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Abstract

The principal focus of the present thesis is the cluster analysis of structured
data, in particular with spatial and temporal coupling structure, and with
ordinal structure of individual observations. The thesis studies grouping
models and algorithms which (i) take into account structure such as spatial
and temporal smoothness and (ii) estimate or select the model order, or
number of clusters, from the data. Applications include segmentation of
image and remote sensing data, video sequences, and cluster analysis of
rank data.

For the cluster analysis of ordinal data, we introduce a mixture model
suitable for the simultaneous representation of partial rankings of different
lengths. Unlike grouping models for ordinal data previously available in the
literature, the model permits the analysis of heterogeneous data sets. For
segment analysis of noisy image data, we show that nonparametric Bayesian
mixture models can be combined with Markov random fields. The resulting
class of models simultaneously estimates the model order and a segmenta-
tion of the image, under a smoothness constraint on the segment solution.
Video sequences exhibit a temporal dependence structure, similar to spatial
coupling in still images. A sequence model of conditional Dirichlet processes
is proposed, based on the conjugate nature of the Dirichlet process, which
estimates cluster structure evolving over time. By conditioning on a pre-
vious estimate, such methods perform model order adaptation rather than
model order selection. Based on the observation that the Dirichlet process
inherits a number of key properties from its finite-dimensional marginals,
we study the general construction of infinite-dimensional (“nonparametric”)
Bayesian models. It is shown that infinite-dimensional conjugate models are
generated as projective limits of finite-dimensional conjugate models, in par-
ticular of those with exponential family components. An extension theorem
for conditional measures and general construction criteria are given, and
sufficiency and conjugacy properties of finite-dimensional Bayesian models
are shown to be preserved under extension to the infinite-dimensional case.





Zusammenfassung

Schwerpunkt der vorliegenden Arbeit ist die Gruppierungsanalyse (Cluster-
Analyse) strukturierter Daten, insbesondere von Daten mit räumlicher und
zeitlicher Kopplungsstruktur, sowie mit ordinaler Struktur einzelner Mes-
sungen. Die Dissertation studiert Gruppierungsmethoden welche (i) Struk-
turen wie räumliche und zeitliche Glattheit in die Analyse miteinbeziehen,
und (ii) die Modellordnung, d.h. die Anzahl der Gruppen, aus den vor-
liegenden Daten schätzen. Anwendungen umfassen die Segmentierung von
Bildern und Fernerkundungsdaten, von Videosequenzen, und die Grup-
pierungsanalyse ordinaler Präferenzdaten.

Zur Gruppierungsanalyse von Ordinaldaten wird ein Mixturmodell vor-
gestellt, welches die simultane Repräsentation partieller ordinaler Messun-
gen verschiedener Länge ermöglicht, und damit die ganzheitliche Anal-
yse heterogener Datensätze, welche mit zuvor in der Literatur verfügbaren
Ansätzen nicht möglich ist. Zur Segmentierung verrauschter Bilder wird
gezeigt, dass nichtparametrische Bayessche Mixturmodelle mit Markovschen
Zufallsfeldern kombinierbar sind. Die resultierende Modellklasse erlaubt
die simultane Schätzung der Modellordnung und der Segmente unter einer
Glattheitsbedingung an die Segmentierungslösung. In Videosequenzen ex-
istiert, ähnlich der räumlichen Kopplungsstruktur in Einzelbildern, eine
zeitliche Abhängigkeit. Es wird gezeigt, wie Dirichlet-Prozesse unter Aus-
nutzung ihrer konjugierten Eigenschaften zur Schätzung von über die Zeit
evolvierender Gruppenstruktur eingesetzt werden können. Durch Kondi-
tionierung auf die jeweils vorangehende Lösung führen solche Verfahren
eine Adaption (anstatt einer Selektion) der Modellordnung durch. Wir
untersuchen die allgemeine Konstruktion unendlich-dimensionaler (“nicht-
parametrischer”) Bayesscher Modelle, ausgehend von der Beobachtung, dass
die Marginalverteilungen des Dirichlet-Prozesses Modelle in der Exponen-
tialfamilie darstellen, und eine Reihe wichtiger Eigenschaften an den Prozess
vererben. Es wird gezeigt, dass nichparametrische konjugierte Modelle als
projektive Limiten solcher endlich-dimensionaler Modelle entstehen, welche
ebenfalls konjugiert sind, und damit insbesondere von Modellen in der Ex-
ponentialfamilie. Wir geben einen Fortsetzungssatz für bedingte Verteilun-
gen und allgemeine Konstruktionsbedingungen an, und zeigen, inwiefern
Suffizienz- und Konjugiertheits-Eigenschaften endlich-dimensionaler Bayess-
cher Modelle auf den unendlich-dimensionalen Fall übertragbar sind.
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Chapter 1

Introduction

Data clustering addresses the problem of partitioning a heterogeneous set of
data into homogeneous groups, i. e. groups consisting of data values mutu-
ally similar according to a given mathematical measure of similarity (Jain
et al., 1999; Duda and Hart, 1973). If the number of groups or categories is
not known beforehand, the problem of estimating it from data is referred to
as model order selection (Stoica and Selen, 2004). The principal focus of the
present thesis is to contribute to the development of a new generation of clus-
tering methods, which (i) address the entire clustering problem, including
model order selection, by a model-based approach, allow (ii) out-of-sample
prediction, (iii) seamless integration with different types of constraints, and
(iv) generic application to a wide variety of data.

Unsupervised learning methods reduce the complexity of data, either as
a preprocessing step for further automatic methods, or to render large sets
of complex data accessible to human analysis (see e. g. Bishop, 2006). Au-
tomatic methods can benefit from such reduction techniques in a number
of ways. One example is the estimation of category-specific models, such as
topic-specific specialization of language models, after the data has been par-
titioned into categories by a clustering algorithm. Others include dimension
reduction and feature selection techniques which reduce the effective dimen-
sionality of the problem. Data analysis by humans is first and foremost a
visual endeavor – a one- or two-dimensional data set is typically analyzed
by “taking a look”, that is, by preparing a plot. If the data is of higher
dimension, unsupervised learning provides a collection of dimension reduc-
tion techniques which attempt to reduce the data to a lower-dimensional
surrogate data set that still contains the relevant structures or patterns of
the input data. If the number of observations is large, clustering methods
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6 Thesis Overview

can provide both a subdivision of the data into meaningful categories, and
a summary of each category in form of a statistical model of the cluster.
In this sense, unsupervised learning techniques serve to map raw data of a
format unaccessible to humans into the scope of human cognition.

Applications of clustering range from image segmentation in computer
vision (Forsyth and Ponce, 2003), through topic modeling in natural lan-
guage processing (Hofmann, 1999) and vector quantization in signal pro-
cessing (Gersho and Gray, 1992), to a variety of problems in all areas of
science and technology that produce massive amounts of measurement data,
such as biotechnology or sensor data processing. For example, most natural
language processing techniques are based on the estimation of a language
model, i. e. a mathematical model for the probability of a word to occur in
a given context. Significant gains in accuracy for such models have been
observed when the model (or the applied smoothing techniques) are esti-
mated specific to topics, i. e. to the use of language in the context of a given
subject. Automatic identification of topics, as groups of keywords, in a col-
lection of texts is a classic example of a clustering problem (Hofmann, 1999;
Blei et al., 2003).

Most applications of clustering in this thesis are motivated by mid-level
computer vision – computer vision methods that combine the strictly local
outputs of low-level vision into a global model of the image, but do not
attempt to infer image semantics (Forsyth and Ponce, 2003). Clustering
is used for image segmentation, the subdivision of an image into coherent
regions. Given an input image, a segmentation algorithm first computes
low-level descriptors. These are, in terms of machine learning, statistics or
features computed locally on small image patches. Descriptors are chosen to
measure similarity, i. e. to take similar values on similar patches. A segmen-
tation can be obtained by clustering the feature values and interpreting each
cluster as an image segment. This approach is widely applicable due to its
modular structure, and to some degree separates the vision-specific problem
(the feature extraction) from the machine learning problem (clustering).

1.1 Thesis Overview

The central subject of the present thesis are methods that integrate the
model order selection problem into the generative model. Model order se-
lection is typically performed by model switching rules or heuristics: So-
lutions with different number of clusters constitute different models. Each
possible model order (number of clusters) defines one model class, and the
number of clusters is chosen on a given data set by means a criterion for se-
lecting one such class. Popular examples include complexity penalties, such
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as the Bayesian information criterion (see Stoica and Selen, 2004, for an
overview), the stability method (Dudoit and Fridlyand, 2002; Lange et al.,
2004), or reversible jump sampling (Green, 1995). The resulting solutions
are not comparable over different model classes, and not generative w. r. t.
the number of clusters, that is, a probability can be assigned to a given
data set only conditional on the number of categories. We build on existing
work on clustering with Dirichlet process mixture models, which provide
a generative framework for the model order selection problem (Ferguson,
1973; Blei, 2004).

Algorithmic contributions are motivated by computer vision, where the
performance of clustering algorithms can be improved by additional con-
straints adapted to the special structure of visual data. We show how
both types of constraints common in mid-level vision, spatial and temporal
smoothness, seamlessly integrate with nonparametric Bayesian clustering
in a principled manner. Theoretical contributions address the representa-
tion problem for Bayesian nonparametric methods: Unlike the parametric
models commonly used in machine learning, Dirichlet process models are not
representable in closed form as probability densities. This considerably com-
plicates their generalization to larger classes of models, and obstructs the
derivation of an explicit, cost-function based formulation of unsupervised
learning problems. We derive a representation of nonparametric Bayesian
models that can be regarded as a weak analogue of the density represen-
tation of parametric models, show under which conditions the posteriors
of such nonparametric Bayesian models are analytically tractable, and for
such models identify their sufficient statistics in an effort to provide a non-
parametric Bayesian analogue of a closed-form treatment.

1.1.1 Methods

The models and algorithms presented and discussed here draw on a number
of techniques from mathematical statistics and algorithmic data analysis,
the most important of which are briefly outlined below.
Nonparametric statistics. In the terminology of statistics, a probability
model is a class of probability distributions, and the model is fitted to data
by selecting the element of the class which best accounts for the observa-
tions. Such a model is called parametric if its elements are distinguished
from one another by the values of a set of parameters, and if the number
of model parameters does not depend on the number of observations. The
fineprint about a fixed number of parameters prevents the model from grow-
ing more complex as the number of observations increases. A nonparametric
model is also a parameterized probability model, but one which does not
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match the fineprint, i. e. the number of model parameters may grow with
respect to sample size (Wasserman, 2006). A density estimation model that
fits a single Gaussian bell-curve to a given data set, and adjusts the pa-
rameter estimate as more data comes in, is a parametric model. A Parzen
density estimator, which smoothes the data by centering one Gaussian at
each data point, is nonparametric. The fundamental trade-off between para-
metric and nonparametric models is that parametric models tend to come
with more theoretical guarantees and faster convergence rates (how much
data is needed to choose the optimal element of the model class), whereas
nonparametric models are better suited for problems requiring adaptation,
and often work impressively well in practice.

In clustering, representing each group by a parametric model is usually
a reasonable assumption, reflecting the intuition that individual clusters
should be of sufficiently simple structure. If the number of clusters is fixed,
such parametric components can be combined to form an overall parametric
model of the data (McLachlan and Peel, 2000). But if the number of com-
ponents is to be estimated from the data, and can change from one data set
to another, then the overall model must be nonparametric. The work pre-
sented in this thesis is primarily concerned with nonparametric models. A
further fundamental choice in the design of probabilistic models is whether
or not the model parameters should be treated as random quantities. Re-
garding parameters as random variables results in a Bayesian model, in
which the parameters have a probability distribution, and statistical esti-
mation attempts to determine the parameter’s distribution conditional on
a data set. Combination of the Bayesian and nonparametric approach has
long been fraught with difficulties, because a Bayesian model requires the
specification of a probability distribution on a given parameter space, and
nonparametric models effectively change the dimension of this parameter
space in dependence on the sample observation. Ferguson (1973) solved the
problem by observing that, since nonparametric models require an a prior-
ily unbounded number of parameters, they can be regarded as parametric
models with an infinite-dimensional parameter space. A Bayesian model can
be defined by specifying a parameter distribution (a prior) on the infinite-
dimensional space. Models of this type are now generally referred to as
nonparametric Bayesian models. The particular model proposed by Fergu-
son (1973), the Dirichlet process, randomly generates infinite-dimensional
quantities that are probability distributions on a suitable sample space. It
was originally applied to density estimation, and one property of the model
that has long worried statisticians is that distributions drawn from it are
discrete, even if defined over a continuous sample space. Roughly speaking,
even if the underlying data distribution is smooth, the Dirichlet process esti-
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mate will always consist of a series of spikes. Much work in nonparametric
Bayesian statistics has been devoted to modify the Dirichlet such that it
yields smooth estimates (see Walker et al., 1999, for an overview). More
recently, researchers in machine learning realized that the Dirichlet pro-
cess’ supposed shortcoming makes it ideally suited for clustering problems:
Regarded as a distribution on parameter space, each spike represents the
parameter of one cluster. The number and placement of spikes estimated
with a Dirichlet process depends on the data, such that the distribution can
be used to construct nonparametric clustering models which represent each
component by a parametric distribution, but do permit estimation of the
number of clusters from data (Ferguson, 1973; Antoniak, 1974).

Sufficient statistics and exponential families. Exponential families
are, roughly speaking, probability models completely specified by a statis-
tic of the data that has complexity bounded with respect to sample size
(Schervish, 1995). That is, if there is some function of the data with values
in a finite-dimensional space, and all information the data contains about
the model is summarized by the function value regardless of sample size, the
model is an exponential family, and vice versa (Pitman, 1936; Koopman,
1936). Exponential families are a common theme in the machine learning lit-
erature, in particular in the context of graphical models. Particular empha-
sis has been devoted to their geometric and convex-analytic properties, and
the ensuing consequences for parameter inference, such as “moment match-
ing” equations (Wainwright and Jordan, 2003, provide an overview). In the
work presented here, the emphasis is on sufficient statistics, and exponential
families arise, not so much for their information geometric properties, but as
the probability models defined by sufficient statistics. The principal impor-
tance of sufficient statistics is threefold: First, in the context of Bayesian
systems, they give rise to conjugate (hence solvable) models, and define
the mapping from prior and data to the posterior in an interpretable and
generic fashion. Second, in the context of nonparametric models, definition
of a model requires a rule of how additional observations (hence additional
degrees of freedom) are to be incorporated into the model. Sufficient statis-
tics define such rules: If the statistic is of first order, a new data point is
incorporated without affecting any other data. If it is of second order, such
as the classical kernel methods in machine learning, incorporation of a new
data point requires computation of pairwise interaction estimates with each
individual point previously observed. Third order corresponds to triplet
interactions, etc. And finally, we will argue that in infinite-dimensional
cases for which a Bayesian posterior is not representable by a Bayes equa-
tion, sufficient statistics provide an alternative, explicit representation of
the posterior distribution in conjugate models.
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Structural constraints. Structural constraints considered here are spatial
and temporal regularity assumptions on the input data – prior assumptions
that adjacent points in images tend to belong to the same segment, or that
the image structure in a video sequence changes smoothly over time. In con-
trast to “structured output learning” methods, the structural constraints
are an input assumption rather than a learning target. The constraints
effectively winnow down the size of the solution space, by excluding or dis-
carding as improbable solutions which are not sufficiently smooth. This is
exploitable for algorithmic efficiency, as it decreases the size of neighbor-
hoods in solutions space that have to be covered by local search methods.

Stochastic processes. Stochastic process models arise naturally in Bayesian
nonparametrics, since nonparametric models require an arbitrarily large
number of degrees of freedom. An unbounded number of degrees of free-
dom translates into infinite-dimensional parameter spaces, and Bayesian
methods require the definition of probability measures on such parameter
spaces (see e. g. Schervish, 1995). The study of infinite-dimensional proba-
bility models is the domain of stochastic process theory, as reflected by the
“process prior” terminology of Bayesian nonparametrics. Development of
these methods has progressed to a point where they are applicable in a vari-
ety of modeling tasks without actually resorting to the mathematical theory
of stochastic processes, by drawing on a given set of well-studied available
models, in particular Dirichlet, Gaussian and Levy processes (Ghosh and
Ramamoorthi, 2002; Rasmussen and Williams, 2006). Since part of this
thesis is concerned with the generic construction of nonparametric models,
we will have to make more explicit use of some basic notions of the mathe-
matical theory. It is not generally possible to find a closed-form, functional
representation of the probability measure defining an infinite-dimensional
random process. Stochastic process theory does, however, provide a gen-
eral way of defining an infinite-dimensional process distribution in terms of
an infinite number of finite-dimensional distributions (e. g. Loève, 1977a;
Bauer, 1996). If these finite-dimensional distributions can be specified in a
common functional form, a representation of the process is obtained which
is, in many regards, the closest general analogue to the representation of
a probability distribution by a closed-form distribution function. Our key
motivation for resorting to this type of representation is that it is ideally
adapted to nonparametrics: The finite-dimensional distributions employed
in the representations of the process are its finite-dimensional marginals
– which are precisely the distributions we actually have to work with in
Bayesian nonparametrics when only a finite number of measurements is ob-
served. A central question, addressed in Ch. 5, will be how this technique of
representation and marginalization ties in with the concepts of conditioning,
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sufficiency, and conjugacy, which are central to the application of process
models to Bayesian problems.

1.1.2 Contributions

1. Rank data clustering

The term “ranking” refers to a list of items, ordered by a (usually hu-
man) subject in order of preference. Each observation of a rank data
set is an ordered list of preferences. This kind of data arises for exam-
ple in psychological experiments or market surveys, and is increasingly
collected automatically, for example by web servers monitoring user
behavior. By clustering rank data, a data set can be scanned for
groups of people with similar preference behavior. In real-world rank
data sets, rankings are typically partial, i. e. each person in the survey
ranks only some out of the total number of items. Available clus-
tering models for rankings (e. g. Murphy and Martin, 2003) cannot
process partial rankings of varying lengths, and the computational
cost of model estimation algorithms grows super-exponentially in the
total number of ranked items. Common practice in the literature is to
discard all rankings in the data except the complete ones. This does,
in general, introduce an unnecessary sample bias. The computational
cost limits applicability of algorithms to short rankings (such as seven
or eight items). In Ch. 3.1, we show how a decomposition of the suffi-
cient statistic of the most widely used rank data model, the Mallows
distribution, can be used to construct a clustering model capable of
simultaneously representing partial rankings of different lengths. The
decomposition also gives rise to a closed-form solution for the model’s
partition function, resulting in an estimation algorithm each itera-
tion of which scales linearly in the number of items. The efficiency
of the inference algorithm makes the model applicable to rankings of
hundreds of items.

2. Constrained Bayesian nonparametric models.

To model smooth segmentations of images, we propose a Dirichlet
process with smoothness constraints for spatial data. Smoothness is
enforced by a Markov random field. The Dirichlet process generates
random values on the nodes of a Markov random field graph, which
aggregate into a random number of categories and couple along the
graph edges. By increasing the coupling strength, the model is forced
into smoother solutions. We show that the conjugate relation between
the parametric sampling model (the likelihood component of the DP
mixture) and the DP base measure is preserved despite the Markov
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random field interaction. We also show that the constrained model
can be sampled as efficiently as an unconstrained DP mixture, by
means of a collapsed Gibbs algorithm.

3. Nonparametric dynamic linear models.

A particularly interesting aspect of DP mixtures is that these models
cannot only estimate a model order for a given data set, but can adjust
it if the data changes over time. This is the case in the video segmen-
tation problem, where a clustering solution (a segmentation) has to
be computed on each consecutive frame. We introduce a dynamic DP
model capable of performing such model order adaptation. We derive
a multiscale Gibbs sampling algorithm capable of processing the large
amounts of data arising in video applications. The model builds on
the conjugate relation between the Dirichlet process prior and its pos-
terior (as discussed in more generality in Ch. 5), and is shown to be
the nonparametric (infinite-dimensional) analogue of the exponential
family dynamic linear models commonly used in Bayesian forecasting
(West and Harrison, 1997).

4. Algorithms for image and video segmentation.

Based on the models described above, we develop segmentation algo-
rithms for noisy images and video sequences. We study the application
of DP mixture clustering under spatial smoothness constraints to the
segmentation of noisy imagery, such as remote sensing radar data. We
apply the dynamic DP mixture to the video segmentation problem,
and show how inference can be conducted efficiently by multiscale
sampling techniques. We also study the application of mixture ap-
proximations to the characteristic gamma distributions of synthetic
aperture radar data to derive SAR image segmentation algorithms
that are efficient and robust with respect to preprocessing of the data.
Our nonparametric Bayesian approach to model order selection avoids
the notion of the “true” number of segments in an image. Depending
on the purpose of the segmentation, the method provides a level of
cluster resolution as a scalar parameter. Due to the properties of the
model, dependence of the number of clusters on the parameter is –
for reasonably well-distinguishable segments – not linear, but resem-
bles a step function. For a given image, most choices of the number
of clusters do not result in a consistent partition of the image. The
model tends to reproduce one consistent solution as the parameter
gradually increases, and then to jump directly to the next consistent
choice. This effect is additionally pronounced by the application of
smoothness constraints, which serve to emphasize the separation of
clusters.
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5. Construction principles for nonparametric Bayesian models.

The final chapter of the thesis addresses a fundamental theoretical
question, how nonparametric Bayesian methods may be generalized
beyond the usual Gaussian and Dirichlet process models. Both Gaus-
sian and Dirichlet processes can be regarded as prior distribution on
infinite-dimensional parameter spaces. The “nonparametric” charac-
ter of Bayesian methods based on such priors is that only a finite (but
variable) number of degrees of freedom is used to account for a given
finite set of observations. Both models are also constructed mathemat-
ically in a similar manner, by specifying the properties of the infinite-
dimensional model by means of its finite-dimensional marginals. For
the Gaussian and Dirichlet processes, these marginals are Gaussian
and Dirichlet distributions, respectively. We consider the construction
of nonparametric models from arbitrary finite-dimensional marginals.
In addition to the construction of the probability measures themselves,
we will be interested in what the finite-dimensional marginals may
tell us about those properties of the infinite-dimensional Bayesian
inference process. These are not properties of individual measures,
but of Bayesian equations, and so we will study the specification of
infinite-dimensional prior-posterior pairs in terms of finite-dimensional
Bayesian equations. Some key properties that we establish are the fol-
lowing:

• Complete Bayesian equations can be extended to the infinite-
dimensional case in essentially the same manner as individual
distributions.

• If (and only if) all finite-dimensional Bayesian equations required
to specify the infinite-dimensional model are conjugate, then so
is the infinite-dimensional model. This means, roughly speaking,
that finite-dimensional models with a posterior of closed ana-
lytic form determine an infinite-dimensional posterior of closed
analytic form. A consequence is that (under minimal regularity
conditions) nonparametric models with analytic posteriors can
be constructed only from exponential family models.

• If each finite-dimensional model has a sufficient statistic, which
is once again the case if and only if it is an exponential family
model, then the infinite-dimensional model also has a sufficient
statistic, and the functional form of the latter one can be derived
from its finite-dimensional counterparts. Since the Bayesian in-
ference process in conjugate models, i. e. the mapping that takes
the prior parameters and the data to the parameters of the corre-
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sponding posterior, is completely defined by the sufficient statis-
tic, this provides a generic, constructive specification of the non-
parametric model posteriors. Moreover, this specification of the
inference process remains applicable even for infinite-dimensional
models that do not admit an explicit Bayesian equation. In the
finite-dimensional case, the Bayesian equation gives an explicit
(though not necessarily tractable) formula for how the prior must
be modified, given data, to obtain the corresponding posterior.
Such an update equation cannot generally be derived for infinite-
dimensional model (despite the fact that the posterior exists),
which poses an additional hurdle for Bayesian estimation. The
infinite-dimensional analogue of the sufficient statistic provides
an alternative way of explicitly specifying the posterior.

We illustrate the general construction results by construction exam-
ples, including both the reconstruction of familiar standard models by
means of the results sketched above, and the construction of a new
model.

1.1.3 Organization

Chapter 2: Background

The brief summary of mathematical and algorithmic preliminaries provided
here serves both as a survey of existing work, and to provide a common
formal framework for the remainder of the thesis. In order to treat non-
parametric Bayesian systems as infinite-dimensional parametric models, we
use the representation of parametric models as conditional probability mea-
sures, and discuss sufficient statistics, exponential families, Bayesian non-
parametrics, and latent variable algorithms from this points of view.

Chapter 3: Clustering with Parametric Mixtures

Contributions are presented in the thesis organized according to model prop-
erties, rather than applications. Chapter 3 discusses clustering algorithms
based on classical mixture models, for applications to rank data (Sec. 3.1)
and synthetic aperture radar imagery (Sec. 3.2).

Chapter 4: Clustering with Nonparametric Mixtures

This chapter develops clustering algorithms with model order selection.
This includes clustering of spatial data under Markov random field smooth-
ness constraints (Sec. 4.1), with applications to segmentation of noisy image
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data, and clustering with model order adaptation, with application to video
segmentation (Sec. 4.2).

Chapter 5: Construction of Nonparametric Bayesian Models

The final chapter develops theoretical contributions. We derive construction
techniques for nonparametric Bayesian models, give criteria for when these
models admit a conjugate posterior, and study the existence and properties
of sufficient statistics of the models so obtained. A number of construction
examples are included to illustrate the method and its scope.

Appendix

The chief purpose of the appendix is to summarize for reference a number
of basic results from probability theory, which are drawn upon by proofs
in Ch. 5, but do not fit well into the context of Ch. 2. These results are
collected in Sec. A. Additionally, we provide a brief review of conditional
probability measures and conditional expectations (Sec. B), and of domi-
nated and undominated probability models (Sec. C).
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Chapter 2

Background

This chapter provides a summary of background material and literature
references. A rich and diverse literature exists on mixture models and clus-
tering, Bayesian models, Bayesian nonparametrics, and the corresponding
inference algorithms. Unfortunately, available references cover only part of
the material of concern in the following, from varying perspectives, and of-
ten at levels of mathematical abstraction that are either too restrictive or
too advanced for the problems considered in this work. The presentation in
this chapter is an attempt to bring together notions from different parts of
the literature, and to emphasize their common properties.

A note on the use of measure theory. The present dissertation
is a thesis in machine learning, and parts of the following presentation are
rather abstract by the standards of the field. This level of abstraction has
a specific purpose, which is to present parametric and nonparametric (or
finite- and infinite-dimensional) Bayesian models within a common frame-
work. One of the underlying themes of the following chapters will be that
both types of models share a number of important properties, and their
application for modeling purposes follows similar rules, a fact clarified by
a joint representation. Since some models, such as the Dirichlet process,
do not admit a density representation, a joint formulation has to generalize
beyond densities, and involves some basic notions of measure theory, in par-
ticular probability measures, abstract conditional expectations, and regular
conditional probabilities. Wherever the joint representation is not an issue,
the more familiar density formalism will be used.

17
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2.1 Notation

The lion share of notation required in the following concerns probability
models and random variables. Random variables are defined on a common,
abstract probability space, which will always be denoted (Λ,A,P). All ran-
dom variables are measurable mappings from this common space into their
respective sample spaces. Random variables will be written upper-case, and
sample spaces and their σ-algebras will be indexed by the associated random
variable, for example X : (Λ,A)→ (Ωx,Ax) for a random variable X with
sample space Ωx. The values in the sample space assumed by X are de-
noted by the corresponding lower-case letter x. Whenever random variables
are endowed with a particular meaning, such as observations or parameters,
X denotes observations, Θ a parameter variable, and Y a hyperparameter.
Arbitrary σ-algebras are denoted A, C etc. A symbol B always denotes a
Borel σ-algebra. The probability measure µ of a random variable X is the
image µ = X(P). When dealing with multiple random variables in the same
context, measures are indexed by their variable as µX or µΘ.

Conditional probabilities (cf. App. B) are written µ(X|Θ), where X may
be substituted by a measurable set and Θ by a σ-algebra, depending on the
context. Elements of the abstract probability space Λ are denoted ω, such
that the conditional probability is µ(X|Θ)(ω) when regarded as a function.
If µ(X|Θ) has a conditional density, it is written p(x|θ). The letter s gen-
erally denotes a sufficient statistic, and a capital S the random variable
S := s(X). Expectations are denoted E, and conditional expectations (in
the abstract Kolmogorov sense, see App. B) in the form E [X|C]. An expec-
tation may be indexed by the random variable or measure w. r. t. which it
is computed, e. g. EX [ . ] or EµΘ|X [ . ]. The index denotes the random vari-
able rather than a parameter: EΘ [ . ] denotes an expectation computed by
integrating w. r. t. Θ, not the expectation of some variable X for parameter
value Θ.

2.2 Parametric Models

The familiar form of a parametric probability model is that of a parameter-
ized family of densities p(x|θ). The prototypical example is the Gaussian
family indexed by mean and variance. More generally, when abstracting
from the density representation, a parametric model is parameterized fam-
ily of probability measures.
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2.2.1 Parametric Families

A key decision in the definition of a parametric model is whether or not to
regard the parameter as a random variable. If the parameter is non-random,
it can be understood either as an index without functional meaning, specify-
ing an element within the density, or as parameter of the measure regarded
as a function. If it is considered a random variable, it is meaningful to ask
how the parameter and the observation variables couple. Regarding the
parameter as a random quantity is the most basic characterization of the
Bayesian approach to estimation. Without further restrictions, a parametric
family may be arbitrarily complex (choose an arbitrary set with each ele-
ment indexed by itself). In the following, our notion of a parametric model
will be Bayesian, in so far as the parameter will be regarded as a random
variable, and elements of the model family are indexed by conditioning.

Definition 1 (Parametric family). Let (Λ,A,P) be an abstract probability
space, and (Ωx,Bx) and (Ωθ,Bθ) two Borel spaces. Let X : (Λ,A) →
(Ωx,Bx) and Θ : (Λ,A)→ (Ωθ,Bθ) be two random variables, and µ := X(P)
the image measure of P under X. Then the conditional distribution µ(X|Θ)
is called a parametric family of models. For any θ ∈ Ωθ, the measure
µ(X|Θ = θ) will be denoted µX|θ.

The most convenient case is when the sample spaces are Polish spaces.
A Polish space is a complete separable metric space. The concept of a Polish
space will be discussed in more detail in Sec. 2.4.2. For the moment, it is
sufficient to say that almost any set usually encountered as a sample space,
including Euclidean spaces, finite and countable discrete spaces, and even
(separable) Banach and Hilbert spaces, are all Polish. The advantage of
assuming a Polish sample space for a parametric model as defined above is
that the model can be guaranteed to be a regular conditional probability
(cf App. B), that is, we can assume that the parametric model µ(X|Θ) is
a probability measure on X for every possible value of Θ. Sample spaces
will always be assumed to be Polish if they are finite-dimensional. Infinite-
dimensional sample spaces can not generally be assumed as Polish (if the
dimension is not countable). In classical, i. e. non-Bayesian statistics, a
parametric family is a parameterized family of functions which constitute
measures for each possible value of the parameter. The definition above is
more restrictive regarding the possible complexity of the model, which as a
conditional expectation on a Borel space is equivalent to a Markov kernel.

The most convenient representation for a parametric family of measures
is as a family of densities. If such a representation exists for all elements
of the family w. r. t. a single, common reference measure, the family is
called dominated by the reference measure (cf App. C for a precise defini-
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tion). For example, the Gaussian family can be represented by the familiar
bell-curve densities w. r. t. Lebesgue measure, so the family of Gaussians is
dominated by Lebesgue measure. Considering undominated models is not
usually important for finite-dimensional problems, but becomes relevant in
the infinite-dimensional case of Bayesian nonparametrics. Many nonpara-
metric Bayesian models (including the Dirichlet process posterior on the real
line) are not dominated, and cannot be properly represented as a density.

Definition 2 (Parametric family of densities). Let µ(X|Θ) be a parametric
family, such that Bθ contains singletons. Assume that {µ( . |{θ})|θ ∈ Ωθ} is
dominated by some measure ν on (Ωx,Bx). Then the set {pX|θ|θ ∈ Ωθ} of
conditional densities

pX|θ =
dµ( . |{θ})

dν
(2.2.1)

will be called a parametric family of densities.

For purposes of statistical estimation, the implication of the term “para-
metric model” is that the complexity of the model is bounded with respect
to sample size. Common examples are models with parameters taking val-
ues in some vector space of fixed, finite dimension. Such bounded model
complexity guarantees an arbitrary amount of observed information to be
available per model degree of freedom in the asymptotic case, as opposed
to non-parametric models (such as Parzen window estimation), for which
the number of model parameters grows with sample size. The restrictions
of parametric models typically lead to faster convergence rates of estimates,
both in the Bayesian sense (posterior convergence) and in the classical sense
(convergence of point estimators).

2.2.2 Sufficiency

A measurable function of observed data is called a statistic. Statistics are
chosen in data analysis to filter out a certain property of the data (such as
the variance statistic, which provides a simple quantification of the data’s
scatter). Parameters in parametric models are typically chosen to corre-
spond to some statistic of the data. Information about the data not resolved
by the parameter statistic is encoded in the model class. The information
captured by the statistic discriminates between individual models within
the class. If a statistic captures all information the data may contain about
the parameter (and hence about the element of the model class), it is called
a sufficient statistic. Since Bayesian and classical estimation follow different
notions of how a model is to be determined, they suggest different notions
of sufficiency. In the classical case, the sufficient statistic has to completely
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specify a particular element of the model class. In the Bayesian setting,
it has to completely specify a posterior distribution over models. The two
cases turn out to be equivalent, provided that the model class is dominated.

Basic definition

“A statistic”, writes Fisher (1922),

“. . . satisfies the criterion of sufficiency when no other statistic
which can be calculated from the same sample provides any
additional information as to the value of the parameter to be
estimated.”

Translating Fisher’s requirement into a probabilistic definition is a bit sub-
tle, because in the classical view, θ is not a random value. Any probabilistic
formulation has to be stated in terms of sampling values of X, instead of
the parameter. Suppose the sufficient statistic s is a measurable mapping
on Ωx with values in some space Ωs. That is, X : (Λ,A) → (Ωx,Bx) and
s : (Ωx,Bx) → (Ωs,Bs). Let S be the random variable S := s(X) (the
composition mapping S = s ◦X), and suppose that it assumes the specific
value S = s0 on a given sample. Fisher considers information about the
parameter provided by a sample, meaning the definition only has to resolve
information about adjustments of θ which would change the distribution of
X. If S = s0 provides all such information, knowing S completely specifies
the distribution of X. In terms of densities, the Fisher definition is then
formalized by requiring

p(x|S = s, θ) = p(x|S = s) . (2.2.2)

Just for the present context (and nowhere else in this thesis) we have to
stress that θ is no random variable, so we write a probability measure with
parameter θ as µ(X; θ), and as µ(X|S; θ) when conditioned on S. The
definition looks most familiar for densities, but existence of densities is not
essential: Replace the parameterized set p( . | . ; θ) of densities in (2.2.2) by
a parameterized set of measures µ( . | . ; θ). LetM = {µ( . ; θ)|θ ∈ Ωθ} be an
indexed family of measures. Though the eventual purpose is to consider a
parametric family, in which θ represents the value assumed by a parameter
variable, θ is for now considered simply as an index that identifies an element
of M. Likewise, the index range Ωθ will at first be assumed to be an
arbitrary set. The following definition is due to Halmos and Savage (1949).

Definition 3 (Sufficient statistic). Let (Ωx,Bx) and (Ωs,As) be measurable
spaces, and M = {µ( . ; θ)|θ ∈ Ωθ} a family of probability measures on
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(Ωx,Bx). Let S : (Ωx,Bx) → (Ωs,As) be a measurable map. Then S is
called a sufficient statistic for M if there is a Markov kernel k : Bx ×Ωs →
R≥0 such that for all θ and all B ∈ Bx, s ∈ Ωs,

µ(B|S = s; θ) = k(B, s) µ( . ; θ)-a.e. (2.2.3)

The definition states that the conditional probability given S does not
depend on which member of the family is considered: There is a single
conditional probability function (the Markov kernel k) that simultaneously
describes conditioning on S for all random variables Xθ. It matches Fisher’s
intuitive definition, as quoted above, by reading equation (2.2.3) from right
to left: If the value of s is known, we can sample observations of X from
k(B, s), and knowing θ in addition, or changing the value of θ on the left-
hand side of the equation, does not affect the conditional distribution. Since
conditioning on S means conditioning on the σ-algebra σ(S) = S−1(Bs), the
definition immediately generalizes from sufficient statistics to sufficient σ-
algebras (by substituting an arbitrary sub-σ-algebra C ⊂ Bx for σ(S)).

Definition 4 (Sufficient σ-algebra). Let again M = {µ( . ; θ)|θ ∈ Ωθ} be a
set of probability measures on a Borel space (Ωx,Bx). A σ-algebra C ⊂ Bx
is called sufficient for M if there is a Markov kernel k : Bx × Ωx → R≥0

such that, for all B ∈ Bx,

µ(B|C; θ)(x) = k(B, x) µ( . ; θ)-a.e. (2.2.4)

This abstracts quite a bit from the idea of a statistic of data being suffi-
cient for the estimate of a parameter: A system of sets now is sufficient for
a set of measures. The intuitive meaning of the definition is that the level of
resolution of the σ-algebra Bx, which describes observations, can be coars-
ened to that of the smaller σ-algebra C, without losing any information
relevant for the discrimination between different measures in M. Conse-
quently, whenever a given C is sufficient for M, any σ-algebra C′ of finer
resolution (C ⊂ C′) should be sufficient as well. This is indeed true if the
set M is dominated, but as we will discuss below, not in the undominated
case.

For dominated families, sufficiency can be characterized by the Neyman
factorization criterion, which has become so well-known that it is used as
a definition of sufficiency in many texts. The theorem is reproduced here
only for the sake of completeness, but will not actually play an explicit role
in our applications of sufficiency.

Theorem 5 (Neyman factorization criterion). Let {pX|Θ( . |θ)|θ ∈ Ωθ} be a
parametric family of densities. Then a statistic S is sufficient for Θ if and
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only if there are functions g1, g2 such that

∀θ ∈ Ωθ : pX|Θ(x|θ) = g1(x)g2(S(x), θ) . (2.2.5)

Sufficiency in Bayesian models

The above definition of sufficiency can be regarded as classical rather than
Bayesian, not only for eventually being due to R. A. Fisher, but also because
it implies the notion of a particular value assumed by the parameter. The
Bayesian way of stating that knowledge of S(X) conveys all information
about the parameter is to say that the parameter’s posterior given X is
specified completely by S(X), as in the following definition. To emphasize
independence of the sufficient statistic from the choice of the prior distri-
bution, the parametric family, usually written as µ(X|Θ), is written as a
conditional probability given a σ-algebra.

Definition 6 (Bayesian sufficiency). Let µ(X|C) be a parametric family
as in Def. 1, where C is a sub-σ-algebra or A, and let S : (Ωx,Bx) →
(Ωs,As) be a measurable map. Then S is called a sufficient statistic for
the parametric family if, for any parameter variable Θ : (Λ,A) → (Ωθ,Bθ)
satisfying σ(Θ) = C,

µ(Θ|X) = µ(Θ|σ(X ◦ S)) Θ(P)-a.e. (2.2.6)

This definition basically states that S completely specifies the posterior
for the chosen family, regardless of the choice of the prior. The distinction
in notation between µ(X|C) and the customary µ(X|Θ) is made because the
choice of the prior is limited by the choice of the parametric family: The
prior is defined by Θ, as the image measure µθ := Θ(P). The parametric
family is defined by conditioning on the σ-algebra C, not on the measure
µθ. (In terms of density models, the mathematical form of a model p(x|θ)
depends only on the values assumed by θ, not on how probable these values
are to occur.) We therefore have to define the parametric family first, by
choice of C, and then limit our choice of priors to those induced by random
variables which generate just this C. This is a subtlety invisible in common
density models, where C is such that it contains all singletons, and the
conditional model is chosen by conditioning the density pointwise.

The two definitions of sufficiency (classical and Bayesian) are equivalent
if the parametric family is dominated, but can differ in the undominated
case, which is relevant in particular for Bayesian nonparametrics. The fol-
lowing theorem is given in this form by Schervish (1995), but is essentially
due to Blackwell and Ramamoorthi (1982).
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Theorem 7 (Classical and Bayesian sufficiency). Classical sufficiency (Def. 3)
implies Bayesian sufficiency (Def. 6), with equivalence if there is a σ-finite
measure ν on (Ωx,Bx) such that µX|θ � ν for all θ ∈ Ωθ.

If the familyM of parametric models is not dominated, two key proper-
ties are no longer guaranteed: Bayesian sufficiency does not imply classical
sufficiency, and super-σ-algebra of a sufficient σ-algebra need not be suffi-
cient. The implication of a statistic being sufficient in the Bayesian, but not
classical sense is that the Bayesian model is unable to resolve at least some
cases which are distinguished as different by the classical model. Blackwell
and Ramamoorthi (1982) give a hypothesis testing example for which the
two notions of sufficiency differ – with the consequence that there is no clas-
sical test achieving zero error probability, whereas the Bayesian version of
the test always results in a Bayes-sufficient result with probability 1. The
Bayesian is always certain to be right, the classical test is always uncertain.

Remark 8 (Sufficiency as a compression property). In general, a sufficient
statistic for a given model is not a single function s, but actually a collection
of functions sn, one for each sample size n ∈ N. For an arbitrary parametric
model, we have to expect the range of sn to get more and more complex as
the sample size n increases. References to “the” sufficient statistic implicitly
assume that there is a function s : Ωx → Ωs, where Ωx is the sample space
and Ωs some space of finite dimension, such that sn is computable as the
arithmetic average

sn(x1, . . . , xn) :=
1
n

n∑
i=1

s(xi) . (2.2.7)

The implication is that the range of sn is always contained in Ωs, regardless
of the sample size. Provided that the dimension of Ωs is finite, this is
a compression property: A sample x1, . . . , xn has n · dim(Ωx) degrees of
freedom, but the information extracted by the sufficient statistic can always
be summarized in a vector of dim(Ωs) dimensions.

From an abstract point of view, every parametric model admits a suf-
ficient statistic: For any sample x1, . . . , xn, choose sn as the identity map-
ping on sample space. The statistic “extracted” from the sample is then the
sample itself, and trivially preserves all information contained in the obser-
vation. Apparently, in this case, there is no compression, and the dimension
of the statistic’s range grows with sample size. When we refer to sufficient
statistics in the following, we will always assume sn to take the form of an
arithmetic average. At first glance, this may seem a severe restriction, but
actually constitutes almost no loss of generality: Roughly speaking, a model
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that admits a sufficient statistic of bounded complexity (dimension of Ωs
bounded w. r. t. sample size) also admits a sufficient statistics representable
as an average. This is a consequence of the so-called Pitman-Koopman
lemma, to be discussed in Sec. 2.2.4. Parametric models relying explicitly
on the average representation of a sufficient statistic are called exponential
family models, which will be defined in the next section.

2.2.3 Exponential Families

A generic approach to the construction of probability models is to decide
which properties of a data source are of interest, and to define a set of
statistics that measure these properties. The model is then defined such
that it resolves those properties measured by the statistics, and only those
– which implies that the chosen statistics are sufficient for the model. The
parametric models constructed in this manner are the exponential family
models. Given a set of statistics, there is a generically defined class of ex-
ponential families for which these statistics are sufficient. Conversely, if a
model has sufficient statistics (the complexity of which does not grow with
sample size), then it is an exponential family model. Another way of saying
that a model resolves only information contained in the sufficient statistics
is to say that, given the constraint that the statistics assume certain val-
ues, the model is maximally indetermined (or maximally random). Maximal
randomness can be formalized as maximal entropy, and exponential families
are maximum entropy models, with constraints specified by the sufficient
statistics. In statistical physics, such models are known as Gibbs distribu-
tions. Much and more has been written about exponential families, their
geometric properties and their application in Bayesian estimation. Key ref-
erences include Barndorff-Nielsen (1970, 1973, 1978); Efron (1978); Brown
(1986); Diaconis and Ylvisaker (1979). In the following, we will regard ex-
ponential families largely as a by-product of sufficient statistics, and largely
neglect their geometric and convex analytic interpretation.

Consider data x1, . . . , xn generated conditionally independent given the
value θ of some random quantity Θ. Assuming that the conditional dis-
tribution µ(X|Θ) is dominated, the joint conditional distribution of the
observations xi has conditional density f(x1, . . . , xn|θ) with respect to a
carrier measure ν. By conditional independence, it can be represented as

f(x1, . . . , xn|θ) =
n∏
i=1

fX|θ(xi|θ) . (2.2.8)

Any conditional density can be rewritten as fX|θ(x|θ) = 1
Z(θ) exp(−H(x|θ)),

also known as an energy representation with energy function H, such that



26 Parametric Models

for the joint density,

f(x1, . . . , xn|θ) =
1

Z(θ)n

n∏
i=1

exp(−H(xi|θ)) . (2.2.9)

If a sufficient statistic s is applied to each sample, the component densities
can be rewritten, by suitable modification ofH, as 1/Z(θ) exp(−H(s(xi)|θ)).
The simplest possible form of H that correlates s(x) to θ is a bilinear energy
−H(s(x)|θ) = 〈s(x)|θ〉, for which the joint density above can be rewritten
as

f(x1, . . . , xn|θ) =
1

Z(θ)n
exp
( n∑
i=1

〈s(xi)|θ〉
)
. (2.2.10)

The corresponding distribution model can in fact be derived directly
from the sufficient statistic, by entropy maximization. (The following deriva-
tion is heuristic in so far as it omits relevant smoothness assumptions on
the densities.) Let s : Ωx → Ωθ be some statistic, and assume that Ωθ
has an inner product. For a probability density p, denote by S the entropy
functional

S[p] := −
∫

Ω

p(x) log(p(x))dν(x) . (2.2.11)

Then the variational problem

max S[p] (2.2.12)
s.t. Ep [s(X)] = θ (2.2.13)

is solved by a density of the form

p(x) =
exp(〈s(x)|θ〉)∫

exp(〈s(x)|θ〉)ν(dx)
. (2.2.14)

This is apparently just the bilinear energy case described above. The expo-
nential family for the sufficient statistic s will be defined as follows.

Definition 9 (Exponential Family Model). Let fX|θ be a parametric family
of densities for which Ωθ has an inner product 〈 . | . 〉. The family is called
an exponential family if the conditional density is expressible in the form

fX|θ(x|θ) =
1

Z(θ)
h(x) exp (〈s(x)|θ〉) , (2.2.15)

where s : Ωx → Ωθ is measurable, h : Ωx → R+, and θ ∈ T ⊂ Ωθ such that
T is open and convex.
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The definition differs from the maximum entropy model above in the
function h. Since h is finite and positive, it can always be absorbed into
the carrier measure, resulting in the maximum entropy model for the mod-
ified carrier h(x)ν(dx). An exponential family model in the above sense
is therefore uniquely determined be choosing the data domain, the param-
eter space, the carrier measure, and the sufficient statistic. The integral
form Z(θ) =

∫
h(x) exp(〈s(x)|θ〉)dν(x) of Z is a necessary consequence. A

more general definition is obtained by substituting the image τ(θ) of the
parameter θ under some suitable mapping τ . The resulting class of distri-
butions is mathematically equivalent, since τ may be transformed out to
obtain an equivalent model on Ωθ. Some well-known models, such as the
Weibull distribution, constitute exponential family models with respect to
all parameters only if a parameter transform is allowed – which is, however,
just a way of saying that the customary representation of the Weibull in-
volves a parameter transform, which could be eliminated without changing
the model’s sampling properties. Popular exponential family models in-
clude the normal distribution, the gamma and its special cases (χ2, Erlang
and exponential), the binomial, Bernoulli, beta, Poisson, hypergeometric,
inverse normal, inverse gamma, negative binomial and Rayleigh distribu-
tions (all one-dimensional). Multidimensional examples include Gaussian,
Wishart, multinomial, Dirichlet and Mallows models. Bernardo and Smith
(1994) and Brown (1986) provide a (partial) taxonomy.

The energy representation (2.2.9) of the model can be interpreted as
follows. Assume that the set of all admissible densities is defined by models
of the form (2.2.9) such that, for any θ, the energy H( . |θ) is in L2(Ωx). The
component functions si of the vector s(x) = (s1(x), . . . , sd(x)) span a linear
subspace span{s1, . . . , sd} of L2(Ωx). The exponential family models for s
are just those densities whose energies are elements of the finite-dimensional,
linear subspace.

2.2.4 Pitman-Koopman Theory

An exponential family always admits a sufficient statistic. The theorem
below states that the converse is also true: Parametric models admitting
sufficient statistics of fixed dimension are exactly those representable as
exponential family distributions. A substantial amount of literature has
been devoted to this subject, known as Pitman-Koopman theory (or by any
combination of the names Pitman, Koopman, Darmois and Fisher). The
following version of the Pitman-Koopman result is due to Jeffreys (1961).

Theorem 10 (Pitman-Koopman lemma). Let the random quantities X1,
X2, . . . be conditionally i.i.d. given the value of some random quantity Θ,
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and assume that the conditional distribution µ(Xi|Θ) is dominated by a mea-
sure ν. Let fX|θ be the corresponding conditional density. Assume further
that the support of fX|θ is independent of the value of θ:

∀θ1, θ2 ∈ Ωθ : supp f( . |θ1) = supp f( . |θ2) ν-a.e. (2.2.16)

Then if there is a sufficient statistic s : Ωx → Ωs for the model and if Ωs
has finite dimension, fX|θ is an exponential family model.

