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Abstract

This thesis considers the k-BALANCED PARTITIONING problem,
which is defined as follows. Find the minimum number of edges
in a graph that, when cut, partition the vertices into k (almost)
equally sized sets. Amongst others, the problem derives its
importance from the need to distribute data within a parallel-
computing architecture. In this setting we are particularly in-
terested in 2D finite element model (FEM) simulations. We
therefore model the input as a regular quadrilateral tiling of the
plane. More precisely, we focus on solid grid graphs. These are
finite connected subgraphs of the infinite 2D grid without holes.
However we also consider other graph classes. In particular, trees
often give surprising conclusions to the problem on grid graphs.

For the special case when k = 2 (the BISECTION problem) we
show that an optimal solution can be found in O(n4) time for
solid grid graphs. However the resulting runtime is unsatisfactory
for practical purposes. Therefore we also show that near-optimal
solutions can be found in O(n1.5) time. This is achieved by
analysing the cut shapes in solid grid graphs. We prove that
simple shapes corresponding to straight lines and right-angled
corners suffice in order to find near-optimal cuts.

We are able to further harness these structural insights for the
general case when k takes arbitrary values. This results in a fast
bicriteria approximation algorithm which runs in O(n1.5 log k)
time. The number of edges it cuts is at most O(log k) times
the optimum and the sets are at most a factor of 2 from equal-
sized. For practical purposes however, the latter deviation is
unattractive. In particular in parallel-computing it means a
slowdown by a factor of 2. Therefore we also consider algorithms
that compute sets that are arbitrarily close to equal-sized. For
trees we provide a PTAS. Furthermore, we provide a bicriteria
approximation algorithm for general graphs. Here the number
of edges cut is at most O(log n) times the optimum. This result
is obtained by harnessing results on hierarchical decompositions
of graphs into trees, together with our PTAS.
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Next we show that when k can be arbitrary, considering
bicriteria approximations, as above, is necessary. For this we
provide the following hardness results. When equal-sized sets
are desired for solid grid graphs, it is NP-hard to approximate
the number of cut edges within nc, for any constant c < 1/2.
For trees we can even prove this for any constant c < 1. We
set up a general reduction framework in order to generate these
results. The framework identifies some sufficient conditions for
the considered graph class which make the problem hard. For
trees the conditions are met by relying on high vertex degrees.
We therefore also consider constant degree trees. For these the
problem is APX-hard. This means that for trees the complexity
grows with the maximum degree.

Note that one of the provided bicriteria approximation algo-
rithms for arbitrary k is fast but yields an unsatisfactory set-size
ratio. The other algorithm is slow but achieves high-quality set
sizes. This is because its runtime increases exponentially when
the limit on the set-sizes becomes more stringent. We justify the
achieved tradeoff by showing that it is necessary. For both grids
and trees we prove that, unless P=NP, no fully polynomial time
algorithms exist that compute sets which are arbitrarily close
to equal-sized. This is true even if the number of cut edges is
allowed to deviate further from the optimum the more stringent
the limit on the set sizes.
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Zusammenfassung

Wir untersuchen das k-BALANCIERTE PARTITIONIERUNGS Prob-
lem, in dem eine kleinste Menge von Kanten eines Graphen
gefunden werden soll, die, wenn sie geschnitten werden, die
Knoten in k (fast) gleich grosse Mengen partitionieren. Dieses
Problem leitet seine Bedeutung u. a. von der Notwendigkeit
her, Daten auf einem Parallelrechner zu verteilen. Da uns ins-
besondere Simulationen von zweidimensionalen Finite-Elemente-
Methoden (FEMs) interessieren, modellieren wir die Eingabe als
gleichmässige viereckige Parkettierung der Ebene. Um genauer
zu sein, konzentrieren wir uns auf solide Gittergraphen, die
endliche verbundene Teilgraphen des unendlichen zweidimension-
alen Gitters ohne Löcher sind. Allerdings betrachten wir auch
andere Graphen. Insbesondere liefern Bäume überraschende
Einsichten in das Problem auf Gittergraphen.

Im speziellen Fall wenn k = 2 (das HALBIERUNGS Problem)
zeigen wir, dass eine optimale Lösung in O(n4) Zeit für solide
Gittergraphen gefunden werden kann. Da allerdings die Laufzeit
unzufriedenstellend für praktische Anwendungen ist, zeigen wir
auch, dass nahezu optimale Lösungen in O(n1.5) Zeit gefunden
werden können. Dies wird durch eine Analyse der Schnittformen
in soliden Gittergraphen erreicht. Wir beweisen, dass einfache
Schnittformen wie gerade Linien oder rechte Winkel ausreichen,
um annähernd optimale Schnitte zu finden.

Wir nutzen diese strukturellen Einsichten weiter aus, in-
dem wir für den Fall wenn k beliebige Werte annehmen kann
einen schnellen Approximationsalgorithmus über zwei Kriterien
aufzeigen. Dieser läuft in O(n1.5 log k) Zeit. Die Anzahl geschnit-
tene Kanten ist höchstens O(log k) Mal das Optimum, während
die Knotenmengen höchstens um einen Faktor von Zwei von
gleichen Grössen abweichen. Für praktische Anwendungen kann
die letztere Abweichung allerdings nachteilig sein. Insbeson-
dere bedeutet es eine Verlangsamung um einen Faktor von Zwei
für Parallelrechner. Daher erwägen wir auch Algorithmen, die
Knotenmengen berechnen, deren Grössen beliebig nah an die
gewünschte Zielgrösse herankommen. Für Bäume entwickeln
wir ein Polynomialzeitapproximationsschema. Weiterhin zeigen
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wir einen Approximationsalgorithmus über zwei Kriterien für
generelle Graphen auf. Dieser schneidet höchstens O(log n) Mal
so viele Kanten wie das Optimum. Dieses Resultat erhalten
wir indem wir Ergebnisse über hierarchische Zerlegungen von
Graphen in Bäume zusammen mit unserem Polynomialzeitap-
proximationsschema nutzen.

Als nächstes zeigen wir, dass wenn k beliebig sein kann das
Approximieren über zwei Kriterien, wie oben, notwendig ist.
Dafür stellen wir die folgenden Härtebeweise auf. Für gleich
grosse Mengen ist es NP-hart die Anzahl der geschnittenen
Kanten um einen Faktor nc, für jede Konstante c < 1/2, zu
approximieren, wenn solide Gittergraphen erwogen werden. Für
Bäume können wir dies sogar für jede Konstante c < 1 zeigen.
Wir richten ein generelles Reduktionsrahmenwerk ein, mit dem
diese Resultate generiert werden können. Das Rahmenwerk
identifiziert einige hinreichende Bedingungen für die erwogene
Graphklasse, die das Problem hart machen. Für Bäume werden
die Bedingungen erfüllt, indem hohe Knotengrade genutzt wer-
den. Daher betrachten wir auch Bäume mit konstanten Graden.
Wir zeigen, dass das Problem in diesem Fall APX-hart ist. Daher
steigt für Bäume die Komplexität mit dem maximalen Grad.

Es ist auffallend, dass einer der aufgezeigten Approximation-
salgorithmen für beliebige k schnell ist, aber keine zufriedenstel-
lende Mengengrössen produziert, während der andere langsam
ist, aber hochwertige Grössen berechnen kann. Dies gilt, da die
Laufzeit des letzteren Verfahrens exponentiell wächst, wenn die
Begrenzung der Grössen strikter wird. Wir rechtfertigen den
erlangten Kompromiss, indem wir zeigen, dass er notwendig ist.
Sowohl für Gitter als auch für Bäume beweisen wir, dass kein
Algorithmus existiert, dessen Laufzeit voll polynomiell ist, und
Mengen produziert, die beliebig nah an die gewünschte Zielgrösse
herankommen. Dies ist sogar dann wahr, wenn die Anzahl der
geschnittenen Kanten weiter vom Optimum abweichen darf, je
strikter die Begrenzung der Mengengrössen wird.
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Chapter 1

Model and Setting

Traditionally the natural sciences rest on two methodological pil-
lars: theory and experiment. In recent years however a third base
has become apparent, which has been driven by the development
of fast and ubiquitous computing power. In various scientific
fields simulations [68] are used to understand the behaviour of
complex systems. They are applied to simulate natural phe-
nomena in fields such as astrophysics, biological evolutionary
research, climate prediction, or medical diagnosis. For exam-
ple in the latter, diagnosis of osteoporosis can be improved by
scanning a bone and extracting a physical model [2]. On this
model physical pressure is then applied in a simulation in order
to predict where the bone is likely to break. Typically huge
amounts of data are used to get reliable predictions from the
simulations. These can not be handled by a single processor.
Instead supercomputers such as IBM’s Blue Gene need to be
employed. These are composed of thousands of processing units.
One major hurdle that lies at the core of handling these machines
is the following. How should the massive amounts of data be
distributed among the processors so that their computing power
is utilised as effectively as possible?

Typically finite element models [19, 62] (FEMs) are used
for simulations of physical phenomena. In these a continuous

1



2 Chapter 1. Model and Setting

domain of a physical model is discretised into a mesh of sub-
domains (the elements). The mesh induces a graph in which
each vertex is an element and the edges connect adjoining sub-
domains. A vertex then corresponds to a computational task in
the physical simulation at hand. These need to communicate
their intermediate results to neighbouring elements during the
simulation of the model. The tasks need to be scheduled on to a
given number of machines (which corresponds to partitioning the
vertices) so that the loads of the machines (the sizes of the sets in
the partition) are balanced. At the same time the interprocessor
communication (the number of edges between the sets) needs
to be minimised since this constitutes a runtime bottleneck in
parallel-computing. Hence in order to analyse the above setting
we will model it as the problem of cutting a graph into equally
sized parts and using as few edges as possible to do so. This
problem is the main concern of this thesis. We will explore the
boundaries of its solvability by giving algorithms and hardness
proofs. Thus we will apply the more traditional method of theory
in order to shed light on this particular aspect of simulations.

The application to data distribution in parallel-computing
is not the only reason why the problem under consideration
is of genuine practical and theoretical interest. It has a wide
variety of applications including VLSI circuit design [8], image
processing [63, 72], computer vision [43], route planning [13],
and divide-and-conquer algorithms [46, 64]. For the latter, the
aim typically is to cut the graph into two equally sized parts.
This constitutes a special case of the problem. As we will see,
solving this special case also leads to algorithms for the general
case.

Many implementations exist that compute solutions to the
problem under consideration. They all differ in their employed
techniques (see [35, Appendix] for a survey). Some examples of
software packages that are widely used are Metis [34], Scotch [11],
or Zoltan [14]. These heuristics are based on coarsening the given
input graph. This can for instance be done by computing match-
ings and contracting the corresponding edges. This is repeated
several times until the remaining graph is small enough to employ
a cutting algorithm producing a good solution with only a small
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runtime overhead. For instance methods based on simulated
annealing or greedy schemes are used. After this the graph is
uncoarsened by reintroducing the contracted edges. During this
process the computed solution is refined by locally improving
the boundaries of the cut out parts. This can for instance be
done using a variant of the Kernighan-Lin algorithm [37]. Typi-
cally these heuristics are very fast. Unfortunately however, no
rigorous guarantees on their solution qualities can be given.

1.1 Putting Practice into Theory

Our viewpoint when studying the problem under consideration is
theoretical. That is, we seek to design algorithms which operate
within rigorous time bounds and produce results whose quality,
when compared to the optimum, is again bounded rigorously.
However we shall always keep the practical application in mind.
This means that we will make sure that the bounds, both in time
requirements and solution quality, are compatible with the needs
of the application. Also, as inputs to our algorithms we shall con-
sider graphs whose characteristics agree with those encountered
in practice. On an abstract level, we consider the k-BALANCED
PARTITIONING problem which is defined as follows (Figure 1.1).

Definition 1.1 (k-BALANCED PARTITIONING). Given a graph
G = (V,E), find a partition V of the n vertices in V into k sets
such that |P | ≤ dn/ke for each part P ∈ V. At the same time
minimise the cut size, i.e. the number of edges in E connecting
vertices from different parts in the partition.

Typically the domain of an FEM is two- or three-dimensional.
In this thesis we focus on the two-dimensional case, as a first
step towards the more general problem. For these FEMs the
corresponding graph is planar. Typically it is given by a regular
tiling of the plane of which two examples are tessellations using
triangles (i.e. triangulations) or quadrilaterals [19, 62]. We focus
on the latter and therefore choose so called solid grid graphs as a
model. These correspond to tessellations into unit sized squares.
Throughout this thesis we will assume that such a graph is given
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Figure 1.1: A partition of a graph into k = 3 parts (indicated
by grey circles) with a cut size of 5. Note that a part does not
have to be a connected component.

together with its natural embedding in the plane, where each
vertex is given by two coordinates in N2 and the edges have unit
length (Figure 1.2).

Definition 1.2 (solid grid graph). A grid graph is a finite
subgraph of the infinite two-dimensional grid. A face of the grid
graph that is bounded (i.e. an interior face) and has more than
four edges surrounding it, is called a hole. If a grid graph is
connected and does not have any holes it is called solid .

We will also consider other types of graphs. In particular
we will consider trees which surprisingly often lead to insights
about solid grid graphs for the problem at hand. This is re-
markable since trees and grid graphs are entirely different from
a combinatorial point of view. For instance trees can have ar-
bitrarily high vertex degrees, while grid graphs have constant
maximum degree. Another measure of comparing the similarity
of a graph with a tree is the tree-width of a graph. Grids are
known [17] to be examples of graphs that have very high tree-
widths and are thereby considered to be very dissimilar to trees.
Also recognising a tree is a trivial task that can be done by a
simple breadth-first search in linear time, while it is NP-hard to
recognise a solid grid graph [7].

In the chapters to come we will consider solving the k-BAL-
ANCED PARTITIONING problem optimally and approximately. We
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Figure 1.2: A solid grid graph.

will present corresponding algorithms and hardness results for
these scenarios. We will always keep our model of solid grid
graphs in mind and relate the obtained results to this graph
class. There are two parameters that may be approximated in
the problem under consideration: the cut size and the balance
of the sizes of the cut out parts. Throughout this thesis we
will denote the approximation ratio of the cut size by α. That
is, an algorithm with ratio α computes a solution in which the
cut size does not exceed αC∗, where C∗ is the optimal cut size
of the given input graph. When approximating the balance
we assume that we are given a parameter ε > 0 such that the
sizes of the parts do not exceed (1 + ε)dn/ke. We also consider
approximating the cut size and the balance at the same time.
This is referred to as bicriteria approximation. In this setting
the quality of the solution, both in terms of cut size and balance,
is always compared to the optimum in which the parts have size
at most dn/ke and the cut size is minimised.

Bicriteria approximations for k-BALANCED PARTITIONING have
been studied before. In particular since in general [1] it is NP-
hard to approximate the optimal cut size within any finite factor
α, if the set sizes are required to be at most dn/ke. Also for the
special case when k = 2, commonly referred to as the BISECTION
problem, bicriteria approximations have been considered. They
were used in order to circumvent the known hardness results
when each part is required to have size at most dn/2e. Assum-
ing the Unique Games Conjecture, for this case no constant
approximations to the BISECTION problem can be computed in
polynomial time [38].
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1.2 An Overview of the Results

In Chapter 2 we begin by considering the special case of the
k-BALANCED PARTITIONING problem when k = 2, i.e. the BISEC-
TION problem. We show that there is an algorithm for solid grid
graphs that solves the BISECTION problem optimally in O(n4)
time. This improves on the previously fastest known algorithm
by Papadimitriou and Sideri [54] which runs in O(n5) time.
Our method takes its main inspiration from the corresponding
algorithm for trees given by MacGregor [47].

We believe that computing the optimal bisection using the
above algorithm is too slow for practical purposes. This is
because typically there will be billions of vertices in an input
graph. Can faster algorithms be found for solid grid graphs
when approximating the bisections? The first idea on how to
answer this question is to consider the structural properties
of an optimum bisection. In particular, we show that in an
optimum solution almost all the cuts needed to partition the
vertices have simple shapes. By a simple shape we mean that
in the natural embedding of the grid graph in the plane, a cut
is either a straight cut through the grid or a cut that has one
right-angled bend. We call a cut in which each cut made has at
most one right-angled bend a corner cut. In Chapter 3 we show
that an optimal corner cut approximates the optimal bisection
of a solid grid graph well. More concretely, for any ε ∈ ]0, 1]
and m ∈ {0, . . . , n} we prove that there is an optimal corner
cut cutting out m′ ∈ [(1 − ε)m, (1 + ε)m] vertices using only
O(C∗/

√
ε) edges. Here C∗ is the optimal number of edges to

cut out m vertices.

Unfortunately, we do not know how to put the above result
to work directly in order to yield fast algorithms that compute
approximations to BISECTION on solid grid graphs. In [22] an
algorithm computing optimal corner cuts was devised. However
the runtime of this algorithm is O(n4), i.e. the same as for
computing the optimal solution. Despite this, in the remaining
part of Chapter 3, through another indirect route, we show how
corner cuts can be used to approximate the BISECTION problem
on solid grid graphs.
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A sparest cut minimises the amount of edges per number of
cut out vertices. We show that through corner cuts we can find
a constant approximation to a sparsest cut in linear time for
solid grid graphs. For these graphs our algorithm improves on
the runtime of the fastest known algorithm [55], which however
computes a sparsest cut for any planar graph. Based on our
algorithm and employing known techniques of Leighton and
Rao [44] we can compute bicriteria approximations to the BISEC-
TION problem. For arbitrary ε > 0 the algorithm cuts out parts
of size at most (1 + ε)dn/2e, and the cut size is approximated
within α ∈ O(1/ε3). On solid grid graphs this algorithm runs in
O(n1.5) time.

We also combine a recursive method by Simon and Teng [65]
with our algorithm for sparsest cuts. This allows us to compute
an approximation to k-BALANCED PARTITIONING on solid grid
graphs in O(n1.5 log k) time. The solution contains sets of size
at most 2dn/ke, while α ∈ O(log k). Since we improved on
the runtime to compute sparsest cuts, we also improve the
runtimes of the two resulting algorithms on solid grid graphs.
Additionally we obtain a faster algorithm for k-BALANCED PAR-

TITIONING than by known techniques applying the Klein-Plotkin-
Rao Theorem [40] to spreading metrics [20]. A solution computed
by this technique also has sets of size at most 2dn/ke. However
the cut size is approximated within a constant factor. This shows
that we are able to trade the solution quality for faster runtimes.

From a practical point of view an approximation factor of 2
on the balance of the set sizes is not very attractive. This is
because it implies a huge imbalance on the load of the machines in
parallel-computing. Can we improve this approximation factor?
In Chapter 4 we consider computing partitions in which each
part has size at most (1 + ε)dn/ke for arbitrary ε > 0. We
show that for edge-weighted trees there is an algorithm that
runs in polynomial time if ε is constant. Interestingly the cut
cost, i.e. the weighted cut size, of the computed solution is at
most that of the optimum in which the sets have size at most
dn/ke. Hence α = 1, which means that for trees we obtain a
polynomial time approximation scheme (PTAS) with respect
to the balance. This PTAS can subsequently be used on cut-
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based hierarchical decompositions [48, 57] in order to find a
bicriteria approximation for any general edge-weighted graph.
Such a decomposition is a set of trees that approximates the cut
structure of the graph by a logarithmic factor. As a consequence
the computed cut cost is approximated within α ∈ O(log n),
while each cut out part has size at most (1 + ε)dn/ke. This
result improves on a previous one by Andreev and Räcke [1]
where α ∈ O(log1.5(n)/ε2). In particular this also solves an
open problem posed by the latter authors of whether the cut
cost needs to increase when ε decreases. We will argue that
our algorithm is unlikely to perform better on solid grid graphs.
Hence even though the above algorithm computes solutions for
general graphs, it seems as if no improvements can be gained by
our techniques when applied to solid grid graphs.

For the k-BALANCED PARTITIONING problem on solid grid
graphs we have so far considered two algorithms that both com-
pute bicriteria approximations. Do both the balance and the cut
size need to deviate from optimum? For general (disconnected
but unweighted) graphs this is the case since it is known that
approximating the cut size within any finite factor is NP-hard [1]
if each part is required to be of size at most dn/ke. For graph
classes in which the graphs are connected this result is however
not feasible. Therefore in Chapter 5 we give a positive answer
to the question when considering restricted graphs. We prove
that for solid grid graphs it is NP-hard to approximate the cut
size within nc for any constant c < 1/2. For trees we show
that their ability to have arbitrary vertex degrees leads to an
even worse situation, since for these graphs the statement is
true for any constant c < 1. Both of these hardness results are
asymptotically tight.

The above hardness results are gained using a reduction
framework that can be applied to arbitrary graph classes. We
identify some sufficient conditions that a graph class has to fulfil
in order to be hard for the k-BALANCED PARTITIONING problem.
Intuitively these conditions entail that using a limited amount
of edges, only a small number of vertices can be cut out from
a graph. A grid graph resembles a discretised polygon and
therefore also shares their isoperimetric properties. We are able
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to use this fact in order to meet the conditions for solid grid
graphs. For trees on the other hand, we gain this condition using
high vertex degrees. Considering this contrast between constant
degree grids and high degree trees, it is natural to ask what
the hardness of the problem on constant degree trees is. We
show in Chapter 5 that even if the maximum degree of the tree
is at most 5 the k-BALANCED PARTITIONING problem remains
NP-hard. For maximum degree 7 we can even show that the
problem is APX-hard. That is, there exists some constant within
which it is NP-hard to approximate the cut size for these trees.
In contrast, an algorithm by MacGregor [47] approximates the
cut size within α ∈ O(∆ log∆(n/k)), where ∆ is the maximum
degree. Together these results show that the complexity of the
problem grows with the degree when considering trees.

Another question comes to mind when considering the at-
tained bicriteria approximation algorithms for the k-BALANCED
PARTITIONING problem. There seem to exist two types of these
algorithms. One of them is fast but the ratio on the balance is
unsatisfactory. The other can approximate the optimal balance
arbitrarily close but is slow. This is because the runtime increases
exponentially when ε decreases. Can an algorithm be found that
combines fast runtime with a high-quality approximation of the
balance? This would be ideal for practical applications. In par-
ticular it seems conceivable that an algorithm could compensate
the cost of computing sets arbitrarily close to equal-sized, not in
the runtime but instead in the cut size. We are hence aiming for
a fully polynomial time algorithm for which the approximation
factor on the balance may increase when ε decreases. However
in Chapter 5 we show that, unless P=NP, no reasonable such
algorithm exists for solid grid graphs. In particular this is true
even when α = nc/εd for any constants c and d where c < 1/2.
For trees we can even show this for c < 1, while for general
graphs we prove it for any finite α. Hence the trade-off between
fast runtime and approximating the balance arbitrarily close, as
given by the above two algorithms, is necessary. These hard-
ness results are also obtained using the reduction framework
mentioned above. They are the first bicriteria inapproximability
results for the k-BALANCED PARTITIONING problem.
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1.3 The Structure of this Thesis

Throughout this thesis we assume that the reader is familiar
with basic graph theoretic and algorithmic concepts. For a
comprehensive summary of the former we refer to the book by
West [71], and to the books by Garey and Johnson [30] and
Vazirani [69] for the latter. Each chapter of this thesis will
begin with a short abstract outlining the presented results. We
will then give an introduction including an overview of the used
techniques and the related work. We will sketch the methods used
in the results of the related work that have a direct connection
to the presented work. A chapter will be closed by a section
giving further observations and open problems for the obtained
results. For easy access, an index on the definitions of all used
terms in this thesis is given at the very end. We will use similar
typographic variable names for variables of the same category.
A glossary can be found at the very end of this thesis.



Chapter 2

Optimal Bisections

In this chapter we consider the problem of cutting a solid grid
graph1 into two equally sized parts and using as few edges as
possible to do so. This is a special case of the k-BALANCED PAR-

TITIONING2 problem in which k = 2, and is commonly referred
to as the BISECTION problem. In the following we present an
algorithm that optimally solves the BISECTION problem on solid
grid graphs in O(n4) time. Computing approximate solutions is
considered in the next chapter.

The results in this chapter were obtained in collaboration with
Peter Widmayer and were published as an extended abstract [25].

2.1 Focusing on Segments

The BISECTION problem, in which a graph needs to be cut into
two equal-sized parts, has its own raison d’être. One particu-
lar motivation for this problem stems from divide-and-conquer
algorithms. On an abstract level the graph then represents a
problem instance and the interdependencies among its elements.

1Definition 1.2 page 4
2Definition 1.1 page 3

11
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Figure 2.1: An optimal bisection in a solid grid graph. The
cut edges are indicated by being thick. Note that the parts of the
bisection are not connected.

It needs to be divided into two equal-sized sub-instances which
are recursively solved. The two solutions are then put together
to form a solution to the overall instance. Typically this can
be done faster the fewer dependencies exist between the two
sub-instances. For example the MINIMUM FEEDBACK ARC SET

problem can approximately be solved in polynomial time using
this technique [64]. This problem frequently appears in appli-
cations such as analysing the control structure of a computer
program, and code optimisation [59].

In the following sections we show how to compute an optimal
solution to the BISECTION problem for solid grid graphs (Fig-
ure 2.1). Any partition of the vertex set of a graph into two sets
of size at most dn/2e each is called a bisection. The cut size of
an optimal bisection is called the bisection width of the given
graph. Formally the problem is defined as follows.

Definition 2.1 (BISECTION). Given a graph G = (V,E) find a
bisection that minimises the cut size.

The presented algorithm to solve this problem uses a dynamic
programming scheme which is based on recursively building the
cut using basic building blocks called segments. To define them
it is convenient to consider the dual graph of a grid graph. For
any planar graph G the dual (multi-)graph D contains the faces
of an embedding of G as vertices. There is an edge in D between
any two faces that share an edge of G. We say that these edges
in G and D correspond to one another.
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Definition 2.2 (segment). Given a planar graph G = (V,E)
and its dual graph D, a set of edges s ⊆ E of G is called a
segment if the set of corresponding edges in D form a simple
cycle.

Instead on concentrating on the vertex sets of the desired
bisection we will focus on the segments that are needed to cut
them out. Accordingly we define a cut as a set of segments. Our
algorithm goes through each segment in a solid grid graph and
recursively compute a partial solution for it. The main reason
why optimal bisections can be computed in polynomial time for
solid grid graphs is that there are only a polynomial number
of segments that need to be considered. In order to show our
claimed runtime of O(n4) it is therefore necessary to thoroughly
analyse the structure of the needed segments.

2.1.1 An Overview of the Used Techniques

Our approach is based on two key findings. The first one limits
the shapes of the segments needed to bisect a solid grid, and it
bounds the number of cut edges in an optimum cut. The second
one uses these limits in a dynamic program.

We recall from the work by Papadimitriou and Sideri [54]
that it is enough for an optimum cut to limit the segments to
the shape of a straight line, a corner, a stair, a clamp, or a
square (cf. Figure 2.2), with one small variation: for the sake of
being able to cut off exactly the desired number of vertices, a
side-step by one grid cell can be present that we call a break and
define precisely later. Furthermore, we show that a single stair,
clamp, or square segment (with or without break) is enough in
an optimum cut. That is, all others can be straight and corner
segments. In addition, we can bound the number of edges of
any segment in an optimum cut to O(

√
n), by recalling from the

results of Diks et al. [18] that the bisection width of a solid grid
graph on n vertices is O(

√
n).

We make use of these limitations on segments by explicitly
considering all possible stairs, clamps, and squares, without and
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with a break. For each of both parts into which such a segment
cuts the grid, we only consider straight and corner segments that
cut away exactly the desired number of vertices. We are able
to compute the optimal way to cut out any desired number of
vertices in each part using only straight and corner segments
in a dynamic program. This is done by splitting a part into
smaller pieces and recursively computing a solution for these. A
part has to be split several times in order to guarantee that the
optimal solution is found. We will define a set of splits that each
uses a subset of the considered segments to do so. We will show
that the number of necessary splits is small enough to guarantee
the claimed runtime.

The efficiency of our approach rests on the fact that there
are only O(n2) segments to be considered, since each segment
is defined by three parameters: first, one of the corners in its
shape (at one of at most n positions); second, the distance to a
(suitable) neighbouring corner of its shape (at most O(

√
n)); and

third, the potential position of a break (at most O(
√
n) possible

ones). We will show that only an additional multiplicative term
of O(n2) is needed to compute the optimal bisection. This proves
the claimed runtime of O(n4). Hence we improve on the formerly
fastest known algorithm for solid grid graphs by Papadimitriou
and Sideri [54] which runs in O(n5) time.

2.1.2 Related Work

Since this chapter is only concerned with solving the BISECTION

problem optimally, we defer the survey of related approximation
results to Section 3.1.1. For general graphs the BISECTION

problem is NP-hard [31]. This is true even if the graph has
maximum degree 3 [47], or it is regular [9]. Determining the
complexity of the BISECTION problem on planar graphs remains
a challenging open problem. If however weights are allowed on
the vertices it is possible to show that it is weakly NP-hard
for these graphs [55]. Also the complexity on grid graphs with
holes is not known. However Papadimitriou and Sideri [54]
gave a reduction from planar graphs to grid graphs with holes.
They introduce a huge (but polynomially sized) square shaped
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solid grid for each vertex in the embedding of the planar graph.
Each edge of the latter is substituted by a path between the
corresponding square grids. The resulting grid graph has the
same bisection width as the original planar graph.

