are performed as depicted in Figure 4.1 (b) on

page 69. Each round-trip measurement is used to obtain lower and upper bounds on

h'c(t). Then, the line-fitting technique depicted in Figure 4.2 (b) on page 71 is used

to calculate two lines with minimum and maximum slope. Slope and axis intercept

of these two lines then give bounds for the relative offset and rate difference of the

two nodes. The line with average slope and intercept of the two lines is then used

as the offset and rate difference between the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori un¬

known) data points. The same results would be obtained if the remaining data

points were eliminated. Since the computational and memory overhead depends

on the number of data points, it is a good idea to remove as many data points as

possible before the line fitting. Tiny-Sync and Mini-Sync only differ in this elimi¬

nation step. Essentially, Tiny-Sync uses a heuristic to keep only two data points for

each of the two lines. However, the selected points may not be the optimal ones.

Mini-Sync uses a more complex approach to eliminate exactly those points that

do not change the solution. Hence, Tiny-Sync achieves a slightly suboptimal so¬

lution with minimal overhead, Mini-Sync gives an optimal solution with increased

overhead.

Measurements on a 802.11b network with 5000 data points resulted in an offset

of 945 fis (3230 /is) and a rate difference of 0.27 ppm (1.1 ppm) for adjacent nodes

(nodes five hops away).

Lightweight Time Synchronization (LTS)

LTS [101] is a synchronization technique that provides a specified precision with

little overhead, rather than striving for maximum precision.



CHAPTER 4. TIME SYNCHRONIZATION 78

Two algorithms are proposed: one that operates on demand for nodes that ac¬

tually need synchronization, and one that proactively synchronizes all nodes. Both

algorithms assume the existence of one or more master nodes that are synchronized

out-of-band to a reference time. The proactive algorithm proceeds by constructing

spanning trees with the masters at the root by flooding the network. In a sec¬

ond phase, nodes synchronize to their parents in the tree by means of round-trip

synchronization. The synchronization frequency is calculated from the requested

precision, from the depth of the spanning tree, and from the drift bound pmax.

The on-demand version also assumes the existence of one or more master nodes.

When a node needs synchronization, it sends a request to one of the masters using

any routing algorithm (this is not further specified). Then, along the reverse path

of the request message, nodes synchronize using round-trip measurements. The

synchronization frequency is calculated as in the proactive version described above.

In order to reduce synchronization overhead, each node may ask its neighbors

for pending synchronization requests. If there are any such requests, the node

synchronizes with the neighbor, rather than executing an independent multi-hop

synchronization with a reference node.

The overhead of the algorithms was examined in simulations with 500 nodes

uniformly placed in a 120 m x 120 m area, a target precision of 0.5 s, and a duration

of 10 hours. The centralized algorithm performed an average of 36 pairwise syn¬

chronizations per node. The distributed algorithm executed 4-5 synchronizations

on average per node if 65% of all nodes request synchronization.

Timing-Sync Protocol for Sensor Networks (TPSN)

TPSN [38] provides synchronization for a whole network. First, a node is elected

as a synchronization master (details for this are not specified), and a spanning tree

with the master at the root is constructed by flooding the network. In a second

phase, nodes synchronize to their parents in the tree using round-trip measure¬

ments. Synchronization is performed in rounds and initiated by the root broad¬

casting a synchronization-request message to its children. Each child then performs

a round-trip measurement to synchronize with the root. Nodes further down in

the tree overhear the messages of their parents and start synchronization when

their parents have synchronized. To eliminate message-delay uncertainties, time-

stamping for the round-trip measurements is done in the MAC layer. In case of

node failures and topology changes, master election and tree construction must be

repeated.
Measurements showed that two adjacent Berkeley Motes can be synchronized

with an average error of 16.9 /is, which is a worse figure than the 11 /is given for

RBS in [33]. However, the authors of [38] claim that a re-implementation of RBS

on their hardware resulted in an average error of 29.1 /is between adjacent nodes,

effectively claiming that TPSN is about twice as precise as RBS.
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TSync

TSync [26] provides two protocols for external synchronization: the Hierarchy Ref¬

erencing Time Synchronization Protocol (HRTS) for proactive synchronization of

the whole network, and the Individual-Based Time Request Protocol (ITR) for on-

demand synchronization of individual nodes. Both protocols use an independent

radio channel for synchronization messages in order to avoid inaccuracies due to

variable delays introduced by packet collisions. In addition, the existence of one or

more master nodes with access to a reference time is assumed.

With HRTS, a spanning tree with the master at the root is constructed. Then,

the master uses the reference broadcasting technique illustrated in Figure 4.1 (c)

on page 69 to synchronize its children. Each child node now repeats the procedure

for its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean synchro¬

nization error of 21.2 /is (29.5 /is) for two adjacent nodes (nodes three hops away).

For comparison, RBS was also implemented, giving an average error of 20.3 /is

(28.9 /is).

Interval-Based Synchronization (IBS)

Interval-based synchronization was first proposed in [63], where a bounded-drift

model is assumed. The network nodes perform external synchronization by main¬

taining a lower and upper bound on the current time. During communication be¬

tween two nodes, the bounds are exchanged and combined by choosing the larger

lower and the smaller upper bound. This amounts to intersecting the time intervals

defined by each pair of bounds. Between communications, each node advances its

bounds according to the elapsed real time and the known drift bounds. In [91], the

model was refined by including bounded drift variation and fault-tolerance.

In [15], the simple approach from [63] was shown to be worst-case-optimal,

where the worst case is the one where all clocks run with maximal drift. A con¬

siderable improvement in the synchronization quality can be achieved by having

each node store, maintain, communicate, and use the bounds from its last com¬

munications with other nodes. In [65], it was shown that optimal interval-based

synchronization can only be achieved by having nodes store and communicate their

entire history. Obviously, this becomes prohibitive with growing network size and

lifetime. In realistic settings, the value of a piece of history data decreases rapidly

with its age. Therefore, efficient average-casc-optimal synchronization can be ob¬

tained by using only recent data.

Flooding Time-Synchronization Protocol (FTSP)

FTSP [60] can be used to synchronize a whole network. The node with the low¬

est node ID is elected as the anchor whose local time serves as a reference for

synchronization. If this node fails, then the node with the lowest ID in the re¬

maining network is elected as the new anchor. The anchor periodically broadcasts
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a synchronization message that contains its current local time. Nodes which have

not received this message yet use the message contents to derive a constraint and

broadcast the message to its neighbors. Each node collects eight such constraints

and uses linear regression on these eight data points to estimate time offset and rate

difference to the anchor. The algorithm is repeatedly executed to maintain syn¬

chronization over time. Time-stamping is performed in the MAC layer to minimize

delay variability.
Measurements were performed in an cight-by-eight grid of Berkeley Motes,

where each Mote has a direct radio link to its eight closest neighbors. With this

setup, the network synchronized in 10 minutes to an average (maximum) synchro¬

nization error of 11.7 /is (38 /is), giving an average error of 1.7 /is per hop.

Asynchronous Diffusion (AD)

AD [56] supports the internal synchronization of a whole network. The algorithm

is very simple: each node periodically sends a broadcast message to its neighbors,

which reply with a message containing their current time. The receiver averages

the received time stamps and broadcasts the average to the neighbors, which adopt

this value as their new time. It is assumed that these operations are atomic, that

is, the averaging operations of the nodes must be properly sequenced.

Simulations with a random network of 200 static nodes showed that the syn¬

chronization error decreases exponentially with the number of rounds.

Time Diffusion Synchronization (TDP)

TDP [98] supports the synchronization of a whole network. Initially, a set of master

nodes is elected. For external synchronization, these nodes must have access to a

global time. This is not required for internal synchronization, where masters arc

initially unsynchronized.
Master nodes then broadcast a request message containing their current time,

and all receivers send back a reply message. Using these round-trip measurements,

a master node calculates and broadcasts the average message delay and standard

deviation. Receiving nodes record these data for all leaders. Then, the receivers

turn themselves into so-called "diffused leaders" and repeat the procedure. The

average delays and standard deviations are summed up along the path from the

masters. The diffusion procedure stops at a given number of hops from the masters.

All nodes have now received from one or more masters m the time hm(to) at the

initial leader, the accumulated message delay AT„, and the accumulated standard

deviation ßm. A clock estimate is computed as ^rawm(/im(to) + Am), where the

weights um are inversely proportional to the standard deviation ßm. After all nodes

have updated their clocks, new masters are elected and the procedure is repeated

until all node clocks have converged to a common time.

In a simulation with 200 static nodes with 802.11 radios and a delay of 5 sec¬

onds between consecutive synchronization rounds, the deviation of time across the

network dropped to 0.6 seconds after about 200 seconds.
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Figure 4.5: Message transport across partition boundaries, (a-b) Sensor nodes 1

and 2 collect sensor readings while disconnected from the network, (c-d) Later,

sensor nodes 1 and 2 report their findings to node 3 for data fusion. At no point

in time there is a network connection between node 1 and 2.

4.3 Problem Statement

One of the main uses of synchronized time in wireless sensor networks is time-

stamping of events to support data evaluation, aggregation, and fusion as men¬

tioned in 3.1. For this, a sensor node i generates a time stamp St(tE) that rep¬

resents the real-time instant tE when event E occurred. This time stamp may

be included in network messages along with other parameters that describe the

observed event. When a sensor node receives many such time stamps from one or

more sensor nodes (including itself), these time stamps should refer to a common

time scale, such that time stamps can be compared, ordered, etc.

One possible approach to the above problem is the use of time synchronization

among all nodes of the network. Then, time-stamping can be implemented by

setting S(tE) := h'(tE). One of the time synchronization algorithms for sensor

networks discussed in Section 4.2 could then be used to provide synchronized time.

However, we will show below that this approach cannot support a relevant class

of applications. Our goal is the development of a time-stamping approach for the

region in the design space we will characterize below.

4.3.1 Intermittent Connectivity

None of the algorithms discussed in Section 4.2 can support networks with intermit¬

tent or sparse connectivity, where messages are relayed across temporary partitions

by mobile nodes as discussed in Section 2.6.2.

Consider for example the ZebraNet application discussed in Section 2.4.1, where

nodes arc attached to wild animals, forming a network with sporadic connectivity.

Figure 4.5 depicts, from left to right, four snapshots of such a network. At real¬

time ii node 1 detects some event. At i2 node 2 detects another event. At i3 node

2 passes by the mobile base station (node 3), a communication link is established

and E2 is sent to the base station. At t± node 1 passes by the base station, a link

is established and Ei is sent to the base station.
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Now the base station wants to determine a temporal relationship among £q and

E2, for example, it might be necessary to determine whether E\ happened after

E2, or the time between the occurrence Ei and E2 might be of interest.

Note that there has not been a network connection between nodes 1 and 2

before the occurrence of the events E\ and E2, so the clocks of the two nodes

cannot be synchronized with each other in advance to provide synchronized time

for time stamping.

4.3.2 Resource Efficiency

In many applications, relevant events occur rarely. In the bird monitoring applica¬

tion described in Section 2.4.1, a relevant event could be a bird leaving or entering

its burrow. Hence, synchronized time is only needed at rare occasions, namely

where and when a relevant event occurs. A cross-layer approach (cf. Section 2.7.6)

to time synchronization that provides synchronized time on demand only where and

when needed can be expected to perform significantly better than using a general-

purpose synchronization algorithm that runs independently of the time-stamping

in the application layer.

4.3.3 Precision for Collocated Nodes

Many physical phenomena have a rather local geographical scope. Typically, only

geographically collocated nodes have to cooperate in order to monitor such a phe¬

nomenon. These collocated nodes may require very precisely synchronized time in

order to aggregate or fuse sensory data. As discussed in Section 3.4.1, the precision

of anchor-based algorithms is determined by the placement of the anchors, such

that collocated nodes may end up with an imprecise mutual synchronization. A

localized, anchor-free algorithm (cf. Section 2.7.3) can be expected to give better

precision for collocated nodes.

4.3.4 Correctness

Data fusion is often very sensitive to even small synchronization errors. Correct

ordering of events, for example, may be wrong if the synchronization error is larger

than the time between the occurrence of two events. A time synchronization al¬

gorithm that can provide guaranteed bounds on time stamps would be helpful for

such applications.

4.4 Time-Stamp Synchronization

In this section we present an algorithm called "Time-Stamp Synchronization"

(TSS), which is suitable for the time-stamping problem stated in the previous

section. This algorithm enables participating nodes to reason about sets of time
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stamps (e.g., determine temporal ordering and time spans) received from arbitrary

nodes even in the presence of intermittent network connectivity.

We will consider message flows in ad hoc sensor networks, which can be de¬

picted by (time-independent) message flow graphs, where the nodes of the graph

correspond to network nodes, each equipped with its own clock. Paths in the graph

correspond to possibly delayed message flows between the nodes (i.e., connectivity

between the nodes may be intermittent). Without loss of generality, we will only

consider linear graphs as depicted in Figure 4.7. In case a message is broadcast

to many nodes, the resulting graph can be considered as the union of many such

linear graphs.

4.4.1 Algorithm Overview

The basic idea of the algorithm is not to synchronize the local clocks of the nodes,

but instead generate time stamps using unsynchronized local clocks. When such

"local" time stamps are passed between nodes as part of network messages, they

are transformed to the local time scale of the receiving node.

Time stamps are represented as intervals. With each transformation step, the

uncertainty (i.e., length) of these intervals increases due to clock drift and delay

uncertainties (cf. Section 4.1.1). In particular, each transformation between the

time scales of sender and receiver will consist of two steps: a transformation from

sender time scale to real time, and a transformation from real time to the receiver

time scale.

Time-stamp transformation is achieved by determining the age of each time

stamp from its creation to its arrival at a sensor node. On a multi-hop path,

the age is updated at each hop. The time stamp can then be transformed to the

receiver's local timescale by subtracting the age from the time of arrival. The age

of a time stamp consists of two components: (1) the total amount of time the time

stamp resides in nodes on the path, and (2) the total amount of time needed to

send the time stamp from node to node. The first component is measured using

the local, unsynchronized clocks of the nodes on the path. The second component

is bounded by round-trip measurements.

The synchronization information can be piggybacked to existing messages in

most cases. Therefore, the overhead of the algorithm can be expected to be rather

low.

The remainder of this Section is structured as follows. In Section 4.4.2 we

discuss assumptions of TSS. In Sections 4.4.3-4.4.6 the algorithm is presented in

detail. In Section 4.4.7 implementation details of TSS are given. An evaluation of

TSS can be found in Section 4.4.8. Possible improvements of TSS are discussed in

Section 4.4.9.



CHAPTER 4. TIME SYNCHRONIZATION 84

4.4.2 Assumptions

TSS is based on a number of assumptions. Firstly, wc assume that the hardware

clocks of the sensor nodes have a bounded clock drift pmax (cf. Section 4.1.1).

However, due to heterogeneous node hardware, we support different maximum

drifts for different nodes. We will denote the maximum drift of node i with pz (or

Pmax where i is obvious) throughout the chapter.

Secondly, we assume that payload message exchanges between adjacent nodes

are acknowledged. This is typically the case due to the relatively high probability

of message loss or corruption in sensor networks. Note that this implies that links

between nodes remain established long enough to allow such a two-way message

exchange. An explicit acknowledgment is not needed if the sender can overhear

the receiver forwarding the message to the next hop, which is typically the case in

broadcast networks.

Besides the above two mandatory preconditions, our algorithm can profit from

two optional assumptions.

Firstly, the precision of TSS can be improved if messages can be time-stamped

in the MAC layer immediately before the first bit of the message is delivered to

the transmitter, and after the first bit has arrived in the receiver, both using the

unsynchronized local hardware clock. If this feature is not available, time-stamping

can be performed at the application level immediately before sending and after

receiving a message. This, however, will result in reduced precision due to the

reasons discussed in Section 4.1.1.

Secondly, the precision of TSS can be improved if a lower bound on the message

delay is known. Due to network heterogeneity, different nodes may have different

bounds. If time-stamping is performed at the application level, this bound may

additionally depend on the size of the message. We will indicate the minimum

delay for node i by D% throughout the chapter, where D% refers to the local time

scale of the receiver node i of the message.

4.4.3 Time Transformation

As we will see in the following section, transforming real-time differences Ai into

computer clock differences Ah and vice versa is at the heart of the algorithm.

These transformations cannot be done exactly due to clock drift and message delay

uncertainties as discussed in Section 4.1.1. Hence, the transformation of a time

difference results in lower and upper bounds, or - in other words in a slightly

enlarged time difference.

From Equations 4.1 and 4.2 it follows immediately that

Ah
1 - Pmax < -^

< 1 + Pmax (4.16)

which can be rearranged to give

Ai(l - pmax) < Ah <Ai(l + prnax) (4.17)
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Figure 4.6: Message delay estimation using two consecutive acknowldedged message

exchanges.

AV(l + pmax)< Ai <AV(1-P« (4.18)

which means that we can approximate the computer clock difference Ah that cor¬

responds to the real-time difference Ai by the interval [(1 —pniax)Ai, (l + pmax)Ai].

Accordingly, the real-time difference Ai that corresponds to the computer clock

difference Ah can be approximated by the interval [A/i/(l + pmax), Ah/(I — pmax)]-
In order to transform a time difference AC from the local time of one node

(with maximum drift pi) to the local time of a different node (with maximum drift

p2), Ah is first estimated by the real-time interval [jt1- , -rz^-], which in turn is

estimated by the clock interval [AhjT^1 , Ahj^1] with respect to the local time

scale of node 2.

4.4.4 Message Delay Estimation

As pointed out earlier, the TSS algorithm determines bounds for the lifetime of a

time stamp, which also includes the message delay d for sending the time stamp to

a neighbor node. In Section 4.4.2 we assumed that such a message is acknowledged

by the receiver. Thus, it is possible to measure the round-trip time rtt (time

passed from sending the message in the sender to arrival of the acknowledgment

in the sender) using the local clock of the sender. The message delay can then

be estimated by the lower bound Ds and the upper bound rtt. Now the sender

knows an estimation for the message delay, but in our algorithm the receiver has to

know this approximation in order to transform the received time stamp. Passing

the estimation from the sender to the receiver would take another pair of messages

(one for passing the estimation from sender to receiver and an ack back to the

sender), which would result in 100% message overhead.