The above statement of the lemma implicitly assumes observations to
be exchangeable, by conditional independence. The preconditions of the
theorem can be modified in a variety of manners. Some proofs do not rely
on a θ-invariant support of the density, whereas others omit the assumption
of identically distributed observations. Versions omitting the above condi-
tions substitute others, often involving analytic smoothness properties of
the densities. The one requirement common to all flavors of the result is
the fixed, finite dimension of Ωs, and hence the constant complexity of the
sufficient statistic w. r. t. sample size.

2.2.5 References

The concept of sufficiency is due to Fisher (1922), and thus predates Kol-
mogorov’s work on abstract conditional expectations (Kolmogorov, 1933).
It received a rigorous treatment in the light of conditional distributions by
Halmos and Savage (1949), for the dominated case. The Neyman factor-
ization theorem is in part due to Fisher (1922, 1934). The name “Neyman
theorem” originated with the article by Halmos and Savage (1949), who cite
as their source a somewhat obscure work by Neyman (1935), published in
Italian in the Giornale Dell’Istituto Italiano degli Attuari. Quite probably,
later citations of this work are due to the reference in Halmos and Savage
(1949), rather than to the original publication. The work of Halmos and
Savage (1949) is extended by Bahadur (1954), who devotes a detailed dis-
cussion to the problem of domination and is the first to raise the question
of whether a refinement of a sufficient σ-algebra (i. e. a σ-algebra containing
a sufficient σ-algebra) can be non-sufficient – a counter-intuitive situation,
and impossible in the dominated case. The question is answered in the af-
firmative by Burkholder (1961). An analogue of the Neyman factorization
criterion for undominated sufficiency is obtained by Ghosh et al. (1981).
The problem of minimality in the undominated case was first studied by
Basu and Ghosh (1969).

The Pitman-Koopman property was first hinted at by Fisher (1934).
Three independent versions of the actual result appeared in the following
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two years, first by Darmois (1935) in the Comptes Rendus, followed by the
works of Koopman (1936) and Pitman (1936) in the anglophone literature.
Already, the assumptions of the proofs differ. Pitman does not require the
densities’ support to be parameter-independent, but considers only one-
dimensional parameter space. Koopman’s result applies to multiple dimen-
sions, but requires parameter-independent densities. Only Koopman explic-
itly mentions the requirement, tacitly implied by both other authors, that
the densities be analytic functions. Numerous modifications have since been
obtained, under different conditions on the densities involved. For example,
Barankin and Maitra (1963) generalize beyond the case of identically dis-
tributed samples. Andersen (1970) considers discrete sample spaces. Other
references include Dynkin (1961); Brown (1964); Denny (1964, 1967, 1972);
Barndorff-Nielsen and Pedersen (1968); Hipp (1974); Huzurbazar (1976);
Lauritzen (1988). A similar result, again under regularity conditions, is
available for stochastic processes (Küchler, 1982a,b).

2.3 Bayesian Inference

Bayesian inference treats the model, or the parameter specifying the model,
as a random quantity. Since the parameter is random, it has a distribution,
and the objective of Bayesian inference is to determine the distribution of
the parameter given the data. Application to a given problem requires a
suitable representation of the conditional distributions involved, usually in
terms of a density (though densities may not be applicable in the Bayesian
nonparametric case).

A random model can be specified by choosing a parametric family {µX|θ|
θ ∈ Ωθ} of models, and treating the parameter as a random quantity, as is
actually done in Def. 1 of parametric families. Bayesian inference given an
observation X then requires determination of the conditional probability
µΘ|X . The image measure µΘ := Θ(P) is called the prior, and the condi-
tional probability µΘ|X or µΘ|X1,...,Xn the posterior. The parametric model
is referred to as the likelihood or sampling distribution.

2.3.1 The Bayes Equation for Dominated Models

Computation of the posterior is in general a nontrivial task. Like many
other problems, it is greatly simplified if the parametric family is suitably
dominated: Determining the posterior, as a conditional distribution, be-
comes much easier if it possesses a density conditional on the observations.
That in turn requires the family of all posteriors {µΘ|X(Θ|X = x)|x ∈ Ωx}
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to be dominated. To actually compute a conditional density, a particu-
lar dominating measure has to be chosen. The natural choice is the prior:
Since the posterior is a distribution on the parameter, it should preferably
be represented w. r. t. the measure on the parameter variable, and that is
the prior µΘ. The conditional density of the posterior can then be read as a
reweighting which the distribution of the parameters undergoes due to ob-
servations. To ensure existence of the conditional with respect to the prior,
the posterior family must be shown to be dominated by the prior. The fol-
lowing theorem states that, if the parametric model is dominated, then (i)
the posterior family is automatically dominated by the prior, and (ii) the
density of the posterior with respect to the prior has a generally applicable
representation in terms of the parametric family’s density. Note that the
assumption of the model constituting a parametric family of densities in the
statement of the theorem implies that the model is dominated.

Theorem 11 (Bayes equation). Let {pX|θ|θ ∈ Ωθ} be a parametric family
of densities, and µΘ the prior measure on Θ. Let Nx ⊂ Ωx be the set of all
x for which

∫
p(x|θ)µΘ(dθ) ∈ {0,+∞}. Then for any x 6∈ Nx, the posterior

µΘ|X=x has Radon-Nikodym derivative

dµΘ|X

dµΘ
(θ|x) =

pX|θ(x|θ)∫
p(x|θ)dµΘ(θ)

. (2.3.1)

Though the set Nx is a potential liability, it does not actually cause
problems, because observations in Nx do not occur:

Lemma 12. The prior predictive probability of Nx, i. e. the probability of
observing x ∈ Nx under a two-stage sampling model θ ∼ µΘ and x ∼
µ(X|Θ = θ), is zero.

In Bayesian nonparametrics, the domination assumption often fails. For
example, for the Dirichlet process on the real line, the family of posteriors
is not dominated by the prior, and cannot be represented by a Radon-
Nikodym derivative. Such models require alternative ways of representing
the posterior measure, as will be discussed in detail in Chapter 5.

2.3.2 Conjugate Bayesian Models

The posterior density dµΘ|X
dµΘ

in the Bayes equation (2.3.1) exists whenever
the parametric sampling model is dominated, but it does not in general
possess a closed-form solution, and need by no means be feasible to evaluate
for a given problem.
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The only known general class of models for which such a closed-form
solution exists are exponential family models in combination with their so-
called conjugate priors. A family of priors is called conjugate to a given
sampling model if any posterior under observation is an element of the prior
family. This property is commonly referred to in the literature as closure
under sampling of the prior family. The following definition states precisely
the same in formal terms, and looks more complicated then it actually is
because it involves a conditional probability (the posterior). As anything
containing a conditional, it comes with an “almost surely” caveat, and has
to specify to which measure the caveat relates.

Definition 13 (Conjugate prior family). Let M = {µX|θ|θ ∈ Ωθ} be a
parametric family of models, and N a family of priors. ThenM and N are
called conjugate families if for any ν ∈ N and any observation x ∈ Ωx, the
posterior µΘ|X(Θ|X = x) is an element of N , almost surely with respect to
µν,X =

∫
µX|θ(X|θ)dν(θ).

Further requirements are necessary to make this property non-trivial,
since apparently the set of all probability measures is conjugate to any
model family. The term conjugate prior as used in the Bayesian literature
typically implies that the prior family is a parametric family, and that there
is some well-defined rule that computes the parameter of the posterior from
the parameter of the prior and the observed data.

Definition 14 (Conjugate parametric model). LetM = {µX|θ|θ ∈ Ωθ}. A
parametric family N = {µΘ|y|y ∈ Ωy} is a conjugate parametric family of
priors forM if, for all n ∈ N, x1, . . . , xn ∈ Ωx and y ∈ Ωy, there is a y′ ∈ Ωy
such that µΘ|Y (Θ|Y = y′) is a version of the posterior µΘ|Xn,Y (Θ|X1 =
x1, . . . , Xn = xn, Y = y).

Sufficiency by Conjugacy

The definition of a conjugate parametric model above is closely related to
sufficiency in the Bayesian sense: For each n ∈ N, define a mapping sn as
follows: For any x1, . . . , xn ∈ Ωx and y ∈ Ωy, let y′ be a value specifying a
posterior within N , and define sn by sn(x1, . . . , xn, y) =: y′. The posterior
is then completely determined by the value of sn, much like in the definition
of Bayesian sufficiency. The difference between the two definitions is that
sufficiency requires the posterior to be determined by s under any prior.
The conjugate case only guarantees a functionally determined posterior for
those priors which are in N . The immediate question is whether conjugacy
implies sufficiency, or whether it is possible to find a conjugate prior even if
the model does not admit a sufficient statistic.
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The following lemma states that, for dominated families, conjugacy im-
plies sufficiency if the prior densities in N do not vanish anywhere on pa-
rameter space.

Lemma 15 (Non-degenerate conjugate models admit sufficient statistics).
Let µX|θ(X|Θ) and µΘ|y(Θ|Y ) be two dominated parametric families on
Borel spaces (Ωx,Bx) and (Ωθ,Bθ). Let the families be conjugate, in the
sense that there is a function s : Ωx × Ωy → Ωy such that the posterior for
any prior µΘ|y(Θ|Y = y) in the second family under observation X = x is
µΘ|y(Θ|Y = s(x, y)). Then if the density of the prior µΘ|y(Θ|Y ) is strictly
positive on Ωθ ×Ωy, the function s( . ) := s( . , y) is a sufficient statistic for
µX |θ(X|Θ) in the classical sense.

The condition that all prior densities be positive essentially requires the
priors to distribute their probability mass over the same region in Ωθ, since
regions in which all prior densities are zero could be removed from the
parameter space. This is a similar requirement on parameter space to that
imposed by Th. 10 on Ωx. For lack of a reference on this result, La. 15 is
proven below.1 It is possible to construct pathological examples of conjugate
models that do not yield a sufficient statistic: Consider for instance the a
set of priors consisting of all Dirac measures on the parameter space Ωθ, for
some smooth sampling distribution. Then for every Dirac concentrated at
some θ ∈ Ωθ, the posterior is again the same Dirac measure, whatever the
observations. The class is therefore conjugate. Since the Dirac measures
are parameterized by their position, the identity mapping IdΩθ completely
determines the posterior parameter. Apparently, this does not imply that
IdΩθ (which does not even depend on the data) is a sufficient statistic for
the sampling distribution. However, such examples only exist in cases where
the prior is in some way degenerate.

Proof (La. 15). The proof proceeds in two steps. By Def. 3, classical suffi-
ciency requires the existence of a Markov kernel k that satisfies Eq. (2.2.3).
Step 1 derives a Markov kernel to serve as a candidate for k. Step 2 then
shows that the kernel indeed satisfies Eq. (2.2.3).
Step 1. Let νX and νΘ be dominating measures for the two families. Define

1Though I am convinced that a result comparable to La. 15 should exist somewhere
in the literature, I am not aware of a reference. The proof given here is adapted from a
proof given by Schervish (1995) for the equivalence of classical and Bayesian sufficiency
(cf Th. 7). The measure ρ used in the proof is constructed just as in Schervish’s proof.
All we have to do is express the density of ρ as a function of the conjugate posteri-
ors. The remainder of the proof, though somewhat lengthy, then follows by elementary
computations.
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the respective conditional densities as

fX|θ :=
dµX|θ

dνX
and gΘ|y :=

µΘ|y

dνΘ
. (2.3.2)

Because the family µX|θ is dominated, there exists (according to Cor. 59)
a measure ρ on (Ωx,Bx) such that (i) µX|θ � ρ � νX and (ii) ρ has a
representation as a countable convex combination of measures in the family.
That is,

ρ =
∞∑
i=1

ciµX|θi (2.3.3)

for some countable sequences {θi}i∈N of parameters in Ωθ and {ci}i∈N of
mixture weights, where

∑
i∈N ci = 1. By the chain rule for Radon-Nikodym

derivatives, the density of µX|θ (for any θ) with respect to ρ is

dµX|θ

dρ
=

fX|θ∑
i∈N cifX|θi

. (2.3.4)

The key to the proof is now to express the density dµX|θ
dρ as a function of the

conjugate posteriors, and hence as a function that depends on s(x, y), but
not directly on x. Since both families are dominated, the Bayes equation
(Th. 11) applies, and the density of the posterior is

dµΘ|x,y

dνΘ
(θ|x) =

fX|θ(x|θ)g(θ|y)∫
Ωθ
fX|θ(x|θ)g(θ|y)dθ

. (2.3.5)

To simplify notation, we will write f(x|y) for the integral in the denomi-
nator, where we set f(x|y) := 1 in cases where the integral takes infinite
or zero value. Since the model is conjugate, the posterior density can be
expressed by a density in the prior family, as

dµΘ|x,y

dνΘ
(θ|x) = g(θ|s(x, y)) . (2.3.6)

The regularity assumption on g (that g does not vanish anywhere on Ωθ)
in order to guarantee that the quotient (2.3.4) can be expressed in terms
of the posterior and the prior: Since g is non-zero everywhere the Bayes
equation (2.3.5) can be solved for fX|θ, and substitution into (2.3.4) gives

dµX|θ

dρ
=

g(θ|s(x, y)) f(x|y)
g(θ|y)∑

i cig(θi|s(x, y)) f(x|y)
g(θi|y)

=
g(θ|s(x, y))

g(θ|y)
∑
i ci

g(θi|s(x,y))
g(θi|y)

=: hy(θ, s(x, y)) .

(2.3.7)
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Note that the function h on the right-hand side is indexed by the hyper-
parameter y. Since the left-hand side is independent of y, but the y does
occur in the argument s(x, y) of h, the form of h must in general be ad-
justed whenever y changes, to make the overall expression independent of
the hyperparameter. To show that s( . , y) is indeed sufficient for any fixed
value of y, we have to show that the Markov kernel k in Eq. (2.2.3) exists.
To this end, we fix y and henceforth avoid explicit use of y in all equations,
writing s(x) for s(x, y) and h for hy to avoid awkward notation. Define a
new random variable U := s(X) and take the conditional probability of the
image measure s(ρ), given U = u:

k(A, u) := E [IA|U = u] for A ∈ Bx . (2.3.8)

Since (Ωx,Bx) is a Borel space, k(A, u) can be chosen as a version that is a
Markov kernel. From here on, the proof is largely a matter of computation.
Step 2. What remains to be shown is that k indeed satisfies Eq. 2.2.3, i. e.
that k(A, u) is a version of the conditional probability µX(A|Θ = θ, U = u)
for all θ ∈ Ωθ. By definition, this is the case if k integrates as the conditional
probability would over all sets C,∫

C

k(A, u)ds(µX|θ)(u) =
∫
C

µX(A|Θ = θ, U = u)ds(µX|θ)(u) . (2.3.9)

This equality is what we have to show. Note the catch: The integral here is
evaluated with respect to the image measure s(µX|θ), but the definition of
k is with respect to s(ρ). Consider first the expression on the right, which
by definition of conditional probabilities is∫

C

µX(A|Θ = θ, U = u)ds(µX|θ)(u)

pull-back=
∫
s−1(C)

µX(A|Θ = θ, U = s(x))dµX|θ(x)

cond. prob.= µX|θ(A ∩ s−1(C)) .
(2.3.10)

The last expression can be rewritten as

µX|θ(A ∩ s−1(C)) =
∫
s−1(C)

IA(x)dµX|θ(x) . (2.3.11)

Since s−1(C) ∈ σ(s), the variable IA integrates over the set s−1(C) just as
its conditional expectation E [IA|σ(s)], and we write∫

s−1(C)

IA(x)dµX|θ(x) =
∫
s−1(C)

E [IA|U = s(x)] dµX|θ(x) . (2.3.12)
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In comparison to the first integral in Eq. (2.3.10), the condition Θ = θ
has been eliminated from the conditional expectation in the integrand. To
substitute k in the integrand, the integral measure has to be transformed
to s(ρ). By (2.3.4) and (2.3.7), dµX|θ = h(θ, s(x))dρ(x), and by the chain
rule for densities,

ds(µX|θ)(u) = h(θ, u)ds(ρ)(u) . (2.3.13)

Rewrite the integral as∫
s−1(C)

E [IA|U = s(x)] dµX|θ(x) =
∫
C

E [IA|U = u]h(θ, u)ds(ρ)(u)

2.3.8=
∫
C

k(A, u)h(θ, u)ds(ρ)(u) .

(2.3.14)

Finally, the integral of k is transformed back to measure s(µX|θ), as∫
C

k(A, u)h(θ, u)ds(ρ)(u) =
∫
C

k(A, u)ds(µX|θ)(u) , (2.3.15)

which is just the left-hand side of (2.3.9), and the proof is complete.

In combination with the equivalence of the two notions of sufficiency
(Theorem 7) and the Pitman-Koopman result as given by Theorem 10, an
immediate consequence is the following.

Corollary 16 (Parametric conjugate models are exponential families). Let
M = {µX|θ|θ ∈ Ωθ} be a parametric family and N = {µΘ|y|y ∈ Ωy} a
family of conjugate priors. Assume that:

1. Ωy is a subset of a finite-dimensional space.
2. M is dominated.
3. The mapping Sn is measurable for each n ∈ N.
4. The conditional densities fX|Θ of M have support independent of θ.
5. The density of the prior µΘ|y is strictly positive on Ωθ for all y.

Then M is an exponential family model.

Condition (1) excludes, in particular, the trivial case where N is the
set of all measure on Ωθ. In this case,any possible posterior is necessarily
an element of N , and the model is trivially conjugate. Condition (4) may
be modified according to the version of the Pitman-Koopman lemma used
in the proof (cf Sec. 2.2.4 and Sec. 2.2.5). Whether the assumption of a
dominated family is crucial is an interesting question, since available proofs
of the Pitman-Koopman result rely on the classical definition of sufficiency,
and Bayesian sufficiency is weaker in the undominated case.
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Conjugacy by sufficiency

If a model admits a sufficient statistic of dimension fixed with respect to
sample size, a conjugate prior of generic form can be derived from the Ney-
man factorization.

Theorem 17. Let M = {µX|θ|θ ∈ Ωθ} be a dominated parametric family.
Assume there is a sufficient statistic sn : Ωnx → Ωy such that Ωy is contained
in a finite-dimensional space. Let g2,n(sn(x1, . . . , xn), θ) be the correspond-
ing sn-dependent term in the Neyman factorization. Let ν be any measure
on Ωθ such that the denominator of

g(θ|y, n) :=
g2,n(y, θ)∫

g2,n(y, θ)dν(θ)
(2.3.16)

is non-zero and finite for all y ∈ Ωy. Then the parametric family of densities

N := {g(θ|y, n)|y ∈ Ωy, n ∈ N} (2.3.17)

is conjugate to M.

A proof is given by Schervish (1995), based on a derivation by DeGroot
(1970). Pitman-Koopman theory essentially limit the applicability of the
theorem to exponential family models. For an exponential family model,
the result carries over to non-integer values of n. The following definition
is originally due to Raiffa and Schlaifer (1961).

Definition 18 (Natural conjugate prior). LetM be an exponential family
model with sufficient statistic s. Define Ωy as the convex hull of the image
s(Ωx). Let ν be any measure on Ωθ such that

K(λ, y) :=
∫

exp(〈θ|y〉 − λφ(θ))dν(θ) (2.3.18)

is in (0,+∞) for all y ∈ Ωy and all λ ∈ R+. Then the family N defined by
the conditional densities

gΘ|λ,y =
1

K(λ, y)
exp(〈θ|y〉 − λφ(θ)) , (2.3.19)

with respect to the measure ν is called the natural conjugate family of priors
for M with respect to ν.

A family so defined is conjugate to M for any integer value of λ by
Th. 17. Since M is an exponential family model, each sufficient statistic
sn is of the form sn(x1, . . . , xn) = 1

n

∑n
i=1 s(xi), and non-integer values
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of λ can be derived by simple linear interpolation. By defining Ωy as a
convex hull, the image of s is closed under averaging. For any exponential
family M with a natural conjugate family (2.3.19), the posterior index,
i. e. the abstract mapping that specifies the posterior based on prior and
observations, can be specified in closed form. If sample values x1, . . . , xn
are observed, and the prior is by (λ, y), then the posterior is indexed by
(λ̃, ỹ) with

λ̃ := λ+ n and ỹ := y +
n∑
i=1

s(xi) . (2.3.20)

From a technical point of view, the special form obtained for exponential
family models is due to the sample-wise application of the sufficient statistic,
and the log-linearity of the model in s. The consequence is a linear geometry
in parameter space, where the mapped observations and their averages,
parameters, and hyperparameters all constitute points in the space, and
posteriors are obtained by linear interpolation. A result of Diaconis and
Ylvisaker (1979) uses this linear arithmetic to characterize the set of all
conjugate priors in exponential families. They show that conjugate priors
are those for which the expectation of the sample mean with respect to the
posterior is linear.

Theorem 19 (Diaconis-Ylvisaker characterization of conjugate priors). Let
M be a natural exponential family dominated by Lebesgue measure. Let N
be a family of priors. Then N is natural conjugate in the sense of Def. 18
if and only if

EµΘ|X1,...,Xn

[
EfX|θ [X|θ]

]
=
y + nx̂

a+ n
. (2.3.21)

That is, given observations x1, . . . , xn, the expected value of a new draw
x under unknown value of the parameter is linear in the sample average
x̂ = 1

n

∑
xi.

Interpretation of Natural Conjugate Priors

A natural conjugate prior of a given exponential family model is the model
equivalent to that family under the transformation defined by the sufficient
statistic. Consequently, the prior can be interpreted as a posterior of the
same model for “initial” or “previous” observations drawn under a uniform
prior. The prior parameters λ and y can then be interpreted as the ini-
tial sample size and the average sufficient statistic of the initial sample,
respectively.
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This is easily made precise for the case where s has a differentiable
inverse. As a sufficient statistic is applied pointwise, it can be regarded
as a preprocessing step. Define a new random variable U := s(X), and
assume that any observations x1, x2, . . . are put through the map s, yielding
u1, u2, . . . , and then are forgotten. Accordingly, the model (2.2.15) may be
translated into an equivalent model on Ωθ, by transforming out the sufficient
statistic s: If s is invertible, then x(u) = s−1(u) is well-defined, and

f(x)dx = f(x(u))
dx

du
du = f(s−1(u))

ds−1

du
(u)du . (2.3.22)

In particular, for the conditional density (2.2.15),

fX|θ(x|θ)dx = fX|θ(s−1(u)|θ)ds
−1

du
(u)du = h̃(u) exp (〈u|θ〉 − φ(θ)) du ,

(2.3.23)

where h̃(u) := h(s−1(u))ds
−1

du (u). For n observations, the density of the
average ûn is, by n-fold convolution of the density in (2.3.23) with itself,
given by (∗ni=1h) (ûn) exp (〈ûn|θ〉 − nφ(θ)). Absorbing the convolution of h
into the carrier, ûn has density

p(θ|ûn) ∝ exp (〈ûn|θ〉 − nφ(θ)) , (2.3.24)

which is precisely the canonical conjugate prior family of M, with y = ûn
and λ = n. In short, the canonical conjugate prior can be regarded as a
result of the following program:

1. Choose a uniform prior U(θ) on the parameter domain Ωθ. Depending
on the domain, U may or may not be proper.

2. Draw n initial samples x1, . . . , xn from the Bayesian model.
3. Compute the average ûn of the sufficient statistic.
4. Define the prior on θ as the posterior of θ given ûn under the uniform

prior.

2.4 Bayesian Nonparametrics

The models commonly referred to as nonparametric Bayesian were origi-
nally introduced to apply Bayesian techniques in a manner similar to clas-
sical nonparametric methods, which allow the number of parameters or
explanatory variables to grow with sample size (Ferguson, 1973). The re-
sult has been a class of Bayesian models on infinite-dimensional spaces,



Bayesian Nonparametrics 39

which includes the Dirichlet process and Polya trees as prominent examples,
and terminology has been extended in hindsight to include other infinite-
dimensional models, in particular Gaussian process priors. A distinguished
role among nonparametric Bayesian models play those which define distri-
butions on distributions, and are applicable as priors in Bayesian problems.
Such priors do not randomly generate a parameter for the sampling distribu-
tion, but instead generate the sampling distribution itself, though there is no
sharp distinction between the two cases for infinite-dimensional parameter
sets. Most statistics texts on nonparametric Bayesian models exclusively
discuss random distribution models. Overviews along these lines include
Ferguson (1974); Walker et al. (1999); Ghosh and Ramamoorthi (2002);
Müller and Quintana (2004). For an introduction to Gaussian process mod-
els, see for example Rasmussen and Williams (2006).

2.4.1 Basic Definition

Parametric estimation techniques are methods which (i) estimate a paramet-
ric model from data and for which (ii) the dimension of parameter space
is constantly upper-bounded w. r. t. sample size. Roughly speaking, for
asymptotic sample size, the definition assures an infinite number of obser-
vations to be available per parameter dimension. Nonparametric estimation
methods are methods which do not require (ii). The classic example of non-
parametric methods are Parzen or kernel density estimators. These models
are parameterized, by a global bandwidth and one location parameter per
observation, but are “nonparametric” because the number of parameters
grows with sample size.

Bayesian models do not generally tie in well with nonparametric strate-
gies. They are inherently parametric, because they define a prior probability
on a given parameter space. Changing the parameter space by adding di-
mensions amounts to switching models. For example, Parzen estimators
center a Gaussian at each observation. They may, in principle, be equipped
with a prior on bandwidth or location, but each sample would require its own
posterior, and the Bayesian model would have to replicate n-fold. Moreover,
the model would require a conceptual reinterpretation, since each individual
Gaussian density is used as a smoothing kernel, rather than a probability
model of the generative process explaining the sample. So-called Bayesian
nonparametric models approach the problem by providing a large number
of parameters, only a few of which are used per sample observation. Sev-
eral introductory texts (e. g. Schervish, 1995) characterize such models as
Bayesian models on infinite-dimensional spaces. Here is a slightly different
definition:
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Definition 20 (Nonparametric Bayesian model). A Bayesian model, con-
sisting of a parametric sampling model µX(X|Θ) and a prior distribution
µΘ(Θ), is called nonparametric if (i) there is a number n0 ∈ N such that ex-
plaining each additional observation requires at most n0 additional degrees
of freedom in parameter space, and (ii) the expected number of degrees
of freedom required to explain any observation x1, . . . , xn is monotonically
increasing in n.

An obviously necessary provision not made here explicitly is that the
model has a sufficient number of degrees of freedom available to explain
a given sample, which is the principal motivation for defining models of
infinite dimension. If a nonparametric Bayesian model has an infinite num-
ber of degrees of freedom, it can explain a sample of any given finite size.
Taking an infinite limit of the sample size is also possible without changing
the model, so asymptotic behavior of the model can be studied. There-
fore, almost all nonparametric Bayesian models common in the literature
are infinite-dimensional models, and the terms “nonparametric Bayesian
model” and “infinite-dimensional Bayesian model” are used equivalently by
some authors. All nonparametric Bayesian models considered in the follow-
ing chapters are also of infinite-dimensional type.

Nonetheless, it is worth noting that the characteristic property of a
nonparametric Bayesian model is not infinite dimensionality, but the ability
to explain partial observations. A model of high, but finite dimension may
be perfectly sufficient if sample size is bounded in advance. Required are
a rule for how to explain individual observations by means of some of the
d degrees of freedom, and how to choose d given the sample size. The
following definition formalizes the idea of a partial observation, a sample
that accounts only for a subset of the model’s degrees of freedom.

Definition 21 (Partial observation). Let X be a random variable with mul-
tiple degrees of freedom, i. e. with values in a space ΩE of product structure

ΩE =
∏
i∈E

Ω{i} , (2.4.1)

where Ω{i} are arbitrary component spaces. For any I ∈ E, the respec-
tive partial product over elements of I only will be denoted ΩI. Then an
observation of the restricted variable X I = X|ΩI will be called a partial
observation2.

2The concept of a partial observation may be regarded as a form of censored data.
The term partial is used here instead, because “censoring” is typically taken to imply a
systematic effect, such as right-censoring or interval-censoring. For a partial observation
XI, the selection of indices I at which measurements are available may itself be random.
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In a nonparametric Bayesian model, the partial observation X I usually
represents the finite observed sample x1, . . . , xn, and the size of the index set
I grows with n. Bayesian and classical nonparametric models differ in how
the estimation process affects model dimension, Classical models discard
superfluous dimensions not determined by data. Bayesian nonparametric
models keep all dimensions, and determine degrees of freedom that cannot
be estimated from data by prior assumption. A Parzen estimate for a sample
of size n has precisely n location parameters. A nonparametric Bayesian
model of parameter dimension d, where d may or may not be finite, will
estimate a d-dimensional posterior regardless of sample size.

2.4.2 Construction Techniques

If nonparametric Bayesian methods require measures on infinite-dimensional
spaces, the first question to consider is whether and how such measures can
be defined, and represented in a manner suitable for inference. A Gaussian
of finite dimension can be written in closed form, as a density with respect
to Lebesgue measure. Extending the concept of a Gaussian to infinite-
dimensional space is less straightforward. There is no such thing as a mean-
ingful “infinite-dimensional limit” of the density function, because its car-
rier, Lebesgue measure, cannot be extended to infinite-dimensional space
(Skorohod, 1974). Certain interesting infinite-dimensional models which
have been constructed in other ways can be shown not to admit density
representations (including the Dirichlet process). A necessary step in non-
parametric Bayesian constructions is thus to abandon the familiar notion
of modeling with densities, and look for alternative representations. Since
the introduction of the Dirichlet process in 1973, various constructions have
been considered, from among which the following have emerged:

1. Modified stochastic processes (constructive)

2. Subdivision strategies (constructive)

3. De Finetti’s theorem (unconstructive)

4. Kolmogorov’s extension theorem (constructive)

All four approaches will be discussed in more detail in the following, with
a particular emphasis on (4). They are not mutually exclusive, and the
Dirichlet process in particular can be derived by means of each. The ex-
tension theorem is arguably the most powerful approach, since any of the
processes in (1) and (2) can also be constructed by (4), even if the approach
of modifying an existing process with known properties or of applying a
subdivision method may be more convenient.
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Modified stochastic processes

This approach is generally popular for the generation of random probability
distributions over the real line or its intervals. The distribution is defined
by drawing the cumulative distribution function as the sample path of a
stochastic process with non-negative increments. For example, Ferguson
(1973) gives a definition of the DP on an interval [a, b] which generates a
CDF as follows: (1) generate a random function f as the sample path of a
gamma process on [a, b], and (2) normalize f by setting f̄(x) := f(x)

f(b) . The
use of CDFs largely restricts the approach to the real line. In principle,
one may consider generating a density function instead, but the merit of
CDFs is that their properties apart from normalization, i. e. a zero limit at
the lower interval boundary and monotonicity, are local. Local properties
can be guaranteed a. s. by conditions on the increments of a process (the
positive increments of the gamma process guarantee a. s. monotonicity of
its trajectory).

A rather general class of such processes that has emerged as priors on
CDFs are neutral to the right (NTR) processes Doksum (1974); Ferguson
and Phadia (1979). Lévy processes are another class of candidate mea-
sures, as the most thoroughly studied type of independent increment pro-
cesses. Their application in Bayesian nonparametrics has been considered
by Wolpert et al. (2003); Wolpert and Ickstadt (2004). Lévy processes have
a certain practical appeal, because of the simple closed form of their charac-
teristic function. The point here is that parameterized classes of stochastic
processes do not in general admit a joint representation in form of a con-
ditional density, as standard parametric models do. But even measures
without a density still have a well-defined characteristic function (Fourier
transform), and for some processes, the characteristic function has a simple
form depending on the process parameters. This is the case, for example, for
Gaussian processes, for which the characteristic function has a functional
form closely resembling the Gaussian density in finite dimensions (Skoro-
hod, 1974). The same is true for Lévy processes, by the Lévy-Khinchine
formula. For such models, the characteristic function does not just provide
an abstract tool for convergence proofs, but substitute (to some degree) for a
density representation. At least for practical applications, where a tractable
posterior is required, the idea of generating a CDF as a normalized draw
from a Lévy process turns out to be of limited scope. To generate a CDF,
a Lévy process must be non-decreasing (a so-called subordinator). The only
such model that admits a conjugate posterior after normalization is the
gamma process (James et al., 2005). The normalized model is then, once
again, the DP. Other common types of stochastic processes remain to be
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studied in detail. Processes defined by means of stochastic differential equa-
tions have been studied for Bayesian nonparametric modeling e. g. in recent
work of Griffin (2007). The “exponential families of stochastic processes”
of Küchler and Sørensen (1997) may be another promising class of models.
These are parameterized stochastic processes with a parameter function θ
and a time index t. The definition of the exponential family stochastic pro-
cess model requires that for all t <∞, the process has a likelihood function
of the form

Lt(θ) =
1

Zt(θ)
exp
( d∑
i=1

sti(θ)X
t
i

)
, (2.4.2)

where (i) d is independent of the time index t and (ii) the components
Xt

1, . . . , X
t
d are real-valued stochastic processes, which may depend on the

past, but not on the future. These models may be of particular interest
for Bayesian nonparametrics because they unify counting processes, au-
toregressive models, diffusions and jump-diffusions, random fields and Lévy
processes from an exponential family point of view.

Subdivision Strategies

A random probability measure is a random function on a σ-algebra (with
some special properties). σ-algebras can be generated from systems of par-
titions, and can be constructed as a consistent rule for assigning probability
mass to random partitions of its domain into measurable sets. Subdivision
or random partition constructions emphasize this point of view. The “Chi-
nese restaurant process” was constructed in this manner by L. E. Dubins
and J. Pitman (Pitman, 1995). Based on work of Doksum (1974) and Fer-
guson (1974) on tailfree processes, Mauldin et al. (1992) suggest to generate
random probabilities over partitions of the domain by means of a tree. The
definition of the random measure requires a given recursive partitioning of
the domain, i. e. a set of partitions Hn such that Hn+1 is a refinement of
Hn. (The σ-algebras generated by each Hn form a filtration indexed by
n.) It is no loss of generality to assume that for n 7→ n + 1, each set in
Hn is partitioned into two subsets. The partitions can then be arranged
in a binary tree, and probabilities are assigned in a consistent manner by
equipping each node with a probability for its right and left subtree. The
probability assigned to a set on level n is the product over all probabili-
ties along the path from the root to the set node. The measure so obtained
becomes random if the edge probabilities are drawn at random. Not surpris-
ingly, the construction assumes these probabilities to be Dirichlet random
vectors (with two entries, and therefore beta random variables). The model
is called a Pólya tree, and has been studied with some attention because it
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contains the DP as a special case, and for other settings of the parameters
can generate almost surely continuous random measures.

De Finetti’s Theorem

An exchangeable sequence of random variables (with values in Polish spaces)
is conditionally independent, by de Finetti’s theorem (Th. 48 in App. A).
The joint measure of the sequence can be represented as the mixture of a
product measure against a suitable mixing distribution (sometimes called
the “de Finetti prior”). Hewitt and Savage (1955) have shown that for
a given sequence, the mixing distribution is unique. Defining an infinite
sequence of exchangeable random variables, for example by specifying a
generation algorithm that guarantees exchangeability, thus implicitly but
uniquely defines a measure. In principle, this is a construction approach,
though not a constructive one. Blackwell and MacQueen (1973) construct
the DP by proving that it is the mixing distribution for the generative model
which they call the “infinite Polya urn scheme”. De Finetti’s theorem is
given, for reference, in Sec. A. Its application in the Bayesian context is
discussed by Bernardo and Smith (1994). Kallenberg (2005) provides a
thorough treatise in terms of probability theory.

Kolmogorov’s Extension Theorem

The extension theorem constructs a measure on an infinite-dimensional
space directly from its finite-dimensional marginals. The customary text-
book definition of the Gaussian process, for example, defines it as “a collec-
tion of random variables, any finite number of which have a joint Gaussian
distribution”. The Kolmogorov theorem guarantees that, given these joint
Gaussian distributions on all possible finite subsets of the collection, the
Gaussian process measure on the whole (usually infinite) set exists and is
unique. Similarly, Ferguson (1973) defines the DP on general domains by
means of the extension theorem, as the infinite-dimensional measure defined
by Dirichlet marginals. The discussion in Ch. 5 is based primarily on the
extension theorem, and so the next paragraph will describe the technique
in some detail.

2.4.3 Kolmogorov’s Extension Theorem

The extension theorem of Kolmogorov provides the most general tool avail-
able for the construction of nonparametric Bayesian models. It is not usually
required for the discussion of standard models such as the Dirichlet, but is
presented here in some detail because of its substantial role in Ch. 5.
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Construction of Infinite-Dimensional Probability Models

Bayesian nonparametric models are typically probability distributions on
some random object with an infinite number of elements, and the first prob-
lem to consider in Bayesian nonparametrics is how such a distribution can
be defined. More precisely, denote the individual, “scalar” elements of the
random variable by X{i}, where i ∈ E and E is an infinite index set. The
elements can be collected to form an infinite quantity XE, which may be an
infinite vector, a function, an operator, an infinite graph etc. The question
addressed in this paragraph is: If the distributions of the individual ele-
ments X{i} are known, and possibly the joint distributions on finite subsets
of elements, how can a joint distribution on XE be specified?

Construction methods for probability measures on infinite-dimensional
objects have been thoroughly studied in the theory of stochastic processes.
Two techniques are of fundamental importance:

1. Product measure constructions: Independent variables or increments.
2. Kolmogorov’s extension theorem: Measures with dependency struc-

tures.

The first case is rather obvious: Say measures µ{i} are known. Then these
can be combined to form an infinite product measure

µ :=
⊗
i∈E

µ{i} . (2.4.3)

If each random variable has sample space Ω{i}, and is defined on a σ-algebra
A{i}, then the product measure lives on space

∏
i∈E Ω{i} with σ-algebra⊗

i∈E A{i}. No further assumptions are required for µ to be well-defined,
which is worth noting, because some topological structure will be required
if the random variables are to be dependent. Apparently, though, the con-
struction is not particularly interesting; after all, why construct a joint
measure if it treats random variables individually anyway. However, mea-
sures on independent random quantities are put to great use in stochastic
process theory by interpreting the elements as increments rather than vari-
ables of a process. The resulting independent increment processes constitute
a major part of the stochastic process landscape, and also find applications
in Bayesian nonparametrics.

The second means of construction is Kolmogorov’s extension theorem. In
a nutshell, the theorem states that the joint distribution on X is completely
determined if all its marginals on finite subsets {X{i}|i ∈ I, I finite} of
axes are known. Somewhat surprisingly, the marginals on finite-dimensional
subsets suffice. The Kolmogorov theorem is a regularity result, stating that
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a set function which satisfies the requirements of a probability measure
cannot be arbitrarily complex, and hence knowing those of its values which
are determined by the marginals are sufficient to completely determine the
measure.

Mathematical setting

Construction results for product measures (independent random variables)
can be proven under the sole assumption that the given components are
probability measures on arbitrary σ-algebras. Considering random vari-
ables of arbitrary dependence structure requires certain minimal conditions
on the topology of the underlying spaces. The general case that has been
established are random variables that take values in so-called Polish prod-
uct spaces, equipped with a Borel σ-algebra. A Polish space is a separable,
metrizable topological space.3 Borel σ-algebras are those generated by the
open sets, and hence defined by the topology of a space. Intuitively, the
definition of a Polish space is chosen to ensure that both the space (the un-
derlying point set) and its σ-algebra behave sufficiently similar to the real
numbers for essential properties of measures to be preserved. Examples
of Polish spaces include Euclidean space, any separable Banach or Hilbert
space, countable discrete spaces, countable products of spaces that are them-
selves Polish, and any open or closed subset of another Polish space.
Spaces and σ-algebras. We again consider the infinite set of random
variables X{i}, indexed by the infinite set E. For illustration, suppose
the construction defines an Gaussian process, i. e. an infinite-dimensional
Gaussian distribution on the variable XE. A random value drawn from this
distribution can be thought of as an infinite-dimensional vector, and hence
as a random function. Then the index set E of dimensions is the domain
of the function. We thus have to choose E = R, or E = [0, 1]3 or E = Z

3Kolmogorov originally formulated the extension theorem for products of real axes
(Euclidean spaces and their infinite limit). Products of Polish spaces are a considerable
generalization. They are not required to be vector spaces, and hence have no a priorily
attached notion of an algebraic operation on their elements, nor need they satisfy the
same closure properties. Being metrizable means the topology is induced by some metric.
The definition of the space does not imply any particular metric, but the condition
ensures that the structure of its topology is consistent with the properties of metrics.
Separability is the existence of a countable number of open sets, such that every open set
is representable as a union of some of these sets. The open sets generate the σ-algebra,
and σ-algebras are closed under countable unions. The separability condition ensures
that, based on a countable system of sets, a σ-algebra can be defined which makes every
open set measurable. For metrizable spaces, an equivalent criterion for separability is
that any point can be approximated arbitrarily well by the elements of a countable set,
which is just the case if the space has a dense countable subset. For reference see Fremlin
(2006); Bourbaki (2003).



Bayesian Nonparametrics 47

to obtain random functions on the real line, or on the three-dimensional
unit cube, or on the integers, respectively. Formally, the only requirement
on E is that it is non-empty. Denote by E∗ = {I ⊂ E||I| < ∞} the set
of its finite subsets. All individual component variables X{i} take values
in a Polish space Ω{i} = Ω. The sample space of the infinite-dimensional
random variable is the infinite product space ΩE =

∏
i∈E Ω. A notable

difference to the construction of product measures mentioned above is that
ΩE is an infinite repetition of the same space Ω. The finite-dimensional
marginals, used to define the infinite-dimensional measure, are the marginal
distributions on the finite-dimensional subspaces of ΩE. Any finite subset
I ∈ E∗ of indices determines such a subspace, which will be denoted ΩI.
Each marginal random variableX I has a marginal measure µI, defined on the
Borel algebra BI on ΩI. The domain of the constructed, infinite-dimensional
measure will be the infinite product algebra BE =

⊗
i∈E B(Ω).

Projections and marginals. A key notion in the following will be that of a
projection, because marginals are projections. The equivalence of marginals
and projections is due to the product structure of the space, and is of
great convenience, because a probabilistic operation (marginalization) can
be represented as a geometric one (projection). A projection operator be-
tween pairs of subspaces of ΩE is defined as follows: Let I ⊂ J . Then the
projector PJ,I as the mapping which takes each element of ΩJ to its restric-
tion on I. That is, if xJ ∈ ΩJ is regarded as a list (xi)i∈J , the projector
removes all elements except those with index in I, PJ,Ix

J = (xi)i∈I . The
projection immediately generalizes to sets (by application to all points in
the set). The preimage under projection by PJ,I will be denoted RJ,I, that
is, RJ,Ix

I = {xJ ∈ ΩJ|PJ,Ix
J = xI}. For obvious reasons, preimages under

projection are often referred to in the literature as cylinder sets (imagine the
preimage under projection of a disc-shaped set). If AI ⊂ ΩI, the preimage
RE,IA

I is called the cylinder with base AI. For a given space ΩI with I ∈ E∗,
the set of all cylinders with base in the σ-algebra BI, the system RE,IBI, is
again a σ-algebra. The union Z(Ω) =

⋃
I∈E∗ RE,IBI forms an algebra4, but

no σ-algebra.

The Extension Theorem

The pivotal ingredient of the extension theorem is the following definition:

4Like a σ-algebra, an algebra is a system of a set, with almost the same properties as a
σ-algebra, except for closure under intersection: An algebra is only required to be closed
under intersections of any finite number of sets (whereas a σ-algebra must be closed under
countably infinite intersections).
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Definition 22 (Projective family). Let {µI|I ∈ E∗} be a family of prob-
ability measures on the spaces (ΩI,BI). The family is called a projective
family if, for any I, J ∈ E∗ with I ⊂ J ,

PJ,Iµ
J = µI , (2.4.4)

or equivalently, µJ(RJ,IA
I) = µI(AI) for any AI ∈ BI.

Suppose the measure µE of the infinite variable XE was already given.
Then, if all its marginals were computed on the finite-dimensional subspaces
of ΩE, these marginals would be consistent in the following sense: Say J,K ∈
E∗ are two sets of axes which overlap. Let I be a common subset, I ⊂ J
and I ⊂ K. Then the marginals of µJ and µK on the common subspace
ΩI must be identical. If marginalization is formalized as projection, the
resulting relation between marginals is just Eq. 2.4.4. In other words, the
definition above states that a projective family is a system of measures that
could form the marginals of a common measure µE, if such a measure exists.
The Kolmogorov theorem states that the downward projection is reversible:
If the measures are projective, the measure µE exists and is unique.

Theorem 23 (Kolmogorov extension theorem). Let {µI|I ∈ E∗} be a pro-
jective family of probability measures on the spaces (ΩI,BI). Then there
exists a uniquely defined measure µE on (ΩE,BE) with the measures µI as its
marginals.

The measure µ defined by extension is called the projective limit of the
projective family {µI|I ∈ E∗}. The intuitive meaning of the theorem is
roughly the following: A probability measure is a set function of the form µ :
A → [0, 1], where A is a σ-algebra. To satisfy the definition of a probability
measure, an arbitrary set function has to satisfy a number of conditions.
The conditions impose an amount of regularity on µ that severely restricts
its degrees of freedom. As a consequence, if a set function is a probability
measure, it can be completely determined by its values on a suitable subset
of the domain BE. This is roughly comparable to other forms of regularity,
such as a continuous function being completely determined by its values on
a dense subset, or band-limited functions being determined by their values
on a grid. The extension theorem states that the subset Z of BE (on which
the values of µE are given by the marginals) is sufficiently rich to completely
determine µE on the whole of BE.

Remark 24 (Extension to uncountable dimensions). The extension the-
orem holds irrespectively of whether or not the index set E is countable,
but the uncountable case may lead to certain complications. The theorem
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defines a measure on the infinite product algebra B(Ω)E. The domain of in-
terest is usually the Borel algebra of the infinite-dimensional product space
B(ΩE). If E is countable, the two are identical, B(Ω)E = B(ΩE). If E is
not countable, then generally only B(Ω)E ⊂ B(ΩE), such that the extension
theorem defines a measure only on part of the domain of interest. In partic-
ular, if Ω contains more than one element, the singletons of ΩE (the subsets
of ΩE containing only a single point) are not in B(Ω)E. In other words, the
extended measure, which assigns values to sets included in B(Ω)E, cannot be
applied to sets of the form {xE}, where xE ∈ ΩE. Intuitively, the extended
measure and σ-algebra constructed by the extension theorem are too coarse
to resolve the singletons. For Bayesian estimation, sample observations are
singletons, and should be measurable. Hence for some examples, notably
the Dirichlet process, additional considerations are required when defining
the domain of the process measure, such as restriction of the continuous
domain to a dense, countable subset.

2.4.4 Dirichlet Processes

All construction approaches sketched above yield the DP as a common spe-
cial case, and so a variety of definitions is available. Definition 25 below is
due to Ferguson (1973), and based on Kolmogorov’s extension theorem.

Definition and Basic Properties

The Dirichlet process is, roughly speaking, the infinite extension of the
finite-dimensional Dirichlet distribution. More precisely, it is the projec-
tive limit of a projective family of finite-dimensional Dirichlet distributions,
as defined by Th. 23. The Dirichlet distribution is an exponential family
model on the d-dimensional real simplex Sim (R, d), which generates finite
probability distributions on d events. As an exponential family model, it
has a concentration parameter β ∈ R+ and an expectation parameter π.
Since the simplex is closed under averaging, the expectation is also a finite
probability distribution, π ∈ Sim (R, d). The density is

pDir(θ|β, π) :=
1

ZDir(β, π)
exp
( d∑
j=1

(βπj − 1) log θj
)

(2.4.5)

with partition function ZDir(β, π) := Γ(β)−1
∏d
j=1 Γ(βπj). In terms of ex-

ponential family models, the parameter and sample space are identically
Sim (R, d), and the sufficient statistic is the identity mapping5. The model

5The name “Dirichlet distribution” is due to the partition function, rather than the
actual probability model. The partition function is an integral over the simplex, and thus
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is the natural conjugate prior of the multinomial family. To apply the
extension theorem, we have to choose a suitable index set and subset struc-
ture. The Gaussian process construction uses index sets I ∈ E∗ consist-
ing of a finite number of points in the domain E of the random function.
The I-marginal of the Gaussian process represents the distribution of the
random function’s values at these points. The Dirichlet process construc-
tion attempts to produce random probability measures on some sample
space Ω. The domain of a measure is a σ-algebra. In analogy to the GP
case, the index set of axes E should therefore be a σ-algebra. This idea is
slightly modified for the construction of the DP from Dirichlet distribution
marginals. Random draws from a Dirichlet distribution are finite probabil-
ity distributions, and their domain is a special form of σ-algebra, generated
by partitioning the sample space Ω into a finite number “histogram bins”.
The finite index subsets I ∈ E∗, which corresponded to finite sets of points
in the Gaussian case, will now represent partitions of Ω into a finite number
of subsets: For a measurable space (Ω,A), a subdivision of Ω into measur-
able sets will be called a measurable partition. That is, H = (A1, . . . , An)
is a measurable partition if Ai ∈ A for all i, Ai ∩ Aj = ∅ for i 6= j and⋃n
i=1Ai = Ω. The system of all (possibly infinite) A-measurable parti-

tions will be denoted by H, and by H∗ the subsystem of those partitions
consisting only of a finite number of sets each.