For special graph classes polynomial time algorithms are
known. For instance, MacGregor [47] gave an O(n3) time algo-
rithm for trees. This algorithm is of central importance to the
algorithm for solid grid graphs presented in this chapter. It is
a dynamic program that recursively considers each edge in a
tree in a bottom-up fashion. More precisely, it computes the
optimal way to cut out m vertices from the currently considered
subtree rooted at an edge e, for each m. In order to do so it
decides whether to cut e using the precomputed solutions for
the subtrees rooted at the edges immediately below e. These
solutions first have to be combined in order to find the optimum
way to cut out m vertices from all these subtrees. This combina-
tion technique, known as computing the min-convolution, is also
used in our algorithm presented in this chapter. Computing the
min-convolution can be done in linear time. Since for each edge
in the tree an optimal solution has to be computed for every
possible value of m, the runtime of O(n3) follows. Using a more
sophisticated amortised runtime analysis it is possible to show
that MacGregor’s algorithm actually runs in time O(n2). This
was noted in [32] and a corresponding runtime analysis can be
found in [28] for a related problem.

The algorithm presented in this chapter improves on the for-
merly fastest known algorithm for solid grid graphs by Papadim-
itriou and Sideri [54] which runs in O(n5) time. Their algorithm
is based on the intuition that a solid grid resembles a discretised
simple polygon. Accordingly their work was extended [41] to
compute (approximate) bisections in simple polygons, for which
it was also shown that the problem is NP-hard. For solid grid
graphs, it was shown [54] that in an optimal solution all segments
correspond to simple cycles containing the exterior face in the
dual graph. Hence all segments end at the boundary of the
given solid grid graph. The idea is then to consider two edges
at the boundary of the grid which split the boundary into two
continuous pieces. For each such piece a solution is computed
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that contains only segments that end at this piece. This is done
recursively using the precomputed solutions for those pieces of
the boundary that are contained in the considered one. In par-
ticular the considered piece of the boundary is split into two by
each edge lying on it. Hence the resulting dynamic programming
scheme needs to consider all O(n2) pairs of edges to define a
piece of the boundary. Additionally it needs to split such a piece
using each of the at most O(n) edges in it. Since the algorithm
needs O(n2) time to compute the optimal m-cuts for each such
triple of edges, the overall runtime is O(n5).

Other graph classes for which optimal solutions can be com-
puted in polynomial time include hypercubes [52], ordinary two
and three dimensional meshes [61], and bounded tree-width
graphs [66]. For a survey see [15]. In the PRAM model Gold-
berg and Miller [32] show that the BISECTION problem on trees
can be solved in O(log2 n log log n) time on O(n2) processors.

2.2 Properties of Optimal m-Cuts

For our dynamic program we need to generalise the BISECTION

problem to cutting out any number m of vertices.

Definition 2.3 (m-cut). An m-cut is a set of segments that,
when removed from the graph, leaves a spanning subgraph that
contains a set of connected components including exactly m
vertices. We say that an m-cut S cuts out the m vertices of
these connected components. The A-part of an m-cut S is the
set of vertices of size m cut out by S. Accordingly the B-part
contains the other n−m vertices. Given an m-cut S we call the
number of edges

∑
s∈S |s| in S its cut size, and we call an m-cut

that minimises the cut size over all m-cuts optimal .

Notice that some edges may be counted several times in the
sum measuring the cut size. However, edges that appear more
than once in different segments can be removed from an m-cut.
This is why this generalisation does not change the optimal
solution.
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In order to prove our claimed results we need to analyse the
types of segments that may occur in an optimal m-cut. We first
recall from [54] that these only include so called straight, corner,
stair, clamp, and square segments. Thereafter we will prove
that at most one of the segments in an optimal m-cut is not a
straight or corner segment. We begin by formally defining the
above types of segments (Figure 2.2) with the help of the dual
(multi-)graph D of a solid grid graph G. In the following any
face refers to a face of G, i.e. a vertex of D. Let s be a segment
in G such that the simple cycle p corresponding to s in the dual
D includes the exterior face. An interior face f in D lying on p
is called a bend of s if f touches two edges e1, e2 ∈ s such that
e1 and e2 share a vertex. We say that the bend f points in two
directions : the directions are up and right if e1 and e2 lie above
and to the right of f , and analogously they can be down or left
if the edges lie appropriately. Two bends of s are said to point in
opposing directions if they do not share any direction in which
they point. If they share at least one direction they are said to
point in a common direction. A break of s is an edge e ∈ s such
that e touches two bends of s that point in opposing directions.
Let q be a sub-path of p such that q starts and ends in two faces
f1, f2 of D and f1 and f2 are bends of s or equal the exterior
face f∞. The subset b of s corresponding to q is called a bar of
s if no face on q between f1 and f2 is a bend of s or equal to
f∞. The bar b is said to end at the two faces f1 and f2. The
subset b is called a broken bar of s if b can be partitioned into
three bars of s and the one ending neither at f1 nor at f2, i.e.
the middle one, consists of a break of s. Also the broken bar b
is said to end at the two faces f1 and f2. Two bends of s are
called consecutive if there is a bar of s ending at them.

Definition 2.4 (straight, corner, stair, clamp, square segment).
A segment s is called

• a straight segment if it has no bend.

• a corner segment if it has exactly one bend.

• a stair segment if any consecutive bends of s point in
opposing directions. Additionally, if s has no break then
it has exactly two bends. Otherwise it contains a broken
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Figure 2.2: The types of segments occurring in optimal m-cuts.
In this order from left to right: straight and corner segments,
stair segments with and without breaks in the top row. Clamp
segments with and without breaks, and square segments without
and with breaks in the bottom row.

bar b such that s \ b constitutes at most two bars each of
which ends at f∞.

• a clamp segment if there are two bends f1, f2 of s pointing
in a common direction. Additionally s can be partitioned
into (1) a bar or broken bar b ending at f1 and f2, and (2)
two bars that both end at f∞.

• a square segment if there are three bends f1, f2, f3 of s
such that s can be partitioned into (1) a bar or broken bar
b ending at f1 and f2, (2) a bar b′ ending at f2 and f3,
and (3) two bars ending at f∞ and f1 or f3, respectively.
Additionally each of the pairs f1, f2 and f2, f3 point in
a common direction, and if b is a broken bar then f1 and
its consecutive bend of s touching the break, point in a
common direction. Moreover |b′| ≤ l ≤ |b′|+ 1, where l is
the length of b without counting its breaks. That is, l = |b|
if b is a bar, and l = |b| − 1 if b is a broken bar.

In the latter three cases, if b is a broken bar we refer to its break
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as the break of s. For a corner, clamp, or square segment s let
v ∈ V be the vertex of the grid graph that is shared by the edges
touching the bend f1 of s. The part cut out by s including v is
referred to as convex , and the other part as concave.

The next lemma states that there exists an optimal m-cut
containing only the types of segments in the above definition. It
follows from observations given in [54].

Lemma 2.5 (follows from [54]). There is an optimal m-cut con-
taining only straight, corner, stair, clamp, and square segments.

Proof sketch. In their paper, Papadimitriou and Sideri identify
the same types of segments as given in Definition 2.4 for an
optimal m-cut. However they also name segments which have the
shape of a staircase as possible candidates [54, Lemma 4]. These
are segments that are monotone in x- and y-direction and hence
represent a generalisation of stair segments, as defined above.
Additionally the authors present a procedure [54, Lemma 3] with
which it is possible to convert a staircase shaped segment into a
stair segment. It considers the symmetric difference between the
cut out parts of the two segments. This difference is decreased
by finding two vertices in each of the two parts cut out by the
staircase shaped segment, and swapping them between the parts.
Moreover, this can be done so that the resulting parts are again
cut out by a staircase shaped segment of the same length. By
repeating this procedure the m-cut is transformed into one that
contains only segment types as listed in Definition 2.4.

Furthermore at most one segment in an optimal m-cut is not
a straight or corner segment. We prove this by shifting pieces of
cut out areas from one segment to another. This is done so that
the overall cut out area stays the same while the cut size does
not increase.

Theorem 2.6. There is an optimal m-cut that contains only
straight and corner segments except at most one which is either
a stair, clamp, or square segment.
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Figure 2.3: The vertices vA and vB (large dots) of a segment
with break, and a stair, clamp, and square segment without break,
respectively.

Proof. According to Lemma 2.5 we can assume that an optimal
m-cut S contains only straight, corner, stair, clamp, and square
segments. Let A and B be the parts cut out by S. It is easy to
see that in an optimal m-cut there are no two segments sharing
an edge, since such an edge could be removed from both segments
to yield an m-cut of smaller cut size. Hence all vertices incident
to an edge in some segment s ∈ S and belonging to one of the
cut out parts of s, also belong to either one of A or B. We
assume that there are at least two segments in S that are not
straight or corner segments and show how to convert S into
another optimal m-cut containing at most one of these types
of segments. For this we will identify two vertices vA ∈ A and
vB ∈ B for any stair, clamp, and square segment s, and are
incident to some edge from s each. Such a vertex vP , where
P ∈ {A,B}, can be removed from P and added to the other
part P ∈ {A,B} \ {P} by only slightly changing the shape of s
(Figure 2.3). More concretely, of the incident edges to vP some
belong to s and others do not. The vertex vP will be chosen
such that the segment s′ including all edges from s except those
incident to vP , but additionally including those incident to vP
that are not contained in s, is a straight, corner, stair, clamp,
or square segment. Hence if s is exchanged with s′ the set P
loses the vertex vP in the cut. Notice that the segment s′ may
not exist since some of the edges incident to vP may touch the
exterior face of the grid graph. In this case the claimed segment
s′ is split into (at least) two segments by the boundary of the grid
graph. Due to [54, Lemma 3], it is however possible to convert
the resulting segments into straight, corner, stair, clamp, or
square segments analogous to the way it is done for Lemma 2.5
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above. These segments can then just as well be used in the
following arguments and hence this special case will be ignored
from now on.

Since we assume that S contains at least two segments that
are not straight or corner segments, we can find another segment
t ∈ S such that we can give back the lost vertex to P . We do this
by accordingly exchanging t with a segment t′ such that a vertex
vP from the other part P ∈ {A,B} \ {P} is lost from P . Hence
after exchanging both s and t with s′ and t′ respectively, the new
set of segments is again an m-cut containing only straight, corner,
stair, clamp, and square segments. We need however to make
sure that the cut size of the resulting m-cuts is non-increasing
during these exchange steps, i.e. a step in which two segments
are exchanged, in order to preserve optimality. This is not
always possible for single exchange steps but we will show that
there always exists a series of exchange steps for the considered
segments s and t that lead to non-increasing cut sizes.

We now list the vertices vA and vB for each stair, clamp, and
square segment. For any segment s with a break the two vertices
are those incident to the break of s. If s is a stair segment
without break then let f1 and f2 be the two bends of s. In this
case one of the two vertices vA and vB is the one shared by the
two edges from s touching the bend f1, and the other vertex is
the one shared be the two edges from s touching f2. If s is a
clamp or square segment without break then let f1 and f2 be the
bends and b the bar of s as in Definition 2.4. In this case one of
the two vertices vA and vB is the one incident to the edge from b
touching the bend f1 and lying in the concave part cut out by s.
The other vertex is the one incident to the edge from b touching
f2 and lying in the convex part cut out by s. It is easy to check
that in all of these cases each of the vertices vA and vB has the
property that the corresponding segment s′, as described above,
is again a straight, corner, stair, clamp, or square segment. In
particular, also for square segments the properties on the lengths
of the two (broken) bars b and b′ are preserved.

If a vertex vP , where P ∈ {A,B}, has more incident edges
that are not contained in the respective segment s than edges
that are, then the corresponding segment s′ contains more edges
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than s and thus the cut size may increase if s is exchanged with
s′. Note however that this can only happen if s is a clamp or
square segment without break and vP is contained in the concave
part cut out by s. Therefore if S contains two stair segments s
and t, we can use the vertex vA for s and vB for t to exchange
s and t with s′ and t′ respectively without increasing the cut
size. It cannot be that s′ or t′ shares an edge with some other
segment from the resulting m-cut, since such a shared edge could
be removed which would result in an m-cut of smaller cut size.
Hence this exchange step can be repeated until one of the two
segments is replaced with a straight or corner segment. Thus the
resulting m-cut is optimal and has one stair segment less than
S. Similarly if s is a clamp or square segment and t is a stair
segment, we fix P ∈ {A,B} to be the set for which vP for s lies in
the convex part cut out by s. We can then exchange s and t with
corresponding segments s′ and t′ repeatedly without increasing
the cut size. Clearly also in this case one of the segments will at
some point be exchanged by a straight or corner segment.

If both s and t are clamp or corner segments let the respective
(broken) bars referred to as b in Definition 2.4 be bs and bt. We
assume w.l.o.g. that |bs| ≤ |bt|. Fix P ∈ {A,B} such that vP
for s lies in the convex part cut out by s. If vP for t lies in the
convex part of t then clearly we can find a sequence of exchange
steps as above for which the cut size does not increase. Also
in the resulting m-cut one of the segments was subsequently
replaced by a straight or corner segment. However if vP lies in
the concave part, as noted above the cut size is increasing if t has
no break. Therefore in this case we need to consider a sequence
of exchange steps until s is subsequently replaced with a segment
s′ that does not have a break. The number of these steps is
at most |bs| and the segment s′ contains two edges less than s.
Since |bs| ≤ |bt|, there can be at most one segment subsequently
replacing t that does not have a break in this sequence of steps.
Hence the corresponding resulting segment t′ can only have at
most two edges more than t. All vertices that are exchanged
between A and B during this sequence are incident to edges
in s and t in the respective convex and concave cut out parts.
Thus in each step the vertices vA and vB always exist for the
corresponding segments in the exchange sequence. As above it
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cannot happen that s′ and t′ share edges with other segments
in the resulting m-cut since this would be a contradiction to
optimality. Hence also for this case we can find a sequence
of exchange steps for which the cut size is non-increasing and
the resulting m-cut contains one clamp or square segment less
than S.

The proof is concluded by noticing that we can repeat this
procedure for all pairs of segments that are neither straight nor
corner segments until at most one such segment remains.

As a consequence of the above theorem the obvious way to
proceed at this point would be to consider each stair, clamp, and
square segment explicitly in the algorithm, as described in the
introduction. However the runtime would in this case be larger
than claimed since, for instance, there are Θ(n3) stair segments
in the worst case. Not all of these will appear in an optimal
m-cut though, since some of them are too large. This follows
from the fact that the maximum degree of a grid graph is 4, and
a result by Diks et al. [18] who showed that the cut width of
any planar graph of maximum degree ∆ is O(

√
∆n). The cut

width is defined as follows. For any graph a linear layout is a
bijection f of the vertex set V to {1, . . . , n}. The cut width of
f is the maximum number of edges over all i ∈ {1, . . . n − 1}
that connect those vertices v ∈ V for which f(v) ≤ i with those
for which f(v) > i. For a graph the cut width is the minimum
cut width over all its linear layouts. Clearly the cut width of a
planar graph3 is an upper bound on the cut size of the optimal
m-cut for any m. Thus the following theorem follows.

Theorem 2.7 (follows from [18]). The cut size of any optimal
m-cut in a grid graph is O(

√
n).

This means that by further restricting some of the segments
to such ones that contain at most O(

√
n) edges we are able to

reduce the runtime.

3This can easily be generalised to non-planar graphs by defining m-cuts
accordingly for that setting.
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2.3 Computing Optimal m-Cuts

In this section we present an algorithm to compute optimal
m-cuts in solid grid graphs. We do this by assuming that we are
given a solid grid graph G and a family S of straight, corner, stair,
clamp, and square segments in G. In order to obtain the claimed
runtime, of the segments with breaks we include only those
having a length of O(

√
n) in S. According to Lemma 2.5 and

Theorem 2.7 it suffices to compute an optimal m-cut that only
uses segments from S. More formally, for any family of segments
T we say that any m-cut S is T -restricted if S ⊆ T , and our
goal is to compute an optimal S-restricted m-cut. Additionally
we assume that we are given the set C ⊆ S of straight and corner
segments in G. We call an m-cut that is C-restricted a corner
m-cut . According to Theorem 2.6 we know that any optimal
S-restricted m-cut contains at most one segment that is not
from C.

One crucial observation needed to construct the dynamic
program is that we can assume that no segments cross in the
optimal m-cut. Note that a simple cycle in the dual of a planar
graph corresponds to a closed curve in the embedding of the dual
graph in the plane. Hence the cycle divides the plane into an
interior and an exterior area. We say that a pair of cycles cross
if the corresponding closed curve of one of them, both contains
points belonging to the interior and the exterior area into which
the other cycle divides the plane. Note that any pair of simple
cycles that cross can be seen as a (different) pair of simple cycles

Figure 2.4: A crossing and an equivalent non-crossing m-cut
containing two segments. The segments are indicated by a dashed
and a dotted line.
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that do not cross (Figure 2.4). Hence we may limit ourselves to
cuts in which no segments cross and we call these non-crossing .

The idea behind the algorithm is to guess a stair, clamp, or
square segment s ∈ S\C from which we know that it is contained
in the optimal solution and all other segments are straight and
corner segments from C. The case when the optimum is a corner
m-cut is dealt with separately. We split the graph into the two
parts A(s) and B(s) cut out by s. If the optimum corner cuts in
these two parts are known, then these can be used to compute
the optimum containing s. That is, we can compute the optimal
cut size Cs(m) of a non-crossing m-cut that contains s and only
segments from C otherwise. Let for a part P ∈ {A(s), B(s)}
the set CP include every segment t ∈ C that cuts out a part
A(t) ⊆ P . Let also CP (m) denote the optimal cut size of a
CP -restricted m-cut such that the m vertices are cut out from P .
We define the value of CP (m) to be infinite if no such cut exists.
Using CA(s)(·) and CB(s)(·) we compute Cs(m) as follows. The
corresponding m-cut cuts out some number m′ of the vertices
from A(s), and the remaining m−m′ from B(s). The cuts in
A(s) and B(s) must be of minimum cut size since they could
otherwise be exchanged with better ones decreasing the overall
cut size Cs(m). Since s is included in the m-cut, the cut size of
the segments cutting out vertices from A(s) is either CA(s)(m

′)
or CA(s)(|A(s)| − m′). In the former case the cut size of the
segments in B(s) is CB(s)(|B(s)| − (m−m′)), while in the latter
it is CB(s)(m−m′). Thus the optimal cut size is

Cs(m) = min{|s|+ CA(s)(|A(s)| −m′) + CB(s)(m−m′),
|s|+ CA(s)(m

′) + CB(s)(|B(s)| − (m−m′)) |
m′ ∈ {0, ...,m}}. (2.1)

According to Theorems 2.6 and 2.7, taking the minimum over
all s ∈ S\C of all computed values Cs(m) correctly computes the
optimal m-cut if it contains a segment from S \C. To handle the
case when the optimum only contains segments from C, we define
CP (m) and CP accordingly for any s ∈ C and P ∈ {A(s), B(s)}.
Notice that then s ∈ CP since s is a segment from C that cuts
out P . We treat this special case by also taking the cut size
CP (m) of a segment s ∈ C for which CP = C into account in the
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final step. Such a segment can easily be found by considering
an arbitrary segment in C that cuts out a single vertex from the
given grid graph. Hence also considering the corresponding value
CP (m) correctly finds the optimal solution. Note that given the
functions CP (·), for a fixed m the algorithm takes O(

∑
s∈S\C n)

time to compute the optimum m-cut according to Equation (2.1).
This is because for each segment s ∈ S \ C it needs to consider
all possible values for m′.

It remains to be shown how the optimal cut sizes CA(s)(·)
and CB(s)(·) of the corner cuts in the parts A(s) and B(s) are
computed for any s ∈ S. The main inspiration for this part
of our algorithm is taken from the corresponding algorithm for
trees [47], as described in Section 2.1.2. In a tree the segments
correspond to single edges and a dynamic program is used to
compute an optimal m-cut bottom-up from the leaves to the
root. For each edge e of the tree the algorithm computes the
optimal solution for the subtree at e. It then decides whether
to include e in the solution by considering the optimal cuts in
the subtrees immediately below e. Combining the cuts in the
subtrees in order to compute the optimum up to e is easy since
they do not interfere with one another.

For our case we proceed in a similar way as for trees by
computing the cut size CP (m) of an optimal CP -restricted m-cut
for every m ∈ {0, ..., n} in each part P ∈ {A(s), B(s)} cut out
by a segment s ∈ S. We will decide whether to include s into
the solution for the part P by considering the cuts computed for
segments cutting out parts from P . However these solutions do
interfere with one another since the parts can overlap. In order
to circumvent this problem the idea is to guess where P has to
be split so that each segment of the non-crossing optimum is
contained in one of the resulting pieces of P . We use segments
from S cutting out parts in P for splitting in order to be able
to proceed recursively. To find the correct way to split a part
we give the following definition.

Definition 2.8 (IFS). Let P ∈ {A(s), B(s)} be a part cut out
by a segment s and let S denote a set of segments such that
each t ∈ S cuts out a part A(t) ⊂ P . The set S is called an
interference-free set (IFS) in P if A(t) ∩A(t′) = ∅ for each pair
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t 6= t′ from S. Let P(S) be the set containing all parts A(t) ⊂ P
cut out by the segments t ∈ S. Let also the set CP(S) contain
all segments from CP that cut out a part included in A(t) for
some t ∈ S.

Note that s itself cannot be contained in an IFS in P ∈
{A(s), B(s)}. In order to find the cut size of an optimal non-
crossing corner m-cut in P we will split P according to each
IFS from a small predefined set of IFSs in P . We will need one
such predefined set for each part cut out by a segment s ∈ S
and hence call them KA(s) and KB(s) respectively. In the next
section we will show that for each considered cut out part we can
find such a set that is small enough in order to guarantee the
claimed runtime. The IFSs in the set include segments from S
and together have the property that they cover all IFSs including
segments from C in P , in the following sense.

Definition 2.9 (IFS covering set). Let s ∈ S cut out a part
P ∈ {A(s), B(s)}. An IFS covering set KP ⊆ 2S includes IFSs
in P such that for any IFS S ⊆ C also in P , there is a set
S∗ ∈ KP for which S ⊆ CP(S∗).

Fix an IFS covering set KP for the part P cut out by the
segment s we are considering. For any IFS S in P let CP(S)(m)
denote the optimal cut size of a CP(S)-restricted m-cut such
that the m vertices are cut out from P . We define the value of
CP(S)(m) to be infinite if no such cut exists. To compute the cut
size of the optimal corner m-cut in P we can split P according
to each IFS S∗ ∈ KP and make use of the functions CP(S∗)(·).
To see this we show that any non-crossing corner m-cut T in
P is CP(S∗)-restricted for some S∗ ∈ KP . Consider the set T ′

of segments containing any t ∈ T \ {s} that cuts out a part
A(t) ⊂ P such that there is no other segment t′ ∈ T \ {s} that
cuts out a superset A(t′) ⊂ P of A(t). Since T is non-crossing
the set T ′ is an IFS. Since also T ′ ⊆ C, by the definition of an
IFS covering set this means that T \ {s} is CP(S∗)-restricted for
some S∗ ∈ KP . Hence the optimal non-crossing corner m-cut in
P is (CP(S∗) ∪ {s})-restricted for some S∗ ∈ KP .

By the above observation, we need only consider the sets
S∗ ∈ KP and pick the solution that has the minimum cut size
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according to the functions CP(S∗)(·) to compute the optimum in
P . If s ∈ C we also need to consider the case when s is included
in the solution. In this case the number of cut out vertices from
P is |P | −m. Hence for any s ∈ S and P ∈ {A(s), B(s)}, in
case the IFS covering set KP is non-empty, if s ∈ S \ C then

CP (m) = min{CP(S∗)(m) | S∗ ∈ KP }, (2.2)

and if s ∈ C then

CP (m) = min{CP(S∗)(m), |s|+ CP(S∗)(|P | −m) |
S∗ ∈ KP }. (2.3)

In the other case when KP is empty there are no segments
that cut out a subset of P . Hence then CP (0) = 0 and if
s ∈ C also CP (|P |) = |s|. All other values of CP (·) are infinite.
Thus computing the table containing all values of the functions
CP (·) takes O(n ·

∑
s∈S |KA(s) ∪ KB(s)|) steps if all values of the

functions CP(S∗)(·) of corresponding IFSs S∗ are given.

The last missing part of this section is to show how a function
CP(S)(·) for a non-empty IFS S in a cut out part P of a segment
from S can be computed. In order to find the cut size CP(S)(m)
of an optimal CP(S)-restricted m-cut, the algorithm will combine
the solutions computed for the segments in S in the same way
the solutions for subtrees were combined in the algorithm for
trees in [47]. The used technique is known as forming the min-
convolution. If S contains only a single segment t then obviously
CP(S)(m) = CA(t)(m), where A(t) ∈ P(S). In case S contains
more than one segment, the value of CP(S)(m) can, for any fixed
t ∈ S, be recursively computed using the solutions to the IFS
S \ {t} and the solution for the part A(t) ∈ P(S). An optimal
CP(S)-restricted m-cut must cut out some number m′ of the m
vertices cut from A(t). The remaining m−m′ vertices are taken
from the parts in P(S \ {t}). Thus finding the minimum cut size
among all possible values of m′ will find the optimal solution.
Hence the following equation is correct.

CP(S)(m) = min{CA(t)(m
′) + CP(S\{t})(m−m′) |

A(t) ∈ P(S) ∧m′ ∈ {0, ...,m}}. (2.4)
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1. for all s ∈ S and all S∗ ∈
⋃
P KP do:

• compute CP using CP(T∗), (Eqn. (2.2), (2.3))
where P ∈ {A(s), B(s)} and T ∗ ∈ KP .

• compute CP(S∗) using CP , (Eqn. (2.4))
where P ∈ P(S∗).

2. for all s ∈ S \ C do:

• compute Cs using CA(s) and CB(s). (Eqn. (2.1))

3. return min{Cs(m), CP (m) | s ∈ S \ C ∧ CP = C}

Figure 2.5: The overall structure of the algorithm to compute
an optimal m-cut.

To evaluate the right hand side of Equation (2.4) we need
only consider values of m′ that are at most the number of vertices
in A(t) since all other values of CA(t)(·) are infinite. This means
that we can amortise the runtime needed to compute all values
of CP(S)(·) for a particular IFS S to O(

∑
P∈P(S) n|P |) = O(n2).

This is true because we need to consider at most all the n+ 1
possible values of m for each P ∈ P(S) while the parts in P(S)
are disjoint. To compute all values of CP (·) for all segments in S
we need to compute all values of CP(S∗)(·) for all IFSs in all IFS
covering sets for all segments in S. Hence computing the whole
table for all values of CP(S∗)(·) takes O(n2 ·

∑
s∈S |KA(s)∪KB(s)|)

time. Therefore the runtime of the algorithm (Figure 2.5) is
dominated by the time needed to compute the table containing
the values of the functions CP(S∗)(·).

2.4 Counting Segments and IFS
Covering Sets

In Section 2.3 we have seen that we can efficiently compute
optimal m-cuts for solid grids if the number of considered seg-
ments and IFS covering sets is small. Hence we need to identify



30 Chapter 2. Optimal Bisections

a small IFS covering set KP for each considered cut out part
P ∈ {A(s), B(s)} and s ∈ S. In this section we will prove
that the runtime of the given algorithm is O(n4) as claimed,
by counting the number of segments and the sizes of the IFS
covering sets. In order for the involved sets not to be too large,
the set S includes only straight, and corner segments, together
with the stair, clamp, and square segments without breaks. It
also contains all stair segments that consist of only a broken bar.
Additionally S contains all stair, clamp, and square segments
with breaks that have at most c

√
n edges, for some constant c

according to Theorem 2.7. The latter theorem together with
Lemma 2.5 guarantees that these sets C and S suffice in order to
compute an optimal m-cut using the algorithm in Section 2.3.

According to the results in Section 2.3 we need to show that∑
s∈S |KA(s)∪KB(s)| ∈ O(n2) and that all required segments and

IFS covering sets can be found efficiently, in order to guarantee
a total runtime of O(n4). We start by counting the number of
segments for each segment type.

Lemma 2.10. There are O(n) straight and corner segments,
and O(n) stair segments consisting of only a broken bar. Also
there are O(n2) stair, clamp, and square segments without breaks,
and O(n2) of these segments with breaks having a length of at
most c

√
n. Furthermore all of these segments can be enumerated

in time O(n2).

Proof. According to Definition 2.4 a straight segment does not
have any bends. We can identify such a segment with one of
its edges that touches the exterior face of the grid graph. Since
the grid has O(n) edges there are also at most O(n) straight
segments. A corner segment on the other hand can be identified
by its bend and the direction into which it points. Since there
are four possible directions and O(n) faces in the grid graph
that can be bends, there are O(n) corner segments.

There are O(n2) stair, clamp, and square segments without
breaks since according to Definition 2.4 each such segment can
be identified with the respective bend f2, the directions in which
f2 points (the directions in which the other bends point is de-
termined by this), and a distance to the consecutive bends of
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f2 (which, in the case of a square segment, amounts to choosing
the length of the bar b and one of two possible lengths for b′).
Since there are O(n) faces in the grid graph that can be used
for f2, four directions in which to point, and the distance can
be at most n, the result follows.

For segments with breaks each choice of the above three
parameters also leaves the choice of a position of the break
along the length of the respective broken bar. If the segment is
a stair segment consisting of only a broken bar then the only
choice is its break and the direction in which the bends point.
Thus there are only O(n) many such segments. For all other
segments with breaks the length of the segment is assumed to
be at most c

√
n. Therefore there are only O(

√
n) choices for

the distance between the bends. This also means that there
are O(

√
n) possible positions for the break, and hence the total

number of segments with breaks is again O(n2).

The above counting arguments clearly give a straightforward
way of enumerating all these segments too. Hence they can be
found in time O(n2).

Next we identify the IFS covering sets used for each of the
segments s ∈ S and their cut out parts. We will prove that there
is an IFS covering set of constant size for each segment in S \ C,
and a linear sized set for each in C. The given construction of
the sets can be used to compute them in a preprocessing step of
the algorithm in O(n2) total time.