Consider Figure 4.6, which shows two consecutive acknowledged message ex¬

changes between a pair of sender and receiver. Wc want to estimate the message

delay d for message M2. Using the technique pointed out above the estimation

would be

Ds < d < (h»(h) - hs(t2)) - (hr(t&) - hrfa))
1 ~ Ps

1+Pr
A, (4.19)
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Figure 4.7: Message flow graph.

in terms of the sender's clock, where ps and pr are the p values, and hs and hr are

the hardware clocks of sender and receiver, respectively. A different estimation is

Dr<d< (hr(t5) - hr(t4)) - (hs(t2) - hs(ti))\^- - DT (4.20)
J- ~r P*

in terms of the receiver's clock that makes use of two consecutive message transmis¬

sions. The advantage of this estimation is that the receiver knows an estimation for

d without additional message exchanges since hs(t2) — hs(ti) can be piggybacked

on M2. We will call hr(t5) — hr(t±) the round trip time rtt of the message, which

is measured using the receiver's clock, and hs(t2) — h3(ti) will be referred to as the

idle time idle of the message, which is measured using the sender's clock.

However, the second estimation also has two disadvantages. The individual

values for rtt and idle can become quite large if the nodes communicate rarely,

which leads to bad estimations due to the clock drift of the local clocks. This

problem can be relaxed by sending a dummy message if the resulting idle value for

the message would be too large.

The second disadvantage stems from the fact that i4,ii and h,t2 are associ¬

ated with different message transmissions, forcing both sender and receiver to keep

track of state information between message transmissions (ti and i4 in figure 4.6,

respectively). This is problematic if a node sends messages to or receives messages

from many different nodes over time. However, this problem can be mitigated by

deleting state information at the cost of a later dummy message exchange to re¬

initialize the clock values, for example in a least-recently-used manner. Thus, one

can trade off memory consumption for message overhead.

4.4.5 Time-Stamp Calculation

TSS consists of two major parts. First, a representation of time stamps and rules

for transforming them when they are passed between nodes inside messages, and

second, rules for comparing time stamps.

A time stamp for event E that occurred at real time tE is represented in node

i by the interval [h[,hl]. The end points of the interval refer to the time scale

defined by the hardware clock ht of node i. If the event occurred at time hi(tE),
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then we require that h[ < hi(tE) <h\. In other words, Sj(E) is an estimation of

the unknown value /^(iß).
Consider Figure 4.7, where node 1 passes a time stamp on to nodes 2, 3,..., AT

along the depicted chain. Each node i has 3 attributes, the local time r* when

the message containing the time-stamp interval is received, the local time S; when

the message containing the time-stamp interval is sent again, and the maximum

clock drift p,. All values refer to the time scale defined by the local hardware clock.

Each edge in the graph has three attributes: the round trip time rtt% (referring

to receiver's time scale), the idle time idle% elapsed after sending the last message

over this edge (referring to sender's time scale), and the minimum delay A for

sending the message (referring to receiver's time scale). Separate instances of the

attributes rttx and idlei have to be maintained for each message, for simplicity we

only consider a single multi-hop message transmission from node 1 to node N.

The generator of a time-stamped message is a special case, because it does not

receive a message. Instead, rx is set to the occurrence time hi(tE) of the event E

(cf. Figure 4.7). Consider the time-stamp interval as it is being passed along the

chain from node 1 to node N.

Node 1

[n , n] - [hi(tE), fnfe)] (4.21)

Node 2

r2 - (si - ri)ii^ - (rtt! - D1 - idlei1 P2

I-Pi

Tï - (si -ri

1 + Pi
'

1 - P2

1+Pl
Di (4.22)

Node 3

-((rtt,-Di)1-^*-idle,
1 - P2

^3
- (Si ~ 7"i)

r3 - \s

1

,
1 + P3 , ,

1 + P3
l-r-i)- --(s2-r2)—-

1 - Pi 1 - P2

1+Pl

1-P3

1+Pl

P*)-(rtt2-D2-idle2l_ P^

l + p2"

{s2-r2 + A)
1 - pz

1 +P2
A (4.23)

Node N

JV-l

/, \ V^ si * ri + ftti~l — A-l /

rN
-

(1 + pN) 2^ ,
(rÜAT-i - DN_h

i=i

I- pi
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N-l

/V-l

rN - (1 - Pn) ]T
t=i

+(i-^E^
Sj ~Tj + A-l

1+Pi
DN-l (4.24)

The interval for node 1 consists of the single point hi (tE). For node 2 the amount of

time Si — ri (during which the message was stored in node 1 after being generated

and before being sent) is subtracted from the message arrival time r2. The difference

rtti — idlei between round trip and idle time is used as an upper bound for the

message delay, the minimum delay A is used as a lower bound. Transforming time

intervals between the different time scales as described in Section 4.4.3 results in

the interval shown for node 2. Continuing this way with subtracting total node

storage time from message arrival time and using the sum of round trip minus idle

times as the upper bound for message delay, and assuming rtto = 0 and D0 = 0,

one will end up with the interval shown for node AT.

4.4.6 Interval Arithmetic

Using the algorithm described in the previous sections, we are now able to decide

temporal predicates over time stamps using a variant of the interval arithmetic

described in [2]. To decide whether [/ii,/i'ï] happened before [hl2,h2], for example,

the following rule can be used:

{h\,h[}<{hl2,hr2} =
YES

NO

MAYBE

h\ < h\
K < h[
otherwise

(4.25)

To determine whether [/4,/^] and [h2,h2]
interval T, the following rule is used:

happened within a certain real-time

\[h\,h\\-[hl2,hl]\<T =

YES

NO

MAYBE

max(/&2, h\) - min(/ig, h[) <T(1 — p„

max(/i'2, h() - mm(hr2, h() > T(\ + pn

otherwise

(4.26)

Note that the real-time interval T has to be transformed to local time first by

multiplying with 1 ± pmax, since all time-stamp intervals refer to the time scale

defined by the local hardware clock.

The real-time "distance" between two time-stamp intervals can be estimated

using the following formula:

\[h[, h[] - [hl2, hr2}\ < (max(/^, h\) - min(/4 h[))/(l - pmax) (4.27)
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Again, the calculated local time difference has to be transformed to real-time by

dividing by 1 - pmax.

When comparing points in time (for example a locally generated h(tx)) with

time-stamp intervals received from other nodes, h(tx) can be treated as a time-

stamp interval [h(tx), h(tx)] and used with the above equations.

4.4.7 Implementation

The basic idea for implementing the algorithm is to incrementally calculate the

three sums in the Formula 4.24 along the message path. The implementation

assumes an asynchronous, reliable communication mechanism but can easily be

extended to unreliable communication mechanisms (e.g., by means of timeouts

and retransmissions).
A time stamp can be represented in the following way using C:

struct TimeStamp {

Time begin, end, received;

Time si, s2, s3;

>;

where begin and end are the left and right ends of the time-stamp interval,

received is the time of arrival, and where si, s2, s3 are the three sums in For¬

mula 4.24 from left to right, which are incrementally calculated as the message

is forwarded from node to node. Note that begin, end, and received are local

variables that don't need to be transmitted between nodes. One or more instances

of TimeStamp can be contained in an application message.

Time is a representation for points in time and time differences. Computer

clocks are discrete, so an integer type would be appropriate. But care has to be

taken because of time transformations, which may result in fractional values, so

either a floating-point type must be used or the results have to be rounded such

that the integer interval always contains the floating-point interval. Here we assume

floating point values.

The generator of a time-stamped message performs the following actions:

1 Generator:

2 TimeStamp S;

3 S.begin = S.end = S.received = NOW;

4 S.sl = S.s2 = s3 = 0;

where NOW refers to the current value of the local clock. As explained in the previous

section, the interval is initialized to current time in the node. All other fields are

set to zero.

A time-stamped message is sent using the following actions:
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1 Sender:

2 TimeStamp S; /* locally generated or received */

3 Time idleend = NOW;

4

5 IF (idlebegin[receiver] == 0 OR

6 idleend - idlebegin[receiver] > max.idle)

7 THEN

8 send <sync> to receiver;

9 receive <ack> from receiver;

10 idleend = NOW;

11 idlebegin[receiver] = idleend;

12 ENDIF

13

14 send <xmit(S, idleend - S.received,

15 idleend - idlebegin[receiver] ,

16 local_rho)> to receiver;

17 receive <ack(resend)> from receiver;

18 idlebegin[receiver] = NOW;

19

20 IF (resend == TRUE) THEN

21 idleend = NOW;

22 send <xmit(S, idleend - S.received,

23 idleend - idlebegin[receiver] ,

24 local_rho)> to receiver;

25 receive <ack> from receiver;

26 idlebegin[receiver] = NOW;

27 ENDIF

The sender first checks if the time when the last message was sent to the receiver

(line 5) is unknown or if the idle time is too large (line 6). If suitable values for

rtt and idle arc not available, a sync message is sent before waiting for an ack to

initialize idlebegin [receiver]. Then the sender transmits the TimeStamp data

structure to the destination node along with the amount of time the message was

stored in the current node (line 22) and the idle time (line 23) according to the

local time scale with maximum clock drift local.rho. Then an acknowledgment

containing a parameter resend is awaited. If resend is true, then the message is

sent again in order to enable the receiver to measure round-trip time.

The receiver of a message performs the following actions:

1 Receiver:

2 IF (receive <sync> from sender) THEN

3 rttbegin[sender] = NOW;

4 send <ack> to sender;

5 ELSEIF (receive <xmit(S, lifetime, idletime,

6 rho)> from sender)
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7 THEN

8 Time rttend = NOW;

9 IF (rttbegin[sender] == 0) THEN

10 rttbegin[sender] = NOW;

11 send <ack(TRUE)> to sender;

12 ELSE

13 S.sl += lifetime/(1 - rho);

14 S.s2 += idletime/(l + rho);

15 S.s3 += lifetime/(1 + rho);

16 S.begin = rttend

17 - S.sl*(l + local_rho)

18 + S.s2*(l - local.rho)

19 - (rttend - rttbegin[sender]) + D;

20 S.end = rttend

21 - S.s3*(l - local.rho)

22 - D;

23 M.sl += (rttend - rttbegin[sender] -

24 * (1 - local.rho);

25 M.s3 += D*(l + local.rho);

26 rttbegin[sender] = NOW;

27 send <ack(FALSE)> to sender;

28 ENDIF

29 ENDIF

The receiver waits for a sync or xmit message from a sender. If it receives a sync,

it just initializes rttbegin [sender] and returns an ack to the sender.

If an xmit message is received, then the receiver first checks if the time of

arrival of a previous message from this sender is known (line 9). If not so, then

rttbegin [sender] is initialized and an ack(TRUE) message is returned to the

sender, asking for a retransmission.

If rttbegin [sender] is known in the sender, then the fields of the received

time stamp S are updated according to Equation 4.24 and S.begin and S.end

arc calculated. Note that the received value for S.sl (S.s3) docs not yet include

the last rtt and D values, so it has to be explicitly subtracted in lines 19 and 22

without time transformation, since rtt and D have been measured with respect to

receiver's time scale. Only after S.begin and S.end have been calculated, M.sl

(M.s3) are updated accordingly. Finally, an ack is sent back to the sender.

The checks for idlebegin [receiver] and rttbegin [sender] in sender and

receiver, respectively, enable both the sender and receiver to independently drop

entries from the sets idlebegin and rttbegin in order to limit the memory foot¬

print as described in Section 4.4.4.
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4.4.8 Evaluation

In this section we examine the compliance of TSS with the region in the design

space indicated in Section 4.3.

Intermittent Connectivity

If a message can be forwarded from a source node to a destination node (possibly

across temporary partition boundaries), synchronization can be performed as well,

provided that connections between adjacent nodes remain established long enough

for at most two round-trip message exchanges.

Resource Efficiency

In most cases, TSS can piggyback on existing network traffic, resulting in a slight

increase of the size of messages that carry a time stamp. With the implementation

in Section 4.4.7, every message would contain the partial sums si, s2, s3, lifetime,

idletime, and local.rho. Assuming sizeof (Time) = 4 and sizeof (local_rho)

= 1, the size of a message would increase by 17 bytes compared to a simple time-

stamp of type Time. Note that local_rho could be cached by the receiver. It

might also be worthwhile to use a variable bit-length encoding for the various Time

values, since lifetime and idletime (but also the partial sums) tend to be small

in unpartitioned networks.

Additional messages are only needed when a pair of nodes first communicates or

when two nodes haven't communicated for a long time. Hence, additional overhead

is only introduced when a pair of nodes has been "idle" before. Under "heavy load",

when a pair of nodes communicates frequently, no additional messages arc required.

Correctness

Since time-stamps are represented as intervals in TSS, temporal predicates can

always be decided correctly or not at all according to the rules in Section 4.4.6.

Precision

In order to get an impression of the precision of the algorithm TSS we performed

some measurements on a cluster of 800 MHz Pentium III Linux PCs connected by

100 Mbit/s Ethernet using TCP and assuming p = 10~6. This has to be considered

as a best case scenario, since sensor networks typically use a networking technology

providing a bandwidth well below 1 Mbit/s and embedded processors with no more

than 10 MIPS. However, since the algorithm is neither especially CPU intensive

nor network-bandwidth intensive, the measurements should give a good impression

of the algorithm's possible precision.

Synchronization inaccuracies show up as time-stamp intervals of increasing

length and stem from two different sources. Firstly, due to the clock drift, in¬

terval length increases with the age of a time stamp. Secondly, the interval length
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Figure 4.8: Precision depending on age.

increases with the number of hops a time stamp has been passed along, due to the

estimation of messages delays.

We performed two measurements, the first of which examines time-stamp in¬

terval length as a function of time-stamp age. Since the error resulting from age is

additive over the nodes, we generate a zeio-length time stamp interval in node 1,

store it for X seconds before forwarding it to node 2, which prints out the length

of the received time-stamp interval. We repeat this experiment 1000 times and

calculate averages. Figure 4.8 shows the results1, indicating a linear increase of

imprecision with age.

The second measurement examines time-stamp interval length as a function of

the number of hops a time stamp has been passed along. We generate a zero-length

time-stamp interval in node 1 and pass it on to node 2, 3, ..., 7, which all print out

the length of the received time-stamp interval. We repeat this experiment 1000

times and calculate averages. Figure 4.9 shows the results2, indicating a linear

increase of inaccuracy with the number of hops.

Since the two types of inaccuracies are additive, one can interpret the measure¬

ments as follows: Passing a time stamp along no more than 5 hops with an age

of no more than 500 seconds, one can expect an inaccuracy of no more than 3ms

in the examined setting. That is, exact results (as opposed to MAYBE) can be

obtained as long as compared time stamps represent points in time which are more

^he exact interval lengths are 195, 585, 982, 1378, 1775, 2170, 2609, 2992, 3369, 3764^s.

2The exact interval lengths are 0, 201, 400, 562, 752, 926, 1113, 1273/vs.
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than 6ms apart, since then the time-stamp intervals (3ms each) cannot overlap.

With less than 6ms difference, an exact answer may still be obtained, but MAYBE

results are likely.

These measurements indicate that "collocated events" (both in time and space)

can be synchronized with good precision. The larger the distance between the

events in time and space, the lower is the precision.

4.4.9 Potential Improvements

There arc several potential approaches to improve the accuracy of the algorithm

(i.e., reduce the probability of MAYBE results), which might be worth further

investigation. In general, these techniques tend to improve precision by introducing

additional overheads.

One idea to avoid MAYBE results when comparing time stamps originating

from the same node is to keep a history of time stamps instead of only one time

stamp. Instead of updating a time stamp upon receipt, the receiving node appends

the updated time stamp together with a unique node identifier i and pi to the

time stamp history or reuses a time stamp from the history if there is an entry

for node i in the history already. If comparing time stamps results in MAYBE,

then the histories of the compared stamps are searched for common nodes and the

comparison is repeated using the time stamps of these common nodes, transforming

time values if necessary, and using the according p values from the histories. This

is likely to give a "better" (i.e., non-MAYBE) answer, since imprecision increases
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with age and hop count of the time stamps. For the same reason the accuracy of

calculated real-time spans can be improved by using "younger" time stamps from

the history in the same way whenever possible.

A different and more general approach is to replace MAYBE results with a

probability depending on the relative arrangement of the compared time-stamp

intervals. The algorithm would then output UX < Y with probability p" instead

of "Xmaybe < V". To implement this, we have to derive probability distributions

for the exact time instants over the time-stamp intervals.

Consider for example the two overlapping time-stamp intervals Si and 5*2 with

h[ < hl2 < h\ < h2 shown in Figure 4.10, for which the algorithm would output

"Simaybe < S2\ If we knew probability distributions Pi(h) and P2(h), such that

Pi(hi) is the probability that the exact point in time represented by Si is hi, wc

could calculate the probability p for S\ < S2 by "iterating" over the possible hi

values and summing up the probabilities for hi < h2:

1'^ Pi(h) n2p2(h2)dh2\ dhi (4.28)

For uniform distributions p4(/i)3 this evaluates to

hl2 - h'i h2(h[ - h<2) - (hf - hl22)/2
h\-h\+ (h[-h\m-hl2)

{ ]

Assuming, for example, h[ = 0, h\ = h\ — 2, and hl2 = 1, we can calculate

the probability for Si < S2 as 0.75. Assuming a uniform distribution, however,

usually is an oversimplification, since due to the characteristics of the algorithm4

the probability in the middle of the interval is much higher than at the ends. It

remains an open task to obtain good probability distributions. Furthermore it

has to be investigated for which cases knowing a probability instead of MAYBE is

advantageous for applications.

3Pi{h) = l/(/ij - h[) for h 6 [/i'i,/iï] and 0 otherwise; P2OO likewise.