Definition 25 (Dirichlet process). Let (Ω,A) be a measurable space, with
a probability measure G0. For any partition H ∈ H∗(A), let RH be the
product space

RH :=
∏
A∈H

R , (2.4.6)

and Sim (R, H) its unit simplex. Denote by pH
Dir( . |α, g) the Dirichlet density

on Sim (R, H), with concentration α ∈ R+ and expectation g ∈ Sim (R, H).
For each H ∈ H(B), define the vector gH ∈ Sim (R, H) by

∀Ai ∈ H : gH
i := G0(A) . (2.4.7)

Denote by µH the measure specified by the density pH
Dir( . |α, gH) (with respect

to Lebesgue measure on the respective simplex). Then the projective limit

over a domain defined by inequality constraints (θi > 0 for all i) and equality constraints
(
P

i θi = 1). Such integrals were first studied for the case of integration over a sphere
by Dirichlet in his work on partial differential equations, and came to be called Dirichlet
integrals. They are, in a sense, the integration counterpart of Lagrange optimization
problems, which restrict the differentiation (rather than integration) problem to a set
defined by algebraic constraints.
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of the projective family {µH|H ∈ H(B)} is called a Dirichlet process6 with
base measure G0, and will be denoted DP (α,G0).

The key to this construction is the way marginalization works for Dirich-
let distributions. In Gaussian models, for example, marginalization is dele-
tion. A dimension is marginalized out by deleting the corresponding entries
from random vectors and parameters. In a Dirichlet model, marginaliza-
tion is combination: The Dirichlet is a distribution over histogram bins,
and each entry in a Dirichlet vector, either random or parameter vector, is
the probability of one bin. To remove a dimension, two bins are combined,
and their entries are added. Decreasing the dimension by marginalization
means coarsening the bin resolution on the domain. If H1, H2 ∈ H∗(A)
are partitions such that H2 is a refinement of H1, then pH2

Dir( . |α, gH2) is an
|H2|-dimensional Dirichlet distribution, and pH1

Dir( . |α, gH1) is its marginal on
an |H1|-dimensional subspace.

Properties of the Dirichlet Process

Most essential properties of the DP are direct consequences of the prop-
erties of the Dirichlet distribution, and the presentation below emphasizes
this point of view. The presentation is purely heuristic, but will be made
more precise in Ch. 5. Most DP properties mentioned below are proven by
Ferguson (1973), though he does not argue in terms of the marginals.
Conjugacy. The Dirichlet distribution is the natural conjugate prior of the
multinomial distribution, with density

pMult(h|θ) =
(
∑
j hj)!∏
j hj !

exp
( d∑
j=1

hj log θj
)
. (2.4.8)

The multinomial generates histograms h with a given number of obser-
vations. The conjugacy of the two distributions extends to the infinite-
dimensional case, if the projective limit of the multinomial is taken along
with that of the Dirichlet.

6Strictly speaking, the measure so defined lives on the product space RH and its
cylinder algebra. A rigorous definition of the Dirichlet process requires, as a second
step, restriction of the projective limit measure to an equivalent stochastic process (a
process with identical marginals) on the subspace formed by the probability measures
on Ω, which is not measurable in the cylinder algebra. Such a restriction (modification)
can be shown to exist, according to a well-known theorem of Doob (1953), by verifying
that the set of measures has outer measure one under the projective limit process on
RH. Ferguson (1973) neglects this point, without consequence for his further results
(which are all proven under the assumption that the projective limit lives on the set of
probability measures). Ghosh and Ramamoorthi (2002) point out that the projective is
actually a measure on RH.
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The projective limit of the multinomial model is an infinite-dimensional
multinomial process, which is equivalent to the “Chinese restaurant pro-
cess” of Dubins and Pitman (see Pitman, 1995). These two processes are
conjugate if their marginals are (cf Ch. 5). In the finite-dimensional case, if
h is an observed histogram, then by the properties of exponential families,
the posterior is pDir(θ|β+ 1, π+h). The vector π can be regarded as a func-
tion of its index, mapping j 7→ πj . If h contains only a single observation,
in bin j0, then π + h is equivalent to the function j 7→ πj + δj,j0 . In the
limit of infinitely small bins, the indices j are replaced by elements x ∈ Ω,
and π by the measure G0. A single observation x0 in the domain Ω is an
element of the singleton bin {x0}. The function of j is then substituted by
x 7→ G0(x) + δx0(x). The posterior under observation of an “infinite his-
togram” with a single count, i. e. of a value in Ω, is thus a Dirichlet process
with expectation αG0 + δx0 (Ferguson, 1973).
Sampling. Consider a d-dimensional Dirichlet-multinomial model, with
Dirichlet prior pDir(θ|β, π). Assume that a histogram h containing a single
observation is drawn from the multinomial in a two-stage manner, by draw-
ing θ from the prior and h from the multinomial parameterized by θ. If θ
is not observed, it can be integrated out, and h is drawn from the expec-
tation π of the prior. The resulting behavior for the projective limit DP
is that, if a random probability measure G ∼ DP (αG0), and x ∼ G, then
by integrating out G, x ∼ G0. Multiple observations x1, . . . , xn, assumed
to be drawn from the same random G, can be generated by iterating the
argument: Draw each xi+1 from the posterior under x1, . . . , xi. The result
is the well-known DP sampling formula

xi+1|x1, . . . , xi ∼ αG0 +
i∑

j=1

δxj . (2.4.9)

The formula interpolates prior assumption and data in the manner common
to all exponential family models (cf. Sec. 2.3.2).
Concentration behavior. By the properties of exponential family models,
the finite probability distribution π is the expected value of the distribu-
tion, and β determines the concentration (large β means tight concentration
around the expected value). If π is uniform and β = 1, the Dirichlet be-
comes uniform on the simplex. If β is chosen close to zero, the distribution
concentrates its mass at points far away from the expected value. For π
uniform (i. e. at the center of the simplex), the far-away points are just the
extremal points (the corners) of the simplex. The behavior carries over
to the limit: In exponential family models, a large concentration param-
eter lets the measure concentrate tightly around its expected value. If α
is large, sampling according to Eq. (2.4.9) will for most draws result in a
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draw from G0, such that the overall empirical distribution converges to G0.
Since the data term (the final sum in Eq. (2.4.9)) gains in relative weight as
the number of samples increases, the probability of a draw from the term
increases. But for large α, the data term will become prominent only when
a substantial number of draws is already available, i. e. when it already con-
stitutes a good approximation to G0. For small α, the random measure will
concentrate around the Dirac measures located at a small number of initial
observations. This is again analogous to the finite-dimensional case, since
the Dirac measures represent the extremal points of the infinite-dimensional
probability simplex.
Dirichlet draws are not smooth. Let Θ be distributed according to a
d-dimensional Dirichlet density p(θ|β, π). Assume that for some bin i ∈
{1, . . . , d}, the expectation of the randomly assigned probability θi should
be increased with respect to the current value. θ is normalized, and so the
increase requires a decrease in expectation of values somewhere else. The
values θj for individual bins in the Dirichlet distribution couple only through
normalization. Such coupling does not single out any bin in particular,
and on average, we have to expect every bin except θi to decrease. If one
particular bin was more likely to decrease than others, the implication would
be an additional interaction structure not given in Dirichlet distributions.
In other words, the bins are anti-correlated. Indeed, the covariance of a
Dirichlet variable is

Cov [Θi,Θj ] = − πiπj
β + 1

for i 6= j . (2.4.10)

But this means in particular that neighboring bins have negative correlation,
which is precisely the opposite of “smooth” behavior: To generate a smooth
function, an increase at a given point should come with a simultaneous
increase of its neighbors. This behavior is reflected in the limit, though it
does not carry over precisely, but becomes more severe: A draw from the
DP is discrete a. s. (Ferguson, 1973; Blackwell, 1973), i. e. representable as
a countable sum of Diracs on the sample space Ω. Nonparametric Bayesian
statisticians, motivated by the search for universal priors, tend to regard
discreteness as a fundamental drawback. Somewhat ironically, discreteness
is the property which makes the DP applicable to clustering problems. The
interest of the machine learning community was raised by the very property
that Bayesian statisticians have worked so hard to overcome.

2.4.5 References

Early Bayesian nonparametrics. The Dirichlet process (and the corre-
sponding approach to priors) were introduced by Ferguson (1973), who at-



54 Bayesian Nonparametrics

tributes the problem idea to David Blackwell, and the solution (the Dirichlet
process) to his own discussions with James B. MacQueen. Almost simul-
taneously with Ferguson’s paper, a number of works appeared in a burst,
including the proof of DP discreteness by Blackwell (1973), the Pólya urn in-
terpretation by Blackwell and MacQueen (1973) and the DP mixture model
described by Ferguson’s student Antoniak (1974). From there on, interest
in the statistics community focused primarily on overcoming the discrete-
ness property of the DP, with models such as the DP mixture model, tailfree
processes (Doksum, 1974) and Pólya trees (Ferguson, 1974). NTR processes
were introduced by Doksum (1974), and the idea was taken up by Ferguson
and Phadia (1979) in the context of survival analysis. The latter had previ-
ously been considered in a Bayesian nonparametric context by Susarla and
Ryzin (1976), who apply the Dirichlet process to right-censored data and
obtain a Kaplan-Meier estimator in the limit α → 0. The name “Chinese
restaurant process”, which has caused havoc in machine learning confer-
ence proceedings, is due to L. E. Dubins and J. Pitman. They developed
the model, independent of the Dirichlet process, in a combinatorial manner
somewhat resembling the infinite Pólya urn of Blackwell and MacQueen
(1973). Their development is mentioned first by Aldous (1985), and later
by Pitman (1995).

The extension theorem. The Kolmogorov theorem was proven originally
for direct products of Euclidean axes (Kolmogorov, 1950). It was general-
ized consecutively to direct products of σ-compact measure spaces, and to
complete separable metric spaces (Parthasarathy, 1967; Yamasaki, 1985).
The theorem soon became the principal tool of construction in the the-
ory of stochastic processes, though it has been partially superseded in this
regard by stochastic differential equations (Gikhman and Skorohod, 1974;
Øksendal, 1992). As mentioned above, the completely independent case of
infinite product measures requires no assumptions on the topology of the
underlying spaces. Between the case of fully independent variables on the
one hand, and the Kolmogorov case of arbitrary dependence structure on
the other hand, there are some intermediate results. For example, if the
variables have a total order, each variable n can be conditioned on the pre-
vious n − 1 variables. The projective family of Th. 23 is then replaced
by a recursively defined sequence of random variables, specified by condi-
tional distributions. Such variables have a projective limit theorem, with no
regularity assumptions on the underlying spaces required (Ionescu Tulcea,
1950).

De Finetti’s theorem and related symmetry results. De Finetti
(1931) proves his theorem for binary random variables. Hewitt and Savage
(1955) generalize to compact Hausdorff spaces, and show that the mixing
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distribution is uniquely determined. They also provide a rigorous formula-
tion for the intuitive interpretation of the mixture as a convex combination,
showing that the set of exchangeable measures is an infinite-dimensional
convex polytope within the probability simplex. The extremal points of
the polytope are the product measures. If exchangeability of individual
elements of the sequence is substituted by a block-wise structure, called
partial exchangeability, a similar result holds, with the product model re-
placed by Markov chains, which account for the block correlations (Diaconis
and Freedman, 1980, 1984). An analogous theorem is available in continu-
ous time (i. e. for sequences of random variables with index set R+): The
continuous-time stochastic process analogue of a product distribution is a
Lévy process. And sure enough, continuous-time exchangeable increment
processes are mixtures of Lévy processes (Bühlmann, 1960). Exchangeable
observations inherit a number of key properties from the independent case.
In particular, they have a strong law of large numbers (Kingman, 1978)
and a central limit theorem (Bühlmann, 1960). Other types of symmetries
can have similar consequences. Ryll-Nardzewski (1957) proves a version
of de Finetti’s theorem establishing equivalence between conditional inde-
pendence and contractability (the form of the de Fintteti theorem given
in Th. 48). Kallenberg (2005) systematically studies invariance of random
sequences under contractability, exchangeability and rotatability, and their
mutual relations.

Bayesian nonparametrics in machine learning. In the machine learn-
ing context, Bayesian nonparametrics refers, first and foremost, to Dirichlet
process mixtures. In machine learning, DP mixtures became popular only
recently (Blei and Jordan, 2004; McAuliffe et al., 2006), after Dirichlet dis-
tributions were considered as priors for multinomial topic models in text
processing Zaragoza et al. (2003); Blei et al. (2003). The idea of infinite
mixtures had previously been proposed in Bayesian machine learning, no-
tably by Neal (1991) and Rasmussen (2000). Numerous constructions of new
models have followed. At first, these were mostly hierarchical combinations
of Bayesian nonparametric models (Teh et al., 2004; Sudderth et al., 2006)
or modifications of DP mixtures in analogy to finite mixtures (Beal et al.,
2002; Orbanz and Buhmann, 2006). A readable and well-illustrated intro-
duction to DPM models in machine learning is given by Sudderth (2006).
Y. W. Teh has considered machine learning applications of models related
to the DP that are available in the machine learning literature, in particu-
lar the coalescent of J. F. C. Kingman and the Pitman-Yor process (Teh,
2006; Teh et al., 2008a). The first authors to suggest constructions of new
models, rather than modifications of existing ones, are Neal (2003) and Grif-
fiths and Ghahramani (2005). Neal (2003) defines a clustering model with
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a tree structure, generated by Brownian motions endowed with a splitting
rule. Griffiths and Ghahramani (2005) generate infinite binary matrices at
random by means of what is essentially a Lévy point process, shown to
be conjugate to the beta process of Hjort (1990) by Thibaux and Jordan
(2006).

Quantitative results. Aside from a large number of DP-based models
and studies on algorithmic inference (cf. 2.6), the basic properties of DP
models are still a subject of active research. A classic result of Diaconis
and Freedman (1986) shows that a simple location estimate by means of
a DP prior can be inconsistent. Even in the asymptotic limit of infinitely
many observations, the data can be overruled by the prior assumption. The
effect still seems far from being thoroughly understood. The original arti-
cle is complemented by a spirited contributed discussion as to what causes
the inconsistency, and by an author’s rejoinder distinguished by its timeless
style (“Well, Krasker-Pratt, lots of luck!”). Several discussants blame the
DP’s discreteness. The authors disagree in the rejoinder. Almost twenty
years on, Ghosh and Ramamoorthi (2002) write in their monograph on the
matter that, as a sufficient condition for consistency, they “believe that Di-
aconis and Freedman are correct in thinking that existence of density for
random P is not enough.” A number of quantitative results on posterior
convergence have become available in recent years. Posterior convergence
rates are addressed by Shen and Wasserman (2001) and Ghosal et al. (2002).
They show that the convergence rate of the posterior, i. e. the rate with re-
spect to sample size at which the posterior concentrates around the true
model, is completely determined by the complexity of the nonparametric
model and the prior probability of the true solution. Model complexity
cannot be quantified, in the infinite-dimensional case, by counting dimen-
sions. Instead, it is formalized in terms of metric entropy rates. The prior
enters in so far as it has to place sufficient probability mass on a neighbor-
hood of the true model. The consequence for Bayesian model specification is
that, because the true solution is not known beforehand, the prior has to be
chosen to put sufficient mass on the respective neighborhood of all models
that constitute possible solutions. This notion, formalized as a prior con-
centration rate, quantifies the qualitative ideas discussed by Draper (1999).
Kleijn and van der Vaart (2006) study the misspecification problem, i. e. the
effect of the true model not being in the domain of the prior. The posterior
is shown to concentrate, at a quantifiable rate, in the region of parameter
space which is closest to the true model in a Kullback-Leibler sense. For
other nonparametric Bayesian models, in particular those of Gaussian type,
consistency results are available. These are often based on modifications of
techniques already proven successful in classical nonparametrics. For ex-
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ample, Barron et al. (1999) apply Grenander sieves and entropy bracketing,
previously applied for similar problems in the classical setting e. g. by van de
Geer (1993). Results for Gaussian process regression are given by Diaconis
and Freedman (1998); Choi and Schervish (2007).

Exponential family approximations and orthogonal expansions.
An alternative approach for the definition of probabilities on measures is
based on orthogonal expansions, by defining a set of orthogonal basis func-
tions and estimating an expansion from the sample population. The number
of basis functions used in the expansion can be based on the sample size, to
provide better resolution for larger samples. Density expansions have been
considered by Hall (1986), and later rose to prominence with the applica-
tion of wavelet bases (Donoho et al., 1996). A drawback is that linear basis
approximations of densities can be negative. But long before wavelets were
even introduced, a series of papers by Crain (1973, 1974, 1976a,b) studied
expansion of the logarithm of the density in terms of orthogonal polynomi-
als, also in a sample-size adaptive fashion. This is closely related to a basis
expansion of the energy E in Eq. 2.2.9 (though direct expansion of the model
logarithm targets the log-partition function along with the energy). It was
already noted in Sec. 2.2.3 that exponential family models approximate the
energy within a finite-dimensional linear subspace. Putting the different ap-
proaches together, one may consider an exponential family approximation
with a sample-size adaptive expansion of the energy by means of orthogonal
basis functions. That is, the sufficient statistic components s1(x), . . . , sd(x)
are chosen e. g. as orthogonal polynomials. The actual dimension d grows
with the sample size. In the limit of infinitely many observations, d → ∞,
but since the si form an orthonormal system in a suitable function space
(L2 or Sobolev), the scalar product converges, and the model is well-defined
if the partition function integral converges (which need not be a trivial mat-
ter). Note that the model, when used in a Bayesian regime, satisfies Def. 20
of a nonparametric Bayesian model, provided that the sample-size adapta-
tion rule is chosen such that the number of additional basis elements per
additional observation is constantly bounded. Another Bayesian nonpara-
metric approach using exponential families of adaptive dimension is the sieve
prior method of Zhao (2000), which defines a prior on the overall model class
by placing a prior on the model dimension.

Integral kernel push-forwards. Pillai et al. (2007) consider a Mercer ker-
nel approach to the definition of nonparametric Bayesian priors on function
spaces. The reproducing kernel Hilbert space of an arbitrary given kernel
is shown to be spanned by the image of the set of signed Borel measures
under the integral operator defined by the kernel. Available nonparamet-
ric Bayesian priors on the Borel measures then define image priors on the
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reproducing kernel Hilbert space.
Classical infinite-dimensional estimation. The problem of classical
statistical estimation in infinite-dimensional spaces was first studied in depth
by Grenander (1981). He considers in particular the properties of maximum
likelihood estimation for infinite-dimensional parameters. The monograph
provides a variety of results on estimation with Gaussian processes, and
on general maximum likelihood estimation in the most common infinite-
dimensional spaces (including `1 and `2, L1 and L2, BV, and the set of
bounded linear operators). A common theme is that maximum likelihood
estimators on infinite-dimensional spaces share the essential properties of
their finite-dimensional counterparts, but that the proof techniques appli-
cable in the finite-dimensional case are not adequate. To prove consistency
properties of the estimators, Grenander (1981) develops his famous method
of sieves. The proofs have to be adapted for each type of infinite-dimensional
space in turn.

2.5 Mixture Models

Let fX|z be a parametric family of densities as in Def. 1, with observation
variable X and parameter variable Z. If a distribution µZ for the parameter
variable Z is given, the parameter may be integrated out of the model to
obtain an unconditional distribution:

p(x) :=
∫

Ωz

fX|z(x|z)dµZ(z) (2.5.1)

In common parlance, fX|z is mixed against µZ, and the model (2.5.1) is
called a mixture model with mixing distribution µZ. The mixture model
describes a two-stage process of data generation: Draw a parameter value
z at random according to µZ, then generate an observation x according to
the density fX|z(x|z).

The most commonly used types of mixtures are arguably finite mixture
models (see below), for which the mixing distribution is discrete. An in-
teresting example of a continuous mixture is Student’s t-distribution, often
advocated as a robust substitute for Gaussian priors by merit of its heavy
tails. A t-model can be defined as a mixture, where the heavy tails are
obtained by averaging over Gaussians of different variance. The example is
included here because of its relevance for Bayesian modeling. Student dis-
tributions are not exponential family models, and do not have a conjugate
prior. Nonetheless, they may be used as conjugate priors for Gaussian loca-
tion parameters, because they are representable as mixtures of Gaussians,
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and mixture of conjugate priors are conjugate priors, resulting in a mixture
posterior.

Example 26 (Continuous scalar mixtures as quotient models). For Z with
values in R+, (2.5.1) can be regarded as a quotient model. If X is a real-
valued random variable with (differentiable) density f(x), then for any pos-
itive scalar z, the scaled variable X/z has density f(xz)z. Hence if z is
regarded as random, with distribution µZ, the random variable X/Z has
density (2.5.1) with fX|z(x|z) := f(xz)z. A particular case is Student’s
t-distribution, which can be obtained by mixing a normal against a gamma
distribution on the variance parameter. A t-model describes the distribution
of the t-statistic,

T :=
√
nX∑n
i=1 Y

2
i

, (2.5.2)

where X,Yi are independent, X is normal N (µ, σX), and the Yi are normal
N (0, σy). The actual mixing variable is the sum in the quotient, Z :=

∑
Y 2
i ,

which is gamma distributed as G(n/2, 1/2σ2
Y ), and χ2 in the special case

σy = 1. Denote the densities of X and Z as f(x|µ, σx) and m(z|n/2, 1/2σ2
y),

respectively. Then T has density

p(T = x|µ, n/2, σy) :=
∫
f(x|µ, z)m(z|n/2, 1/2σ2

y)dz . (2.5.3)

The distribution given by p(x|µ, n/2, σy), or more generally by p(x|µ, α, β)
with α, β > 0, is Student’s t-distribution.

2.5.1 Finite Mixtures

Mixture models are called finite if the mixing distribution is categorical.
That is, the parameter Z assumes only a finite number K of different values
θ∗k, each with fixed probability ck. The density of µZ is then of the form

mZ(z|c, θ∗) =
K∑
k=1

ckδθ∗k(z) , (2.5.4)

and the resulting mixture model (2.5.1) is

p(x|c, θ∗) =
∫
FX|z(x|z)mZ(z|c, θ∗)dz =

K∑
k=1

ckfX|z(x|θ∗k) . (2.5.5)

A finite mixture model describes, by means of the sum, an exclusive con-
junction of K “classes”, distributed individually according to f(x|θ∗k). The
distribution of the class index k of x is multinomial in the mixture weights
ck.
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2.5.2 Bayesian Mixtures

A mixture model becomes a Bayesian model if the mixing distribution is
generated at random. For a finite mixture with a fixed number K of classes,
random generation µZ amounts to random generation of the parameters θ∗k
and ck in (2.5.4) above. The model commonly referred to as a Bayesian
mixture in the literature is obtained from a finite mixture model by placing
the respective conjugate prior on each parameter occurring in the model.
The existence of a conjugate prior is guaranteed if fX|z is chosen as an
exponential family model. The parameters of the model are then class
parameters θ∗k, and the mixture weights ck. The conjugate prior for θ∗k is
determined by choice of fX|z. Since the distribution of the class in a finite
mixture is multinomial, the conjugate prior for the mixture weights ck is
a Dirichlet distribution. If the density of conjugate prior for θ∗k is denoted
g( . |λk, yk) and that of the Dirichlet by gDir( . |β, π), the Bayesian mixture
posterior is, in full detail,

p(c1, . . . , cK , θ∗1 , . . . , θ
∗
K |x1, . . . , xn, β, π, λ1, . . . , λK , y1, . . . , yK) ∝( n∏

i=1

K∑
k=1

ckfX|z(xi|θ∗k)
)( K∏

k=1

g(θ∗k|λk, yk)
)
gDir(c|β, π) . (2.5.6)

The priors g are not the mixing density m, which in this representation has
already been integrated out, such that f is parameterized by θ∗ rather than
Z.

2.5.3 Dirichlet Process Mixtures

The model obtained by replacing the Dirichlet prior on the mixture weights
in a Bayesian mixture model by a Dirichlet process is called a Dirichlet pro-
cess mixture. Formally, the substitution is achieved by drawing the complete
mixing distribution µZ in (2.5.1) from a Dirichlet process.

In contrast to the Bayesian mixture model above, in which the Dirichlet
distribution explicitly generates the cluster proportions ck, a sample from
the Dirichlet process actually consists only of parameter values θi. The
weights are generated implicitly. The clustering property of the DP aggre-
gates observations into K ≤ n groups of identical values:

n∑
i=1

δθi =
K∑
k=1

nkδθ∗k . (2.5.7)

The cluster proportions ck are computed as ck = nk
n . Since a single draw

z ∼ DP (αG0) from a Dirichlet process is generated as z ∼ G0, the ex-
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pected measure G0 assumes the role of the conjugate priors g( . |λk, yk) in
the Bayesian mixture. If the density of G0 is g0( . ) := g( . |λ, y), this im-
plies λk = λ and yk = y for all k. That is, the hyperparameters cannot be
specified individually for each class, as is possible for the Bayesian mixture
model. The DP posterior has expected measure 1

n+α (
∑
δθi + αG0). Since

the next sample is generated according to the expected measure, the mixing
distribution µZ has density

g(z|nk, θ∗k, α) =
1

α+ n

( K∑
k=1

nkδθ∗k(z) + αg0(z)
)
. (2.5.8)

The sum component is equivalent to the mixing density (2.5.4) of the finite
mixture. A draw z according to g is drawn from the sum component with
probability n

α+n , in which case it will take one of the predetermined values
θ∗k. With probability α

α+n , the sample z is generated from G0, and z 6= θ∗k
for all k unless G0 is finite.

Remark 27 (Notation: Θ versus Z). Parametric models in previous sec-
tions were denoted µ(X|Θ), with X denoting observations and Θ a param-
eter variable. When Θ was itself parameterized, the hyperparameter was
denoted Y . Mixtures add another layer of random values between X and
Θ, in form of the mixing variable Z. Distinguishing between Z and Θ can
be difficult, in particular in finite, Bayesian and Dirichlet process mixtures,
for two reasons:

1. Z effectively takes values in the range of Θ.
2. In finite mixtures, Z can equivalently be assumed to take index val-

ues 1, . . . ,K. This notation is also used in Dirichlet process mixture
sampling algorithms.

Concerning (1). The mixing density in (2.5.4) is parameterized by Θ. A
random draw (θ∗1 , . . . , θ

∗
K , c1, . . . , cK) determines the set of values θ∗k which

Z may assume, and their respective probabilities ck. When the parametric
prior G on Θ is replaced by a Dirichlet process, the finite set {θ∗1 , . . . , θ∗K}
is replaced by an infinite set {θ∗1 , θ∗2 , . . . }. The set of weights c1, . . . , cK ,
positive and normalized in the finite case, is replaced by the random measure
drawn from the Dirichlet. The Dirichlet base measure, when regarded as
a Bayesian parameter (and hence a random value itself), is an instance of
Y . For both Bayesian and DP mixtures, the mixing measure is determined
as a random draw from Θ. The domain Ωθ of Θ formally decomposes as
Ωθ = (Ω∗θ)

K ×Sim(R,K). Here, Ω∗θ is the range of θ∗k, such as R or a vector
space, and the simplex Sim(R,K) accounts for the weight vector c. In the
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DP limit, the pair is replaced by the set of measuresM1
+(Ω∗θ), such that Ω∗θ

still specifies the range of θ∗k. In both cases, the range of Z is then a subset
of the domain Ωθ of Θ. In the finite mixture case, the subset is known
explicitly. In the Dirichlet case, only a finite subset can be determined by
drawing a sample of size n from the Dirichlet via its base measure. The
Sethuraman (1994) representation casts a Dirichlet random draw in a form
roughly corresponding to (2.5.4). The fact that Z takes values θ∗k can make
notation hard to follow, since random values x are generated according
to mixture components of the form f(x|θ∗k), where the abstract density is
f(x|z).
Concerning (2). In a finite or Bayesian mixture, with {θ∗1 , . . . , θ∗K} given
explicitly, Z is often assumed to take values in 1, . . . ,K, formalizing the
notion of a cluster assignment or indicator variable. This is particularly
useful in EM algorithms or blocked Gibbs samplers (Sec. 2.6), where such
indicator variables are generated explicitly. For a Dirichlet process mixture,
it is more difficult, but still used in sampling algorithms, where an estimate
of the set {θ∗1 , θ∗2 , . . . } is explicitly generated and finite due to finite sample
size.

2.5.4 References

The concept of parametric mixture models dates back, at least, to the work
of Newcomb (1886).7 A few years later, Pearson (1894) considered estima-
tion of parameters in a two-component mixture. His work predates Fisher’s
work on the maximum likelihood method, and he proposes a moment-based
fitting procedure. Moment-based fitting is not typically used in the mixture
model literature anymore, but discussed for example by Titterington et al.
(1995). Though a lion share of work on mixture models has been devoted
to inference algorithms (see below), the statistical properties of the models
and the model order selection problem have received considerable attention.
The relevant literature, in particular on the Gaussian mixture, is too large
to even be sketched on a few pages, and finds application throughout statis-
tics, machine learning, speech and signal processing, data mining, and so
forth. See for example McLachlan and Peel (2000) for an overview.
Bayesian and DP mixtures. Though the Dirichlet process and the DP
mixture model were introduced well over thirty years ago (Ferguson, 1973;
Antoniak, 1974), DP mixtures received only limited attention until the early

7To each estimation error, Newcomb relates a quantity which he calls the evil at-
tached to an error, and his article consequently contains paragraphs entitled “Algebraic
Expression for the Evil” and “Approximation Expression for the Evil”. He attributes the
concept of the evil to Gauss, who introduces it in his treatise “Theoria Combinationis
Observationum, etc., Pars prior” under the name jactua – loss.
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1990s. Interest in DP mixtures then increased suddenly, as feasible inference
algorithms became available in the wake of the Gibbs sampler (MacEach-
ern, 1994; Escobar, 1994; Escobar and West, 1995). An infinite mixture
model which is (algorithmically) equivalent to the DP mixture was actually
introduced by Neal (1991), who reported later to have been unaware at the
time of the DP (Neal, 2000). At about the same time as the first DPM
Gibbs samplers, the Bayesian mixture model appeared in a somewhat dif-
ferent part of the Bayesian community (Lavine and West, 1992; Mengersen
and Robert, 1995).
Text processing: pLSA and LDA. The finite mixture of multinomial
distributions, with a standard EM algorithm for inference, triggered an
avalanche of publications in natural language processing when Hofmann
(1999) published it under the name probabilistic latent semantic analysis
(pLSA). The state-of-the-art approach to “semantic” modeling of text docu-
ments at the time, called latent semantic analysis (Deerwester et al., 1990),
represents a text document by its word occurrence histogram. The his-
tograms are regarded as vectors in a high-dimensional vector space (each
axes represents a word in the vocabulary). Similarity between documents
is measured by means of a scalar product. Latent semantic indexing per-
forms a dimension reduction by computing a singular value decomposition
and retaining only a number of large singular values, which would amount
to principal component analysis if all matrices involved were symmetric.
The dimension reduction projects onto a subspace, each axis of which is a
linear combination of the original axes. The original axes each represent
occurrence of a single word, and the new axes therefore weighted combi-
nations of words. These are interpreted as “topics” in the latent semantic
analysis model. Hofmann (1999) notes that the effective domain of the his-
tograms is a scaled simplex. He substitutes convex for linear combinations,
expectation-maximization for singular value decomposition and Kullback-
Leibler divergence for Euclidean distances, to obtain a mixture model in
which each multinomial distribution represents a topic. The parameter
vector of a multinomial component is interpreted as a finite probability dis-
tribution over words, characterizing the topic by how likely a given word is
to occur in an associated document. The Bayesian mixture extension of the
pLSA multinomial mixture, with the priors g( . |λk, yk) on the component
parameters θ∗k all chosen as uniform distributions, was published as a model
for text processing by Blei et al. (2003) under the name latent Dirichlet
allocation (LDA).
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2.6 Latent Variable Algorithms

Latent variable algorithms are the methods of choice for algorithmic in-
ference in mixture models. They include certain Gibbs samplers, the EM
family of algorithms, and many “variational” methods popular in machine
learning. Suppose the mixing distribution in (2.5.1) is parameterized as
µZ|Θ(z|Θ = θ), with conditional density g(z|θ) w. r. t. Lebesgue measure:

p(x|θ) =
∫

Ωz

fX|Z(x|z)dµZ|Θ(z|Θ = θ) =
∫

Ωz

fX|Z(x|z)gZ|Θ(z|θ)dz

(2.6.1)
The objective of a mixture model estimation algorithm is to determine the
parameters θ of the mixing distribution from observations x1, . . . , xn.

2.6.1 General Strategy

The precise objective of parameter estimation may vary, depending on
whether estimation is approached in terms of maximum likelihood, pos-
terior approximation or posterior maximization. The common strategy of
most algorithms (and in particular of all algorithms considered in this the-
sis) is a latent variable approach. The name refers to the mixing variable
z, considered “latent” because it is neither an estimation target, nor deter-
mined explicitly by observation. Latent variable methods approximate the
integral in (2.6.1), or its θ-derivative, by substituting some point estimate
of z0 in the integrand. To take the variance w. r. t. to z into account, pro-
cedures may average over multiple estimates z0. The essential ingredients
of latent variable methods are coordinate or block optimization strategies,
and – depending on the approach – majorization or random sampling tech-
niques.

Coordinate Relaxation and Blocking

The core technique of latent variable methods is the coordinate or block
optimization approach, which ultimately dates back to Gauss and the Gauss-
Seidel solver. The objective is to optimize some function A : Ωn → R, that
is, to determine

x̂ := arg min
x∈Ωn

A(x1, . . . , xn) . (2.6.2)

A coordinate optimization strategy approaches the problem by an iterative
procedure. In each iteration step t, the method cycles over the coordinates
i = 1, . . . , n and computes

xti = arg min
xi∈Ω

A(xt1, . . . , x
t
i−1, xi, x

t−1
i+1, . . . , x

t−1
n ) . (2.6.3)
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That is, the function is optimized along each axis separately, by substituting
estimates of the elements of x for all other entries. Each new estimate is
immediately taken into account (hence the (i − 1) leading arguments of A
are indexed by t, the the trailing ones by (t− 1)). The Gauss-Seidel solver
for linear equation systems is a special case, with A linear. Coordinate op-
timization methods are also referred to as “coordinate relaxation”, because
the original problem of jointly optimizing (2.6.2) is “relaxed” to yield the
presumably less difficult problems (2.6.3).

Coordinate optimization is straightforwardly generalized along several
lines: Block optimization, descend methods, and sampling strategies. The
coordinate-wise optimization may be replaced by block optimization (or block
relaxation). The n axes are grouped into K ≤ n blocks of summary coor-
dinates x̃1, . . . , x̃K , corresponding to a subdivision of the space according
to Ωn = Ωn1 × · · · × ΩnK . Optimization of A(x) = A(x̃1, . . . , x̃K) is then
performed block-wise,

x̃tk = arg min
x̃k∈Ωnk

A(x̃t1, . . . , x̃
t
k−1, x̃k, x̃

t−1
k+1, . . . , x̃

t−1
K ) . (2.6.4)

Apparently, coordinate methods are included as the special case K = n.
Descend algorithms, as opposed to optimization algorithms, are methods
which compute updates x̃tk such that A decreases, but is not necessarily
minimized. Coordinate samplers and block samplers draw the updates x̃tk
at random, from a distribution chosen such that the result decreases A in
probability.

Latent variable methods use two blocks, representing the parameters θ
and the latent variables z. EM-type algorithm apply block maximization to
a function A chosen to minorize the objective function. The Gibbs sampler
is a coordinate descend algorithm with stochastic updates. The blocked
Gibbs sampler combines both approaches, using a latent variable approach
with two blocks. Within the blocks, stochastic coordinate updates are used
for the latent variables, and stochastic block updates for the parameters.

Majorization and Augmentation

If a minimization target function A is hard to optimize directly, many opti-
mization strategies replace A with a simpler approximation B, then optimize
B instead of A. For purposes of optimization, approximations are best cho-
sen as upper bounds (for minimization). If B(x) > A(x) for all x, then even
if the approximation quality at an estimated optimizer x∗ cannot be quan-
tified, the method always guarantees the value A(x∗) to be at most B(x∗).
Such upper bounds can be constructed by means of inequalities. In statis-
tics, most constructions are of course based on Jensen’s inequality, but other
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examples are Cauchy-Schwartz, Bernstein (for maxima of polynomials) or
Hölder.

For latent variable methods (and many others), the majorizing function
is constructed on a larger space, i. e. A(x) is upper-bounded by a function
B(x, y). Such techniques are known as data augmentation in the statistics
literature. The name emphasizes a perspective which regards the second
argument y of B as an artificial addition to the “true” variable x, but for
application to mixture models, the second argument is naturally provided
by the mixing variable. Augmentation methods require the upper bound to
be tight, that is, a function B is called a majorizing function for A if

A(x) = min
y
B(x, y) . (2.6.5)

Then minxA(x) = minx,y B(x, y), and minimization is performed by means
of the block optimization (2.6.3) with two blocks representing x and y.
Majorizing functions constructed by means of an inequality often satisfy
(2.6.5), since many standard inequalities become equalities in well-defined
special cases. Consider Hölder’s inequality, for example: If A,B are func-
tionals and the arguments x, y are normalized lp functions, then equality in
Hölder holds if and only if x = y. The minimum (2.6.5) would then take
the form miny B(x, y) = B(x, x). This is a stronger form of (2.6.5). The
minimum is assumed for y = x. The stronger form is often encountered as
an additional assumption for augmentation methods, particularly for EM
and related algorithms. The requirements on B are then

A(x) = B(x, x) and A(x) ≤ B(x, y) . (2.6.6)

This case is worth noting, because it turns block-wise minimization into a
fixed point iteration. If, during step t of the iteration,

xt := arg min
x
B(x, yt−1) , (2.6.7)

then
A(xt) = B(xt, xt) = min

y
B(xt, y) . (2.6.8)

The two-step block optimization reduces to a single step

yt+1 := arg min
x
B(x, yt) . (2.6.9)

This is an application of the Newton fixed point iteration (given by xt+1 :=
f(xt) for an arbitrary function f) to the function y 7→ arg minxB(x, y).
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2.6.2 The EM Algorithm

EM algorithms optimize (maximize) functions of the form

f(θ) =
∫

Ωz

h(θ, z)dz . (2.6.10)

In statistical applications, this is of course a mixture as in (2.6.1). For
convenience, denote in the following all density functions by p, in particular,
p(x|z) = fX|Z(x|z) and p(z|θ) = gZ|Θ(z|θ). Then in the integral,

h(θ, z) = p(x, z|θ) = p(x|z)p(z|θ) , (2.6.11)

and consequently f(θ) = p(x|θ). However, the algorithm does not rely on
the special properties of densities. The only requirements are h(θ, z) ≥ 0 and
f(θ) < ∞, and the principles underlying the algorithm can be abstracted
from statistical applications.

The integral f is optimized by optimizing its logarithm l(θ) := log f(θ).
For any two values θ and θ′,

l(θ)− l(θ′) = log
(∫ h(z,θ′)

h(z,θ′)h(z, θ)dz∫
h(z, θ′)dz

) Jensen

≥

∫
h(z, θ′) log

( h(z,θ)
h(z,θ′)

)
dz∫

h(z, θ′)dz
.

(2.6.12)

Equivalently,

l(θ) ≥ l(θ′)−
∫
h(z, θ′) log h(z, θ′)dz∫

h(z, θ′)dz
+
∫
h(z, θ′) log h(z, θ)dz∫

h(z, θ′)dz
=: B(θ, θ′) .

(2.6.13)

Equality holds if (and only if) θ = θ′, hence l(θ) = maxB(θ, θ′), and B satis-
fies a condition of the form (2.6.6), with minimization replaced by maximiza-
tion. In the particular case of mixture model estimation, h(z, θ) = p(x, z|θ).
The only component of B(θ, θ′) depending on θ, i. e. the final quotient in
(2.6.13), can be rewritten as∫

h(z, θ′) log h(z, θ)dz∫
h(z, θ′)dz

= Ez|x,θ′ [log p(x, z|θ)] . (2.6.14)

The conditional expectation is typically denoted Ez|x,θ′ [log p(x, z|θ)] =:
Q(θ, θ′) in the EM literature. The classic EM algorithm of Dempster et al.
(1977) iterates

1. (E-step) Construct Q(θ, θt) = Ez|x,θt [log p(x, z|θ)] as a function of θ.
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2. (M-step) Compute θt+1 := arg maxθ Q(θ, θt).

Maximizing Q(θ, θt) maximizes B(θ, θt), such that l(θt) = B(θt, θt) for any
θt computed by the M-step. EM convergence results show that B, and
hence l, never decreases under iteration.

Estimating a Finite Mixture

The most prominent application of the EM algorithm is approximative max-
imum likelihood estimation for the parameters (c, θ∗) =: θ of a finite mixture
model, as defined in Sec. 2.5.1. The density of the model is

p(x|c, θ∗) =
K∑
k=1

ckf(x|θ∗k) . (2.6.15)

This form corresponds to the density p in 2.5.1, with the variable Z already
integrated out of the model. Application of the equations above requires an
explicit representation of Z, to compute the expectation Ez|x,θ′ [log p(x, z|θ)].
Formally, the random variable Z takes values in {θ∗1 , . . . , θ∗K}, with its dis-
tribution determined multinomially by the weights c. It will be convenient
to represent Z instead as a one-count histogram of dimension K, such that
zi = (0, . . . , 0, 1, 0, . . . , 0) for observation xi. Intuitively, zi encodes the as-
signment to a component, with zik = 1 if and only if observation xi is
assigned to mixture component k, and therefore to parameter θ∗k. Since the
values of all θ∗k are given, this is equivalent to a representation where Z
takes values z = θ∗k. Whenever the binary value has to be converted to an
index, we will write k(zi) for the index k with zik = 1. The joint density of
xi and zi is rewritten as

p(xi, zi|θ) = p(xi|zi)p(zi|θ) = p(xi|θ∗k(zi)
) p(k(zi)|c)︸ ︷︷ ︸

=ck(zi)

. (2.6.16)

Due to the 0-1 structure of zi, the density of k conditional on c and xi
(instead of just c above) is

p(k(zi)|c) = Ezi|xi,θ′ [zik] . (2.6.17)
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Then the conditional expectation Ezi|xi,θ′ [log p(xi, zi|θ)], for a single obser-
vation xi, is

Ezi|xi,θ′ [log p(xi, zi|θ)] =
∑
zi

p(zi|xi, θ) log p(xi, zi|θ)

=
K∑
k=1

p(k(zi) = k|xi, θ) log(p(xi|θ∗kp(k(zi) = k|c))

=
K∑
k=1

Ezi|xi,θ′ [zik] log p(xi|θ∗k) +
K∑
k=1

Ezi|xi,θ′ [zik] log ck .

(2.6.18)

For multiple observations,

Ez|x,θ′
[
log

n∏
i=1

p(xi, zi|θ)
]

=
n∑
i=1

Ez|x,θ′ [log p(xi, zi|θ)] . (2.6.19)

EM is a Block Optimizer

The block optimization character of the EM algorithm may not be immedi-
ately apparent, because two instances θ and θ′ of the same variable appear
in the target function Q(θ, θ′), and because the E-step seems to compute an
expectation rather than a maximizer. The block structure becomes more
recognizable if Q is rewritten as a function of two distinct variables θ and
ξ,

Q(θ, ξ) = Ez|x,ξ [log p(x, z|θ)] . (2.6.20)

A cycle of the block optimization procedure works as follows:

1. θ-block: For some fixed value of ξ, compute θt := arg maxθ Q(θ, ξ)
(M-step).

2. Substitute θ = θt into Q. The substitution adjusts the majorizing
function to the new iterate θt.

3. ξ-block: Compute arg maxξ Q(θt, ξ). But we know that the maxi-
mum is attained for identical values of both arguments, and hence for
Q(θt, θt). So without additional computation, substitute ξ := θt.

Steps (2) and (3) together comprise the E-step of the EM algorithm. Af-
ter execution of (3), Q(θ, ξ) = Q(θ, θ′). The state Q(θ, θ′) is the input for
the following M-step, matching the standard EM notation. The block op-
timization is obfuscated by standard notation, because it emphasizes the
computation of the expectation in the E-step, for two reasons: First, the
statistical intuition of how the algorithm operates relies on the expectation.
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Second, the EM method is actually a family of algorithms applicable to a
variety of problems. The general formulation of the method according to
Dempster et al. (1977) does not specify (i) how to compute the expected
value and (ii) how to solve the maximization problem in the M-step. Solu-
tion for both problems have to be provided in order to adapt the method to
a given problem. It seems natural to formulate the algorithm in a two-step
manner such that each step corresponds to one of these open problems, as in
the E/M-step representation. Formulating it as a two-step block optimizer
means that one of the steps (maximization w. r. t. ξ) is trivial. Nonethe-
less, the formulation as a block optimizer shows how and why the algorithm
works, and clarifies its relation to other methods.

2.6.3 Blocked Gibbs Samplers

The Gibbs sampler applies the coordinate-wise ascent approach to the prob-
abilistic ascent of Markov chain samplers. The great merit of the Gibbs
sampling approach is to turn the design of a general MCMC sampler from
something of an art form into a question of computing the so-called full
conditionals of the target distribution. Assume the target distribution (the
distribution from which the algorithm is supposed to generate random sam-
ples) has density p(x1, . . . , xn). The design of a Metropolis-Hastings sam-
pler for p, for example, requires (i) guessing a proposal distribution and (ii)
showing that the proposal distribution results in a sampler with stationary
distribution p. Gelfand and Smith (1990) showed that a coordinate-wise
approach that successively generates xt as

xti ∼ p(xi|xt1, . . . , xti−1, x
t−1
i−1, . . . , x

t−1
n ) (2.6.21)

always results in a sampler with stationary distribution p. The conditional
distribution p of xi conditional on the current state of all other coordinates
is commonly referred to as the full conditional of xi. The additional random-
ized acceptance step performed by the general Metropolis-Hastings sampler
is not required, because substitution of the full conditionals into the accep-
tance probability formula always results in an acceptance probability of one.
Apparently, the algorithm is useful only if the full conditionals can be both
computed and sampled in a reasonably simple manner. The widespread
use of the Gibbs sampler shows that this is indeed the case for a wide va-
riety of models, which is, on second glance, not particularly surprising. In
the extreme case of independent coordinates, when the model density is a
product, this apparently is the case if the product components are simple.
Such models could, of course, have been sampled without development of
MCMC methods. But most models of dependent random variables model
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restricted rather than full interactions. In particular, this is the case for
the two examples of interest in the following, mixture models and Markov
random fields. In a mixture model, the full conditionals are formulated as
distributions conditional on an estimate of the model parameters, and hence
decouple by conditional independence. In Markov random fields, the full
conditional of xi degenerates to a distribution conditional on the Markov
blanket of xi, which typically consists of a small number of points.

Just like the deterministic coordinate optimization scheme (2.6.2), the
coordinate-wise Gibbs sampler may be generalized to a blocked version. The
convergence behavior of Gibbs samplers depends on the correlation between
states of consecutive iterations (Schervish and Carlin, 1992; Goodman and
Sokal, 1989). If the components collected in each block are strongly corre-
lated, blocked updates can result in substantial gains in convergence rate
(Liu et al., 1994; Roberts and Sahu, 1997). Mixture models have a natural
correlation structure, and samplers using block structures defined by the
assignment of data to mixture components have emerged as the method
of choice for most mixture inference problems. Formally, blocked Markov
chain algorithms can be derived by defining a Markov chain operating with-
out blocks, and identifying its transition kernel. The product σ-algebra in
the joint observation space Ωnx (for n observations) is then coarsened to a
suitable σ-subalgebra. This is done by defining a measurable partition of
the space, which corresponds to the block structure, and choosing the σ-
algebra generated by the partition. The Markov kernel of the original chain
induces a unique Markov kernel on the coarsened σ-algebra. The blocked
Markov chain sampler is the one induced by the induced, coarsened kernel
(MacEachern, 1994).

Posterior estimation in Bayesian mixtures

Implementing a blocked Gibbs sampler is much simpler than the formal
approach sketched above may seem to suggest, and does not explicitly rely
on the definition of a transition kernel. The blocks are defined by mixture
assignments. They generally vary in size as assignments change through-
out iteration. Each iteration therefore has to consist of two distinct steps,
one determining the mixture assignments defining the blocks, and one per-
forming the actual block updates. For Bayesian mixtures, the block update
means sampling from the posterior of the corresponding mixture compo-
nent, under those observations currently assigned to the block.

Consider a Bayesian mixture model as defined in Sec. 2.5.2. The compo-
nent densities are denoted f(x|θ∗k), the mixture weights ck, and the Dirichlet
prior on the weights by gDir(c|β, π). Each component f( . |θ∗k) has a corre-
sponding conjugate prior g(θ∗k|λ, yk). A blocked Gibbs sampler for this
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model estimates a joint posterior on the parameters c and θ∗ by iterating
the following steps:

1. Assignment step. For i = 1, . . . , n, compute

qik :=
ckf(xi|θ∗k)∑K
l=1 clf(xi|θ∗l )

(2.6.22)

Sample
zi ∼ (qi1, . . . , qiK) (2.6.23)

2. Parameter update step. Sample

θ∗k ∼ g(θ∗k|λ, yk)
∏
i|zi=k

f(xi|θ∗k) for k = 1, . . . ,K

(c1, . . . , ck) ∼ gDir( . |βπ1 + n1, . . . , βπk + nk)
(2.6.24)

The actual Gibbs sampling step is the second one, computing parameter up-
dates for each block given the block structure. The first step is an auxiliary
step to determine the blocks. To derive it formally from the mixture model,
the observation x has to be integrated out of the joint density p(x, z|θ),
conditional on θ = (c, θ∗), since estimates of θ∗k are given by the current
state of the chain. Since xi is fixed by observation, p(x, z|θ) is integrated
against δxi , which results in a multinomial distribution parameterized by q
as defined in (2.6.27).