In the following we will count the number of IFSs in the
IFS covering sets for every type of segment separately. Given
a segment s of a certain type and P ∈ {A(s), B(s)} we will
construct a covering set KP . According to Definition 2.9, for
each case we need to show that for any IFS S ⊆ CP there exists
a set S∗ ∈ KP for which S ⊆ CP(S∗). In all cases, if CP = ∅
then KP = ∅ is an IFS covering set. Hence in the following
we assume that CP 6= ∅. To prove our claims we need to give
the respective segments an orientation in the given grid graph
G. Therefore we define horizontal respectively vertical edges
of G to be those for which the incident vertices have the same
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y- respectively x-coordinates. A horizontal bar of a segment
contains only vertical edges, and a vertical bar only horizontal
edges. A horizontal respectively vertical broken bar of a segment
contains two horizontal respectively vertical bars.

In all but the case of square segments with breaks we will
ignore the fact that some of the segments in the claimed IFS
covering set may partially lie outside of the grid graph in the
following proofs. The reason why we can ignore these special
cases is that if any segment, except for a clamp or square segment
with a break, is split at any point (by the border of the grid
graph) then the resulting segments that lie inside the grid graph
are all segments of types again included in S. Hence these can be
used for the IFS. On the other hand, splitting a clamp or square
segment s with a break may not result in a set of segments
from S. For clamp segments our choices of the IFSs will however
never result in segment types not in S. We will therefore only
need to handle the case of square segments separately.

We begin with the segments in C and show that their IFS
covering sets are linear sized. As the next lemma shows the case
of straight segments and the convex part cut out by a corner
segment are very similar.

Lemma 2.11. Consider a straight or corner segment s ∈ C in a
solid grid graph G. Let in the latter case P ∈ {A(s), B(s)} such
that P is the convex part cut out by the corner segment, and
P ∈ {A(s), B(s)} arbitrary otherwise. There is an IFS covering
set KP containing O(n) IFSs.

Proof. If s is a straight segment (Figure 2.6(a)) assume w.lo.g.
that s is a horizontal bar and that the upper vertices incident to
the edges of s are those belonging to P . If s is a corner segment
(Figure 2.6(b)) we assume w.l.o.g. that its bend points up and
right. Let in both cases b be the horizontal bar of s, i.e. if s is a
straight segment then b = s.

Let T ⊆ CP \ {s} contain all segments from CP different
from s that include edges from b. Since any straight segment
including edges from b is either s itself or cuts out vertices not in
P , the segments in T are all corner segments with bends that are
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(a) straight segment

(b) corner segment: convex part

(c) corner segment: concave part

Figure 2.6: The IFS covering sets for straight and corner
segments s. The segment s is indicated by the dotted line and
the segments in an IFS by the dashed lines.
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interior faces touching two edges of b. Let t ∈ S be the segment
cutting out all vertices from P except those incident to b. If s is
a straight segment t is a clamp segment without break, a corner,
or straight segment. If s is a corner segment, depending on the
length of b, t is either a corner or a stair segment without break.
For the IFS S∗1 = {t} in P it holds that CP(S∗1 ) = CP \ (T ∪ {s})
since the only edges that can not be used to form a segment from
CP(S∗1 ) are those in b. Hence for any IFS S ⊆ CP which does not
contain a segment from T it holds that S ⊆ CP(S∗1 ). Let u ∈ T
be a corner segment cutting out A(u) from P . All vertices in
P \A(u) are cut out by a segment u′ which is a corner segment
if s is a straight segment. If s is a corner segment then u′ is a
clamp segment without break. Consider the case when an IFS
S ⊆ CP contains u. Since the vertices not cut out by u from P
are cut out by u′ we know that S ⊆ CP(S∗u), where S∗u = {u, u′}.
Hence the set KP containing S∗1 and the S∗u for all segments
u ∈ T is an IFS covering set. Since by Lemma 2.10 there are
O(n) segments in T the size of KP is also O(n).

Concerning segments in C we are left with the case when
the cut out part of a corner segment is concave. The following
lemma handles this case.

Lemma 2.12. For any corner segment s ∈ C in a solid grid
graph G and P ∈ {A(s), B(s)} such that P is the concave part
cut out by s, there is an IFS covering set KP containing O(n)
IFSs.

Proof. Assume w.l.o.g. that the bend of s points left and down
(Figure 2.6(c)). We denote the horizontal bar of s by b1 and
the vertical bar by b2. Let for j ∈ {1, 2} the set Tj ⊆ CP \ {s}
contain all segments from CP different from s that include edges
from bj . There is a corner or clamp segment without break
tj ∈ S that cuts out all vertices from P except those that are
incident to edges in bj . For the IFS S∗j = {tj} in P it holds that
CP(S∗j ) = CP \ (Tj ∪ {s}) since the only edges that can not be

used to form a segment from CP(S∗j ) are those in bj . Hence for

any IFS S ⊆ CP which does not contain a segment from Tj it
holds that S ⊆ CP(S∗j ).
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We are left with the case when an IFS S ⊆ CP in P both con-
tains a segment u1 from T1 and u2 from T2 (note that T1 ∩ T2 = ∅
since these sets only contain straight and corner segments dif-
ferent from s). One of these two segments, say u1, must have a
bend f that is a face touched by two edges of s. Otherwise u1

and u2 would cross at the bend of s which is a contradiction to
the fact that S is non-crossing. There is a corner segment r ∈ T1

that has f as its bend which for r points left and up. Note that
r may or may not be equal to u1 since u1 may point left or right.
In any case however, r and u1 share the same vertical bar, while
the horizontal bar of r is part of b1. This means that no segment
in S crosses r. We can thus conclude that any segment in S
either cuts out vertices from A(r) or from P \A(r), where A(r)
is the part cut out by r from P . The vertices in P \A(r) are cut
out by either a straight or a stair segment without break r′ ∈ S,
depending on whether the horizontal bar of r is equal to b1 or
not. Hence for the IFS S containing u1 it holds that S ⊆ CP(S∗r )

where S∗r = {r, r′}. In case the bend f belongs to u2 of S we
can analogously construct an IFS for a corner segment r ∈ T2

which also has f as its bend and for which the vertical bar is part
of b2. Accordingly there is a straight or stair segment without
break r′ ∈ S such that S ⊆ CP(S∗r ) where S∗r = {r, r′}. Hence
we can conclude that the set KP containing S∗1 , S∗2 , and S∗r for
the respective corner segments r ∈ T1 ∪ T2 is an IFS covering
set. Since by Lemma 2.10 there are O(n) corner segments, the
size of KP is also O(n).

We now turn to segments in S \ C for which we need to
show constant sized IFS covering sets. We begin with the stair
segments.

Lemma 2.13. For any stair segment s ∈ S in a solid grid graph
G and any P ∈ {A(s), B(s)} there is an IFS covering set KP
containing two IFSs.

Proof. If s has no break let b be the bar of s ending at its two
bends. Otherwise b is the broken bar of s. We assume w.l.o.g.
that any bend of s points either down and left, or up and right.
Furthermore b is assumed to be vertical, and the vertices that
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(a) stair without break (b) stair with break

(c) clamp, square: convex part

(d) clamp without break: concave part

(e) square with break: concave part

Figure 2.7: The IFS covering sets for stair, clamp, and square
segments s. The segment s is indicated by the dotted line and
the segments in an IFS by the dashed lines.



2.4. Counting Segments and IFS Covering Sets 37

are the upper and right incident vertices of the vertical and
horizontal edges of s, respectively, are those belonging to P .

If s has no break (Figure 2.7(a)) it has two bends and hence
any straight segment including edges from b would cut out
vertices not contained in P . Thus any segment from CP that
includes edges from b must be a corner segment. Let T ⊆ CP
contain all these corner segments. Depending on the lengths
of the horizontal bars of s, there is either a corner or a stair
segment without break t ∈ S that cuts out all vertices from P
except those that are incident to the edges in b. For the IFS
S∗1 = {t} in P it holds that CP(S∗1 ) = CP \ T since the only
edges that can not be used to form a segment from CP(S∗1 ) are
those in b. Hence for any IFS S ⊆ CP which does not contain
a segment from T it holds that S ⊆ CP(S∗1 ). Let u ∈ S be the
corner segment that cuts out a part A(u) from P and has the
same bend as s, say f1, pointing up and right. The vertices in
P \ A(u) are cut out by the corner segment u′ ∈ S having the
other bend f2 of s as its bend which for u′ however points up
and left. The only segments from CP that are not included in
CP(S∗2 ), where S∗2 = {u, u′}, are those that have a horizontal bar
crossing the vertical bars of u and u′ above the bend f2 of s.
The vertical bar of any r ∈ T is included in the vertical bar of u.
Hence if an IFS S ⊆ CP contains a corner segment r ∈ T then
S ⊆ CP(S∗2 ) since S is non-crossing. In conclusion the set KP ,
for any P ∈ {A(s), B(s)}, is an IFS covering set if it contains
the IFSs S∗1 and S∗2 in case s is a stair segment without break.

If s is a stair segment with break (Figure 2.7(b)) let v be the
vertex in the cut out part P incident to the break of s. Two of
the four incident edges to v, say e1 and e2, belong to s, while the
other two, say e′1 and e′2, are not included in s. Depending on
the lengths of the bars of s, the segment t containing the edges
of s but where e1 and e2 are exchanged with e′1 and e′2 is either
a corner, or a stair segment. Note that t may or may not have a
break if it is a stair segment, but t is always included in S since
it contains the same number of edges as s. The only segment
in CP that cuts out the vertex v from P is the corner segment
r having the face touching e1 and e2 as its bend and pointing
up and right. Hence if an IFS S ⊆ CP does not contain r then
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S ⊆ CP(S∗1 ), where S∗1 = {t}. The vertices from P that are not
contained in the cut out part A(r) ⊂ P by r are cut out by the
following segments. Consider those belonging to the connected
component induced by P \A(r) and containing vertices incident
to the edges of the horizontal bar of r. Depending on the lengths
of the horizontal bars of s, these vertices are cut out by a corner
or clamp segment without break u ∈ S. All remaining vertices
in P , if any, are cut out by a corner segment u′ ∈ S. Let the
IFS S∗2 contain r and u, and also u′ if it exists. Obviously
any IFS S containing r must be contained in the set CP(S∗2 ).
Therefore in case s is a stair segment with break the set KP , for
any P ∈ {A(s), B(s)}, containing the IFSs S∗1 and S∗2 is an IFS
covering set.

As the next lemma shows, the clamp and square segments
are similar. We begin with the convex cut out part.

Lemma 2.14. For any clamp or square segment s ∈ S in a solid
grid graph G and P ∈ {A(s), B(s)} such that P is the convex
part cut out by s, there is an IFS covering set KP containing
one IFS.

Proof. We use the same names for the bends (f1, f2, f3) and
(broken) bars (b, b′) of s as in Definition 2.4. Assume w.l.o.g.
that the bend f1 points down and right (Figure 2.7(c)). Let
b′′ ⊆ b be the horizontal bar of s ending at f1. Any straight or
corner segment including edges from b′′ cuts out vertices that
are not included in P since such a segment has at most one
bend. Hence for the segment t cutting out all vertices from P
except those that are incident to the edges in b′′ it holds that
CP(S∗) = CP , where S∗ = {t}. Depending on the lengths of
the vertical bars of s, note that t is either a straight, corner, or
clamp segment if s is a clamp segment, and that t is a clamp or
square segment if s is a square segment. Furthermore if t is a
clamp or square segment it does not have a break, regardless of
whether s has one. If t is a square segment it is also important
to check that the horizontal and vertical bars of t not ending at
the exterior face of G have the correct lengths. This is true due
to the assumptions on the sizes of s’s bars b and b′ according
to Definition 2.4, except in the case when s is a square segment
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without break and b′ is smaller than b. However in the latter
case we may consider the analogous case where the identities
of b and b′ are swapped. Hence t ∈ S which means that in this
case KP = {S∗} is an IFS covering set.

Next we turn to the concave cut out part of a clamp or
square segment. The following lemma handles the case when
the segment has no break.

Lemma 2.15. For any clamp or square segment s ∈ S without
break in a solid grid graph G and P ∈ {A(s), B(s)} such that P
is the concave part cut out by s, there is an IFS covering set KP
containing three IFSs.

Proof. As in the proof of Lemma 2.14 we use the same names for
bends and bars as in Definition 2.4 and assume that f1 points
down and right (Figure 2.7(d)). Let T ⊆ CP contain all straight
and corner segments that include some edge from the bar b.
There is a clamp or square segment t without break (t is of the
same type as s) that cuts out all vertices in P except those that
are incident to the edges in b. For the IFS S∗1 = {t} in P it holds
that CP(S∗1 ) = CP \ T since the only edges that can not be used
to form a segment from CP(S∗1 ) are those in b. Hence for any IFS
S ⊆ CP which does not contain a segment from T it holds that
S ⊆ CP(S∗1 ). Let t1 be the corner segment that has the bend f1

of s as its bend which for t1 points left and down. Also let t′1 be
the corner segment with a bend at f1 that for t′1 however points
right and down. In case s is a clamp segment let t2 be the corner
segment that has the bend f2 of s as its bend which for t2 points
left and down. Also let t′2 be the corner segment with a bend at
f2 which for t′2 points right and down. If s is a square segment
we define t2 to be the clamp segment without break that has the
bends f2 and f3 of s as bends such that f2 points left and down
for t2. In addition we define t′2 to be a stair segment that has f2

and f3 as its only bends such that f2 points right and down for
t′2. Depending on the length of the bar b′ of s, the stair segment
t′2 either has no break or consists of only a broken bar. Thus
all of the defined segments above are contained in S. For any
of the cases the only segments from CP that are not included in
CP(S∗2 ), where S∗2 = {t1, t2}, are those that have a vertical bar
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crossing the horizontal bars of t1 and t2 to the left of the bend
f1 of s. Analogously the only segments from CP that are not
included in CP(S∗3 ), where S∗3 = {t′1, t′2}, are those that have a
vertical bar crossing the horizontal bars of t1 and t2 to the right
of the bend f2 of s. Any straight or corner segment r ∈ T that
contains an edge from b has a horizontal bar that extends to the
left from f1 or to the right from f2, since r has at most one bend.
Hence if an IFS S ⊆ CP contains a segment r ∈ T for which the
horizontal bar is included in the horizontal bar of t2, since S
is non-crossing it must be that S ⊆ CP(S∗2 ). Analogously, if the
horizontal bar of r is included in the horizontal bar of t′1 then
S ⊆ CP(S∗3 ). Therefore in this case the set KP = {S∗1 , S∗2 , S∗3} is
an IFS covering set.

The case when a clamp or square segment has a break and
the concave cut out part is considered is the most complicated
one. This is because the claimed segments in the IFS covering set
may be split by the border of the grid graph and the resulting
segments might not be segments from the set S. Hence we
need to handle this case separately in the proof of the following
lemma.

Lemma 2.16. For any clamp or square segment s ∈ S with
break in a solid grid graph G and P ∈ {A(s), B(s)} such that P
is the concave part cut out by s, there is an IFS covering set KP
containing at most three IFSs.

Proof. As in the proof of Lemmas 2.14 and 2.15 we use the same
names for bends and bars as in Definition 2.4 and assume that
f1 points down and right (Figure 2.7(e)). Recall that if s is a
square segment having a break then f1 and its consecutive bend
touching the break point in a common direction. Let v be the
vertex in the concave cut out part P incident to the break of s.
Two of the four incident edges to v, say e1 and e2, belong to s,
while the other two, say e′1 and e′2, are not included in s. Let t
be the clamp or square segment (t is of the same type as s) that
contains the edges of s but where e1 and e2 are exchanged with
e′1 and e′2. Note that t may or may not have a break, but t is
always included in S since it contains the same number of edges
as s. The only segment in CP that cuts out the vertex v from P
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is the corner segment r having the face touching e1 and e2 as its
bend which points up and right. Hence if an IFS S ⊆ CP does
not contain r then S ⊆ CP(S∗1 ), where S∗1 = {t}. The vertices
from P that are not contained in the cut out part A(r) ⊂ P
by r are cut out by the following segments. Those belonging to
the connected component induced by P \A(r) and containing
vertices incident to the edges of the horizontal bar of r are cut
out by a corner or stair segment u ∈ S, if s is a clamp or square
segment respectively. If u is a stair segment it either has no
break or it consists of only a broken bar, depending on the size
of b′. All other vertices in P are cut out by a stair segment
u′ ∈ S. Also u′ either has no break or consists of only a broken
bar, depending on the size of b. Obviously any IFS S containing
r must be contained in the set CP(S∗2 ), where S∗2 = {r, u, u′}.
Therefore in this case the set KP = {S∗1 , S∗2} is an IFS covering
set.

Notice that in the last case, if s is a square segment with
break the edges e′1 and e′2 may touch the exterior face. In this
case the segment t is split at the corresponding face (Figure 2.8).
If t is a square segment with break, one of the resulting segments
however is of none of the types that are contained in S. This
means that for this special case we need to find a different
IFS covering set than proposed above. The set S∗2 can still be
used and thus for any IFS S ⊆ CP containing r it holds that
S ⊆ CP(S∗2 ). However for the case when r /∈ S, instead of S∗1
as above we construct the following two IFSs for KP . Let e′1
be horizontal and e′2 vertical. Let v′ ∈ P be the vertex not
equal to v incident to e′1. Apart from r there is only one other
segment r′ ∈ CP that cuts out v′ from P , which as r is also
a corner segment. Except for v, the vertices from P that are
not contained in the cut out part A(r′) ⊂ P by r′ are cut out
by the following segments. Those belonging to the connected
component induced by P \ (A(r′) ∪ {v}) and containing vertices
incident to the edges of the horizontal bar of r′ are cut out by a
stair segment u ∈ S. This stair segment either has no break or
consists of only a broken bar, depending on the size of b′. All
remaining vertices in P \ {v} are cut out by a corner segment
u′. Obviously any IFS S ⊆ CP not containing r but r′ must be
contained in the set CP(S∗3 ), where S∗3 = {r′, u, u′}. All vertices
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Figure 2.8: The additional IFSs in KP if s is a square segment
with break and the border of the grid would split one of the
segments in an IFS.

in P except v and v′ that are not contained in the cut out part
A(u′) ⊂ P by u′ are cut out by a clamp segment u′′ without
break. Hence for an IFS S ⊆ CP neither including r nor r′ it
must be that S ⊆ CP(S∗4 ), where S∗4 = {u′, u′′}. Therefore in
this special case the set KP = {S∗2 , S∗3 , S∗4} is an IFS covering
set.

All constructions in the above lemmas give a straightforward
way to enumerate the IFS covering sets. Since by Lemma 2.10
there are O(n2) many segments in S \ C and each such segment
needs at most three IFS covering sets, all these sets can be
found in time O(n2). For segments in C Lemma 2.10 asserts
that there are O(n) many while the IFS covering sets also have
O(n) size. Hence also these sets can be found in time O(n2).
By the same counting arguments it also follows that the total
number

∑
s∈S |KA(s) ∪ KB(s)| of IFS covering sets that need to

be considered by the algorithm in Section 2.3 is O(n2). Hence
the theorem stated below follows from these observations.

Theorem 2.17. For any m the cut size of an optimal m-cut in
a solid grid graph can be computed in time O(n4).

2.5 Generalisations and Faster
Algorithms

We have seen that for solid grid graphs the cut size of an optimal
m-cut can be computed in O(n4) time. Clearly the presented
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Figure 2.9: A grid graph with holes (highlighted in grey). The
optimum solution requires a segment (dashed lines) that alter-
nates between the lower and upper paths through the holes. This
pattern indicates that there can be an exponential number of
segments that have to be considered.

dynamic programming scheme can also be used to compute an
optimal m-cut by storing the segments used in each recursive step.
From this set of segments the corresponding vertex partition
can also easily be computed. Hence the BISECTION problem can
be solved in O(n4) time on solid grid graphs. This improves
on the formerly fastest known algorithm by Papadimitriou and
Sideri [54] which has a runtime of O(n5).

The main reason why the BISECTION problem can be solved
in polynomial time is that all segments that come into question
for an optimal solution can be exhaustively searched. Unfortu-
nately this also means that generalising the used techniques to
grid graphs with holes does not immediately yield an efficient
algorithm. This is because for this graph class one can construct
examples for which an exponential number of segments seem to
come into question for an optimal solution (Figure 2.9). This
also means that the presented method does not immediately give
a key to resolving the long standing open problem of determining
the complexity of BISECTION on planar graphs. Another case
where too many segments exist for an efficient algorithm of the
sort presented in this chapter, is when the edges in a solid grid
can have weights. This is because holes can be simulated by
small edge weights (cf. Figure 2.9). Vertex weights on the other
hand may render the problem weakly NP-hard.
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Figure 2.10: This solid grid graph has constant height and
linear width. For each position x along its width there is a
corner segment with an IFS for each position x′ left of x in
its IFS covering set (Lemma 2.12). For each value of m the
algorithm combines the solutions computed for the two segments
in the IFS. To do this it needs to consider every suitable value m′

(Equation (2.4)). This gives a total asymptotic runtime of Ω(n4).

However for other graph classes similar observations on the
number of segments and IFS covering sets as the ones presented
in this chapter should be achievable. These include graphs that
correspond to regular tessellations of the plane. For instance
in 2D finite element models, apart from the tessellations into
quadrilaterals that we chose as a model, triangulations are also
used [19, 62]. For these graphs polynomial time algorithms that
optimally solve the BISECTION problem should exist. However
for practical purposes the runtime of O(n4) is too slow. Can
faster algorithms be found to solve the problem?

One major inspiration to the algorithm presented in this
chapter comes from the corresponding one by MacGregor for
trees [47]. In particular, combining precomputed solutions using
the min-convolution for an IFS (as in Equation (2.4) page 28) is
the same in both algorithms and needs O(n2) time. Since a tree
has a linear number of segments the runtime of O(n3) follows
for the corresponding algorithm. However the runtime of this
algorithm was later found [32] to actually be O(n2) using a more
sophisticated amortised runtime analysis. Hence it suggests itself
to also try similar techniques on our algorithm for grids. The
only additional layer that our algorithm adds to the recursive
scheme of the algorithm for trees, is going through the IFSs in
the IFS covering sets. In a tree each of the n− 1 segments (i.e.
edges) can be seen as having a trivial IFS covering set of size one.
The only IFS in such a set contains those edges as segments that
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cut off the subtrees below the currently considered one. Since we
show in Section 2.4 that for solid grid graphs the total number
of IFS covering sets is O(n2), it seems as if the runtime of the
grid algorithm should only be a linear factor worse than that of
the tree algorithm. That is, we hope for an actual runtime of
O(n3) for our algorithm. Unfortunately one can find examples
(Figure 2.10) of grid graphs in which the algorithm needs O(n4)
time, which settles this matter.

Hence the question remains whether faster algorithms to
solve the BISECTION problem on solid grid graphs can be found.
The used techniques for the algorithm in this chapter do not
seem to yield any faster methods. However if one is willing to
settle with approximate solutions the next chapter shows how
to compute solutions faster.
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Chapter 3

Corner Cuts and their
Applications

This chapter is concerned with approximately solving the BI-

SECTION1 problem on solid grid graphs2. In the first part of
this chapter we will show that a cut containing only simple
shaped segments3 is a good approximation to the optimum.
More precisely, restricting the cuts to contain only straight and
corner segments4 we can cut out a number of vertices arbitrarily
close to a given number m, while the cut size is still close to the
optimum of an m-cut5. In the second part of this chapter we will
show how this fact can be used algorithmically. We use known
techniques to yield a fast bicriteria approximation algorithm
for the BISECTION problem. In particular we show that we can
compute a solution for which the cut out parts are arbitrarily
close to dn/2e, while the cut size deviates only by a constant
factor from the optimum. This can be done in O(n1.5) time on
solid grid graphs. Additionally we are able to harness the used
techniques to yield a fast bicriteria approximation algorithm for

1Definition 2.1 page 12
2Definition 1.2 page 4
3Definition 2.2 page 12
4Definition 2.4 page 17
5Definition 2.3 page 16

47
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the k-BALANCED PARTITIONING6 problem. Here the sizes of the
parts are at most twice dn/ke, while the cut size is within a
logarithmic factor from optimum. The runtime is O(n1.5 log k)
for solid grid graphs.

The results in the first part of this chapter (Section 3.2)
were obtained in collaboration with Shantanu Das and Peter
Widmayer and were published as an extended abstract [23]. The
second part (Section 3.3) is the sole work of the author of this
dissertation and was published in [21].

3.1 A Failed Attempt and a Solution
by Detours

The first part of this chapter aims at understanding the intricacies
of optimally cutting out a fixed number m of vertices in a graph
from a novel point of view: we study simple cut shapes, for which
it can be shown that they compare well to optimal unrestricted
ones. In related problems on polygons similar ideas have led
to interesting insights in the past. For instance guillotine cuts
have been considered, which are orthogonal straight-lined cuts.
When an orthogonal polygon is to be partitioned into rectangles
these lead to good approximations [10]. Also if a rectangular
polygon is to be partitioned into rectangles fulfilling given size
constraints, good solutions can be achieved by using guillotine
cuts [36]. In our setting a guillotine cut in a solid grid graph
corresponds to a set of straight segments. However these kinds
of cuts do not yield satisfactory solutions since they can be
far away from optimum (Figure 3.1). On the other hand, as
observed in the previous chapter (Theorem 2.6 page 19) there
always exists an optimum solution to cut out m vertices in which
almost all segments have a simple shape. More precisely, at most
one segment in an optimal solution is not a straight or corner
segment.

The above two observations on the shapes of segments and
their relation to optimal solutions naturally lead to the question

6Definition 1.1 page 3
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Figure 3.1: A grid in which the optimum cut size for m = n/2
is constant (bold edges) but any cut containing only straight
segments has cut size Ω(

√
n).

of how well corner cuts perform. These contain only straight and
corner segments (Figure 3.2). In the first part of this chapter
(Section 3.2) we prove that optimum corner cuts get us arbitrarily
close to a cut out part of size m, and that this limitation makes
us lose only a small factor in the quality of the solution. More
precisely, we show that for an optimal m-cut with cut size C∗ in
a solid grid graph and any ε ∈ ]0, 1], there exists a corner m′-cut
for some m′ ∈ [(1 − ε)m, (1 + ε)m]. Furthermore its cut size
deviates by at most a factor of O(1/

√
ε) from C∗. We achieve

our result by proving a number of theorems for polygons that
we relate to the case of grid graphs. The reason for choosing
this approach is that polygons are continuous objects which is
in contrast to the discrete nature of graphs. This fact makes
certain tools available for our proofs that otherwise would not
be applicable. The first part of this chapter will therefore be
concerned with thoroughly analysing corner cuts in polygons.

Figure 3.2: An optimal (left) and a corner cut (right) in a
solid grid graph, each cutting out m = 110 vertices. The bold
edges indicate the edges of the segments.
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A first attempt at finding approximate solutions to the BI-

SECTION problem using the above result would be to find an
algorithm that will compute optimal corner cuts. We showed [22]
that such an algorithm exists. More precisely, this algorithm is
the same as the one presented in Section 2.3 but considers only
straight and corner segments. In particular the second phase
(cf. Figure 2.5 page 29) is omitted. Since the algorithm will
compute the optimum corner m-cut for any m ∈ {0, . . . n}, the
best solution in the interval [(1−ε)m, (1+ε)m] can be computed
for any ε ∈ ]0, 1]. Hence the output will be a good approximation
to the optimal m-cut. The paper presented in [22] goes on to
show that IFS covering sets for straight and corner segments
can be constructed using only these types of segments. However
the sizes of the resulting IFS covering sets are linear and thus
the runtime of the algorithm from [22] is O(n4) (cf. Section 2.4).
Note that the latter algorithm is faster than the one presented
in Section 2.3 since it omits the second phase. However the
asymptotic runtime is the same and is thus too slow for practical
purposes. Hence no useful approximation algorithm is obtained.

The question of how corner cuts can be used algorithmically
thus remains. To answer this question we take a detour and
consider other problems in which a graph is to be cut into
two parts with an additional constraint on the sizes of the
resulting parts. For such problems the size constraint is realised
by demanding the fulfilment of a bound on the size m of one
of the parts, or the optimisation function may also depend on
m. Apart from the BISECTION problem, two examples of these
types of problems include the EDGE SEPARATOR problem in which
bn ≤ m ≤ (1− b)n for a given value b ≤ 1/3, and the SPARSEST

CUT problem in which the function C
m(n−m) is to be optimised.

In the latter, C denotes the cut size of the solution. Note that
in any of these problems the respective optimal solution cuts out
m vertices using a minimum number of edges for this particular
value of m. Hence in a planar graph it constitutes an optimal
m-cut.

It is known by the work of Leighton and Rao [44] that (ap-
proximate) solutions to the SPARSEST CUT problem can be used
to compute approximations to EDGE SEPARATOR. They also show
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that the solutions to the latter problem can subsequently be
used to approximate the BISECTION problem. Additionally Si-
mon and Teng [65] build on this work and use the solutions
to EDGE SEPARATOR in order to approximate the k-BALANCED
PARTITIONING problem. These approximation techniques can be
used for any graph class and were developed since the problems
are NP-hard [31] in general. We will use these techniques on
solid grid graphs in Section 3.3 by showing how solutions to the
SPARSEST CUT problem can be computed for these graphs. In
particular we show that constant approximations to SPARSEST

CUT can be computed in O(n) time. This improves on the previ-
ously fastest known algorithm by Park and Phillips [55]. Their
algorithm however is more general and will compute a constant
approximation for any planar graph. In particular they show
how to compute an O(t) approximation to the SPARSEST CUT

problem in O(n1+1/t log3 n) time for any planar graph.