4We use D and rtt as lower and upper bounds for the message delay. It is much more likely

that the actual message delay is about rtt/2 than D or rtt.
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4.5 Summary

This chapter is devoted to time synchronization in wireless sensor networks. We

first discussed important models with respect to hardware clocks and communica¬

tion. Following the framework developed in Chapter 3, we then presented impor¬

tant concepts used by time synchronization algorithms. Referring to these concepts,

we then presented and discussed important existing approaches to time synchro¬

nization - both in traditional distributed systems and for sensor networks. We

then identified a region in the design space that cannot be appropriately supported

by these existing algorithms. In particular, we showed that networks with inter¬

mittent connectivity are not sufficiently supported. We presented and evaluated

Time-Stamp Synchronization to support this region in the design space. A key

feature of Time-Stamp Synchronization is that rather than synchronizing clocks,

time stamps are transformed between the unsynchronized time-scales of sensor

nodes. We showed that this approach is efficient since time information can be

piggybacked on existing message exchanges. Based on a prototypical implementa¬

tion, we evaluated the precision of our approach and found that imprecision grows

linearly with the age of time stamps and with the hop-distance between nodes,

providing an accuracy in the order of milliseconds. Finally, we discussed potential

improvements in settings where precision is more important than efficiency.



Chapter 5

Sensor Node Localization

The significance of physical space for sensor networks has been reflected by the

development of a number of node localization algorithms in the recent past. How¬

ever, most of these approaches have been designed for "traditional" sensor net¬

works, covering only a small region of the design space discussed in Section 2.2.

Wc will identify an important region in the design space that is not sufficiently

supported by existing algorithms. In order to fill this gap, we present and evaluate

an approach called "Lighthouse Location System".

We begin our discussion in Section 5.1 by studying fundamental system models

and by presenting concrete algorithmic techniques for localization. The discussion

will be structured according to the common framework wc developed in Chapter 3.

Referring to these techniques, we present existing algorithms for node localization

in Section 5.2. Our algorithm will be motivated and presented in Sections 5.3 and

5.4.

5.1 Background

This section reviews models and concepts for node localization. The discussion is

structured according to Section 3.3.

5.1.1 Signal Propagation and Mobility Models

In the following two subsections we discuss models of signal propagation and of

node mobility. The propagation of signals such as radio or sound are fundamental

for measuring spatial relationships among nodes. Models of node mobility can help

maintain localization over time.

Signal Propagation Models

Many localization approaches for sensor networks assume that sensor nodes are

equipped with hardware for measuring spatial relationships among nodes such as

97
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distance or direction. For this purpose, some systems reuse existing radios orig¬

inally intended for data communication, others introduce additional sensors and

actuators to achieve a satisfactory precision. Besides radio, audio is perhaps the

most commonly used signal modality for this purpose.

Two signal propagation features commonly used for measuring spatial relation¬

ships are propagation delay and received signal strength, since both are functions of

the distance between emitter and receiver of a signal. Deriving spatial relationships

from a measured propagation delay requires a precise model of the propagation

speed of the signal. The derivation of spatial relationships from received signal

strength requires a precise model of signal attenuation.

Signal propagation speed is mainly a function of the signal modality, its fre¬

quency, and of the medium. For example, the propagation speed of radio waves

can diverge significantly from c in vacuum and air. In water (and wet materials),

for example, propagation speed is about c/1.33. The radio propagation speed is

also influenced by ionizing radiation (e.g., solar winds), where the speed reduction

depends on the frequency of the signal. With acoustic waves, the propagation

speed varies between about 60m/s (e.g., rubber) and about 6000m/s (e.g., stone).

In air, propagation speed depends on factors such as temperature, and - to a lesser

extent - humidity and pressure. For example, propagation speed in air at -20°C is

320m/s, whereas 344m/s are found for +20°C. A more precise model for speed of

sound in air is:

cair = V7^ (5-1)

where T is absolute temperature, R is the gas constant (286 rn2/s2/K), and where

7 is the heat capacity ratio (about 1.4 for typical humidity and pressure values).

The effective speed of sound also depends on movements of the medium such as

winds and convection streams.

Typical localization systems use one out of the following three approaches to

model propagation speed. Firstly, a constant speed is assumed that may be cali¬

brated under operating conditions using separate calibration equipment. Secondly,

additional sensors may be attached to nodes in order to measure parameters that

influence the propagation speed (e.g., temperature for speed of sound). Thirdly,

the propagation speed is treated as an unknown variable in addition to the sought

location. Additional constraints are required in order to solve for propagation speed

and location.

The received signal strength depends on the emitted signal strength and the

attenuation. Attenuation is a function of the signal modality, frequency, and the

medium. In general, an omni-directional source radiating into free space can be

modeled as

P = kPs/rCi (5.2)

where e — 2, Ps is the emitted power, r is the distance between sender and receiver,

and k is a constant factor. The quadratic relationship stems from the fact that

the emitted power is equally spread over the points on a sphere with radius r.
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In physical structures where signal propagation is limited to certain regions (e.g.,

corridors), smaller attenuation exponents between 1.5 and 2 may be observed.

Additional sources of attenuation are absorption of the medium, interaction

of the signal with reflective surfaces, and interaction of the signal with obstacles

between emitter and receiver. Radio waves, for example, are absorbed by ionized

gases. Sound waves are absorbed in gases due to friction between molecules that

results in heat generation. Reflective surfaces may lead to the situation that a

reflected signal interferes with the unreflected (or another reflected) signal at the

receiver. This can be observed, for example, if emitter and receiver are near the

ground or if the environment is cluttered with reflective surfaces. Radio waves often

experience a phase shift close to 180° when reflected, which often leads to destruc¬

tive interference. Hence, for near-ground radio communication the exponent e in

Equation 5.2 is close to 4. In highly cluttered environments with many reflections

interfering at the receiver, e may be as large as 6. Sound waves are less susceptible

to such interference effects, since the above mentioned phase shift is typically not

found. For near-ground communication, for example, e is still close to 2.

Additional sources of attenuation for sound in air are meteorological conditions

such as wind-velocity gradients (e.g., due to friction with the ground) and tem¬

perature gradients (e.g., due to heat disseminated by the ground). Both result

in gradients in sound velocity which lead to a refraction effect, such that sound

waves are bent upwards or downwards with respect to the ground, depending on

the relative direction of the waves to the gradient. One further source of attenua¬

tion of sound in air are random fluctuations of wind and temperature which cause

fluctuations in amplitude and phase of the signal at the receiver.

The above discussion should make it obvious that models for signal attenuation

do heavily depend on the environment where they are used in. Note that even

small changes in the locations of emitter, receiver, or reflective surfaces may cause

significant changes in received signal strength due to changed conditions for multi-

path interference. This is particularly relevant for radio waves, where multi-path

interference can have a significant impact on the attenuation exponent in Equation

5.2. Hence, large errors must be expected if the model docs not correctly represent

reality. Typical models used in localization systems are based on Equation 5.2 with

e — 4. Range measurement errors based on such models can be in the order of 40%

and above [88].
The use of signal propagation features for range measurements obviously re¬

quires that the signal can travel along the line-of-sight path between the emitter

and the receiver. If the direct line is blocked by non-transparent obstacles, the

signal may reach the receiver due to reflections. Since the effective length of such

reflected paths is longer than the line of sight, the resulting distance estimates will

be greater than the Euclidean distance.

Many of the above signal propagation properties depend on the actual frequency

of the signal. Hence, the use of wide-band signals (which contain many different

frequencies) can help mitigate or compensate errors that are due to frequency-

dependent propagation properties. Also, wide-band techniques are robust to in-
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terference with narrow-band signals emitted by other sources in range (e.g., mi¬

crowave ovens, acoustic background noise) [42, 43]. Likewise, the use of different

signal modalities (e.g., sound and radio) can help improve robustness and precision

(cf. Section 2.7.2).

Mobility Models

Mobility models are mechanism to describe possible movements and locations of

mobile entities. They can be a valuable tool for improving the precision of localiza¬

tion approaches since they provide hints on the possible locations of a sensor node.

Two very simple mobility models arc the "static model" where nodes do not move

at all and the "unconstrained mobility model" where nodes can be at any place

anytime. Between these two extremal models, a number of more realistic models

can be found.

Basically, a mobility model imposes constraints on the possible location, speed,

and acceleration of a mobile entity. These constraints can be either static or dy¬

namic. In static models, the same constraints apply always. In dynamic models,

the constraints may be a function of time or of previous system states. If, for ex¬

ample, a sensor node is attached to a car, possible node locations are constrained

to roads (with high probability), there arc bounds on the speed and acceleration

of the sensor node. While these constraints are static, we can also identify dy¬

namic constraints, where future locations of the sensor node are constrained by

its previous locations. For example, a car is very unlikely to leave a crossing via

the same road it entered. Given such a set of constraints, the location of the node

at some time t0 (and possibly also earlier locations of the node), we can derive

a set of possible locations of the node at some time t, > to without making any

measurements.

A number of mobility models are commonly used to study the behavior of mo¬

bile systems, for example the random waypoint model (a node chooses a random

destination point and moves there on a straight line with constant speed, stops for

some time before choosing a new destination). Another common class of mobility

models are graph-based, where a node can only move along the edges of an Eu¬

clidean graph. At each vertex, one of the outgoing edges is chosen according to

specific rules (e.g., random walks).

5.1.2 Obtaining Constraints

There are two basic types of spatial relationships that are used as constraints for

localization: distances and angles.

Distance Constraints

Distances are used in two variants: absolute distance to a reference node and

distance differences to two or more reference nodes. Absolute distances can be

obtained by measuring time-of-flight or received signal strength, using propagation
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(a) (b) (c) (d) (e) (f)

Figure 5.1: References (black) impose constraints (red regions) on the locations

of a client node (white), (a) Distance estimate, (b) distance bound, (c) distance

difference, (d) closest reference, (e) direction of arrival estimate, and (f) direction

of arrival bounds.

models as described in Section 5.1.1. Note that time-of-flight measurements require

some form of time synchronization between sender and receiver. The precision of

synchronized time is determined by the precision that is required for the distance

estimate. For received signal strength, the emitted signal strength must also be

known. The resulting distance constraint is illustrated in Figure 5.1 (a).

While the above approach typically results in point estimates for distance, there

is also a notable method for obtaining bounds based on network connectivity. If

the communication range of a sensor node is at most R, then two nodes that can

hear each other are at most R apart. The resulting constraint is illustrated in

Figure 5.1 (b). In some cases it is preferable to use a bounding box instead of a

distance constraint as indicated by the dashed rectangle in (b). For example, the

intersection of two bounding boxes is also a bounding box, while the intersection

of two spheres is not a sphere anymore.

Distances and distance bounds can also be combined across multiple hops to

obtain distance bounds for client nodes that are not network neighbors of a refer¬

ence node. If two nodes are separated by N hops, their distance is at most NR.

Similarly, if the distances along a path between two nodes are ri, ..., rN, than the

distance between the nodes is at most ^ri-
Distance differences can be obtained by measuring the time differcnce(s) be¬

tween the arrival of signals emitted by two or more synchronized reference nodes,

or by measuring the differences between the received strengths of signals emitted

by two or more reference nodes with identical emitted signal strengths. Distance-

difference estimates can then be obtained by applying the propagation models to

the time or signal strength differences. Note that the resulting constraint then

involves multiple reference nodes as exemplified in Figure 5.1 (c). Figure (d) il¬

lustrates a bound-based variant of distance differences, where a node determines

to which of a set of references it is closest (i.e., reference with strongest received

signal or reference with earliest time of arrival).
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Angular Constraints

Angles are mainly used in form of direction of arrival. If a node is located at the

origin of a 2D coordinate system, then the direction of arrival can be modeled

as the angle enclosed between the x axis and a line connecting origin with the

reference node. In order to measure direction of arrival, complex hardware is

typically required. One possible approach are sector antennas, where multiple

directional antennas are arranged such that each possible sender can be received

by at least one antenna. Since each antenna has a well-defined angle of beam

spread, bounds on the angle of incidence can be obtained. As illustrated in Figure

5.1 (f), this results in a constraint on the location of the node. Another approach is

the use of multiple omnidirectional receivers with known baselines in between. By

measuring the time difference of arrival at these receivers, the direction of arrival

can be estimated, which results in a constraint on the node location as illustrated

in Figure 5.1 (e).
Note that it is also possible to combine angular and distance measurements.

However, due to the hardware overhead, increased size and cost of sensor nodes,

angle-based approaches are barely used for sensor networks.

5.1.3 Combining Constraints

A single constraint can be interpreted as a set of possible node locations that typ¬

ically form a connected region in space as illustrated in Figure 5.1. Combining

multiple constraints is then equivalent to computing the intersection of the respec¬

tive regions. In some cases the exact shape of the intersection region is required,

sometimes a single point that lies in the intersected region is computed, and in

some cases a simple shape (e.g., bounding box or sphere) that is enclosed by or

enclosed the intersection region is sought.

Typically an intersection is derived analytically, but there are situations where

this is infeasible or undesirable due to computational overheads. A notable alter¬

native is to partition space into pixels or voxels (i.e., 3D pixels), such that the edge

length of a pixel equals the required precision. A single bit is associated with each

pixel, which is initially set to "1". For each available constraint, the pixels that

are outside the region represented by the constraint are set to "0". Eventually, the

remaining "1" pixels form an approximation of the intersection region.

Due to measurement errors it may occur that a given set of constraints has an

empty intersection. There are basically two approaches to deal with such cases.

Firstly, outliers can be rejected, such that a set of constraints with a non-empty

intersection is obtained. As for time synchronization, various criteria can be ap¬

plied to control selection of these constrains (e.g., minimize number of rejected

constraints, minimize intersection region). Secondly, a solution (typically a single

point) can be computed that minimizes a certain error metric. For example, the

error of a point solution with respect to a single constraint can be defined as the

smallest distance between the solution point and any point contained in the region

defined by the constraint. The sought solution should then minimize the sum of
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the errors for all constraints. If confidence values for the constraints are available,

the terms of this sum could also be weighted according to the confidence values.

Multilateration

One of the most commonly used approaches is multilateration, where multiple

constraints of the type depicted in Figure 5.1 (a) are combined and a point solution

(x, y, z) is sought. Each constraint is then of the form (xi, Vi, zt, r%), where (xu yi, zt)

is the location of a reference node, and where fj is the distance of the client node

from this reference. In general, four constraints are required to define a unique

solution for (x,y,z). If there are no measurement errors, the solution can be

obtained by solving the following non-linear equation system for 1 < i < 4:

(x - Xif + (y - Vif + (z- Zif = r2 (5.3)

This non-linear equation system can be transformed into a linear equation system

by subtracting the equation for i — 1 from the remaining three equations. This

will eliminate the quadratic terms x2,y2, z2 and yields the following linear equation

system for 2 < i < 4:

2x(xi-xi) + 2y(yi-yl) + 2z(zi-Zi) = r2-rj + (x2 + y2 + z2)-(x2+y2 + z2) (5.4)

Standard methods can be used to solve for (x, y, z). If more than four constraints

are available, a similar, but over-constrained linear equation system of the form

A- (x, y, z)T = b must be solved. A standard error metric for finding an approximate

solution is to minimize the sum of the squared errors Yli(Ai • (x,y,z) — b%)2. The

according solution can be found by solving the linear equation system

ATA [ y ] = ATb. (5.5)

Above we noted that time-of-flight measurements require time synchronization

between sender and receiver. This can be either achieved by explicit time synchro¬

nization (cf. Chapter 4), or by including the time offset At between sender and

receiver as an additional variable in the equation system 5.3, yielding

(x - Xif + (y- Vi)2 + (z- zx)2 = (r* - Ate)2 (5.6)

where c is the (average) propagation speed of the signal. As with Equation system

5.3, a linear equation system can be obtained by subtracting the first equation.

However, at least one additional constraint is needed in order to obtain a unique

solution for (x, y, z, At). Note that the same approach can be used if At is known,

but the propagation speed c of the signal is unknown (e.g., speed of sound in air).
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X
Figure 5.2: Four references with known locations define unique locations for two

nodes if distances between connected nodes are known. Traditional multilateration

cannot be applied, since there are too few constraints for each individual node.

Collaborative Multilateration

In some node constellations too few constraints may be available to obtain a unique

solution for (x,y,z). However, by including other nodes with unknown locations

into consideration, a unique solution can often be found anyway. As depicted in

Figure 5.2, four black reference nodes define unique locations for two client nodes

if the distances between connected nodes are known. Obtaining a solution for the

locations of two or more client nodes in such situations is referred to as collaborative

multilateration. One possible approach to find a solution for such problems is to

request that a measured distance r^ between nodes i and j should be matched

by the distance y/(Xi — Xj)2 + (t/i — yj)2 + (zt — Zj)2 between the sought location

estimates (xi: yi,Zj) and (xj,yj, z7) for nodes i and j. An optimization problem can

be formulated by minimizing the sum of the squared errors over all edges (i,j):

min zL ( rv ~ \l^Xi ~ x^2 + (yi ~ yrf + (Zi ~z^2 ) (5-7)

(ij)
V J

The resulting non-linear optimization problem typically does not have a closed-form

solution and numerical approximations must be applied to find the solution.

Centroids

This approach considers the problem of finding a point in the intersection of a

number of distance-bound constraints (cf. Figure 5.1 (b)) for a single node. Such

a point can be obtained by computing the average (i.e., centroid) of the locations

of all references that define constraints on the node.

Triangle Test

This approach uses distance-difference constraints (cf. Figure 5.1 (d)) to decide

whether a node is contained in a triangle formed by three reference nodes with

known locations. This test is based on the following property: a node located

outside the triangle can be moved, such that the distances to all references are

either all increased or all decreased simultaneously. In contrast, all movements of

a node located inside the triangle will increase the distance to some references and

decrease the distance to other references simultaneously.
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Based on this observation, the following approximative triangle test can be

used in dense networks: a node is assumed to be in the triangle, if no neighbor

of the node is further from or closer to all three references simultaneously. This

test can be performed for a large set of different triangles, resulting in a set of

"inside" triangles for each node. By intersecting these triangles, bounds on the

node location can be obtained. A point estimate can be computed as the center of

gravity of the intersection region.