It is interesting to note that the literature on Bayesian mixtures started
to develop in earnest only after the work of Gelfand and Smith (1990) on the
Gibbs sampler. Samplers offer a mode of inference that avoids expansion of
the product in (2.5.6), the main obstacle to fully Bayesian inference of the
model in practice. Robert (1995) points out that (2.5.6) decomposes into
Kn terms

K∏
i=1

czk+nk−1
k g(θ∗k|λk + nk, yk + nkx̄k) , (2.6.25)

e. g. about one million terms for two mixture components and twenty obser-
vations. Each term represents one possible combination of assignments of
the observations to mixture components. In the blocked Gibbs sampler, the
complexity is reduced to a single term, by forcing each observation to “se-
lect” one component. A comparison of the Gibbs sampling algorithm above
and the EM algorithm in Sec. 2.6.2 shows a striking similarity between the
two methods: Substitution of the sampling steps (2.6.28) and (2.6.30) by
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maximization steps yields a binary assignment variant of the maximum a
posteriori EM algorithm (also called MAP-EM). On clusters of reasonable
size (i. e. if a reasonable number of observations is assigned to each mixture
component), the results are virtually identical. The number nk of points
in cluster k increases the concentration parameters λk + nk of the poste-
rior components, such that the posterior of a large cluster peaks sharply
around its mode. Maximization and sampling then yield approximately
identical values up to negligible probability. If clusters are well-separated,
maximization and sampling of component assignments is also nearly equiva-
lent. In other words, the algorithms behave very similarly for problems with
reasonably-sized, well-separated clusters, which are precisely those problems
on which either algorithm works reliably. Hence even without availability
of the Gibbs sampler, approximate estimation of Bayesian mixtures should
arguably have been within reach since the 1970s. One possible explanation,
though unsubstantiated by evidence, is that sentiments in the Bayesian
community demanded a sampler, even if that sampler behaves much as an
EM point estimation algorithm would behave.

Posterior estimation in Dirichlet process mixtures

A Gibbs sampler for a Dirichlet process mixture can be derived in perfect
analogy to the Bayesian mixture above. The model differs from the finite
Bayesian mixture in that the mixing distribution G is drawn from a Dirichlet
process DP (aG0), instead of being generated parametrically from a product
prior on (θ∗, c). In the posterior expectation

g(z|nk, θ∗k, α) =
1

α+ n

( K∑
k=1

nkδθ∗k(z) + αg0(z)
)
. (2.6.26)

of the DP mixing density, the algorithm can treat the sum term just like a
Bayesian mixture, but has to be modified to account for the second term
αg0. A draw from the z first has to select one of the components δθ∗k or g0

at random, which is a multinomial decision just like in a standard mixture
model. The only required modification of the sampling step for zi is to add
an additional component to the multinomial distribution to represent g0.
The component is denoted qi0 below. The implied meaning of zi = k is that
xi is assumed to have been generated according to the model parameter θ∗k,
so zi assigns a parameter to an observation. A multinomial sampling value
zi = 0 models a parameter value not yet observed, so the parameter has
to be generated from the base measure G0. The algorithmic result is the
creation of a “new cluster”.
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1. Assignment step. For i = 1, . . . , n, compute

q̃i0 := α

∫
f(xi|z)G0(z)dz and q̃ik := nkf(xi|θ∗k) (2.6.27)

Normalize q := q̃
|q̃| and sample

zi ∼ (qi0, . . . , qiK) (2.6.28)

If zi = 0, sample
θ∗K+1 ∼ G0 (2.6.29)

and set zi := K + 1 and K := K + 1.
2. Parameter update step. Sample

θ∗k ∼ g(θ∗k|λ, yk)
∏
i|zi=k

f(xi|θ∗k) for k = 1, . . . ,K (2.6.30)

The way new clusters are created by the algorithm is in practice influenced
significantly by the coordinate optimization strategy of immediately incor-
porating changes: Clusters created by a sampling result zi = 0 are available
as mixture components for zi+1, and not aggregated over a complete sweep
i = 1, . . . , n. In principle, a total of n new components may be created
during a single sweep. Scanning the data in index order is justified by argu-
ing that data drawn from a Dirichlet process mixture is exchangeable, and
the stationary distribution of the Markov chain sampler is invariant under
permutations of the data. In practice, random scans may still be helpful,
because the order of the data from one iteration to the next and may avoid
unnecessary trapping states.

2.6.4 Convergence

The generality of basic convergence results for block optimization can be
surprising, considering the amount of literature dedicated, for example, to
the convergence of Gibbs samplers. Consider the block minimizer in (2.6.4).
Suppose the optimization starts with initial value x0, and that the optimiza-
tion target function A(x) is continuous in x. If the set of points with images
“below the level set” of x0, i. e. the set of points {x|A(x) ≤ A(x0)}, is com-
pact, then the sequence A(xt) of function values under iteration is guaran-
teed to converge (because compactness and continuity imply boundedness
from below). The sequence xt has an accumulation point (by Bolzano-
Weierstrass), and the value of A at the accumulation point is identical to
the limit of A (by continuity). See de Leeuw (1994). Less trivial results are



Latent Variable Algorithms 75

described, for example, by Bezdek et al. (1987). Many algorithms use more
general block structures, in particular blocks chosen adaptively during the
iteration (such as the ones used by the mixture model Gibbs sampler). The
convergence behavior of deterministic optimization algorithms of this type
is studied by Fiorot and Huard (1979).

The literature on convergence of Markov chain Monte Carlo algorithms
in general, and the Gibbs sampler in particular, is vast and growing; for an
overview, see for example Liu (2001), or the beautiful review of Hobart and
Jones (2001). For diagnostic sampling methods, which attempt to determine
convergence at runtime, see Goodman and Sokal (1989) and Cowles and
Carlin (1996). A key property of the Gibbs sampler is the dependence of
its efficiency on the correlation between components (Schervish and Carlin,
1992). The mixture model Gibbs sampler and other blocking strategies
attempt to exploit this by adaptively grouping highly correlated components
(Liu, 1994; Liu et al., 1994; Roberts and Sahu, 1997).

The role of convexity in latent variable methods tends to be slightly
over-emphasized in the machine learning literature. Though often help-
ful to guarantee, for example, a well-behaved form of a majorizing function,
convexity is not essential. The EM algorithm, for example, does exploit con-
cavity of the logarithm (by Jensen’s inequality) for majorization, but the
required property here is the applicability of some inequality to construct a
majorizing function. Similarly, “entropic” interpretations of the EM algo-
rithm, such as the alternating Kullback-Leibler minimization of Csiszár and
Tusnády (1984), are useful and appealing – but the EM algorithm remains
applicable if the functions involved are not probability densities, in which
case entropic interpretations are no longer valid. The particular impor-
tance of convexity in optimization is due to the fact that convex functions
allow their global properties to be deduced from local ones, and none of the
algorithms discussed here relies on this principle.

2.6.5 References

The EM was first identified as a generally applicable family of algorithms for
maximum likelihood approximation in mixtures by Dempster et al. (1977),
who presented it as a unified generalization of a number of more special-
ized algorithms available in different fields, in particular the Baum-Welch
algorithm for hidden Markov models (Baum and Petrie, 1966; Baum et al.,
1970). Apart from the algorithm, the paper presented a proof of local
convergence, which asserts that (i) the model likelihood never decreases be-
tween consecutive steps of the algorithm and (ii) that the algorithm always
converges to a local maximum. Unfortunately, the latter result is incorrect,
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due to a misapplication of the triangle inequality in the proof. Wu (1983)
shows that the result can be recovered under additional regularity assump-
tions on the augmented likelihood function. Examples of the EM algorithm
converging to a saddle point, or even a local minimum of the likelihood,
have been reported in the literature (Arslan et al. (1993); also reproduced
in the well-known monograph by McLachlan and Krishnan (1997)). They
should be taken with a grain of salt, since the example in question is an
EM algorithm which performs maximization in its M-step by numerical op-
timization, instead of computing an analytically derived maximizer, such
as the EM algorithm for the Gaussian mixture does. Convergence to a lo-
cal minimum is achieved in (Arslan et al., 1993) by carefully tuning the
parameters such that the gradient descent algorithm executed in the M-
step precisely hits the local minimum. The result exemplifies the stepsize
problem in gradient descent, rather than an inherent property of the EM al-
gorithm. The problem does not occur for M-steps evaluating a closed-form
maximizer.

Bayesian inference in mixtures generally builds on the work of Tan-
ner and Wong (1987); Swendsen and Wang (1987) and, in particular, of
Gelfand and Smith (1990). For general overviews on sampling-based poste-
rior inference see Liu (2001); Tierney (1994). For a more theoretical treatise
of transition kernels, see Feller (1971) and the monograph by Nummelin
(1984). The blocked Gibbs sampler for Dirichlet process mixtures was pro-
posed by MacEachern (1994). Dirichlet process mixture inference has been
studied intensively in the literature, both in statistics and in machine learn-
ing. Neal (2000) gives a concise overview of available sampling algorithms.
A more recent development in DP Markov chain sampling are split-merge
samplers (Green and Richardson, 2001; Jain and Neal, 2004, 2007). Split-
merge samplers result in an algorithmic behavior roughly similar to Green’s
reversible jump (Green, 1995). Application of reversible jump methods to
mixture model order selection (without consideration of Dirichlet processes)
was studied by Richardson and Green (1997). The interest of the machine
learning community resulted in approximate variational inference strategies
(Blei and Jordan, 2004), as well as incorporation of variational techniques
into sampling processes (Teh et al., 2008b).

Blocking strategies are studied explicitly in mathematical optimization,
but have also been identified rather independently in the MCMC litera-
ture. Many advanced sampling algorithms are essentially blocking schemes.
These include the multigrid Monte Carlo simulators of Goodman and Sokal
(1989), where blocks are defined by grouping observations on a grid, and to
some degree the coarse-scale chains of Higdon et al. (2003), as well as the
group move strategies in Liu and Sabatti (1998) (though in the latter case,
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the term “group” refers to an algebraic group rather than a collection of
coordinates). The survey of Hunter and Lange (2004) is a frequently cited
source on majorization in EM-style algorithms, but the far more general
perspective taken by de Leeuw (1994) and Heiser (1995) is perhaps more
useful.

2.7 Markov Random Fields

Markov random fields provide an approach to the difficult problem of mod-
eling systems of dependent random variables. To reduce the complexity of
the problem, interactions are restricted to occur only within small groups
of variables. Dependence structure can conveniently be represented by a
graph, with vertices representing random variables and an edge between
two vertices indicating statistical dependence. More formally, a MRF is
a collection of random variables defined on an undirected, weighted graph
N = (VN , EN ,WN ), the neighborhood graph. The vertices in the vertex
set VN = {v1, . . . , vn} are referred to as sites. EN is the set of graph
edges, and WN denotes a set of constant edge weights. Since the graph
is undirected, the edge weights wij ∈ WN are symmetric (wij = wji).
Each site vi is associated with an observation xi and a random variable
θi. When dealing with subsets of parameters, we will use the notation
θA := {θi|i ∈ A} for all parameters with indices in the set A. In particular,
∂ (i) := {j|(i, j) ∈ EN } denotes the index set of neighbors of vi in N , and
θ−i := {θ1, . . . , θi−1, θi+1, . . . , θn} is a shorthand notation for the parameter
set with θi removed.

Markov random fields model constraints and dependencies in Bayesian
spatial statistics. A joint distribution Π on the parameters θ1, . . . , θn is
called a Markov random field w. r. t. N if

Π(θi|θ−i) = Π(θi|θ∂(i)) for all vi ∈ VN . (2.7.1)

This Markov property states that the random variables θi are dependent, but
dependencies are local, i. e. restricted to variables adjacent in the graph N .
The MRF distribution Π(θ1, . . . , θn) plays the role of a prior in a Bayesian
model. The random variable θi describes a parameter for the generation
of the observation xi. Parameter and observation at each site are linked
by a parametric likelihood F , i. e. each xi is assumed to be drawn xi ∼
F ( . |θi). For the image processing application discussed in Sec. 4.1.4, each
site corresponds to a location in the image; two sites are connected by an
edge in N if their locations in the image are adjacent. The observations xi
are local image features extracted at each site.
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Defining a MRF distribution to model a given problem requires verifica-
tion of the Markov property (2.7.1) for all conditionals of the distribution,
a tedious task even for a small number of random variables and often in-
feasible for large systems. The Hammersley-Clifford theorem (Besag, 1974)
provides an equivalent property which is easier to verify. The property is
formulated as a condition on the MRF cost function, and is particularly
well-suited for modeling. A cost function is a function H : Ωnθ → R of the
form

H (θ1, . . . , θn) :=
∑
A⊂VN

HA(θA) . (2.7.2)

The sum ranges over all possible subsets A of nodes in the graph N . On
each of these sets, costs are defined by a local cost function HA, and θA
denotes the parameter subset {θi|vi ∈ A}. The cost function H defines a
distribution by means of

Π(θ1, . . . , θn) :=
1
ZH

exp(−H(θ1, . . . , θn)) , (2.7.3)

with a normalization term ZH (the partition function). The cost function H
can once again be interpreted as an energy, and (2.7.3) is an energy repre-
sentation similar to (2.2.9). Without further requirements, this distribution
does not in general satisfy (2.7.1). By the Hammersley-Clifford theorem,
the cost function (2.7.2) will define a MRF if and only if

H (θ1, . . . , θn) =
∑
C⊂C

HC(θC) , (2.7.4)

where C denotes the set of all cliques, or completely connected subsets, of
VN . In other words, the distribution defined by H will be a MRF if the
local cost contributions HA vanish for every subset A of nodes which are
not completely connected. In other words, coupling in MRFs is direct. If
two nodes are not connected by a direct edge, their joint behavior does not
affect the distribution. Defining MRF distributions therefore comes down
to defining a proper cost function of the form (2.7.4).

Inference algorithms for MRF distributions rely on the full conditional
distributions

Π(θi|θ−i) =
Π(θ1, . . . , θn)∫
Π(θ1, . . . , θn)dθi

. (2.7.5)

For sampling or optimization algorithms, it is typically sufficient to eval-
uate distributions up to a constant coefficient. Since the integral in the
denominator is constant with respect to θi, it may be neglected, and the
full conditional can be evaluated for algorithmic purposes by substituting
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given values for all parameters in θ−i into the functional form of the joint
distribution Π(θ1, . . . , θn). Due to the Markov property (2.7.1), the full
conditional for θi is completely defined by those components HC of the cost
function for which i ∈ C. This restricted cost function will be denoted
H(θi|θ−i). The set C ⊂ VN of nodes over which H(θi|θ−i) is effectively
computed is also known as the Markov blanket of i. A coordinate or block
optimization method with target function H can solve the individual opti-
mization problems (2.6.2) for each node i by optimizing a term computed
over the Markov blanket of i. If dependencies are sufficiently local, these
sets are small, and optimization is feasible. The most popular choice of
coordinate optimization schemes in the MRF literature are Gibbs samplers.

A simple example of a MRF cost function with continuously-valued pa-
rameters θi is

H (θi|θ−i) :=
∑
l∈∂(i)

‖θi − θl‖2 . (2.7.6)

The resulting conditional prior contributionM(θi|θ−i) ∝
∏
l∈∂(i) exp(−‖θi−

θl‖2) will favor similar parameter values at sites which are neighbors.
In the case of clustering problems, the constraints are modeled on the

discrete set {Z1, . . . , Zn} of class label indicators. Cost functions such as
(2.7.6) are inadequate for this type of problem, because they depend on the
magnitude of a distance between parameter values. If the numerical differ-
ence between two parameters is small, the resulting costs are small as well.
Cluster labels are not usually associated with such a notion of proximity:
Most clustering problems (with some exceptions, such as Kohonen maps) do
not define an order on class labels, and two class labels are either identical
or different. This binary concept of similarity is expressed by cost functions
such as

H(θi|θ−i) = −λ
∑
l∈∂(i)

wilδZi,Zl , (2.7.7)

where δ is the Kronecker symbol, λ a positive constant and wil are edge
weights. The class indicators Zi, Zl specify the classes defined by the pa-
rameters θi and θl. Hence, if θi defines a class different from the classes of
all neighbors, exp(−H) = 1, whereas exp(−H) will increase if at least one
neighbor is assigned to the same class. More generally, we consider cost
functions satisfying

H(θi|θ−i) = 0 if Zi 6∈ Z∂(i)

H(θi|θ−i) < 0 if Zi ∈ Z∂(i) . (2.7.8)

The function will usually be defined to assume a larger negative value the
more neighbors are assigned to the class defined by θi. Such a cost function
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may be used, for example, to express smoothness constraints on the cluster
labels, as they encourage smooth assignments of adjacent sites. In Bayesian
image processing, label constraints may be used to smooth the results of
segmentation algorithms, as first proposed by Geman et al. Geman et al.
(1990).

2.7.1 References

Graph-based interaction models and “lattice systems” have a long history
in physics, in the form of the Ising model, Potts model and related struc-
tures. Long before these models were recognized in statistics, physicists
had already developed a number of inference techniques of variational type,
notably the mean-field method. Cipra (1987) gives an overview. Statisti-
cal physics studies these models in terms of Gibbs distributions, and the
link between statistical physics and spatial statistics was established by
a proof of equivalence of Gibbs distributions and Markov random fields.
Hammersley and Clifford (1971) found such a proof of what is now known
as the Hammersley-Clifford theorem, but did not publish it at the time.
Nonetheless, the result quickly became known in the field, and when Besag
(1974) simplified and published the proof three years later in a discussion
paper, both the paper and the discussion contributions already take the
name “Hammersley-Clifford theorem” for granted. Besag and Green (1993)
credit Grenander (1983) with pioneering the Bayesian approach to spatial
statistics as used today throughout statistics and computer vision. Markov
random field methods became practically feasible with the introduction of
the Gibbs sampling algorithm for random fields by Geman and Geman
(1984). Gaussian random fields, for which the adjacency matrix of the
random field graph corresponds to the inverse covariance matrix of a joint
Gaussian distribution on the graph nodes, were suggested by Speed and
Kiiveri (1986). The idea of graph edge weights determined by the observed
data was introduced in Geman et al. (1990). Literature surveys include
Besag et al. (1995), and the textbook of Winkler (2003). Combination of
Markov-type interaction models and multiresolution approaches are covered
by Willsky (2002).



Chapter 3

Clustering:
Parametric Mixtures

Before considering clustering models of nonparametric Bayesian type in
Chap. 4, we will discuss two finite mixture models in this chapter, which
somewhat differ from well-known standard models in terms of their com-
ponents. One clusters ranking data, i. e. preference lists represented as
permutations, by means of a parametric family of distributions on the sym-
metric group. The second model is a mixture-of-mixtures model, to address
the problem of clustering speckle noise data which arises in SAR image
segmentation problems.

Acknowledgment. All research presented in this chapter was conducted
under supervision of Joachim M. Buhmann. The material presented in
Sec. 3.1 is the result of research conducted in cooperation with Ludwig M.
Busse, and the heterogeneity problem emerged in the course of our discus-
sions. His further contributions include the implementation of the model;
its experimental evaluation; and an extensive literature review prior to the
actual research, on which our subsequent work was based. My own contri-
butions include the model and its derivation; the derivation of the algorithm
(though the local search in the M-step, which decisively increases algorithmic
efficiency, was suggested by Ludwig); and the text of the original publication,
which is reproduced here with minor modifications.
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3.1 Cluster Analysis of Heterogeneous Rank
Data

The term rank data refers to data in which each measurement is a ranking,
an arrangement of a given set of items in order of preference. Rankings
occur in consumer questionnaires, voting forms or other inquiries of pref-
erences. Cluster analysis of rank data attempts to identify typical groups
of rank choices. Available clustering methods are based on mixtures of
parametric distributions on the symmetric group. Empirically measured
rankings are often incomplete, i. e. different numbers of filled rank positions
cause heterogeneity in the data. This section proposes a mixture model for
clustering of heterogeneous rank data. Rankings of different lengths can
be described and compared by means of a single probabilistic model. A
maximum entropy approach avoids hidden assumptions about missing rank
positions. Parameter estimators and an efficient EM algorithm for unsuper-
vised inference are derived for the ranking mixture model. Experiments on
both synthetic data and real-world data demonstrate significantly improved
parameter estimates on heterogeneous data when the incomplete rankings
are included in the inference process.

3.1.1 Introduction

Ranking data commonly occurs in preference surveys: A number of subjects
are asked to rank a list of items or concepts according to their personal
order of preference. Two types of ranking data are usually discussed in the
literature: Complete and partial (or incomplete) rankings. A wide range of
probabilistic models is available for both (Diaconis, 1988; Critchlow, 1985).
A complete ranking of r items is a permutation of these items, listed in
order of preference. Mathematical models of rankings are based on the
corresponding permutation group. A partial ranking is a preference list
of t out of r items. Partial rankings require some refinements of models
designed for complete rankings, since two arbitrary partial rankings will in
general contain different subsets of the items. An extensive review of rank
comparisons can be found in (Critchlow, 1985).

Clustering of rank data aims at the identification of groups of rankers
with a common, typical preference behavior (Marden, 1995). An unsuper-
vised clustering method for complete rankings has been proposed by Mur-
phy and Martin (2003), based on the well-known Mallows’ model (Mallows,
1957) and its generalizations. A different but related problem is the combi-
nation of several rankings. This question has recently been discussed by a
number of authors, both in machine learning (Lebanon and Lafferty, 2002)
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and discrete algorithmics (Ailon et al., 2005).

For real-world surveys, the data analyst is often confronted with hetero-
geneous data, that is, data containing partial rankings of different lengths.
In the well-studied APA data set (Diaconis, 1989), for example, only about
a third of the rankings are complete, and the remaining incomplete lists
have variable lengths. Common practice in the analysis of heterogeneous
rank data is to delete partial rankings, and analyze only the subset of com-
plete rankings (Murphy and Martin, 2003), or to analyze partial rankings
of different lengths separately. This raises conceptual problems, as we must
expect the removal of a subsample of common characteristic (i. e. incom-
pleteness of the rankings) to cause a systematic bias. Moreover, decreasing
the sample size by removing partial rankings can result in a significant de-
crease of estimation accuracy.

For heterogeneous data, clusters model typical preferences. A ranker
associated with any group may either state his preferences completely or in-
completely. In other words, each cluster again constitutes a heterogeneous
data set, containing rankings of different lengths. The model introduced
below builds on the work of Fligner and Verducci (1986) and is applica-
ble to heterogeneous data. It is a parametric location-scale model based
on the Kendall distance (Kendall, 1938), and thus related to the model
of Mallows (1957). We address the clustering problem by combining sev-
eral model instances into a parametric mixture. Inference is conducted in a
maximum likelihood framework by an expectation-maximization algorithm.
The model admits an estimation procedure much more efficient than the
straightforward EM approach proposed in the literature for distance-based
rank models. Our experiments clearly demonstrate that the additional in-
formation in partial rankings can significantly improve parameter estimates
of mixture components in rank cluster analysis.

3.1.2 Background

The objective of rank data clustering is to (i) group similar rankings in the
input data and (ii) identify rankings that are prototypical representatives for
each group. Our approach is probabilistic: A probability model is defined
capable of representing an individual group. A mixture of such models is
then fitted to the data by an alternating estimation procedure. We will
first introduce the standard probability models on rank data available in
the literature.



84 Cluster Analysis of Heterogeneous Rank Data

Models for Complete Rankings

We assume that rank data for r items are observed. The items are indexed
m = 1, . . . , r, and n subjects are asked to arrange the items according to
their order of preference. Each of the resulting lists can be regarded as a
permutation πi of the item indices, i. e. πi(m) = j indicates that the i-th
ranker has assigned rank j to item m. The set of possible rankings is then
given by the set of possible permutations of r items. This set has a group
structure and is referred to as the symmetric group of order r, denoted S(r).

Statistics has developed a sizable amount of rank data models. Of par-
ticular interest for data clustering are the so-called distance-based models of
the form

P (π|λ, σ) :=
1

Z(λ)
exp (−λd(π, σ)) , (3.1.1)

with Z(λ) :=
∑
π∈S(r) exp (−λd(π, σ)). The model is parameterized by

a ranking σ ∈ S(r) and a dispersion parameter λ ∈ R+. The function
d : S(r) × S(r) → R≥0 is a distance function, i. e. a function with metric
properties on S(r). Since d is a metric and hence d(π, σ) = 0 iff π = σ,
the distribution P assumes its unique mode at σ, and σ is referred to as
the modal ranking. The dispersion parameter λ controls how sharply the
distribution peaks around the mode, i.e. small (large) λ values code for
broad (peaked) distributions. For clustering, distance-based models cap-
ture the notion that two observations belong to the same group if they are
“close”. The approach is related to familiar clustering methods for other
data types, such as Gaussian mixtures for vectorial data (which measure
distance by Euclidean or covariance-adjusted Euclidean distance) or multi-
nomial mixtures for histogram data (which measure a distance-like quantity
by Kullback-Leibler divergence). Different models can be obtained by sub-
stituting different types of metrics for d in (3.1.1). Other popular choices
include the Spearman rank correlation metric, and the Hamming, Cayley
and Ulam distances (Critchlow, 1985). The present work focuses on one
metric in particular, the widely used Kendall distance (Kendall, 1938), de-
fined as

dτ (π, σ) := minimum of adjacent transpositions required to
transform π into σ.

(3.1.2)

Closely related is the Cayley distance, which drops the adjacency require-
ment, and thus measures the distance in terms of arbitrary transpositions.
For d = dτ , the model (3.1.1) is Mallows’ φ model (Mallows, 1957) in its
original form. More generally, models of the form (3.1.1) are usually referred
to as Mallows models, provided that d is a metric.
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Clustering with Mallows’ Model

For clustering, the observed rank data is assumed to consist of K groups.
Each group is modeled by a Mallows distribution

Pk(π|λk, σk) :=
1

Z(λk)
exp (−λkdτ (π, σk)) . (3.1.3)

The component distributions are joined in a mixture model,

Q(π) :=
K∑
k=1

ckPk(π|λk, σk) , (3.1.4)

where the mixture weights (c1, . . . , cK) form a partition of 1. Model param-
eters can be estimated with an expectation-maximization (EM) algorithm
(McLachlan and Krishnan, 1997), or more sophisticated latent variable es-
timation algorithms.

Partial Rankings

A partial ranking is a ranking of t out of r items. Usually, one assumes a top-
t ranking, i. e. subjects have ranked their t favorites out of a larger number
of r items. Distance-based models for partial rankings can be constructed
by generalizing metrics on complete rankings to valid metrics on partial
rankings. (Critchlow, 1985) has proposed such a generalization based on
Hausdorff distances.

A partial top-t ranking is best represented as an inverse: In standard
notation, regarding the permutation π as a list of numbers, position in the
list corresponds to an item index (and the entry value at that position gives
a rank). A ranking of t favorite items is thus a list with gaps. Written as
the inverse π−1, position denotes rank, and a top-t ranking has the form
π−1 = (π−1(1), . . . , π−1(t), ∗, . . . , ∗). For any partial ranking π of length t,
denote by C(π) the set of all complete rankings π̃ matching π in their first
t positions, that is, C(π) := {π̃ ∈ S(r)|π̃(j) = π(j), j = 1, . . . , t}. We will
refer to C as the consistent set of π (in algebraic terms, this is just the right
coset Sr−tπ). For any two different partial rankings of the same length, the
consistent sets are disjoint, and their union over all partial rankings of a
given length is S(r). For a given metric d on S(r), Critchlow (1985) defines
an induced metric d∗ on partial rankings as the Hausdorff distance between
their consistent sets. As put by Critchlow, d∗(π, σ) can be imagined as the
smallest amount by which C(π) has to be enlarged to include all of C(σ).
Another approach to partial rankings is the completion method proposed
by Beckett (1993), who estimates complete rankings from partial ones based
on a Mallows model (cf. Sec. 3.1.5).



86 Cluster Analysis of Heterogeneous Rank Data

3.1.3 Modeling Heterogeneous Data

In the present work, we consider the problem of modeling real-world survey
data, which usually includes partial rankings of variable length t. Differences
arise because many subjects will rank only their favorite t items. For ranking
data on r items, we therefore have to assume an observed sample to contain
partial rankings of all possible lengths t = 1, . . . , (r−1) (note that t = (r−1)
is equivalent to t = r, since the missing position is uniquely determined). 1

Choice of Metric

The model described in this section is based on the Kendall distance. Our
choice of the metric is motivated by a range of properties: First, it has
an intuitive and plausible interpretation as a number of pairwise choices.
Mallows (1957) argues that it provides the best possible description of the
process of ranking items as performed by a human. Second, it enjoys a high
de-facto relevance due to its widespread use. Third, there are a number
of appealing mathematical properties: It counts (rather than measures), is
efficiently computable, decomposable into a sum, and its standardized dis-
tribution has a normal limit (Diaconis, 1988). Though our study is limited
to the Kendall case, Fligner-Verducci type models can be derived for the
Cayley distance as well (Fligner and Verducci, 1986).

Probabilistic Model

If only a subset of the available items is ranked, the choice of a probabilis-
tic model implies a distribution assumption for the missing entries. We
take a maximum entropy approach, demanding our model to be maximally
noncommittal with respect to the missing information. Such a model is
suitable to address several generative scenarios for partial rankings: One
is indifference of the ranker, i. e. a subject ranks t favorite items, but does
not have any preferences concerning the remainder. Another setting are
large sets of items, where most subjects will not take the time to provide
a complete list (e. g. when the task is to specify a ranking of favorites out
of thousands of items). In general, the approach is applicable unless prior
information on the popularity of items is available. A maximum entropy
approach attempts to avoid implicit (hidden) assumptions on the choice of
items. This is a notable difference to the Hausdorff metric approach, for

1We do not consider partial rankings with gaps, i. e. rankings with a total of t < r
filled position and empty ranks in between, since data of this type can be expected to be
rare. Our model does, in principle, generalize to the case of rankings with gaps, but the
actual computations become more difficult.
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example, which constitutes a worst-case assumption: The distance problem
is reduced to the original metric by expanding a pair of partial rankings
into that consistent pair of complete rankings which differs most under the
inducing metric.

To express lack of knowledge w. r. t. to items beyond the preferred t
choices, we have to assume that the ranker’s choice effectively encompasses
all possible completions of π to a complete ranking in S(r). In other words,
successive ranking of items is regarded as a constraining process: By each
additional item entered into the list, the ranker constrains the set of possible
completions. A full ranking limits S(r) down to a single element. A partial
ranking defines the set C(π) of possible completions. Any model distribu-
tion F on complete rankings can then be generalized to a distribution F t

on partial rankings by defining the probability of π under F t as the total
probability placed on the set C(π) by the model F :

F t(π) := F (C(π)) =
∑

π̃∈C(π)

F (π̃) . (3.1.5)

For Mallows’ model based on the Kendall distance, the probability F (C(π))
admits an elegant decomposition. From a statistics point of view, the ap-
proach can be regarded as a censored data problem. For the Kendall metric,
censored rank data has been considered in (Fligner and Verducci, 1986).
They build on the well-known fact that the Kendall distance, as well as the
Cayley and Hamming distances, can be decomposed into a sum. Define the
following statistic for each position j = 1, . . . , (r− 1) in a complete ranking
π of length r:

s̃j(π) :=
r∑

l=j+1

I{π−1(j) > π−1(l)} , (3.1.6)

where π−1 denotes the inverse of π in S(r) and I the indicator function of a
set. Intuitively, s̃j is the number of adjacent transpositions required to move
item j to position j, if the items at the previous 1, . . . , (j − 1) are already
ordered. The sum over the statistics s̃j is the Kendall distance of π and
the identity permutation IdS(r) (Fligner and Verducci, 1986). The metric
dτ is right-invariant, that is, for any π1, π2, π3 ∈ S(r), dτ (π1π3, π2π3) =
dτ (π1, π2). Hence, for any σ ∈ S(r),

dτ (π, σ) = dτ (πσ−1, IdS(r)) =
r−1∑
j=1

s̃j(πσ−1) . (3.1.7)

This representation is somewhat inconvenient for modeling partial rankings,
since the sum ranges over the suffix of rank j, which includes empty posi-
tions. We therefore substitute equivalent statistics sj involving only indices
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up to j. For any permutation ρ, define

sj(ρ) := ρ(j)−
j∑
l=1

I{ρ(j) ≥ ρ(l)} . (3.1.8)

The Kendall metric is then computed as dτ (π, σ) :=
∑r
j=1 sj(σπ

−1), which
avoids any explicit use of π: Since π−1 is a top-t list, it is not invertible.
The importance of the sum representation for modeling partial rankings is
that it can be decomposed into terms corresponding to filled and empty
positions, respectively:

dτ (π, σ) =
t∑

j=1

sj(σπ−1) +
r∑

j=t+1

sj(σπ−1) = st(σπ−1) + sempty(σπ−1) .(3.1.9)

The probability of the consistent set of π under Mallows’ model can then
be expressed as

F (C(π)|λ, σ) =
1

Z(λ)

∑
π̃∈C(π)

exp (−λdτ (π̃, σ))

=
exp

(
−λst(σπ−1)

)
Z(λ)

∑
π̃∈C(π)

exp
(
−λsempty(σπ̃−1)

) (3.1.10)

The sum over C(π) depends only on t, and is absorbed into the partition
function Z(λ). Hence, the resulting partition function Zt(λ) depends on t.
The probability of the partial ranking is thus

F (C(π)|λ, σ) =
1

Zt(λ)
exp

(
−λst(σπ−1)

)
, (3.1.11)

and we write F (π|λ, σ) := F (C(π)|λ, σ). The partition function Zt can
be derived from the (somewhat more complicated) model in (Fligner and
Verducci, 1986), as

Zt(λ) :=
t∏

j=1

1− e−λ(r−j+1)

1− e−λ
. (3.1.12)

The distribution is a maximum entropy model, as it constitutes an expo-
nential family distribution given the modal ranking σ, with the functions sj
as its sufficient statistics. The choice of the location parameter σ does not
change the model’s entropy.
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Heterogeneous, partial ranking data drawn from K distinct groups can
now be described by a mixture model. Denote by t(π) the length of an
arbitrary partial ranking π. The generative model for the data is then

Q(π|c,λλλ,σσσ) :=
K∑
k=1

ck
Zt(π)(λk)

e−λks
t(π)(σπ−1

k ) . (3.1.13)

To summarize, lack of knowledge (or indifference of a ranker) about the
order of neglected items is expressed by substituting the consistent set of a
ranking in the modeling process. Probabilities are comparable for rankings
of different lengths. Formally, this holds because the model is a distribution
on the consistent sets C(π). For any two rankings, the sets are nested if
one ranking prefixes the other, and are disjoint otherwise. The mixture
expresses the separation of the rankers surveyed in the data into different
groups or types, each of which exhibits a “typical” preference behavior.
The data collected from rankers within a single group will in general be
heterogeneous. For a given group, the modal ranking describes a consensus
preference, and the corresponding dispersion parameter variation between
the associated rankers.

3.1.4 Model Inference

Our approach to inference is based on maximum likelihood (ML) estima-
tion. For the mixture model described above, the overall ML estimator of
the model parameters is approximated with an expectation-maximization
(EM) algorithm (McLachlan and Krishnan, 1997). In this section, we de-
rive estimation equations for the heterogeneous data model, and discuss the
implementation of efficient EM algorithms for rank data. Straightforward
implementations of such algorithms previously proposed for Mallows mix-
tures on complete rankings (Murphy and Martin, 2003) require the repeated
evaluation of sums over all possible rankings. Since the symmetric group
S(r) has r! elements, such methods are only applicable for rankings with a
small number of entries.

For data πi, i = 1, . . . , n and K clusters, we define binary class assign-
ment vectors Zi := (Zi1, . . . , ZiK). If πi is assigned to cluster k, then
Zik = 1 and all other entries are set to zero. These are the hidden vari-
ables of the EM estimation problem. The EM algorithm relaxes the binary
assignments to assignment probabilities qik := E [Zik], where qik ∈ [0, 1]
and

∑
k qik = 1 for each i. The E-step of the algorithm computes esti-

mates of the assignment probabilities conditional on the current parameter
configuration of the model. Given estimates of the component parameters



90 Cluster Analysis of Heterogeneous Rank Data

λk, σk and the mixture weight ck for each cluster k, assignment probabil-
ities are estimated as qik := ckF

t(πi|λk,σk)PK
l=1 clF

t(πi|λl,σl)
. In the M-step, assignment

probabilities are assumed to be given. For each cluster, the parameters to
be estimated are ck, λk and σk. As for any mixture model EM algorithm,
the mixture weights are straightforwardly computed as ck := 1

n

∑n
i=1 qik.

ML estimation of the component parameters σk, λk proceeds in two steps,
first obtaining an estimate of σk (which does not depend on λk), and then
estimating λk conditional on σk. This is reminiscent of e. g. the two-stage
ML estimation of location and scale parameters for Gaussian models. The
modal ranking ML estimate is

σ̂k = arg max
σk

log
n∏
i=1

F (πti |λk, σk)qik = arg min
σk

n∑
i=1

qik

t(πi)∑
j=1

sj(σkπ−1
i ) .

(3.1.14)

Rather than evaluating the minimum over the whole group, our algorithm
performs a local search step, by minimizing over all adjacent transpositions
around the estimate σ̃k obtained during the previous M-step. This strat-
egy is equivalent to searching within a dτ -radius of 1. When initialized at
random, the algorithm may thus require several steps until it reaches the
correct σk. The local search results in a generalized EM (GEM) algorithm,
since the conditional likelihood is increased but not fully maximized during
the M-step. Generalized EM algorithms satisfy the EM convergence con-
ditions and retain EM convergence guarantees (McLachlan and Krishnan,
1997). Our control experiments in Sec. 3.1.5 clearly indicate that the local
estimation approach is adequate. If modal ranking estimation errors occur,
they are due to ambiguous data, i. e. data drawn from clusters for which the
distance between the modal rankings is small w. r. t. to their dispersion.
Local search over transpositions reduces the estimation costs for σk from r!
to r evaluations.

Since the dispersion parameter is continuous, a maximum condition for
the likelihood w. r. t. λk can be obtained by differentiation. Setting the
derivative of the log-likelihood of one mode to zero yields

−
n∑
i=1

∂

∂λk
logZt(πi)(λk) =

n∑
i=1

d(πi, σk) . (3.1.15)

For our heterogeneous data model as described in Sec. 3.1.3, (i) the parti-
tion function has a closed-form solution and the derivative can be obtained
explicitly, and (ii) the model has to be decomposed over different types of
rankings, since the partition function depends on t. Assume that the obser-
vations πi have different lengths t ∈ {1, . . . , r}. Denote by It ⊂ {1, . . . , n}
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the set of indices i for which πi has length t. The log-likelihood of the
complete data set under cluster k is

log
n∏
i=1

F (πi|λk, σk) =
r∑
t=1

∑
i∈It

logF (πi|λk, σk)

= −
r∑
t=1

|It| log(Zt(λk))−
r∑
t=1

∑
i∈It

λk

t∑
j=1

sj(σkπ−1
i )

(3.1.16)

Equating the derivative to zero gives

−
r∑
t=1

|It|
∂

∂λk
log(Zt(λk)) =

n∑
i=1

t(πi)∑
j=1

sj(σkπ−1
i ) . (3.1.17)

The derivative of log(Zt(λk)) for given t is

∂

∂λk
log(Zt(λk)) =

r∑
j=r−t+1

j

ejλk − 1
− t

eλk − 1
.

This expression is both rapidly computable and smooth w. r. t. λk. The
right hand side of (3.1.17) does not depend on λk, hence the maximum
likelihood estimator λ̂k can be efficiently evaluated by numerical solution of
equation (3.1.17).

3.1.5 Experimental Results

The experiments include artificial and real-world rank data. The mixture
analysis with artificial data drawn from a density with known parameters is
conducted to evaluate the algorithm’s effectiveness in recovering parameters
from rank data. Additional experiments are conducted on the American
Psychological Association (APA) data set (Diaconis, 1989). All experiments
are performed with the EM algorithm described in Sec. 3.1.4. The number
of clusters is selected by a Bayesian Information Criterion (BIC)2

2In Chap. 4, model order selection is performed with a Dirichlet process. BIC is used
here for two reasons: First, model order selection is not the principal focus of this work,
and BIC, as the most commonly used strategy, facilitates comparison to other studies
in the rank data literature. Second, the Dirichlet process is applied straightforwardly
only if the model in question admits a conjugate prior. The Fligner-Verducci model is an
exponential family distribution, and hence does admit a conjugate prior, but only w. r. t.
the dispersion parameter.
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Settings Results
c uniform c non-uniform

d λ K̂ error ĉ error λ̂ K̂ error ĉ error λ̂
[2, 9, 9] 0.50 1 0.033 0.086 1 0.248 0.324

1.00 3 0.007 0.056 3 0.013 0.032
1.50 3 0.027 0.151 3 0.001 0.048

[8, 6, 6] 0.50 1 0.155 0.274 1 0.189 0.331
1.00 3 0.029 0.094 3 0.047 0.144
1.50 3 0.016 0.050 3 0.013 0.057

Table 3.1: Estimation errors on artificial data of sample size n = 300, with
K = 3 clusters. For uniform c, all clusters have equal size. For non-uniform
c, cluster sizes differ.

(McLachlan and Krishnan, 1997). For comparison, we use a clustering
approach based on the completion method described in (Beckett, 1993).
The method explicitly estimates a maximum likelihood completion to a
full ranking by treating the missing positions as latent information, and
assuming complete rankings to be distributed according to a Mallows model.
An estimate of the full ranking is obtained with an EM algorithm, which
alternatingly estimates a Mallows model from current completion estimates,
and then estimates completions based on the current model. The method
can be used as basis for partial rank data clustering model, by performing
completions based on the data currently assigned to a cluster during the
clustering E-step, and performing maximum likelihood estimation for the
mixture components given the current completion estimates during the M-
step.

Table 3.2: Long rankings: Estimation error comparison for ranking length
r = 20, with K = 10 clusters and n = 1000 samples (uniform over partial
lengths).

Method error σ̂k error λ̂k
Maximum Entropy 0 0.06± 0.01

Beckett’s completion 1.52± 0.57 0.11± 0.02
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(a) (b)

Figure 3.1: (a) Full versus restricted data set: Average estimation error for
cluster assignments (vertical) versus the number of ranking types present
in the data set (horizontal). (b) APA data set: Variance of dispersion
estimates (vertical) versus number of ranking types present in the data set
(horizontal), for our method (left) and Beckett’s completion model (right).
Minimum length 5 corresponds to the subset of complete rankings, 1 to the
whole data set. The variance is computed over 20 bootstrap samples.

Synthetic Data

Synthetic data observations were drawn at random from a mixture model
(3.1.13). Sample experiments for r = 5 items and K = 3 clusters are shown
in Tab. 3.1. By d, we denote the pairwise Kendall distances between the
cluster centers. The quality of parameter estimates is reported as mean
squared error on n = 300 observations. The BIC estimate K̂ of the number
of clusters is accurate except for very small λ which corresponds to broad
modes. This behavior is expected since the different modes strongly overlap
for small λ and, consequently, are not resolvable for the chosen number
of observations. When BIC underestimates the number of clusters, the
estimation errors for λ and c generally increase. Estimation errors increase
again for λ = 1.5 in the case of two close clusters (d = [2, 9, 9]), a distortion
effect caused by points of the neighboring cluster. The dispersion at which
the effect becomes visible depends on a trade-off between the dispersion
and the distance of the clusters. It will occur at a larger value of λ if the
clusters are closer. Remarkably, the modal rankings σk are always estimated
correctly, unless the estimate of the cluster number is wrong.

The value of partial rankings for estimation is illustrated by Fig. 3.1.5.
EM estimation of the mixture model was conducted on a random data set,
with r = 5 and a proportion of 25% complete rankings. The partial rankings
of lengths {1, 2, 3} are also drawn with probability 0.25 each. The estima-



94 Cluster Analysis of Heterogeneous Rank Data

tion error for the cluster assignments was recorded and plotted against the
number of ranking length types present in the data (horizontal), where 5
denotes the case where all partial rankings are removed from the data set,
corresponding to the common practice of analyzing only the subset of com-
plete rankings. When more categories are added (with 1 corresponding
to the complete heterogeneous data set), we observe a significant decrease
in both the estimation error and its variance. A double-logarithmic plot
of these results reveals an approximate scaling behavior of O(1/

√
n). We

conclude that, at least in the controlled setting of synthetically generated
data, the inference procedure is capable of using the information carried by
partial rankings to its advantage.

Comparisons with Beckett’s completion method were conducted for rank-
ings of length r = 5 and r = 20 on synthetic data. Parameter estimates
obtained by our method are more accurate then those obtained by the com-
pletion approach. The difference is statistically significant even for r = 5,
and becomes more pronounced as the number of items is increased. Results
for r = 20 are reported in Tab. 3.2. Application of Beckett’s method to
rankings of this length requires a modification of the original algorithm.
Beckett’s estimation step completely enumerates the consistent set of each
partial ranking, and hence scales exponentially in the number of unranked
items. It can be made applicable to large rankings by substituting a sam-
pling step, at the price of an increase in the variance of estimates. The
completion method introduces an error in the estimation of the modal rank-
ing. Errors are caused by the large number of latent variables required by
the completion model, which result in diffuse distributions of the cluster
assignments.

APA Data

The APA data set of real-world rankings was obtained from the results of
the American Psychological Association’s 1980 presidential election. Each
ballot is a ranking of five candidates. The data set is remarkably large
(about 15,000 observations) and it has been extensively analyzed (Diaco-
nis, 1988). The data is heterogeneous, that is, only 5738 ballots contain
complete rankings. The remainder contains top-t rankings of all possible
lengths t = 1 through t = 3 (note that t = 4 is equivalent to a complete
ranking). Since no ground-truth is available for this data, the estimation
errors cannot be computed. However, to analyze the value of the partial
rankings for estimation accuracy, we consider the variance of the estimate
of λ. Fig. 3.1.5 shows a plot of the bootstrap variance estimate of the es-
timators λ1, . . . , λK , for both our model and clustering based on Beckett’s
completion approach. The variance estimates are plotted versus the number
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of ranking types (i. e. different lengths). The error bars measure variances
over multiple repetitions of the bootstrap estimation experiment. For our
maximum entropy model (left), inclusion of additional partial observations
in the analysis clearly stabilizes parameter estimates. The variance remains
notably higher for the Beckett approach (right). Using Beckett’s completion
requires latent variables to account for the missing positions, in addition to
the assignment variables required by the mixture model. Since additional
latent variables increase the overall entropy of the model, the completion
approach has a destabilizing effect, which becomes more pronounced as the
proportion of partial rankings in the data increases. It will also slow down
convergence of the inference algorithm, as the convergence speed of EM
algorithms depends on the proportion of latent variables (McLachlan and
Krishnan, 1997).

3.1.6 Discussion

We have presented an unsupervised clustering approach for ranking data
that is capable of performing an integrated analysis on heterogeneous, real-
world data, rather then decimating the data to fit the model. An efficient
EM algorithm has been derived and shown to recover parameters accurately
from data.

Our method offers two advantages compared to rank data clustering
techniques available in the literature: (i) the ability to analyze a data set
composed of different ranking types, and (ii) efficient inference. The value of
the former point was demonstrated by our experiments: Removing partial
rankings from a given data set significantly reduces the accuracy of pa-
rameter estimates. For data containing only complete rankings, a decrease
in estimation accuracy would have to be expected if samples are removed.
That the same effect is observable (Fig. 3.1.5) when the removed rankings
are partial shows that incomplete rankings carry valuable information –
even those containing only a single entry.

However, on real-world survey data, this effective loss in sample size
is not the only consequence of removing data. In a survey, ranking only
partially may constitute a typical behavior. That is, if providing a partial
rather than a complete ranking correlates with certain preferences, remov-
ing partial rankings will exclude these modes of behavior from the analysis.
In addition to reducing the sample size, it also introduces a systematic
bias. Both drawbacks can be avoided by automatic analysis methods capa-
ble of processing heterogeneous data, and combining estimate contributions
obtained on rankings of different lengths in a meaningful way. Our mod-
eling approach permits the natural integration of different length types by
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defining a distribution on the subset of completions consistent with a given
partial ranking.

Algorithmic inference of our model is substantially more efficient than
the algorithms available in the literature for distance-based models. The
EM algorithm presented in Sec. 3.1.4 scales linearly in the number of ranked
items (i. e. the order r of the permutation group), rather than exponentially,
as other algorithms do (Murphy and Martin, 2003).

Our modeling approach relies on the decomposition of the Kendall dis-
tance into a sum over ranking positions and, therefore, it generalizes to
ranking metrics with the same property. Such a decomposition is known for
the Kendall, Cayley and Hamming distances, but results from Weyl group
theory suggest that it does not exist for other metrics (Diaconis, 1988). Ap-
proximate decompositions for other metrics, however, might render efficient
relaxations possible which would generalize our approach to these cases.
Our emphasis on the Kendall metric is motivated by its ubiquitous usage
in rank mixture analysis and by its natural properties (see Sec. 3.1.3) for
rank comparisons.