Using the above methods we are able to compute solutions
to the BISECTION problem which approximate both the cut size
and the sizes of the cut out parts, in the following sense.

Definition 3.1. Let a partition of the n vertices of a graph
into k parts be given. It is said to be near-balanced if there is
an ε > 0 such that each part has size at most (1 + ε)dn/ke. If
each set has size at most dn/ke we call the partition perfectly
balanced .

The presented algorithm is able to compute near-balanced
solutions for any ε > 0. It approximates the cut size within a
factor of α ∈ O(1/ε3), and the runtime is O(n1.5) if ε is con-
stant. For the k-BALANCED PARTITIONING problem we obtain
an algorithm that computes a partition into k sets that devi-
ates by a factor of 2 from being perfectly balanced. That is,
each set has size at most 2dn/ke. The cut size of the solution
approximates the optimal perfectly balanced partition by a ra-
tio of α ∈ O(log k). On solid grid graphs the runtime of the
algorithm is O(n1.5 log k). Both of these algorithms improve the
runtime of the fastest known ones for these problems on solid
grid graphs, due to our improvement over the algorithm by Park
and Phillips [55].
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Since the techniques used in the two parts of this chapter differ
considerably, an overview is given separately in each respective
section.

3.1.1 Related Work

The related work on computing optimal solutions to the BISEC-

TION problem can be found in Section 2.1.2 (page 14). Here
we only survey the related work for approximating BISECTION.
For perfectly balanced solutions and general graphs, assuming
the Unique Games Conjecture no constant approximations can
be computed in polynomial time [38]. The best approximation
algorithm known [57] achieves a ratio of O(log n) on the cut size.
If the given graph is dense, i.e. its minimum degree is Ω(n), Arora
et al. [3] give a PTAS. Also for planar graphs Dı́az et al. [16]
show how to achieve a PTAS w.r.t. the cut size. When near-
balanced solutions are allowed, as mentioned above, Leighton
and Rao [44] give a technique to compute such solutions. The
cut size is approximated within α ∈ O(β/ε3) where β is the
approximation ratio of computing a solution to SPARSEST CUT.

The SPARSEST CUT problem is NP-hard in general [51] but
can be approximated [4] within a ratio of O(

√
log n). For planar

graphs it can however be computed optimally in polynomial time
using the algorithm by Park and Phillips [55]. They devise a
method which assigns positive and negative weights to edges in
the directed version of the dual graph. This is done in a way
such that any simple (directed) cycle in this graph has a total
absolute weight that equals the number of vertices of the primal
graph that lie inside of the cycle. A crucial observation the
authors use is that in a planar graph there is an optimal solution
to SPARSEST CUT that contains exactly one segment. Hence it
corresponds to a simple cycle in the directed dual graph. The
cycle with the least number of edges having a fixed total weight
can be computed using a dynamic program. Therefore the cut
with the smallest ratio between number of edges and cut out
vertices can be found in polynomial time. In the same paper
Park and Phillips also show how the SPARSEST CUT problem can
be approximated within a factor of O(t) in O(n1+1/t log3 n) time
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for these graphs, building on the above insights.

Also the EDGE SEPARATOR problem is NP-hard [70] in general.
In fact it is NP-hard for any b = c

n1−d where c, d > 0 are
arbitrary constants. Using the method of Arora et al. [4] it can
be approximated within a factor of O(

√
log n), where however

also the sizes of the resulting cut out parts are approximated
within a constant factor. If the given input graph is dense then
there is a PTAS for the problem [3].

We defer the related results on the k-BALANCED PARTITION-

ING problem to the next chapter (Section 4.1.2). We only note at
this point that for graphs with excluded minors (such as planar
graphs) it is possible to apply a spreading metrics relaxation [20]
and the famous Klein-Plotkin-Rao Theorem [40] to compute solu-
tions with a constant approximation factor on the cut size. The
set sizes will be at most 2dn/ke. However this algorithm needs

Õ(n3) time (ignoring logarithmic factors), or Õ(n2) expected
time. Hence it is slower than our corresponding deterministic
algorithm for solid grid graphs, even though it gives a better
ratio on the cut size.

3.2 Corner Cuts are Close to Optimal

In this section we will show that optimal corner cuts are good
approximations to optimal m-cuts. More formally, the main
result of this section is summarised in the following theorem.

Theorem 3.2. Let C∗ be the cut size of an optimal m-cut in
a solid grid graph G and ε ∈ ]0, 1]. Then there exists a corner
m′-cut, for some m′ ∈ [(1− ε)m, (1 + ε)m], which has a cut size
that is at most a factor of O(1/

√
ε) larger than C∗.

We will prove Theorem 3.2 by going through several steps,
of which each solves an interesting problem of its own. We start
by comparing cuts in grid graphs to cuts in polygons in order
to be able to use the continuous nature of the polygons in our
proofs. For this we convert a given solid grid graph into a simple
orthogonal polygon, and hence all polygons considered in this
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−→ −→

Figure 3.3: Converting a solid grid graph to a polygon.

section are orthogonal and simple. We define a polygon using
its interior point set.

Definition 3.3 (polygon). A polygon P ⊂ R2 is an open
bounded set of points in the plane. Let β be the boundary
of P. If β only contains axis-parallel line segments we refer to
P as orthogonal . We call P simple if any closed curve in P
can be shrunk to a point without leaving P.

Given a solid grid graph G = (V,E), consider its natural
embedding in the plane where each vertex is a coordinate in N2.
The conversion is done by replacing each vertex (x, y) ∈ V
by a unit square that has its centre at the coordinate (x, y)
(Figure 3.3). Notice that the squares of two neighbouring vertices
of V will share a boundary, but the converse is not necessarily
true. Ignoring those boundaries that correspond to an edge in G
leaves a connected curve that is the boundary of the polygon. It
may happen that this boundary is degenerate in the sense that it
can have overlapping edges (Figure 3.3). The region enclosed by
the boundary is the polygon PG and has area exactly n, equal
to the number of vertices in G.

All the notions used for cuts in grids carry over naturally to
the case of polygons. Intuitively, the building blocks of a cut in
a polygon P are curves that can be drawn between points on
the boundary of P (Figure 3.4). In accordance with the grid
case we call them segment curves and a cut is a set of segment
curves. Formally these curves are defined as follows.

Definition 3.4 (curve, boundary point, segment curve). Given
a polygon P a curve λ ⊂P is the image of a continuous map
from the unit interval to P. The length of a curve is measured
using the l1-norm. If not otherwise stated, all considered curves
have finite length. If β denotes the boundary of P, we call a
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Figure 3.4: A straight, corner, staircase, and rectangular line
in a polygon denoted by λ1 through λ4 respectively.

point p ∈ β a boundary point of a curve λ in P if the distance
from p to λ is 0. If λ has two boundary points we call it a
segment curve.

Note that a segment curve has exactly two boundary points
since a polygon is an open set of points. Consider the connected
areas left after removing the segment curves from a polygon. An
m-cut is a set L of such curves that leaves a subset of these areas
with total size m. The cut size of L is the sum of the lengths
of the curves in L, which are measured using the Manhattan
distance. This ensures that an m-cut in a grid graph G has a
corresponding m-cut in the polygon PG with the same cut size.
The curves in the latter cut reside on the boundaries of the unit
squares used to construct PG. Note that the m-cut in PG that
corresponds to the optimal m-cut in G obviously has a cut size
that is at least the cut size of the optimal m-cut in PG. The
latter is defined as an m-cut having the smallest cut size among
all m-cuts. Those segment curves that we will use to cut out
areas from polygons are rectilinear and we therefore call them
lines. A corner m-cut in a polygon is an m-cut containing only
straight and corner lines. Analogous to the case of grids, the
former are orthogonal segment curves without bends, and the
latter are orthogonal and have exactly one right-angled bend, as
seen in the following definition.

Definition 3.5 (bar, straight, corner line). We call a curve λ a
bar line if all points in λ share either the same x- or the same
y-coordinate. In the former case we say that the orientation of
the bar line is vertical and it is horizontal in the latter case. A
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bar line that is also a segment curve is called a straight line,
and a segment curve that consists of a horizontal and a vertical
bar line is called a corner line. We refer to these bar lines as
the horizontal, respectively vertical, bar line of the straight or
corner line. Analogous to the corner segments, we call the point
at which the two bar lines of a corner line meet its corner , and
say that it points in two of the directions up, down, left, and
right, depending on whether its horizontal and vertical bar lines
go up, down, left, or right from its corner, respectively.

3.2.1 An Overview of the Used Techniques

We will first show the existence of corner cuts in simple polygons
that cut out almost the desired area and have small cut size
(close to optimal). We will then convert such a cut in a polygon
PG derived from a grid graph G to a corresponding cut in G
having the properties described in Theorem 3.2. More precisely
we prove the following results for polygons which together imply
the theorem.

1. We show that there is an optimal m-cut in a polygon that
is almost a corner cut, in the sense that the cut consists
of only straight and corner lines except at most one other
segment curve. This curve may be shaped like a staircase
(a so called staircase line), or it may be a rectangular line,
which is defined as a continuous part of the boundary of
an orthogonal rectangle (Figure 3.4).

2. We show how to remove a rectangular line from a cut
containing only straight and corner lines otherwise. We
replace the rectangular line by a set of straight and corner
lines, and at most one staircase line. Together these cut out
the same area as the rectangular line. While doing this we
need to take other curves from the cut into consideration
so that the newly introduced curves do not interfere with
these. The new cut will also be an m-cut but its cut size
may not be optimal. However, we show that the cut size
of the new cut is only a constant factor away from the
optimal.
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3. Given an m-cut of the polygon consisting of straight and
corner lines, and one staircase line, we next show how to
replace the staircase line with a set of corner and straight
lines, such that the new area that is cut out is close to
m. To be more precise, the new cut is an m′-cut where
m′ ∈ [(1− ε)m, (1 + ε)m] for any desired value ε ∈ ]0, 1].
Further, the cut size of the new cut is only a factor O(1/

√
ε)

times the cut size of the original cut.

4. Finally we show how to convert a cut containing only
straight and corner lines in a polygon PG corresponding
to a grid graph G into a cut in G. Note that this step
would be straightforward if all the curves in the cut were
passing through exactly the midpoints of the edges of the
grid. We call such curves grid lines. We show that all
curves in the cut obtained in the previous steps can be
moved to grid lines in such a way that the cut size remains
the same, but we lose a small area a from the cut out area.
Since a is small we can cut this area from the polygon
using a recursive method using only grid lines so that the
cut size grows by only a small factor.

The following sections explain these techniques in more detail.

3.2.2 Cuts in Polygons

We will now show that in an optimal m-cut of a polygon all but
at most one curve are corner and straight lines. Curves with
more bends include staircase lines and rectangular lines. The
former have at least two bends and are monotonic in x- and in
y-direction. The latter have two or three bends and form part
of the boundary of an orthogonal rectangle (Figure 3.4).

Definition 3.6 (staircase line). For any polygon P a staircase
line λ ⊆ P is a segment curve that consists of a sequence of
bar lines such that of two adjacent bar lines one is horizontal
and the other vertical. This sequence has length at least three
and the resulting curve is monotonic in x- and y-direction. The
orientation of λ is up if its left boundary point also is lower than
the other, and down otherwise.
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Definition 3.7 (rectangular line). Let R ⊂ R2 be an axis
parallel rectangle in the plane and let γ be its boundary. Any
segment curve λ ⊆ γ ∩P which contains either two or three
corners of R is called a rectangular line. These corners are called
the corners of λ. We call R the defining rectangle of λ if R is
the rectangle of smallest size among those from which λ can be
constructed in this way.

Notice that a rectangular line contains either three or four
bar lines between its corners and boundary points since P is an
open set. Notice also that a corner line and a staircase line that
have the same boundary points have the same length.

In a first step, we convince ourselves that in any simple
polygon there is an optimal m-cut that contains only straight,
corner, staircase, and rectangular lines. Furthermore, none of
these lines cross or overlap, which is defined as follows.

Definition 3.8 (A - and B-part, crossing, overlapping). Let
A (L) ⊆ P \ {p ∈ λ | λ ∈ L} be the open set of size m that is
cut out by the m-cut L in P and let B(L) = P \ (A (L)∪{p ∈
λ | λ ∈ L}) be the other cut out open set of size n −m. That
is, the areas A (L) and B(L) do not include points that are
contained in curves of L or the boundary of P.

Let λ1 and λ2 be two segment curves in P. We say that
λ1 and λ2 cross if λ2 contains points from both A ({λ1}) and
B({λ1}). A cut L is said to be non-crossing if no pair of curves
in L cross. Two segment curves in P overlap if they do not cross
but share a curve of length greater than zero (i.e. the shared
part is not just a point).

The following results are analogous to those obtained in [54]
for grid graphs.

Lemma 3.9. In any polygon P there is an optimal m-cut L
that is non-crossing and contains only straight, corner, staircase,
and rectangular lines. Furthermore no curves in L overlap.

Proof. Note that any pair of crossing segment curves can be seen
as a (different) pair of segment curves that do not cross. Hence
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Figure 3.5: A rectangular line λ1 with its defining rectangle
R1 is replaced with the rectangular line λ′1 (top). To compensate
for the area a (shaded in grey), another curve λ2 is replaced by
λ′2 (bottom). It can be a corner, staircase, or a rectangular line
(with defining rectangle R2).

there always exists an optimal non-crossing m-cut. Additionally,
removing overlapping parts of curves results in an m-cut of
smaller cut size and thus no curves in L overlap. Also, as in the
case of grids, it is easy to see that for any m-cut with cut size
C there is an m-cut for which every curve is a segment curve
and has a cut size of at most C. Thus, let λ be a curve from
L and let R ⊂ R2 be the smallest rectangle containing λ. Due
to the well-known isoperimetric problem, using the l1-norm (see
e.g. [67]) it follows that λ is a rectangular line if the boundary
points of λ do not coincide with two of the opposing corners of
R. If λ’s boundary points coincide with two opposing corners of
R it is easy to see that λ can be replaced with a straight, corner,
or staircase line since these lines have minimum length between
the boundary points using the l1-norm.

In a next step, we show that if an optimal m-cut contains a
rectangular line, then all other curves are straight or corner lines.
Generally speaking, the reason is that cuts can be modified so
that the cut out area remains the same. This is easy to see for
two rectangular lines where the A -part of the cut out area is on
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the inside of one of the rectangles and on the outside of the other:
we can simply make both rectangular lines smaller by the same
area, thereby decreasing the length of the cut (Figure 3.5)—a
contradiction to optimality. More generally, we call a corner line
convex w.r.t. the area next to its 90 degree angle and concave
w.r.t. the area next to its 270 degree angle (Figure 3.6). Similarly,
a rectangular line is convex w.r.t. the area next to its 90 degree
angles, and concave w.r.t. the area on its other side. Similar
area exchange arguments show that for an optimal m-cut with
a rectangular line, the area on its concave side will belong to
the same part of the cut as the area on the concave sides of
all corner lines. This fact will become important later when a
rectangular line is replaced with a staircase line.

Definition 3.10 (convex, concave). For any segment curve
λ ∈ L let C ⊆P be an open set of points such that λ is part of
the boundary of C . We define Z (C ) ⊆ C as the set of points
p ∈ C such that there exist a horizontal and a vertical bar line
which both are contained in C , and end in p and a point on λ.
We call a corner or rectangular line convex w.r.t. C if Z (C ) 6= ∅
and concave w.r.t. C otherwise.

Since in an optimal m-cut L no curves overlap, each set A (L)
and B(L) can only lie to one side of a corner or rectangular line.
Hence any such line in L is either concave or convex w.r.t. one
of the cut out areas from P.

For staircase lines, area exchange works by changing the
staircase line while still keeping it monotonic between its end
points. The potential area exchanged is the deficit or the surplus,
which are areas with monotone boundaries contained in the B-
and A -part respectively (Figure 3.7). These areas are used to
prove that an optimal cut requires at most one staircase line:
for more than one staircase line we trade the smaller deficit or
surplus of one staircase with the larger of another one, turning
the former into only straight and corner lines (Figure 3.8).

More formally, consider the simple case of an m-cut that
contains only one curve λ which is a staircase line. In this case
the set Z (C )∪λ is referred to as the surplus if C = A ({λ}) and
as the deficit if C = B({λ}). We are interested in the segment
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Figure 3.6: A corner, and rectan-
gular line in a polygon denoted by
λ1, λ2, respectively. Both are con-
cave with respect to the A -part and
convex with respect to the B-part.

Figure 3.7: A stair-
case line λ together with
its surplus (in light grey
shading) and its deficit
(in dark grey shading).

curves that are part of the boundary of the deficit and surplus.
We need to add the points in λ to Z (C ) so that the boundary
of both the deficit and the surplus is made up of segment curves.
(For instance the boundary of the surplus shown in Figure 3.7
would otherwise only contain λ as a segment curve.) If λ is the
only curve in an m-cut then the segment curves apart from λ
in the surplus and deficit are all straight and corner lines by
definition of Z (C ). The surplus can be seen as the area that λ
cuts out from the A -part in addition to what these lines in the
boundary of the surplus cut out. The deficit on the other hand
can be seen as the area that λ does not cut out compared to the
lines in the boundary of the deficit. If there are other curves
apart from λ in an m-cut then the definition has to be modified
in the following way, in order to capture a similar notion. If
there is a curve λ′ that overlaps with λ (as shown in Figure 3.7)
then it can happen that the intersection between Z (C ) and a
part cut out by λ′ is non-empty. This would mean that a curve
in Z (C )∪λ might cross λ′. Such a curve will later be used when
transforming λ. Hence all the parts cut out by other curves that
include λ are removed in the surplus and deficit.

Definition 3.11 (surplus, deficit). Let λ ∈ L be a staircase
line from a non-crossing m-cut L, C ∈ {A (L),B(L)}, and L′ =
L \ {λ}. For any curve λ′ ∈ L′ let Dλ′ ∈ {A ({λ′}),B({λ′})}
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such that λ ∩Dλ′ = ∅. We call the set

(Z (C ) ∪ λ) \
⋃
λ′∈L′

Dλ′

the surplus of λ if C = A (L) and we call it the deficit of λ if
C = B(L).

Using the above notions we are able to prove that if there is
a rectangular line in an optimal m-cut it is the only curve that
is not a corner or straight line. We proceed in two steps of which
the following lemma is the first.

Lemma 3.12. For any polygon P, if an optimal m-cut L con-
tains a rectangular line that is concave with respect to the area
C ∈ {A (L),B(L)} then it contains no staircase line and also
no corner line that is convex with respect to C .

Proof. Let λ1 ∈ L be the rectangular line that w.l.o.g. is concave
with respect to C = A (L) (by Lemma 3.9 no curves overlap
and hence any rectangular or corner line is either concave or
convex w.r.t. C ). Let λ2 ∈ L be a staircase line. As we will
show, there is a sufficiently small area of size a > 0 which can be
locally “transferred” from λ1 to λ2 by making λ1 shorter while
transforming λ2 such that the cut size is decreasing. Hence we
get a contradiction to the optimality of L.

Any rectangular line has at least two adjacent corners, i.e.
there is a bar line connecting them. For any rectangular line
under consideration we can assume w.l.o.g. that these corners
coincide with the lower right and upper right corners of its
defining rectangle. Let R1 be the defining rectangle of λ1, let
Q1(x) = {(x′, y′) ∈ R1 | x′ > x}, and let a1(x) be the size of
Q1(x). For sufficiently small a > 0 there is a value xa such that
a1(xa) = a and the rectangle R1 \Q1(xa) defines a rectangular
line λ′1 which has the same boundary points as λ1 and does not
cross any curve in L. Observe that λ′1 is shorter than λ1 by
twice the width of the area Q1(xa). When replacing λ1 with
λ′1 in L we need to compensate for the area Q1(xa) in order to
cut out an area of size m, by also replacing the staircase line λ2
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with some appropriate curve λ′2 (see Figure 3.5). We show next
how this is done.

Since λ2 is a staircase line, for sufficiently small a we can
find a staircase line λ′2 that cuts out an area of size a from the
surplus of λ2 (remember that C = A (L)), such that λ2 and λ′2
have the same boundary points, and replacing λ2 with λ′2 will
make the cut out area have size m (remember that λ1 is concave
w.r.t. C ). Notice that, by the definition of the surplus, λ′2 does
not cross any curve and therefore the new m-cut is non-crossing.
The length of λ′2 is equal to the length of λ2 in the l1-norm and
hence the cut size is decreasing when replacing λ1 and λ2. This
is a contradiction to the optimality of L and therefore λ2 cannot
be a staircase line.

A similar argument can be made when λ2 is a corner line
that is concave w.r.t. C . For sufficiently small a we can find a
staircase line λ′2 which has a deficit of size a in the m-cut that
results from replacing λ1 and λ2, and the boundary of the deficit
is λ2 ∪ λ′2. Also if a is small enough, λ′2 does not cross any other
curve since no curve overlaps with λ2 by Lemma 3.9. Since
this means that the boundary points of λ2 and λ′2 are the same,
the length of these two lines are the same in the l1-norm, and
therefore the cut size decreases when replacing λ1 and λ2. This
is a contradiction to the optimality of L and hence λ2 cannot be
a corner line that is concave w.r.t. C .

Using the above lemma we can prove that if an optimal m-cut
contains a rectangular line then no other curve is a rectangular
or staircase line, as the following lemma shows.

Lemma 3.13. For any polygon P, if an optimal m-cut L con-
tains a rectangular line that is concave with respect to the area
C ∈ {A (L),B(L)} then all other curves are straight and corner
lines, where the latter all are concave with respect to C .

Proof. By Lemma 3.9 we can assume that all curves in L are
straight, corner, staircase, or rectangular lines. Additionally
Lemma 3.12 shows that apart from the rectangular line λ1 ∈ L
there can only be rectangular lines that do not fit the statement
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in this lemma. Let λ2 ∈ L be such a rectangular line, and we first
consider the case when λ2 is convex w.r.t. C . As in the proof of
Lemma 3.12 let λ′1 be the rectangular line that is defined by the
rectangle R1 \Q1(xa). Analogous to the definition of λ′1 we can
define a rectangular line λ′2 such that the corresponding function
a2(·) equals a for an appropriate value x′a if a is sufficiently
small. The line λ′2 is shorter than λ2 by twice the width of the
corresponding area Q2(x′a). But this means that replacing λ1

with λ′1 and λ2 with λ′2 results in an m-cut with smaller cut
size than L. This contradicts the optimality of L and hence λ2

cannot be a rectangular line that is convex w.r.t. C .

Thus consider the case when λ2 is a rectangular line that
also is concave w.r.t. C (see Figure 3.5). For i ∈ {1, 2} let hi
and wi be the height and width of the defining rectangle Ri of
λi, respectively. Assume w.l.o.g. that w2 ≥ h2 ≥ h1 (otherwise
we can switch the identity of the width and height of R2 for the
former, and the identity of λ1 and λ2 for the latter inequality).
As noted before, the length l′1 of λ′1 is shorter than the length
l1 of λ1 by twice the width of Q1(xa). Since the height of the
latter equals the height of R1 this means that l′1 = l1−2a/h1. If
λ2 has three corners then let (x, y) be the corner that is adjacent
to both the other two corners. In case λ2 has two corners we can
decompose it into three bar lines of which two are incident to
exactly one corner. Let in this case (x, y) be the corner that is
incident to the longer of these two bar lines. In all of these cases
we can assume w.l.o.g. that (x, y) is the top right corner of R2.
For sufficiently small a we can find a rectangular line λ′2 that
has the following properties. It is defined by a rectangle R′2 that
has the same lower left corner as R2 and the top right corner
(x+ z, y + z), for some z > 0, such that the area (R′2 \R2) ∩P
that is cut out between λ′2 and λ2 has size a. It also does not
cross any other curve, and λ′2 shares at least one boundary point
p with λ2. By the assumption that (x, y) is the top right corner
of R2 and the construction of R′2, the boundary point p is the
one that is incident to the lower horizontal bar lines of λ2 and
λ′2. Since by Lemma 3.9 no curves overlap in L, such that for
sufficiently small a the constructed line does not cross any other
curve, this means that λ′2 always exists. Notice however that
the two lines might differ in the other boundary point if λ2
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Figure 3.8: Two staircase lines λ1 and λ2 together with their
respective surplus (or deficit) shaded in grey. The dotted lines
indicate that the boundary of the surplus (or deficit) together
with some parts of λi, i ∈ {1, 2}, form only corner and straight
lines which are contained in Li.

has two corners since the boundary of P may overlap with the
boundary of R′2. Under the assumption that P is orthogonal
we can always find some sufficiently small z > 0 such that the
area R′2 \R2 is entirely included in P though.

The area R′2 \R2 can be decomposed into three rectangles of
which one extends R2 to the right by z, one extends R2 to the
top by z, and one which lies between these two extensions and
has height and width z. By the assumption that w2 ≥ h2 we can
therefore conclude that a = zw2 + zh2 + z2 > 2zh2. It is easy to
see that the length l′2 of λ′2 is at most l2 + 4z. Solving the lower
bound on a for z we can conclude that l′2 < l2+4 a

2h2
= l2+2a/h2.

Replacing λ1 and λ2 by λ′1 and λ′2 yields an m-cut that has a
shorter cut size than L since we assumed that h2 ≥ h1. But this
contradicts the optimality of L which means that λ2 cannot be
a rectangular line that is concave w.r.t. C .

After considering optimal m-cuts containing rectangular lines
we turn to the case where they contain staircase lines. In this
case we can show that there always exists an optimal m-cut in
which at most one curve is a staircase line while all others are
corner and straight lines.

Lemma 3.14. For any polygon P, if there is an optimal m-cut
L that contains a staircase line then there also is an optimal
m-cut that contains at most one staircase line while all other
curves are straight or corner lines.



66 Chapter 3. Corner Cuts and their Applications

Proof. By Lemma 3.13 it can not happen that there is a rectan-
gular line in L. Hence, by Lemma 3.9, the only case we have to
consider is when there are two staircase lines λ1 and λ2 in L. It
can happen that the boundary of the deficit of λ2 contains parts
of λ1, or that the boundary of the surplus of λ1 contains parts
of λ2. It is easy to see though that it can not happen that both
boundaries contain parts of the respective other staircase line.
Hence we can assume w.l.o.g. that the boundary of the surplus
of λ1 does not contain any parts of λ2. Let a1 denote the size
of the surplus of λ1. For any a ∈ [0, a1] we can find a set of
curves L1(a) that cut out an area of size a from the surplus of
λ1, such that removing λ1 yields a (m−a)-cut. If a < a1 we can
choose a single staircase line having the same boundary points
as λ1 for the set L1(a). If a = a1 the curves in L1(a) are part
of the boundary of λ1’s surplus together with some parts of λ1

(Figure 3.8).

If the boundary of the deficit of λ2 contains parts of λ1, the
deficit of λ2 can grow when replacing λ1 with L1(a). Hence let
d2(a) denote the size of λ2’s deficit in the constructed (m− a)-
cut. Similar as for the surplus of λ1, for a fixed a we can find a
set of curves L2(d) for any d ∈ [0, d2(a)] cutting out an area of
size d from the deficit of λ2. It either contains a single staircase
line or curves that are part of the boundary of λ2’s deficit. Let
b = min{a1, d2(a1)}. Observe that it is possible to replace the
line λ2 with the set L2(b) after replacing λ1 with L1(b). This
yields a (m− b+ b)-cut, i.e. an m-cut which has a cut size that
is at most the cut size of the original m-cut since distances are
measured using the l1-norm. Assume that some curve in L1(b) or
in L2(b) overlaps with some other curve in the m-cut (including
those in L2(b) and L1(b) respectively). The overlapping part can
be removed, again yielding an m-cut which now however has a
shorter cut size. Since this is a contradiction to the optimality
of L, we can conclude that no curve in L1(b) or L2(b) overlaps
with any other curve. By the definition of b, at least one (both if
a1 = d2(a1)) of the sets L1(b) and L2(b) consists of curves that
are part of the boundary of the surplus or deficit, respectively,
together with some parts of the respective staircase line. Since
these curves do not overlap with any other curves they must
either be straight or corner lines, by the definition of the surplus
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and deficit (cf. Figure 3.8).

Hence if L contains several staircase lines then there is an
optimal m-cut which contains one staircase line less. By applying
the argument repeatedly we can conclude that there is an optimal
m-cut with at most one staircase line while all other curves are
straight or corner lines.

To summarise the above results, the following observation
immediately follows from Lemmas 3.9, 3.13, and 3.14.

Corollary 3.15. For any simple polygon P there is an optimal
m-cut L such that all curves in L are corner or straight lines
except at most one which is either a staircase line or a rectangular
line. If there is a rectangular line in L that is concave with respect
to the cut out area C ∈ {A (L),B(L)} then all corner lines in
L are concave with respect to the same area C .

Because our interest is in cuts with only straight and corner
lines, we need to study how we can cope with a rectangular line,
and how with a staircase line. For a rectangular line we show
how to convert the m-cut into a cut in which there is at most one
staircase line while the cut size grows at most by some constant
factor. With our observations on staircase lines we are then able
to convert any optimal m-cut into one containing only straight
and corner lines.

3.2.3 Removing Rectangular Lines

We now show how to convert an optimal m-cut containing
straight and corner lines and one rectangular line into an m-cut
containing only straight and corner lines except at most one
which is a staircase line. Consider the area inside the defining
rectangle of the rectangular line (Figure 3.9). This region may
contain a part of the boundary of the polygon (and possibly
some other curves of the cut). We can replace the rectangular
line with a set Ξ of straight and corner lines lying within the
defining rectangle such that these curves have total length less
than the length of the rectangular line. By doing this, we do
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Figure 3.9: A rectangular
line ρ (dashed) together with
the set of curves Ξ (dotted)
with which it is replaced. The
area of size a is shaded in
grey.