5.1.4 Maintaining Localization

If nodes are mobile, the precision of an instantaneous location estimate will degrade

over time. The conceptually simplest approach to maintain up-to-date location

estimates is to re-execute the localization algorithm frequently. There are various

ways to trigger such a re-execution. Firstly, the algorithm can be re-executed after

a fixed amount of time. Secondly, if a certain imprecision can be tolerated, the

maximum amount of time between executions can be calculated using a mobility

model. Thirdly, execution can be triggered whenever the application requests an

estimate of the current location. Fourthly, execution can be triggered whenever

a node moves, which can be detected with simple motion detection sensors or

accelerometers that arc attached to sensor nodes. Which of these approaches is

most appropriate depends on various system parameters such as degree of node

mobility, tolerated imprecision, and the frequency with which a node requests a

location estimate. However, as mentioned in Section 3.3.5, the applicability of

repeating execution is limited by the time needed by the execution of the algorithm,

and by available resources.

Dead Reckoning

Another approach to maintain localization is the use of dead reckoning techniques,

where a node is equipped with sensors to measure movements. By integrating these

movements with an earlier location estimate, an estimate of the current location

can be obtained. Common approaches for dead reckoning arc the analysis of wheel

rotations (e.g., vehicles and robots) and the use of accelerometers. If position x(t0)

and velocity v(tç>) at some time t0 are known, then an estimate of x(ti) can be

obtained by measuring acceleration a(t):

x(h) = x(t0) + f
'

(v(t0) + f a(t')dA dt (5.8)

By using three accelerometers with mutual perpendicular axes, this approach can be

extended to three dimensions. However, due to the quadratic relationship between

a(t) and x(t), small measurement errors in a(t) will accumulate over time and show

up squared in x(t). Hence, the precision of such an approach decreases quickly with

growing h - tG.
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(a) (b)

Figure 5.3: Overlay topologies used by localization algorithms, (a) Stars, (b)

clusters.

Prediction

Prediction based on mobility models is another approach to maintain localization

over time. Here, past locations of a node at time t < to are used with a mobility

model to obtain constraints on the location of the node at time ii > t0. With

a mobility model where velocity is limited by 0 < v < vmax, for example, the

following constraint can be derived:

x(t0) < x(ti) < x(t0) + *w(ti - t0) (5.9)

Note that depending on the used mobility model, the obtained constraints may

become very loose with growing ti—to- Overall, both dead reckoning and prediction

are helpful approaches to bridge short gaps between consecutive executions of a

localization algorithm. While prediction and dead reckoning are very commonly

used for time synchronization (cf. Section 4.1.4), they arc currently barely used for

localization as far as the domain of sensor networks is concerned.

5.1.5 Selecting Constraints

Most localization algorithms are unstructured, that is, they use any available nodes

in the neighborhood for obtaining constraints. The reason for this is that in order

to achieve a good precision, measurement errors must often be compensated by a

large number of constraints.

Two commonly used overlay topologies are depicted in Figure 5.3. With the star

topology depicted in (a), nodes use all available references in their neighborhood to

estimate their location, but nodes with estimated locations arc not used as refer¬

ences for other nodes. In (b), nodes in a cluster establish a local coordinate system

and estimate their locations with respect to this reference grid. Adjacent clusters

share a number of nodes to allow for the derivation of a coordinate transformation

between these clusters.
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5.2 Related Work

This section presents and discusses existing approaches for node localization. Wc

first discuss related and influential approaches from other domains, pointing out

their shortcomings in the context of sensor networks. Our main focus is, however,

on algorithms which have been specifically developed for sensor networks. These

are based on the models and concepts presented in the previous section.

5.2.1 Traditional Localization Approaches

In this section we consider two representative localization systems that have been

developed for applications other than sensor networks.

Global Positioning System

GPS [47] is based on 24 satellites orbiting the earth. All satellites broadcast signals

that arc used for time-of-flight measurements and which carry additional informa¬

tion such as current time and location of the satellites. The satellites are very

accurately synchronized with each other. A GPS receiver uses a so-called almanac

and the information transmitted by the satellites to maintain precise estimates

of the current locations and time of the satellites. The almanac is essentially a

(mobility) model of the satellite orbits.

In order to obtain a location estimate, a GPS receiver measures time-of-flight

to at least four satellites and uses a variant of Equation system 5.6 to obtain an

estimate of its location and time offset. Only four (instead of five) satellites are

needed since the receiver is expected to be below the satellites.

A precision of (100m horizontal, 156m vertical, 340 nanoseconds) can be

achieved for civilian users and (22m horizontal, 28m vertical, 200 nanoseconds)

for military users 95% of the time. This precision can be further improved by dif¬

ferential GPS, where a ground station with known location measures its location

with GPS in order to compute correction signals for all visible satellites. These cor¬

rection signals are broadcast and used by receivers to correct their measurements.

Differential GPS can provide a precision of about l-10m.

Despite its global availability, GPS is of rather limited value for sensor networks

mainly due to resource constraints (GPS receivers are expensive and consume a

significant amount of power) and due to the required free line of sight to at least

four satellites. Some researchers propose to equip anchor nodes with GPS.

Active Bats

Active Bats [104] are in indoor location system that consists of mobile tags ( "bats" )

that can be located and a wired infrastructure. Bats are capable of receiving radio

messages and of transmitting ultrasonic signals. The infrastructure mainly consists

of ultrasound receivers mounted on the ceiling in a square grid 1.2m apart. These

receivers arc connected by a wired network to a central controller. When a bat is
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to be located, a radio message is sent containing the tag ID. Then the tag emits an

ultrasound signal, that is received by a number of ceiling receivers. For each of these

receivers, the controller computes the distance from the bat using time of flight of

the signal. Using multilateration, the location of the bat is estimated. Since the

radio message travels much faster than the ultrasonic signal, the radio message

can be used to synchronize the bat with the infrastructure for the time-of-flight

measurements.

The precision of a single measurement is about 14cm in 95% of the time. The

average of 10 measurements gives an accuracy of 8cm 95% of the time.

The use of the active bats localization system for sensor networks is limited due

to the excessive hardware infrastructure.

5.2.2 Centralized Localization for Sensor Networks

In this section we consider centralized localization algorithms for sensor networks,

where the location estimation is performed by a central computer. These ap¬

proaches generally suffer form limited scalability.

Convex Position Estimation

Convex position estimation [30] considers a problem setup where a number of

anchor nodes with known locations and client nodes with unknown positions are

given. Any node may define a constraint on the positions of other nodes. In

particular, the constraints depicted in Figure 5.1 (b) and (f) are considered. Convex

position estimation is a centralized approach for finding location estimates for the

nodes with unknown locations that satisfy all given constraints.

The approach taken is to derive a semidefinite program (SDP) that represents

all the constraints. An SDP is a relaxation of a linear program, where non-linear

constraints can be given in the form F(x) — F0 + XiFi + ... + xnFn -< 0, such that

F(x) is a negative definite matrix (i.e., all Eigenvalues of F(x) are negative), F% are

symmetric matrices, and x is the solution vector. Such constraints are called called

a linear matrix inequality (LMI). Efficient solvers based on interior-point methods

exist for such SDP.

Convex position estimation proceeds by mapping each given convex constraint

to an LMI. By solving the resulting SDP without specifying an objective function

(that would have to be optimized), a solution is found for every unknown node lo¬

cation that satisfies all given constraints. As an alternative, the SDP can be solved

four times per client node with different objective functions to find a bounding box

that contains the possible solutions for each unknown node location. The center of

this bounding box may then be used as a location estimate.

In a random network with average node degree 5.8, the above approach with

a distance-bound constraint for each pair of connected nodes provides an average

precision in the order of the communication range if 10% of the nodes are anchors

with known positions.
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Multidimensional Scaling

The algorithm described in [93] considers a setup similar to convex position estima¬

tion, where distance estimates are given for pairs of neighboring nodes. Some nodes

are anchors with known locations. Location estimates for the remaining nodes are

sought that approximately satisfy the given constraints.

The algorithm consists of three steps. Firstly, shortest paths between all pairs

of nodes are computed to derive distance constraints for pairs of nodes that are

not network neighbors. Secondly, multidimensional scaling is applied to find an

assignment of locations to nodes that approximates the given distance constraints.

Thirdly, a coordinate transformation is applied to match the given locations of

anchor nodes.

Multidimensional scaling is a technique that first finds an assignment of node

locations in an m-dimensional space, where m > 3. Then, a transformation is

applied to map these locations to three-dimensional space, such that the distance

relationships are retained.

The approach was examined in a network with a distance constraint for each pair

of connected nodes and with 5% of the nodes being anchors. The average precision

varied between 1.5 times the communication range for average node degree 6 and

0.5 times the communication range for average node degree 12.

Spring Relaxation

The system reported in [41] consists of an ad hoc infrastructure formed by ran¬

domly deployed PDAs and sensor nodes that should be located. Localization is

based on acoustic time-of-flight measurements, supported by an explicit time syn¬

chronization mechanism. In a first step, PDAs are clustered as depicted in Figure

5.3 (b). PDAs then measure pairwise distances and establish a local coordinate

system in each cluster. Nodes that are part of multiple clusters compute a coor¬

dinate transformation for adjacent clusters. After the setup has been performed,

sensor nodes can emit acoustic signals that are used by a nearby PDA cluster for

time-of-flight measurements. From the resulting distance estimates, the location

of the node in the cluster's coordinate system is computed and sent to the sensor

node.

Setup of the coordinate system and node localization is accomplished by a

centralized algorithm that simulates the relaxation of a "spring and mass" model.

For this, nodes are mapped to "masses". A distance constraint between two nodes

is mapped to a spring between the two masses with a length that is proportional

to the distance. The algorithm then finds an assignment of locations to the masses

that minimizes the total energy of the system.

In a room-scale experiment (about 10m x 10m x 3m), the authors report a

precision of about 20cm in 95% of the time.
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5.2.3 Distributed Localization for Sensor Networks

In this section we consider distributed localization algorithms for sensor networks,

where the location estimation is not performed by a centralized component.

Single-Hop Centroids

This algorithm [17] assumes the existence of anchor nodes that broadcast their

locations regularly. A node estimates its location to be the centroid of the locations

of the anchor nodes it can hear.

In an experiment, four anchors with a communication range of about 9m were

placed at the corners of a 10m x 10m grid. A node was then placed at the 121

corners of a lm x lm overlay grid to examine the precision of the approach. It

was found that the precision is better than 4m in 95% of the time.

Ad Hoc Positioning System (APS)

This algorithm [71] is based on the existence of anchors and supports three modes

of operation called DV-HOP, DV-DISTANCE, and EUCLIDEAN. With DV-HOP,

anchors flood their locations through the network, such that each node can obtain

its hop distance from each anchor. Anchors will obtain hop distances to all other

anchors and can thus compute the average hop length by dividing the Euclidean

distance between anchors by the number of hops that separate them. The average

hop length is also flooded through the network. Each node can now compute an

estimate of its distance from each anchor by multiplying the hop distance with

the average hop length. Multilateration is then used to compute an estimate of

the location of a node. DV-DISTANCE is similar to DV-HOP, but instead of

counting hops, the distances between adjacent nodes are measured. The distance

of a node from an anchor is then estimated by the sum of the distances along the

shortest path. Again, multilateration is used to obtain a location estimate. With

the EUCLIDEAN approach, nodes that have a sufficient number of neighbors with

known location and distance perform multilateration to estimate its location. This

process is iterated until all nodes have estimated their locations.

The authors examined the performance of the proposed approaches by simu¬

lating of a network with 100 randomly placed nodes with an average node degree

of 7.6. The average precision of DV-HOP varied between 0.5 times the commu¬

nication range for 10% anchors and 0.2 times the communication range for 90%

anchors. The precision of the DV-DISTANCE and EUCLIDEAN methods heavily

depends on the precision of the distance measurements. The precision of DV-

DISTANCE varied between 1.2 times the communication range for 90% average

distance precision and 10% anchors and 0.2 times the communication range for

2% average distance measurements precision and 10% anchors. The precision of

EUCLIDEAN varied between the communication range for 90% average distance

precision and 10% anchors and 0.2 times the communication range for 2% average

distance measurement precision and 10% anchors.
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Iterative Multilateration

This algorithm [89] is conceptually similar to the EUCLIDEAN variant of APS.

Initially, only the locations of anchor nodes are known. Client nodes with unknown

positions use multilateration to at least three neighbors with known locations.

After a node has estimated its locations, it can also be used as a reference in

subsequent iterations of the algorithm. In some situations, a node may not have

a sufficient number of neighbors with known locations. In this case, collaborative

multilateration (cf. 5.1.3) may be used.

This algorithm is very sensitive to the number and placement of the anchors.

The authors performed simulations to characterize the effect of the anchor infras¬

tructure on the percentage of nodes that can successfully estimate their location.

In a rectangular area of size 100 by 100 units, 200 (300) sensor nodes with com¬

munication range 10 were randomly distributed. In order to allow at least 90 % of

the nodes to estimate their locations, 45 % (10 %) of the nodes must be anchors.

Collaborative Multilateration

This algorithm [90] is an extension of earlier work [89] and consists of four phases. In

the first phase, the network is clustered such that each cluster contains anchors and

client nodes, where anchors and distances between nodes define a unique location

for each client node (cf. Figure 5.2). In other words, collaborative multilateration as

discussed in Section 5.1.3 can be used to find unique locations for all client nodes in

such a cluster. Anchors may participate in multiple clusters. "Underconstrained"

client nodes do not participate in any cluster, but will be handled in the fourth

phase.
In the second phase, an initial location estimate is computed for each client

node. For this, distances between nodes are measured and shortest paths between

each pair of (node, anchor) are computed. For each of these pairs, the length of

the shortest path (i.e., sum of the measured distances along the path) is used to

construct a bounding box on the location of the respective node. The node is

located at the center of the intersection of all its bounding boxes.

In the third phase, the initial location estimates are further refined. There is a

centralized and a distributed version of this phase. With the centralized version,

a cluster head is elected per cluster which solves the collaborative multilateration

problem for its cluster (cf. Section 5.1.3). The solution is derived by iteratively

applying a Kaiman filter to the initial location estimates, such that the value of the

objective function of the optimization problem is reduced in each step. With the

distributed version, each node uses the initial location estimates of its neighbors

to perform multilateration, resulting in a refined location estimate. This process is

repeated until the distance between old and updated location falls below a given

threshold. These updates are performed in a fixed sequence on the nodes to prevent

them from getting stuck in local minima.

In the fourth phase, locations of underconstrained nodes are further refined.

For this, the client nodes with known location estimates (that were computed in
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phase three) are treated as additional anchors. Using the distributed approach of

the third phase, the locations of underconstrained nodes are then refined.

The algorithm was evaluated by simulation. The communication range was set

to 15m and distance measurement errors were modeled by a zero-mean Gaussian

random variable with a standard deviation of 2cm. With 6 anchors, an average

node degree of 6, the number of client nodes was varied between 10 and 100. The

average precision was 2.8cm with a standard deviation of 1.6cm.

Hop-Terrain

This algorithm [88] also assumes that a certain percentage of nodes are anchors.

The algorithm consists of a start-up phase and a refinement phase. In the start¬

up phase, all anchors flood the network to enable all nodes to estimate their hop

distance from all anchors. Anchors can then compute the average Euclidean length

d of one hop by dividing the known Euclidean distance between two anchors by the

number of hops separating them. This average hop length is also flooded through

the network. Eventually, every node can come up with an estimate of its distance

from all anchors by multiplying the hop count with the average hop length. Using

multilateration as described in Section 5.1.3, each node ends up with a first estimate

of its position.
In the refinement phase, each node repeatedly measures distances to its neigh¬

bors and performs multilateration to obtain a refined location estimate. This pro¬

cess is repeated until the distance between old and updated location falls below a

given threshold. As an extension, each node can assign a confidence to its location

estimate which is calculated from the number of neighbors (more neighbors likely

result in more precise location estimates) and from the local network topology. The

confidence is used to weight the significance of each constraint in the error metric

of the optimization problem.

In simulations with a random network topology with 5% anchors and 5% average

range measurement error, the precision varied between 0.3 times the communication

range for an average node degree of 7 and 0.1 times the communication range for

an average node degree of 15. For average node degrees below 7, large fractions of

nodes remain without a location estimate, since they have less then 4 neighbors.

Precision-Based Iterative Multilateration

The structure of this algorithm [36] is similar to the work presented in [89]. How¬

ever, besides a location estimate, this algorithm also calculates and uses the stan¬

dard deviation of the estimated location as a measure of the achieved precision.

Also, if a node docs not have a sufficient number of neighbors with known positions,

the distance to a remote reference node (and standard deviation) is estimated by

the length of shortest path across multiple hops. After nodes have obtained an ini¬

tial location estimate, these estimates are further improved in a refinement phase

similar to the ones described in [88, 90].
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The authors performed simulations to examine the performance of the proposed

algorithm. In a square area of 15 units edge length, 225 nodes with radio range

2.1 units were randomly placed with 5 % of them being anchors. The standard

deviation of the range measurement error was 20 % of the distance. With this

setup, the average location error was about 17 % with a standard deviation of 23

/o.

Self-Positioning Algorithm (SPA)

SPA [20] docs not require anchors. In a first phase, each node measures distances

to its neighbors and broadcasts these distances to its neighbors. After this, each

node knows the distance to each of its neighbors and the distances between some

pairs of its neighbors. Then each node constructs a local coordinate system using

two of its neighbor nodes as discussed in Section 3.3.1. In the second phase, coor¬

dinate transformations are computed between the coordinate systems of adjacent

nodes. In the third phase, a global coordinate system is selected and coordinate

transformations are computed to transform the local coordinate systems to this

global system. For this, a set of nodes called the Location Reference Group (LRG)

is elected such that the degree of mobility of the centroid of these nodes is small

in order to avoid frequent adjustments of the global coordinate system. The global

coordinate system is then defined by the average of the local coordinate systems

of the nodes in the LRG (i.e., origin is centroid of the origins of the individual

coordinate systems, axis vectors arc averages of the axis vectors of the individual

coordinate systems).
Wc are not aware of any results about the precision this approach can provide.