3.2 Mixture-of-Mixture Models for Speckle
Noise Degradation

The setting of the clustering problem studied in the following is the image
segmentation problem, in the particular case of SAR (synthetic aperture
radar) images. The dominant noise type in such images is multiplicative
speckle noise, which is due to interference caused by radar backscatter.
A number of different, analytically derived parametric models is available
for such data. Their common properties include restriction to the positive
semi-axis, asymmetry (positive skewness), and a leptokurtic (heavier than
Gaussian) upper tail. Proposed models include gamma distributions, K dis-
tributions, Rayleigh distributions, and a host of generalizations and model
combinations (see e.g. Oliver and Quegan, 1998, for an overview). In practi-
cal applications, these models face a common problem: Differences in fitting
behavior between different models are minute, whereas SAR data properties
can vary heavily from image to image, due to properties of the source, as
well as often heavy preprocessing.3 Such preprocessing frequently (but not
always) involves various transforms of logarithmic type, turning multiplica-
tive speckle noise into additive noise, but at the same time inverting the
skew of the data distribution.

3Visualizing raw SAR measurements as images requires computer preprocessing to
begin with, such that there is no well-defined notion of an unprocessed original image.
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In Chap. 4, segmentation of images (including SAR images) will be based
on histogram representations of the data, modeled by means of multinomial
component distributions. In the remote sensing community, smooth para-
metric distributions on the real line are preferred to the inherently more
flexible multinomials. The model presented here attempts to strike a bal-
ance between smoothness and flexibility. It is based on the observation that,
regardless of the preprocessing involved, SAR data tends to be unimodal
within segments. Unimodal distributions can be approximated well by mix-
tures of two or three Gaussians. We therefore use such a mixture model
to represent each image segment, resulting in Gaussian mixture-of-mixture
representation for the overall image.

Mixture-of-mixtures models, i. e. mixture models for which each compo-
nent again constitutes a parametric mixture, have been studied repeatedly
in the statistics and machine learning literature, for example by McLachlan
and Gordon (1989). Applications of related models in supervised settings
have been considered by Jordan and Jacobs (1994); Hastie and Tibshirani
(1996). Supervision information simplifies the inference problem, because
estimation can be conducted separately for each group. Gaussian mixture-
of-mixtures models have previously been applied to image segmentation in
(Hermes et al., 2002), where the model is optimized by deterministic an-
nealing (Rose, 1998), and model components are coupled between clusters
to decrease computational complexity. We will derive an nested algorithm
of EM type, with a blocking structure adapted to the hierarchical structure
of the model. The algorithm substantially simplifies inference, without re-
sorting to mode coupling heuristics, when the number of modes per inner
mixture is small.

3.2.1 Segmentation approach

Image data is assumed to be given in form of local histograms, that is, the
features extracted from the image are histogram representations of the local
data distributions in the neighborhood of image pixels. The histograms are
grouped into a pre-specified number of clusters, each of which is modeled
by a parametric mixture model.

For a grayscale input image, a local histogram is extracted from the
image at the sites (nodes) of an equidistant grid. The local histogram at
a given grid point is extracted by centering a window at the respective
pixel, selecting all pixels within the window and sorting their grayscale
values into a histogram. This procedure results in a set of histograms hi =
(ni1, . . . , niNbins). Here i = 1, . . . , n indexes the grid points and Nbins is the
number of histogram bins, so nij denotes the counts in bin j of histogram
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i. We assume that all histograms contain an identical total number Ncounts

of counts.
The data is modeled by a mixture-of-mixtures model, i. e. a finite mixture

model the component densities of which are themselves represented by finite
mixtures. All component mixture densities consist of an identical number
NModes of Gaussian components:

p (x|θ) =
K∑
τ=1

cτpτ (x) =
K∑
τ=1

cτ

(NModes∑
α=1

cταg
τ
α (x)

)
, (3.2.1)

where gτα (x) = g (x|µτα, στα) denotes a normal density and θ the full set of
Gaussian parameters. cτ , cτα are the priors of the segments and the modes,
respectively. We expect the local image histograms to be uni- or at most
bimodal, so we are interested only in cases where the number of inner com-
ponents is small (typically NModes = 2, 3).

Since the range of digital image data is restricted to a finite intensity
interval, we have to truncate the Gaussians. These distributions are referred
to as rectified distributions in the literature (Socci et al., 1998). Rectification
somewhat complicates parameter estimation, because a ML estimator for a
Gaussian mean or variance parameter is not a valid ML estimator for the
rectified Gaussian.

3.2.2 Inference Algorithm

Assuming that maximum likelihood estimates for the component densities
pτ can be obtained, the model overall mixture model p (x|θ) =

∑K
τ=1 cτpτ (x)

can be approximated by means of the EM algorithm. It will be convenient
in the following to again represent cluster assignments in the form of binary
indicator vectors zi, with ziτ = 1 if site i is assigned to cluster τ and ziτ = 0
otherwise. The EM target function then has the form

Q(θ, θ̃) =
∑
i,τ

EZ|x,θ̃ [Ziτ ] log (cτpτ (xi|θτ )) . (3.2.2)

Histogram Data Under a Parametric Model

We assume our input data to be a set h = (h1, . . . ,hn) of histograms,
drawn i.i.d. from a source modeled by a parametric density of the form
(3.2.1). Denote by Ij the interval in the data domain corresponding to
bin j. For a histogram drawn from cluster τ , the probability of a data
value to fall into bin Ij is pτj (Θ) =

∫
Ij
pτ (x|θτ ) dx. Given the probabilities
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of occurrence pτ1 (Θ) , . . . , pτNbins
(Θ), the probability for any one histogram

hi = (hi1, . . . , hiNbins) to occur is multinomially distributed according to

pτ (hi|θ) :=
Ncounts!∏
j hij !

Nbins∏
j=1

pτj (Θ)hij . (3.2.3)

Including assignment variables for the EM algorithm, h and Z are jointly
distributed according to

p (h, z|θ) :=
∏
i

∑
τ

ziτ cτpτ (hi|θτ ) . (3.2.4)

The resulting log-likelihood is

l (θ) =
n∑
i=1

(
log (Ncounts!)−

Nbins∑
j=1

log (hij !)
)

+
∑
i,τ

ziτ log (cτ )

+
∑
i,j,τ

ziτhij log (pj (θτ )) ,

using the standard EM trick of drawing a sum over normalized binary assign-
ments through the logarithm. (Equality holds only because the assignment
indicator vector are binary. If assignment probabilities are substituted as
in the EM algorithm, the equality turns into a Jensen-type inequality, cor-
responding to the EM majorization inequality (2.6.13).) Since the first sum
in the log-likelihood is a constant of the input data, we may drop it for the
EM target function:

Q(θ, θ̃) :=
∑
i,τ

E [Ziτ ]
(

log cτ +
∑
j

hij log (pj (θτ ))
)

(3.2.5)

Nested EM Algorithm for the Hierarchical Model

Each component of our model (3.2.1) is again a Gaussian mixture. Op-
timization of the model requires a ML estimation for a simple Gaussian
mixture model in the M-step. Therefore, we perform the M-step by exe-
cuting an EM algorithm for each component mixture model. The approach
requires hierarchical assignments: Variables for the outer EM loop, which
indicate cluster assignments and will again be denoted Ziτ , and a complete
set of assignment variables for each inner mixture, denoted Zτiα, where i
indicates the site, τ the cluster and α the Gaussian mode. Additionally,
for the inner EM algorithm, we drop the assumption that each site is as-
signed to a model component: A site not assigned to the cluster in question
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(ziτ = 0 for the current cluster τ) should not be taken into account by the
inner loop. Thus, zτiα = 1 indicates that site i is assigned to component α
of cluster τ iff ziτ = 1. We define effective inner assignment indicators Lτiα
by

Lτiα := Zτiα · Ziτ . (3.2.6)

To make the algorithmic treatment feasible, we assume statistical indepen-
dence of Zτiα and Ziτ . The outer algorithm computes expectations in the
E-step according to

E [Ziτ ] =
cτpτ (hi|θτ )∑
ν cνpν (hi|θν)

. (3.2.7)

The M-step computes the mixture weights cτ from the outer assignments
as cτ =

∑
i E [ziτ ] /n. The inner loop consists of one EM algorithm for each

cluster, which is initialized by the final inner model parameters obtained for
the current cluster by previous execution of the inner loop (i. e. during the
previous step of the outer algorithm). The E-step computes expectations
as

E [Zτiα] =
cταp

τ
α (hi|θτα)∑

ν c
τ
νp
τ
ν (hi|θτν )

, (3.2.8)

where, in our case, pτα (hi|θτα) = g (hi|µτα, στα). Since we assume indepen-
dence, we can compute expectations for the effective inner assignments Lτiα
as

E [Lτiα] = E [Zτiα] · E [Ziτ ] . (3.2.9)

The M-steps require one target function for each cluster:

Qτ (θτ , θ̃τ ) =
∑
i,α

E [Lτiα] log (cταp
τ
α (hi|θτα)) . (3.2.10)

By substituting histogram probabilities as in (3.2.5), we obtain

Qτ (θτ , θ̃τ ) =
∑
i

J (hi) +
∑
i,α

E [Lτiα] log (cτα) +
∑
i,α,j

hijE [Lτiα] log
(
pταj (θτα)

)
,

(3.2.11)

where J (hi) denotes the constant term depending only on the input data,
which can again be neglected for optimization purposes. Of the two re-
maining terms, one depends only on the inner mixture weights cτα and one
on the mode parameters θτα. Therefore, the two terms can be optimized
independently. Solving for the mixture weights gives

cτα :=
∑
i E [Lτiα]∑
i,α E [Lτiα]

=
∑
i E [Lτiα]
cτ

. (3.2.12)
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ML estimation for the Gaussian parameters during the inner M-step has
to be conducted by numerical optimization of the last term in (3.2.11),
because ML equations for rectified Gaussians lack closed-form solutions.
The last term of (3.2.11) may be regarded, up to histogram normalization,
as a cross-entropy between the average cluster data distribution and the
discretized cluster model distribution. This can be turned into the nega-
tive Kullback-Leibler divergence between the two discrete distributions by
adding the average data distribution’s entropy (Cover and Thomas, 1991).
ML estimation is therefore equivalent to minimization of the KL divergence
between the data and the discretized model. Instead of computing ML
estimators for the rectified model, we minimize the KL divergence on the
restricted domain. The algorithm is an example of a hierarchical (recursive)
application of the block optimization strategy (cf. Sec. 2.6). The outer loop
is a two-block scheme. One of the blocks (the M-step) is again solved by
blocking variables according to the cluster structure.

As a stopping criterion for both the outer and inner EM algorithm, we
can threshold the change in assignments between consecutive steps. During
the first steps of the algorithm, however, the assignments in the outer loop
are still subject to large changes. It turns out that, by gradually increasing
the number of inner iterations with each outer step, we can obtain results
comparable (and sometimes superior) to a thresholding approach. The outer
loop can then be interpreted as a generalized EM algorithm (McLachlan and
Krishnan, 1997), since the M-step (the inner EM loop) is not designed to
fully maximize the log-likelihood, only to increase it.

3.2.3 Application to SAR data

SAR image segmentation is an interesting application for mixture-of-mixtures
models, because SAR data is known to be distributed in a characteristic
fashion. The gamma distribution (and several other, closely related distri-
butions) have been suggested as parametric models for this data (Oliver and
Quegan, 1998). A gamma distribution can be approximated roughly by a
single Gaussian, but very closely by a mixture of two or more Gaussians. For
certain parameter configurations, gamma distributions are monotonically
decreasing rather than peaked; these cases can be closely approximated by
the right tail of a Gaussian when using a rectified model. If we assume that
each segment is roughly gamma distributed, we can thus apply our algo-
rithm to SAR image segmentation by clustering local histograms extracted
from a SAR image using Gaussian mixtures. Figs. 3.2(a) and 3.2(b) show
segmentation solutions obtained by our algorithm on two different SAR im-
ages. The locally correlated structure of the errors is typical for histogram
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data with overlapping windows: Due to the size of the histogram window,
local deviations from the average distribution of the segment enter in all
histograms within a certain neighborhood, which are then erroneously as-
signed. Fig. 3.3 provides a plot of the summed Gaussian mixtures modeling
the three clusters for the solution in Fig. 3.2(b). The middle mode shows
how a Gaussian mixture can model a distribution of typical gamma shape.

SAR image data is often processed by logarithmic transforms. Deriving
appropriate model distributions for this processed data has proven rather
difficult (see, for example Xie et al., 2002). The shape of the resulting dis-
tribution is roughly of reversed gamma shape, i. e. it resembles a gamma
distribution of inverse skewness. The Gaussian mixtures of our model are
just as suited to model this kind of data as to model gamma distribu-
tions, since a Gaussian mixture approximating a gamma distribution can
be turned into a distribution of reversed gamma shape by simply shifting
components.

3.2.4 Discussion

The algorithm is observed to converge despite the large number of hidden
variables. In general, the performance of EM algorithms is known to de-
teriorate as the number of hidden variables (and thus their total entropy)
increases. For the algorithm introduced above, each of the inner EM algo-
rithms works only on a fixed subset of hidden variables, leaving all others
untouched; therefore, only the entropy of the hidden variables in the subset
is relevant for the performance of the corresponding inner loop. Since these
subsets are pairwise disjoint, sequential execution of the inner algorithms
performs a consecutive series of steps on orthogonal subspaces of the space
spanned by the hidden variables, as a refinement of the alternating series of
orthogonal maximization steps performed by a standard EM algorithm. In
terms of Sec. 2.6, the algorithm employs an adaptive blocking approach on
both levels of the model hierarchy. An inner EM loop is called in a recursive
manner for each block of variables identified by the outer algorithm.

In theory, the hierarchical structure of both the model and our algorithm
could be extended to a nesting depth greater than two, but due to the
increasingly complicated structure of the hierarchy of hidden variables and
the question of model identifiability, optimization of models with more than
two layers is unlikely to be reliable. The image segmentation approach
was described here only for grayscale or single-channel image data. It can
easily be extended to multiple channels (without increasing the number
of hidden variables) by using marginal histograms for each channel. In
this case, the EM target function becomes a simple sum over the channels.
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Multiple channels will be discussed in more detail in Sec. 4.1.5. A possible
variation of the algorithm may be along the lines of the generalized EM
(GEM) algorithm. Since short inner iterations seem to be advisable during
the first few loops of the overall algorithm, one might consider a stopping
criterion for the inner loop depending on the change of assignments in the
outer loop, so optimization in the inner loop becomes increasingly precise
as cluster assignments become more reliable.



Chapter 4

Clustering:
Nonparametric Mixtures

The clustering models described in the previous chapter are standard finite
mixture models, albeit with somewhat non-standard component distribu-
tions. The models described in this section are of nonparametric Bayesian
type, in the sense that both are built around a mixture model in which
the mixing distribution is drawn from a Dirichlet process. The first model
(Sec. 4.1) constrains the clustering solution of a Dirichlet process mixture
to be spatially smooth, by means of a Markov random field, and is applied
to the segmentation of noisy images. This addresses the problem of model
order selection on a given instance. The second model (Sec. 4.2), motivated
by the video segmentation problem, in which a clustering problem has to
be solved repeatedly along a time series, performs model order adaptation.
The number of clusters is adjusted over time, as new components appear in
or vanish from the data.

Acknowledgment. All research presented in this chapter was conducted
under supervision of Joachim M. Buhmann. The experimental results pre-
sented in Sec. 4.2 are due to experiments conducted by Samuel L. Braendle
as part of a term project. Samuel made the algorithm applicable to real-world
videos by significantly improving the feature extraction.
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4.1 Smoothness-Constrained Model Order
Selection

Statistical approaches to image segmentation usually differ in two difficult
design decisions, i. e. the statistical model for an individual segment and
the number of segments which are found in the image. k-means clustering
of gray or color values (Samson et al., 2000), histogram clustering (Puzicha
et al., 1999) or mixtures of Gaussians (Hermes et al., 2002) are a few exam-
ples of different model choices. Graph theoretic methods like normalized cut
or pairwise clustering in principle also belong to this class of methods, since
these techniques implement versions of weighted or unweighted k-means in
kernel space (Bach and Jordan, 2004; Roth et al., 2003). The number of
clusters poses a model order selection problem with various solutions avail-
able in the literature. Most clustering algorithms require the data analyst to
specify the number of classes, based either on a priori knowledge or educated
guessing. More advanced methods include strategies for automatic model
order selection, i. e. the number of classes is estimated from the input data.
Available model selection methods for data clustering include approaches
based on coding theory and minimum description length (Rissanen, 1983),
and cross-validation approaches, such as stability (Lange et al., 2004).

We consider a nonparametric Bayesian approach based on Dirichlet pro-
cess mixture models The number of clusters as an input constant is substi-
tuted by a random variable with a control parameter. Instead of specifying
a constant number of clusters, the user specifies a level of cluster resolution
by adjusting the parameter. These models have been applied to a variety of
problems in statistics and language processing; to the best of our knowledge,
their application to image segmentation has not yet been studied. Using
DPM models for segmentation seems appealing, since these models general-
ize parametric mixture models, and therefore one of the standard modeling
tools used in data clustering. Feature extraction and grouping approaches
used with finite mixture models can be transferred to the DPM framework
in a straightforward way.

A possible weakness of clustering approaches for image segmentation
is related to their lack of spatial structure, i. e. these models neglect the
spatial smoothness of natural images: Image segmentation is performed by
grouping local features (such as local intensity histograms), and only infor-
mation implicit in these features is exploited in the search for satisfactory
segmentations. Noisy images with unreliable features may result in incoher-
ent segments and jagged boundaries. This drawback can be addressed by
introducing spatial coupling between adjacent image features. The classic
Bayesian approach to spatial statistical modeling is based on Markov ran-
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dom field priors (Sec. 2.7). It is widely applied in image processing to prob-
lems like image restauration and texture segmentation. As will be shown
below, MRF priors which model spatial smoothness constraints on cluster
labels can be combined with DPM clustering models in a natural manner.
Both models are Bayesian by nature, and inference of the combined model
may be conducted by Gibbs sampling.

4.1.1 Setting and Notation

The derivations of the model and inference algorithm in the following two
sections are rather general, but it may be helpful briefly sketch the image
segmentation problem first, to serve as illustration for the quantities arising
in computations below. Image data consists of vector-valued quantities xi
measured at each image site (i = 1, . . . , n indexes sites). A site is a location
in the image. We will always assume sites to be arranged in a equidistant,
rectangular grid within the image. In the simplest case, each pixel forms a
site, but modern computer vision methods are striving more and more to
abstract from pixels as reference units of image resolution, since available
digital images may differ in pixel resolution by several orders of magnitude.
The measurement vector xi may be a grayscale value (xi ∈ R), color infor-
mation (xi ∈ R3), a histogram (xi ∈ Sim (R, Nbins)), or contain any other
localized image information, such as saturation, hue, or filter response val-
ues. For segmentation, we assume that the image is subdividable into K
groups of pixels, the segments, and that each segment is characterized by a
different distribution of the measurements x. Segments are spatially sepa-
rated and hence mutually exclusive. Therefore, if the segment distributions
are completely characterizing the pixel information contained in x, in the
sense that x is conditionally independent given the segment information, a
finite-size is a finite mixture of the segment distributions. By means of the
Dirichlet process, K is modeled as a random variable. We represent each
segment by a parametric family model F ( . |θ∗k), and make two assumptions:
One is that all such F are exponential family models. The second is that
the models for all segments belong to the same family of models, and differ
only in the value of the parameter θk (though different types of models may
be combined to form F , to account for heterogeneous types of measure-
ments collected in the vector x). To solve the segmentation problem, we
estimate values of the parameters θ∗k for each segment, and assignments of
pixels to segments. The assignments will be denoted Zi ∈ {1, . . . ,K}, and
Zi = k encodes assignment of image site i to cluster k. In the derivation
below, we will also use the notation θi for the parameter value (and hence
the segment information) at site i. If assignments Zi are known, this is a
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shorthand for θi = θ∗Zi . By regarding the image sites as nodes of a grid,
and adding edges between adjacent nodes, we obtain a neighborhood graph
for a Markov random field. The parameters θi at each site are generated by
means of a Dirichlet process prior, and we will discuss in the following how
the prior can be constrained by MRF coupling between neighboring sites,
so as to favor spatially smooth segmentation solutions.

4.1.2 Dirichlet process mixtures constrained by Markov
random fields

Spatially constrained Dirichlet process mixture models are composed of a
MRF term for spatial smoothness and a site specific data term. This local
data term is drawn from a DP, whereas the interaction term may be modeled
by a cost function. We will demonstrate that the resulting model defines
a valid MRF. Provided that the full conditionals of the MRF interaction
term can be efficiently evaluated, the full conditionals of the constrained
DPM/MRF model can be efficiently evaluated as well.

The MRF distribution Π may be decomposed into a sitewise term P and
the remaining interaction term M . In the cost function (2.7.4), sitewise
terms correspond to singleton cliques C = {i}, and interaction terms to
cliques of size two or larger. We denote the latter by C2 := {C ∈ C||C| ≥ 2}.
The MRF distribution is rewritten as

Π(θ1, . . . , θn) ∝ P (θ1, . . . , θn)GMRF(θ1, . . . , θn) with

P (θ1, . . . , θn) :=
1
ZP

exp
(
−
∑
i

Hi(θi)
)

GMRF(θ1, . . . , θn) :=
1

ZMRF

exp
(
−
∑
C∈C2

HC(θC)
)
. (4.1.1)

To construct a MRF-constrained Dirichlet process prior, the marginal dis-
tribution mZ(θi) of θi at each site is defined by a single random draw from
a DP. The generative representation of the resulting model is

(θ1, . . . , θn) ∼ GMRF(θ1, . . . , θn)
n∏
i=1

mZ(θi)

mZ ∼ DP (αG0) . (4.1.2)

The component P in (4.1.1), defined in terms of the cost function Hi(θi),
has thus been replaced by a random mZ ∼ DP (αG0). To formally justify
this step, we may assume a draw mZ to be given and define a cost function
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for individual sites in terms of mZ:

Hi(θi) := − logmZ(θi) (4.1.3)

Zm :=
∫ n∏

i=1

exp(− logmZ(θi))dθ1 · · · dθn (4.1.4)

Since the term acts only on individual random variables, substitution into
the MRF will not violate the conditions of the Hammersley-Clifford theo-
rem. When the parameters (θ1, . . . , θn) are drawn from mZ ∼ DP (αG0),
the θi are conditionally independent given mZ and their joint distribution
assumes the product form

P (θ1, . . . , θn|mZ) =
n∏
i=1

mZ(θi) . (4.1.5)

This conditional independence of θi justifies the product representation
(4.1.2). The model is combined with a parametric likelihood F ( . |θ) by
assuming the observed data x1, . . . ,xn to be generated according to

(x1, . . . ,xn) ∼
n∏
i=1

F (xi|θi)

(θ1, . . . , θn) ∼ GMRF(θ1, . . . , θn)
n∏
i=1

mZ(θi)

mZ ∼ DP (αG0) . (4.1.6)

Full conditionals Π(θi|θ−i) of the model can be obtained up to a constant
as a product of the full conditionals of the components:

Π(θi|θ−i) ∝ P (θi|θ−i)GMRF(θi|θ−i) (4.1.7)

For DP models, P (θi|θ−i) is computed from (4.1.5), by conditioning on θ−i
and integrating out the randomly drawn distribution mZ. The resulting
conditional prior is

P (θi|θ−i) =
K∑
k=1

n−ik
n− 1 + α

δθ∗k (θi) +
α

n− 1 + α
G0 (θi) . (4.1.8)

n−ik denotes the number of samples in group k, with the additional super-
script indicating the exclusion of θi. The θi are now statistically dependent
after mZ is integrated out of the model. The constrained model exhibits
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the key property that the MRF interaction term does not affect the base
measure term G0 of the DP prior. More formally, GMRF(θi|θ−i)G0 is equiva-
lent to G0 almost everywhere, i. e. everywhere on the infinite domain except
for a finite set of points. The properties of G0 are not changed by its val-
ues on a finite set of points for operations such as sampling or integration
against non-degenerate functions. Since sampling and integration are the
two modes in which priors are applied in Bayesian inference, all computa-
tions involving the base measure are significantly simplified. Sec. 4.1.3 will
introduce a sampling algorithm based on this property.

Assume that GMRF(θi|θ−i) is the full conditional of an MRF interaction
term, with a cost function satisfying (2.7.8). Combining P with M yields

GMRF(θi|θ−i)P (θi|θ−i) ∝ GMRF(θi|θ−i)
∑
k

n−ik δθ∗k (θi)+αGMRF(θi|θ−i)G0(θi) .

As an immediate consequence of the cost function property (2.7.8), the
support of H is at most the set of the cluster parameters Θ∗ := {θ∗1 , . . . , θ∗K},

supp (H(θi|θ−i)) ⊂ θ−i ⊂ Θ∗ . (4.1.9)

Since Θ∗ is a finite subset of the infinite domain Ωθ of the base measure,
G0(Θ∗) = 0. A random draw from G0 will not be in Θ∗ with probability
1, and hence exp(−H(θi|θ−i)) = 1 almost surely for θi ∼ G0(θi). With
GMRF(θi|θ−i) = 1

ZMRF
almost surely,

GMRF(θi|θ−i)G0(θi) =
1

ZMRF

G0(θi) (4.1.10)

almost everywhere. Sampling GMRF(θi|θ−i)G0(θi) is therefore equivalent to
sampling G0. Integration of GMRF(θi|θ−i)G0(θi) against a non-degenerate
function f yields∫

Ωθ

f(θi)GMRF(θi|θ−i)G(θi)dθi =
∫

Ωθ

f(θi)
ZMRF

exp(−H(θi|θ−i))G0(θi)dθi

=
∫

Ωθ\Θ∗
f(θi)

1
ZMRF

exp(−H(θi|θ−i))G0(θi)dθi

=
1

ZMRF

∫
Ωθ

f(θi)G0(θi)dθi .
(4.1.11)

The MRF constraints change only the finite component of the DPM model
(the weighted sum of Dirac measures), and the full conditional of Π almost
everywhere assumes the form

Π(θi|θ−i) ∝
K∑
k=1

GMRF(θi|θ−i)n−ik δθ∗k (θi) +
α

ZMRF

G0(θi) . (4.1.12)
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The formal argument above permits an intuitive interpretation: The finite
component represents clusters already created by the model. The smooth-
ness constraints on cluster assignments model a local consistency require-
ment: consistent assignments are encouraged within neighborhoods. There-
fore, the MRF term favors two adjacent sites to be assigned to the same
cluster. Unless the base measure G0 is finite, the class parameter drawn
from G0 will differ from the parameters of all existing classes with proba-
bility one. In other words, a draw from the base measure always defines a
new class, and the corresponding site will not be affected by the smoothness
constraint, as indicated by equation (4.1.10).

4.1.3 Sampling

Application of the constrained DPM model requires a method to estimate a
state of the model from data. Inference for DPM and MRF models is usually
handled by Markov chain Monte Carlo sampling. Since full conditionals of
sufficiently simple form are available for both models, Gibbs sampling in
particular is applicable. We propose a Gibbs sampler for estimation of the
combined DPM/MRF model, based on the full conditionals derived in the
previous section.

A sampler for the DPM/MRF model can be obtained by adapting MacEach-
ern’s algorithm (Sec. 2.6.3) to the full conditionals of the constrained model,
which were computed in the previous section. We define the algorithm be-
fore detailing its derivation. Let G0 be an infinite probability measure, i. e.
a non-degenerate measure on an infinite domain Ωθ. Let F be a likelihood
function such that F,G0 form a conjugate pair. Assume that G0 can be
sampled by an efficient algorithm. Let H be a cost function of the form
(2.7.8), and x1, . . . ,xn a set of observations drawn from the nodes of the
MRF. Then the DPM/MRF model (4.1.6) can be sampled by the following
procedure:

Initialize: Generate a single cluster containing all points:

θ∗1 ∼ G0 (θ∗1)
n∏
i=1

F (xi|θ∗1) . (4.1.13)

Repeat:

1. Generate a random permutation σ of the data indices.
2. Assignment step. For i = σ(1), . . . , σ(n):

(a) If xi is the only observation assigned to its cluster k = Zi, remove
this cluster.
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(b) Compute the cluster probabilities

qi0 ∝ α

∫
Ωθ

F (xi|θ)G0 (θ) dθ (4.1.14)

qik ∝ n−ik exp (−H(θ∗k|θ−i))F (xi|θ∗k)

for k = 1, . . . ,K.
(c) Draw random index k according to finite distribution (qi0, . . . , qiK).
(d) Assignment:

• If k ∈ {1, . . . ,K}, assign xi to cluster k: Set Zi := k.
• If k = 0, create a new cluster for xi:

– Draw θ∗K+1 ∼ G0(θ∗K+1)F (xi|θ∗K+1).
– Set Zi := K + 1.

3. Parameter update step. For each cluster k = 1, . . . ,K: Update the
cluster parameters θ∗k given the class assignments Z1, . . . , Zn by sam-
pling

θ∗k ∼ G0 (θ∗k)
∏

i|Zi=k

F (xi|θ∗k) . (4.1.15)

Estimate assignment mode: For each point, choose the cluster it was
assigned to most frequently during a given final number of iterations.

The sampler is implemented as a random scan Gibbs sampler, a design
decision motivated by the Markov random field. Since adjacent sites couple,
the data should not be scanned by index order. Initialization collects all data
in a single cluster, which will result in comparatively stable results, since
the initial cluster is estimated from a large amount of data. Alternatively,
one may start with an empty set of clusters, such that the first cluster
will be created during the first assignment step. The initial state of the
model is then sampled from the single-point posterior of a randomly chosen
observation, resulting in more variable estimates unless the sampler is run
for a large number of iterations to ensure proper mixing of the Markov chain.
The final assignment by maximization is a rather primitive form of mode
estimate, but experiments show that class assignment probabilities tend to
be pronounced after a sufficient number of iterations. The estimates are
therefore unambiguous. If strong variations in cluster assignments during
consecutive iterations are observed, maximization should be substituted by
a more sophisticated approach.

The algorithm is derived by computing the assignment probabilities qik
and the cluster posterior (4.1.15) based on the parametric likelihood F and
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the full conditional probabilities (4.1.12) of the DPM/MRF model. The
posterior for a single observation xi is

p (θi|θ−i,xi) =
F (xi|θi)Π(θi|θ−i)∫

Ωθ
F (xi|θ)Π(θ|θ−i)dθ

. (4.1.16)

Substituting (4.1.12) for Π(θi|θ−i) gives

p (θi|θ−i,xi) ∝ F (xi|θi)GMRF(θi|θ−i)
K∑
k=1

n−ik δθ∗k (θi)

+ F (xi|θi) ·
α

ZMRF

G0(θi) .

(4.1.17)

Probabilities of the individual components can be computed as their relative
contributions to the mass of the overall model, i. e. by integrating each
class component of the conditional (4.1.17) over Ωθ. For each cluster k ∈
{1, . . . ,K} of parameters, the relevant integral measure is degenerate at
θ∗k. Integrating an arbitrary function f against the degenerate measure δθj
“selects” the function value f(θj). Hence,∫

Ωθ

δθ∗k (θi)
F (xi|θi)
ZMRF

exp(−H(θi|θ−i))dθi =
1

ZMRF

F (xi|θ∗k) exp(−H(θ∗k|θ−i)) .

(4.1.18)

The MRF normalization constant ZMRF appears in all components and may
be neglected. Combined with the coefficients of the conditional posterior
(4.1.16), the class probabilities qi0 and qij are thus given by (4.1.14). The
class posterior for sampling each cluster parameter θ∗k is

θ∗k ∼ G0(θ∗k)
∏

i|Zi=k

F (xi|θ∗k)GMRF(θ∗k|θ−i) . (4.1.19)

Once again, a random draw θ ∼ G0 from the base measure will not be an
element of Θ∗ a. s., and

F (xi|θ∗k)GMRF(θ∗k|θ−i) = F (xi|θ∗k)
1

ZMRF

(4.1.20)

almost everywhere for a non-degenerate likelihood. Therefore, θ∗k may equiv-
alently be sampled as

θ∗k ∼ G0(θ∗k)
∏

i|Zi=k

F (xi|θ∗k) , (4.1.21)
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which accounts for the second step of the algorithm.

If F and G0 form a conjugate pair, the integral in (4.1.14) has an ana-
lytical solution, and the class posterior (4.1.21) is an element of the same
model class as G0. If G0 can be sampled, then the class posterior can be
sampled as well. Consequently, just as MacEachern’s algorithm, the algo-
rithm above is feasible in the conjugate case. The fact that the clustering
cost function gives a uniform contribution a. e. is therefore crucial. With
the inclusion of the MRF contribution, the model is no longer conjugate.
Due to the finite support of the cost function, however, it reduces to the
conjugate case for both steps of the algorithm relying on a conjugate pair.

MacEachern’s algorithm is not the only possible approach to DPM sam-
pling. More straightforward algorithms draw samples from the posterior
(4.1.16) directly, rather than employing the two-stage sampling scheme de-
scribed above (Escobar, 1994). For the DPM/MRF model, the two-stage
approach is chosen because of its explicit use of class labels. The choice is
motivated by two reasons: First, the MRF constraints act on class assign-
ments, which makes an algorithm operating on class labels more suitable
than one operating on the parameters θi. The second reason similarly ap-
plies in the unconstrained case, and makes MacEachern’s algorithm the
method of choice for many DPM sampling problems. If a large class exists
at some point during the sampling process, changing the class parameter
of the complete class to a different value is possible only by pointwise up-
dates, for each θi in turn. The class is temporarily separated into at least
two classes during the process. Such a separation is improbable, because
for similar observations, assignment to a single class is more probable then
assignment to several different classes. Thus, changes in parameter values
are less likely, which slows down the convergence of the Markov chain. Ad-
ditionally, if a separation into different classes occurs, the resulting classes
are smaller and the corresponding posteriors less concentrated, causing ad-
ditional scatter. The two-stage algorithm is not affected by the problem,
since parameters are sampled once for each class (rather than for each site).
Given the current class assignments, the posterior does not depend on any
current parameter values θi. The difference between the two algorithms
becomes more pronounced when MRF smoothness constraints are applied.
For a direct, sequential parameter sampling algorithm, constraints favoring
assignment of neighbors to the same class will make separation into different
classes even less probable. A two-stage sampling approach therefore seems
more suited for sampling the MRF-constrained model.
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4.1.4 Application to image processing

We will now discuss how the previously described and developed methods
can be applied to image segmentation, both with a standard DPM approach
and with a DPM/MRF model. The results derived in the previous section
have not assumed any restriction on the choice of base measure G0 and
likelihood F (except for the assumption that the base measure is infinitely
supported). In the following, we specialize the model by choosing specific
distributions for G0, F and the MRF term M , to define a suitable histogram
clustering model for use with the DPM/MRF method.

A histogram clustering model

Our approach to image segmentation is based on histogram clustering.
Given a grayscale image, local histograms are extracted as features. This
feature extraction is performed on a rectangular, equidistant grid, placed
within the input image. Pixels coinciding with nodes of the grid are iden-
tified with sites, indexed by i = 1, . . . , n. A square histogram window is
placed around each site, and a histogram hi is drawn from the intensity val-
ues of all pixels within the window. The size of the window (and therefore
the number Ncounts of data values recorded in each histogram) is kept con-
stant for the whole image, as is the number Nbins of histogram bins. Each
histogram is described by a vector hi = (hi1, . . . , hiNbins) of non-negative
integers. The histograms h1, . . . ,hn are the input features of the histogram
clustering algorithm. They replace the observations x1, . . . ,xn in the pre-
vious discussion.

The parameters θi drawn from the DP in the DPM model are, in this
context, the probabilities of the histogram bins (i. e. θij is the probability for
a value to occur in bin j of a histogram at site i). Given the probabilities
of the individual bins, histograms are multinomially distributed, and the
likelihood is chosen according to

F (hi|θi) = Ncounts!
Nbins∏
j=1

θ
hij
ij

hij !
=

1
ZMult(hi)

exp
(Nbins∑
j=1

hij log(θij)
)
.

The normalization function ZMult(hi) does not depend on the value of θi.
The prior distribution of the parameter vectors is assumed to be conju-

gate, and therefore a Dirichlet distribution of dimension Nbins. The Dirichlet
distribution (Kotz et al., 2000) has two parameters β, π, where β is a posi-
tive scalar and π is a Nbins-dimensional probability vector. It is defined by
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the density

G0(θi|βπ) =
1

ZDir(βπj)
exp
(Nbins∑
j=1

(βπj − 1) log(θij)
)
.

Sampling of this model will be discussed below, along with sampling of the
MRF-enhanced model.

Histogram clustering with MRF constraints

Combining the histogram clustering model with a MRF constraint requires
the choice of a cost function for local smoothness. We have used the simple
function

H(θi|θ−i) = −λ
∑
l∈∂(i)

δθi,θl . (4.1.22)

The resulting MRF will make a larger local contribution if more neighbors of
site i are assigned to the same class, thereby encouraging spatial smoothness
of cluster assignments.

To sample the MRF-constrained histogram clustering model, the sam-
pler has to be derived for the particular choice of distributions (4.1.22) and
(4.1.22), which requires computation of the class probabilities qi0 and qik in
(4.1.14) and the respective posterior (4.1.15). Since F,G0 form a conjugate
pair, their product is (up to normalization) a Dirichlet density:

F (hi|θi)G0(θi) ∝ exp
(∑

j

(hij + βπj − 1) log(θij)
)

= G0(θi|hi + βπ) .

(4.1.23)

Therefore, qi0 has an analytic solution in terms of partition functions:

∫
Ωθ

F (hi|θi)G0(θi)dθi =
∫

Ωθ

exp
(∑

j(hij + βπj − 1) log(θij)
)

ZMult(hi)ZDir(βπ)
dθi

=
ZDir(hi + βπ)

ZMult(hi)ZDir(βπ)
.

(4.1.24)

For k = 1, . . . ,K,

qik ∝ n−ik exp(−H(θ∗k|θ−i))F (hi|θ∗k)

=
n−ik

ZMult(hi)
exp
(
λ
∑
l∈∂(i)

δθi,θl +
∑
j

hij log(θ∗kj)
)
.

(4.1.25)
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Since the multinomial partition function ZMult(hi) appears in all equations,
the cluster probabilities may be computed for each i by computing prelim-
inary values

q̃i0 :=
ZDir(hi + βπ)
ZDir(βπ)

q̃ik := n−ik exp
(
λ
∑
l∈∂(i)

δθi,θj +
∑
j

hij log(θ∗kj)
)
. (4.1.26)

From these, cluster probabilities are obtained by normalization:

qik :=
q̃ik∑K
l=0 q̃il

. (4.1.27)

The posterior to be sampled in (4.1.21) is Dirichlet as well:

G0(θ∗k|βπ)
∏

i|Zi=k

F (xi|θ∗k) ∝ exp
(∑

j

(βπj +
∑
i|Zi=k

hij − 1) log(θ∗kj)
)

∝ G0

(
θ∗k

∣∣∣βπ +
∑
i|Zi=k

hi
)

(4.1.28)

Dirichlet distributions can be sampled efficiently by means of Gamma sam-
pling; cf. for example (Devroye, 1986). Sampling of the unconstrained
model may be conducted by choosing λ = 0 in the MRF cost function.

Behavior of the segmentation model

Since both the base measure and the posterior sampled in the algorithm are
Dirichlet, the properties of this distribution have a strong influence on the
behavior of the clustering model. Dirichlet densities are delicate to work
with, since they involve a product over exponentials, and because their do-
main covers a multidimensional real simplex, which renders them difficult to
plot or illustrate. The clustering model, however, which has been obtained
by combining the Dirichlet base measure and the multinomial likelihood be-
haves in a manner that is intuitive to understand: Each observed histogram
hi is assumed to be generated by the likelihood F , which is determined at
each site by the parameter θi. The vector θi lies in the Nbins-dimensional
simplex Sim (R, Nbins)Nbins, and it can be regarded as a finite probability
distribution on the histogram bins. Its distribution G0(θi|βπ) is parameter-
ized by another vector π ∈ Sim (R, Nbins)Nbins, which defines the expected
value of G0. The scalar parameter β controls the scatter of the distribution:
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The larger the value of β, the more tightly G0 will concentrate around π.
For βπ = (1, . . . , 1)t, G0 is the uniform distribution on the simplex. Con-
sider the posterior (4.1.28), which is a Dirichlet distribution with the scaled
vector βπ replaced by βπ +

∑
i|Zi=k hi. By setting

β̃k :=
∥∥∥βπ +

∑
i|Zi=k

hi
∥∥∥

1
and π̃k :=

1
β̃

(
βπ +

∑
i|Zi=k

hi
)
, (4.1.29)

the posterior assumes the form G0( . |β̃kπ̃k). For each cluster k, the ex-
pected value of the posterior is π̃k, and its scatter is determined by β̃k. The
expected value π̃k is the (normalized) average of the histograms assigned to
the cluster, with an additive distortion caused by the base measure param-
eters. The larger β, the more influence the prior will have, but generally, it
has less influence if the number of histograms assigned to the cluster is large.
Since β̃k controls the scatter and grows with the number of histograms as-
signed, the posterior of a large cluster will be tightly concentrated around
its mean. In other words, for a very large cluster, drawing from the pos-
terior will reproduce the cluster’s normalized average with high accuracy.
Therefore, larger clusters are more stable. For a smaller cluster, draws from
the posterior scatter, and the additive offset βπ has a stronger influence.

Assignments to clusters are determined by sampling from the finite dis-
tributions (qi0, . . . , qiK), which are based on the multinomial likelihood F .
For illustration, consider a non-Bayesian maximum likelihood approach for
F . Such an approach would assign each histogram to the class which
achieves the highest likelihood score. Multinomial likelihood maximization
can be shown to be equivalent to the minimization of the Kullback-Leibler
divergence between the distribution represented by the histogram and that
defined by the parameter. Each histogram would thus be assigned to the
“nearest” cluster, in the sense of the Kullback-Leibler divergence. The
behavior of our histogram clustering model is similar, with two notable dif-
ferences: The greedy assignment is replaced by a sampling approach, and
the DPM model may create a new class for a given histogram, instead of
assigning it to a currently existing one. The key properties of the model are
not affected or altered by adding or removing the MRF constraints, except
for the assignment step: The assignment probabilities computed from the
basic, unconstrained model are modified by the constraint to increase the
probability of a smooth assignment.

4.1.5 Extensions of the constrained model

The histogram clustering model introduced in Sec. 4.1.4 characterizes im-
age patches by a set of intensity histograms. We will extend this concept
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to include additional features by modeling multiple channels and side infor-
mation not contained in the features. The segmentation algorithm becomes
directly applicable to multi-channel data, such as color images, multiple
frequency bands in radar images, or image filter response data. For color
images or multi-band radar data, the segmentation algorithm can draw on
marginal intensity histograms extracted from each channel. Filter responses
of local image filters can be represented as an image, and be included as
additional channels. For example, texture information may be included in
color image segmentation by including histograms of Gabor responses.

Including multiple channels increases the amount of data. The informa-
tion provided by the different channels affects the behavior of the model by
means of the likelihood F . The DPM/MRF model provides a second generic
way of including additional information, by using side information to adjust
the edge weights wij of the MRF neighborhood graph. The wij must not
depend on the current state of the model (i. e. the values of the model vari-
ables θi), but they may depend on the data. The coupling strength between
adjacent sites may thus be modeled conditional on the local properties of
the input image.

Multiple channels

The DPM/MRF histogram clustering model introduced above represents
each site by a single histogram. To model multiple channels, we again as-
sume the marginal histograms to be generated by a multinomial likelihood
F , with parameter vectors drawn from a Dirichlet distribution prior G0.
For Nch separate channels, a local histogram hci = (hci1, . . . , h

c
iNbins

) is as-
sumed to be drawn from each channel c at each site i. The channels are
parameterized individually, so each histogram hci is associated with a bin
probability vector θci with prior probability G0(θci |βcπc). The joint likeli-
hood is assumed to factorize over channels. The resulting posterior for site
i has the form

(θ1
i , . . . , θ

Nch
i ) ∼

Nch∏
c=1

F (hci |θci )G0(θci |βcπππc) . (4.1.30)

This generalization of the DPM/MRF clustering model (Sec. 4.1.2) only
affects the base measure G0 and the random function mZ in (4.1.5), it
does not alter the MRF interaction term M . Both the DPM/MRF model
and the sampling algorithm remain applicable. In the sampler, only the
computation of the cluster probabilities qik and the cluster posterior in
(4.1.15) have to be modified. Substituting the multi-channel likelihood F
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into (4.1.26) yields

q̃i0 =
Nch∏
l=1

ZDir(hci + βlπl)
ZDir(βcπππl)ZMult(hci )

(4.1.31)

and

q̃ik = nk−i exp (−H(θ∗k|θ−i))
Nch∏
c=1

F (hci |θ∗ck ) . (4.1.32)

Each site remains associated with a single assignment variable Zi (the clus-
tering model groups sites, rather than individual histograms). The cluster
posterior (4.1.15) is

(θ∗1i , . . . , θ
∗Nch
i ) ∼

Nch∏
c=1

G0

(
θ∗ci

∣∣∣βcπππc +
∑
i|Zi=k

hci
)
. (4.1.33)

This model with multiple channels assumes that local marginal his-
tograms are obtained individually from each channel. It is not applicable to
joint histograms. The advantage of marginal histograms is that, unlike joint
histograms, they are not affected by the curse of dimensionality. At a con-
stant level of discretization, the number of bins in a joint histogram grows
exponentially with the number of dimensions, as opposed to linear growth
for a set of marginal histograms. Marginal histograms therefore provide
more robust estimates and require less complex models for their represen-
tation. Their disadvantages are (i) the loss of co-occurrence information,
and (ii) the independence assumption in (4.1.30) required to obtain a fea-
sible model. Choosing marginal histograms can be justified by observing
that both problems are limited by the use of local features. Marginaliza-
tion of histograms can incur a substantial loss of image information. The
global marginal histograms of an RGB image, for example, are informative
about the amount of red and blue occurring in the image, but not about
the amount of purple. The latter requires a joint histogram. Since the
segmentation algorithm relies on local features, the loss of co-occurrence
information is limited: If the local marginals show the occurrence of both
red and blue within a small local window, a joint histogram will not provide
much additional information. Joint histograms measure co-occurrence at
pixels, whereas local marginal histograms coarsen the resolution from pix-
els to local windows. A similar argument applies for independence: The
product in (4.1.30) constitutes a local independence assumption, i. e. the
marginal histograms h1

i ,h
2
i , . . . are assumed to be independent at site i.

Histograms of two different channels at two different sites (e. g. h1
i and h2

l )
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are not independent, since they interact through the cluster parameters and
MRF constraints. Local independence of channels is a more accurate as-
sumption than global independence. Loosely speaking, given a single chan-
nel of an entire color image, guessing the image structure (and therefore
significant information about the remaining channels) is usually easy. This
is not the case for local image patches containing only a few pixels, since
their resolution is below the scale of image structures.

Side information: Image edges

Smoothing constraints may result in unsolicited coupling effects at segment
boundaries. Two sites may belong to different segments and still be caused
by the smoothing term to be assigned to the same cluster. Side information
on image edges can be used to improve the resolution of segment bound-
aries, in addition to the input features of the algorithm. Edge information
is particularly useful for segmentation, since segment boundaries can be ex-
pected to coincide with an image edge. A priori we assume that two sites
should not be coupled by a smoothing constraint if they are separated by an
image edge. Therefore, edge information may be taken into account in the
DPM/MRF model by modifying the neighborhood graph N of the MRF:

1. Generate an edge map using a standard edge detector.
2. If two sites i and j are separated by an image edge, set wij = wji to

zero.

Since the MRF constraints act only along edges of the neighborhood graph,
this will eliminate coupling between the features hi and hj . Neighborhoods
in the MRF graph are usually of small, constantly bounded size (|∂(i)| ≤ 8
for the examples provided in the following section), such that the compu-
tational expense of this preprocessing step will be linear in the number of
sites (rather than quadratic, despite the pairwise comparison).

Given an edge map, i. e. a binary matrix indicating pixels which are
classified as edges by the edge detector, the algorithm has to determine
whether or not a given pair of sites is separated by an edge. The method
used in the experiments presented in Sec. 4.1.6 is to remove sites containing
an edge pixel in their local image neighborhood from all neighborhoods in
N . A single edge is then reinserted (by setting the corresponding weight to
1), such that each site links with at least one of its neighbors. The reinserted
edge is chosen in the same direction for all sites (e. g. the edge connecting
the site with its left neighbor in the image). This may cause an inaccuracy
of edge positions, but only on the scale of the subsampling grid. Simply
removing sites completely from the graph neighborhood turns out to interact
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unfavorably with the model selection property of the DPM algorithm: The
histogram windows of sites close to segment boundaries contain mixture
distributions from two segments, which typically differ significantly from
other local distributions. If coupling constraints with their neighbors are
removed, these edge sites tend to be assigned clusters of their own. Edges
become visible in the segmentation solution as individual segments. In other
words, the approach is prone to remove constraints in regions where they
are particularly relevant.