Figure 3.10: A virtual cor-
ner line (black dashed) at
(x, y). The cut out area is
shaded in grey.

not increase the size of our cut, but we now have to cut out
an additional area of size a equal to the difference in sizes of
the part cut out by the original cut and the part cut out by
the new cut. We show how to find a set of curves that cut out
the required area of size a and has total length not too large
(compared to the cut size C of the optimal m-cut). Note that
the length of the rectangular line (and thus C) is at least

√
a.

So, it is sufficient to show that the area of size a can be cut out
using a set of curves of total length not much larger than

√
a.

In order to find this set of curves we need to abstract from the
actual topology of the polygon. We achieve this by introducing
the following notions (cf. Figure 3.10). In the proofs of this
section we will restrict ourselves to the case of one specific
orientation of the involved curves. Notice that in Definition 3.4
a segment curve can be defined for the plane by seeing R2 as
the polygon with a boundary that lies infinitely far away. Hence
we may define corner lines of infinite length in the plane due to
Definition 3.5, and leverage the following definition.

Definition 3.16 (virtual corner line). Let µ be a corner line
in the plane R2. For any (open or closed) finite area P ⊂ R2

the set Λ of corner and straight lines in P for which λ ∈ Λ if
and only if λ ⊂ µ∩P is called a virtual corner line. The corner
of µ is also referred to as the corner of Λ. The length of Λ is
the sum of the lengths of the included straight and corner lines.
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The horizontal length of Λ is the total length of all horizontal
bar lines covered by Λ, while the vertical length of Λ is the total
length of all vertical bar lines covered by Λ. If Λ cuts out an
area of size a on the upper right side of its corner, we say that
it is a virtual corner line for a.

For a fixed value a let Λ(x), if it exists, be a virtual corner
line for a with corner (x, y) such that its underlying corner line
in the plane points up and right. If there are several virtual
corner lines that match the definition then Λ(x) denotes the
one having the largest y value for its corner. Let lh(x) be the
horizontal, lv(x) the vertical, and l(x) = lh(x) + lv(x) the total
length of Λ(x). Also let P(x) ⊂P be the cut out area of size
a, i.e. Λ(x) is the lower and left boundary of P(x).

Notice that if P has size n, for any a ∈ [0, n] there is a value
x′ such that Λ(x) = Λ(x′) for all x ≤ x′ while Λ(x) 6= Λ(x′) for
all x > x′. Also there is a value x′′ such that Λ(x) is defined for
all x ≤ x′′ while Λ(x) is not defined whenever x > x′′. In this
sense the points x′ and x′′ are extreme points for these virtual
corner lines beyond which the function Λ(x) is irrelevant for our
purposes. Let Ia = [x′, x′′] be the interval of relevant x values
for the virtual corner lines for a. Note that the y values of the
corners of these virtual corner lines are non-increasing with x
in Ia.

The easy case is when the required area a can be cut out
from the polygon using a single virtual corner line of short length
(say, of length at most c

√
a for some fixed constant c). However,

depending on the shape of the polygon, it is not always possible
to find such a virtual corner line. For example, in the polygon
shown in Figure 3.11, any virtual corner line cutting out the
required area has a long vertical or a long horizontal length.

Given any polygon we can search along the x-axis between
the two extremities of the polygon, and for each value of x find
a y such that the virtual corner line at (x, y) cuts out exactly
an area of size a (Figure 3.12). We can show that if there does
not exist any single virtual corner line for a having sufficiently
small length, then there exist virtual corner lines for a at two
points (x1, y1) and (x2, y2) such that the former has short (i.e. at
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Figure 3.11: A polygon in which every virtual corner line for
a is too long. At p1 the vertical length switches from short to
long and at p2 the horizontal length switches from long to short.

Figure 3.12: The interval [x1, x2] in a polygon and a virtual
corner line (dashed black) for a whose horizontal and vertical
lengths are both large.
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most c
√
a) vertical length, the latter has short horizontal length,

and for all virtual corner lines in between both lengths are large.

Lemma 3.17. Let P ⊂ R2 be an open set of points in the plane
of size n, a ∈ [0, n], and c be a constant. Suppose there is no
virtual corner line for a with a length of at most 2c

√
a. Then

there is an interval [x1, x2] ⊆ Ia such that

• lv(x1) ≤ c
√
a,

• lv(x) > c
√
a for all x ∈ ]x1, x2],

• lh(x2) ≤ c
√
a, and

• lh(x) > c
√
a for all x ∈ [x1, x2[.

Proof. Let

x2 = inf
{
x ∈ Ia | lh(x) ≤ c

√
a
}

and

x1 = sup
{
x ∈ Ia | lv(x) ≤ c

√
a ∧ x ≤ x2

}
.

We need to show that if the premise holds, i.e. if there is no
x ∈ Ia such that l(x) ≤ 2c

√
a, then the interval [x1, x2] fulfils

the above listed properties. It is easy to see that lv(x
′) = 0

and lh(x′′) = 0, where Ia = [x′, x′′], and from the premise it
then follows that lh(x′) > 2c

√
a and lv(x

′′) > 2c
√
a. Hence the

points x1 and x2 must exist in Ia since the vertical length must
switch from short to long and the horizontal length from long to
short when traversing the interval. Assume that lv(x1) > c

√
a.

Since P is an open set of points there must then be some z > 0
such that lv(x) > c

√
a for all x ∈ [x1 − z, x1]. However this

contradicts the definition of x1 and we can hence conclude that
lv(x1) ≤ c

√
a. A similar argument can be given for lh(x2) and

thus also lh(x2) ≤ c
√
a.

The premise states that lh(x) + lv(x) > 2c
√
a for all x ∈ Ia.

Thus by the pigeon-hole principle we can conclude that lh(x) >
c
√
a or lv(x) > c

√
a for any such x. By the definition of x1 and

x2 it therefore holds that x1 < x2 and for all points x ∈ ]x1, x2[
it holds that lv(x) > c

√
a and lh(x) > c

√
a. Hence the properties

on the horizontal and vertical lengths listed above are true.
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Further we can show that the interval [x1, x2] of the above
lemma is also short.

Lemma 3.18. Let P be a polygon of size n, a ∈ [0, n], and
c ≥ 2 be a constant. If (x1, y1) and (x2, y2), where x1 < x2, are
the corners of two virtual corner lines for a in P such that the
interval [x1, x2] has the properties listed in Lemma 3.17, then

x2 − x1 <
2
√
a

c
and y1 − y2 <

2
√
a

c
.

Proof. Fix some x ∈ ]x1, x2] and let (x, y) be the corner of the
virtual corner line Λ(x) for a (see Figure 3.12). Let Qy be the
area cut out by the virtual corner line (for some a + b where
b > 0) with corner (x1, y), i.e. both sets P(x1) and P(x) are
included in Qy. We can derive an upper bound on the size of
Qy \P(x) by observing that this area can be split into two
parts. Of these, one is contained in the area P(x1) while the
other is contained in the rectangle below this area. Hence we can
conclude that the size of Qy \P(x) is at most a+ h(y) · w(x),
where h(y) = y1− y and w(x) = x−x1 are the height and width
of the rectangle, respectively.

We can derive a lower bound on the size of Qy \P(x) by
integrating along the vertical lengths of the virtual corner lines
between x1 and x, yielding

lim
z→x1

∫ x

z

lv(t) dt > w(x) · c
√
a.

The area Qy \P(x1) is split into the part that is entirely con-
tained in P(x) and the part that is contained in the rectangle
to the left of that area. Note that the latter rectangle is the
same as for the area Qy \P(x). Since Λ(x1) and Λ(x) both
cut out an area of size a, we can conclude that the sizes of the
areas P(x) \P(x1) and P(x1) \P(x) are equal. Therefore
also the areas Qy \P(x) and Qy \P(x1) have the same size.
Hence we can derive a second lower bound of h(x) · c

√
a on the

size of Qy \P(x) by integrating along the horizontal lengths of
the virtual corner lines in a similar way as before. By defining
l(x) = max{w(x), h(x)} we can thus conclude that the size of
Qy\P(x) is greater than l(x)·c

√
a. By using l(x) as an estimate
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of h(x) and w(x) in the upper bound derived above, we get the
following inequality:

a+ l(x)2 > l(x) · c
√
a

This inequality is an invariant that is true for any x ∈ ]x1, x2].
Using standard methods we can derive that the two terms in the
invariant are equal if

l(x) =

√
a

2

(
c±

√
c2 − 4

)
.

Since c ≥ 2 this means that the invariant amounts to one of the
following terms:

l(x) <

√
a

2

(
c−

√
c2 − 4

)
or (3.1)

l(x) >

√
a

2

(
c+

√
c2 − 4

)
. (3.2)

Note that this means that there is an interval between these
two bounds from which l(x) cannot take a value. However,
since the vertical and horizontal lengths of Λ(x) are always
greater than zero for x ∈ ]x1, x2[ , both w(x) and h(x) are
continuous functions in the interval ]x1, x2]. Therefore also l(x)
is a continuous function. Since l(x) can be arbitrarily close to
zero this means that Inequality (3.2) can never be fulfilled.

It is easily verifiable that the right-hand side of Inequal-
ity (3.1) can be upper-bounded by 2

c

√
a since c ≥ 2. The proof

is concluded by noticing that an upper bound on l(x2) is also
one for w(x2) and h(x2).

Analogous to a virtual corner line we can define a virtual
staircase line by considering any staircase line of infinite length
in the plane and taking the parts of the line that lie inside some
specific polygon.

Definition 3.19 (virtual staircase line). Let µ be a staircase
line in the plane R2 of orientation down. For any finite area
P ⊂ R2 the set Λ of staircase, corner, and straight lines in P
for which λ ∈ Λ if and only if λ ⊂ µ ∩P is called a virtual
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Figure 3.13: A virtual staircase line (dotted black) cutting out
the area of size a shaded in grey. It is constructed using the two
virtual corner lines at (x∗, y2) and (x1, y

∗).

staircase line. The length of Λ is the sum of the lengths of the
included straight, corner, and staircase lines. If Λ cuts out an
area of size a on its upper right side we say that it is a virtual
corner line for a.

Notice that a virtual corner line is also a virtual staircase
line. Using the above results we find a virtual staircase line
which cuts out exactly the required area a and has a short total
length (Figure 3.13). The corresponding staircase line goes along
the vertical section of the first virtual corner line, to some y∗

and then turns to the right and goes to some x∗, turns again
and then finally follows the horizontal part of the second virtual
corner line.

Lemma 3.20. Given a polygon P of size n, for any a ∈ [0, n]
there is a virtual staircase line Λ for a that has a length of at
most 7

√
a.

Proof. We attempt to cut out an area of size a from P using a
virtual corner line. Due to Lemmas 3.17 and 3.18 we can either
find one with length at most 4

√
a (throughout this proof we set

c = 2) or there is an interval [x1, x2] with the properties listed
in the lemmas. In the former case let Λ contain this set of lines.
In the latter case we can find the desired set of curves as follows
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(Figure 3.13). We will use the same notation as in the proof of
Lemma 3.18.

For any x ≥ x2 let Λ′(x) be the virtual corner line with
corner (x, y2) and let l′v(x) be its vertical length. We attempt to
find x∗ = min{x ≥ x2 | l′v(x) ≤

√
a} (which is well defined since

P is an open set). Notice that the vertical lines that are part of
Λ′(x) are contained in P(x2), which has size a. Hence by the
definition of x∗ we can conclude that

a ≥ lim
z→x∗

∫ z

x2

l′v(x) dx > (x∗ − x2)
√
a,

which means that x∗ − x2 <
√
a.

Let P ′(x∗) ⊂P(x2) be the area that is cut out by Λ′(x∗).
We define y∗ to be the coordinate where the virtual corner line
with corner (x1, y

∗) cuts out an area Q such that Q ∪P ′(x∗)
has size a. Observe that y∗ ≥ y1 since P(x1) has size a and
hence Q ⊆ P(x1). The desired set of curves Λ contains all
curves λ that are segment curves and

λ ⊆{(x, y2) ∈P | x ≥ x∗} ∪ (3.3)

{(x∗, y) ∈P | y ∈ [y2, y
∗]} ∪ (3.4)

{(x, y∗) ∈P | x ∈ [x1, x
∗]} ∪ (3.5)

{(x1, y) ∈P | y ≥ y∗}. (3.6)

The points in the first set (in Row (3.3)) are contained in the
horizontal parts of Λ(x2) and the points in the last set (in
Row (3.6)) are contained in the vertical parts of Λ(x1), which
each have a length of at most 2

√
a by Lemma 3.17. The points

in the second set (in Row (3.4)) are contained in the vertical
parts of Λ′(x∗) which by definition has a length of at most

√
a.

The length of the parts from the third set (in Row (3.5)) are
at most the distance between x1 and x∗. By Lemma 3.18 the
distance between x1 and x2 is at most

√
a. By the observations

above the distance from x2 to x∗ is also at most
√
a. In total

this gives a length of at most 7
√
a for the curves in Λ.

After replacing the rectangular line we will see that we are
left with a set L of straight and corner lines cutting out an area
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Figure 3.14: A virtual staircase lined (dashed) that is converted
to a set of staircase, corner, and straight lines (dashed and
dotted). For this, parts of the corner lines (dotted) from the
original cut are used. These are all concave w.r.t. the same part
of the cut shaded in grey.

m−a or m+a. We now know that there exists a virtual staircase
line Λ that can be used to cut out the remaining area of size
a from the A - or B-part. Notice that the underlying staircase
line (of infinite length in the plane) may be intersecting with
other curves in the cut (Figure 3.14). So the parts of the line
included in Λ may not have endpoints on the boundary of the
polygon. Thus, we need to convert Λ into a set M of staircase,
corner, and straight lines, none of which ends at any other curve
in L (however, the curves may partially overlap). This is done
by adding those parts of curves in L to the curves in Λ that are
monotonic extensions of the latter in x- and in y-direction. This
is possible since the corner lines in L are all concave w.r.t. the
same cut out part, as pointed in the previous section. Thus the
set M may contain several staircase lines, but its total length is
at most that of L.

Lemma 3.21. For any polygon P, let L be a non-crossing
corner m-cut with cut size C, such that all corner lines in L
are concave with respect to A (L). For any a ∈ [0,m] there is
a set of segment curves M in P that cuts out an area of size
a from A (L) and has the following properties. The set M ∪ L



3.2. Corner Cuts are Close to Optimal 77

is non-crossing, M contains only straight, corner, and staircase
lines, and the cut size of M is at most 7

√
a+ C. Furthermore

any staircase line in M is oriented down and its surplus, w.r.t.
the (m− a)-cut M ∪ L, lies on its lower left side.

Proof. By Lemma 3.20 we can find a virtual staircase line Λ
in A (L) that cuts out an area of size a and has a length of at
most 7

√
a. The boundary points of a line λ ∈ Λ with respect

to A (L) are either boundary points with respect to P or they
are points on curves in L. If there is a λ′ ∈ L and a point
(x, y) ∈ λ′ such that (x, y) is a boundary point of λ w.r.t. A (L),
the assumption that all corner lines in L are concave w.r.t. A (L)
lets us conclude that λ′ lies on the opposite side of (x, y) than
λ does. More formally, there is a relation ≶ ∈ {≤,≥} such
that for all (x′, y′) ∈ λ′ and all (x′′, y′′) ∈ λ it either holds that
x′ ≶ x while x ≶ x′′ or that y′ ≶ y while y ≶ y′′. Let in the
former case µ(x,y) = {(x′, y′) ∈ λ′ | y ≶ y′} and in the latter case
µ(x,y) = {(x′, y′) ∈ λ′ | x ≶ x′}. That is, if λ lies to the right or
to the left of (x, y) the set µ(x,y) contains the parts of λ′ above
or below (x, y), respectively, and if λ lies above or below (x, y)
the set µ(x,y) contains the parts of λ′ to the right or to the left
of (x, y), respectively.

To construct the desired a-cut M in P we initially set M = Λ.
If γ denotes the boundary of the area of size a that Λ cuts out,
we add to M any curve in L that is contained in γ. Let P denote
the set of boundary points of the curves in M w.r.t. A (L) which
are contained in some curve from L. Since Λ, and hence initially
also M , is a virtual staircase line in A (L), for any straight line
λ′ ∈ L there can be at most one curve in M that has a boundary
point on λ′. For any corner line λ′ ∈ L there can be at most
two lines λ1, λ2 ∈ M that have boundary points p and q on
λ′. Of these points one must be on the vertical and one on the
horizontal part of λ′. Hence the sets µp and µq intersect. In this
case we replace the lines λ1 and λ2 by the line λ1∪λ2∪ (µp∩µq)
in M . At the same time we remove the points p and q from the
set P . We repeat this process until no pair of points in P remain
that both are part of some single line λ′ ∈ L. For any remaining
point in P we now know that if it is contained in some curve
λ′ ∈ L then it is the only one. For any such point p we replace
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Figure 3.15: A staircase line λ with its surplus shaded in grey.
The curves on the boundary of the surplus can be replaced by a
set of straight and corner lines (dotted). The corner line µ is
also removed.

the line λ ∈M , for which p is a boundary point, with the line
λ ∪ µp in M and remove p from P . This is repeated until no
points remain in the set P .

Since the curves in L are straight lines or corner lines that
are concave w.r.t. A (L), the added parts of the curves in L
connect the curves in the original set Λ with the boundary of
the polygon P in such a way that in the end M contains only
straight, corner, or staircase lines. Notice that the latter lines
are all oriented down by the fact that Λ is oriented down and
by the definition of the sets µp for p ∈ P . Furthermore the area
B(M ∪L) of the (m− a)-cut M ∪L contains the parts of A (L)
that were cut out by the virtual staircase line Λ on its upper
right side. Hence the surplus, defined w.r.t. the (m − a)-cut
M ∪ L, of a staircase line in M must lie on its lower left side.
Finally each added part from a curve in L was only added once
to a staircase line while constructing M . This means that the
total length of the curves in M is at most 7

√
a+ C.

The next step is to convert the staircase lines from the set
M ∪L so that at most one of them remains but the cut size does
not increase. Similar to the techniques seen before, we will use
the curves contained in the boundary of the surplus or deficit
of a staircase line for the transformation. Unfortunately some
of the previous arguments can not be used here since M ∪ L is
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not an optimal cut. Instead we need some observations on the
nature of the boundary of the deficit and surplus of a staircase
line λ ∈M : it turns out that any staircase line λ′ different from
λ at the boundary of the deficit or surplus of λ overlaps with
exactly one corner line µ ∈ L (Figure 3.15). This corner line µ
together with the staircase line λ′ can be used to construct a
pair of corner lines. These can be replaced with µ and λ′ so that
the same region is cut out by the new set of curves. The cut size
decreases during this process.

Lemma 3.22. For a polygon P, let L be a set of non-crossing
straight and corner lines and λ be a staircase line that does not
cross any curve in L. Let Λ denote the set of segment curves
in P that are contained in the boundary of λ’s surplus (deficit),
apart from λ itself, where the surplus (deficit) is defined w.r.t.
the cut L∪ {λ}. If the set L∪Λ cuts out an area of size m then
there exists an m-cut that has a cut size at most that of L ∪ Λ
and contains only straight and corner lines.

Proof. We will prove the statement for the case when the curves
in Λ are contained in the boundary of λ’s surplus. The other
case is analogous. If Λ only contains straight and corner lines
the lemma obviously holds. By the definition of the surplus the
only problem that can arise is when Λ contains a staircase line
λ′. Assume w.l.o.g. that λ is oriented down, which means that
also λ′ is. Assume furthermore that the surplus of λ lies on the
lower left side of λ. If we partition λ′ into a succession of bar
lines that are alternating horizontally and vertically oriented, λ′

consists of at least three successive bar lines since it is a staircase
line. Hence there must be a horizontal bar line σh that, to its
right, is followed by a vertical bar line σv. Let (x, y) denote the
point at which these two bar lines meet. This means that σh
lies to the left of (x, y) and σv below (x, y). In this sense (x, y)
is a concave corner of the boundary of λ’s surplus. We want
to argue that there can be at most one such point and it is the
corner of a corner line from L. These facts can then be used to
convert λ′ into a set of appropriate corner lines.

Since (x, y) is part of the boundary of λ’s surplus, we know
that for any z > 0 the point (x−z, y−z) to the lower left of (x, y)
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is not part of the surplus. Since the point (x, y) is a concave
corner of the surplus, for any sufficiently small z and zx, zy ≥ 0
there must be two points (x− z, y + zy) and (x+ zx, y − z), i.e.
to the top left and the lower right of (x, y), that are part of the
surplus. (It holds that zx = 0 or zy = 0 if the respective point
lies on λ. This may happen since λ is part of the surplus.) If z
is small enough then there is no point (x− z, y′) or (x′, y − z),
for any y′ ∈ [y − z, y + zy] and x′ ∈ [x− z, x+ zx], that lies on
the boundary of the polygon P. Hence the only reason why
(x− z, y− z) is not part of the surplus can be that the point lies
in B(L ∪ {λ}) and not in A (L ∪ {λ}). Letting z tend to zero it
follows that (x, y) must be part of some curve µ ∈ L that cuts
out the area to which the point (x− z, y− z) belongs. Obviously
µ is a corner line with corner (x, y) which includes the horizontal
and vertical bar lines σh and σv.

Suppose there are more than one concave corner of λ′. Then
there must be at least two of these that are adjacent in the sense
that the vertical bar line σpv of one of the corners p shares a
point r with the horizontal bar line σqh of the other corner q. By
the arguments given above there must be two corner lines µp

and µq in L such that σpv ⊂ µp and σqh ⊂ µq. But since r is not
part of the boundary of P this means that µp and µq cross at
this point, which is a contradiction. Hence there can only be
one concave corner of λ′. In particular this means that σh is the
only horizontal bar line of λ′ that has an adjacent vertical bar
line to its right while σv is the only vertical bar line that has an
adjacent horizontal bar line to its left.

Consider the case when there is a horizontal bar line σ′h to
the right of the vertical bar line σv. As noted above, σ′h must
have a boundary point. Removing σv from the corner line µ
that overlaps with λ′ leaves the horizontal bar line of µ and
some vertical bar line σ′v that is the lower extension of σv in
µ. Obviously σ′v has a boundary point. Hence by removing
σv from both µ and λ′ we can construct a corner line σ′h ∪ σ′v.
Similarly the horizontal bar line σh can be removed from λ′ and
µ, leaving a corner line if there is a vertical bar line above σh in
λ′. If λ′ and µ share a boundary point then removing σv or σh
as described above obviously leaves nothing to be taken care of.
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Hence any staircase line in the set Λ can, together with some
corner line from L, be replaced with one or two corner lines. In
a cut that includes the curves from Λ and L this transformation
will not change the size of the cut out area and will decrease the
cut size.

The above observations can now be used to convert the
staircase lines constructed in Lemma 3.21 in such a way that
only one staircase line remains, as the next lemma shows.

Lemma 3.23. In a polygon P let L be a non-crossing corner
m-cut with cut size C such that all corner lines in L are concave
with respect to A (L). Then for any a ∈ [0,m] there exists
a (m − a)-cut M in P with cut size at most 7

√
a + 2C that

contains only straight and corner lines except at most one which
is a staircase line.

Proof. By Lemma 3.21 we can find a set of curves M ′ such
that L ∪M ′ is a (m − a)-cut that fulfils all properties of the
statement except for the fact that L∪M ′ may contain more than
one staircase line. Due to the additional properties that any
staircase line is oriented down and its surplus lies on the lower
left side, we can conclude that the boundaries of the surplus and
the deficit can not contain any other staircase line. Hence we
may use Lemma 3.22 to convert a staircase line into a set of
straight and corner lines as follows.

We initially set M = L ∪M ′. Let λ1 and λ2 be two distinct
staircase lines from M ′, and let b1 be the size of the surplus
of λ1 and b2 be the size of the deficit of λ2. Without loss of
generality we can assume that b1 ≤ b2. Similar to the proof of
Lemma 3.14 we can find two sets of curves L1 and L2 that cut
out an area of size b1 from the surplus of λ1 and the deficit of
λ2, respectively, such that removing λi and adding Li, for both
i ∈ {1, 2}, in M ′ again yields a (m− a)-cut M . The set L2 can
be chosen to consist of a single staircase line if b2 > b1 and it
contains only curves that are part of the boundary of λ2’s deficit
if b2 = b1. The set L1 always contains curves that are part of
the boundary of λ1’s surplus. The new (m− a)-cut in which λ1

and λ2 were replaced has a cut size that is at most the cut size
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of the old m-cut since distances are measured in the l1-norm
(it is decreasing if there are more than one curve in L1 or L2

since then parts of the boundary of P act as a short cut for the
curves).

Using Lemma 3.22 the staircase lines in L1 can all be con-
verted to corner and straight lines. If there are more than one
staircase line in L2, i.e. L2 is part of the boundary of λ2’s deficit,
using the same lemma all of them can be converted to straight
and corner lines. Otherwise L2 consists of only one staircase
line. Hence repeating this procedure with any remaining pair
of staircase lines in M will eventually yield a (m − a)-cut in
which there is at most one staircase line left. Since the cut size
is non-increasing during each transformation step, the cut size
of the final set M is at most 7

√
a + 2C, which concludes the

proof.

Using the above techniques we can find an m-cut containing
at most one staircase line for any optimal m-cut containing a
rectangular line, such that the cut size of the former m-cut is at
most a constant times the cut size of the latter. The following
theorem summarises these results.

Theorem 3.24. For any polygon P with an optimal m-cut L
of P containing a rectangular line, there exists a non-crossing
m-cut M which contains only corner and straight lines except
at most one which is a staircase line and M has a cut size of at
most 9C, where C is the cut size of L.

Proof. Let ρ ∈ L be a rectangular line in L which w.l.o.g. is
concave w.r.t. A (L). Let R be the defining rectangle of ρ and
let p1 = (x1, y1) and p2 = (x2, y2) be the boundary points of ρ.
We consider R to be a closed set, i.e. R contains its boundary.
Assume w.l.o.g. that ρ is oriented in a way such that p1 is part
of the left boundary of R while p2 is part of the lower boundary
of R. This in particular means that x1 ≤ x2 and y1 ≥ y2. Let β
be the boundary of the polygon P and

xmax = max{x ∈ R | (x, y) ∈ β ∩R} and

ymax = max{y ∈ R | (x, y) ∈ β ∩R}
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be the extreme points of the boundary β in R. Notice that
xmax ≥ x2 and ymax ≥ y1 since p1 and p2 are boundary points
and hence belong to β and (the boundary of) R. We define the
set of curves Ξ (Figure 3.9) such that λ ∈ Ξ if and only if λ is a
segment curve and

λ ⊆ {(xmax, y) ∈P | y ∈ [y2, ymax]}∪
{(x1, y) ∈P | y ∈ [y1, ymax]}∪

{(x, ymax) ∈P | x ∈ [x1, xmax]}∪
{(x, y2) ∈P | x ∈ [x2, xmax]}.

The set Ξ can be seen as a virtual rectangular line.

Let R′ be the “defining rectangle” of Ξ, i.e. the rectangle that
is defined by the two opposing corners (x1, y2) and (xmax, ymax).
There are three corners of R′ that some curve in Ξ might include,
namely (x1, ymax), (xmax, y2), and (xmax, ymax). If (x1, ymax) is
included in some curve λ ∈ Ξ then this point cannot be a
boundary point. Hence it must be the case that ymax > y1

and thus, by the definition of ymax, there is some part of β
that intersects with the upper boundary of R′. But then there
can be no single curve in Ξ that contains both (x1, ymax) and
(xmax, ymax) since these are the endpoints of the upper boundary
of R′. A similar argument holds for (xmax, y2) and (xmax, ymax).
Therefore no curve in Ξ contains more than one corner, i.e. Ξ
includes only straight and corner lines.

Let D ⊆ R be the area that is cut out between ρ and Ξ in
the a-cut Ξ ∪ {ρ}, where a is the size of D . (Remember that
this means that D is an open set.) Due to Lemma 3.13, apart
from ρ the set L contains only straight and corner lines. Hence,
since no curve crosses ρ and because by the construction of Ξ
the set D does not intersect with the boundary β, no curve from
L crosses a curve in Ξ. Thus we can replace ρ with Ξ in L and
yield a non-crossing (m+ a)-cut M ′. By the construction of Ξ
the corner lines in Ξ are concave w.r.t. A (M ′) = A (M) ∪ D ,
and by Lemma 3.13 the corner lines in L are concave w.r.t.
A (M). Hence all corner lines in M ′ are concave w.r.t. A (M ′).
By Lemma 3.23 we can thus find an m-cut M that has a cut size
of at most 7

√
a+ 2C ′, where C ′ is the cut size of M ′, such that
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M contains only straight and corner lines except for at most one
which is a staircase line.

By the construction of Ξ the total length of the curves in Ξ
is at most the length of ρ and hence the cut size of M ′ is at most
the cut size of L, i.e. C ≥ C ′. At the same time, since the size
a of D ⊆ R is smaller than the size of R, and since the length
lρ of ρ is greater than the height of R plus the width of R, it
follows that C ≥ lρ ≥

√
a. Hence we can upper bound the cut

size of M by 7
√
a+ 2C ′ ≤ 9C, which proves the claim.

3.2.4 Removing Staircase Lines

We now turn to the task of converting a (not necessarily optimal)
cut L containing only straight and corner lines except one which
is a staircase line, into a cut containing only straight and corner
lines. Similar to the case of rectangular lines we will replace the
staircase line with a set of appropriate corner and straight lines
along the boundary of the deficit (or surplus). It is easy to see
that if the deficit (or surplus) area of the staircase line λ has size
a, then

√
a < C, where C is the cut size of L. Thus, if we can

cut out the excess area a using straight and corner lines of total
length in O(

√
a), then our cut size will still be close to optimal.