APIT

This algorithm [44] assumes the existence of anchor nodes and is based on the tri¬

angle test described in Section 5.1.3. For various triangles formed by combinations

of three anchors, the triangle test is performed to decide whether a node is inside

or outside this triangle. The largest intersection of "inside" triangles for the node

is then computed using the pixel approximation described in Section 5.1.3. The

center of gravity of the intersection region is used as the location estimate for the

considered node.

To implement this approach, anchors broadcast their ID and location. Each

node records the ID, location, and received signal strength for all anchors it can

hear. The resulting anchor table is then broadcast, so that each node knows its own

table and the tables of all neighbors. Each node then locally performs the triangle

test for all combinations of three anchors based on these tables and computes an

estimate of its own location.

In simulations it was shown that the precision of this approach mainly depends

on the number of anchors a node can hear, which in turn depends on the number

of anchors, their distribution, and the communication range of the anchors. In a

random network with an average node degree of 8 and where the communication
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range of anchors is 10 times the communication range of nodes, the average preci¬

sion varies between 7 times the node communication range (if a node can hear 3

anchors on average) and 0.5 times the communication range (if a node can hear 25

anchors on average).

5.3 Problem Statement

Our goal is the provision of a scalable and resource-efficient localization approach

for Smart Dust (cf. Section 2.5.3). As we show below, this setup represents a point

in the design space that is not covered by existing approaches.

5.3.1 Device Challenges

The physical characteristics of Smart Dust particles represent a major challenge to

localization approaches. In particular, the available resources for communication,

computation, storage, and energy are severely limited by the small size of these

devices. Hence, the overhead of a localization algorithm must be rather low with

respect to these resources.

These resource limitations are also the reason for the passive optical commu¬

nication approach adopted by Smart Dust. While traditional radio-based sensor

nodes can actively communicate with its network neighborhood, Smart Dust par¬

ticles can only communicate with a base station. Since communication is directed,

interaction with the base station is only possible if the base station happens to

point its laser beam towards a particular Smart Dust particle.

Most of the localization systems discussed earlier assume direct node-to-node

communication, which is not possible with Smart Dust. In order to match the

stringent resource constraints of Smart Dust, a prospective localization system

would ideally reuse the existing hardware components (i.e., optical transceiver)

instead of requiring additional facilities.

5.3.2 Resource Efficiency

As discussed in Section 3.2.5, a key to achieving resource efficiency is the exploita¬

tion of scope and lifetime requirements of the application. In other words, localiza¬

tion should be performed only where and when required by the application. Hence,

it would be desirable that each Smart Dust particle could estimate its location on

demand, independent of other particles.
Note that with almost all distributed localization approaches for sensor networks

discussed in Section 5.2, estimating the location of a single node requires support

from a large number of other nodes in the network. Hence, these approaches are

not well-suited for providing localization on demand.
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5.3.3 Minimal Infrastructure

Since Smart Dust is envisioned to be deployed in hostile or unexploited areas, it

is rarely possible to install extensive hardware infrastructure besides the single

base station, which is required for communication. Hence, a localization scheme

for Smart Dust can make use of and extend the existing base station, but should

not require the installation of additional, geographically dispersed infrastructure

elements.

5.3.4 Scalability

It is anticipated that large numbers of Smart Dust particles will be densely de¬

ployed for detailed observation of a target area. However, it is likely that portions

of such a deployment are less dense, and some deployments may consist of small

numbers of nodes. A localization approach should ideally support this wide spec¬

trum of deployments ranging from a single node or few nodes to dense networks of

thousands of nodes.

This requirement represents a major challenge as indicated by the algorithms

discussed in Section 5.2, where many approaches require a certain minimum net¬

work density to provide a reasonable precision.

Also, large networks require that there is no per-node overhead such as for

the calibration of individual nodes. Moreover, centralized approaches should be

avoided since they represent a scalability bottleneck for large networks. Rather,

Smart Dust particles should be able to compute their locations on their own instead

of relying on external infrastructure for computing location estimates.

5.4 The Lighthouse Location System

This section presents the Lighthouse Location System for Smart Dust. In order

to point out the basic ideas behind this system, we will first examine a simplified

idealistic system. This examination will be followed by a more thorough discussion

of a realistic system that can actually be built. We will go on by presenting a

prototype implementation, a set of measurements, and an evaluation of several

aspects of the system.

5.4.1 An Idealistic System

Consider the special lighthouse depicted in Figure 5.4, which has the property that

the emitted beam of light is parallel with a constant width b when seen from top.

When seen from the side, the angle of beam spread of the parallel beam is large

enough so that it can be seen from most points in space.

When this parallel beam passes by an observer, he will see the lighthouse flash

for a certain period of time tbeanv Note that tboam depends on the observer's distance

d from the rotation axis of the lighthouse since the beam is parallel. Assuming the
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top view b

side view

Figure 5.4: Top and side view of an idealistic lighthouse with a parallel beam of

light.

lighthouse takes tturil for a complete rotation, we can express the angle a, under

which the observer sees the beam of light as follows:

t
a — 2-7T-

beam

t
(5.10)

turn

Figure 5.4 shows two observers (depicted as squares) at distances d\ and d2 and

the respective angles a, and a2. We can express d in terms of a and the width b

of the beam as follows:

d =-_____
(5.11)

2sin(o/2)
v '

By combining Equations 5.10 and 5.11 we obtain the following formula for d in

terms of &,tbeam, and tturn:

d=——_ (5.12)
2sill(7rtbeam/tt,urn)

Note that the distance d obtained this way is the distance of the observer to the

lighthouse rotation axis as depicted in the side view in Figure 5.4. That is, all

the points in space with distance d form a cylinder (not a sphere!) with radius d

centered at the lighthouse rotation axis.
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Figure 5.5: 3D Localization support device consisting of three mutually perpendic¬

ular lighthouses.

Based on the above observations, we can build a simple ranging system consist¬

ing of a lighthouse and an observer. The observer device contains a photo detector

and a clock. When the photo detector first sees the light it records the correspond¬

ing point in time ti. When the photo detector no longer sees the light it records t2.

When it sees the light again it records t3. With tboam '— t2 — ti and ttum := t3 — ti

the observer can apply Equation 5.12 in order to calculate its distance d from the

lighthouse rotation axis. Note that if tturn is constant it has to be measured only

once since it does not change with distance. Also note that the necessary hardware

resources of the observer device are matched by a Smart Dust node as explained

in Section 2.5.3.

This ranging scheme can be used to build a single beacon device, which allows

observers to autonomously determine their position relative to the beacon in space.

This beacon device consist of three lighthouses with mutually perpendicular rota¬

tion axes as depicted in Figure 5.5. Assuming an observer measures the distances

dx,dy, and dz as indicated above, its location can be determined by computing

the intersection point(s) of three cylinders with radius dx,dy,dz centered at the

respective lighthouse rotation axes. Note that there are 8 such intersection points

in general, one in each of the 8 quadrants of the coordinate system. If wc can

ensure, however, that all observers are located in a single quadrant (e.g., the main

quadrant defined by the points (hx,hy,hz) with hx,hy,hz > 0), there is a unique

intersection point. This intersection point can be obtained by solving the following

equation system for hx,hy,hz:

d2x = h2y + h2z
d2 = h2+h2 (5.13)

d\ = H2x + h2y
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Note that this equation system does not necessarily have a solution, since the val¬

ues dx,dv,dz are only approximations obtained by measurements. If there is no

solution, an approximation for the intersection point can be obtained using mini¬

mum mean square error (MMSE) methods. The solution (hx, hy, hz) obtained this

way minimizes the sum of the squares of the differences of the left hand and right

hand sides of the Equations 5.13. However, if the equation system has a solution,

it can be directly solved using the following set of equations, again assuming that

the observer is located in the main quadrant of the coordinate system depicted in

Figure 5.5:

hx = ^/(-d2 + d2 + d2)/2

hy = ^(dl -d2y + d2z)/2 (5.14)

h, = ^/(d2+d2-d2z)/2
The setup of the complete location system can now be described. The base station

is equipped with three mutually perpendicular lighthouses as depicted in Figure

5.5. At startup, the base station broadcasts certain calibration parameters (e.g.,
the beam width b for each of the lighthouses) to all dust nodes. The latter use a

clock to measure the amount of time during which each of the lighthouses beams

are visible. Using Equations 5.12 and 5.13, nodes can autonomously compute their

location in the reference grid defined by the base station's three lighthouses.

The description of the system's principles gives rise to a number of practical

questions. First of all, it is not clear at all whether a system fulfilling the above

requirements (e.g., parallel beam) can actually be built in practice. Moreover, we

did not discuss the problem how a dust node can distinguish the different beams of

the lighthouses, or what happens if a dust node "sees" the beams of two lighthouses

at the same time. We will discuss these issues in the next sections in order to lay

the foundation for an implementation of the system.

5.4.2 A Realistic System

During first experiments it turned out that actually building a lighthouse with a

sufficiently exact parallel beam is very difficult, at least given the limited technical

capabilities that were available to us. This has the unfortunate consequence, that

the model described in Section 5.4.1 cannot directly be used due to the resulting

high inaccuracies. To understand the reason of these inaccuracies, consider the

following example, where wc assume a beam width of 10cm. Even if the angle of

beam spread is only 1° (instead of 0° for an ideal parallel beam), the width of the

beam at a distance of 5m would be about 18.7cm, resulting in an error of almost

90%. The relative error could be reduced somewhat by increasing the width of the

beam. However, a large beam width also results in a large and clumsy base station

device.

Therefore, instead of building a system perfectly matching the requirements of

Section 5.4.1, we have to adapt our model to a system which can actually be built.
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(a) rotating 45 deg. mirror

(top view)

(b) deflectable mirror

(side view)

Figure 5.6: A rotating lighthouse with a "virtual" parallel beam whose outline is

defined by two parallel laser beams. Rotating (a) or deflectable mirrors (b) are

used make the laser beams scan the northern hemisphere of the lighthouse.

In order to develop such a model, we first have to examine ways of generating

near-parallel beams.

Beam Generation

In order to keep the hardware and energy overhead on the Smart Dust nodes small,

the beam must be easily detectable. Furthermore, the system should work with

high accuracy even if the base station is far away (tens of meters, say) from the

nodes. Therefore we decided to use a laser-based approach. As mentioned above,

the beam should be as wide as possible in order to keep inaccuracies small. In

order to achieve this, we use two lasers to create the outline of a parallel beam

as depicted in the upper half of Figure 5.6. This makes no difference to a single

wide beam, since we are only interested in the edges of the beam (i.e., change from

"dark" to "light" and vice versa) in order to measure tbeam and tiuIIi.

Due to the narrow laser beams, the "virtual" parallel beam generated this way

can only be seen from a single plane, however. In order to ensure that the beam

can be seen from any point in the northern hemisphere of the lighthouse without

defocusing the lasers, the laser beams have to scan this space in some way. The

lower half of Figure 5.6 depicts two ways to achieve this. The first approach uses

a small mirror mounted on a rotating axle under an angle of 45°. By pointing the

laser at this mirror, the reflected rotating beam describes a plane. With commercial

off the shelf technology we can easily achieve a rotation frequency of about 300Hz.

The second approach uses a small deflectable MEMS mirror similar to the one

used as part of the corner cube retrorefiector (CCR). Figure 5.7 shows such a

device [25], which operates at 35kHz and achieves a deflection angle of 25°. A laser

beam pointed at such a mirror can thus sweep over an angle of 50° at a frequency
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Figure 5.7: MEMS deflectable mirror with maximum deflection angle of 25° and

resonant frequency of 35kHz [7],

of 35kHz.

Based on this approach, a lighthouse consists of a (slowly) rotating platform, on

which two semiconductor laser modules and two rotating (or deflectable) mirrors

are mounted. However, as mentioned at the beginning of Section 5.4.2, it is next to

impossible to assemble all the pieces such that the resulting "virtual" wide beam

is almost parallel. Therefore, we have to come up with a model which describes

an imperfect but realistic system. The model discussed below is based on rotating

mirrors, since we used this approach in our prototype implementation of the system.

However, the model equally applies to a system based on deflectable mirrors.

The Lighthouse Model

We use Figure 5.8 to explain the lighthouse model. It shows a simplified top

and side view of the lighthouse. Each view shows the two mirror's rotation axes

and the corresponding reflected rotating laser beams. Note that in general the

angle enclosed by the mirror rotation axis and the mirror will not be exactly 45°

(i.e., ß% ^ 0°) due to manufacturing limitations. Therefore, the rotating reflected

laser beams will form two cones as depicted in Figure 5.8. Moreover, the two

mirror's rotation axes will not be perfectly aligned. Instead, the dashed vertical

line (connecting the apexes of the two cones formed by the rotating laser beams)
and the mirror rotation axes will enclose angles ^l in the side view and angles 5% in

the top view that are different from 0°. Additionally, the figure shows the rotation

axis of the lighthouse platform and its distances fei and b2 to the apexes of the

two light cones. The lighthouse center is defined as the intersection point of the

lighthouse platform rotation axis and the dashed vertical line in Figure 5.8. Note

that the idealistic lighthouse described in Section 5.4.1 is a special case of this more

complex model with ßl = 7t = 5t = 0° and bi — b2.

Now let us consider an observer (black square) located at distance d from the

main lighthouse platform rotation axis and at height h over the lighthouse center.

We are interested in the width b of the virtual wide beam as seen by the observer.

Let us assume for this that we can build a lighthouse with bi « b2 and ßl, %, 5% « 0°,

i.e., wc do our best to approximate the perfect lighthouse described in Section 5.4.1.

Then we can express b approximately as follows:
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top view

y^

side view

Figure 5.8: Model of a realistic lighthouse based on rotating mirrors. The zoom-ins

show detail for one rotating mirror in the top and side views. The other rotating

mirror has respective parameters ß2,^2, and 52.

(5.15)
b « &i + b2 + Vd2 + h2(sin ßi + sin ß2) +

/i(tan7i + tan 72) + (i(sin5i + sin<52)

The inaccuracy results from the last two terms, which are linear approximations of

rather complex non-linear expressions. For ßi — ß2 — 0°, however, expression 5.15

becomes an equation. We will allow these factors to be built into the error term.

With Cb := bi + b2, Cß := shift + sin ft, C •- tan 71 + tan 73, and C5 :=

sin^x + sin <52 we can rewrite expression 5.15 as

b « Cb + Vd2 + h2Cß + hC + dC5 (5.16)

Note that Cb,Cß,C"r, and Cs are fixed lighthouse parameters. We will show below

how they can be determined using a simple calibration procedure. We can express

b also in terms of the angle a. obtained using Equation 5.11:

b — 2d sin
a

(5.17)

Combining expressions 5.16 and 5.17 we obtain the following expression which

defines the possible (d, h) locations of the observer, given a measured angle a and

the lighthouse calibration values C*:

a

2d sin ^ « Ch + Vd2 + h2Cfj + hCT + dC5 (5.18)

Note that for given C* and a the points in space whose d and h values are solutions

of Equation 5.18 form a rotational hyperboloid centered at the rotation axis of the
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Figure 5.9: Positions of the lighthouses in the coordinate system. dz is not shown

for clarity.

lighthouse. In the special case ß% - ^ = Sz = 0° and fei = b2 this hyperboloid

becomes a cylinder as in the idealistic model described in Section 5.4.1.

Location Computation

Similar to the idealistic model described in Section 5.4.1, the location of the ob¬

server can be obtained by determining the intersection point(s) of the three rota¬

tional hyperboloids defined by Equation 5.18. However, since the observed virtual

beam width b now additionally depends on the height h of the observer, we have

to take into account the exact positions of the three lighthouses. Figure 5.9, which

shows an extended version of Figure 5.5, illustrates this. The marks on the co¬

ordinate axes show the positions of the lighthouse center (as defined in Section

5.4.2) of each of the three lighthouses. That is, the coordinates of the observer are

(x0 + hx,yo + hy, zQ + hz) with respect to the origin formed by the intersection of the

three lighthouse rotation axes. In order to obtain approximations for the values

hx, hy, and hz, we have to solve the following equation system:

2dx sin f = Cl + y^TfrfCf + hTCl + dxCj

2^ sin ^ = Cby + ^+WyC% + hyCi + dyCsy
24 sin f = Cbz + y/d*TtfzC!! + hzCl + dxCsx (,,q)

dl - (yo + hy)2 + (zo + hz)2
{°- }

d2y = (xo + hx)2 + (zo + hz)2
d2 - (x0 + hx)2 + (yo + hy)2

The indices {x, y, z} indicate which lighthouse the values are associated with. As

with Equation system 5.13, this system does not necessarily have a solution, since

the parameters arc only approximations obtained by measurements. Therefore,

minimum mean square error (MMSE) methods have to be used to obtain approx-
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filiations for the /t*. However, if the equation system 5.19 has a solution, we can

approximately solve it by simple iteration. For this, we first transform each of the

six equations of equation system 5.19 in order to obtain the following fixpoint form:

K =

h,, =

(5.20)

fi(dx)
h(dy)

hz = h(dz)
dx = fi(hy,hz)
dy = h(hx,hz)
dz — h(hx,hy)

Note that we did not show arguments of the fi (i.e., C*, a*, x0, yo, z0) that do not

change during iterative evaluation of the equation system. By using appropriate

values for hx, hy, hz, and A, we can obtain approximate solutions for hx, hy, hz with

the following algorithm:

= h°-

K := /#
while (true) {

hi = .fi(h(hy,hz));
= f2(h(hx,hz));
= h(fG(hx,hy));

iî{\h'x~hx\ + \h'v-hy\ + \h'z
break;

K
h'

hz\ < A)

hy
K

= K;

= h':

}

At first, the h* are initialized to the start values h®. Using the /t, new approxima¬

tions h[ arc computed. We are finished if the new values are reasonably close to

the original h*. Otherwise we update the /i„ to the new values and do another iter¬

ation. For good convergence of this algorithm the partial derivatives of the /, o f3+i

in the environment of the solution (hx,hy,hz) should be small, which is typically

true. In our prototype implementation wc use /i° := 100cm and A := 0.1cm. With

this configuration, the algorithm typically performs 4-6 iterations.