Side information: Local data disparity

Alternatively, the coupling weights wil may be set according to local data
disparity, an approach originally introduced in (Geman et al., 1990). The
idea is to define a similarity measure d(xi,xl) between local data vectors
and set wil := d(xi,xl). Substitution into the cost function (2.7.7) yields

GMRF(θi|θ−i) ∝
1

ZMRF

exp
(
−λ

∑
l∈∂(i)

d(xi,xl)δZi,Zl
)

(4.1.34)

for the MRF interaction term. The point-wise contribution P is not af-
fected. Computing the weights from data makes the partition function
ZMRF = ZMRF(λ,xi,x∂(i)) data-dependent, but the dependence is uniform
over clusters at any given site, and the partition function still cancels from
the computation of assignment probabilities in the same manner as de-
scribed in Sec. 4.1.3. The similarity function has to be symmetric, i. e. sat-
isfy d(x,y) = d(y,x), to ensure symmetry of the edge weights. In the case
of Euclidean data xi ∈ Rm, for example, d may be chosen as a regularized
inverse of the Euclidean distance:

d(xi,xl) :=
1

1 + ‖xi − xl‖2
(4.1.35)

The corresponding edge weight wil will be 1 (maximum coupling) for iden-
tical data, and decay hyperbolically as the distance between data values
increases. Histograms represent finite probability distributions (up to nor-
malization). Hence, for histogram data, norms may be substituted by
distribution divergence measures, such as the Kolmogorov-Smirnov statis-
tic (Lehmann and Romano, 2005) or the Jensen-Shannon divergence (Lin,
1991). The Kullback-Leibler divergence and chi-square statistic (Lehmann
and Romano, 2005) are not directly applicable, since neither is symmetric.
The dissimilarity measure should be carefully chosen for robustness, since
local dissimilarities are measured between individual data values, with no
averages to temper the effect of outliers. High-order statistics, such as the
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Jensen-Shannon divergence, are notoriously hard to estimate from data. For
practical purposes, Euclidean norms or the Kolmogorov-Smirnov distance
seem a more advisable choice.

In the Bayesian setting, the MRF interaction term is part of the prior. If
the MRF cost function depends on the data, the prior function depends on
both the parameter variables and the data, a role usually reserved for the
likelihood. The data-dependent prior may be justified as a joint distribution
on data and parameters, where the data is “fixed by observation”, as out-
lined in (Geman et al., 1990). We note the formal difference: A likelihood
is a function of both data and parameter, but constitutes a density only
with respect to the data. The MRF prior defined above is a density with
respect to the parameter variables. The cost term in (4.1.34) measures lo-
cal differences between the data vectors associated with adjacent sites. The
overall model can be interpreted in terms of distances: Many parametric
distributions may be regarded as exponentials of average divergences be-
tween data and parameters. Multinomial and Dirichlet distributions mea-
sure divergence between data and parameters in a Kullback-Leibler sense,
and the Gaussian by an average Euclidean distance. Suppose the multi-
nomial/Dirichlet model described in Sec. 4.1.4 is combined with the cost
function (2.7.7) and edge weights wil = d(hi,hl). The log-posterior of each
cluster is a weighted sum of divergence measures, between data and pa-
rameter variables (contributed by the likelihood F ), hyperparameters and
parameter variables (base measure G0) and data at adjacent sites (MRF
interaction term M). The DP hyperparameter α adjusts the sensitivity
with which the DP will react to the differences measured by the parametric
model by creating new classes.

4.1.6 Experimental results

The experiments presented below implement both the unconstrained DPM
model and the DPM/MRF model for image segmentation. The uncon-
strained model is applied to natural images (from the Corel database), which
are sufficiently smooth not to require spatial constraints. The DPM/MRF
model is applied to synthetic aperture radar (SAR) images and magnetic
resonance imaging (MRI) data, chosen for their high noise level.

Model parameters

In addition to the parameter α and the input data, the estimate of the
number of clusters K depends on the parametric model used with the
DPM/MRF approach. The Dirichlet process estimates the number of clus-
ters based on disparities in the data. The disparities are measured by the
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parametric model, which consists of the likelihood F and the base measure
G0. The parameters θ of F are random variables estimated during infer-
ence, but any parameters of G0 are hyperparameters of the overall model.
Adjusting the parameters of G0 changes the parametric model, and thereby
influences the model order selection results of the DP prior. In general,
increasing the scatter of the distribution G0 will increase the number of
clusters in the DPM solution: The parameters θ∗k representing the clusters
are effectively sampled from a posterior with prior G0. A concentrated dis-
tribution G0 biases the cluster parameters towards its expected value, and
restricts the adaptation of each cluster to the data it contains.

Our strategy is to set the expectation of the base measure to a generic
value. The bias incurred from the base measure can then be regarded as data
regularization: When a new cluster is created by the algorithm, its initial
parameter is based on a single observation. The biasing effect of the hyper-
parameters will prevent the cluster parameter from adapting to individual
outliers. As more observations are collected in the cluster, the influence of
the bias decreases. The relative magnitude of the bias is determined by the
scatter of the base measure.

The histogram clustering model described in Sec. 4.1.4 uses a Dirichlet
distribution as its base measure, G0 = G0( . |βπ). The expected value is
the parameter π and the scatter is controlled by β (increasing the value
decreases scatter). Since π ∈ Sim (R, Nbins) d represents a finite probability
distribution, the obvious choice for a generic value is the uniform vector
π = (1/Nbins, . . . , 1/Nbins), which was used for most experiments in this sec-
tion. For some cases, π was chosen as the normalized average histogram of
the input image, which adapts the method somewhat better to the input
data than a uniform parameter vector, but also tends to result in an algo-

Figure 4.3: Natural image (Corel database, left) and unconstrained DPM
segmentation result (right).
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rithm which neglects small segments, as will be discussed below. We propose
to choose a β of the same order of magnitude as the mass of a histogram
(β = 2Ncounts was used for the experiments in this section). The regular-
ization effect will be substantial for the creation of new clusters containing
only a single histogram, and prevent overfitting of cluster representations to
outliers. As soon as the cluster contains a significant number of observations
(in particular when it is large enough to be visible in an image segmentation
solution), the effect of the bias becomes negligible.

Image segmentation by a DPM model

As a first test of the model selection property of the DPM clustering algo-
rithm, the (unconstrained) algorithm was applied to an image with unam-
biguously defined segments (the noisy Mondrian in Fig. 4.1); the classes are
accurately recovered for a wide range of hyperparameter values (α rang-
ing from 10−5 to 101). For a very small value of the hyperparameter
(α = 10−10), the estimated number of clusters is too small, and image
segments are joined erroneously.

Figs. 4.2 and 4.3 show images from the Corel database. The three classes
in Fig. 4.2 are clearly discernible, and are once again correctly estimated
by the process for α = 10−2 and α = 10−7. For α = 10−9, the process
underestimates the number of segments. Note that this results in the dele-
tion of the smallest segment (in this case, the moon): The scatter of the
Dirichlet posterior distribution (4.1.15) is controlled by the total mass of its
parameter vector (βπ +

∑
i|Zi=k hi). Since large clusters contribute more

histogram mass to the parameter vector than small clusters, they are more
stable (cf. Sec. 4.1.4). A small cluster defines a less concentrated poste-
rior, and is less stable. The effect is more pronounced if π is chosen to be
the average normalized histogram of the input image, since small segments
will be underrepresented. If π is chosen uniform, the offset βπ acts as a
regularization term on the average histogram.

The segmentation result in Fig. 4.3 exhibits a typical weakness of seg-
mentation based exclusively on local histograms: The chapel roof is split
into two classes, since it contains significantly different types of intensity
histograms due to shading effects. Otherwise, the segmentation is precise,
because the local histograms carry sufficient information about the seg-
ments.

Segmentation with smoothness constraints

The results discussed so far do not require smoothing: The presented images
(Figs. 4.2 and 4.3) are sufficiently smooth, and the noise in Fig. 4.1 is



Smoothness-Constrained Model Order Selection 127

F
ig

ur
e

4.
4:

Se
gm

en
ta

ti
on

re
su

lt
s

on
re

al
-w

or
ld

ra
da

r
da

ta
.

L
ef

t
to

ri
gh

t:
O

ri
gi

na
l

im
ag

e,
un

co
ns

tr
ai

ne
d

D
P

M
se

gm
en

ta
ti

on
,

an
d

co
ns

tr
ai

ne
d

D
P

M
se

gm
en

ta
ti

on
at

tw
o

di
ffe

re
nt

le
ve

ls
of

sm
oo

th
in

g,
λ

=
1

an
d
λ

=
5.

F
ig

ur
e

4.
5:

O
ri

gi
na

l
SA

R
im

ag
e

(l
ef

t)
,

un
co

ns
tr

ai
ne

d
D

P
M

se
gm

en
ta

ti
on

(m
id

dl
e)

,
sm

oo
th

ed
D

P
M

se
gm

en
ta

ti
on

(r
ig

ht
).



128 Smoothness-Constrained Model Order Selection

Figure 4.6: A SAR image with a high noise level and ambiguous segments
(left). Solutions without (middle) and with smoothing.

additive Gaussian, which averages out well even for histograms of small
image blocks.

Synthetic aperture radar (SAR) images and MRI data are more noisy
than the Corel images. The images shown in Figs. 4.4 and 4.5 are SAR
images of agricultural areas. In both cases, the unconstrained DPM clus-
tering result are inhomogeneous. Results are visibly improved by the MRF
smoothing constraint. Fig. 4.6 shows results for an image which is hard to
segment by histogram clustering, with several smaller classes that are not
well-separated and a high noise level. In this case, the improvement achiev-
able by smoothing is limited. Results for a second common type of noisy
image, MRI data, are shown in Fig. 4.8.

The Dirichlet process approach does not eliminate the class number pa-
rameter. Like any Bayesian method, it effectively replaces the parameter
by a random variable, which is equipped with a prior probability. The prior
is controlled by means of the hyperparameter α. The number of classes
depends on α, but the influence of the hyperparameter can be overruled by
observed evidence. A question of particular interest is therefore the influ-
ence of the hyperparameter α on the number of clusters. Table 4.1 shows
the average number of clusters selected by the model for a wide range of
hyperparameter values, ranging over several orders of magnitude. Averages
are taken over ten randomly initialized experiments each. In general, the
number of clusters increases monotonically with an increasing value of the
DP scatter parameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect to a changing α.
The behavior of the estimate depends on the class structure of the data. If
the data is well-separated, estimation results become more stable, as is the
case for the MRI image (Fig. 4.8). With smoothing activated, the estimated
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Figure 4.9: Influence of the base measure choice: Average number of clusters
plotted against α, for two different values of base measure scatter. Blue
curves represent β = 50, red curves β = 200. In either case, the upper
curve corresponds to the unsmoothed and the lower curve to the smoothed
model.

number of clusters stabilizes at K = 4. In contrast, the data in Fig. 4.4
does not provide sufficient evidence for a particular number of classes, and
no stabilization effect is observed. We thus conclude that, maybe not sur-
prisingly, the reliability of DPM and DPM/MRF model selection results
depends on how well the parametric clustering model used with the DP is
able to separate the input features into different classes. The effect of the
base measure scatter, defined here by the parameter β, is demonstrated in
Fig. 4.9. The number of clusters selected is plotted over α at two different
values of β = 50 and β = 200, each with and without smoothing. The
number of clusters is consistently decreased by increasing β and activating
the smoothing constraint.

The stabilizing effect of smoothing is particularly pronounced for large
values of α, resulting in a large number of clusters selected by the standard
DPM model. Results in Fig. 4.7 were obtained with α = 10, which results in
an over-segmentation by the DPM model (K̄ = 87.1). With smoothing, the
estimated number of clusters decreases (K̄ = 29.1). The level of smoothing
can be increased by scaling the cost function. By setting λ = 5, the number
of clusters is decreased further, to K̄ = 8.2.

Extensions: Edges and multiple channels

Long runs of the sampler with a large value of λ, which may be neces-
sary on noisy images to obtain satisfactory solutions, can result in unso-
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Figure 4.10: Stabilization of segmentation results by edge information for
a strong smoothing constraint: Smoothed segmentation (middle), and the
same experiment repeated using edge information (right), both conducted
on the image in Fig. 4.4.

Image Fig. 4.4 Image Fig. 4.8
α DPM smoothed DPM smoothed

1e-10 7.7± 1.1 4.8± 1.4 6.3± 0.2 2.0± 0.0
1e-8 12.9± 0.8 6.2± 0.4 6.5± 0.3 2.6± 0.9
1e-6 14.8± 1.7 8.0± 0.0 8.6± 0.9 4.0± 0.0
1e-4 20.6± 1.2 9.6± 0.7 12.5± 0.3 4.0± 0.0
1e-2 33.2± 4.6 11.8± 0.4 22.4± 1.8 4.0± 0.0

Table 4.1: Average number of clusters (with standard deviations), chosen
by the algorithm on two images for different values of the hyperparameter.
When smoothing is activated (λ = 5, right column), the number of clusters
tends to be more stable with respect to a changing α.

licited smoothing effects. Comparing the two smoothed solutions in Fig. 4.4
(lower left and right), for example, shows that a stronger smoothing con-
straint leads to a deterioration of some segment boundaries. The segment
boundaries can be stabilized by including edge information as described in
Sec. 4.1.5. An example result is shown in Fig. 4.10.

For SAR images consisting of multiple frequency bands, the multi-channel
version of the DPM/MRF model (Sec. 4.1.5) can be applied. A segmenta-
tion result is shown in Fig. 4.11. Both solutions were obtained with smooth-
ing. To demonstrate the potential value of multiple channel information,
only a moderate amount of smoothing was applied. One solution (middle)
was obtained by converting the multi-channel input image into a single-
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Figure 4.11: Multi-channel information: A SAR image consisting of three
frequency bands (left), segmentation solutions obtained from the averaged
single channel by the standard MRF/DPM model (middle) and by the multi-
channel model (right).

channel grayscale image before applying the DPM/MRF model. The second
solution (right) draws explicitly on all three frequency bands by the multi-
channel model. Parameter values for the single-channel and multi-channel
approach are not directly comparable. When computing the cluster as-
signment probabilities qik, the multi-channel model multiplies probabilities
over channels. Hence, the computed values are generally smaller than in
the single-channel case. This increases the relative influence of α, and the
multi-channel approach tends to select more clusters for the same parameter
values than the single-channel model. To make the result comparable, we
have chosen examples with similar number of clusters (K = 7 and K = 5,
respectively). The segmentation result is visibly improved by drawing on
multi-channel features.

Comparison: Stability

Relating the approach to other methods is not straightforward, since model
order selection methods typically try to estimate a unique, “correct” number
of clusters. We use the stability method to devise a comparison that may
offer some insight into the behavior of the DPM model.

Stability-based model selection for clustering (Dudoit and Fridlyand,
2002; Breckenridge, 1989; Lange et al., 2004) is a frequentist model selec-
tion approach for grouping algorithms, based on cross-validation. It has
been demonstrated to perform competitively compared to a wide range of
published cluster validation procedures (Lange et al., 2004). The stability
algorithm is a wrapper method for a clustering algorithm specified by the
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user. It is applicable to any clustering algorithm which computes a unique
assignment of an object to a cluster, e. g. it can be applied to a density
estimate (such as mixture model algorithms) with maximum a posteriori
assignments. The validation procedure works as follows: The set of input
data is split into two subsets at random, and the clustering algorithm is run
on both subsets. The model computed by the clustering algorithm on the
first set (training data) is then used to predict a solution on the second set
(test data). The two solutions on the second set, one obtained by clustering
and one by prediction, are compared to compute a “stability index”. The
index measures how well the predicted solution matches the computed one;
the mismatch probability is estimated by averaging over a series of random
split experiments. Finally, the number of clusters is selected by choosing
the solution most stable according to the index.

The DPM model is built around a Bayesian mixture model, consisting of
the multinomial likelihood F and the Dirichlet prior distribution G0. The
Bayesian mixture without the DP prior can be used as a clustering model
for a fixed number of segments. Inference of this model may be conducted
by a MCMC sampling algorithm closely related to MacEachern’s algorithm
for DPM inference. The only substantial difference between the algorithms
is the additional assignment probability term corresponding to the base
measure, as observed in (Robert, 1995). A wrapper method like stability
allows us to compare the behavior of the DPM approach to a method using
exactly the same parametric model, including the base measure and its
scatter parameter β. Only the parameter α is removed from the overall
model, and the random sampling of the model order replaced by a search
over different numbers of clusters.

Stability index results are shown in Fig. 4.12 for two images, the monkey
image in Fig. 4.8 and the SAR image in Fig. 4.4. Results are not smoothed,
because the subsampling strategy will break neighborhoods. In both cases,
model order selection results for these noisy images are ambiguous. For the
monkey image (upper graph), results for K ≥ 5 are mostly within error bars
of each other. A smaller number of clusters is ruled out, which is consistent
with the unsmoothed DPM results (Tab. 4.1). For the SAR image, stability
results are also ambiguous, but exhibit a significant, monotonous growth
with the number of clusters, which is consistent with the monotonous be-
havior or the DPM results as α increases.

In general, stability has been reported to produce somewhat conservative
estimates, since only the stability index of a solution is taken into account
(Lange et al., 2004). This observation is apparently reflected by the behavior
of both methods on the monkey image, where the DPM approach settles at
6 clusters (with very small standard deviation), whereas stability advocates
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solutions with K ≥ 5.

Convergence behavior

Gibbs sampling algorithms are notoriously slow, and it is often difficult to
determine whether or not the algorithm has converged to the distribution
of interest. Gibbs sampling results reported in the DPM literature are
typically based on several thousand iterations.

To the advantage of our algorithm, we are interested in segmentation
results rather than parameter estimates. The cluster labels are discrete and
tend to stabilize after the initial burn-in. Therefore, after discarding the
burn-in, class assignments can be estimated reliably from a small number
of samples. The indicator for convergence used in the experiments is the rel-
ative fluctuation of class labels per iteration. The burn-in phase is assumed
to be over once the number of assignments changed per iteration remains
stable below 1% of the total number of sites. For the non-smoothing DPM
sampler, this condition is usually met after no more than 500-1000 iterations
– details depending on the input data and the scatter of the DP. These fig-
ures are comparable to those reported in the DPM literature. For example,
(MacEachern, 1994) discards 1000 iterations as burn-in (and estimates are
then obtained from 30000 subsequent iterations).

Fig. 4.13 shows the behavior of class assignment during the sampling
process, for the noisy Mondrian and one radar image. For the Mondrian
image with its well-separated segments, 40 iterations suffice for the cluster-
ing solution to stabilize (the cluster graph turns constant). On the radar
image, both the non-smoothing and the smoothing version of the algorithm
take about 600 iterations to stabilize, but their splitting behavior differs
significantly: The standard DPM algorithm creates the last new significant
cluster after about 150 iterations, while the DPM/MRF algorithm creates
its classes during the first few iterations and slowly adjusts assignments
throughout the sampling process. Without smoothing, large batches of
sites are suddenly reassigned from one cluster to another (visible as jumps
in the diagram). With smoothness constraints, clusters change gradually.
Since the curves represent cluster sizes, they do not indicate the explorative
behavior of the sampler. Even if the curve is smooth, the sampler may still
explore a large number of possible states in parameter space, depending on
the posterior.

4.1.7 Discussion

Segmentation models for mid-level vision have to address the two core issues
of what a suitable model for individual segments should capture and how
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many segments should be inferred from an image. The last decade has seen
significant progress in segmentation algorithms ranging from graph-based
methods like partitioning models (Geman et al., 1990), pairwise clustering
(Hofmann and Buhmann, 1997) and Normalized Cut (Shi and Malik, 2000)
to variational (Morel and Solimini, 1995) and statistical (Tu and Zhu, 2002)
approaches. The specific nature of the images and the intended computer
vision task most often determine the appropriateness of a model and the
success of its related algorithm. The comparison is still subjective to a large
degree, although the Berkeley data base of hand segmented natural color
images (Martin et al., 2004) allows us to benchmark new algorithms against
human performance.

The applicability of the spatially constrained model is not restricted to
either image segmentation or histogram clustering. Any kind of parametric
mixture model may be used, by choosing the likelihood function F appro-
priately, and defining a suitable base measure to generate the parameter
values. One might, for example, consider a k-means model with variable
number of clusters and smoothness constraints, by defining F to be a Gaus-
sian of fixed scale. The mean parameters are drawn from the base measure.
If the base measure is also defined as a Gaussian (and therefore conjugate
to F ), the sampling algorithm proposed in Sec. 4.1.3 remains applicable
as well. We expect that our model covers a large part of the landscape of
segmentation algorithms since normalized cut and pairwise clustering can
be written as weighted and unweighted versions of k-means in feature space
(Roth et al., 2003).

DPM methods do not “solve” the model order selection problem, be-
cause the number of clusters is replaced rather than removed as an input
parameter. The utility of DP priors is not a decrease in the number of
parameters, but the substitution of the constant model order by a random
variable. The behavior of the random variable is parameter-controlled, and
its eventual value estimated from data. Rather than specifying a number of
image segments, the user can specify a level of resolution for the resulting
segmentation. Part of the appeal of DPM-based models is their simplicity.
Despite lengthy theoretical derivations, the final form of the model relevant
for application is essentially a parametric mixture model with an additional
term defined by the base measure. Familiar intuition for parametric mixture
models remains applicable, and inference can be conducted by a sampling
algorithm with a structure reminiscent of the expectation-maximization al-
gorithm.

Since DPM and DPM/MRF models are built around a parametric model,
careful parametric modeling is crucial for their successful application. The
DP parameter α specifies a sensitivity with which the DP prior reacts to
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disparities in the data by creating additional clusters. The disparities are
measured by the parametric model. As discussed in Sec. 4.1.6, modification
of the parametric model will directly influence the DPM results. Hence, a
DPM model can only be expected to work well for clustering if the class
structure in the features is properly resolved by the parametric model. A
clearly discernible cluster structure results in stable model order selection.
Smoothing constraints can serve to emphasize cluster structure and stabilize
results.

4.2 Model Order Adaptation

The previous section considered segmentation of individual images. Ar-
guably, DPM-based models will develop their full potential when applied
to multiple instances, for example, collections of radar images all generated
by the same satellite. The problem considered in the following are video
sequences, which consist of multiple similar instances, but with additional
structure to be accounted for by the model. The number of segments may
vary from image to image, but the images are drawn from the same source
or very similar sources. If the number of segments is an input parameter, it
has to be reset manually for each instance. Bayesian DPM models treat the
number of segments as a random variable, with a distribution depending
on the image instance. Since the distribution is controlled by parameters,
they enable the data analyst to specify a segment resolution, possibly by
calibrating the model parameters on a small subset of the data. Applied
to new image instances with similar statistical properties, the model will
automatically adapt the number of segments to variations in the data.

Application to large numbers of image instances requires efficient in-
ference algorithms. An efficient Gibbs sampler similar to the one for DP
mixture models is developed for the the time series model. To facilitate
application of our model to the large amounts of data arising in video seg-
mentation, we (i) show how the efficiency of the Gibbs sampler can be sub-
stantially increased by exploiting temporal smoothness and (ii) introduce
a multiscale sampling method to speed up processing of individual frames.
Just as the model, the multiscale algorithm is based on the properties of
sufficient statistics.

4.2.1 Video Segmentation Problems

When clustering is applied to perform segmentation, the input data is typ-
ically a digital image (group the image into spatially coherent segments)
or a time series (decompose the series into coherent segments along the
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time axis, such as speaker clustering). A different problem arises when
video segmentation is formalized as a clustering problem: Given is a time
series of fixed-size data frames, each of which has a spatial structure, i. e.
the 2D structure of the frame image. The series is to be decomposed into
a sequence of spatially coherent segmentations of the frames. The seg-
mentation solution should reflect the temporal smoothness of the sequence.
Clustering problems of this type have been actively studied in the video
segmentation literature (see Tekalp, 2000, for an overview). For example,
Weiss and Adelson (1996) propose a parametric mixture model for opti-
cal flow features with neighborhood constraints. The number of clusters is
selected by a likelihood heuristic. Temporal context is modeled implicitly
by using differential motion features. Explicit context models include de-
signs based on HMMs (Bregler, 1997) or frame-to-frame model adaptation
(Khan and Shah, 2001). A method which approaches the problem’s time
series structure in a manner similar to Bayesian forecasting has recently
been suggested by Goldberger and Greenspan (2006). The authors propose
a Gaussian mixture model to represent image rather than motion features.
Temporal context is incorporated by using the estimate obtained on a given
frame in the sequence as prior information for the following frame.

4.2.2 Setting and Notation

Much as in the previous section, we assume data xt := (xt1, . . . ,x
t
n) to be

measured at the sites of an image (with i = 1, . . . , n indexing the sites). A
video sequence consists of a set of images, indexed along the time axis by
t = 1, 2, . . . . Site locations within the image are assumed to remain constant
for all t. Once again, we assume that each frame image xt decomposes
into a number Kt of segments, which may change from frame to frame.
A clustering solution for each frame is encoded by assignment variables
Zt := (Zt1, . . . , Z

t
n), where Zti ∈ {1, . . . ,Kt}. That is, the number n of

assignment variables per frame remains constant over time, but the range
may vary. At each time step t, segmentation the respective image xt is
modeled by a mixture with parametric component distributions F (xti|θti).
Notation therefore remains largely identical to the previous section, except
for the additional time index.

In image and video processing applications, the input data usually con-
sists of multiple channels. For standard color videos, three channels corre-
spond to the three color space dimensions. Additional channels may include
other features in the form of transformed data or filter responses. For multi-
ple data channels indexed c = 1, . . . , C, multiple observations (xti,c)c=1,...,C

are obtained for each frame t and location i. These are represented in
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the model as a product of likelihoods. That is, the generative model is
obtained by substituting suitable product distributions

∏C
c=1 F (xt+1

i,c |θ
t+1
i,c )

and
∏C
c=1G

t+1
c for F and G0 in (4.2.12).

4.2.3 Clustering Model

Clustering solutions for the time series problem are required to temporally
coherent. In a video sequence, each time step corresponds to a single frame
image. The overall clustering solution then consists of a segmentation for
each frame. If the number of clusters can change between frames, a suit-
able clustering method must be order-adaptive, i. e. capable of adjusting the
model order Kt over time. Order-adaptive methods require (i) automatic
model order selection and (ii) a meaningful way to match clusters between
frames. If clustering solutions are obtained independently on each frame,
the cluster correspondence problem must be addressed by matching heuris-
tics. Any principled approach requires the use of context information, i. e.
the clustering solution for a given frame has to be obtained in a manner con-
ditional on the solutions for the previous frame. In this section, we discuss
how cluster structure can be propagated along a time series if the clustering
solutions on individual frames are controlled by a DP prior.

For temporal coherence, we require that, if Zti = k, then also Zt+1
i = k

with high probability, unless the corresponding observations xti and xt+1
i

differ significantly. For the video segmentation problem, this reflects the as-
sumption that size and location of segments change slowly on the time scale
of frame renewal. The standard Bayesian approach to address temporal
coherence requirements in time series models is to encode context by priors.
The posterior distribution of the model parameter vector θt at a given time
is used as prior distribution for θt+1. This requires a conjugate model, as-
suming, the class of the prior distribution should not change between time
steps.

Conjugate Models for Time Series

Conjugate models admit the use of a posterior under previous observations
as a prior for future observations, in a manner similar to the interpretation
of conjugate priors outlined in Sec. 2.3.2. Most time series data is not ex-
changeable, though, and conjugate models should not aggregate information
over time in the manner of an exchangeable model.

Exchangeable data is the most straightforward case. Let F ( . |θ) be
an exponential family observation model with sufficient statistic s, and
G( . |λ,y) its conjugate prior. If observations x1, . . . ,xn are generated i.i.d.
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from F ( . |θ), they are conditionally independent given θ. For θ unknown,
the xi are not independent, but exchangeable by conditional independence.
In this case, the posterior under prior G( . |λ,y) is

G
(
θ
∣∣∣λ+ n,y +

∑
i

s(xi)
)
∝
( n∏
i=1

F (xi|θ)
)
G( . |λ,y) . (4.2.1)

The posterior mean is EΘ|x1,...,xn [θ] = y+
P
s(xi)

λ+n i. e. the sample mean of
s(Xi) up to an offset y. The scalar λ + n controls the posterior scatter,
and as n grows large, the posterior will peak sharply at its mean, which
for large n stabilizes around E [s(X)]. Once the mean has stabilized, addi-
tional observations will affect the posterior mainly by sharpening the peak
through increase of n. The conjugacy implies a natural chaining property.
If, for example, the observations are split into two subsets x1, . . . ,xn0 and
xn0+1, . . . ,xn, the posterior can be equivalently computed at once or in two
steps:

G
(
θ
∣∣∣λ+n,y +

n∑
i=1

s(xi)
)

=

(∏n
i=n0+1 F (xi|θ)

)
F (xn0+1, . . . ,xn)

G
(
θ
∣∣∣λ+n,y +

n0∑
i=1

s(xi)
)
.

(4.2.2)
More generally, observations can be assumed to be acquired one by one, with
the posterior updated on each measurement. The resulting final posterior
will be identical to the posterior obtained from the whole set of observations
at once.

To account for data that is not exchangeable along the time axis, such
conjugate chaining is still applicable, if the data is not aggregated indefi-
nitely. For the video segmentation problem, a suitable modeling assumption
is that changes between consecutive time steps are small, and that the cur-
rent state (the current image) is the best available guess of what the next
image may look like. By the Diaconis-Ylvisaker characterization of con-
jugacy (Theorem 19), for prior G( . |λ,y) and a single observation xt, the
mean of the posterior1 is:

EµΘ|Xt=xt

[
Es(Xt+1)|θ

[
s(Xt+1)|θ

]]
=
y + s(xt)
λ+ 1

. (4.2.3)

If y is set to the origin, s(xt) is reproduced in expectation in the limit λ↘ 0.
Otherwise, the observation s(xt) is offset by y. The offset is not necessarily

1Eq. 4.2.3 holds only if the inner expectation on the left-hand side is taken w. r. t.
the random variable s(Xt+1). If the expectation is computed w. r. t. Xt+1, the relation
becomes nonlinear.
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interpretable as a translation. For estimation of a multinomial parameter
vector under a Dirichlet distribution prior, for example, y represents a finite
probability distribution. The image s(xt) of an observation xt is a finite
probability distribution as well, possibly up to normalization. The right-
hand side of (4.2.3) interpolates between y and s(xt) in the probability
simplex. If y is chosen as uniform (the center point of the simplex), it
will act as a regularizer on s(xt). Setting y to an extremal point of the
simplex will emphasize the respective event in θ, etc (cf also the discussion
in Sec. 4.1.6 for the Dirichlet case). In general, y can be interpreted as a
prior guess for θ, against which observations are interpolated.

Eq. (4.2.3) implies that a model using the posterior

G(θt|λ+ 1,y + s(xt)) ∝ F (xt|θt)G(θt|λ,y) (4.2.4)

as prior for θt+1 will indeed rely on the current state s(xt) as best avail-
able guess, and smooth by interpolating against y. The model sequentially
generates data according to

F (x1
i |θ1

i ) F (x2
i |θ2

i ) F (x3
i |θ3

i )

G(θ1|λ,y) G(θ2|λ+ 1,y + s(x1)) G(θ3|λ+ 1,y + s(x2))
++WWWWWWWWWWW

++WWWWWWWWWWW
OO

//

OO

//

OO
. . .

(4.2.5)

If the data is approximated reasonably well by an exchangeable model over
a small time window, one may variate upon the chaining strategy by accu-
mulating a fixed number of observations, as

G
(
θt+1

∣∣∣λ+τ,y+
∑

t−τ<r≤t

s(xr)
)
∝

∏
t−τ<r≤t

F (xr|θr)G(θt−τ+1|λ,y) (4.2.6)

The window equips the model process with a τ -step memory.

Remark 28 (Time series interpretation of the model). Since E
[
Θt+1

]
=

y+s(xt)
λ+1 = cy + c · s(xt), the value assumed by Θt+1 is representable as

θt+1 = cy + c · s(xt) + εt , (4.2.7)

where εt ∼ G( . |λ + 1, 0). If s(xt) was replaced by θt, the model would
be AR(1). If θ represents a Gaussian mean (under a normal prior), εt

is zero-mean white noise, and the model is covariance-stationary, because
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c < 1. In general, note that this time series lives in parameter space. It
has a systematic drift for y 6= 0. As discussed above, the drift may be
regarded as e. g. a bias towards a regular solution, depending on the choice
of y. The actual model substitutes an observation s(xt) conditional on θt

for the value of θt. It is worth noting that such linear processes in parameter
space capture all information relevant for the model: In conjugate models,
whatever happens in parameter space is linear, and any non-linearities in
the data are expressed by means of the map s.

Conjugate Chaining of Dirichlet Process Priors

In order to propagate cluster structure (in terms of a Bayesian mixture
model) along the time axis, the model has to generate mixing distributions
µZ as in (2.5.1). That is, the parameter Θt in the model above takes values
in the set of mixing distributions:

x ∼ p(x) =
∫
F (x|z)dµZ(z)

µZ ∼ G
(4.2.8)

Once again, we will write θ and θ∗k for the values assumed by Z, such
that θ ∼ µZ and the mixture components F are parameterized by θ or θ∗k
(cf. Rem. 27 on notation). For finite Bayesian mixtures, G is a suitable
parametric product prior (cf. Sec. 2.5.2), and µZ is generated in form of
a density mZ as in (2.5.4), by generating the parameters θ∗k and ck. In
a nonparametric setting, µZ is drawn from a Dirichlet process substituted
for G. The Dirichlet process has a natural conjugate property. It will
be discussed in detail in Chap. 5, but is inherent in Ferguson’s original
characterization of the DP posterior:

θ1, . . . , θn ∼ DP (αG0) =⇒ θn+1 ∼ DP
(
αG0 +

n∑
i=1

δθi

)
. (4.2.9)

The conjugate chaining of priors and posteriors, as discussed above, there-
fore carries over immediately to the nonparametric case (as does the concept
of sufficiency and any intuition based upon it, cf. Chap. 5).

If θ1, . . . , θn is a sample of size n from a DP, i. e. if mZ ∼ DP and θi ∼ mZ,
we will write

m̂n :=
1
n

n∑
i+1

δθi . (4.2.10)
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The nonparametric analogue of prior-posterior chain defined in (4.2.4) for
the parametric case is then

mt+1
Z ∼ DP

(
αG0 + m̂t

n

)
. (4.2.11)

That is, α is substituted for λ, G0 for y and m̂t
n for s(xt). The overall data

generation may be summarized as

xt+1
i ∼ F ( . |θt+1

i ) (4.2.12)

θt+1
1 , . . . , θt+1

n ∼ Gt+1 and m̂t+1
n :=

1
n

n∑
i+1

δθt+1
i

Gt+1 ∼ DP
(
αG0 +Gt

)
.

In the diagram representation (4.2.5), an additional layer is added for the
mixture:

F (x1
i |θ1

i ) F (x2
i |θ2

i ) F (x3
i |θ3

i )

θ1
i ∼ m1

Z θ2
i ∼ m2

Z θ3
i ∼ m3

Z

DP (αG0) DP
(
αG0 + m̂1

n

)
DP

(
αG0 + m̂2

n

)
. . .

OO

**TTTTTTTTT

OO

**TTTTTTTTT

OO

OO

//

OO

//

OO

//

(4.2.13)

Once again, the model implies exchangeability of observations at each time
step, but not along the sequence. If, for t fixed, multiple instances of mt

Z

are generated, these will be exchangeable. However, actual data is assumed
to be generated by a single draw from each time step, and two such draws
mt1

Z , mt2
Z are not generally exchangeable unless t1 6= t2.

4.2.4 MCMC Inference

Two questions will be addressed in the following: How the standard blocked
Gibbs sampler for DPM inference can be adapted to perform inference along
the time series model described above, and how efficiency of the sampler can
be improved to cope with the large amount of data typically encountered
in video segmentation or comparable problems, by exploiting the temporal
and spatial coherence in the data.

Existing hidden-variable methods can be modified for time series in-
ference by initializing inference for a given time step by the model state



144 Model Order Adaptation

estimated for the previous step. Each cluster is then indexed uniquely
throughout the time series. A good estimate obtained for a given frame
will provide an almost-perfect initialization for the subsequent frame. If
changes between frames are small, the task of the sampler is thereby re-
duced from approximating to tracking the evolving structure. To increase
sampler efficiency for individual time steps, temporal tracking is combined
with a multiscale algorithm.

Sampling in Time Series

Parameter inference for the time series clustering problem estimates the
cluster parameters θtk and the states of the assignment variables Zti , for
each t = 1, . . . . Estimates are obtained by sampling the relevant posteri-
ors with a Gibbs sampler. To derive a suitable algorithm, we note that,
for a given time index t, recovering the states Zti and parameters θtk given
the current observations xti is a DPM mixture inference problem with prior
DP(αG0 + Ĝtn). The history of the process enters via the prior parameter,
i. e. the measure (αG0 + Ĝtn). Full conditionals for the Gibbs sampler are
immediately obtained from the standard sampling algorithm, by substitut-
ing (αG0 + Ĝtn) for αG0. (A sampler for a series with a τ -step memory
can be obtained by substituting the corresponding posterior parameter in
(4.2.6)). Estimates for the whole time series can be computed by running
the Gibbs sampler for the appropriate posterior at each time step. The
parameter estimates (summarized by Ĝtn) are then substituted into the DP
prior of the subsequent step. The algorithm is an online method, as it only
performs a single pass over the time series. The cluster correspondence
problem is solved implicitly, by propagating information from one time step
to the next through the DP base measure. Initially, the same clusters as
in the previous step are available for assignment, and their indices are pre-
served. Classes may be newly generated by drawing from the continuous
component G0 of the DPM, or deleted if no longer supported by the data.
Gibbs sampling is potentially time-consuming, and performing a full run
of a DPM Gibbs sampler for each time step in the series is computation-
ally prohibitive. A substantial speed-up is achieved by exploiting temporal
smoothness. If changes in the data occur slowly w. r. t. to the time scale
(frame rate) of the time series, the model state estimated at time t provides
an almost-perfect initialization for sampling at time (t+ 1). The algorithm
therefore obtains an initial estimate at time t = 1 by performing a full run
of the Gibbs sampler. For t ≥ 2, the Gibbs sampler is initialized by the
previous model state, and then run only for a few steps, to allow the model
to adapt to changes in the data.
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Multiscale Sampling

For data exhibiting a spatial neighborhood structure, DPM inference algo-
rithms that are more efficient then the standard Gibbs sampler can be de-
rived using a multiscale approach. Multiscale methods attempt to increase
the efficiency of iterative algorithms by replacing the original input prob-
lem with a compressed replacement problem (coarsening). This reduced-size
problem is solved, and the solution transformed into a solution of the larger
input problem (refinement). The compression operation exploits neighbor-
hood structures in the data (such as spatial or sequential neighborhoods).
In images, adjacent pixels are grouped into blocks, and each block B is
compressed by computing a summary variable xB . The coarsened problem
is given by the set of summary variables for all blocks. The coarsening op-
eration therefore has to be designed to limit the loss of relevant information
under compression, and to result in a coarse-scale problem to which the
processing algorithm in question is applicable.

Coarsening. Our aim is the design of MCMC sampling algorithms.
The information to be preserved under coarsening is therefore the infor-
mation relevant to statistical parameter estimation. A simple averaging ap-
proach is not suitable in general, as it will only preserve moment information
of first order. For the models considered in our work, a suitable coarsening
approach can be derived from the properties of sufficient statistics. For an
exponential family density as in (2.2.15), all information relevant to param-
eter estimation is contained in the sufficient statistic s(x). Furthermore,
for multiple observations x1, . . . ,xn, the sum ŝn :=

∑n
i=1 s(xi) is sufficient.

Given a data block B, consisting of the observations {xb1 , . . . ,xbN }, the
summary variable sB is computed as

sB :=
N∑
i=1

s(xbi) . (4.2.14)

If Rd data, for example, is modeled by a Gaussian distribution, the sum-
mary variable will be the pair sB =

(∑N
i=1 xbi ,

∑N
i=1 xbix

T
bi

)
. Coarsen-

ing is therefore performed by averaging in parameter space, in contrast to
the standard multiscale schemes used by many computer vision algorithms,
which average in the data domain. A spatial partition of the input data into
blocks B1, . . . , Bm will result in a set of summary variables xB1 , . . . ,xBm .
The DPM sampling algorithm described is directly applicable to this re-
placement data, by substituting summary variables xB for sufficient statistic
values s(xi).

The coarsening operation is perfect in the sense that it does, by the prop-
erties of sufficient statistics, preserve all information relevant for estimation
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purposes. More precisely, assume that xb1 , . . . ,xbN ∼ F ( . |θ), with a con-
jugate prior G(θ|λ,y) on the parameter. Then the posterior Π satisfies the
invariance

Π(θ|sB ;λ,y) = Π(θ|xb1 , . . . ,xbN ;λ,y) , (4.2.15)

since

Π(θ|xb1 , . . . ,xbN ;λ,y) = G
(
θ
∣∣∣λy +

N∑
i=1

s(xbi)
)

= Π(θ|sB ;λ,y) .

Intuitively, a parameter estimated from data is a valid description of the
data on the fine scale or any coarsened scale.

Refinement. The coarsening strategy described above and subsequent
sampling on the coarse scale will result in a DPM clustering solution defined
by cluster parameters θ∗1 , . . . , θ

∗
k. Because these parameters also define an

admissible clustering solution on the fine (original) scale of the problem, it
is not necessary to explicitly propagate coarse-scale assignments to the fine
scale. Instead, a solution of the fine-scale problem is obtained by substi-
tuting the estimates θ∗k into the fine-scale model and performing a single
assignment step. We note that, as another consequence of the paramet-
ric description applying simultaneously over different coarsening scales, the
method is capable of incorporating locally adaptive coarsening/refinement
strategies.

Coarse-scale artifacts. When applied to clustering, the multiscale
sampler may erroneously produce additional classes at a coarse scale, if
a block summarized by a single variable during coarsening overlaps the
boundary between two segments. The resulting mixed distribution may
distinctively differ from the average distribution of both segments, and thus
produce an additional cluster. Such errors can be corrected by the fine-scale
assignment step. To illustrate the behavior of the sampler, Fig. 4.14 shows
estimation results obtained on a simple artificial image consisting of three
block segments arranged in sequence (i. e. there are two boundaries between
adjacent segments). Local windowed grayscale histograms are extracted as
features. As clustering model, we apply a DPM model, with a multinomial
likelihood F to account for the histograms. The cluster parameters θ∗k
can be interpreted as average histograms of the respective cluster. These
average histograms are plotted for the true (generative) model on the left
in Fig. 4.14. The multiscale algorithm is run on the data with a coarsening
coefficient of 2, and the coarse-scale solution is compared to the artificial
ground-truth. When sampling on a coarse scale, the algorithm models five
classes, for which the class parameter vectors θ∗k are plotted on the right.
Clusters 2 and 4 are due to mixing of histograms at the segment boundaries.
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When assignments are performed for the fine-scale histograms to the coarse-
scale class parameters, all histograms are correctly assigned to their original
three classes, and clusters 2 and 4 remain empty. That is, coarse-scale
artifacts vanish during the fine-scale assignment. The algorithm benefits
from the ability of the DP to create new clusters for the boundary points,
without distorting the remaining cluster structure.

Multiscale approaches to Markov Chain sampling have been considered
e. g. in (Higdon et al., 2003). These methods are based on the idea that
suitable coarse-scale formulations of a Markov chain may mix faster than
the original chain, and use a coupled formulation integrating both chains.
The aim is to reduce the number of iterations required for the algorithm to
converge, while retaining accuracy. In contrast, our approach mainly aims
at reducing the execution time of individual iterations. Keeping in mind
the large amounts of data arising in visual processing and video, we trade
in accuracy and statistical guarantees for speed. Though the coarsening
operation is perfect for individual distributions, it will lose in accuracy when
the coarsening blocks overlap segment boundaries, as shown in the example.
In practice, we should not expect the fine-scale assignment step to correct
all errors. The rationale for risking a loss of accuracy is that, for vision
applications, we put more emphasis on speed and plausible results than on
statistical guarantees.

4.2.5 Experiments

This section provides experimental results for the application of the model
to video segmentation. Experiments were performed on both synthetic data
and real-world data (sequences from the MPEG4 benchmark set).

Processing pipeline. Features are extracted from each frame image
by placing an equidistant grid within the image. A local window is placed
around each grid node i, pixel values are extracted from within the window,
and collected in a histogram (denoted xti in the previous sections). For color
images, the method is applied individually to each color channel. The re-
sulting set of features for each frame is a list of multiple histograms, indexed
by their position i within the image. On this data, the inference algorithm
described in Sec. 4.2.4 is applied. Inference is conducted single-pass, and
is hence capable of online processing. For each time step t, the assignment
variables Zti describe the estimated segmentation (i. e. Zti is interpreted as
the segment index of site i). In the examples shown in Figs. 4.15-4.18,
segment assignments have been color-coded.

Results. Synthetic data experiments were conducted to verify the
method’s capability to adjust the number of clusters. The artificial data
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consists of simple geometric objects with additive Gaussian noise moving at
random within a scene. Objects may newly appear or disappear, but only
by entering or leaving the scene from the border (i. e. temporal changes are
smooth). A sample experiment is shown in Fig. 4.15. Features used are
local gray-scale histograms. In all experiments conducted, the algorithm
consistently assigns each object to the same cluster over the whole running
time of the sequence. The cluster number only changes if an object vanishes
temporarily, either by occlusion or because it leaves the scene and reappears
(as is the case for the disc in Fig. 4.15). As a mid-level vision algorithm,
the method cannot (and should not) distinguish between initial appearance
and reappearance of an object. Results on real video data were obtained
on sequences from the MPEG4 benchmark set. Five feature channels where
used: Four are histograms, representing the three RGB color channels plus
saturation, and described by a multinomial likelihood F . In addition, we
used a location feature, i. e. the center position of the local window in the
image, represented by a two-dimensional Gaussian likelihood. The overall
model likelihood is a product likelihood as described in Sec. 4.2.3. The scat-
ter parameters of the parametric priors and the scatter parameter α of the
DP, which control the level of cluster resolution, can be adjusted on the first
few frames of the sequence. The key parameter of the feature extraction
is the size of the local windows, which has to trade off sample size against
precision: Large windows, to their advantage, contain many pixel examples,
which results in stable histogram estimates and reduces scatter in feature
space. Their drawback is a lack of precision: Large windows overlapping a
cluster boundary generate histograms that represent a mixture of the two
cluster distributions. Such mixtures tend to differ significantly from the
individual distributions of the clusters, and hence cause additional clusters
to appear at the segment boundaries. All results shown here were obtained
using window sizes of 5 × 5 or 9 × 9 pixels. Sample results are shown in
Figs. 4.16-4.18. In Fig. 4.16, results shown in the middle row where obtained
using only the four histogram features (color and saturation). The back-
ground is split up into incoherent segments. Results are improved by the
additional use of location features. Modeling these with a Gaussian in the
spatial domain favors spatially coherent solutions, improving the segmen-
tation of the background (bottom row). Likewise, all five features where
used in the computation of results shown in Fig. 4.17. A more difficult
sequence is shown in Fig. 4.18. In this case, local segmentation features
provide poor information. Color differences within some segments (e. g. the
large boat) are more significant than those between segments. With the size
of the windows chosen sufficiently large during feature extraction to obtain
stable input histograms, a boundary cluster effect is observable (note the



152 Model Order Adaptation

two boats being split into an internal and a boundary segment). Results
may possibly be improved by including additional motion features (such as
histograms of frame differences). In general, the choice of features proves
crucial for the performance of the segmentation algorithm. The parametric
components of the clustering model (e. g. Gaussian and multinomial) are
location-scatter type models, which represent “clouds” in their respective
feature spaces. Like most mixture models, the method relies on the feature
extraction step to map the segments to groups in feature space that are
sufficiently well-separated to be resolved by the probabilistic model.

Average running times for our experiments on different video test se-
quences (300 frames at resolution 144 × 176 each) were: ∼ 190 seconds at
full resolution, ∼ 110 seconds using a multi-scale sampler with coarsening
coefficient 2, and ∼ 35 seconds with a coarsening coefficient of 4. This does
not include the feature extraction, i. e. the extraction of the fine-scale input
data from the image sequence. The running time of the algorithm scales,
in addition to the obvious dependence on the amount of input data, with
the number of segments. The averages above were measured for relatively
small numbers of classes (K ≤ 10). If a large number of clusters is required
(i. e. an over-segmentation), longer running times will have to be expected.

4.2.6 Discussion

The DP approach models the number of clusters as a random variable.
The model order as an input parameter is replaced by a control parameter
that allows the user to adjust the approximate level of cluster resolution.
For fixed, static data sets, the approach may not constitute a practical ad-
vantage, as it arguable replaces one input parameter by another. We face
a different situation for dynamic data, such as videos, where the number
of clusters may change over time and the model has to adapt. Adapta-
tion requires either a random description of the model order, or a transition
heuristic (such as BIC scoring, or reversible jump in a Bayesian framework).
Bayesian methods in general, and DP approaches in particular, are often
regarded as inapplicable to data-intensive problems due to their computa-
tional costs. In our view, the reported results convincingly demonstrate
that algorithmic efficiency need not pose an obstacle to the practical appli-
cation of DP models, if temporal and spatial structure in the data can be
exploited.

The achieved processing times of the sampler are just one order of magni-
tude below real time for videos in half-PAL format. We have not provided
convergence results for the sampling algorithm, since our analysis of the
coarsening operation implies that, for individual component distributions,
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results for standard Gibbs samplers carry over to the multiscale approach.
Any inaccuracies are due to coarsening blocks overlapping segment bound-
aries, a problem hard to capture by mathematical analysis. Furthermore,
our estimation results are necessarily approximate, since the sampler is only
run for a few steps on each frame image. Such an algorithm, for which the
observed data changes (smoothly) in regular intervals raises some interest-
ing questions. On the one hand, frame changes may pose a problem, if
the model has not yet been sufficiently adapted to the current data. On
the other hand, small data perturbations may help to avoid local minima.
In-depth analysis of the algorithm is beyond the scope of the present study.