Given any simple polygon P of area n, a ∈ [0, n], and ε ∈ ]0, 1]
we can find a set of at most three virtual corner lines that cut out
an area whose size is in the interval [(1− ε)a, (1 + ε)a] with a cut
size that is a constant (depending on ε) times

√
a. Furthermore

the corners of these virtual corner lines all have either the same
x-coordinate or the same y-coordinate. They can be found using
the short interval [x1, x2] that was identified before (Figure 3.12).
We use the virtual corner line with corner (x1, y2) which has
short length but cuts out an area that is too large. To correct
for the area we additionally find two virtual corner lines (of
short length) with corners at either points (x′, y2) and (x′′, y2),
for some x′, x′′ ≥ x2, or points (x1, y

′) and (x1, y
′′), for some

y′, y′′ ≥ y1.

Lemma 3.25. For any polygon P of total area n, any a ∈ [0, n],
and any ε ∈ ]0, 1] there is a set L of straight and corner lines
with the following properties. The lines in L cut out an area
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Figure 3.16: The interval [x1, x2] of width w together with the
virtual corner lines Λ(x1) and Λ(x2) (grey dashed lines). The
dark grey area is P(x1) \P(x2) of size b′, while the light grey
area is P(x1)∩P(x2) of size b. The right-most point of P(x2)
is x3, and x and ϕ(x) define points at which the virtual corner
lines Λ′(x) and Λ′(ϕ(x)) (black dotted lines) enclose an area of
size d′ between them (striped pattern).

which has a size in the interval [(1− ε)a, (1 + ε)a], and the cut
size of L is at most (6

√
7/ε + 2) ·

√
a. Furthermore L is the

union of at most three virtual corner lines with corners that
either have the same x- or y-coordinate.

Proof. If ε and a are chosen such that (1 + ε)a ≥ n the lemma
trivially holds since L can be empty. Hence assume that (1 +
ε)a < n throughout this proof. Let c =

√
7/ε. If there is a

virtual corner line for a that has a length of at most 2c
√
a the

lemma obviously holds. Since
√

7/ε > 2 for ε ∈ ]0, 1], if there is
no such virtual corner line then by Lemmas 3.17 and 3.18 there
is an interval [x1, x2] ⊆ Ia with the properties listed therein. We
use the same notation as in the proof of Lemma 3.18, but for
better readability let Q = Qy2 , w = w(x2), and h = h(y2). The
size of the area Q is a + d for some d > 0, i.e. the size of the
area Q \P(x2) is d (see Figure 3.16).

Our first goal in this proof is to establish an upper bound on
the size b of the area P(x1) ∩P(x2) depending on d. For this
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we establish a lower bound on the size b′ of P(x1)\P(x2) which
we can then subtract from a, the size of P(x1). One simple
bound can be derived by subtracting from d the size of the area
not in P(x1) \P(x2) but in Q \P(x2). Since the size of this
area can be upper-bounded by h ·w, we get b′ ≥ d−hw. We can
derive an upper bound for w depending on d by integrating along
the vertical lengths of the virtual corner lines for a between x1

and x2. By Lemma 3.17 this gives

d ≥ lim
z→x1

∫ x2

z

lv(t) dt > w · c
√
a.

Hence w < d
c
√
a
, and using the upper bound on h given by

Lemma 3.18 we can conclude that b′ > d
(
1− 2

c2

)
. This di-

rectly translates into the upper bound on the size of the area
P(x1) ∩P(x2) which is

b = a− b′ < a− d
(

1− 2

c2

)
. (3.7)

The next step is to find a lower bound on b (which also
depends on c) under the assumption that no appropriate set L
exists. We will show that for c =

√
7/ε the upper and lower

bounds contradict each other. Let ∆ denote the virtual corner
line for a+d with corner (x1, y2), i.e. ∆ cuts out Q. If d ≤ εa we
can cut out an area which has a size in the interval [a, (1+ε)a] by
letting L = ∆. By Lemmas 3.17 and 3.18 the virtual corner line
∆ has a length of at most 2(c

√
a+2

√
a/c) ≤ (2

√
7/ε+2)

√
a and

hence in this case L satisfies the lemma. Therefore let d > εa in
the remainder of the proof. We will attempt to find L by either
including ∆ in L and cutting out an area of size approximately
d from Q, or by cutting out an area of size approximately a
from Q directly. The decision on whether to include ∆ in L is
determined by distinguishing between small and big values for d.
In case d < a we include ∆ in L and otherwise not.

Since we have the freedom to choose the size of the area that
we cut out from the interval [(1− ε)a, (1 + ε)a], we attempt to
cut out the smallest possible area from Q. Hence if d′ denotes
the size of this area, let d′ = min{d, a} − εa. Notice that d′ is
well-defined since d > εa, and that the size of the cut out area is
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a−εa if ∆ is not included in L and it is a+d− (d−εa) = a+εa
otherwise. Hence the size of the cut out area lies in the given
interval.

To cut out the area of size d′ from Q we use a pair of virtual
corner lines such that for both lines either the horizontal parts
overlap with Λ(x2) or the vertical parts overlap with Λ(x1).
Notice that such a pair always exists, since d′ < a and the
lines Λ(x1) and Λ(x2) each cut out an area of size a. Since
by Lemma 3.17 both the horizontal length of Λ(x2) and the
vertical length of Λ(x1) is short, we only have to guarantee that
either the vertical or the horizontal lengths of the two desired
virtual corner lines are short, respectively. We will concentrate
on the case where we pick the virtual corner lines from those that
overlap with Λ(x2), since the other case is analogous. Therefore,
if x3 is defined such that x3 − x2 is the width of P(x2), let
Λ′(x) denote the virtual corner line with corner (x, y2) for any
x ∈ ]x2, x3] and let l′v(x) be its vertical length.

Let ϕ(x) be a function that, for a given virtual corner line
Λ′(x), gives the x-coordinate of Λ′(ϕ(x)), such that Λ′(x) and
Λ′(ϕ(x)) enclose an area of size d′ between them and ϕ(x) > x.

This means that
∫ ϕ(x)

x
l′v(t) dt = d′ and that the domain of ϕ is

upper-bounded by ϕ−1(x3) where ϕ−1 is the inverse function of
ϕ (notice that the function ϕ is bijective). Assume that there is
no pair of virtual corner lines Λ′(x) and Λ′(ϕ(x)) for which both
vertical lengths are shorter than c

√
a. From this assumption it

follows that for all x ∈ [x2, ϕ
−1(x3)] it holds that l′v(x) > c

√
a

or l′v(ϕ(x)) > c
√
a.

Let for any interval I ⊆ [x2, x3] the function f be equal to
the size of the area {(x′, y′) ∈ Q | x′ ∈ I} in the vertical stripes
in Q defined by I, i.e.

f(I) =

∫
I

l′v(t) dt.

Let J = {x ∈ [x2, ϕ
−1(x3)] | l′v(x) > c

√
a} be the subset of

the domain of ϕ for which the vertical lengths of the virtual
corner lines Λ′(x) are long. Let J be the set for which the
vertical lengths are short, i.e. J = [x2, ϕ

−1(x3)] \ J . Also let
K = {x ∈ [ϕ(x2), x3] | l′v(x) > c

√
a} and K = [ϕ(x2), x3] \K be
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Figure 3.17: The interval [x1, x2] together with the virtual
corner lines Λ(x1) and Λ(x2) (dashed lines). To estimate the
size b of P(x1) ∩P(x2) we determine the size f(J ∪K) of X
and the size of Y .

the corresponding subsets from the domain of ϕ−1. To establish
the connection between the assumption on the lengths of the
vertical lines and the lower bound on b we investigate f(J ∪K)
(see Figure 3.17).

Let [l, r] ⊆ J be a connected subset of J . By the definitions
of f and ϕ we get

f([l, r]) = f([l, ϕ(l)]) + f([ϕ(l), ϕ(r)])− f([r, ϕ(r)])

= f([ϕ(l), ϕ(r)]).

Since J is a union of connected subsets and ϕ is bijective we
can conclude that f(J) = f(ϕ(J)), where ϕ(J) is the image of
J . By the assumption that for all x ∈ [x2, ϕ

−1(x3)] the vertical
length of Λ′(x) or of Λ′(ϕ(x)) is long, ϕ(J) must be a subset of
K and hence f(J) ≤ f(K). A similar observation can be made
for K, ϕ−1(K), and J so that f(K) ≤ f(J).

By the definition of ϕ we know that f([ϕ−1(x3), x3]) = d′

and f([x2, ϕ(x2)]) = d′, while the total area of P(x2) has size a.
Hence f(J ∪ J) = f(K ∪K) = a− d′. From the bounds above
and the fact that J and J but also K and K are disjoint we can
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conclude that

f(J) + f(K) ≥ f(K) + f(J) = 2(a− d′)− f(K)− f(J).

The sets J and K might not be disjoint but from the above
inequality we get

f(J ∪K) + f(J ∩K) = f(J) + f(K) ≥ a− d′.

By the pigeon-hole principle and the fact that (J ∩K) ⊆ (J ∪K)
we can thus conclude that

f(J ∪K) ≥ a− d′

2
.

Let X = {(x, y) ∈ P(x2) | x ∈ J ∪K} and let fX be the
size of X , i.e. fX = f(J∪K). We now want to also consider the
assumption that there is no pair of virtual corner lines amongst
those overlapping with Λ(x1) such that both their horizontal
lengths are short while cutting out an area of d′ between them.
Let Y ⊆ P(x1) denote the area such that (x, y) ∈ Y if and
only if there is a virtual corner line with corner (x1, y) which has
a horizontal length greater than c

√
a, analogous to the definition

of X . Using a similar argumentation as for the set X , we can
conclude that the size fY of Y must also be at least a−d′

2 if no
pair of virtual corner lines exists that cuts out an area of size d′

such that both horizontal lengths are short.

To yield a lower bound on b we want to consider those parts
of X and Y that are contained in P(x1)∩P(x2) and determine
their size. For this we need to find an appropriate bound on the
parts of X and Y that are not contained in P(x1) ∩P(x2),
but also a bound on the size of the intersection of X and Y .
Therefore let wX be the total width of X , i.e. wX is the total
length of the interval J ∪ K. Since X is contained in P(x2)
and the latter has a size of a we can conclude that

a ≥
∫
J∪K

l′v(t) dt > wX · c
√
a,

and hence wX <
√
a
c . If hY denotes the total height of Y , a

similar argument yields that also hY <
√
a
c .
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Those parts of X that are not contained in P(x1) are
confined to the area below P(x1) in Q which has height h.
Hence the area X \P(x1) has a size of at most h ·wX . Similarly
the area Y \P(x2) has a size of at most w ·hY , since the area to
the left of P(x2) in Q has width w. The size of the intersection
of X and Y can be at most wX · hY . Thus, using the bounds
on w and h given in Lemma 3.18 we can conclude that

b ≥ fX −h ·wX +fY −w ·hY −wX ·hY > a−d′− 5

c2
a. (3.8)

We make a case distinction on the value of d to compare the
lower and upper bounds on b. If d < a then d′ = d− εa so that
setting c =

√
7/ε in Bounds (3.7) and (3.8) gives

b < a− d
(

1− 2

7
ε

)
< a− d+

2

7
εa and

b > a− (d− εa)− 5

7
εa = a− d+

2

7
εa,

which is a contradiction. In the case when d ≥ a it holds that
d′ = (1− ε)a so that, using the fact that ε ∈ ]0, 1], Bounds (3.7)
and (3.8) give

b < a− d
(

1− 2

7
ε

)
≤ a− a

(
1− 2

7
ε

)
=

2

7
εa and

b > a− (1− ε)a− 5

7
εa =

2

7
εa,

which again is a contradiction.

We can thus conclude that one of our assumptions must be
wrong. Therefore there always exists a pair of virtual corner
lines which cuts out an area of size d′ and has a short total
length. These can be found either amongst those overlapping
with Λ(x1) or those overlapping with Λ(x2). Hence we can
find the set L which is the union of these virtual corner lines
and, depending on the value of d, also ∆ in case we need it.
The cut size of L is at most the length of the two corner lines
cutting out the area d′ between them, plus the length of ∆.
Together these three virtual corner lines have a length of at most

4c
√
a+ 2(c+ 2/c)

√
a <

(
6
√

7/ε+ 2
)√

a, which concludes the

proof.
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Figure 3.18: A tail defined by the dotted line. Three (dashed)
virtual corner lines cut out the area shaded in grey (the lines
overlap on the bottom right).

Note that in the above proof the existence of ε > 0 guarantees
that the intervals J and K have lengths greater than zero: it
may happen that d = a so that the size of Q \P(x1) is a. In
this case, whether ∆ is included in L or not, ϕ(x2) = x3 if ε = 0.
Thus for the proof technique used above we need to allow a
deviation from cutting out an exact area size as given by the
interval [(1− ε)a, (1 + ε)a].

To apply the above result, we need to find a region of the
polygon of size larger than a that does not contain any curves of
the cut, so that we can cut out the excess area without interfering
with the other curves. For this we define the concept of a tail
of a polygon with respect to a cut: for any cut in a polygon P,
consider all the connected pieces of the polygon cut out by it.
If there a connected piece T that is defined by a single curve τ
then we call T a tail of the polygon.

Definition 3.26 (tail). For an m-cut L in a polygon P, let
T ⊆P \

⋃
µ∈L µ be a connected area that is cut out by L. We

call T a tail if there exists a single curve τ ∈ L that cuts out T .
We refer to τ as the curve of T . In case L contains a staircase
line λ, we call a tail T ⊆ A (L) respectively T ⊆ B(L) small
if its area is strictly smaller than λ’s deficit respectively surplus.

Notice that there always exists a tail if P is a simple polygon.
Notice also that apart from the curve of a tail T there might
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be other subsets of L that cut out T if curves in L overlap.

To convert a cut containing a staircase line λ into one con-
taining only straight and corner lines, we can shift λ in either
direction, i.e. going into either the A - or the B-part. However
all the tails in the polygon may belong to only one part. We
need to consider two cases, one of which is when L contains only
λ. This means that there are exactly two tails, one on each side
of λ. If we assume w.l.o.g. that the size a of λ’s deficit is at most
that of its surplus, we can replace the staircase line by the set
of straight and corner lines on the boundary of its deficit. We
then cut out the area a′ ∈ [(1− ε)a, (1 + ε)a] from the original
A -part (containing the surplus) using the at most three virtual
corner lines which were shown to exist above (Figure 3.18). The
other case is when there is a tail contained in, say, the A -part
whose curve µ is not λ. We can safely assume that the size of
the tail is larger than the size a of the deficit of λ. If this was
not the case then we could remove µ from the cut by using an
area exchange with the staircase line λ, without increasing the
cut size, as the next lemma shows.

Lemma 3.27. Let L be an m-cut in P with cut size C con-
taining one staircase line while all other curves in L are straight
and corner lines. There exists an m-cut L′ in P which contains
one staircase line and only straight and corner lines otherwise,
has cut size of at most C, and the curve of any small tail cut
out by L′ equals the staircase line.

Proof. If the curve of every small tail cut out by L is the staircase
line λ ∈ L there is nothing to prove. Hence let T be a small
tail cut out by L such that its curve is λ′ 6= λ. Assume w.l.o.g.
that T ⊆ A (L), i.e. T is strictly smaller than λ’s deficit. This
means that we can find a staircase line λ′′ that cuts out an area
that has the same size as T from λ’s deficit, such that removing
λ′ and replacing λ with λ′′ in L yields an m-cut that has a cut
size that is less than C by the length of λ′. The new cut has one
straight or corner line less than the old one and it contains one
staircase line. We repeat this process for any small tail cut out
by the new set that does not conform with the desired property.
This will eventually terminate in a state in which the resulting
m-cut L′ fulfils the property.
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As this lemma shows we can replace the staircase line λ by
the corner and straight lines on the boundary of its deficit and
cut out an area a′ from the tail, using the virtual corner lines of
short length. It may be that some of the virtual corner lines end
at the curve µ of the tail. If this happens we can find a set of
straight and corner lines that overlap with parts of the virtual
corner lines and µ, with which to replace the latter lines (in the
same way as suggested by Figure 3.15). The cut out area is the
same while the cut size only grows by a constant factor since
there are at most three virtual corner lines. The result of the
above described method is summarised in the following theorem.

Theorem 3.28. Given an m-cut L of a polygon P with cut
size C containing only straight and corner lines except one which
is a staircase line, for any desired ε ∈ ]0, 1] there exists a corner
m′-cut L′, where m′ ∈ [(1− ε)m, (1 + ε)m], having a cut size of
at most (6

√
7/ε+ 7) · C.

Proof. Due to Lemma 3.27 we can assume that any tail cut out
by L is not small or its curve is the staircase line λ ∈ L. Consider
the case when there is a tail T and its curve is λ′ ∈ L such that
λ′ 6= λ, i.e. T is not small. In case T ⊆ A (L) let a denote the
size of λ’s deficit and in case T ⊆ B(L) let a denote the size of
λ’s surplus.

The curve λ′ is either a straight or a corner line. We assume
w.l.o.g. that the horizontal bar line σ′h of λ′ (if any) lies below
T and the vertical bar line σ′v of λ′ (if any) lies to the left of
T . That is, for all sufficiently small z > 0, (xh, yh) ∈ σ′h, and
(xv, yv) ∈ σ′v it holds that (xh, yh + z) ∈ T , (xh, yh − z) /∈ T ,
(xh + z, yh) ∈ T , and (xh − z, yh) /∈ T . Notice that this in
particular means that if λ′ is a corner line then it points up and
right if λ′ is convex w.r.t. T , and it points down and left if λ′ is
concave w.r.t. T . According to Lemma 3.25 there is an a′-cut
L′, for some a′ ∈ [(1 − ε)a, (1 + ε)a], in T such that L′ is the
union of at most three virtual corner lines, i.e. L′ contains only
straight or corner lines where the latter point up and right. Let
λ′′ ∈ L′ be a curve that has a boundary point p with respect to
T such that p ∈ λ′. Assume that λ′′ is a corner line. If p ∈ σ′v,
the corner of λ′′ must lie to the right of p since λ′′ ⊂ T and
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the assumption made on the location of T with respect to λ′.
However this contradicts the orientation of λ′′ since its corner
must lie to the left of or below its boundary point. A similar
contradiction can be derived if p ∈ σ′h. Hence it must be the
case that λ′′ is a straight line. If p ∈ σ′v then let σ ⊆ σ′v be the
part of σ′v that lies above p if λ′ is a vertical straight line or λ′

is a convex corner line w.r.t. T , and let σ ⊆ σ′v be the part of
σ′v that lies below p if λ′ is a concave corner line w.r.t. T . If
p ∈ σ′h then let σ ⊆ σ′h be the part of σ′h that lies to the right of
p if λ′ is a horizontal straight line or λ′ is a convex corner line
w.r.t. T , and let σ ⊆ σ′h be the part of σ′h that lies to the left of
p if λ′ is a concave corner line w.r.t. T . Notice that in all cases
σ is a bar line between p and a boundary point of λ′. Hence we
can convert λ′′ into a corner line in P by adding the point p
and the line σ to it.

If there are at most two virtual corner lines that make up
the set L′ then there can be at most four straight lines that have
to be converted to corner lines in P: one for each horizontal
and vertical part of the virtual corner lines. Lemma 3.25 states
that the virtual corner lines in L′ have corners that either have
the same x- or y-coordinate. This means that the straight
lines on either the vertical parts or the horizontal parts overlap.
Hence if there are three virtual corner lines then two of each
overlapping triple can be removed so that the resulting set of
curves still is an a′-cut and the cut size decreases. Thus also in
this case there are at most four straight lines in L′ that have to
be converted to corner lines in P: three in either the horizontal
or the vertical parts of the virtual corner lines and one in the
other part. Therefore after converting L′ and adding these curves
to L, the resulting set of curves M ′ has a cut size of at most
5C + (6

√
7/ε+ 2)

√
a.

Notice that M ′, apart from λ, only contains straight and cor-
ner lines. Hence using Lemma 3.22 we can replace the staircase
line λ with a set of corner and straight lines, yielding the set
M . It only contains straight and corner lines and has a cut size
of at most that of M ′. What remains to be shown, in case the
boundary of T does not contain λ, is that M cuts out an area of
the desired size and that its cut size is of the desired length. The
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set M cuts out an area of size m′ where m′ ∈ [m− εa,m+ εa].
Since T is a tail that is not small, if T ⊆ A (L) we can conclude
that the size of T is greater or equal to a and hence m ≥ a. If
T ⊆ B(L), since the surplus is part of A (L) obviously m ≥ a
also holds in this case. Thus m′ ∈ [(1− ε)m, (1 + ε)m], which
establishes the desired size for the area. Concerning the cut size,
let R be the rectangle that is defined by the boundary points
of λ, let h be its height, w be its width, and let w.l.o.g. h ≥ w.
The length lλ of λ is lλ = h+ w > h. Since both the deficit and
the surplus of λ are contained in R we know that a < hw ≤ h2.
Hence we can conclude that C ≥ lλ >

√
a. This means that the

cut size of M is at most (6
√

7/ε+ 7)C, as claimed.

Now consider the case when there is no tail cut out by L such
that its curve is different from λ. This means that the only curve
in L is λ. In this case we need to proceed differently than in the
case before by reversing the transformation of the m-cut: we
first remove λ and instead add the curves that, apart from λ, are
contained in the boundary of λ’s deficit. This yields a (m+a)-cut
M ′ which contains only straight and corner lines, where a is the
size of the deficit. Furthermore, if we assume w.l.o.g. that λ is
oriented down and its deficit lies to the lower left side of λ, the
corner lines all point up and right and are convex w.r.t. A (M ′).
Since the deficit of λ is part of A (M ′), we can use Lemma 3.25
to find a set of straight and corner lines L′ in A (M ′) that cuts
out an area of size a′ ∈ [(1 − ε)a, (1 + ε)a]. Again we need to
convert those curves in L′ that have a boundary point on one
of the curves in M ′ into feasible curves in P. Since the corner
lines in both L′ and M ′ point up and right, any curve in L′ that
has a boundary point in A (M ′) on one of the curves in M ′ can
only have one such boundary point. Hence the same arguments
as given above for the other case also apply for each such case
here. We can thus make the necessary conversions of the curves
in L′, add the curves in M ′, and thereby yield the set of curves
M which only contains straight and corner lines. As above it
cuts out an area of size m′ ∈ [(1− ε)m, (1 + ε)m], and has a cut
size of at most (6

√
7/ε+ 7)C, which concludes the proof.
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3.2.5 Converting Curves in Polygons to
Segments in Grids

We have learnt that for any desired area m to be cut out from
a simple polygon there exists a cut of only straight and corner
lines that (1) cuts out at most a small amount ε ·m more (or
less) than the desired area, and (2) has a cut size that is close
to the optimum (of arbitrary shape for area m). We summarise
these results in the following corollary.

Corollary 3.29. Let C be the cut size of an optimal m-cut L in
some polygon P. For any ε ∈ ]0, 1] there exists a non-crossing
corner m′-cut for some m′ ∈ [(1− ε)m, (1 + ε)m], which has a
cut size of at most (54

√
7/ε+ 63) · C.

Proof. According to Corollary 3.15 we can assume that L only
contains straight and corner lines except at most one curve which
can either be a staircase or a rectangular line. In case L only
contains straight and corner lines there is nothing to prove. In
case it contains a staircase line the claim holds according to
Theorem 3.28. In case L contains a rectangular line we can use
Theorem 3.24 to convert L into an m-cut L′. It has a cut size of
at most 9C and contains only straight and corner lines except
at most one staircase line. If L′ does not contain a staircase
line, the claim obviously holds. Otherwise, using Theorem 3.28
on L′, we can convert L into a non-crossing corner m′-cut, for
some m′ ∈ [(1 − ε)m, (1 + ε)m], having a cut size of at most
(6
√

7/ε+ 7) · 9C, which concludes the proof.

Because our real interest is in cuts in grids, we now face
the task to find a cut in the grid G given a cut in the polygon
PG constructed from G. Our transformation from a grid to a
polygon implies that an optimal m-cut in G transforms into an
m-cut in PG. But not necessarily into an optimal one, since the
cut curves in the polygon are not limited to integer positions
(these are integer positions in the dual of the grid, and thus
halfway positions between grid points). In other words, a cut in
the polygon does generally not translate directly into a cut in
the grid (note that if we would just cut grid edges with polygon
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Figure 3.19: A grid line λ1 and a non-grid line λ2. The
corridor of λ2 is shaded in grey. The boundary of the polygon is
divided into lines of unit length.

cut curves, that is, not cut them in the middle, this would not
translate the cut out area into the same number of grid vertices).
Whenever a curve in the cut of PG happens to lie in integer
position however, we will just take the corresponding segment
to cut the grid G (Figure 3.19).

Definition 3.30 (corridor, grid line). Given a grid G = (V,E)
let Sv be the axis-parallel unit square that has v ∈ V as its
centre and let γv be the boundary of Sv. We consider a unit
square to be an open set, i.e. γv ∩Sv = ∅ for all v ∈ V . For any
curve λ in PG we refer to the set Cλ = {p ∈PG | ∃v ∈ V : λ ∈
Sv ∧ p ∈ Sv ∪ γv} as the corridor of λ. It is the union over the
unit squares that intersect with λ together with their boundaries
that are not part of the boundary of PG. A curve λ in PG is
called a grid line if Cλ = ∅, i.e. λ lies on the boundaries of the
unit squares.

For non-grid lines, we start with a clean-up phase that modi-
fies a pair of these curves so that one of them becomes a grid
line, and the other compensates for the area difference that this
creates. We start the clean-up phase by first focussing on unit
length open intervals on the polygon boundary between adjacent
integer positions, as defined next.

Definition 3.31 (UG). Given a grid G let β be the boundary
of PG. We define H =

{
x− 1

2 | x ∈ N
}

so that H2 denotes the
points between integer positions in the plane. Let the set UG
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contain all unit length curves in β \H2.

Because a grid line λ does not hit any such open unit interval
we are concerned only with cut curves that do. For any open
unit interval hit by more than one cut curve, we can shift one
of these curves to the boundary and compensate for the area
difference by also shifting one other of these curves accordingly.
Repeating this leaves us with at most one cut curve per open
unit interval on the boundary.

Lemma 3.32. For any grid G and any non-crossing corner
m-cut L of cut size C in PG, there is a non-crossing corner
m-cut M of cut size at most C in PG such that there is no
curve in UG which includes more than one boundary point of
curves in M .

Proof. Consider the case when there is a curve δ ∈ UG such that
at least two curves in L have boundary points on δ. Without
loss of generality let δ be the lower side of a unit square Sv,
i.e. the curves having a boundary point on δ lie above it. This
means that any corner line having a boundary point on δ points
down, while any such straight line is vertical. Let K ⊆ L be the
set of curves that have a boundary point on δ (Figure 3.20). We
define (xδ, yδ) to be the lower left corner of the unit square Sv

to which δ is the lower side. Let for any curve λ ∈ K the point
(xλ, yλ) be either the corner of λ, if it is a corner line, or the
boundary point of λ that does not lie on δ, if λ is a straight line.
We define

D(λ) = {(x, y) ∈ Cλ | x ∈ ]xδ, xλ[ ∧ y ∈ ]yδ, yλ[ }

to be the open set of points in λ’s corridor that lie to the left
of λ.

Since the curves in L are non-crossing, observe that if λ ∈ K
is a corner line pointing down and left any curve λ′ ∈ L that
intersects D(λ), i.e. λ′ ∩D(λ) 6= ∅, must be a corner line and it
must have the same orientation as λ. Thus λ′ must also have a
boundary point on δ since the lower boundary of D(λ) is part
of δ. From this we can conclude that for a boundary point p
on δ that belongs to a corner line pointing down and left, the
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Figure 3.20: The considered curve δ and the lines λ1 to λ|K|
from left to right (dashed). The area shaded in grey is D(λ2).

boundary points to the left of p on δ all belong to corner lines of
the same orientation. Furthermore they must all be of smaller
vertical length since the height of D(λ) equals the vertical length
of λ. An analogous observation can be made for a corner line
λ ∈ K pointing down and right, if we consider the open set of
points in its corridor that lie to the right of λ. Hence we can
order the curves in K by traversing their boundary points on
δ from left to right such that we first encounter corner lines
pointing down and left with increasing vertical length, then
straight lines, and finally corner lines pointing down and right
with decreasing vertical length. Obviously this is also possible
if some of the curves in K share the same boundary point on δ.
Let the indices of the curves in K = {λ1, ..., λ|K|} denote their
position in this order (cf. Figure 3.20).

We will consider the curves λ1 and λ2 from K and in each
case attempt to move the vertical part of λ1 to the left until it
intersects with the boundary of the unit squares, i.e. until the
vertical line is a grid line. Thereafter we will find one or several
curves that substitute λ2 such that the resulting set of curves
is an m-cut again. Towards this end, for any point (x, y) on
the boundary of PG such that x ≤ xλ1

and y ∈ [yδ, yλ1
], we

define the set of curves Λ1(x, y) as those straight and corner lines
between (x, y) and (xδ, yδ) (Figure 3.21). That is µ ∈ Λ1(x, y)
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Figure 3.21: The line λ1 (dashed), a point (x, y) on the bound-
ary of PG, and the corresponding set of curves Λ1(x, y) (dotted).

if and only if µ is a segment curve and

µ ⊆ {(x′, y′) ∈PG | (x′ = xδ ∧ y′ ∈ [yδ, y]) ∨
(y′ = y ∧ x′ ∈ [x, xδ])}.