Calibration

What remains to be shown is how we can obtain values for x0, y0, z0, and C*,C*,C*.

Since the values x0,i/o, zQ are uncritical for the achieved accuracy, wc assume they

are measured directly. The C* values, however, are very critical for the accuracy

as was shown with the example at the beginning of Section 5.4.2. Therefore we

have to perform a calibration.
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For each of the three lighthouses we have to determine values for the four vari¬

ables Cb,Cß,C1,CS. For this, we place the observer at known locations (di,hi)

and obtain the respective «j using Equation 5.10. Doing so for at least four loca¬

tions and using equation 5.18, we obtain the following linear equation system in

Cb,Cß,C\C8:

2di sin f = Cb + xjd2 + hJC3 + hiCP + diCs

2d2sinf - Cb + y/d\ + h22Cp + h2C"< + d2Cs

2d-i sin f
2dA sin '-f

Cb + y/d* + h\Cß + hzC1 + d3C5

Cb + jd\ + h2Cß + h&i + diCs

(5.21)

As with the other equation systems, this system does not necessarily have a solu¬

tion, since the parameters are only approximations obtained by measurements. If

the system has a solution, it can be obtained by Gaussian elimination. For this,

the dj and hi have to fulfill certain requirements. One simple rule of thumb is that

both the di and the hi should be pairwise distinct.

Better results can be obtained if the system is calibrated at more than four

points. The resulting over-determined equation system can than be solved using

MMSE methods in order to obtain approximations for the C*. Formally, we can

rewrite Equation system 5.21 as

(l Ui Vi Wi \

1 u2 v2 W2

1 Uz v3 w3

\l un vn Wn j

( cb \
Cß

\C* J

( Ti\
T2

\Tn/

(5.22)

with Ti = 2diSin(f), Ui - \Jd2 + h2, V{ = h{, Wt = di. Rewriting 5.22 as

Ax — b, we can solve the least squares problem by solving the following equation

for x:

ATAx - ATb (5.23)

which is equivalent to solving the following equation for (Cb,C0',C1,C5) using

Gaussian elimination:

/ Ei EUi £v- Ewi \
EU Eu? EUiVi YlUiW,

HVi EViUi EV2 YiViWi

VEWi T,WiUi HWiVi J2W2 J

( cb\
Cß

Ci

\
ZUiTt
EViTi

(5.24)

All summations run over i — \...n.

Note that calibration has to be performed only once for each base station (as¬

suming that the system is stable enough and needs not be re-calibrated) and is

independent of the receiver nodes. Therefore, calibration can be performed using a
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more powerful receiver device than the limited Smart Dust node. As explained in

Section 5.4.1, the base station broadcasts these calibration parameters to the Smart

Dust nodes, which use them to compute their location using Equation System 5.19.

5.4.3 Prototype Implementation

In order to evaluate the concepts developed in Section 5.4.2, we implemented a

prototype system. To keep the hardware overhead small, this prototype system

consists of only two lighthouses and allows observers located on the plane y = 0

to determine their x and z coordinates. From a conceptual point of view, the

differences to a 3D system are minimal.

The Base Station

Figure 5.10 shows a picture of the prototype base station. It consists of two

mutually perpendicular lighthouses. The main lighthouse platform takes about

tturn — 60s for one rotation. The platform is driven by a geared electro motor

manufactured by FTB [120], which has a low flutter of about 0.1% of the rotation

speed. Using an LM317 [124] adjustable voltage regulator, the voltage supply of

the motor and thus the rotation speed of the platform can be adjusted. The two

bars that extend from under the platform are used to move the center of gravity

of the platform to the rotation axis, such that the platform rotates at a constant

speed.
The power supply for the rotating platform is implemented by a stereo jack and

associated plug. While the plug is fixed to the axle of the rotating platform, the

jack is affixed to the chassis using a thin steel wire. This way, the round plug can

rotate in the jack.

Beam generation is based on rotating mirrors as described in Section 5.4.2.

Both rotating mirrors are driven by a single Graupner SPEED 280 electro-motor.

In order to reduce vibrations, we did not use a rigid axle to connect the mirrors

to the motor. Instead, wc used small steel springs as axles. The rotating mirrors

are supported by two ball bearings each. Two lmW 650nm semiconductor laser

modules with adjustable focus point their beam at the rotating mirrors.

The supply voltage of the motor and thus its rotation speed can be adjusted us¬

ing an LM317 voltage regulator. The mirror rotation speeds of the two lighthouses

are slightly different (tmiri.or — 4ms and tmirror = 5ms for one rotation, respectively),

such that the observer can distinguish the two lighthouses based on the time in¬

terval between successive light flashes, which will be explained in more detail in

Section 5.4.3. Hence, in order to detect a beam, the observer's photo detector must

at least be hit twice by the rotating laser beam. Note that due to the fast rotation

of the laser beams, the average light intensity is low enough to be eye-safe.

There is a slight chance that the photo detector is hit by the beams of both

lighthouses at the same time. We will explain in Section 5.4.3 how an observer

can detect and handle this situation. However, since the diameter of the laser

beams is rather small, the likelihood of this event is small. By selecting slightly
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Figure 5.10: Prototype base station consisting of two lighthouses and the resulting

2D coordinate system.

different platform rotation speeds for the two lighthouses, we can ensure that for

each observer this happens only once in a while. In our experiments this happened

about every 100 lighthouse rotations at a single fixed observer.

The whole device is powered by a 7.2V 24()()mAh nickel-cadmium battery, which

lasts for about 3 hours, which equals about 3 watts per lighthouse. Note however,

that almost all of the power is consumed by the motors driving the mirrors, which

operate at 6 volts. Moreover, the voltage converters burn quite some amount of

power, since the lasers and the platform drives operate at 3 volts. We expect- a

low voltage design using deflectable MEMS mirrors instead of rotating mirrors to

consume as few as 0.3 watts per lighthouse, since the MEMS mirrors consume

considerably less power than the motors driving the rotating mirrors.

The Nodes

The receiver prototype consists of a small electronic circuit connected to the parallel

port of a laptop computer running Linux. Figure 5.11 shows a schematic diagram

of the receiver hardware. A photo diode converts the intensity of the incident light

into a proportional voltage. The light that is incident to the photo diode mainly

consists of three components:

• direct current (DC) components resulting from slowly changing daylight

• low frequency components resulting from artificial lighting powered with 50Hz

alternating current (AC)
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Figure 5,11: Schematic diagram of the receiver hardware.
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Figure 5.12: Circuit diagram of the receiver hardware.

• higher frequency components resulting from laser light flashes at about

200Hz-300Hz (l/tmirror)

Since we arc only interested in the higher frequency laser flashes, we run the

output signal of the photo diode through a high pass filter (HPF) which removes

DC and low frequency components. Due to this, the detector is insensitive to

daylight and artificial light.

The output of the HPF is then amplified using an operational amplifier, whose

output is in turn fed into a Schmitt Trigger. The latter implements a hysteresis,

i.e., when the input voltage level exceeds a certain value Vi it lowers the output

voltage to a minimum. When the input voltage falls below a certain value V2,

the Schmitt Trigger raises the output voltage to a maximum. The output of the

Schmitt Trigger is connected to the parallel port, so that each laser flash on the

photo diode causes a parallel port interrupt to be triggered.

Figure 5.12 shows the complete circuit diagram of the device. DI and Rl form

the photo diode stage, Cl and R3 implement the HPF. R2 is used to shift the output

from the HPF to about half of the supply voltage as input for the amplifier, which

consists of R4 for reference voltage generation, UI, R5, and Cl. U2, R7, and C3

implement the Schmitt Trigger, R6 is used to generate the voltage reference for the

latter. Since the output of the Schmitt Trigger is inverted, we connect the output

to the GROUND pin (pin #18) of the parallel port and Vcc to the ACK pin (pin

#10). The LM318 [124] is a high speed operational amplifier commonly available at

electronics supply stores. The device is powered by a small 9V battery (connected

to Vcc and Gnd), since the used operational amplifiers require a symmetric voltage

supply of at least +4.5V and -4.5V. A later version of this design uses the LM6142

[124] low-voltage low-power dual channel operational amplifier and operates at +1.5

and -1.5V. We connected this device to the BTnodes [116] (cf. Chapter 6).
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Figure 5.13: Input voltage at the parallel port as beams pass by the photo detector.

The receiver software consists of two main components, a Linux device driver

which handles the parallel port interrupt, and an application level program which

performs the actual location computation and lighthouse calibration. The device

driver mainly consists of the parallel port interrupt handler, which is implemented

using the parapin [125] parallel port programming library. Moreover, it implements

a Linux special device /proc/location, which provides a simple interface to user-

level applications. By writing simple ASCII commands to this device, a user-level

program can instruct the device driver to do some action.

The supported commands are:

• init: Create a new lighthouse. The driver initializes data structures for

a new lighthouse and autodetects the rotation speed tmirror of a previously

undetected lighthouse.

• reset N: Reset lighthouse N to the initial state.

• clear: Delete all active lighthouses.

• rounds N M: Instruct the driver to take into account M lighthouse turns and

output the mean of the M measurements for lighthouse N.

By reading the /proc/location device, a user-level program can obtain the current

status and measured angle a according to Equation 5.10 of all detected lighthouses.

A sample output line looks as follows;

lhO: seq 1, angle 1857, pulse 4232us, rounds 1

indicating that lighthouse 0 has tmirror — 4232/^s, a = 0.01857 (the value is scaled

by 100000), has done one measurement (sequence number 1), and is taking into

account 1 lighthouse turn for each measurement.

In order to measure a, the driver has to evaluate the interrupts it sees. To

understand how this is done, consider Figure 5.13, which shows the input voltage
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at the parallel port over time. As the first rotating laser beam passes by the photo

detector, the parallel port sees a sequence of sharp pulses resulting from the fast

rotating mirror. The pulses stop when the lighthouse platform has turned enough

so that the photo detector isn't hit any longer by the rotating beam. After some

time, the second rotating beam passes by the photo detector and again generates

a sequence of fast pulses.

Recall that each pulse generates an interrupt, which results in the device driver

interrupt handler being invoked. The handler then uses the system clock (which

has /is resolution under Linux) to determine the point in time when the interrupt

occurred.

The time interval between two successive fast pulses equals the time imirror

for one rotation of the mirror. Since each lighthouse has a different tmiri-or, this

value can be used to distinguish different lighthouses. Please note that the pulse

sequences can contain "holes" where the laser beam missed the photo detector due

to vibrations. The driver removes all peaks separated by holes from the beginning

and the end of the sequence of pulses. The time midpoint of the resulting shorter

sequence of pulses without holes is assumed as the detection time of the beam

(indicated by the braces in Figure 5.13).

Recall from Section 5.4.2, that we implemented a "virtual" wide beam by two

rotating laser beams that form the outline of this wide beam. Therefore, the time

passed between the midpoints of two successive packs is either tbeam or ttum — ibeam-

If the actual value is small (e.g., < lsec) then it is assumed to be ilurn. If the

lighthouse has just been initialized the driver also measures tturil — tbeam in order to

obtain itUrn- Since the latter does not change, this has to be done only once. Later

on, the driver can output a new a with each round of the lighthouse.

In order to distinguish successive pulses from "holes", and holes from "beam

switches", the driver knows tight lower and upper bounds for the possible values

of ^mirror and tuirn- In Section 5.4.3 we mentioned the possibility that beams from

different lighthouses may hit the photo receiver at the same time. If this happens

the resulting time between successive pulses will fall below the lower bound for

imirror i
such that the driver can detect this situation instead of producing faulty

results.

Using the /proc/location interface of the device driver, the user-level program

implements lighthouse calibration and location computation. The program is more

or less a straightforward implementation of the concepts developed in Section 5.4.2.

A simplified version of this software also runs on the ATMEL microcontroller

of the BTnodes. This setup more closely resembles the limited capabilities of a

Smart Dust node and allows us to study the potential effects of a Smart Dust node

on the location system (cf. Chapter 6).

5.4.4 Evaluation

In this section we examine the compliance of the Lighthouse Location System with

the region in the design space indicated in Section 5.3 and examine additional
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Figure 5.14: Ensuring mutually perpendicular lighthouses.

aspects of the system, namely factors that influence the precision of the location

estimates, limits on the maximum distance of nodes from the base station, the

effects of node mobility, and the cost of adding localization support to dust nodes.

We begin with examining the calibration of the lighthouse beacon as a prerequisite

for quantifying the precision of our approach.

Calibration

Calibration of the base station involves the following three steps:

• Ensuring that the lighthouses are mutually perpendicular.

• Measuring the offsets of the lighthouse centers x0 and z0.

• Determining Cb,Cß,CJ, Ch for each of the two lighthouses.

In order to ensure that the two lighthouses are mutually perpendicular, we placed

the base station at the corner of a rectangular room as depicted in Figure 5.14,

such that the rotation axes of the two lighthouses are at distance x from the two

perpendicular walls. We disabled the motors that drive the rotating mirrors and

one of the two lasers of each lighthouse. Then we adjusted the mirror so that the

remaining laser beam points at the opposite wall. Due to the rotating lighthouse

platforms, the laser spots draw two circles on the walls. The centers of these two

circles mark the position where the lighthouse rotation axes hit the wall as depicted

in Figure 5.14. Now we adjust the lighthouses on the common chassis such that the

centers of these circles also have a distance x from the walls. In our measurement

setup, we placed the base station at x = 20cm in a room with a size of about 5m

by 5m.

As mentioned in Section 5,4.2, the lighthouse center offsets x0 and Zq from the

origin of the coordinate system defined by the lighthouse rotation axes are not
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Figure 5.15: Location estimation benchmark. The ground truth locations are at

the centers of the circles. The mean of the measured locations are at the centers

of the boxes. The edge length of each box is twice the standard deviation in each

axis.

critical for the accuracy of the system. Therefore, we measured them directly at

the base station device.

In order to determine the C* values, we placed the observer at the four locations

(x,z) e {(50,50), (480,80), (80,480), (340,340)} (all values in centimeters) on the

floor in the base station coordinate system. The respective lighthouse distance and

height values are obtained from the (x, z) values as follows:

(z,x

(x,z

Xq)
zo

(5.25)\UX, flx) .—

(dz,hz) :=

At each of the locations, we performed ten measurements of a for each lighthouse

and computed the mean value. For each of the two lighthouses wc then solved

Equation System 5.21 in order to obtain the C* values.

Precision

For the precision benchmark, we placed the observer at 22 locations on the grid

(80cm + i * 100cm, 80cm + j * 100cm) in the base station coordinate system on the

floor of the room. At each of the locations, we measured the location ten times by

iteratively solving Equation System 5.19 as described in Section 5.4.2.

Figure 5.15 shows the base station coordinate system and the results of these

measurements. Ground truth locations (x, z) arc indicated by circles. The mean of

the computed location (x, z) is at the center of the small boxes. The edge length



CHAPTER 5. SENSOR NODE LOCALIZATION 132

of each box is twice the standard deviation sx (sz) of the measurements in the

respective axis.

Please note that we determined ground truth locations using a cheap 5m tape

measure, resulting in a maximum error of about ±lcm in each axis. Also note that

we did not perform outlier rejection or any other statistical "tricks" to improve the

mean values or standard deviations.

The mean relative offset of the mean locations from ground truth locations

(i.e., \x — x\/x) is 1.1% in the x axis, and 2.8% in the z axis. The overall mean

relative offset of the mean locations from ground truth locations (i.e., \(x,z) —

(x,z)\/\(x,z)\ is 2.2%. The mean relative standard deviation (i.e., sx/x) is 0.71%

in the x axis and 0.74% in the z axis. The overall mean relative standard deviation

(i.e., s|(M|/|(x,z)|)is0.68%.

Sources of Imprecision

In this section we examine which factors influence the accuracy of the system. For

this, we have to examine errors that can occur during the measurement of tbeam

and ttum- From a measurement point of view, the two are identical, since they are

both an amount of time elapsed between two beam sightings. Therefore we will

use t as a genus for the two and At as the absolute error of t. The following list

contains possible causes for measurement errors:

• Vibrations: Due to their fast rotation, the mirrors and thus the reflected

beams suffer from small vibrations, resulting in a small angle e of beam

spread, which is about 0.05° in our prototype. Assuming sine — f (since e «

0), the resulting error is At < ttum^y for an observer located at distance

d from the lighthouse rotation axis and at height h over the lighthouse center.

• Lower bound on time tmirroi. for one mirror rotation: Since wc can measure

elapsed time only when the rotating laser beam hits the photo detector, the

accuracy of tbeam and ttum is limited by the speed of the rotating mirrors (i.e.,

imirror)- The resulting error is At < tmirror.

• Flutter of platform rotation: The relative error in lighthouse rotation speed

pih causes an error in t. pu, is mainly caused by the flutter of the motor driving

the lighthouse platform. The motor used in our prototype has a flutter of

0.1%. The resulting error is At < tp^.

• Variable delays: There is a variable time offset between the laser beam hitting

the photo detector and the interrupt handler reading the clock. On the path

from the photo detector to the interrupt handler are many sources of variable

delay, such as hardware and interrupt latency. The actual value of this error

pretty much depends on what is currently happening on the computer, but

is typically small compared to the other sources of errors.
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Figure 5.16: The photo detector must be hit by the laser beam at least twice.

• Clock resolution: The minimum time unit tmin that can be measured by the

clock limits the time resolution for measurement of t. The Linux laptop

we used has tciockres = 1/v-s. On the ATMEL we used a 16-bit counter to

implement a clock with tciockres — 50/is. The resulting error is At < tciockreg.

• Clock drift: The maximum relative error pciock in the clock rate also causes

an error in t. A typical value is pciock ~ 10~5 both on Linux and the ATMEL.

The resulting error is At < tpciock-

In our prototype system, the clearly dominating errors are caused by vibrations,

limited tmirror, and flutter of platform rotation. The use of deflectable MEMS

mirrors can both drastically reduce vibrations and tmirror. The flutter of platform

rotation can be reduced to about 0.01% by using electronically stabilized motors

as used, for example, in turntable drives. By this, we expect a possible reduction

of At by a factor of about 10.