The results presented here were computed on low-level features, such as
color and saturation histograms, which necessarily results in limited pre-
cision. Since the model applies to both Gaussian and multinomial feature
distributions, it is directly applicable to a wide range of features. Tracking
applications, for example, require robustness but no coherent partition of
the image. Hence, interest point features could be extracted on each frame
and grouped with our model using a Gaussian likelihood supported on the
frame image. Since DP models can be constrained by Markov random fields
(cf. Sec. 4.1) the model itself can be extended by spatial smoothing, as ad-
vocated for video segmentation in (Weiss and Adelson, 1996). Such an
extension would probably come at the price increased computation time,
as more iterations per frame would be required for the smoothing to take
effect.
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Chapter 5

Construction of
Nonparametric Bayesian
Models

Ferguson’s approach to the construction of a nonparametric Bayesian model
applies Kolmogorov’s extension theorem to a projective family of finite-
dimensional Dirichlet distributions. The resulting projective limit measure
is the Dirichlet process. Once the process measure is defined, its useful-
ness as a Bayesian prior is studied. Motivated by an increasing interest
in the construction of process priors in the machine learning literature, we
suggest a slightly different approach: Define a system of finite-dimensional
Bayesian equations, with desirable properties, such as conjugacy; then ap-
ply the extension theorem to the entire system, in a manner that preserves
all properties of importance.

The results established in the following are an attempt to make this
approach reasonably generic. Our results describe a weak representation of
an infinite-dimensional Bayesian model, in analogy to the weak distribution
of a process measure in probability theory. We discuss in how far useful
properties of the finite-dimensional system carry over to the projective limit
case, and provide a number of construction examples.

5.1 Motivation

As far as the definition of new probability models is concerned, the primary
focus of the nonparametric Bayesian community has been the construction
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of measures on the set of probability measures. The machine learning com-
munity, on the other hand, has traditionally been interested in Gaussian
processes, an interest that was reinvigorated by both the popularity of ker-
nel methods and the characterization of Gaussian processes as limits of cer-
tain neural networks by Neal (1994). Until recently, Gaussian process priors
were regarded in machine learning mostly as an individual approach, rather
than as one example of a larger class of Bayesian nonparametric methods.
This perception has changed notably with the increasing popularity of the
Dirichlet process.

Machine learning interest in the Dirichlet is motivated by clustering
problems, and after DP models became known in the field, attempts at gen-
eralization of the model started to appear almost immediately. These were
either combinations of DP models constructed in analogy to finite mixtures
(such as the hierarchical DP of Teh et al. (2004) and the models described
in Ch. 4), or based on generalizations and relatives of the DP available in
the statistics literature (such as the Pitman-Yor process or Kingman’s coa-
lescent, see e. g. Teh et al. (2008a) for an application). The exception was a
paper by Griffiths and Ghahramani (2005), which proposed a distribution of
process type on a different class of infinite-dimensional objects, in this case
infinite binary matrices. A number of constructions have since appeared
in the machine learning literature, typically based on arguments involving
an analytic limit. Roughly speaking, this point of view regards the DP as
arising from a d-dimensional Dirichlet density in the limit d → ∞. The
density of some finite-dimensional model is written in a form explicitly or
implicitly parameterized by the dimension of the underlying space, and a
limit with respect to the dimension variable is computed. In some sense, one
may argue, the limit is useful as an intuitive interpretation of the Dirichlet
process. Unfortunately, it is also fundamentally flawed as a construction
argument. Two pitfalls of the “density limit” idea are:

1. The carrier measure: The d-dimensional Dirichlet and Gaussian den-
sities, for example, are defined w. r. t. Lebesgue measure, which has no
extension to infinite-dimensional space. Even on infinite-dimensional
separable Hilbert space, arguably the most benign infinite-dimensional
space at our disposal, a Lebesgue measure does not exist (Skorohod,
1974). An analytic dimension limit of the density formula will lack
meaning for lack of a carrier.

2. The infinite-dimensional measure is not guaranteed to admit a den-
sity representation. For example, the Dirichlet on the real line has
not density. The set of Dirichlet posteriors on the real line is not
dominated (App. C), and hence has no common representation as a
conditional density.
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The rigorous approach to the construction of infinite-dimensional measures
is the Kolmogorov extension theorem. In the following, we will consider the
construction of infinite-dimensional Bayesian models by means of the exten-
sion theorem. In particular, we will actually be interested in constructions
taking into account conjugacy and sufficient statistics.

Conjugacy is a pervasive theme in the nonparametric Bayesian literature.
Even in the finite-dimensional case, obtaining suitable exact or approxima-
tive expressions for the posterior of a Bayesian model is generally difficult,
and analytic approaches tend to become much more subtle in infinite di-
mensions. The only known general form of exactly tractable posteriors
are conjugate posteriors, and not surprisingly, all models considered in the
nonparametric Bayesian literature, including GP and DP models, tailfree
priors, Pólya trees and neutral to the right processes are of conjugate type
(Walker et al., 1999; Ghosh and Ramamoorthi, 2002).

The purpose will therefore be to construct models that admit conjugate
posteriors. Since conjugacy is a property of pairs of priors and posteri-
ors rather than of individual measures, it seems reasonable to consider the
extension of complete Bayesian equations, rather than of individual mea-
sures. As Bayesian equations are in turn inherently parametric (whatever
they may be called), this leads to the extension of conditional probabili-
ties. Moreover, as was discussed to some detail in Ch. 2, there is a direct
connection between conjugate Bayesian systems, exponential family models
and sufficient statistics. The approach we will follow is hence to consider
Bayesian system on finite-dimensional spaces. We will ask (i) whether and
how they may be extended to infinite dimensions and (ii) which implications
conjugate and sufficiency properties of the finite-dimensional system have
for the infinite-dimensional case.

5.2 Results: A Qualitative Overview

A first observation is that all marginal models of a conjugate nonparametric
Bayesian model are conjugate. Though somewhat trivial, the implication
for the construction of conjugate infinite-dimensional systems is that they
can only be constructed from conjugate marginals. Where conjugate sys-
tems are concerned, this will essentially restrict our attention to exponential
family marginals. The first basic consideration will be the projective limit
extension of conditional probabilities. In particular, we consider the case
where the finite-dimensional marginals are regular conditional distributions.
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A family of regular conditional probabilities on all finite-dimensional sub-
spaces of an infinite-dimensional space, satisfying suitable consistency
properties, define a conditional probability on the infinite-dimensional
space. If the dimension is countable, the infinite-dimensional conditional
probability is regular. (Proposition 36, p. 167.)

The consistency condition mentioned here is in principle a projection con-
dition analogous to that required by the standard extension theorem. How-
ever, a conditional distribution in general carries less information than the
original measure, and the projection condition has to account for a suitable
structure in both arguments. An additional, recurrent theme will be con-
ditions that guarantee regularity of the extended conditional measure. A
non-regular conditional probability is not guaranteed to constitute a prob-
ability measure for (almost) all values of the condition. Non-regular condi-
tionals are not suitable for Bayesian problems, because the posterior is not
guaranteed to be a probability distribution (almost surely).

Given a notion of a projective limit for (regular) conditional probabili-
ties, the extension approach can be applied to Bayesian systems:

A projective family of Bayesian models on all finite-dimensional subspaces
of a space of countably infinite dimension uniquely defines an infinite-
dimensional Bayesian model on the overall space. (Corollary 38, p.169.)

Sufficient statistics in conjugate models have, at least, two important as-
pects: One is that they characterize the probabilistic model. The second is
that they define the parameter update by observation which defines the pos-
terior distribution, as given by Eq. (2.3.20) for the finite-dimensional case.
If the model is conjugate and the sufficient statistic known, the posterior is
known explicitly. The immediate question is how a sufficient statistic can
be extended along with the probability model.

In countably infinite dimensions, the sufficient statistics of a projective
family of finite-dimensional Bayesian models define a sufficient statistic
for the projective limit model. (Proposition 40, p. 169.)

Given the discussion so far and the result sketched above, the fact that
conjugacy carries over to the infinite-dimensional case when the other results
are applicable is almost inevitable.

In countably infinite dimensions, the projective limit of a conjugate sys-
tem of finite-dimensional Bayesian models is conjugate. (Corollary 39,
p. 169.)
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The countability condition on the dimension is imposed to guarantee this
regularity. This requirement is, at least at first glance, quite a nuisance:
If the random quantity to be generated can in any way be thought of as a
function, the set of dimensions is the function’s domain. For a Gaussian or
Dirichlet process to generate functions or probability distributions on the
real line, respectively, the set of dimensions of the extension space must
be isomorphic to R, hence uncountable. For the special case of exponential
family marginals even uncountable constructions define regular conditionals.

A nonparametric Bayesian system admits a conjugate posterior if the
sampling distribution (likelihood) of all its finite-dimensional marginals
is an exponential family model. In this case, the infinite-dimensional limit
system is regular, even if the dimension is not countable. (Remark 33,
p. 164 and proposition 43, p. 172.)

5.3 Formal Framework

The extension from finite- to infinite-dimensional measures uses the Kol-
mogorov extension theorem (cf Sec. 2.4.3). To apply the extension theo-
rem, we have to define (i) product spaces with suitable topologies, (ii) a
projection operation (from higher- to lower-dimensional spaces), and (iii)
its preimage operation, which maps a set A to a cylinder set with base
A. Application of extension techniques to Bayesian models requires their
application to complete parametric model families, rather than individual
measures, and we therefore have to consider conditional probabilities. Along
with the projective (and therefore nested) structure of the sample space, we
will have to require a nested structure on the σ-algebras on which the re-
spective parametric models condition.

5.3.1 Process Measures

Random events will be modeled by the abstract probability space

(Λ,A,P) (5.3.1)

with Λ a point set, A a σ-algebra on Λ and P a probability measure. Any
measures considered in the following will be considered images of P under
some random variable. We will generally denote random variables represent-
ing samples by X, and those representing a parameter by Θ. A conditional
probability model representing the sampling distribution (or likelihood) is
then of the form µ(X|Θ).
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Spaces and σ-algebras. Studying an infinite-dimensional model and its
finite-dimensional marginals will require distinction between random vari-
ables of different dimensions, which take values in product spaces. As in
the setting of the Kolmogorov extension theorem, product spaces are con-
structed from a Polish space Ω, with Borel σ-algebra B(Ω). The (usually
infinite) set of dimensions is denoted E, and E∗ is the set of its finite sub-
sets. The overall, infinite-dimensional product space and the corresponding
product Borel system will be denoted

ΩE :=
∏
i∈E

Ω and BE :=
⊗
i∈E
B(Ω) . (5.3.2)

The finite-dimensional subspaces of ΩE with their respective Borel algebras
will be denoted (ΩI,BI) for I ∈ E∗. The sets I may be thought of as sets of
axes indices.

It will prove important to distinguish the two σ-algebras BE and B(ΩE).
The former is the E-fold product of the Borel sets on the component space
Ω. This is the domain of measures constructed by means of Kolmogorov’s
extension theorem. B(ΩE), on the other hand, is the system of all Borel sets
of the product space ΩE, i. e. the domain the construction should be able to
capture. The two cases coincide whenever E is countable. For uncountable
E, however, only BE ⊂ B(ΩE) holds. In particular, if Ω contains more than
a single element, the product algebra does not contain the singletons. This
can pose a problem for the construction of measures for Bayesian estimation,
since sample observations are singletons.
Random variables. In analogy to the spaces, random variables will be
indexed by a set of axes. For all I ⊆ E, write

X I : (Λ,A)→ (ΩI
x,BI

x) and µI
X := X I(P) . (5.3.3)

In the construction of a Gaussian process, for example, we may choose
Ω = R and E = Z. Then each X I represents a random vector with d = |I|
entries in d-dimensional Euclidean space. The corresponding measure µI

X

is a d-dimensional Gaussian distribution, representing the marginal on the
subspace ΩI of the infinite-dimensional Gaussian process distribution µE.
Projections and preimages. As in 2.4.3, the projection operator from ΩJ

x

to ΩI
x (with I ⊂ J) will be denoted PJ,I. For points xJ ∈ ΩJ

x, it is explained as
restriction of the list xJ = (xi)i∈J to PJ,Ix

J := (xi)i∈I , and for sets AJ ⊂ ΩJ
x

as the set of all projections of points in AJ. The preimage under projection
is denoted RJ,IA

I = {xJ ∈ ΩJ
x|PJ,Ix

J ∈ AI}. The projection of a measure is
defined by means of a push-forward, as (PJ,Iµ

J
X)(AI) := µJ

X(RJ,IA
I).
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Example 29 (Gaussian process). To illustrate the meaning and relations of
the different objects, consider a Gaussian process distribution. Again choose
Ωx = R and E = Z. The Gaussian process generates infinite-dimensional
random vectors in the space ΩE

x = RZ, with one entry for each element of Z
and range R for each entry. The Gaussian process is given by the measure
µE
X . For any finite subset I ∈ E∗ and corresponding finite-dimensional

subspace ΩI
x, the marginal on that subspace is

µI
X := PJ,Iµ

E . (5.3.4)

The definition of the Gaussian process states that all these marginals must
be Gaussian. Projection operators are transitive, that is PK,I = PK,J ◦ PJ,I

for I ⊂ J ⊂ K. Therefore, the distributions so defined satisfy PJ,Iµ
J
X = µI

X

for any I ⊂ J , and form a projective family in the sense of Def. 22.
The situation typically considered in the following is that the infinite-

dimensional measure µE
X is not known or given initially. Instead, a system

of finite-dimensional marginals µI
X is given, which form a projective fam-

ily. The existence of the process measure µE
X is then guaranteed by Kolo-

mogorov’s theorem, and any computation involving the behavior of µE
X on a

finite-dimensional subspace can be performed in terms of the corresponding
marginal.

5.3.2 Parametric Families of Process Measures

For the parameter variable corresponding to X I, we will write ΘI, hence

ΘI : (Λ,A)→ (ΩI
θ,BI

θ) and µI
Θ := ΘI(P) . (5.3.5)

The parametric model of X I with parameter ΘI is the ΘI-conditional distri-
bution µI(X I|ΘI) of X I (cf Sec. 2.2). All definitions given here apply equally
for I = E and for I ∈ E∗. For any measurable set AI ∈ BI

x,

µI(AI|ΘI)(ω) := µI
X(AI|σ(ΘI))(ω) = E [IAI |σ(ΘI)] (ω) , (5.3.6)

where the abstract conditional expectation E [IAI |σ(ΘI)] is taken w. r. t.
µI
X . Whenever the sample space of X I is Borel, the conditional probability

will be assumed to be regular (i. e. a Markov kernel).
Projections of parametric models. So far, all notions discussed are
fairly standard. However, to consider projective families of parametric
models, we have to specify projections of parametric models. Assume that
µE(AE|ΘE) is regular. Then for almost all ω ∈ Λ, the function µE( . |ΘE)(ω)
is a measure on (ΩE

x,BE
x), and the standard projection operator PE,I can be

applied, yielding a (projective) family of measures

µ̃I( . ) := PE,Iµ
E( . |ΘE)(ω) . (5.3.7)
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It is straightforward to show (see below) that, if µI( . |ΘE)(ω) is the regular
conditional probability of µI

X = PE,Iµ
E
X with respect to ΘE, then µ̃I( . ) =

µI( . |ΘE)(ω). In other words, whether we first project and then condition
or vice versa amounts to the same, and the diagram shown on the right
commutes.

µE( . |ΘE)
E[I{ . }|σ(ΘE)]

←−−−−−−−−−−−− µE
X

PE,I

y
yPE,I

µI( . |ΘE) ←−−−−−−−−−−−−
E[I{ . }|σ(ΘE)]

µI
X

However, in both cases, the distri-
bution is conditional on ΘE, char-
acterizing a parametric model in
which all finite-dimensional mar-
ginals are parameterized by the in-
finite-dimensional parameter ΘE.
This does not reflect the structure
of the parametric families we are interested in: The random variable X I

should depend only on the value of a restriction ΘI of ΘE. That is, the
projection operator (or a corresponding operation) should be applied to ΘE

as well, and the parametric family of X I should be fully specified by condi-
tioning on the restriction ΘI. In the terminology of Sec. 2.2.2, this implies
sufficiency of σ(ΘI) for X I. A notion of projection adapted to this notion
of multidimensional parametric models is given by the following definition.

Definition 30 (Projector on conditional probabilities). Let {ΩI|I ∈ E∗}
be a system of product spaces and X I : (Λ,A)→ (ΩI,BI) random variables
with image measures µI = X I(P). Let {CI|I ∈ E∗, CI ⊂ A} be a system of
σ-subalgebras, such that CI ⊂ CJ whenever I ⊂ J . Then the projector P∗J,I

on the conditional probabilities µI( . |CI) will be defined as

P∗J,Iµ
J(AI|CJ) := µJ(RJ,IA

I|CI) . (5.3.8)

For the parametric family case, the σ-subalgebras CI in the definition
can be read as CI = σ(ΘI). Since CI ⊂ CJ whenever the projector P∗J,I is
well-defined, the commutative structure shown above carries over to P∗J,I.

Remark 31 (Index and projector notation for parameter spaces). An ad-
ditional complication concerning the parameter variable is that, depending
on the chosen distribution model, the parameter for a given X I may have
a different number of dimensions than the observation. In the Gaussian
case, for example, the distribution is parameterized by a d-vector and a
d × d-matrix, such that the parameter space for X I should be indexed by
I ∪ I × I (neglecting the positive definiteness constraint on the matrix).
Such cases can be treated within the same framework: For conditioning,
parameter random variables ΘI will be substituted for by their respective
generated σ-algebras σ(ΘI), and the only requirement to be ensured is that
these σ-algebras are nested, in the sense that σ(ΘI) ⊂ σ(ΘJ) if I ⊂ J . The
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notation used here is heavy on indices as it is, and quickly turns awkward
for parameter spaces with complicated index sets. If, for example, the pa-
rameter space corresponding to ΩI

x is a product space (Ωθ)I∪I×I, a projector
would be of the form PJ∪J×J,I∪I×I. Since the product (Ωθ)I∪I×I is completely
determined by I, and to maintain some semblance of readability, we will in-
stead write ΩI

θ for the space and PJ,I for the projector. That is, we will use
the index I symbolically for parameters in such cases, indicating that ΩI

θ,
ΘI, µI

Θ, PJ,I and P∗J,I are the respective objects corresponding to X I and XJ.
For the observation variables X I, on the other hand, I will always denote
the actual set of axes.

Example 32 (Parametric family of Gaussian processes). Instead of an
individual Gaussian process measure as described in example 29, consider
a parametric family of Gaussian processes: XE once more takes values in
ΩE = RZ. Let ΘE be a random variable (Λ,A) → (ΩE

θ ,BE
θ ) assuming as

values pairs (m,Σ) ∈ RZ×RZ×Z, such that the restriction of µE
Θ := ΘE(P) to

RZ×Z concentrates on the subset of positive definite operators. In customary
terminology, m represents the mean function and Σ the covariance operator
of a given Gaussian process measure. A parametric family of Gaussian
processes is then defined as the conditional µE(XE|ΘE). Since Z is countable
and R Polish, RZ is Polish, and (ΩE = RZ,BE) is standard Borel, hence
the conditional distribution µE(XE|ΘE) is regular (that is, it has a regular
version).

Now consider the P∗E,I-projections of the parametric family. The σ-
subalgebras CI sufficient for each X I can be identified explicitly. Both RZ

and RZ×Z have a natural product structure. The marginal variables X I

follow Gaussian distributions, and for each finite I ⊂ Z, a Gaussian on
ΩI
x can be completely specified by a parameter value in RI × RI×I. We

therefore define the projector PE,I on parameter space, with notation over-
loaded in the sense of Rem. 31, as the projector RZ × RZ×Z → RI × RI×I.
The parameter variables of the marginals are then defined as ΘI := PE,IΘI,
and hence random variables (Λ,A) → (ΩI

θ,BI
θ). Then obviously, σ(ΘI) =

ΘI,−1(BI
θ) ⊂ ΘJ,−1(BJ

θ) = σ(ΘJ) for I ⊂ J . Therefore, the parametric model
P∗E,Iµ

E(XE|ΘE) is the |I|-dimensional Gaussian family on RI.

5.4 Construction Results

This section will make precise the results outlined in Sec. 5.2. We will first
discuss the projective limit extension of regular conditional probabilities,
and then apply these to Bayesian systems. The Bayesian limit systems can
generally be guaranteed to be regular if the dimension of the extension space
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is countable. In the particular case of closed-form conjugate posteriors, a
regular conditional projective limit can be guaranteed even for uncountable
dimensions.

Remark 33 (Implications of Pitman-Koopman theory). Before we turn to
construction results and their proof, we should point out an immediate but
important consequence of Pitman-Koopman theory (Sec. 2.2.4). The exis-
tence of sufficient statistics and conjugate priors is, at least for dominated
and reasonably smooth models, effectively equivalent: Sampling models ad-
mitting sufficient statistics are, by the Pitman-Koopman theorem, expo-
nential family models and admit a conjugate prior. Conversely, by La. 15,
conjugate models admit sufficient statistics – in fact, conjugate priors are
defined by means of sufficient statistics by several authors, including Raiffa
and Schlaifer (1961) and Bernardo and Smith (1994). It is straightforward to
show that all marginals of a conjugate infinite-dimensional Bayesian model
are conjugate. The latter is true whenever there is a well-defined notion of a
projector, and even the general topological assumptions of the Kolmogorov
extension theorem are not required. Consequently, when a stochastic pro-
cess Bayesian model is defined for exchangeable observations, existence of a
conjugate posterior is guaranteed in general only if the model is constructed
from marginals that are exponential families, or mixtures thereof. Though
such exponential families may be arbitrarily complicated, and may involve
combinations of different standard exponential families models (such as for
Pólya tree models), there is simply no way for a non-conjugate system of
marginals to extend to a conjugate projective limit. Conjugate process
models are essentially restricted to projective limits of exponential families.

5.4.1 Infinite extension of conditional probabilities

The extension of regular conditional probabilities is summarized by Prop. 36
below. To extend the conditional, we have to take a projective limit with
respect to both the sample variable and the parameter variable (or the σ-
algebra it generates). The following two lemmas each cover one of these
cases: We first consider the limit of a conditional distribution on a fixed
sample space, but conditional with respect to consecutively finer σ-algebras.
The second lemma keeps the σ-algebra representing the condition fixed, and
extends the sample variable. Both are then combined, yielding Prop. 36.

Lemma 34. Let E be an infinite set, X : (Λ,A) → (Ωx,Ax) be a random
variable and {CI|I ∈ E∗} a system of σ-subalgebras of A, such that CI ⊂ CJ
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whenever I ⊂ J . Define

CE := σ
( ⋃
I∈E∗

CI

)
. (5.4.1)

(1.) The conditional probability µ( . |CE) is uniquely determined, up to equiv-
alence, by the conditional probabilities µ( . |CI) for I ∈ E∗.
(2.) If (Ωx,Ax) is Borel, the collection uniquely defines a Markov ker-
nel Kµ. If X̃ is any random variable with the µ( . |CI) as versions of its
conditional probabilities for all I ∈ E∗, then Kµ is a regular conditional
probability for X̃.

Proof. (1.) Choose an arbitrary nested sequence I1 ⊂ I2 ⊂ . . . of finite
subsets of E. Then j 7→ CIj is a filtration. For all A ∈ Ax, define

µ(A|CI) = E
[
IX−1(A)|CI

]
=: ZI

A . (5.4.2)

Then by theorem 46, (ZIj , CIj ) forms a uniformly integrable martingale. By
theorem 47, there exists one and only one CE-measurable random variable
ZE
A such that ZI

A = E [ZE
A|CI] for all j ∈ N. Since CE ⊂ A, the condi-

tional probability µ(A|CE) exists for each A and is a.s.-unique. Moreover,
E
[
|IX−1(A)|

]
<∞ for any A, and therefore ZI

A = E [µ(A|CE)|CI] by the law
of total probability. Hence by uniqueness of ZE

A,

ZE
A = µ(A|CE) a.e. (5.4.3)

(2.) If (Ωx,Ax) is Borel, Ax is countably generated. Then so is CE ⊂ Ax,
by some countable system G. Choose a version µ( . |CE)(ω) for each ω and
define

P (A,ω) := µ( . |CE)(ω) for all A ∈ G . (5.4.4)

By lemma 45, the extension of P from G to CE is a Markov kernel on CE.
What remains to be shown is that it actually coincides with the conditional
probability defined by the limit process. But P (A,ω) is, by its definition in
(5.4.4), a version of µ(A|CE) for all A ∈ G, and so

∀C ∈ CE :
∫
C

P (A,ω)dP(ω) = P(C ∩ {X ∈ A}) . (5.4.5)

That is,
∫
C
P ( . , ω)dP(ω) and P(C ∩ {X ∈ . }) coincide on the generator,

which is an algebra, and are both finite measures (because P is Markov).
Then, by the uniqueness theorem for measures, both coincide on σ(G) = CE,
and the Markov kernel defined by extension of P to CE is a conditional
probability for X.
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Lemma 35. Let {µI|I ∈ E∗} be a projective family, with µE its projective
limit, and C ⊂ A a sub-σ-algebra. Let µI( . |C) be regular conditional prob-
abilities of the µI. Then if E is countable, there is a P-null set N such
that:

1. For all ω ∈ Λ \ N , the family of measures {µI( . |C)(ω)|I ∈ E∗} :=
Mω,C is projective.

2. Let ν be an arbitrary probability measure on (ΩE,BE). The Markov
kernel µE( . |C) defined by

µE( . |C)(ω) := proj limMω,C ω ∈M \N
µE( . |C)(ω) := ν ω ∈ N (5.4.6)

is a regular conditional probability of µE.

Proof. Let I ⊂ J ∈ E∗. Then for any BI ∈ BI, µJ(RJ,IB
I|C) is a version of

P{XJ ∈ RJ,IB
I|C} = P(XJ,−1(RJ,IB

I)|C) = P(X I,−1(BI)|C) = P{X I ∈ BI|C} ,
(5.4.7)

of which in turn µI(BI|C) is a version. Since BJ has a countable generator,
there exists an P-null set N IJ ⊂ Λ, such that:

∀ω ∈ Λ \N IJ : µJ(RJ,I . |C)(ω) = µI( . |C)(ω) . (5.4.8)

Let N∗ :=
⋃
I⊂J∈E∗ N

IJ. Since E is countable, so is E∗, and N∗ is a null
set. Hence for each ω ∈ Λ \N∗, the family Mω,C is projective.

Since E is countable, the product space ΩE is Polish, hence µE has regular
conditional probabilities µE( . |C), and these differ only on an P-null set NE.
Let N := N∗∪NE, for which again P(N) = 0. Since by construction, (5.4.7)
applies also to µE( . |C), the marginal measures of µE( . |C)(ω) are µI( . |C)(ω)
for all ω ∈ Λ \N .

To guarantee regularity of the limit conditional, La. 34 relies on a Borel
structure of the limit space, and La. 35 on countability of the index set
E. Countability of E again implies a Borel structure on the limit space
(since countable products of Polish spaces are Polish). If the Borel assump-
tion is dropped in the first lemma, we still obtain a conditional probability,
but it need not be regular. Since a simple, non-regular conditional may be
perfectly satisfactory for some problems, it is interesting to ask what hap-
pens if the countability is not demanded in La. 35. But the problem here
is the set N , because for any pair of subspaces I, J , there is a null set of
exceptions ω for which the conditional is not projective (the sets denoted
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N IJ in the proof above). If E is not countable, these may aggregate into a
non-null set – in principle, the union N∗ may be the entire space. In that
case, the limit conditional, which is only determined by the marginal on {N ,
is not determined anywhere. In short, the limit conditional is reasonably
well-specified by a martingale argument if the observation variable is fixed,
but generalizing beyond the countably-dimensional case seems to be diffi-
cult for conditional measures on finite-dimensional subspaces. At the very
least, the generalization would require more sophisticated methods than the
somewhat simplistic approach taken here. On the other hand, there is one
notable exception: If the sets of exceptions are empty, which they are for
standard parametric models defined in terms of parametric densities, a case
considered in Prop. 43 below.

Combining the two results above gives the following proposition, a rough
analogue of the extension theorem for the conditional case.

Proposition 36. Let E be a countable set, possibly infinite, and ΩE a prod-
uct space with Polish components Ω. Let {ΩI|I ∈ E∗} be the system of all
finite-dimensional subspaces. Let {CI|I ∈ E∗} be a system of σ-subalgebras
of A, satisfying CI ⊂ CJ whenever I ⊂ J . Let X I : (Λ,A) → (ΩI,BI) be
random variables with values on the subspaces. Assume that the regular
conditional probabilities µI(X I|CI) are projective in the sense

∀I ⊂ J ∈ E∗ : (P∗J,Iµ
J)(X I|CJ) = µI(X I|CI) . (5.4.9)

Then there exists a Markov kernel µE( . |CE)( . ) such that:

1. For all I ∈ E∗, and all AI ∈ BI:

P∗E,Iµ
E(AI|CE) = µI(AI|CI) P− a.e. (5.4.10)

2. There is a P-null set N such that µE( . |CE)( . )(ω) is unique for all
ω ∈ {N .

3. If X̃ is any random variable on (ΩE,BE) with (P∗E,Iµ̃
E)(AI|CE) = µI(AI|CI)

a.e., then µ( . |CE) is a regular conditional probability of X̃E.

For Bayesian models, the extension of parametric models is of particular
interest. That is, an infinite-dimensional space ΩE

x with finite-dimensional
subspaces ΩI

x is defined as above, and a parametric model µI(X I|ΘI) is de-
fined on each subspace. The parameter variable ΘI is assumed to take values
in some space ΩI

θ. This does not necessarily imply that the dimension of
a parameter θI, when regarded as a vectorial quantity, is the same as that
of the random variable X I. If, for example, the values xI are d-dimensional
vectors (with d = |I|), the corresponding parameter values θI may be d× d-
matrices, such as a Gaussian covariance parameter. θI may also be a tuple
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of quantities, e. g. a d-vector and d × d-matrix in the fully parameterized
Gaussian case. For these two examples, ΩI would be Rd, and suitable pa-
rameter spaces would be Rd×d in the former and Rd × Rd×d in the latter
case. Therefore, we need to make an important distinction between ΩI

x and
ΩI
θ: While the sample space ΩI

x is the product
∏
i∈I Ωx, the I-notation ΩI

θ

for the parameter space only indicates that it corresponds to ΩI
x, whereas

the actual index set may differ from I. The only general assumption we will
have to make is that ΩI

θ ⊂ ΩJ
θ whenever I ⊂ J , that is, higher-dimensional

observations have higher-dimensional parameters (in a non-strict sense).

Remark 37 (Extension of parametric families). To apply proposition 36
to the extension of a system {µI(X I|ΘI)} of parametric families, choose the
system such that the parameter variables are projective: We overload nota-
tion (cf. Rem. 31) and write PJ,I for the projector from ΩJ

θ to ΩI
θ. The index

sets I, J are symbolic in the sense explained above, but since the spaces have
product structure, the projector is well-defined for any I ⊂ J . Then the pa-
rameter variables are projective if PJ,IΘJ = ΘI. Now the σ-subalgebras CI in
the proposition are defined as those generated by the parameters variables,
CI := σ(ΘI). These σ-algebras are nested as required by the propositions,
since if I ⊂ J and BI ∈ BI

θ, then σ(ΘI) = ΘI,−1(BI) = ΘJ,−1(RJ,IB
I). As

projective random variables on Polish product spaces, the parameters have
an infinite-dimensional projective limit ΘE by Kolmogorov’s extension the-
orem. The σ-algebra generated by this limit variable has to coincide with
the limit CE defined in 5.4.1 for the proposition to be applicable. This is
indeed the case. The generated σ-algebra is σ(ΘE) = ΘE,−1(BE), where BE

is the product σ-algebra on ΩE. Since BE is generated by the cylinder sets,
and therefore:

ΘE,−1(BE) = ΘE,−1
(
σ
( ⋃
I∈E∗

RE,IBI
))

= σ
( ⋃
I∈E∗

ΘE,−1(RE,IBI)
)

= σ
( ⋃
I∈E∗

ΘI,−1(BI)
)

= σ
( ⋃
I∈E∗

CI
)

= CE
(5.4.11)

Then proposition 36 states that the family {µI(X I|ΘI)|I ∈ E∗} uniquely
(up to an P-null set) defines a regular conditional probability µE( . |ΘE) on
ΩE
x such that for any ω ∈ Λ, the P∗E,I-marginals of µE( . |ΘE) are µI( . |ΘI).

5.4.2 Bayesian Extension and Sufficiency

The results above immediately apply to some aspects of Bayesian models,
as summarized by the following two corollaries. If we can define unique
limits (up to equivalence) of conditional probabilities, then we can define
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limits of complete Bayesian equations, which are conjugate if and only
if the finite-dimensional systems used in the definition are conjugate. In
the countably-dimensional case, sufficient statistics of the finite-dimensional
projective families determine a sufficient statistic of the infinite-dimensional
limit. If the finite-dimensional marginal components are conjugate expo-
nential families, we can in fact guarantee a regular Bayesian equation with
infinite-dimensional sufficient statistic and conjugate posterior, even if the
dimension is uncountable.

One consequence in the countable case is that the projective limits of
marginals that satisfy a Bayesian equation on each finite-dimensional sub-
space again satisfy a Bayesian equation.

Corollary 38 (Projective limits of Bayesian equations). Let E be count-
able. Let {µI(X I|ΘI)|I ∈ E∗} be a family of finite-dimensional (regular con-
ditional) parametric models, each with a prior µI

Θ(Θ). Denote by µI(ΘI|X I)
the corresponding posteriors, each assumed to be regular. If (1) the fam-
ily {µI

Θ(Θ)|I ∈ E∗} is projective and if (2) either {µI(X I|ΘI)|I ∈ E∗} or
{µI(ΘI|X I)|I ∈ E∗} is projective with respect to P∗J,I, then there is a uniquely
defined Bayesian model on ΩE

x, ΩE

θ, with the given finite-dimensional models
as its marginals.

That is, the prior-posterior relation is preserved under the projective
limit. The same is true for conjugacy.

Corollary 39 (Conjugate projective limits). Consider a family {µI(X I|ΘI)|I ∈
E∗} of parametric models as in Cor. 38. Assume that for each, a family of
priors N I = {µI

Θ,y|y ∈ Y I} is given. Then if the finite-dimensional Bayesian
systems are conjugate for each I ∈ E∗, the family infinite-dimensional ex-
tensions is conjugate, with respect to the family N E defined as follows: N E

is the set of all measures µE

Θ such that:

∀I ∈ E∗∃yI ∈ Y I : µE

Θ = proj lim{µI

Θ,yI |I ∈ E∗} . (5.4.12)

Proposition 40 (Extension of sufficient statistics). Let XE be a random
variable with values in a product ΩE

x of Polish spaces, with σ-algebra B(ΩE
x).

Let µE(XE|ΘE) be a parametric model for XE, and N E = {µE

Θ,y|y ∈ Y} a
family of priors, indexed by some non-empty set Y. Let further ΩE

s be a
product space and {sI : (ΩI

x,BI
x) → (ΩI

s,BI
s)} a family of measurable maps.

Finally, let µI(X I|ΘI) := P∗E,Iµ
E(XE|ΘE) be the marginals of the parametric

model. Assume that:

1. E is countable.
2. For each I, sI is sufficient for ΘI with respect to the marginal µI(X I|ΘI).
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Then any measurable map sE : ΩE
x → ΩE

s satisfying

∀I ∈ E∗, AI ∈ BI

θ : sE,−1(RE,IA
I) = RE,Is

I,−1(AI) (5.4.13)

is sufficient for ΘE.

Proof. The posteriors of ΘE under observation of XE are µE
Θ,y(ΘE|σ(XE)),

and their marginals for finite I are µI
Θ,y(ΘI|σ(X I)), respectively. Sufficiency

of sI is equivalent to

µI
Θ,y(ΘI|σ(X I)) = µI

Θ,y(ΘI|σ(X I ◦ sI)) a.s. (5.4.14)

Proposition 36 specifies the projective limits of both sides of the equation.
For the left-hand side, the limit is

µE
Θ,y

(
ΘE
∣∣∣σ( ⋃

I∈E∗
σ(X I)

))
= µE

Θ,y(ΘE|σ(XE,−1(ZE
x ))) = µE

Θ,y(ΘE|σ(XE)) ,

(5.4.15)
which is just the posterior for ΘE. The limit of the right-hand side is

µE
Θ,y

(
ΘE
∣∣∣σ( ⋃

I∈E∗
σ(X I ◦ sI)

))
. (5.4.16)

Both must be identical a. e. by uniqueness, so sE will indeed determine the
posterior (and hence be sufficient), provided that σ

(⋃
I∈E∗ σ(X I ◦ sI)

)
=

σ(XE ◦ sE). But the latter is true, because

σ(XE ◦ sE) = XE,−1(sE,−1(BE
s )) = XE,−1

(
sE,−1

(
σ
( ⋃
I∈E∗

RE,IBI
s

)))
= σ

( ⋃
I∈E∗

XE,−1
(
RE,Is

I,−1(BI
s)
))

= σ
( ⋃
I∈E∗

X I,−1(sI,−1(BI
s))
)

= σ
( ⋃
I∈E∗

σ(X I ◦ sI)
)
.

(5.4.17)

Remark 41 (Sufficient condition for sE). A sufficient condition for the
Bayesian sufficiency of the map sE is given by Eq. (5.4.13). An alterna-
tive sufficient condition, which is less general, but easier to verify for most
functions, is the following:

∀I ∈ E∗, xE ∈ ΩE
x : PE,Is

E(xE) = sI(PE,Ix
E) . (5.4.18)
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Any mapping sE satisfying this condition also satisfies (5.4.13): For any
θI ∈ ΩI

θ,

RE,Is
I,−1(θI) = RE,I{xI|sI(xI) = θI} = {xE|PE,Ix

E = xI ∧ sI(xI) = θI}
= {xE|sI(PE,Ix

E) = θI} = {xE|PE,Is
E(xE) = θI}

= {xE|sE(xE) = θE ∧ PE,I(θE) = θI} = sE,−1
(
{θE|PE,I(θE) = θI}

)
= sE,−1(RE,I{θI}) .

(5.4.19)

This reasoning extends immediately from points θI to sets AI. Note that
Eq. (5.4.18), which expresses a relation between the infinite-dimensional
and finite-dimensional case, implies an analogous relation between pairs of
finite-dimensional sufficient statistics.

∀I ⊂ J ∈ E∗, xJ ∈ ΩJ
x : PJ,Is

J(xJ) = sI(PJ,Ix
J) . (5.4.20)

If such an sE exists, it is unique, since for any xE, the image sE(xE) is
determined pointwise by (sE(xE))i = s{i}({i}).

Remark 42 (Generalization of Proposition 40). Proposition 40 assumes
a Borel product structure on the range of the sufficient statistics sI. This
assumption mainly serves to simplify the statement of the result (rather
than the proof), and is straightforward to generalize. As a look at the
proof shows, actual projectiveness of the form XJ,−1(RJ,IA

I) = X I,−1(AI) is
required only for the observation variables X I. For the sufficient statistic,
the condition can be relaxed by assuming that all sI map into some common
space Ωs, requiring only that σ(sI) ⊂ σ(sJ) whenever I ⊂ J . We then need
some operation R̃J,I to substitute for the preimage operation RJ,I. The
operation must be “dual” to RJ,I with respect to the mappings sI in the
following sense: R̃J,I is a mapping Ωs → Ωs, and for all I ⊂ J ,

sJ(R̃J,IA
I) = RJ,Is

I(AI) . (5.4.21)

Additionally, the σ-algebras in the range of the statistics sI, assumed to
be product Borel algebras BI

s in the statement of the proposition above,
can be substituted by any other σ-algebras CI

s, which have to satisfy only
one requirement: For I ⊂ J , the “dual” preimages of sets in CI

s must be
contained in CI

s. Presumably, most such generalizations will result in a
projective Polish structure on Ωθ one way or the other, but they generalize
the result for example to the case of parameter spaces that have a different
dimension then the observation space, such as the Gaussian vector-matrix
examples discussed in the previous section. It is also interesting to note
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that the topological requirement of Polish product structures, essential to
the Kolmogorov construction, is not actually required on the range of the
sufficient statistics.

Finally, for the arguably most interesting case of marginals (the expo-
nential family case), a regular Bayesian limit system is available even in the
uncountably-dimensional case.

µE(ΘE|XE, Y E) sE←−−−−−
xE

1 ,...,x
E
n

µE
Θ(ΘE|Y E)

PE,I

y
xlim←− lim←−

x
yPE,I

µI(ΘI|X I, Y I) sI←−−−−−
xI

1,...,x
I
n

µI
Θ(ΘI|Y I)

Common density models, includ-
ing in particular all exponential
family models, define a measure
for each parameter in their pa-
rameter set, rather than for al-
most all parameters. There are
no non-empty null sets of ex-
ceptions which may aggregate
into non-null sets in the limit of uncountable dimensions. However, this
observation extends from prior and likelihood to the posterior only if the
posterior has a closed-form density, which is just the case for conjugate ex-
ponential models. In this case, the relation between projective limit models
and finite-dimensional marginals is one-to-one, and the diagram above is
fully commutative.

Proposition 43 (Projective limits of exponential family Bayesian models).
Let E be an index set, possibly uncountable, and Ωx, Ωθ and Ωy Polish spaces
with Borel algebras. T I ⊂ ΩI

θ and Y I ⊂ ΩI
y be measurable, open and convex

for each I, and projective in the sense PJ,IT J = T I and PJ,IYJ = Y I. Let
{F I(xI|θI)|I ∈ E∗, θI ∈ T I) be a collection (over all I) of exponential family
models, and {GI(θI|λ, yI)|I ∈ E∗, yI ∈ Y I} a collection of priors naturally
conjugate to the F I. Let µI(X I|ΘI = θI) and µI

Θ(ΘI|Y I = (λ, yI) be the
measures defined by densities F I and GI with respect to suitable carriers.
Define T E as

⋂
I∈E∗ RE,IT I, and YE accordingly. If, for each a ∈ R+, each

θE ∈ T E and each yE ∈ YE, the respective families {µI(X I|ΘI = θI)|I ∈ E∗}
and {µI

Θ(ΘI|Y I = (λ, yI)|I ∈ E∗} are projective, then:

1. The collections uniquely define a Bayesian model on the product spaces
ΩEx , ΩE

θ.

2. The parameter set of the sampling distribution µE(XE|ΘE) is T E.

3. For each yE in YE, the prior µE(T E|Y E = (λ, yE)) = 1.

4. If there exists a measurable function sE such that PE,Is
E(xE) = sI(PE,Ix

E)
for all xE ∈ ΩE

x, the posterior given yE under observations xE
1, . . . , x

E
n
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is

µΘ(ΘE|X1 = x1, . . . , Xn = xn) = µΘ

(
ΘE

∣∣∣Y E =
(
λ+n, y+

n∑
i=1

sE(xE

i )
))

(5.4.22)
5. The prior, sampling model and posterior of the limit model are regular

conditional probabilities.

Proof. (1) follows for prior and likelihood from the projectiveness of the
respective families. (See below for the posterior.)
(2) and (3): From the definition of T E and YE follows that these sets param-
eterize those and only those measures with marginals parmaterized by T I

and Y I. Note that both T E and YE are convex, since the cylinders of con-
vex sets are convex. If T ⊂ ΩE

θ is any measurable set, then for all I ∈ E∗,
µI

Θ(PE,IT |Y I = (λ, yI)) 6= 0 only if (PE,IT ) ∩ T I 6= ∅, and so µE
Θ(T |Y E =

(λ, yE)) 6= 0 only if T ∩ T E 6= ∅. Therefore, µE
Θ(T E|Y E = (λ, yE)) = 1.

(4) For any admissible posterior of the limit system, its marginals must co-
incide with the posteriors of the marginal systems. The latter are uniquely
determined by conjugacy, through the parameter update (λ, y) 7→ (λ +
n, y +

∑
s(xi)). Since the posterior is a measure for each parameter, and

the posterior family is projective due to projectiveness of priors and suffi-
cient statistics, Kolmogorov’s theorem is applicable, and yields a uniquely
defined measure for each set xE

1 , . . . , x
E
n of observations and each hyperpa-

rameter (λ, yE).
(5) The unique determination of all component measures of the limit sys-
tem for any value of the parameter by the extension theorem implies that
all conditional limits are regular.

The results comes with a caveat often neglected in the nonparametric
Bayesian literature. The domain of the constructed measure µE is the prod-
uct σ-algebra BE. As discussed in Rem. 24, if E is not countable, BE does
not contain singletons. Sample observations are singletons, and the con-
cept of a Bayesian system which cannot measure singletons is somewhat
questionable.

5.5 Examples

5.5.1 Dirichlet Process on Q
The first example is, for the sake of familiarity, a Dirichlet process model.
However, to keep as many as possible of the results discussed above applica-
ble, we consider the countably-infinite case of a Dirichlet process generating
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random measures on the set Q of rational numbers. 1 The first construction
step is the choice of suitable sets for Ωx, Ωθ and the index set E. The DP will
generate random probability measures. If P is such a random measure, then
Ωθ will serve as its range, and E its domain. (The range is Ωθ rather than
Ωx, because the DP represents the prior component of the Bayesian model).
Choose Ωx = Ωθ = [0, 1], which is Polish, and Bx = Bθ = B([0, 1]). The
finite-dimensional marginals of the infinite-dimensional prior are Dirichlet
distributions µI

Θ, with densities of the form

GI(θI|λ, yI) =
1

ZG(θI)
exp
(∑
i

(λyI
i − 1) log(θI

i)
)
. (5.5.1)

The index i runs over |I| different elements, but the index set I is more
complicated than just the set of numbers up to |I|. Each of the Dirichlet
distributions can be interpreted as follows: Assume that Q has been subdi-
vided into a finite number of non-overlapping (measurable) sets, Qi. In the
parlance of histogram methods, the sets Qi form a binning of Q. Then I is
the set of all Qi, and a draw from GI generates a finite probability distri-
bution θI, which assigns to each set Qi a probability θI

i. Apparently, for a
given size of I, there will be one set I for each possible partition of Q into
|I| disjoint sets. Since Q is countable, the union of all such I is the set of all
countable subsets of Q (including Q itself and the empty set). This union
is precisely the Borel σ-algebra on Q. Consider Q as a topological space
with Borel algebra: Since Q is Hausdorff, B(Q) is generated by the compact
subsets, which are just the finite sets in Q. The σ-algebra generated by
the finite sets of rationals contains sets generated by countable unions, and
hence are countable, as well as their complements. Therefore, B(Q) is the
power set P(Q). This implies that E should be chosen as B(Q). By restrict-
ing E∗ from the usual set of finite subsets of E to those finite collections
which form disjoint partitions, we have – in analogy to the construction of
Ferguson (1973) on the real line – adapted the index sets to the definition
of the Dirichlet distribution as a distribution on a partition. (Formally, the
restriction can be justified by noting that the corresponding cylinder sets of
the partitions still generate B(Q) = E.) The sampling distributions conju-
gate to GI are multinomial measures (one observation). The random values
drawn from the multinomial are vectors xI of |I| entries, with exactly one

1The construction on the rationals can, in fact, substitute for the construction on the
real line, because the set of cumulative distribution functions on R admits a bijective and
bimeasurable mapping to its own restriction to Q (see e. g. Ghosh and Ramamoorthi,
2002).
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non-zero entry of value 1. The densities are

F I(xI|θI) ∝ exp
(∑

i

xI
i log(θI

i)
)
. (5.5.2)

The sufficient statistic sI is the identity on ΩI. Since F I and GI are naturally
conjugate exponential family models for each I, the posterior under an
observation xI is of the form GI(θI|λ + 1, y + xI). It is straightforward to
verify that the family µI of priors is projective if and only if λI = λJ and
PJ,Iy

J = yI for all I ⊂ J . Since sI is an identity mapping and the posterior
is conjugate, the family of posteriors is projective if and only if the priors
are projective. Proposition 36 then guarantees the existence of an infinite-
dimensional Bayesian equation, with its prior the projective limit of the
priors, a Dirichlet process. The limit system is conjugate by Cor. 39, and
since sE := IdΩE

x
is measurable and satisfies (5.4.13), it is a sufficient statistic

for the infinite-dimensional system. The posterior of the limit system under
observation an xE is therefore obtained by substituting (λ+ 1, yE + xE) for
(λ, y) in the prior, which is precisely the analogue of the DP posterior as
established by Ferguson (1973).

5.5.2 Exponential Family Product Models

Assume that on the system of finite-dimensional subspaces ΩI of ΩE, expo-
nential family parametric models are defined as in Def. 9. Let hI be the
identity mapping for each I ∈ E∗, and assume the sufficient statistics are of
the form sI : ΩI

x → T I ⊂ ΩI
θ, where the parameter sets T I are convex, open,

and consistent with projection, T I = PJ,IT J for any I ⊂ J . With respect to
the general discussion of sufficient statistics in Sec. 5.4.2 above, the ranges
ΩI
s of the sufficient statistics are chosen as the respective parameter spaces.