Note that Λ1(x, y) contains more than one curve if D(λ1) touches
the boundary of PG to its left.

Consider the case when λ1 and λ2 are corner lines pointing
down and left (Figure 3.22). Let (x, y) /∈ δ be the boundary
point of λ1 that does not lie on δ. We know that no curve from
L intersects D(λ1) by the observations made above. This means
that removing λ1 and adding the curves in Λ1(x, y) yields a
non-crossing m′-cut for some m′. The difference between m and
m′ is equal to the size of D(λ1) and is hence less than the size
of D(λ2). Also the only curve in L that intersects D(λ2) is λ1.
Hence, after replacing λ1, we can find a corner line µ pointing
down and left that has its corner on λ2’s horizontal bar line and
a boundary point on δ, such that removing λ2 and introducing µ
will again result in a non-crossing m-cut. Notice that the total
length of the curves in Λ1(x, y) is shorter than the length of λ1

and also the length of µ is shorter than the length of λ2. Hence
we obtain an m-cut of smaller cut size than C. Also the number
of boundary points on δ is reduced by one.

In case the curves λ|K| and λ|K|−1 are corner lines pointing
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−→

Figure 3.22: The case when λ1 and λ2 are corner lines (left).
They are substituted with Λ1(x, y) and µ (right). The area shaded
in dark grey is D(λ1), and the area shaded in both light and dark
grey is D(λ2).

down and right we can use an analogous argumentation as the
one given above to obtain an m-cut of cut size smaller than C.
In the new cut the number of boundary points on δ is reduced
by one. By repeating this procedure, we can transform L into
an m-cut of smaller cut size. This can be done until there are at
most two corner lines with boundary points on δ, such that they
point down and left, and down and right, respectively. We thus
assume in the remainder of the proof that K contains at most
one such corner line each, while all others are straight lines.

Consider the case when λ1 is a corner line pointing down and
left and λ2 is a straight line (Figure 3.23). In case the boundary
points of λ1 and λ2 are the same on δ these two curves overlap.
If q denotes the corner of λ1, clearly we can introduce the corner
line pointing up and left, remove λ1 and λ2, and thereby obtain
an m-cut of smaller cut size than C. The number of boundary
points on δ will then be reduced by two. In case λ1 and λ2 do
not share the same boundary point on δ, we can again replace
λ1 with the curves in Λ1(x, y), exactly as above, yielding a non-
crossing m′-cut L′. Let C ∈ {A (L′),B(L′)} be the part of the
m′-cut for which D(λ1) ⊆ C . We define L ⊆ D(λ2) ∩ C to be
the connected area for which D(λ1) ⊆ L . That is, L lies to the
left of λ2 in L′. Since λ1 and λ2 do not overlap, the size of D(λ1)
is smaller than the size of L , i.e. D(λ1) ⊂ L . Hence we can
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−→

Figure 3.23: The case when λ1 is a corner line and λ2 is a
straight line (left). Together with λ′ (dotted) they are substituted
with Λ1(x, y) and µ (right). The area shaded in grey is L .

find a vertical straight line σ in L that cuts out an area the size
of D(λ1) on its right-hand side. One of the boundary points of σ
(w.r.t. L ) lies on δ and the other boundary point can either lie
on the boundary of PG or on a curve λ′ ∈ L \ {λ1, λ2}. In the
former case we can replace λ2 with σ and again yield an m-cut
which has a smaller cut size and one boundary point less on δ.
Otherwise, note that λ′ lies in D(λ2) and hence must be a corner
line pointing up and left, since any other straight or corner line
would either cross λ1 or λ2, or would have a boundary point on
δ. This is not possible due to the choice of λ2 in the ordering of
K. This means that we can extend σ by a horizontal bar line
σ′ to a corner line µ = σ ∪ σ′ pointing down and left that has a
corner on the horizontal bar line of λ′. Removing λ2 and λ′ and
introducing µ instead will yield an m-cut with a smaller cut size
and one boundary point less on δ.

Since we assumed that there is at most one corner line point-
ing down and right in K, if λ1 is a straight line and λ2 is such
a corner line then |K| = 2. Hence this case is analogous to the
case just covered.

Now consider the case when both λ1 and λ2 are straight
lines (Figure 3.24). In case they overlap we can simply remove
both lines. Otherwise it holds that D(λ1) ⊂ D(λ2). As above,
any curve from L that intersects D(λ1) must be a corner line
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−→

Figure 3.24: The case when λ1 and λ2 are straight lines (left).
Together with some curves in L′ (dotted) they are substituted
with Λ1(x, y) and µ (right).

pointing up and left. Let L′ ⊆ L be the curves that intersect
D(λ1), and if L′ 6= ∅ let λ′ ∈ L′ be the one with the lowest and
right-most corner among these. Notice that λ′ is well-defined
since the curves in L′ are non-crossing. In this case we replace
both λ1 and λ′ with Λ1(x, y), where (x, y) is the boundary point
of the horizontal bar line of λ′. In case L′ is empty we replace
λ1 with Λ1(xδ, yλ1

). In both cases we obtain an m′-cut for some
m′. Analogous to the case when λ1 is a corner line pointing
down and left, and λ2 is a straight line, we can find a curve with
which to replace λ2. As above we possibly also need to remove
some other curve in L′ to yield an m-cut of smaller cut size than
C, and in which there is one boundary point less on δ.

The only case left is the one where both λ1 and λ2 are corner
lines, i.e. the former points down and left, the latter down and
right, and |K| = 2. We assume w.l.o.g. that the vertical length
of λ1 is at most that of λ2. If λ1 and λ2 have the same boundary
point on δ and they have the same vertical length, obviously
we can remove these two curves and introduce a straight line
that consists of the horizontal bars of λ1 and λ2 instead, and
thereby obtain an m-cut with smaller cut size than C and with
two boundary points less on δ. Consider the case when the two
curves share the same boundary point on δ, they have different
vertical lengths, and there is a corner line λ′ ∈ L pointing up
and left having the same corner as λ1. Then we can remove λ1,
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−→

−→

Figure 3.25: The case when λ1 and λ2 are corner lines pointing
in different directions (left). The area shaded in grey is L . If σ
(dashed and dotted) is the vertical bar line of µ, λ1 and λ2 can
be substituted with Λ1(x, y) and µ (top). If σ ends at a line λ′

(dotted), the lines λ1, λ2, and λ′ can be substituted with Λ1(x, y),
µ1, and µ2 (bottom).

λ2, and λ′ and introduce the corner line pointing up and right
that has the same corner as λ2. We thereby yield an m-cut of
smaller cut size in which two boundary points on δ are removed.

In all other cases let (x, y) /∈ δ be the boundary point of
λ1 that does not lie on δ. Replacing λ1 with Λ1(x, y) results
in an m′-cut for some m′, as in the case when λ2 is a straight
line (Figure 3.25). We define L ⊆ D(λ2) analogous to that
case, i.e. L is the connected area to the left of λ2 in the m′-cut.
Furthermore let σ be the vertical straight line in L that cuts
out an area the size of D(λ1) on its right-hand side. Notice
that σ ⊂ L is well-defined since we excluded all cases where
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D(λ1) = L . In case there is a corner line µ pointing down and
right that has σ as its vertical bar line and overlaps with λ2, we
can replace λ2 with µ and obtain an m-cut that has a cut size
of at most C since the vertical length of λ1 is at most that of
λ2. Also the number of boundary points on δ is reduced by one.
Otherwise, similar to the case when λ2 is a straight line, the
boundary point of σ (w.r.t. L ) that does not lie on δ is either
part of the boundary of PG, or it lies on a curve λ′ ∈ L that
must be a corner line pointing up and left. In the former case we
replace λ2 with σ and yield an m-cut with the desired properties.
In the latter case there are two corner lines µ1 and µ2 with the
following properties. The first line points down and left, it has σ
as its vertical bar line, and its horizontal bar line overlaps with
λ′. The second line points up and right, has a vertical bar line
that is part of λ′, and a horizontal bar line that includes the
horizontal bar line of λ2. We can then replace λ2 and λ′ with
µ1 and µ2 and yield an m-cut with cut size at most C, since the
vertical length of λ1 is at most that of λ2. Also the number of
boundary points on δ is reduced by one.

Notice that in all transformations above the number of bound-
ary points on δ is reduced and at the same time the number of
boundary points on other curves in UG is never increased. We
can hence repeat the above procedure for the curves in K and
then in the same manner for all curves in UG that include more
than one boundary point of curves in the resulting m-cut. We
yield an m-cut that has a smaller cut size than C, and for which
any curve in UG includes at most one boundary point of a curve
in the m-cut.

As long as there is more than one non-grid line (now in
different open unit intervals on the boundary), we can shift one
of them to become a grid line, and shift the other accordingly one
to compensate for the area difference. This results in a situation
with at most one non-grid line in the cut. During the whole
process, the cut length does not increase, as the next lemma
shows.

Lemma 3.33. For any grid G and any non-crossing corner
m-cut L of cut size C in PG, there is a non-crossing corner
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m-cut M of cut size at most C in PG such that all curves in
M except at most one are grid lines.

Proof. According to Lemma 3.32 we can assume that L contains
no two curves that have boundary points that lie on the same
curve from UG. Let K ⊆ L be the set of curves that are not
grid lines and assume that |K| ≥ 2. For a straight line λ ∈ K,
any curve from K that intersects the corridor Cλ must have a
boundary point on the same curve from UG as λ. Hence no set of
curves in L that have intersecting corridors include straight lines.
For a corner line λ ∈ K, let C ∈ {A ({λ}),B({λ})} be the area
to which λ is convex and let C = {A ({λ}),B({λ})} \ {C } be
the area to which λ is concave. We define V (λ) = Cλ ∩ C to be
the part of λ’s corridor to which λ is convex and V (λ) = Cλ ∩C
to be the part to which λ is concave. Any curve in K that
intersects V (λ) must have a boundary point on the same curve
in UG as λ. Therefore no curve in L intersects with V (λ).

We can thus conclude that if λ1, λ2 ∈ K is a pair of curves
with intersecting corridors, then λ1 and λ2 must be corner lines
and λi, for i ∈ {1, 2}, must intersect V (λj), where j ∈ {1, 2}\{i}.
Assume w.l.o.g. that λ1 points down and left. Observe that this
means that λ2 points up and right and no other curve in K can
intersect the corridors of λ1 or λ2, since otherwise there would
be curves in L that have boundary points on the same curve
from UG. Notice that the corridors of λ1 and λ2 intersecting
means that the corridors of the horizontal bar lines of λ1 and λ2

or the corridors of the corresponding vertical bar lines intersect.
Assume w.l.o.g. that the vertical bar lines σ1 and σ2 of λ1 and λ2,
respectively, are not grid lines and that the length l1 of σ1 is at
most the length l2 of σ2. As in the proof of Lemma 3.32 we define
D(λi), for both i ∈ {1, 2}, to be the open set of points to the
left of λi, i.e. the height of D(λi) equals li and D(λ1) ⊆ V (λ1)
but D(λ2) ⊆ V (λ2). In this setting we assume w.l.o.g. that
the size of D(λ1) is at most the size of D(λ2). We thus replace
λ1 with Λ1(x, y), as defined in Lemma 3.32, where (x, y) is the
boundary point of the horizontal bar line of λ1, and yield a
non-crossing m′-cut for some m′. If l1 < l2 there exists a corner
line λ′2 pointing up and right that contains the horizontal bar
line of λ2 and intersects D(λ2), such that replacing λ2 with λ′2
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Figure 3.26: A virtual pseudo-corner line with its corner at
(x, y) and its unit sized step at x̃.

yields a non-crossing m-cut. If l1 = l2 we can find an according
virtual corner line that contains the horizontal bar line of λ2 and
intersects the boundary of D(λ2). Notice that the new m-cut has
a cut size of at most C since l1 ≤ l2 and hence σ1 was “moved”
farther to the left than (or equally far as) σ2. Also note that the
new cut has at least one curve less in UG containing a boundary
point since the vertical bar lines in Λ1(x, y) are grid lines.

For any two curves in K with non-intersecting corridors
we can use an analogous transformation as above. Since each
transformation yields an m-cut in which there is at least one
curve less in UG with a boundary point, by repeating the above
procedure we can transform L into the m-cut M with the desired
properties.

From now on, we can limit ourselves to the situation with
only one non-grid line in the polygon cut. We shift this line to
the nearest integer position (Figure 3.19), creating the need to
compensate for the area difference. We do this by introducing
more grid lines. But since this increases the cut length, we need
to prove that the extra grid lines we introduce are short. In the
end, this will preserve the property that the cut out area lies in
the interval defined by m and ε, but will increase the cut size
only by a small factor. Next, we will look at a way to cut out for
compensation, and then argue that there is a place from which
to cut out in this way.
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We manage to compensate in a recursive manner. We com-
pensate for an area difference a by first finding a particular way
to cut out an area guaranteed to be between a and 3a/2, with
the exact value not under our control. This leaves us with the
problem to compensate for at most half the previous area (since
we are at most a/2 away from a). A recursive repetition of
this compensation step ends after at most log(a) steps. The
particular way to cut out the area between a and 3a/2 makes use
of a staircase grid line of three consecutive bends, with a step of
unit height at the middle bend (Figure 3.26). Furthermore, the
middle bend is guaranteed to lie outside or on the boundary of
the polygon, so that the intersection of the staircase with the
polygon results in a set of corner and straight lines in the cut.
We call this a virtual pseudo-corner line. The analysis of the
recursion reveals that the total length of the additional curves
to cut out area a is limited to 3a.

Definition 3.34 (virtual pseudo-corner line). For any polygon
PG of a grid G a virtual pseudo-corner line is a set of grid lines
Λ in PG containing only straight and corner lines for which
there are two points (x, y) and (x̃, y − 1), where x̃ ≥ x and
(x̃, y) /∈PG, such that λ ∈ Λ if and only if

λ ⊆{(x, y′) ∈PG | y′ ≥ y}∪
{(x′, y) ∈PG | x′ ∈ [x, x̃]} ∪
{(x̃, y′) ∈PG | y′ ∈ [y − 1, y]}∪
{(x′, y − 1) ∈PG | x′ ≥ x̃}.

We call the unit step {(x̃, y′) ∈ R2 | y′ ∈ [y − 1, y]} the break ,
and (x, y) the corner of Λ. The length of Λ is the sum of the
lengths of the included straight and corner lines. If Λ cuts out
an area of size a on the upper right side of its corner, we say
that it is a virtual pseudo-corner line for a.

A virtual pseudo-corner line is a special kind of virtual stair-
case line containing only grid lines. Notice that a virtual corner
line containing only grid lines is a virtual pseudo-corner line.
This is because the break of the latter can entirely lie outside of
the polygon.
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Figure 3.27: The virtual corner line at (x∗, y∗) cuts out an area
of size more than 3

2b while those at (x∗ + 1, y∗) and (x∗, y∗ + 1)
cut out at most b − 1. If all points (x∗ + i, y∗ + 1), where
i ∈ {l, ..., r}, are inside the polygon, then all unit squares from
Q are also inside. Since there are r − l + 1 > b/2 of them, the
area P(x∗ + 1, y∗ + 1) has size greater than b/2.

We first convince ourselves that the needed virtual pseudo-
corner line exists. In case there is a virtual corner line that cuts
out the required area and contains only grid lines we are done.
In the other case a suitable set of curves can be constructed
using three virtual corner lines at some integer points (x∗, y∗),
(x∗ + 1, y∗), and (x∗, y∗ + 1) (Figure 3.27). These three virtual
corner lines are chosen such that the first one cuts out an area
larger than 3a/2, while the other two each cut out at most a− 1.
Using these properties it is then possible to show that there must
be a unit sized step, i.e. a break, between the virtual corner lines
at (x∗, y∗) and (x∗, y∗ + 1) with which a suitable virtual pseudo
corner line can be constructed. That is, the corresponding set of
curves cuts out an area between a and 3a/2, and the upper most
point of the break is on the boundary or outside of the polygon.

Lemma 3.35. For any grid G with n vertices and any b ∈
{0, ..., n}, there is a value a ∈

[
b, 3

2b
]

for which there exists a
virtual pseudo-corner line Λ for a in PG.

Proof. Since the vertices of the grid G are points with integer
coordinates, i.e. V ⊂ N2, a virtual corner line contains only grid
lines if its corner is a point in the set H2. If there is a virtual
corner line for some a ∈

[
b, 3

2b
]

with a corner in H2 then the
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lemma holds. Assume no such virtual corner line exists. Since
any set of grid lines cuts out an area of integer size, this means
that any virtual corner line with a corner from H2 either cuts
out an area of size at least d 3

2eb or at most b− 1.

Let Λ(p) denote the virtual corner line with corner p ∈ H2

and let P(p) denote the area cut out by Λ(p) on the upper
right side of p. Under the above assumption, clearly there must
be a point (x, y) ∈ H2 such that the size of P(x, y) is greater
than 3

2b since b ≤ n, and obviously there is a point (x′, y′) ∈ H2

with x′ ≥ x and y′ ≥ y such that P(x′, y′) = ∅. Because the
area P(p) for any p ∈ H2 includes any area P(q) of a corner
q above or to the right of p, the size of P(p) is monotonically
decreasing in both coordinates of p. Hence we can find a point
(x∗, y∗) ∈ H2 with x∗ ∈ [x, x′] and y∗ ∈ [y, y′] such that the size
of P(x∗, y∗) is at least d 3

2eb while the size of both P(x∗+ 1, y∗)
and P(x∗, y∗ + 1) are at most b− 1.

Let Pij = P(x∗ + i, y∗ + j) and Λij = Λ(x∗ + i, y∗ + j) for
i, j ∈ N0. The area P00 \P01 has height 1 and contains a series
of unit squares. For any x ∈ N the difference between the area
P00 and P01 ∪Px0 includes only unit squares from P00 \P01.
Hence the above bounds on the sizes of P00 and P01 mean that
we can find two integers l, r ∈ N such that l ≤ r and the size
of P01 ∪Pl0 equals

⌊
3
2b
⌋

and the size of P01 ∪Pr0 equals b.
If for a value i ∈ {l, ..., r} there is a pair of crossing curves in
Λ01∪Λi0, their crossing point is pi1 = (x∗+ i, y∗+1). If however
there exists a corresponding value for i such that there are no
curves in Λ01 ∪ Λi0 that cross, then let Λ include the curves to
the left of pi1 from the first set together with the curves below
pi1 from the second set, i.e.

Λ = {λ ∈ Λ01 | ∀(x, y) ∈ λ : x < x∗ + i} ∪
{λ ∈ Λi0 | ∀(x, y) ∈ λ : y < y∗ + 1}. (3.9)

Clearly the set Λ fulfils the lemma. Hence it remains to show
that we can always find a corresponding value i such that pi1 is
not in PG.

Assume this is not the case, i.e. for any value i ∈ {l, ..., r} it
holds that pi1 ∈PG. This means that any unit square that has
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one of these points as a corner must be included in PG. Let Q
be the set of unit squares in P11 that have such a point pi1 as
their lower left corner. There are r − l + 1 ≥

⌊
3
2b
⌋
− b+ 1 > 1

2b
many points pi1. We can conclude that there are at least 1

2b
many unit squares in Q. Since the squares have unit size and
are included in P11 the size of P11 is at least 1

2b.

Let us derive an upper bound on the size of the area P11 =
P10 ∩P01. Since P10 ⊆P00 the size of P00 \P10 is at least
1
2b+1. The difference between the area P00\P10 and P01\P10

can at most include the unit square Sv where v = (x∗+ 1
2 , y
∗+ 1

2 ).
Whether v ∈ V or not, this means that the size of the area
P01 \P10 is at least 1

2b. Since P01∩P10 = P01 \ (P01 \P10),
we can conclude that that the size of P11 is at most 1

2b − 1.
However this contradicts the lower bound derived above and
hence the lemma holds.

Using the above lemma we can show that an area of arbitrary
size can be cut out recursively as described before.

Lemma 3.36. For a grid G let Λ be a virtual corner line for
b in PG that contains only grid lines. If P denotes the area
cut out by Λ on the upper right side of its corner, then for any
a ∈ {0, ..., b} there exists a set of non-crossing corner grid lines
L in PG cutting out an area of size a from P. Furthermore,
the curves in Λ ∪ L are non-crossing and the cut size of L is at
most 3a.

Proof. Let a1 = a and G1 be the grid corresponding to the area
P. Consider the following recursive procedure. In each step
i ≥ 1 we attempt to cut out an area of size ai from PGi

using
only grid lines. According to Lemma 3.35 we can find a virtual
pseudo-corner line Λ′i in PGi

for some a′i ∈ [ai,
3
2ai] with the

properties listed therein. We need to transform the curves in Λ′i
into a valid virtual pseudo-corner line Λi in PG that cuts out
the same area as Λ′i. Assume for now that this can be done. We
will describe the transformation later. If a′i = ai the recursion
terminates. Otherwise let ai+1 = a′i − ai and let Gi+1 be the
grid that corresponds to the area A (Λi) of the a′i-cut Λi, i.e.
PGi+1

= A (Λi). From a′i+1 ≤ 3
2ai+1 = 3

2 (a′i − ai) and ai ≥ 2
3a
′
i
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we can conclude that a′i+1 ≤ 1
2a
′
i, i.e. the area A (Λi) that is cut

out from PGi is smaller than PGi . If this procedure terminates
the set L =

⋃
i≥1 Λi clearly cuts out an area of size exactly a.

Since any set Λi contains only grid lines, the size a′i of the cut
out area must be integer. By the fact that the cut out area in
step i+ 1 has a size at most half the size of the cut out area in
step i, this means that the procedure terminates after at most
blog2(a)c steps.

Since Λi contains only grid lines, the area PGi that is cut
out by Λi can be decomposed into a′i many unit squares. The set
Λi contains at most two corner lines and therefore each, except
at most two of the a′i unit squares, has at most one side of its
boundary coinciding with a curve in Λi. There may be two unit
squares that each have two sides of their boundaries coincide
with a corner line in Λi. Hence the length li of Λi is at most
a′i + 2. From a′i+1 ≤ 1

2a
′
i we can conclude that a′i ≤ a/2i which

means that li ≤ a/2i + 2. Therefore the cut size C of L is

C =
∑
i≥0

li ≤
blog2(a)c∑
i=1

( a
2i

+ 2
)
≤ a

(
2− 2

a

)
+ 2 log2(a) ≤ 3a,

where the last inequality holds since 2 log2(a) − 2 < a for any
a > 0. If a = 0 then C = 0 and the claimed bound still holds.

What remains to be shown is that we can convert the curve
sets Λ′i into valid virtual pseudo-corner lines Λi in PG. Since
Λ is a virtual corner line containing only grid lines, it is also a
virtual pseudo-corner line. We let Λ0 = Λ and then show by
induction that each Λ′i can be transformed into an appropriate
Λi for i ≥ 1. Assume that Λi is a virtual pseudo-corner line
that cuts out the same area A (Λi) in PG as Λ′i does in PGi

.
The set Λ′i+1 is an a′i+1-cut in PGi+1

= A (Λi) that cuts out
the area A (Λ′i+1) ⊆PGi+1

. If β denotes the boundary of PG

and γ denotes the boundary of A (Λ′i+1), then we include all
segment curves λ ⊆ γ \ β in Λi+1 and claim that it is a virtual
pseudo-corner line. If it is then it clearly cuts out the same area
as Λ′i+1. The point set γ \ β may contain parts of curves from
Λi and Λ′i+1. However, since these sets contain only grid lines
and the length of a break is 1, γ \ β can contain at most one
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Figure 3.28: A tail with its corner line at p (black dotted). The
excess area in grey is cut out using the four virtual corner lines
at p (thin dashed) together with the recursive method that uses
virtual pseudo-corner lines (dashed and dotted).

break from Λi and Λ′i+1. It is easy to see that this means that
Λi+1 is a virtual pseudo-corner line.

It remains to be shown that there is a place in the polygon
to cut out from using the recursive method above. For this we
use a tail of the cut (Figure 3.28), similar to the staircase line
argument in the previous section. We have to make sure that
there is a tail that is big enough to support an area of size a.
For a non-crossing corner cut L containing only one curve λ
that is not a grid line we call a tail T ⊆ A (L) (respectively
T ⊆ B(L)) tiny if the size of T is strictly smaller than the
size of Cλ ∩B(L) (respectively Cλ ∩A (L)). In the following we
give a similar observation on such tails as was given for the case
when they are small.

Lemma 3.37. For a grid G, let L be a non-crossing corner
m-cut in PG with cut size C containing exactly one curve λ
that is not a grid line. There exists a non-crossing corner m-cut
M in PG which contains exactly one curve that is not a grid
line, has cut size of at most C + 1, and the curve of any tiny
tail cut out by M equals the curve that is not a grid line.

Proof. The proof of this lemma is analogous to the proof of
Lemma 3.27. However the non-grid line λ may get longer when
the area of a tail is transferred to the corridor of λ. This can
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only happen if λ is a corner line an then its length grows by at
most 2. Since the curve of any tail is a grid line it has a length
of at least 1. Hence the total cut size grows by at most 1.

We need to make sure that no additional curves are produced
while cutting out the area of size a from a tail which would
increase the cut size by some non-constant factor. For this we
break the tail into four sectors using four virtual corner lines
having the same corner as the curve of the tail. We then greedily
assign these virtual corner lines to the cut as long as the cut
out area does not exceed a. The remaining difference to reach
the desired area a is finally cut out using the recursive method
presented above from one of the four sectors that was not yet
used.

Lemma 3.38. For a grid G, let L be a set of grid lines in the
polygon PG and let T be a tail cut out by L. If b denotes
the size of T , then for any a ∈ {0, ..., b} there exists a set of
non-crossing corner grid lines M in PG cutting out an area of
size a from T such that the curves in M ∪ L are non-crossing.
Furthermore, the cut size of M is at most 3a.

Proof. Let λ ∈ L be the curve of T . If λ is a straight line then
let p be one of its boundary points, and if λ is a corner line let p
be its corner. There are four virtual corner lines in T having p
as their corner, one for each possible orientation. These virtual
corner lines Λ1 to Λ4 partition T into four (possibly empty) areas
T1 to T4 such that Ti is cut out by Λi, where i ∈ {1, 2, 3, 4}, on
the “convex side” of its corner. Let I ⊆ {1, 2, 3, 4} be the set
for which i ∈ I if and only if Ti 6= ∅. If a equals 0 or b then the
lemma obviously holds. Assume that 0 < a < b. There exists a
(possibly empty) subset J ⊂ I such that the size bJ of the union
area TJ =

⋃
i∈J Ti is at most a while for any j ∈ I \ J the size

of the area TJ ∪ Tj is greater than a. For each i ∈ J the set
M contains the curves in Λi. Notice that λ can not be included
in any of the sets Λi since the latter are virtual corner lines in
the open set of points T . Hence, in case the boundary of TJ

includes λ we also include λ in M . So far these curves cut out
an area of size bJ from PG.
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Since all involved curves are grid lines, if bi, for some i ∈ I,
denotes the size of the area Ti, we can decompose Ti into bi
many unit squares. The set Λi contains at most one corner line
and therefore each except at most one of the bi unit squares has
at most one side of its boundary coinciding with a curve in Λi.
There may be one unit square that has two coinciding sides of
its boundary with the corner line in Λi. Hence the length li of
Λi is at most bi + 1 and therefore the cut size of

⋃
i∈J Λi is at

most bJ + |J |. Note that the same bound holds for the curves
included in M so far, even if λ ∈M .

Let j ∈ I \ J . According to Lemmas 3.36 and 3.35 we can
find a set M ′ of non-crossing corner grid lines in PG that cut out
an area of size a− bJ from Tj such that the cut size of M ′ is at
most 3(a− bJ ). If we also include M ′ in M , we cut out an area
of size a from T without crossing a curve in L. Furthermore
the cut size of M is at most

bJ + |J |+ 3(a− bJ) = 3a+ |J | − 2bJ ≤ 3a,

where the inequality holds since Ti 6= ∅ and hence bi ≥ 1 for
each i ∈ J . Thus the set M fulfils the required properties.

The main result as stated in Theorem 3.2, follows from the
next theorem which summarises the results of this section.

Theorem 3.39. Let C be the cut size of an optimal m-cut L,
for some m ∈ N, in the polygon PG of a grid G. For any
ε ∈ ]0, 1] there exists a non-crossing corner m′-cut L′ for some
m′ ∈ [(1 − ε)m, (1 + ε)m], such that all curves in L′ are grid
lines and the cut size is at most (216

√
7/ε+ 261) · C.

Proof. We can apply Corollary 3.29 and Lemma 3.33 to L, i.e. we
know that there exists a non-crossing corner m′-cut M , for some
m′ ∈ [(1−ε)m, (1+ε)m], with cut size at most (54

√
7/ε+63) ·C

in PG such that M contains at most one curve that is not a
grid line. If all curves in M are grid lines, we are done. If not
then let λ ∈ M be the curve that is not a grid line. In case
there exists a tail cut out by M such that λ is not its curve,
let T be this tail and assume w.l.o.g. that T ⊆ A (M). By
Lemma 3.37 we can assume that the size of T is at least the
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size of Cλ ∩B(M) if we allow the cut size of M to be at most
(54
√

7/ε + 63) · C + 1. Notice that, if a denotes the size of
Cλ ∩B(M), a is not necessarily an integer since m′ might not
be a natural number. However we can conclude that the size of
T is at least dae since the curve of T is a grid line and hence T
is of integer size. Let β denote the boundary of PG and γ the
boundary of Cλ ∩B(M). In case λ is a corner line and contains
a bar line σ that is a grid line, let Λ contain all straight and
corner lines that are contained in the set (γ \ (β ∪ λ)) ∪ σ. In
any other case let Λ contain the straight and corner lines in the
set γ \ (β ∪ λ). By replacing the curve λ with the curves in Λ
we yield an m′′-cut M ′ where m′′ = m′ + a.