Note, however, that the errors resulting from these three main sources can

be modeled by a Gaussian noise source. This means that averaging over a large

number of measurements helps to reduce the error.

Range

In this section we examine the maximum range, at which observers can still deter¬

mine their location. This maximum range mainly depends on two issues. The first

of these issues is that the photo receiver has to be hit twice by each of the rotating

beams in order for the receiver to identify the lighthouse as explained in Section

5.4.3. Figure 5.16 depicts this situation. It shows a top view of a lighthouse with

only one of the two rotating beams at two points in time ti and t2. At ti, the

beam hits the photo detector at distance d from the lighthouse rotation axis the

first time. Then, the mirror docs one rotation and hits the photo detector a second

time at t2. During t2 — ti, the lighthouse platform has rotated a bit to the left. /

denotes the diameter of the photo detector. Assuming a constant diameter w of

the laser beam, the distance d at which the photo detector is hit at least twice is

given by the following inequality:
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d < ;. ,
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.

(5.26)
ii Sin^7Tîmirror/ tturn)

With the values of our prototype system I — 5mm, w = 3mm, tmirror — 4ms,

itum = 60sec we can achieve a theoretical maximum range of about 14m. This

value can be improved by increasing tturil, by decreasing tmirror, or by defocusing

the lasers a bit, such that there is a small angle of beam spread. However, there are

certain limits for each of these possibilities. The angle of beam spread is limited

by the sensitivity of the photo detector and the output power of the laser. tmirror

is limited by the possible maximum speed of the mirrors. With MEMS deflectable

mirrors such as the one presented in [25], wc can achieve tmirror = l/3bkHz = 30ps.

ttum is limited by the frequency of location updates needed by the nodes and thus

by the degree of node mobility (see Section 5.4.4).

The second issue that limits the maximum range of the system is the speed

of the photo detector. Using commercial-off-the-shelf technology, the beam has

to stay on the photo detector for about tphoto — ICtas in order to be detected.

Depending on the minimum retention period tphoto of the laser beam on the photo

detector, the maximum distance d is limited according to the following inequality:

d < t),..l + W.
,

(5-27)
i Sin^7rtphoto/^mirrorj

With the current values of our prototype iphoto = 200ns, tmirror — 5ms, I — 4mm,

w — 3mm we can achieve a theoretical maximum range of about 27m, giving us an

overall range limit of 14m. Again, this value can be improved by reducing tmirr0r

and by defocusing the laser with the same limits as above.

The actually measured maximum range, at which the receiver prototype could

still detect the base station is about 11 meters. However, the range can be in¬

creased by adjusting certain system parameters. A more elaborate system built

using fast deflectable MEMS mirrors with values I — 1mm, w — 20mm (due to

beam spread), terror = 1ms, ttwn = 60sec, and tpri0to — 10ns, for example, could

achieve a theoretical maximum range of about 210m (the minimum obtained from

Inequalities 5.26 and 5.27). Based on our experience, we would expect a practi¬

cal maximum range of about 120-140m of a system with these parameters, which

approximately equals the maximum communication range of 150m during the day

for the Berkeley experiments [49].

Resources

In this section we want to examine how the presented location system fits the

stringent resource restrictions of future Smart Dust Systems. These restrictions

especially apply to the receiver side, i.e., the Smart Dust nodes.

The Berkeley Smart Dust prototype has already demonstrated that a photo

detector similar to the one we are using for our location system is feasible. What

remains to be shown is how the receiver software (i.e., the device driver and the

user-level program) fit onto a Smart Dust node.



CHAPTER 5. SENSOR NODE LOCALIZATION 135

Both the processing overhead and the memory footprint of the device driver

are very low, which is very important for Smart Dust. The first is true because

the driver is interrupt driven, i.e., it does not do any sensor sampling or polling.

Moreover, the interrupt can be used to wake up the processor from a power-saving

mode. Thus, the system has to be woken up only during the short periods when a

beam is hitting the photo detector. The memory footprint is very low because the

driver does not have to store arrays of peak detections. Instead, for each sequence

of peaks it only keeps "first peak" and "last peak" time stamps which are updated

when a new interrupt occurs. The whole data structure for one lighthouse only

requires about 25 bytes.

Similarly, the location-computation part of the user-level program has a very

low memory footprint. It just retrieves the a values from the device driver and ex¬

ecutes the approximation program described in Section 5.4.2. Given the relatively

infrequent location updates, speed is not a problem. On computationally very lim¬

ited platforms like future Smart Dust nodes, it might be necessary to revert to

fixed point arithmetic and a hardware implementation of the location computa¬

tion code in case the provided processing capabilities are too limited. Besides the

basic arithmetic operations (+, —, *, /) we need support for sin a and y/x in order

to solve Equation System 5.19. Note that sin a is easy to approximate since the

values of a obtained from Equation 5.10 are small due to tbeam <£ tturn- The second

order approximation sin a ~ a — a3/6 has a maximum error of 0.1% for |a| < 33°.

There are also fast approximations for y = y/x. One possible approach is to first

approximate l/yfic by iterating y ;— y(3 — xy2)/2 with an appropriate initial value

for y. Multiplying the result by x gives an approximation for y/x.

The requirements on the clock are also quite relaxed. Note that we don't need

a real-time clock since we arc only interested in the quotient itUriiAbeam- A simple

counter which ticks at a constant rate would also be sufficient. The resolution of

the clock (or counter) just has to be high enough to reliably distinguish the tmirror

values of different lighthouses. Since the tmjrr0r values of our prototype system are

4ms and 5ms, respectively, a clock resolution of 0.5ms would be sufficient.

Please note that dust nodes don't have to be calibrated due to the following

two reasons. Firstly, the two beam sightings used to measure tbeam and ttmn are

identical from a measurement point of view. Any constant hardware and software

delays will subtract out. Secondly, only the quotient tturn/tbeam is used for node

localization, which is independent of the actual clock frequency.

Node Mobility

If nodes change their location over time, they have to update their location esti¬

mates frequently in order to avoid inaccuracies resulting from using outdated loca¬

tion estimates. Moreover, node movement during the measurement of parameters

needed for location computation can cause inaccuracies in the estimated location.

The time iUpdat,e between successive location updates usually equals the time tturn

required for one rotation of the lighthouse. Thus, the update frequency l/tupdate

can be increased by decreasing tturil. However, there is an easy way to double the
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update frequency when using rotating mirrors for beam generation, because the

beams are reflected to both sides of the lighthouse as depicted by the dashed laser

beams in Figure 5.8. Thus, we actually have two "virtual" wide beams we can use

for location estimation, effectively doubling the update frequency.

If a node moves during measurement of tbeam (he., after detection of the first

beam and before detection of the second beam), the obtained value of tbeam will be

incorrect. Additional errors are caused by the node moving between measurements

of tbeam of the three lighthouses.

There arc two ways to detect and reject faulty location estimates resulting from

node movement during measurement. The first compares two or more consecutive

position estimates and rejects them if they differ by more than a small threshold.

The second approach uses accelerometers to detect movement during measurement.

Accelerometers can also be used to estimate node movement (velocity, direction)

during measurements of tbeam- The obtained values can be used to correct tbeam)

such that correct location estimates can also be obtained during node movement.

In fact, the Smart Dust prototypes developed at Berkeley already contain such

sensors.

Line-Of-Sight Requirement

As mentioned in Section 2.5.3, communication between a node and the base station

requires an uninterrupted line of sight (LOS) even for "plain" Smart Dust (i.e.,

without using the Lighthouse Location System). Hence, the presented location

system does not introduce additional restrictions with respect to LOS.

Temporary LOS obstructions can cause wrong position estimates if a dust node

misses one of the laser beams. However, the probability of such errors can be

reduced by comparing two or more consecutive positions estimates and rejecting

them if they differ by more than a small threshold. Reflected laser beams are

typically not detected by the receiver hardware, since diffuse reflection reduces the

laser light intensity drastically.

Note that other localization systems based on ultrasound and radio waves pro¬

vide location estimates even in the case of an obstructed line of sight. However, the

resulting location estimates are typically wrong due to relying on signals reflected

around the obstruction. Often it is difficult to detect such situations [42], which

may result in using wrong location estimates unnoticed.

Robustness

We assume that base stations are immobile and mounted in a safe place (with

respect to harmful environmental influences) due to their potential long range (see

Section 5.4.4). On the other hand, dust nodes are subject to mobility and other

kinds of environmental influences (e.g., LOS obstructions), which can cause faulty

location estimates.

However, above we mentioned extensions to the basic system in order to detect

and reject such faulty location estimates with high probability. This leaves us in a
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situation, where dust nodes either obtain good position estimates or none at all.

5.5 Summary

This chapter is devoted to node localization in wireless sensor networks. We first

discussed important models with respect to mobility and signal propagation. Fol¬

lowing the framework developed in Chapter 3, we then presented important con¬

cepts used by localization algorithms. Referring to these concepts, we then pre¬

sented and discussed important existing approaches to localization - both in tra¬

ditional distributed systems and for sensor networks. We then identified a region

in the design space that cannot be appropriately supported by these existing algo¬

rithms. In particular, we showed that tiny sensor nodes known as Smart Dust are

not sufficiently supported. We presented and evaluated the Lighthouse Location

System to support this region in the design space. A key feature of this approach

is that sensor nodes can autonomously infer their location by observing laser light

flashes emitted by a special lighthouse device. We showed that this approach is

efficient since sensor nodes do not actively emit any signals. Based on a prototypi¬

cal implementation, we evaluated the precision of this approach and found that an

accuracy in the order of centimeters can be achieved. We also discussed potential

improvements to further increase the precision.



Chapter 6

Application Experience

In this chapter we present a prototypical application in order to demonstrate the

practical feasibility and usability of the approaches for time synchronization and

node localization we developed in Chapters 4 and 5.

The application supports tracking the location of a mobile object - a remote-

controlled toy car in our example. For this, a number of sensor nodes are deployed

in the area of interest, each equipped with a sensor to detect the proximity of the

mobile object. In order to estimate the current location of the tracked object, the

locations of the sensor nodes in space and time must be known with respect to a

common coordinate system.

In Section 6.1 we describe the general setup of the application, details are given

in Sections 6.2-6.6. The tracking system is evaluated and discussed in Sections 6.7

and 6.8.

6.1 Object Tracking with Smart Dust

The purpose of our prototypical application is to track the location of real-world

phenomena with a network of Smart Dust nodes. We use a remote-controlled toy

car (Figure 6.1) as the tracked object. The current tracking system assumes that

there is only one car. Sensor nodes are randomly deployed in the area of interest

and can change their location after deployment. When they detect the presence

of the car (cf. Section 6.2), they send notifications to a base station. The base

station fuses these notifications (cf. Section 6.3) in order to estimate the current

location of the car. A graphical user interface displays the track and allows to

control various aspects of the system. The data fusion process requires that all

nodes share a common reference system both in time and space, which necessitates

mechanisms for node localization (cf. Section 6.4) and time synchronization (cf.

Section 6.5).
Since Smart Dust hardware has not been available to us, we used BTnodes

[116] to mimic the behavior of Smart Dust (cf. Section 2.5.3). Figure 6.2 shows

a complete sensor node as used in our application. The base station consists of a

Linux laptop computer equipped with a Bluetooth radio. In analogy to the single-

138
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Figure 6 1 A k motc-fontlolled toy cai with an III emitter is used as the tia(kod

object

Figure 6 2 A BTnode with an IR dot ot toi and lighthouse leceivoi is used as a

Small Dust surrogate

hop netwoik topology of Smait Dust, BTnodes do not duettly tommunifatc with

each othei, but only with the base station Before fommunitation fan take place,

the base station has to set up a so tailed Bluetooth Pifonet containing no more

than 7 BTnodes To suppoit moie than 7 node s, the base station has to periodically

switch the Piconet m a lountl iobin fashion, such that eventually eveiy BTnode

gets a fhaiKc to talk to the base station Note the analogy to Smait Dust, where

the base station has to point the (typically slightly defoeuscd) lasci beam at a

gioup ol nodes m or del to enable communication with them

6.2 Object Detection

Racking ob]etts with nelwoiks oi sensors has been an attive leseaidi lopic foi

many yeais [23, 55 103] give a good ovoiviow of many tracking algonthms Most

of the appioathes aie optuni/ed for spaisr notwoiks, wheic a high tiatkiiig accuracy
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should be achieved despite a relatively low node density. To achieve this, many

approaches make a number of assumptions about the tracked object. Methods

which estimate object distance based on signal strength estimates, for example,

require knowledge of the intensity of the signal emitted by the object in order to

achieve good accuracy. Approaches based on measuring at different sensor nodes

the difference of time of arrival of a signal emitted by the object are typically

limited to sound or other signal modalities with low propagation speed. Signal

modalities with high propagation speeds such as radio waves (e.g., light) would

require distributed clock synchronization with an accuracy of few nanoseconds,

which is typically not feasible. Other approaches require known lower and upper

bounds of the velocity or the acceleration of the tracked object.

While these assumptions help to achieve good tracking accuracy, they also limit

the applicability of the tracking system. In order to make our system applicable to

a wide variety of objects, we tried to avoid making assumptions about the target as

much as possible. In order to achieve a satisfactory tracking accuracy nevertheless,

we exploit the anticipated high density of Smart Dust deployments - which is

expected because of the intended small size and low cost of Smart Dust devices.

Our approach assumes that the presence of the target object can be detected

with an omnidirectional sensor featuring an arbitrary but fixed sensing range r,

that is, the sensor can "see" the target only if the distance to the target is lower

than r. The data fusion algorithm presented in the following section needs to know

an upper bound R of this sensing range. In many applications, the target cannot

be instrumented for tracking purposes (e.g., a cloud of toxic gas, an oil slick, fire).
The remote-controlled car wc used as a sample target in our tracking system emits

a characteristic acoustic signature which could be used for detection. However,

this signature depends on the velocity of the car. To avoid the intricacies with

detecting this variable signature, we chose in our experiment a different solution

based on infrared (ÎR) light, leaving detection based on the car's acoustic signature

as future work.

In the current version of the prototype, we equipped the car with an omni¬

directional IR light emitter consisting of eight IR LEDs mounted on top of the

car (Figure 6.1). Accordingly, the sensor nodes are equipped with an omnidirec¬

tional IR light detector consisting of three IR photo diodes (Figure 6.2). The

used IR photo diodes include a filter to cancel out visible light. The output of

the IR detector is connected to an analog-to-digital converter (ADC) of the BTn-

ode's microcontroller. If the output value of the ADC exceeds a certain threshold,

the presence of the car is assumed. Using a low-pass filter, the threshold value is

adopted to slowly changing daylight, which also contains IR components. With this

setup, the BTnodes can detect the car at a distance of up to approximately half

a meter. When a node first detects the car, it sends a "detection notification" to

the base station, containing its node ID as well as its time and location at the time

of detection. When the node no longer sees the car, it sends a "loss notification"

to the base station, which contains its node ID and its current time. If the node

changes its location during the presence of the car, a loss notification is emitted,
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Figure 6.3: Estimating object location by centroids.

followed by a detection notification with the new node location.

6.3 Data Fusion

Following the argumentation at the begin of the Section 6.2, we try to avoid making

assumptions about the target as much as possible. Therefore, the base station

has to derive the current location of the tracked object solely based on detection

notifications and loss notifications received from the sensor nodes.

We use an approach that estimates the car's location at time t by the centroid of

the locations of the sensor nodes that "see" the car at time t. The centroid of a set of

N locations {k = (x{, y{, Zi)} is defined as / := ^ £ k = (^E^^Eî/i^E zi) •

Consider Figure 6.3 for an example. Depicted are three sensor nodes (black squares)
with their respective sensing ranges, and two car locations (black circles). The

hollow circles indicate the respective estimated locations (i.e., centroids).

Figure 6.4 illustrates an algorithm to calculate the car location estimates given

the detection and loss notifications received from the sensor nodes as described in

Section 6.2. The figure shows sensor nodes 1 and 2, their respective sensing ranges,

and the trajectory of the car (dotted arrow). When the car enters the sensing range

of node i, a detection notification di is emitted, containing time dz.t and location

did of node i at the time of detection. Accordingly, node i emits a loss notification

li when the car leaves the sensing range. In a first step, all notifications are sorted

by increasing time stamps di.t (l^.t) as depicted on the time axis in the lower half

of Figure 6.4. In a second step, we iterate over these sorted notifications from left

to right, recording the active nodes (those that currently see the car) in a set S.

If we come across a loss notification /j, we remove i from S. If we come across

a detection message dt, we add i to S. Additionally, we remove all nodes j from

S, whose sensing ranges do not overlap with the detection range of node z, that

is, for which \d%.l — dj.l\ > 2R holds. This is necessary to compensate for missed

loss notifications, which would otherwise permanently affect the accuracy of the

tracking system by not removing the respective entries from S. A missing enter

notification will lead to a temporarily decreased tracking accuracy, but will not
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Figure 6.4: Data fusion algorithm.

otherwise permanently affect the system.

The location of the car during the time interval starting at the currently consid¬

ered notification and ending at the next notification is estimated by the centroid S

of the locations of the nodes in S (i.e., did during [di.t, d2.t), (di.l + d2.l)/2 during

[d2.t,l2.t), and d2.l during [li.t, l2.t)).
The localization accuracy of a similar centroid-based algorithm was examined

in [17] in a different context under the assumption that nodes arc located on a

regular grid. We can interpret their results for our setting as follows. The local¬

ization accuracy depends on the sensing range r of the nodes (about 50 cm in our

case) and the distance d between adjacent nodes. For r/d — 2 (i.e., d « 25cm

in our case) the average and maximum localization errors arc 0.2rf (i.e., 5cm) and

0.5d (i.e., 12.5cm), respectively. In general, larger r/d values yield better accu¬

racy. Therefore, the accuracy can be improved by increasing the node deployment

density, since that reduces d while keeping r constant.

6.4 Node Localization

In order to derive the location of the tracked car from proximity detections as

described in Section 6.2, the locations of the sensor nodes have to be estimated.