We will consider here only the case where spaces are real, with standard
inner product on ΩI

t, and the carrier measure is Lebesgue, denoted on both
sample and parameter space by λI for I finite. The parametric models
µI(X I|ΘI) for the sampling distributions are specified by the densities

F I(xI|θI) =
1

ZI
F (θI)

exp(〈sI(xI)|θI〉) , (5.5.3)

with ZI
F (θI) =

∫
exp(〈sI(xI)|θI〉)dλI(xI). The generic conjugate priors with

hyperparameters λ ∈ R+, yI ∈ ΩI
y are given by

GI(θI|λ, yI) =
1

ZI
G(λ, yI)

exp(〈θI|yI〉 − λ log(ZI
F (θI))) , (5.5.4)
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with partition function ZI
G(λ, yI) =

∫
exp(〈θI|yI〉 − λ log(ZI

F (θI)))dθI. The
hyperparameter space is ΩI

y = R+ × (Ωy)I. The posterior index, i. e. the
mapping from prior to posterior parameters given the samples, is given
according to (2.3.20) by

(
(λ, yI), xI

1, . . . , x
I
n

)
7→
(
λ+ n, yI +

n∑
i=1

sI(xI
i)
)
. (5.5.5)

Whether the prior family is projective depends on the choice of the sufficient
statistic, which enters the definition of the priors through ZF . A result
of some generality can be achieved by assuming decomposability of the
sufficient statistic over subspaces. That is, for any I ⊂ J ,

〈sJ(xJ)|θJ〉ΩJ
θ

= 〈sI(xI)|θI〉ΩI
θ

+ 〈sJ\I(xJ\I)|θJ\I〉
Ω

J\I
θ

. (5.5.6)

If this is the case, the partition function ZI
F is factorial over component

spaces, ZJ
F (θJ) = ZI

F (PJ,Iθ
J)ZJ\I

F (PJ\Iθ
J). Consequently, both F I and GI are

factorial over subspaces. The measures µI
Θ and µI( . |ΘI = θI) are trivially

projective, since e. g. µJ(RJ,IX
I|ΘJ = θJ) is given by∫

RJ,IXI
F (xJ|θJ)dxJ =

∫
XI
F (xI|θI)dxI

∫
ΩJ\I

F (xJ\I|θJ\I)dxJ\I . (5.5.7)

The factorial structure results in independent increment process in the pro-
jective limit. A simple example of a sufficient statistic that violates (5.5.6)
is the quadratic statistic s(x) = (x, xx′) of the Gaussian. The only Gaussian
processes representable in this form are Brownian motions, with or without
drift.

If E is chosen countable, then by Prop. 36, an infinite-dimensional regu-
lar Bayesian model is uniquely defined on the limit space ΩE

x, and conjugate
by Cor. 39. Any measurable mapping sE : ΩE → ΩE

θ satisfying (5.4.13)
constitutes a sufficient statistic for the posterior of ΘE, and the posterior
under observations xE

1 , . . . , x
E
n is

µE
(
ΘE|Y E = (λ+ n, y +

∑
i

sE(xE
i ))
)
. (5.5.8)

5.5.3 Nonparametric Bayesian Mallows Model

1Meilă and Bao (2008) have suggested the extension of a Mallows rank model to
a distribution on infinite permutations by means of a limit argument. Their model is
essentially equivalent to the likelihood component µX|Θ in the example presented here.
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The previous examples described well-known standard models. To consider
a non-standard model constructed by extension of an exponential family,
we again take up the Fligner-Verducci model for permutations, which was
used in Sec. 3.1 to cluster rank data. For fixed dimension (number of items)
r, permutations in the symmetric group S(r) represent preference rankings
of either exactly r objects, or for partial observations, a subset out of r
objects. A nonparametric Bayesian model on infinite rankings is capable
of representing the task to rank a person’s favorite objects out of an un-
specified number, finite or infinite. The way in which the Fligner-Verducci
distribution models partial observations (cf. Sec. 3.1) ties in beautifully with
the nonparametric Bayesian idea of adaptive model complexity.2

In particular, this example is intended to illustrate an alternative ap-
proach to the use of a sufficient statistic s, which is used here as a “prepro-
cessing step” that maps observations into Ωx. The random variable X is
regarded as the image of a random observation under s. The approach can
significantly simplify the formulation of the problem when the actual ob-
servation domain does not fit the structure of a metrizable space. Consider
what it would take to rigorously formulate a projective limit construction
directly on permutation-valued random variables. The group does not fit
the extensions theorem’s condition of a Polish topological space. We would
have to identify a suitable surrogate topology and rederive the extension
theorem for the group case. Moreover, for any non-standard type of ran-
dom variable we may consider, we would have prove another version of the
extension theorem. By choosing a suitable sufficient statistic that maps into
a Polish space, the problem is reduced to existing results.

The Sufficient Statistic and its Properties

Again consider an infinite index set E, which will here be assumed to be
countable and totally ordered. E∗ denotes the set of finite subsets of E.
Intuitively, the elements of E index items, and each I ∈ E∗ corresponds to
a finite subset of items. We shall write SI for the permutation group of the
set I. For all I of size r ∈ N, the groups SI are isomorphic to the standard
symmetric group S(r), but we have to distinguish between different items
if I1 6= I2, even if the sets are of the same size. In particular, S(r) = SI for

2Incidentally, there is a much deeper connection between models used in Bayesian
nonparametrics and the infinite symmetric group, apart from the construction described
here and the obvious connection by infinite exchangeability: The representation theory
of the infinite symmetric group has been studied thoroughly in a series of works by S. V.
Kerov and A. M. Vershik. A class of measures arising naturally from the characters of
the representations considered by Olshanski (2003) and Kerov et al. (2004) turn out to
Poisson-Dirichlet processes.
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I = {1, . . . , r}. For any permutation π ∈ Sr, define a statistic

sj(π) :=
r∑

l=j+1

I{π−1(j) > π−1(l)} , (5.5.9)

where π−1 denotes the inverse of π in S(r) and I the indicator function of
a set. When the statistics above are evaluated on an element π ∈ S(r), the
r components can be collected in a vector, which will be denoted sr(π) :=
(s1(π), . . . , sr(π)). (The last component is always trivial, but its inclusion
simplifies notation.) Then the mapping sr : Sr → sr(S(r)) ⊂ Rr is one-to-
one (Fligner and Verducci, 1986). For I ∈ E∗, let sI be the function induced
by sr. which takes SI into RI. The function is evaluated by mapping SI

isomorphically to S(r), and evaluating (5.5.9). More explicitly, consider a
finite subset I. The order relation on E induces a unique reindexing of the
elements, by assigning indices 1, . . . , |I| such that the order of elements is
preserved (e. g. for I = {i1, i2, i5, i7}, relabel the last two elements as i5 → i3
and i7 → i4). The same is done for the rank positions. Each ranking πI ∈ SI

then translates into a uniquely defined element of πr ∈ S(r). If the subspace
RI is identified with Rr, then sI(πI) = sr(πr).

Now consider the effect of projection. Let I, J ∈ E∗ with I ⊂ J . Choose
a permutation πJ ∈ SJ, and let xJ := sJ(πJ). The projection xI = PJ,Ix

J has
two useful properties. First, let x̃J = sJ(π̃J) be another element of sJ(SJ).
Then its projection coincides with that of xJ if and only if π̃J is identical
to πJ on all positions j ∈ I. If the restriction of πJ to the positions indexed
by the subset I is denoted πJ|I, the set of such π̃J is just the right coset of
πJ|I in SJ, denoted CJ(πJ|I). The set is the analogue of the consistent set
C(π) discussed in Sec. 3.1.2. Then for any x̃J = sJ(π̃J), we have PJ,Ix̃

J = xI

if and only if x̃J ∈ CJ(πJ|I). Assume that X I is a subset of the embedding
space RI that contains a single image xI = sI(πI) of a permutation. Then
sJ(SJ) ∩RJ,IX

I = sJ(CJ(πI)). That is, the preimage of X I under projection
in the metric embedding space contains the images under sJ of those and
only those permutations of J that are consistent with πI.

The sufficient statistic mapping of the groups SI into the spaces RI thus
results in a consistent projective structure, a fact perhaps not quite obvious
initially for the embedding into metric product space of a decidedly non-
geometric structure (a non-commutative finite group). Intuitively, this is
due to the fact that the embedding aligns preimages under projection with
right cosets of partial permutations. For I ⊂ J fixed, the right cosets
of all restrictions πJ|I form a partition of the group SJ (they are pairwise
disjoint and their union is the whole group). This behavior is consistent with
preimages under projection in metric product space: The preimages RJ,Ix

I
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of points in RI are pairwise disjoint for different points, and their union is
just the space RJ. Consistency is ensured by the properties of sJ, which is
defined such that (i) it is one-to-one (disjoint sets do not get mixed) and
(ii) different positions in the permutations correspond to orthogonal axes in
product space.

Finite-Dimensional Bayesian Model

For a suitably chosen parameter space ΩI
θ, the sufficient statistic sI induces

a conjugate Bayesian model, by choosing the canonical exponential fam-
ily model for sI and the induced conjugate prior. The parameter spaces
considered here will be the sets ΩI

θ(ε), defined for any given ε > 0 as
ΩI
θ(ε) := {θI ∈ RI|∀j ∈ I : θj > ε}. This is just the positive orthant,

constantly bounded away from all axes, and hence open and convex. By
choosing the positive orthant, the resulting exponential family model is the
Fligner-Verducci distribution (Fligner and Verducci, 1986). The likelihood
component is the exponential family distribution

F I(πI|σI, θI) :=
1

ZI(θ)
exp
(〈
sI(πI(σI)−1)|θI

〉
Rr−1

)
, (5.5.10)

with partition function ZI(θI) =
∏r−1
j=1(1 + (r − j) exp(−θI

j)). For a discus-
sion of the model’s properties and a derivation of the partition function, cf
Fligner and Verducci (1986). It will be convenient to rewrite the probability
mass function above as a density w. r. t. Lebesgue measure on RI,

F̃ (xI|θI) =
1
Z̃F

exp (−〈xI|θI〉) δsI(SI)(xI) . (5.5.11)

The generic conjugate prior on t with hyperparameters λ ∈ R+, y ∈ Rr−1

is given by the densities

GI(θI|λ,yI) ∝ exp
(
〈θI|yI〉Rr−1 − λ logZI(θI)

)
. (5.5.12)

Formally, the model components as defined in Sec. 5.3 are Ωx = Ωθ =
Ωy = R, with Borel algebras Bx, Bθ and By, and the prior measures µI

Θ

have densities GI w. r. t. Lebesgue measure on ΩI
θ. Since the model is

a canonical exponential family model, the hyperparameter space for given
I ∈ E∗ is R×RI, where the first axis accommodates the prior dispersion λ.
The posterior index sI under observations πI

1, . . . , π
I
n is generated pointwise

by the mapping

((λ,y), sI(πI
1), . . . , sI(πI

n)) 7→ (λ+ n,y +
n∑
i=1

sI(πI
i)) . (5.5.13)
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Infinite-Dimensional Extension

As the discussion of the sufficient statistic above shows, sI satisfies (5.5.6),
and therefore is projective. The independent increment property of result-
ing limit process corresponds to a well-known mutual independence property
of the component statistics sI

j (Fligner and Verducci, 1986). The infinite
extension is constructed on the infinite replication of the embedding space
Ωx = R. Since the lower bound ε of the parameter vectors is chosen uni-
formly over all I ∈ E∗ and constitutes a point-wise property, it carries over
to the infinite limit. Since the model on ΩI

x corresponds to permutations
of the elements of I, the infinite extension model defines a Bayesian model
for permutations of the infinite index set E, that is, on the set S̄(E) of all
bijections of the set E. The parameters estimated by the Bayesian model
are weight functions θ : E → R>ε. The nonparametric Bayesian character
of the model is its way to cope with partial observations, that is, only a
finite number of positions of the permutation is observed (such as a partial
ranking of an infinite number of objects). In this case, estimates for the
remaining positions are filled in by prior assumption.

5.6 Discussion

The questions considered here are motivated by interest in machine learning,
rather than statistics. Bayesian nonparametric statistics has concentrated
its efforts on the definition of measures on the set of probability measures,
motivated in particular by the search for universal priors. In contrast, the
definition of models on different domains has attracted interest in machine
learning and cognitive science.

Modeling

The picture that emerges shows that despite the subtleties of infinite-dimen-
sional spaces, and despite the many well-studied properties of stochastic
processes which set them apart from ordinary multivariate distributions,
a number of fundamental model properties carry over from the paramet-
ric to the nonparametric case. Models that are analytically tractable in a
conjugate sense arise only from marginal Bayesian systems which are them-
selves conjugate, and hence essentially from exponential families. If there
is a statistic sE in the infinite-dimensional case that extends the finite-
dimensional sufficient statistics in the sense of (5.4.13), then it is sufficient
for the extended posterior. The structure of the limit posterior is then
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Marginals (d-dim) Projective limit Observations (limit)
Bernoulli/Beta IBP/Beta process Binary arrays

Multin./Dirichlet CRP/DP Discrete distributions
Gaussian/Gaussian GP/GP (continuous) functions
Mallows/conjugate Example Sec. 5.5.3 Bijections N→ N

analogous to parametric posteriors in conjugate exponential families,

µΘ(ΘE|X1 = x1, . . . , Xn = xn) = µΘ

(
ΘE
∣∣∣Y E =

(
λ+ n, y +

n∑
i=1

sE(xE
i )
))

(5.6.1)
The construction of such models is, to a certain degree, generic. To con-
struct a distribution on an infinite-dimensional object, start by consider its
finite-dimensional restrictions or counterparts. That may be a vector (for
functions), a matrix (for linear operators), a finite graph (for an infinite
one) etc. Then, proceed as follows:

1. Choose either an available multivariate exponential family model, or
define one by choosing a set of sufficient statistics which measure what-
ever properties are of interest.

2. Choose a natural conjugate prior.
3. Consider the resulting Bayesian systems on arbitrary finite dimen-

sions. Check that these systems are projective. It is sufficient to
check that the prior and either the sampling distribution or the pos-
terior distribution are projective.

4. If the finite-dimensional systems are projective, their sufficient statis-
tics will have the same functional form on arbitrary dimensions. Define
a mapping sE of analogous functional form on the infinite-dimensional
sample space, and verify that it extends the sufficient statistics (i. e.
that it satisfies either (5.4.13) or (5.4.18)).

Then there is a infinite-dimensional Bayesian limit system, defined uniquely
(up to equivalence). If the mapping sE extending the sufficient statistics can
be identified, it is Bayesian sufficient for the limit system, and specifies the
posterior when prior and data are given.

Model Taxonomy

The results above map out a taxonomy of Bayesian nonparametric models
that closely resembles the familiar landscape of models in the parametric
case. Three types of models are distinguished:
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Type I: Extensions of systems with conjugate priors.
This is the case discussed above in much detail. Some examples are given
in Tab. 5.6.
Type II: Extensions of systems with mixtures of conjugate priors.
If the prior is a finite mixture of conjugate priors, the posterior is the corre-
sponding mixture (with identical weights) of the individual conjugate pos-
teriors. In this case, the results above can be applied individually to each
mixture component. Mixtures of conjugate priors in the finite-dimensional
parametric case have been studied by Dalal and Hall (1983). Continuous
mixtures will probably require further study. Results should remain appli-
cable if the dimension of the mixing variable (the variable Z in the notation
of Ch. 2) is independent of the dimension of observations and model param-
eters. For example, if the covariance matrices Σ of a projective family of
Gaussians are scaled by some τ ∈ R+, then τ can be used as a mixing vari-
able. This variable is independent of the dimension of the Gaussian model.
Mixing any of the resulting finite-dimensional Gaussian models against a
gamma distribution on τ produces a Student t-model (cf Example 26). If
the same gamma distribution is used on all models of the family, the exten-
sion model is a continuous mixture of Gaussian processes, one for each value
of τ , against the same gamma distribution. Such a mixture of Gaussian pro-
cesses has been introduced as a Student t-process by O’Hagan (1991).
Type III: Non-conjugate priors.
In the finite-dimensional case, non-conjugate posteriors usually require ei-
ther analytic approximations or numerical methods. One (speculative) ap-
proach to non-conjugate posteriors in nonparametric Bayesian models may
be the extension of approximate posteriors. That is, to define a family of
Bayesian systems on finite-dimensional subspaces, each with approximate
posteriors, such that both the priors and the posterior approximations are
projective. Then the system can in principle be extended in much the same
way as a conjugate one. In particular, if a closed-form mapping from the
data to the parameters of the approximating posterior distribution is avail-
able, this could be regarded as a sufficient statistic. However, it should be
pointed out that, in contrast to sufficiency and conjugacy, approximation
quality of distributions is not a property that can be expected to carry over
to the infinite-dimensional case without further provisions.

Caveats

Not all important model properties are directly extendable. Not
all important properties of the finite-dimensional models are preserved un-
der extension, even though conjugacy and sufficiency are. This concerns in
particular two types of properties: Analytic properties of random functions
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drawn from the limit model, such as smoothness, and convergence proper-
ties of the probability models, including consistency. Posterior consistency
is a particular issue: The Dirichlet process can produce inconsistent esti-
mates, regardless of the fact that its finite-dimensional marginals are con-
sistent (Diaconis and Freedman, 1986). The properties studied above do
not directly relate to the problem of consistency in Bayesian nonparametric
models – consistency is a property of the posterior defined by the model,
whereas sufficiency and conjugacy concern the computation of this poste-
rior, regardless of its properties. Analytic properties concern cases in which
the infinite-dimensional object can be interpreted as a function on a contin-
uous domain (as in the Gaussian process case). Construction by means of
the extension theorem defines the random function in a point-wise manner
(each marginal specifies the function’s restriction to finite subset of points).
Analytic properties such as continuity or smoothness, which involve the
notion of an open neighborhood, are not expressible in this manner.

Uncountable index sets. If the index set E is uncountable, the extended
measure lives on a σ-algebra BE that does not contain the singletons (the
one-point sets). This poses a principal problem for Bayesian methods, be-
cause it means that application of the measure to a sample observation
(which is a point) is not defined. Constructions of systems on random
quantities over e. g. the real line are thus of limited use, which seems some-
what alarming, considering that both the Gaussian and the Dirichlet process
are usually considered for random functions or measures on the real line.
However, neither model has a genuinely uncountable number of degrees of
freedom, in the following sense: The Gaussian process is considered only for
continuous functions. A continuous function on R is completely determined
by its values on a dense countable subset. A Gaussian process model on
continuous functions over R can therefore be constructed by extending a
Gaussian model with E = Q as the index set. The argument remains valid
for any domain with a dense subset that is countable (and hence for any
separable metric space). Similarly, as Ghosh and Ramamoorthi (2002) point
out, the Dirichlet process on R can be constructed on E = Q, because the
cumulative distribution functions on R admit a bimeasurable isomorphism
to the set of their restrictions on Q. (That is, two cumulative distribution
functions with domain R define the same probability measure if and only
if their restrictions to Q are identical.) The examples suggest that many
problems of practical interest admit a surrogate construction of countable
dimension. Since repetitive observation is an inherently countable process,
it is indeed hard to imagine how a model with an uncountable effective num-
ber of degrees of freedom should admit a meaningful notion of asymptotic
behavior. As a general rule of thumb, constructions involving uncountable
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domains are easily handled by standard measure theory. Constructions in-
volving uncountably repeated operations, such as the uncountable product
of axes defined by E = R, are typically problematic, since the definitions of
measures and σ-algebras admit only countably infinite operations.
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Reference Results

The following are results used in proofs. They are reproduced here for
reference, without proofs or further explanation.

Existence of Regular Conditional Probabilities

Conditional probabilities (cf App. B) are not generally guaranteed to have
a regular version, i. e. a version that is a probability measure almost every-
where. But there is always a regular version if the topology of the space
is not much more complicated than that of the real line, as the following
theorem ensures.

Theorem 44. Let X : (Λ,A)→ (Ω,B(Ω)) such that Ω is Polish. Then for
every σ-subalgebra C ⊂ A, there is a regular conditional distribution of X
given C. Moreover, there is an P-null set N such that any two such regular
condtional distributions coincide for every ω ∈ {N .

The standard proof of this theorem (see for example Bauer, 1996) es-
tablishes a number of intermediate results, some of which are used in the
proof of lemma 34, and summarized here for reference.

Lemma 45. Let X : (Λ,A) → (Ω,B(Ω)) be a random variable, with
(Ω,B(Ω)) a Borel space. Then for every σ-subalgebra C ⊂ A, the following
holds:

1. There exists a countable algebra G that generates B(Ω).
2. Define a function P by choosing a version of E [IA|C] for every A ∈ G,

and setting P (A,ω) := E [IA|C] (ω). Then there is an P-null set N
such that A 7→ P (A,ω) is a measure on the algebra G for all ω ∈ {N .
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3. The unique extension of P ( . , ω) from G to CE (as given by the exten-
sion theorem for measures1) is measurable w. r. t. ω.

Martingale Convergence

Those parts of Ch. 5 which consider the projective limit with respect to
a condition are greatly simplified by the following observation: The σ-
algebras, on which the measures are conditioned, form nested sequences over
different dimensions. Increasing the dimension of subspaces corresponds to
a sequence of σ-algebras of increasing resolution. Such successively refined
sequences form a fundamental tool in the theory of martingales (where they
are called filtrations), and standard results on martingale convergence are
applicable in the proofs of Ch. 5. The two relevant theorems are given be-
low. The actual convergence result is the second one, which requires the
martingale involved to satisfy a condition known as uniform integrability.
The first theorem is needed only to guarantee that this condition is satisfied
for all integrable real-valued random variables, and hence in particular for
the 0-1 variables IA in conditional probabilities.

Theorem 46. Let X be a real-valued, integrable random variable on (Λ,A,P).
Let I be a partially ordered index set and (Ci)i∈I a filtration in A. Then

(E [X|Ci] , Ci)i∈I (A.0.1)

is a uniformly integrable martingale.

Theorem 47. Let I be an index set with its partial order ≤ chosen such
that, for any i1, i2 ∈ I, there is some i3 ∈ I with both i1 ≤ i3 and i2 ≤ i3.
Let (Xi, Ci)i∈I be a uniformly integrable martingale. Then there exists one
and (up to equivalence) only one integrable, C∞-measurable random variable
X∞ such that

∀i ∈ I : Xi = E [X∞|Ci] a.s. (A.0.2)

The condition on the index set in the second theorem restricts the arbi-
trariness of choice of the partial order relation ≤ on I, and is always satisfied
if I is totally ordered, or if I is an upper semilattice. Its relevance for filtra-
tions is that, due to the partial order, two σ-algebras in the filtration may
not be comparable, that is, if their indices are not comparable by the partial
order relation, neither system is guaranteed to be a subset of the other. For

1“Extension theorem” here refers to Caratheodory’s theorem on the extension of an
arbitrary measure from a generating algebra to a σ-algebra, rather than Kolmorogorov’s
theorem on extension to infinite dimenions.
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the above theorem (and many other convergence results), such “branches”
in the sequence are admissable, as long as there is another σ-algebra further
down in the sequence which contains both.

The de Finetti Theorem

De Finetti’s theorem has become generally well-known in the machine learn-
ing community. Nonetheless, the requirements of the theorem are interest-
ing with respect to Kolmogorov’s extension theorem and the discussions
in Ch. 5, because they involve random variables with values in Polish or
Borel spaces. The following version is due to Kallenberg (2005). An infinite
sequence X1, X2, . . . of random variables is called contractable if its distri-
bution is invariant under restriction to an arbitrary infinite subsequence
Xi1 , Xi2 , . . . (where i1 < i2 < . . . ). It is called exchangeable if its distribu-
tion is invariant under arbitrary permutations of finite subsets of indices.

Theorem 48. Let X = (X1, X2, . . . ) be an infinite sequence of random
variables with values in a measurable space (Ω,A). If the space is Borel, the
following three conditions are equivalent:

1. X is contractable.
2. X is exchangeable.
3. X is conditionally i.i.d.

If the space is not Borel, (1)⇔(2)⇐(3).

The equivalence between contractability and exchangeability does not
hold for finite sequences. The consequence of implication (2)⇒(3) is that
any infinite exchangeable sequence X can be represented as a mixture of
product models: If X = (X1, X2, . . . ) is exchangeable, there is some non-
trivial σ-subalgebra C such that the joint conditional distribution of each
subsequence Xn = (X1, . . . , Xn) decomposes as

µXn(Xn|C) =
n∏
i=1

µX1(Xi|C) . (A.0.3)

In the particular case Ω = R, the set M1
+(Ω) be the set of all probability

measures on the sample space Ω can be identified with the set of distribution
functions F(R). In this case, the theorem states that any infinite sequence
is exchangeable (and contractable) if and only if the joint probability Pn of
of each n-subsequence is

Pn(x1, . . . , xn) =
∫
F(R)

n∏
i=1

F (xi)dν(F ) . (A.0.4)
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Given Pn (for all n), ν is uniquely determined: If F̂n denotes the empirical
distribution function of observed values x1, . . . , xn, then for any sequence
(xi)i∈N,

ν
(

lim
n→∞

F̂n
)

= lim
n→∞

Pn(x1, . . . , xn) . (A.0.5)

The representation theorem carries over from discrete stochastic pro-
cesses (Xi)i∈N with exchangeable values to continuous stochastic processes
with exchangeable increments. The term increment refers to the increment
(Xt −Xs) on any finite intervall [s, t] ⊂ R+. In many regards, the closest
analogue of an i.i.d. property of a countable set of observations in continuous
time is the stationary independent increment property of Lévy processes.
The following theorem states that this property holds conditionally on some
σ-algebra if the increments of the process are exchangeable.

Theorem 49 (Bühlmann, 1960). Let (Xt)t∈R+ be a stochastic process for

which Xs
P−→ Xt whenever s→ t. Then the increments of X are exchange-

able (and even contractable) if and only if they are conditionally stationary
and independent, given some σ-subalgebra C.

Processes for which s → t implies Xs
P−→ Xt are called continuous in

probability. Theorem 49 also holds, with some modifications, if the index set
is compact (e. g. [0, 1] instead of R), though the upper bound on the index
range leads to considerable complications in the proof. The representation
of X (which corresponds to the conditionally factorial representation above)
then explicitly contains a Brownian bridge, and the result includes Donsker’s
theorem as a special case (Kallenberg, 1997).
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Conditioning

Conditional probabilities are usually represented in machine learning in
terms of conditional densities, with no need to consider the underlying the-
ory in terms of measures. Conditioning probability measures on arbitrary
events (in particular including those of measure zero) is slightly more subtle.
The following is a brief review of conditional expectations and conditional
distributions, which mostly serves to define notation. The concepts are ele-
mentary in probability theory. For a comprehensive introduction, see Bauer
(1996) and Loève (1977b), or Kallenberg (1997) for a more abstract treatise.

Conditioning in terms of measure theory is a straightforward matter
if the condition event is not a null set: Define µ(A|B) = µ(A∩B)

µ(B) . But
conditioning in statistics likely as not means conditioning on a single value
or observation, which typically has measure zero. Kolmogorov noticed that,
if the conditionals of a measure are known on all non-null sets, then values
of the measure conditional on the null sets can be deduced (at least almost
everywhere) – they cannot be arbitrary, because that would change the
behavior on the non-null sets as well. The underlying concept is that of a
weak definition, or weak identity, which regards two functions as identical
if they integrate in the same manner. That two functions have the same
integral on a given set is not much of a constraint, but if they integrate
identically on all sets, they can differ only on a set of measure zero.

Conditional Expectation

The expectation of a random variable, obtained by integrating it over all of
Ω, can be refined by subdividing Ω into a partition, and taking expectations
over the parts of this partition. The individual expecations can be joined in
a single function by switching elements on and off by means of an indicator
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function. This can be regarded as a smoothing of the random variable: The
coarser the resolution of the chosen partition, the stronger the smoothing
effect. Maximal smoothing is attained for a partition consisting only of Ω,
and results in the standard expectation. If the partition is a generator of
the underlying σ-algebra, there is not smoothing, and the original random
variable is recovered.
Countable case. Let X : (Ω1,A1) → (R̄, B̄) be a random variable, µ a
probability measure on (Ω1,A1) and D := {Ci}i∈J a countable partition of
Ω. For any Ci with µ(Ci) > 0, denote by ECi [X] the expectation of X over
Ci:

ECi [X] :=
1

µ(Ci)

∫
Ci

X(ω)dµ(ω) (B.0.1)

That is, ECi [X] is the expectation of X calculated w. r. t. the probability
measure µ( .∩Ci)

µ(Ci)
.

The first step towards conditional expectation is to define a random
variable XD on the non-null sets of D: Let J0 ⊂ J be the indices of the
µ-null sets in D, and define

XD(w) :=
∑

i∈J\J0

ECi [X] ICi . (B.0.2)

This is a random variable that takes value ECi [X] for ω ∈ Ci, and is under-
termined in case of the null event ω ∈

⋃
i∈J0

Ci. Since J is countable, XD
is an elementary function or “step function”, the right-hand side of (B.0.2)
is just its canonical representation, and its integral is a sum over J . The
mapping XD is almost the conditional expectation of X given D. What
remains to be done is to generalize from the partition to a σ-algebra, and
to take care of the null sets.

Considering the σ-algebra C := σ(D) generated by the partition, the
expectation over any C ∈ C can be computed immediately from XD: Any
C ∈ C is a combination of some of the Ci, i. e. there is a subset I ⊂ J such
that C =

⋃
i∈I Ci. Hence,

EC [X] =
∫
C

X(ω)dµ(ω) =
∑
i∈I

ECi [X]µ(Ci) . (B.0.3)

It seems justified to rename the r.v. XD to XC , or better still E[X|C]. The
conditional expectation is explained on all of C, including the null sets, by
allowing it to assume arbitrary values on the null sets. The rationale is
that, when evaluated on a random event, a meaningful value is assumed
with probability one.
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Definition 50 (Conditional expecation: Constructive definition). Let the
partition D = {Ci}i∈J of Ω1 be countable, and J0 ⊂ J be the indices of its
null sets. Then any function E[X|C] which takes values

E[X|C](ω) :=
∑

i∈J\J0

ECi [X] ICi(ω) (B.0.4)

on the non-null region, and arbitrary values on the null region
⋃
i∈J0

Ci, is
called a version of the conditional expectation of X given C.
General (possibly uncountable) case. The constructive, explicit def-
inition above admits no direct generalization to the uncountable case. In
the countable case, null sets can be ignored, by merit of their countable
union once again being a null set. In the uncountable case, for a finite
measure, almost all sets are null sets, and there union is generally non-null.
(A Borel algebra on R, for example, contains singletons as smallest null
sets, the union of which is the entire space.) Allowing arbitrary values of
the function on these sets would hence result in an arbitrary contribution
to the integral. Generalization to the uncountable case is made possible
by substituting an implicit definition of weak type, which in the countable
special case is equivalent to the constructive definition above.

Definition 51 (Conditional expectation: Implicit definition). Let (Ω1,A1, µ)
be a probability space, C any sub-σ-algebra of A1, and X an A1-measurable,
integrable random variable. Let µ

∣∣
C denote the restriction of µ to C. Any

C-measurable function E[X|C] satisfying

∀C ∈ C :
∫
C

E[X|C]dµ
∣∣
C =

∫
C

Xdµ (B.0.5)

is called a version of the conditional expectation of X given C.
Note that µ

∣∣
C and µ can be used interchangeably on the left hand side, since

E[X|C] is a C-measurable function.
If the partition is countable and E[X|C] defined in the construtive man-

ner (B.0.4), then it satisfies (B.0.5) as well. For C ∈ C, let I again denote
the indices of C in the partition, C =

⋃
i∈I Ci.∫

C

E[X|C](ω)dµ(ω) =
∫
C

∑
i∈J\J0

ECi [X] ICi(ω)dµ(ω)

=
∫
C

∑
i∈I\J0

ECi [X] dµ(ω) =
∑
i∈I\J0

ECi [X]
∫
Ci

dµ(ω)

=
∑
i∈I\J0

ECi [X]µ(Ci) =
∫
C

X(ω)dµ(ω)
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Unlike a constructive definition, an implicit one requires a discussion of
existence. The following theorem shows that the definition is safe.

Theorem 52 (Existence and uniqueness of general conditional expecta-
tions). Let (Ω1,A1, µ) be a probability space. Then for any sub-σ-algebra C
of A1, and A1-measurable, integrable function X, the conditional expecta-
tion E[X|C] defined by (B.0.5) exists, and is unique modulo µ.

Conditioning on a random variable. The conditional expectation given
a A1−A2-measurable function Y : (Ω1,A1)→ (Ω2,A2) (i. e. a random vari-
able) is defined as the conditional expectation given the σ-algebra induced
by Y .

Definition 53 (Induced σ-algebra). For any mapping T with values in
(Ω,A), the the σ-algebra induced by T , denoted σ(T ), is the smallest σ-
algebra which makes T σ(T ) − A-measurable. For a family of mappings
{Ti}i∈I with values in (Ωi,Ai), the induced σ-algebra σ(Ti, i ∈ I) is the
smallest σ-algebra such that each mapping Ti is σ(Ti, i ∈ I)−Ai-measurable.

For a single mapping, by the properties of the preimage operation,
T−1(A) is a σ-algebra, and hence σ(T ) = T−1(A). When considering
a family of mappings, one has to consider the union

⋃
i∈I T

−1
i (Ai) of all

preimages, which is not generally a σ-algebra. Hence, the union is used as
a generator, and σ(Ti, i ∈ I) := σ(

⋃
i∈I T

−1
i (Ai)).

Definition 54 (Conditional expectation given a random variable). Let
(Ω,A, µ) be a probability space, and X and Y be random variables with
values in (Ωx,Ax) and (Ωy,Ay), respectively. The conditional expectation
of X given Y is

E [X|Y ] := E[X|σ(Y )] . (B.0.6)

For a family {Yi|i ∈ I} of random variables, with values in (Ωi,Ai), the
conditional expectation of X given {Yi|i ∈ I} is

E [X|Yi, i ∈ I] := E[X|σ(Yi, i ∈ I)] . (B.0.7)

Explanation. In general, a conditional expectation E[X|C] resolves local
(i. e. subset-conditional) expectations on all sets of the σ-algebra C. Assume
that an event Y (ω) ∈ A ∈ Ay is observed. Conditioning on this event in
(Ωy,Ay) requires pulling it back to (Ω,A), and hence conditioning on the
event Y −1(A). The σ-algebra generated by the pulled-back events is just
σ(Y ).

The conditional expecation E[X|Y ] is a function of ω, which can be
interpreted as follows: With some ado, we can derive a function E [X|Y = y],
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which maps y to a number. It can than be shown that, for any version
E[X|Y ] of the conditional expectation,

E[X|Y ](ω) = E [X|Y = Y (ω)] almost surely. (B.0.8)

Hence, the value of E[X|Y ](ω) can be understood as the expectation of X,
given that Y assumes the value Y (ω).

Conditional Probability

Definition 55 (Conditional probability). Let (Ω,A, µ) be a probability
space, C a sub-σ-algebra of A. The conditional probability of an event A ∈
A given the hypothesis C is the C-conditional expectation of the random
variable IA,

µ(A|C) := E[IA|C] . (B.0.9)

Explanation. The conditional expectation point of view is to define quan-
tities from an integration perspective. Conditional expectation is defined as
a random variable that integrates like a conditional expectation. Similarly,
the conditional probability definition above would be justified by arguing
that it integrates as a conditional probability should. The standard defini-
tion of conditional probability, µ(A|C) = µ(A∩C)

µ(C) , integrates as∫
C

µ(A ∩ C)
µ(C)

dµ(ω) = µ(A ∩ C) . (B.0.10)

The same is true for the conditional probability µ(A|C) defined above, since∫
C

µ(A|C)dµ(ω) =
∫
C

E[IA|C]dµ(ω) =
∫
C

E[IA|C]dµ|C(ω) =
∫
C

IA(ω)dµ(ω)

= µ(A ∩ C) .
(B.0.11)

Conditional probability as a function. The integral perspective on con-
ditional probabilities tents to distract from how they work when regarded
as a function of ω, i. e. µ(A|C)(ω). This is most easily illustrated by the
elementary case, i. e. for a C generated by a countable partition {Ci} con-
sisting only of non-null sets. Fix A, and assume that ω assumes a value in
the element C0 of the partition. Then

µ(A|C)(ω) = ECi [IA] =
1

µ(C0)

∫
C0

IA(ω′)dµ(ω′) =
µ(A ∩ C0)
µ(C0)

. (B.0.12)

In the general case, we have to revert to the integral definition and under-
stand µ(A|C)(ω) as an object not intended to be evaluated at an isolated
point, but to be integrated over a set.
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Regular Conditional Distributions

Working with conditional distributions is complicated by the fact that a
conditional distribution as defined in (B.0.9) is not guaranteed to be a prob-
ability measure almost everywhere. That is, the function A 7→ µ(A|C)(ω)
need not be a probability measure for each ω. Conditional distributions
which are probability measures for each ω are called regular conditional
probabilities. For C fixed, a regular condional probability µ(A|C)(ω) can be
regarded as a function K(ω,A) of two arguments. Because K is a condi-
tional expectation as in (B.0.9), it is always A-measurable for fixed A, and
because it is regular, it is a probability measure w. r. t. to A for fixed ω. But
these are just the two properties that define a Markov kernel in functional
analysis, and therefore, regular conditional probabilities can be represented
by Markov kernels.

Definition 56 (Markov kernel). Let (Ω1,A1) and (Ω2,A2) be measurable
spaces. A Markov kernel is a mapping

K : Ω1 ×A2 → [0,+∞] (B.0.13)

such that:

1. ∀A ∈ A2 : K( . , A) is A1-measurable.
2. ∀ω ∈ Ω1 : K(ω, . ) is a probability measure on A2.

In general, a kernel defines a linear operator which maps functions to
functions. A Markov kernel is a kernel which is normalized to define an
operator which maps probability measures to probability measures. Im-
age measures are kernels: If T is a measurable map, the image measure
(T (µ))(A) = µ(T−1(A)) is a kernel (which is independent of ω). Hence, a
kernel is an image measure with an extra parameter ω, i. e. a parametrized
family of image measures. Much like in functional analysis, a Markov kernel
maps a measure µ onA1 to a new measure µ2 onA2 by means of integration.
For A ∈ A2,

µ2(A) :=
∫

Ω1

K(ω,A)dµ(ω) . (B.0.14)

When is a Conditional Probability Regular?

Regular conditional probabilities are obviously the kind of probability to
work with preferrably. Since one is usually free to choose any version of
a given conditional probability, the the crucial question is whether a given
conditional probability has a regular version. This is not always true, but
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can be guaranteed on any space that is locally sufficiently similar to Eu-
clidean space. This local similarity is formalized by the concept of a Borel
space, and Th. 44 states that any conditional distribution on such a space
has an equivalent regular version.
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Appendix C

Dominated and
Undominated Models

Probability models on infinite-dimensional spaces can raise a number of
complications not usually familiar from the finite-dimensional, density-based
case. One such complication are undominated families of models. In finite
dimensions, all models in a given model family {µθ|θ ∈ Ωθ} can usually be
represented as densities with respect to one and the same reference measure
(also called the carrier measure). The condition required for a measure to
be representable as a density is simple and not very restrictive. Let µθ be
any measure in the model family. Let Null(µθ) be the system of its null
sets, i. e. the set of all measurable sets A for which µθ(A) = 0. According
to the Radon-Nikodym theorem, µθ has a density representation w. r. t.
another, given measure ν if and only if Null(ν) ⊂ Null(µθ). Then there is
some density function pθ such that

dµθ = pθdν . (C.0.1)

That the null set condition is necessary for the existence of a density is
perfectly intuitive: If dν integrates to zero on a given set A, then it is not
possible to reweight it by a density function pθ such that pθdν integrates to a
finite, non-zero value. That the condition is also sufficient may be a bit more
surprising, because it implies that representability by a density function does
not involve any kind of smoothness condition on the measures. All that is
required is a condition on the null sets. This condition has a binary nature,
because the magnitude of the non-zero values of ν is not relevant.

The null set condition is also referred to as absolute continuity of the
measures: µθ is called absolutely continuous w. r. t. ν, in symbols µθ � ν,
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if Null(ν) ⊂ Null(µθ). Representation of a family {µθ|θ ∈ Ωθ} as a family
of densities is convenient only if all measures µθ are absolutely continuous
w. r. t. one and the same measure ν. Densities with respect to different
carrier measures are not comparable. A suitable carrier measures is called
a dominating measure.

Definition 57. Let M be a family of measures and ν any measure, not
necessarily in M. Then ν dominates M if µ � ν for all µ ∈ M. If such
any such measure ν exists for M, the family is called dominated. If not, it
is called undominated.

In Bayesian nonparametrics and other infinite-dimensional modeling prob-
lems, many interesting model families are not dominated.

Undominated Families: Intuition

A dominating measure ν must be finite, or at least σ-finite, to be meaningful
for the definition of a density. Such a measure can only assign non-zero mass
to a limited number of sets. Therefore, on large σ-algebras, measures must
have a large number of null sets to be σ-finite. For example, a σ-finite mea-
sure on the real line cannot assign non-zero mass to all singletons. If it did,
all non-empty open intervalls would have infinite measure. Undominated
families exist because the absolute continuity condition for the existence of
a density requires that only those sets may be null sets for the dominating
measure which are also null sets for all measures in the family. If the family
is too diverse, the number of null sets common to all its elements is not
large enough to permit the definition of a dominating measure.

More precisely, a dominating measure for a family M must assign non-
zero mass to all sets which are non-null under any measure in M. Define
the null system of M as

Null(M) :=
⋂
µ∈M

Null(µ) . (C.0.2)

In other words, ν dominates M if and only if Null(ν) ⊂ Null(M). If the
family M is too large, and the null set patterns of the different measures
in M are too diverse, then Null(M) becomes too small for any σ-finite
measure to satisfy Null(ν) ⊂ Null(M), and M is undominated.

Here is an example: For (R,B(R)), denote by δx the Dirac measure
centered at x, and by G(x, 1) the Gaussian measure of mean x and unit
variance. First, consider the family of all Diracs D := {δx|x ∈ R}. For
every x ∈ R, there is a Dirac which assigns non-zero mass to the singleton
{x}, and hence Null(D) = ∅. The family of Diracs is too large and diverse
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to be dominated. But the diversity is essential: The Gaussian family N :=
{G(x, 1)|x ∈ R} is just as large. But any two Gaussians G(x1, 1) and
G(x2, 2) have exactly the same null sets, and so N := {G(x, 1)|x ∈ R}
has null system Null(N ) = Null(G(0, 1)). Since this is the null system of
a σ-finite measure (the Gaussian), it is not too complicated to admit a
dominating measure.

Criterion for Undominated Families

Proving that a family of measures is dominated may be an arbitrarily diffi-
cult endeavor, but the following lemma, due to Halmos and Savage (1949)
provides a useful criterion for proving the converse. It uses the following
terminology: Let M,N be two sets of measures. The set N is said to be
dominated by M, denoted N � M, if every measure in N is dominated
by some measure in M. In particular, N being dominated by a set does
not imply domination by a single measure. The sets are called equivalent,
or M∼ N , if M�N and N �M.

Lemma 58 (Halmos-Savage). If a set of measures is dominated (by a single
measure), it has an equivalent countable subset.

The result is non-trivial because, even if a set M is dominated by some
measure ν, the dominating measure need not be contained inM. If ν ∈M,
then trivially M ∼ {ν}. An interesting aspect of the lemma is that it
makes the inherent connection between domination and countability ex-
plicit: Equivalent measures have identical null sets, so intuitively, the lemma
states that a dominated set can only have a countable number of different
null set patterns. As an intermediate result in their proof, Halmos and
Savage (1949) construct a dominating measure as a countable convex com-
bination of measures in M. The construction result is reproduced here as
a corollary, and is used in the proof of La. 15.

Corollary 59. If a set M of measures is dominated by a σ-finite measure,
there exists a countable sequence {µi}i∈N of measures µi ∈M, and a count-
able sequence of non-negative coefficients {ci}i∈N with

∑
i ci = 1, such that

the measure defined by
ρ =

∑
i∈N

ciµi (C.0.3)

dominates M.

A consequence of relevance for Bayesian nonparametrics is the following:

Remark 60 (The DP posterior family on R is not dominated). A Dirich-
let process DP (αG0) on the real line has a family of posteriors (under
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sample size one) defined by {DP (αG0 + δx) |x ∈ R}. If G0 is continu-
ous, this family is undominated, which can be proven by means of La. 58.
By the well-known posterior formula, the probability under the posterior
DP (αG0 + δx1) of a Dirac δx2 is non-zero, DP (δx2 |αG0 + δx1) > 0, if and
only if x1 = x2. Therefore, DP (αG0 + δx1) � DP (αG0 + δx2) if and only
if x1 = x2, so any dominating subset of the posterior family must contain
DP (αG0 + δx) for each x ∈ R and is therefore uncountable. Then by La. 58,
{DP (αG0 + δx) |x ∈ R} cannot be dominated. The argument carries over
the case of an arbitrary (but countable) number of observations, and to
Dirichlet processes on any uncountable domain. In particular, the fact that
the posterior family is not dominated implies that it is not dominated by
the prior, such that there can be no closed-form substitute for the Bayesian
formula.



Appendix D

Notation

Symbol Description Reference

Λ Abstract probability space, i. e. the common
domain of all random variables (the ranges of
the random variables are the respective sam-
ple spaces)

Sec. 2.1

X Random variable, in particular observation
random variable

Sec. 2.1

Y Random variable, in particular hyperparam-
eter of a model

Sec. 2.1

Θ Parameter random variable in a Bayesian
model

Def. 1, p. 19

Ωx Sample space of random variable X Sec. 2.1
A σ-algebra on abstract probability space Λ Sec. 2.1
C Arbitrary σ-algebra Sec. 2.1
B Borel σ-algebra Sec. 2.1
P Abstract probability measure on (Λ,A) Sec. 2.1
µX Measure specifying distribution of random

variable X, i. e. the image measure µX =
X(P)

Sec. 2.1

pX|θ Density of a conditional measure µX|θ Def. 2, p. 20
µX|θ Conditional measure of X given Θ = θ App. B
µ(X|C) Conditional distribution of X given a σ-

algebra C
App. B
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Symbol Description Reference

σ(X) σ-algebra generated by X (σ(X) = X−1(Bx)
if X takes values in (Ωx,Bx))

Def. 53, p. 192

dµ
dν Radon-Nikodym derivative (density) of µ

w. r. t. ν
� absolute continuity relation on measures

(µ � ν, µ is absolutely continuous w. r. t.
ν)

App. C

ν-a.e. Almost everywhere, with respect to measure
ν

X−1 Inverse of a random variable (with the ran-
dom variable regarded as a mapping)

ω “Atomic” or “elementary” event, an element
of the abstract probability space Λ

E [X] Expectation of random quantity X
EµX|y Expectation evaluated w. r. t. conditional

measure µX|y
E [X|C] Conditional expectation of X given σ-algebra

C
App. B

E [X|Y ] Conditional expectation E [X|C] with C =
σ(Y )

App. B

Z (1) Partition function of a density
(2) Mixing variable (a random variable) in a
mixture model

Sec. 2.2.3
Sec. 2.5

S[p] Entropy (as a functional of the density p) Sec. 2.2.3
H(θ) Potential function or energy function of prob-

ability distribution
Sec. 2.2.3

K Number of clusters in a grouping problem
(possibly a random quantity)

Ncounts Number of counts in a histogram
Nbins Number of bins in a histogram (or Dirichlet

random vector)
n Number of observations
nk Number of observations assigned to a cluster

with index k
h Vector variable representing a histogram

S(r) Symmetric group of order r Sec. 3.1.2
π (i) Permutation π ∈ S(r) (in context of rank-

ings)
(ii) Expectation parameter of a Dirichlet dis-
tribution

Sec. 3.1.2
Sec. 4.1.4
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Symbol Description Reference

C(π) Consistent set of a partial ranking π (the set
of all possible completions of π)

Sec. 3.1.2

Sim (R, d) Standard simplex in Rd
DP (αG0) Dirichlet process with scatter parameter α ∈

R+ and base measure G0

Def. 25

δij Kronecker symbol
δx0(x) Dirac delta function or Dirac measure at x0

Cov [X,Y ] Covariance of X and Y
IA Indicator function of set A
E Index set of a product space ΩE (arbitrary

set, usually infinite)
Sec. 2.4.2, 5.3

I, J Index sets, usually subsets of E Sec. 2.4.2, 5.3
E∗ Set of all finite subsets of E Sec. 2.4.2, 5.3
ΩI Product space ΩI =

∏
i∈I Ω Sec. 2.4.2, 5.3

BI Borel product algebra
⊗

i∈I B(Ω) on ΩI Sec. 2.4.2, 5.3
X I Random variable with sample space (ΩI,BI) Sec. 2.4.2, 5.3
µI Measure of X I (not a product measure, in

general)
Sec. 2.4.2, 5.3

PJ,I Projection operator between product spaces
ΩJ ⊃ ΩI

Sec. 2.4.2, 5.3

RJ,I Preimage under projection, RJ,I = P−1
J,I Sec. 2.4.2, 5.3

H(B) Set of B-measurable partitions (partitions
consisting of sets in B)

Sec. 2.4.4

H(B)∗ Set of B-measurable partitions containing
only a finite number of sets

Sec. 2.4.4

P∗J,I Projection operator on conditional probabili-
ties

Def. 30

proj limM Projective limit (a measure) of a projective
family M of measures

Sec. 2.4.2
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20(6), 1759–1771.



222 BIBLIOGRAPHY

Wolpert, R. L., Ickstadt, K., and Hansen, M. B. (2003). A nonparametric
Bayesian appraoch to inverse problems (with discussion), pages 403–418.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm.
Annals of Statistics, 11, 95–103.

Xie, H., Pierce, L. E., and Ulaby, F. T. (2002). Statistical properties of
logarithmically transformed speckle. IEEE Trans. on Geoscience and
Remote Sensing , 40(3).

Yamasaki, Y. (1985). Measures on infinite dimensional spaces. World Sci-
entific Publishing.

Zaragoza, H., Hiemstra, D., Tipping, D., and Robertson, S. (2003). Bayesian
extension to the language model for ad hoc information retrieval. In Proc.
SIGIR 2003 .

Zhao, L. H. (2000). Bayesian aspects of some nonparametric problems.
Annals of Statistics, 28, 532–552.