We used the Lighthouse Location System for this purpose. The receiver hardware

described in Section 5.4.3 was connected to a digital input pin of the ATMEL

microcontroller, such that every light flash triggers an interrupt. A simplified
version of the receiver software (omitting support for calibration) has been ported

to the ATMEL.
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6.5 Time Synchronization

The car location estimation described in Section 6.3 assumes that the timestamps

contained in notification messages refer to a common physical time scale. We used

Time-Stamp Synchronization for this purpose. We implemented a slight variation

in order to relief the base station from keeping state information for every node

(cf. Section 4.4.4). This can be achieved by sending this state information to the

node as part of the acknowledgment message. A node must then include this state

information in the next event notification to make it again available to the base

station. This way, every node is responsible for storing its own state.

6.6 Message Ordering

The data fusion algorithm described in Section 6.3 requires sorting notifications

by their time stamps. The time transformation approach described in Section

6.5 enables us to compare and sort time stamps originating from different nodes.

However, we still have to ensure that a notification message is not processed by the

data fusion algorithm until all earlier notifications have arrived at the base station.

This is of particular importance for Smart Dust, since messages are subject to long

and variable delays as described in Section 2.5.3.

One particularly attractive approach to message ordering is based on the as¬

sumption that there is a known maximum network latency D. Delaying the evalu¬

ation of inbound messages for D will ensure that out-of-order messages will arrive

during this artificial delay and can be ordered correctly using their time stamps.

That is, message ordering can be achieved without any additional message ex¬

changes. The literature discusses a number of variants of this basic approach

[59, 70, 94].
However, there is one major drawback of this approach: the assumption of

a bounded and known maximum network latency. Since communication requires

that the base station points its laser at a node, Smart Dust suffers from long and

variable network delays. Using a value for D which is lower than the actual network

latency results in messages being delivered out of order. Using a large value for D

results in long artificial delays, which unnecessarily decreases the performance of

the tracking system.

We therefore introduce a so-called adaptive delaying technique that measures

the actual network delay and adapts D accordingly. Doing so, it is possible that

the estimated D is too small and messages would be delivered out of order. Our al¬

gorithm detects such late messages and deletes them (i.e., does not deliver them to

the application at all). Recall that the data fusion algorithm presented in Section

6.3 was specifically designed to tolerate missing detection and loss notifications.

Hence, deleting a message only results in a less accurate track, since the affected

Smart Dust node simply does not contribute to the estimation of the target loca¬

tion. We argue that this slight decrease of accuracy is acceptable since deleting

a message is a rare event, which only occurs at startup or when the maximum
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network latency increases during operation (i.e., when the value of D is lower than

the actual maximum network latency). The expected high density of Smart Dust

deployments can also compensate this decrease of accuracy. Additionally, our al¬

gorithm includes a parameter which can be tuned to trade off tracking latency for

tracking accuracy.

Specifically, the adaptive delaying algorithm executed in the base station main¬

tains a variable D holding the current estimate of the maximum delay, a variable

latest holding the time stamp of the latest message delivered to the application,

and a queue which stores messages ordered by increasing time stamps. Initially, D

is set to some estimate of the maximum network latency, tatest is set to the current

time tnow in the base station, and the queue is empty.

Upon arrival of a new notification n with time stamp (interval) n.t, the actual

message delay d :— tnow — n.t' is calculated1. D is then set to the maximum of D

and c d. The constant factor c influences the chance of having to delete an out-

of-order message and can thus be tuned to trade off tracking latency for tracking

accuracy. We use c = 1.2 in our prototype. Now we check if tiatcst < n-~tl holds, in

which case n can still be delivered in order. If so, n is inserted into the queue at

the right position according to n.t. Otherwise, n is deleted.

The first element n(} of the queue (i.e., the one with the smallest time stamp)
is removed from the queue as soon as the base station's clock (tnow) shows a value

greater than n^.V + D. Now tatest is set to n0.tr and n0 is delivered to the data

fusion algorithm.

6.7 Evaluation

In order to assess the precision of the proposed tracking system, we performed a set

of measurements. Figure 6.5 shows the setup of our measurements. The lighthouse

beacon ("LH" in the picture) was placed in the upper left corner and defines the

origin (0,0) of a 2D coordinate system. Six sensor nodes (numbered rectangles in

the figure) were placed in an area of about one square meter. The car moved then

through the sensor field from right to left on a straight line. Location estimates were

obtained at 12 positions of the car (indicated by the black squares in the picture).
We performed the whole experiment 10 times and calculated averages. The sensor

nodes as well as the car locations are annotated with coordinates (x ± ex, y ± ey),
where (x,y) are the ground truth positions in centimeters obtained by a tape

measure. ±ex and ±ey indicate the average errors of the output of the tracking

system relative to the ground truth position on the x and y axis, respectively.

The average error of the sensor node location estimates is ex = 4.16 cm and ev =

1.83 cm. We attribute the larger e~x value to mechanical problems with one of the

lighthouses. The average error of the car location estimates is e~x = 12.5 cm and

e~y = 3.5 cm. The maximum, error of the sensor node location estimates is e'x = 5 cm

and êy — 2 cm. The maximum error of the car location estimates is ëx = 28 cm

ltr (tl) refers to the right (left) end of the time interval t.
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Figure 6.5: Measurement setup (not drawn to scale).

and ey — 6 cm. The difference between the values for the x and y axis is due to the

asymmetry of the node arrangement.

The tracking latency is defined as the delay after which the state of the real

world is reflected by the output of the tracking system. This delay depends on

the following additive components: (1) the sampling interval of the sensors, (2)

processing delays in the sensor nodes, (3) the network latency, (4) delays caused

by the message ordering algorithm, and (5) delays caused by the algorithm used to

compute the target location estimate. The minimum value of (1) heavily depends

on the sensor and processor hardware. In our implementation, (1) is limited to

about 0.1ms by the analog-to-digital converter. Components (2) and (4) are small

in our system due to the simplicity of the used algorithms.
To evaluate the tracking latency of our system, we measured the sum of (2), (3),

(4), and (5) by calculating the age of each notification after it has been processed

by the location estimation algorithm. During the course of our experiment, the

average age was 56 ms. We also monitored the value of D used by the message

ordering algorithm. We used an initial guess of D = 20 ms. At the beginning

of the experiment, this value was quickly adapted to 52 ms. Recall from Section

6.6 that messages may be dropped by the ordering algorithm if the value used

for D is lower than the actual maximum network latency. Surprisingly, during our

experiments not a single message was dropped. This is due to the fact that the time

between arrival of successive notifications at the base station was always greater

than the network latency in our experiment. However, this is typically not the case

for a real deployment, where the network latency can be significantly larger and

where many densely deployed nodes may detect the target almost concurrently and

generate according notifications in short intervals.

Figure 6.6 shows the above measurement setup as depicted by the graphical user
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Figure 6.6: Measurement setup as shown by the graphical user interface.

interface. In the top left, a number of controls arc shown to lookup sensor nodes

("Lookup"), to disconnect from the sensor nodes ("Disconnect"), to adjust the

frequency of sensor readout ("Rate"), to control the detection threshold ("Gap"),
and to clear the displayed track ("Clear track"). The table below the controls con¬

tains one line for each sensor node, showing x and y position, the current detection

threshold, number of detections, the currently detected signal strength, and the

time of the last detection. On the right, a display of the tracking area is shown,

depicting the sensor nodes (larger rectangles) and some of the location estimates

of the car (smaller squares) moving from right to left.

6.8 Discussion

In the presented tracking system, we make use of the scalability of Time-Stamp Syn¬
chronization and Lighthouse Location for a tracking application. This is achieved in

part by strictly avoiding inter-node communication. Additionally, the algorithms

employed in the base station are designed to perform independent of the actual

number of nodes in the network. Instead, the overhead of the base station algo¬
rithms depends on the number of active nodes those that currently "see" the

tracked target. Also, the base station only has to store state information for active

nodes.

Despite some similarities in the communication scheme (both true Smart Dust

and our prototype use a single-hop network topology), there is one important
difference between our prototype and a system based on true Smart Dust. While in

our system nodes can send messages to the BST at any time, communication with

a Smart Dust node requires that the BST points its laser beam at that particular
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node. Even though a slightly defocused laser beam would enable the base station

to communicate with many Smart Dust nodes at a time, the laser has to sweep over

the deployment area to give each node a chance to talk to the base station. We

deal with the resulting long and variable network delays by proposing a message

ordering technique which adapts to the actual maximum network latency.
The data fusion algorithm used in our system might seem somewhat simplistic

compared to many approaches described in the literature. However, it achieves

a reasonable accuracy while only making a minimum of assumptions about the

tracked object. The loss of precision can be compensated by increasing the node

density - which is possible due to the expected small size and low cost of Smart

Dust nodes.

The tracking system has been designed to tolerate node failures, since these are

likely to happen. Messages lost due to node failures will only affect the accuracy of

the estimated track. Again, this can be compensated by a higher node deployment

density.

6.9 Summary

This chapter shows the practical feasibility of our approaches for time synchroniza¬
tion and node localization using a concrete application. In particular, wc showed

how Time-Stamp Synchronization and Lighthouse Localization can be used to im¬

plement a scalable tracking system based on Smart Dust. We also presented an

approach to implement message ordering for networks with long, variable delays

such as Smart Dust. We also evaluated the precision of our prototype and found

that it provides a precision in the order of tens of centimeters.



Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the contributions of our work and discuss some

limitations of our approaches. Wc also sketch potential future work, both with

respect to the proposed algorithms and in the broader context of our work.

7.1 Contributions

We prosed a design space to replace the narrow definition of wireless sensor net¬

works that is currently assumed by most research papers. The selection of the

dimensions of the design space was based on an extensive study of existing proto¬

typical applications. It was shown that these applications do indeed cover different

points in the design space. The identified dimensions of the design space deploy¬

ment, mobility, resources, heterogeneity, communication modality, infrastructure,
network topology, coverage, connectivity, network size, and QoS requirements typ¬

ically have a significant impact on the design of specific solutions. We examined

this impact on algorithms for time synchronization and node localization. In par¬

ticular, we identified important regions in the design space which are not covered

by existing solutions.

With respect to time synchronization, we showed that existing algorithms do

not appropriately support intermittent and sporadic network connectivity. We pro¬

posed Time-Stamp Synchronization to overcome this lack. In contrast to existing

schemes, this approach does not synchronize clocks. Rather, each unsynchronized

clock defines its own local time scale. Time-Stamp Synchronization transforms

time stamps between these time scales as they arc passed from node to node, also

across temporary network partitions. Moreover, synchronization can be performed

on demand, where and when needed. Our approach uses intervals to represent

time stamps. Therefore, reasoning about time stamps does not suffer from prob¬
lems due to synchronization errors. Also, our approach is efficient because it can

often piggyback time information on existing network traffic.

With respect to node localization, wc showed that existing algorithms do not

appropriately support tiny sensor nodes known as Smart Dust. We proposed the

Lighthouse Location System to overcome this lack. This approach is based on a

148
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new cylindrical lateration scheme, which allows Smart Dust nodes to autonomously

estimate their locations with high precision using only a single external beacon

device that can be integrated with an existing base station. Since nodes do not

require the support of other nodes for localization, this approach can scale to very

dense networks, and localization can be performed on demand where and when

needed.

We demonstrated the practical feasibility of the proposed solutions by imple¬

mentations that have also been used in a common prototypical application that

supports tracking of mobile objects with a sensor network.

As one further contribution, we developed a common framework for discussing

time synchronization and node localization. In particular, we showed that many

existing distributed algorithms for synchronization and localization share five com¬

mon structural elements: bootstrapping, obtaining constraints, combining con¬

straints, selecting constraints, and maintaining localization over time.

The major contributions of this thesis have also been published, most notably

in [34, 80, 82, 83, 84, 85, 86].

7.2 Limitations

The approaches to time synchronization and localization we proposed are tailored

to specific regions in the design space as discussed in Sections 4.3 and 5.3. Naturally,

our approaches are less suited for other regions in the design space, resulting in a

number of limitations.

7.2.1 Time-Stamp Synchronization

Traditional time-synchronization schemes proactively synchronize clocks using a

separate protocol before the application may request synchronized time. Hence,

these protocols can spend significant effort into achieving good precision. For

example, they may perform multiple measurements to obtain many constraints. In

contrast, our scheme is designed to be performed on demand at the instant when

the application requests synchronized time. To make such an approach feasible, the

overhead of synchronization must be kept to a minimum. For example, performing

multiple measurements is disadvantageous here, effectively limiting the precision

of time-stamp synchronization.

Time-Stamp Synchronization provides synchronization only for selected time

instants. This is not sufficient for applications that require continuous synchro¬

nization over longer periods of time (e.g., performing periodic actions at a certain

rate).

7.2.2 Lighthouse Location System

Localization with our approach requires a free line of sight between the lighthouse

beacon and sensor nodes, which limits the applicability of this approach. Note,
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however, that the basic communication scheme of Smart Dust does also impose

this restriction. Hence, our localization system does not introduce an additional

constraint here.

The geographical scale of networks that can be supported with our approach

is limited by the range of the lighthouse beacon. The Lighthouse Location System

uses range measurements to multiple lighthouses as a basic element. To obtain

correct results, the sensor node must not move during the measurement. Hence,

this approach cannot directly support nodes which are in constant movement unless

additional sensors (e.g., acceleration) are used to compensate for movements during

measurement.

7.3 Future Work

There are a number of potential improvements with respect to our algorithms for

time synchronization and localization. However, we also discuss future work in the

broader context of our work, in particular with respect to the design space.

7.3.1 Time-Stamp Synchronization

For some applications it might be reasonable to strive for improved precision at

the cost of increased runtime overhead. Some directions which might be worth

further investigation have been sketched in Section 4.4.9. Probability distributions

instead of pure intervals would allow probabilistic reasoning about overlapping

time intervals. Such distributions could perhaps be constructed by taking into

account past message exchanges between a pair of nodes. A time-stamp history

could be included in each message to improve reasoning with time stamps that

passed through a common node. However, this may result in significantly increased

messages size.

7.3.2 Lighthouse Location System

It would be interesting to examine the use of deflectable MEMS mirrors or steerable

lasers instead of rotating mirrors, since this could not only significantly improve

the precision of localization, but would also lead to a simplified and more robust

lighthouse hardware. On the node side, an implementation on true Smart Dust

would gain significant insights into the feasibility of our approach on this hardware

platform.
For networks with a large geographical extension, a single lighthouse beacon

may not be sufficient to cover the whole network. Here, multiple lighthouse bea¬

cons could be used. Future work would include an examination how a consistent

coordinate system could be established across a large network with multiple bea¬

cons. A natural approach would be to use clustering. Each lighthouse beacon would

define a cluster, such that all nodes in the cluster can receive the respective beacon.

Each cluster uses the coordinate system defined by its lighthouse beacon. Nodes
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that are contained in multiple clusters could compute coordinate transformations

between adjacent clusters.

Another issue for future work is better support for mobility. As a first step,

movement detectors could be used to detect faulty measurements, caused by a node

moving during measurement. A second step would include movement compensa¬

tion, so that localization becomes also possible if a node is in constant travel. Such

an approach would require some form of dead reckoning (e.g., by means of acceler¬

ation sensors) to compensate the error in the sweep time measurement caused by

node movement.

7.3.3 Service Interfaces

Time synchronization and node localization can be considered as two basic services

that each provide one major function at its interface to the application: What is

the current time/location? However, as wc have illustrated in this thesis, different

points in the design space may require vastly different approaches to provide this

basic function in an adequate way. Also, concrete application requirements (e.g.,

precision, scope, lifetime, mobility model) may necessitate different approaches for

time synchronization and node localization.

Despite these different requirements, modular programming could be greatly

enhanced if time synchronization and node localization services could be considered

basic building blocks that provide a common interface across the design space. This

would, however, require the inclusion of methods into the interface that allow a

specification of the concrete requirements on the services, which might also change

during the lifetime of the application. This raises the important question of how

such an extended interface should look like. Broadly speaking, such an interface

should include methods to specify the exact point in the design space and additional

application requirements.

7.3.4 Service Selection and Adaptation

Different points in the design space and different application requirements typically

necessitate different solutions for time synchronization and node localization. In

some cases, a single algorithm may provide parameters for adaptation to different

requirements. In any case, an application developer is faced with the problem of

selecting an appropriate solution and/or appropriate parameters. If these require¬

ments change during the lifetime of an application, this choice may have to be

updated every now and then.

To relief application developers from these issues, frameworks and tools should

provide support for service selection and adaptation. Such system support is facil¬

itated by a common service interface as discussed in the previous section. By this,

different service implementations become interchangeable. The interface elements

that allow a user to specify application requirements and a point in the design space

could then be used by the system to automatically select an appropriate service
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implementation.

7.3.5 Calibration

We can consider localization in both time and space as sensor calibration problems.

Generally speaking, a sensor is a device that takes a certain physical quantity as

input and produces a variable electrical signal as output that is usually converted to

a digital number using an analog-to-digital converter. Calibration then consists of

enforcing a certain mapping of the observed physical quantity to the sensor output.

For example, if a sensor is exposed to a temperature of T°C, then the sensor should

output T (in some reasonable digital encoding). Localization in space can then be

considered as the task of calibrating a location sensor to a given coordinate system.

Localization in time can likewise be considered as the task of calibrating a time

sensor (e.g., a hardware clock) to a given coordinate system.

It would be worthwhile to examine the use of known techniques from time

synchronization and node localization in the more general context of calibration.

It particular, it is quite likely that many of the observations in Chapter 3 could

be generalized to calibration. For example, the classification in Section 3.2 can be

directly transferred to calibration. It is also conceivable that distributed calibration

algorithms could consist of structural elements similar to those we identified in

Section 3.3.

7.4 Concluding Remarks

In this thesis we showed that applications of wireless sensor networks cannot be

characterized by a single, narrow definition, and we proposed a multi-dimensional

design space of Wireless Sensor Networks. We examined the implications of this

design space on methods for time synchronization and node localization and found

that existing techniques do not appropriately support important regions in the de¬

sign space. Wc proposed novel approaches to fill this gap, yielding a more compre¬

hensive understanding and solution space of localization and time synchronization

in sensor networks.
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