We attempt to cut out the excess area of size a in T using only
grid lines. Notice that m′′ must be an integer since M ′ contains
only grid lines. If we assume w.l.o.g. that m′ ≥ m, since m is also
an integer this means that m′′ − dae is a natural number in the
interval [m,m′]. The latter is contained in [(1− ε)m, (1 + ε)m].
Using Lemma 3.38 we can find a set of grid lines M ′′ that cut
out an area of size dae from T . The union M ′ ∪M ′′ forms a
non-crossing set of grid lines cutting out an area from the interval
[(1−ε)m, (1+ε)m]. Hence it remains to show (for the case when
λ is not the curve of T ) that the cut size of L′ = M ′ ∪M ′′ is
bounded from above as claimed in the theorem.

Since λ is a straight or corner line, the size of the corridor
of λ is at most the length of λ plus 1. Since the length of λ is
upper-bounded by the cut size C ′ of M we can conclude that
dae ≤ a+ 1 ≤ C ′ + 2. By Lemma 3.38 this means that the cut
size of M ′′ is upper-bounded by 3(C ′ + 2). Clearly the length of
Λ can be at most the length of λ plus 2. Hence also the cut size
of M ′ is at most the cut size of M plus 2. Therefore the cut size
of L′ is at most C ′ + 2 + 3(C ′ + 2) ≤ (216

√
7/ε+ 252) · C + 9.

Cutting out an integer sized area greater than zero (and smaller
than n) from the polygon PG, i.e. a polygon constructed from
unit squares, will need a cut size C of at least 1. In this case the
latter bound on the cut size of L′ can be upper-bounded by the
claimed bound of the theorem. If none (or all) of the area is to
be cut out from PG, the trivial empty cut obviously also fulfils
the requirements of this theorem.
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Now consider the case when there is no tail such that λ
is not its curve. This can only mean that there are two tails
which both have λ as their curve and λ is the only curve in
M . Let T be the tail that corresponds to the area A (M).
Replacing λ with Λ as before, we obtain an m′′-cut M ′ for which
A (M ′) = A (M)∪ (Cλ ∩B(M)). Hence the size of A (M ′) is at
least a. Since Λ may contain more than one curve, A (M ′) might
not be a tail. Nevertheless, proving an analogous statement as
Lemma 3.38 for this case we can come to the same conclusions
as above. This is due to the fact that Λ is a virtual corner line,
which conclude the proof.

3.3 Recursive Applications

This section is concerned with computing approximate solutions
to the BISECTION and k-BALANCED PARTITIONING problems on
solid grid graphs, using the results achieved in the previous
section. As mentioned in the introduction to this chapter, an
attempt was made in [22] to compute optimal corner cuts in
order to find good approximations to the BISECTION problem.
However this attempt failed since the asymptotic runtime of the
resulting algorithm is the same as for computing the optimal
bisection. Thus we deviate from this direct approach and present
a different method using solutions to the SPARSEST CUT problem.
We will show that we can improve on the known algorithms for
this problem when considering solid grid graphs. This is true
both when computing optimal and approximate solutions.

The (approximate) solutions to SPARSEST CUT can be used to-
gether with the techniques developed by Leighton and Rao [44]
in order to compute approximations to the EDGE SEPARATOR

problem. The authors also show how to use these cuts to com-
pute bicriteria approximations to the BISECTION problem. The
cuts can furthermore be applied using the methods by Simon
and Teng [65] to yield bicriteria approximations to the k-BAL-
ANCED PARTITIONING problem. Since we present an algorithm
for SPARSEST CUT that is faster than any known algorithm on
solid grid graphs, applying the latter techniques also improves
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on the runtime to solve the BISECTION and k-BALANCED PAR-

TITIONING problems for these graphs. At the same time the
approximation guarantees for general graphs carry over to the
grids. For the BISECTION problem a near-balanced partition can
be computed for any constant ε > 0 in time O(n1.5). The cut size
of the solution approximates the optimum within α ∈ O(1/ε3).
Solutions to the k-BALANCED PARTITIONING problem can be
computed in time O(n1.5 log k) where the partition deviates by
a factor of 2 from being perfectly balanced. Here the cut size
is approximated within α ∈ O(log k). This factor of α is worse
than the constant factor achieved by applying the Klein-Plotkin-
Rao Theorem [40] to spreading metrics [20]. However the latter

algorithm needs Õ(n3) time or Õ(n2) expected time. This shows
that we are able to trade the solution quality for faster runtimes.

3.3.1 An Overview of the Used Techniques

The sparsity of a cut S is the ratio between its cut size C(S)
and the product of the sizes of its respective cut out parts A
and B. That is, it is defined as

C(S)

|A| · |B|
.

The sparsest cut is a cut that minimises the sparsity, and is also
the optimum solution to the SPARSEST CUT problem. Hence,
intuitively, the goal is to find a cut that uses as few edges
per cut out vertex as possible. Our main contribution leading
to improved algorithms for BISECTION and k-BALANCED PAR-

TITIONING on solid grid graphs is to show how solutions to
SPARSEST CUT can be computed fast on these graphs. A main
ingredient is to recall from [55, 60] that a sparsest cut contains
only a single segment in a planar graph. Therefore a sparsest
cut can be computed in quadratic time on solid grid graphs due
to Lemmas 2.5 and 2.10 (pages 19 and 30). This is because a
sparsest cut is an optimal m-cut (Definition 2.3 page 16) and
thus only O(n2) segments need to be considered. These can
also be enumerated in the same time. This observation already
improves on the previously fastest known algorithm to compute
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sparsest cuts for these graphs by Park and Phillips [55]. Their
algorithm runs in time O(n3 log n) but is also more general than
ours since it can compute the sparsest cut for any planar graph.

The above observation however does not suffice to improve the
runtime of the known approximation algorithms on solid grids
for the BISECTION and k-BALANCED PARTITIONING problems.
The reason for this is that Park and Phillips [55] also give
approximation algorithms for sparsest cuts in planar graphs.
These can also be used together with the techniques of Leighton
and Rao [44], respectively Simon and Teng [65]. In particular it
is possible to compute an O(t) approximation to the SPARSEST

CUT problem in O(n1+1/t log3 n) time for any planar graph. If
t is constant the resulting approximation ratios for the BISEC-

TION and k-BALANCED PARTITIONING problems asymptotically
are the same. Hence using such an approximation to SPARSEST

CUT improves the running times compared to using the optimal
solution, while the approximation factors do not change.

However we are able to compute constant approximations
to SPARSEST CUT for solid grid graphs in O(n) time. For this
we show that if the segments are restricted to a given family
the sparsest cut also contains only a single segment. As we will
see this means that for solid grid graphs the sparsest corner
cut, i.e. the sparsest cut among those restricted to straight and
corner segments, approximates the sparsest cut within a constant
factor. Since there is only a linear number of straight and corner
segments according to Lemma 2.10 which can also be enumerated
in the same time, this approximate solution can be computed
in linear time. This in turn improves on the previously fastest
known (but more general) algorithm by Park and Phillips [55]
to compute such solutions for solid grid graphs.

As mentioned above we harness these results together with
the techniques developed by Leighton and Rao [44] in order
to compute approximations to the EDGE SEPARATOR problem.
These solutions can in turn be used to compute approximations to
BISECTION and k-BALANCED PARTITIONING using the methods
of Leighton and Rao [44], respectively Simon and Teng [65]. All
of these methods work by recursively cutting a graph. We will
describe them in the following sections where they are needed.
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Note however, that simply applying cuts recursively on solid grid
graphs will not necessarily yield a solution. This is because a
subgraph of a solid grid graph is not necessarily solid. Hence an
intermediate step in the recursion might not be well-defined if
only solid grids are considered. We will therefore generalise our
techniques to grid graphs in which every connected component
is solid.

3.3.2 Sparsest Cuts

To show how solutions to the SPARSEST CUT problem can be
found fast on solid grid graphs we show that such a cut only
contains a single segment. This is true even if the segments are
restricted to a given family T . A similar observation as the one
given in the following lemma was also shown in [55, 60].

Lemma 3.40. Let T be a family of segments in a solid grid
graph G. Among the sparsest non-crossing T -restricted cuts in
G there is one containing only a single segment.

Proof. Let S be a non-crossing T -restricted m-cut. If there is
more than one segment in S then there must be more than one
connected component in either the A-part or the B-part. Assume
w.l.o.g. that the A-part consists of several connected components
and let W be one of them. Let x be number of vertices in W ,
and let T ⊂ S be the set of segments which together cut out W .
Since S is non-crossing, the set T is well-defined. Using the fact
that m(n−m) = nm−m2 we observe that the sparsity of S is

C(S)

nm−m2
=

C(T ) + C(S \ T )

n(x+ (m− x))− (x+ (m− x))2

≥ C(T ) + C(S \ T )

nx− x2 + n(m− x)− (m− x)2
.

This means that either the sparsity of T or the sparsity of S\T is
at most the sparsity of S. By repeatedly using this argument on
a sparsest T -restricted cut we can always find one that contains
only a single segment from T .
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The above observation immediately gives the following theo-
rem by letting T be the family of relevant segments S in a solid
grid graph. This is due to Lemmas 2.5 and 2.10, since a sparsest
cut is an optimal m-cut and hence only a quadratic number of
segments have to be considered.

Theorem 3.41. For any solid grid graph an optimal solution
to the SPARSEST CUT problem can be computed in O(n2) time.

As mentioned previously, this theorem does not help to im-
prove the runtime of the desired algorithms. However using the
results from Section 3.2 we can show that in solid grid graphs
it suffices to restrict our attention to the family C of straight
and corner segments in order to find a good approximation to
a sparsest cut. Theorem 3.2 (page 53) entails that a constant
approximation to a sparsest cut can be found using segments
from the family C, as we show next. We will generalise from
solid grid graphs to graphs for which every connected component
is solid. This is necessary for the following recursive algorithms
since they may produce such graphs in intermediate steps.

Corollary 3.42. For any grid graph G for which the connected
components are solid, there is a non-crossing corner cut S with
a sparsity which approximates the sparsest cut S∗ of G by a
constant factor.

Proof. If G is disconnected then clearly any sparsest cut has
sparsity 0 and its A-part contains all vertices of some subset of
the connected components. This cut is the empty set of segments
which trivially is a corner cut. Otherwise the sparsest cut S∗ is
an optimal m-cut for some m. Hence Theorem 3.2 in particular
means that for S∗ there is a non-crossing corner m′-cut S, where
m′ ∈ [(1 − ε)m, (1 + ε)m], with a cut size of O(1/

√
ε) · C(S∗).

To compare the sparsities of S∗ and S we need to get a better
understanding of the behaviour of the function C(S)/(m′(n−m′))
measuring the sparsity of S. The denominator of this term is a
function in the size of the A-part of S and reaches a maximum
at n/2 in the interval [0, n]. For smaller values than n/2 the
function is increasing while for larger values it is decreasing.
Hence when considering the interval [(1 − ε)m, (1 + ε)m] the
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smallest value of the denominator lies at one of the extreme
points (1− ε)m or (1 + ε)m. It can easily be verified that the
smallest value is reached at (1 − ε)m if and only if m ≤ n/2.
Since we can assume that the latter is true w.l.o.g., we can lower
bound the denominator of the sparsity of S by

(1− ε)m · (n− (1− ε)m) ≥ (1− ε)m(n−m).

For the sparsity itself this means that

C(S)

m′(n−m′)
∈ O

(
C(S∗)√

ε(1− ε) ·m(n−m)

)
.

According to Theorem 3.2 we can choose ε freely between 0 and
1. Hence we can set ε = 1/3 which is the value at which the
above term depending on ε is minimal. This means that the
sparsity of S is at most a constant factor worse than the sparsity
of S∗.

The above observations entail that a constant approximation
to a sparsest cut can be found in linear time by enumerating the
segments in C. For this we need to set T = C in Lemma 3.40
and observe that the size of C is O(n) by Lemma 2.10 (page 30).
Hence we get the following theorem.

Theorem 3.43. For any solid grid graph a constant approxi-
mation to the SPARSEST CUT problem can be computed in O(n)
time.

3.3.3 Edge Separators

We now turn to using the above facts in order to compute an
approximation to the EDGE SEPARATOR problem in solid grid
graphs. Formally, given a value b ≤ 1/2 we call an m-cut for
which bn ≤ m ≤ (1− b)n a b-separator . An optimal b-separator
is one that minimises the cut size. Recall that a solution to
the EDGE SEPARATOR problem is a b-separator for some b ≤ 1/3.
We use the techniques developed by Leighton and Rao [44], for
which the following theorem summarises its qualities.
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Theorem 3.44 (follows from [44]). Let b′ ≤ 1/3 and b ≤ 1/2
be given such that b′ < b. Let also A be an algorithm that
computes a cut with a sparsity that is within a factor β of the
minimum sparsity. There is an algorithm that recursively uses
A to compute a b′-separator. Moreover its cut size is at most
O(β/(b− b′)) times the optimum of a b-separator.

We will briefly describe how the above algorithm works in
order to determine its runtime on solid grid graphs. It uses a
greedy strategy by recursively using solutions to the SPARSEST

CUT problem. The algorithm cuts along an approximate sparsest
cut and continues this procedure in the larger one of the resulting
parts. This is continued until the currently considered part P
has size at most (1−b′)n. Since b′ ≤ 1/3 it easily follows that the
total size of all the smaller parts considered in the intermediate
steps is at least b′n. Hence the desired b′-separator is the set of
segments that cut out the last part P from the given graph.7

The approximation guarantee results from the fact that what
remains of the optimal b-separator in any considered graph during
the intermediate steps has a certain sparsity. This sparsity can
be upper-bounded using the (total) cut size of the b-separator
which is divided by a term depending on both b and b′. The
latter term bounds the size of what is left of the parts of the
b-separator in the currently considered graph when b′-separators
are used to cut off parts from the input. This results in the term
b − b′ in the approximation guarantee. Since the algorithm A
in Theorem 3.44 computes a β approximation to the sparsest
cut, the cut size of O(β/(b − b′)) times the optimum can be
concluded (see [44] for more details).

Next we will show how corner cuts can be applied to compute
approximations to the EDGE SEPARATOR problem on solid grid
graphs. However, as before, because of the algorithms in the
following sections we need to generalise to grid graphs that
contain solid connected components.

Theorem 3.45. Let b′ ≤ 1/3 and b ≤ 1/2 be given such that

7The algorithm can actually compute an approximation to EDGE SEPA-

RATOR for any graph. Hence in general the solution is not a set of segments
but a set of edges that cut out the part P .
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b′ < b. For any grid graph G for which the connected components
are solid, a b′-separator can be computed. Its cut size is at most
O(1/(b − b′)) times the optimum cut size C∗ of a b-separator.
The time needed is O(min{n2, nC∗/(b− b′)}).

Proof. For a disconnected grid graph for which the connected
components are solid, a sparsest cut can be computed by taking
an arbitrary connected component and declaring its vertices to
be the A-part of the empty set of segments. By Lemma 3.40, for
any (connected) solid grid graph we can compute a non-crossing
corner cut with lowest sparsity by considering all segments in
the family C of straight and corner segments. We pick the one
with smallest sparsity from these. Corollary 3.42 says that in
both cases the computed cut is a constant approximation of the
sparsest cut in the given grid.

The algorithm given by Theorem 3.44 can use these approxi-
mate sparsest cuts in order to compute an approximation to an
optimal b-separator for any grid graph for which the connected
components are solid. This is true since the segments in C all
end at the boundary of the given grid. Hence they do not cut out
parts lying entirely inside the grid. This means that no recursion
step of the algorithm can introduce a hole into the grids that are
induced by the two parts cut out by the approximate sparsest
cuts. Hence Corollary 3.42 can be applied in every one of the
recursion steps. We use the approximate sparsest cut to com-
pute a b′-separator using Theorem 3.44, where we set β ∈ O(1).
The result is an approximation to an optimal b-separator within
ratio O(1/(b− b′)).

It remains to be shown that the runtime of this algorithm
is O(min{n2, nC∗/(b− b′)}). If the given graph is disconnected,
in its recursive procedure the algorithm given by Theorem 3.44
first uses the sparsest cuts that cut out the vertex sets of the
connected components. Only when a connected graph is reached
during the recursion it starts cutting approximate sparsest cuts
using the segments in C. For a disconnected graph the vertex
set of a connected component can be found in a number of steps
that is linear in the size of the component. Hence the time
needed by the algorithm in all recursion steps until the currently
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considered graph is connected is O(n). We will argue that the
rest of the time spent by the algorithm on a connected solid
grid is O(min{n2, nC∗/(b− b′)}). By Theorem 3.43 a constant
approximation to a sparsest cut in a solid grid graph can be
computed in linear time. In any of the recursion steps of the
algorithm the computed approximation cuts at least one edge if
the given graph is connected. This means that the time needed
to compute the b′-separator is O(n2) since there are O(n) edges.
However the number of edges can also be upper-bounded by
the approximation ratio. Hence the algorithm also cuts at most
O(C∗/(b− b′)) edges and thus the claimed runtime follows.

By Theorem 2.7 (page 23) any number of vertices can be
cut from a grid graph using at most O(

√
n) edges. Hence the

optimum b-separator has cut size C∗ ∈ O(
√
n). From this we

can conclude the following observation.

Corollary 3.46. Let b and b′ be two constants such that b′ ≤
1/3, b ≤ 1/2, and b′ < b. For any grid graph G for which the
connected components are solid grid graphs a b′-separator can
be computed in O(n1.5) time. Its cut size is at most a constant
times the optimum cut size C∗ of a b-separator.

3.3.4 Bisections

In the following we will show how to compute a near-balanced
bisection for solid grid graphs for any ε > 0. The resulting cut
size approximates the optimum of a perfectly balanced solution
within a factor of α ∈ O(1/ε3). We use the results obtained
above together with the methods presented by Leighton and
Rao [44], as summarised in the following theorem.

Theorem 3.47 (follows from [44]). Let b′ < b ≤ 1/2 and
d = b− b′. Let also an algorithm A be given that computes
a d/2-separator for which the cut size is within a factor β of
an optimum d-separator. There is an algorithm that recursively
uses A to compute a b′-separator. Moreover its cut size is at
most O(β/d2) times the optimum of a b-separator.
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In the following we give a brief description of the above
algorithm. First a threshold parameter C is defined which is
set to 1 and doubles until a b′-separator is found. In each
recursion step the algorithm computes a d/2-separator using A
for the current graph if it contains at least dn/2 vertices. If
there are fewer than dn/2 vertices the recursion stops. Note that
we may use the algorithm given by Theorem 3.44 for A since
d/2 ≤ 1/3. If the cut size of this d/2-separator is at most C
then the considered graph is cut and the recursion continues on
each of the two cut out parts. After the recursion finishes, all
the pieces cut out by this process are packed into two sets such
that their size difference is minimised. This can be done using
a standard dynamic program for the SUBSET SUM problem [12].
If the two resulting sets constitute a b′-separator, the algorithm
stops with the latter as output. Otherwise the threshold C is
doubled and the algorithm continues the recursion by cutting
out pieces using A and the above rules. It can be shown that
the algorithm terminates for some value C ∈ O(βC∗), where
C∗ is the cut size of an optimal b-separator (see [44] for more
details).

The approximation ratio on the cut size results from the
fact that each piece that the algorithm cuts from the given
graph has size Ω(d2n). This is because a piece is only cut
when it contains at least dn/2 vertices, and in that case an d/2-
separator is used. Hence there are at most O(1/d2) pieces that
the algorithm produces. Since the cost of cutting out a piece
is at most C ∈ O(βC∗), the approximation ratio of O(β/d2)
follows.

We next show how near-balanced solutions to the BISECTION

problem can be computed fast for solid grid graphs using the
above observations.

Theorem 3.48. For any ε > 0 there is an algorithm that com-
putes a partition of the n vertices of a solid grid graph into two
sets of size at most (1 + ε)dn/2e each. The resulting cut size
is approximated within a factor of α ∈ O(1/ε3). Moreover the
algorithm runs in time O(min{n3, n1.5/ε3}).

Proof. We can use the algorithm given by Theorem 3.45 as al-



3.3. Recursive Applications 127

gorithm A in Theorem 3.47. The output of A is the set of
segments S cutting out the last part P encountered during its
recursion. The algorithm A uses only straight and corner seg-
ments in the intermediate steps, which all end at the boundaries
of the respective cut out parts. Therefore the grid graph induced
by P does not have any holes if the input grid to A does not.
On the other hand, the other part P cut out by S is the union
of the smaller parts encountered by A during its intermediate
steps. Since the grid graphs induced by these parts also do not
have holes, neither does the grid graph induced by P . Hence
if the input to A does not have holes, the graphs induced by
the parts cut out by S may be disconnected but their connected
components are solid. This means that A can be used in the
recursion of the algorithm given by Theorem 3.47 if the input is
a solid grid graph.

It is easy to check that when setting b = 1 − dn/2en and

b′ = 1− (1 + ε) dn/2en in Theorem 3.47 we get an algorithm that

returns a near-balanced bisection. This means that d = ε dn/2en
and hence the resulting approximation ratio is O(β/ε2). As a
consequence the approximation factor on the cut size for solid
grid graphs is O(1/ε3) by Theorem 3.45.

To determine the runtime we first consider the total time
needed to cut the graph using the d/2-separators. Each such
cut is made using the algorithm A provided by Theorem 3.45.
It needs O(nC̃/ε) time to do so in each recursion step, where C̃
is the optimum cut size of a d-separator. By Theorem 2.7 we
can assume that C̃ ∈ O(

√
n) since any number of vertices can

be cut out from a grid using O(
√
n) edges. Hence a recursion

step of the algorithm needs O(n1.5/ε) time. Alternatively we
can also bound this time by O(n2) due to Theorem 3.45. The
number of recursion steps made is bounded by the number of
pieces that are cut from the graph. It was noted before that
these are O(1/ε2) many. Alternatively we can also bound this
number by O(n). Hence the total time spent to cut the graph
into pieces using A is O(min{n1.5/ε3, n3}).

Additionally the algorithm needs to solve the SUBSET SUM

problem for every value C of the threshold parameter. This
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needs O(min{n/ε2, n2}) time, since the corresponding dynamic
program [12] needs to pack O(min{1/ε2, n}) pieces having n
possible sizes. As mentioned above, the algorithm terminates for
some value C ∈ O(C∗/ε). Also the threshold parameter C can-
not exceed the number of edges in the grid which is O(n). Since
the threshold parameter is doubled in each iteration, the dynamic
program to pack the pieces needs to be executed O(log(C∗/ε)),
respectively O(log n), times. Thus the total amount of time
needed by the algorithm to pack the cut out pieces is the mini-
mum of O(n/ε2 · log(C∗/ε)) and O(n2 log n). Hence the runtime
of the algorithm is dominated by the cutting of the grid, which
concludes the proof.

The next observations immediately follows from the above
theorem. In particular it means that an approximation to the
BISECTION problem can be computed in the same amount of
time as an approximate solution to EDGE SEPARATOR. This can
be concluded from Corollary 3.46.

Corollary 3.49. For any ε > 0 there is an algorithm that
computes a partition of the n vertices of a solid grid graph into
two sets of size at most (1 + ε)dn/2e each. The resulting cut size
is approximated within a factor of α ∈ O(1/ε3). Moreover the
algorithm runs in time O(n1.5) if ε is constant.

3.3.5 Balanced Partitions

We now turn to applying the obtained observations on approx-
imating the EDGE SEPARATOR problem in solid grid graphs to
k-BALANCED PARTITIONING. We show how to compute a parti-
tion which is off by a factor of 2 from being perfectly balanced.
This allows us to find a fast algorithm that approximates the
cut size within a factor of α ∈ O(log k). To achieve this we use
the techniques developed by Simon and Teng [65] that can be
applied to any graph. The following theorem summarises the
qualities of this algorithm.

Theorem 3.50 (follows from [65]). Let A be an algorithm that
computes a 1/6-separator for which the cut size is within a
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factor β of an optimum 1/3-separator. There is an algorithm
that recursively uses A to compute a partition of the vertices into
k sets such that each set has size at most 2dn/ke. Moreover its
cut size is at most O(β log k) times the optimum of a perfectly
balanced solution.

In order to determine the runtime we will briefly describe this
algorithm. It is based on recursively using a solution to the EDGE

SEPARATOR problem on each of the two resulting subgraphs. This
is done until each cut out subgraph is of size at most 2dn/ke. In
a second phase the algorithm repeatedly merges the two smallest
pieces resulting from the cutting phase until only k sets remain.
It is easy to see that these k sets all have size at most 2dn/ke.
The solution returned by the algorithm is then the partition
containing the k sets.

The guarantee on the cut size stems from the fact that the
number of edges cut is compared with the cut size of a perfectly
balanced solution. Any part P that is cut during the cutting
phase is of size greater than 2dn/ke, while the parts of an optimal
perfectly balanced partition V∗ are of size at most dn/ke. It is
easy to see that one can construct a 1/3-separator in P from the
connected components cut out from P by V∗. The algorithm
A in Theorem 3.50 computes a β approximation to the optimal
1/3-separator in P . Consider the recursion tree given by the
algorithm in Theorem 3.50 and its recursive computation steps
using A. For each computation step there is a node associated
with it in the tree. Clearly all graphs associated with the nodes
of one level of the recursion tree, i.e. those graphs considered at
the same recursion depth, are disjoint. Hence it is possible to
amortise the number of edges cut on one level by β times the cut
size of V∗. Since A cuts each part using a 1/6-separator until
they have a size proportional to n/k, the height of the recursion
tree is O(log k). Hence the total cut size is at most O(β log k)
times the optimum.

We show next how an approximate solution to the k-BAL-
ANCED PARTITIONING problem on solid grid graphs can be com-
puted fast if the set sizes are allowed to deviate by a factor of 2
from being perfectly balanced.



130 Chapter 3. Corner Cuts and their Applications

Theorem 3.51. There is an algorithm that computes a partition
of the n vertices of a solid grid graph into k sets of size at
most 2dn/ke each. The resulting cut size is within a factor of
α ∈ O(log k) from the optimum cut size C∗ of a perfectly balanced
solution. Moreover the algorithm runs in time O(nC∗ log k).

Proof. By the same observations given in the proof of Theo-
rem 3.48 we can conclude that the algorithm given by Theo-
rem 3.45 can be used as algorithm A in Theorem 3.50. The
result of the algorithm is thus a partition of the vertex set with
the claimed approximation guarantees.

It remains to analyse the runtime of the algorithm. Consider
the recursion tree given by the algorithm and its recursive com-
putation steps using A. Let ni be the size of the grid graph
Gi associated with node i of the recursion tree. If V∗ denotes
the optimal perfectly balanced partition in the given grid graph,
then let Ci be the number of edges in Gi that cut out V∗. As
noted before, this value is an upper bound on the cut size of
the optimal 1/3-separator in Gi. Hence by Theorem 3.45 the
algorithm A needs O(niCi) time in Gi. Since all grid graphs
associated with the vertices of one level of the recursion tree are
disjoint, we can amortise the runtime of a given level by O(nC∗).
Because the height of the recursion tree is O(log k), the runtime
of the cutting phase of this algorithm is O(nC∗ log k).

In the second phase of the algorithm the resulting pieces are
merged until only k remain. This can be done by first sorting
the pieces by their sizes and then merging the two smallest ones
repeatedly. This needs O(k log k) time since there are only O(k)
leaves of the recursion tree which correspond to the pieces that
need to be merged. The reason is that any parent node i of a
leaf corresponds to a grid graph Gi containing at least 2dn/ke
vertices. Otherwise the algorithm would not have cut it. Since a
1/6-separator is used to cut Gi, the grid corresponding to the
leaf node contains at least dn/ke/3 vertices. Hence there are at
most n

dn/ke/3 ≤ 3k leaves.

By Theorem 2.7 any number of vertices can be cut out from
a grid graph using at most O(

√
n) edges. Using this observation



3.4. Improving the Approximation Ratios 131

the runtime of the above algorithm can be estimated as follows.

Corollary 3.52. There is an algorithm that computes a partition
of the n vertices of a solid grid graph into k sets of size at
most 2dn/ke each. The resulting cut size is within a factor of
α ∈ O(log k) from the optimum cut size of a perfectly balanced
solution. Moreover the algorithm runs in time O(n1.5 log k).

Proof. The proof is the same as for Theorem 3.51. The only
difference is that Corollary 3.46 is used instead of Theorem 3.45
to provide the algorithm A. This means that the time needed
for a node i in the recursion tree is O(n1.5

i ). Using Jensen’s
inequality [58] it is possible to amortise the runtime for a level
of the tree by O(n1.5). Hence the total runtime follows.

3.4 Improving the Approximation
Ratios

We have seen that optimal corner cuts are good approximations
to optimal m-cuts in solid grid graphs, and we were able to devise
fast approximation algorithms based on this fact. The techniques
used were those by Leighton and Rao [44], and by Simon and
Teng [65] to compute approximate solutions to the BISECTION,
respectively the k-BALANCED PARTITIONING problem.

One remaining question is whether the approximation guar-
antee given in Section 3.2 for the corner cuts can be improved. In
particular it is not clear whether the ε factor, by which the size
of the cut out part deviates from the given value m, is necessary.
Also the final constant given by Theorem 3.39, which has a value
of at least 832, seems very large. The reason for this large value
is that in many of the lemmas leading to the theorem, the cut
size of the involved curves grow by a constant factor. This means
that the resulting constant grows exponentially with the number
of intermediate steps used by the proof. Hence an improvement
on the guaranteed approximation ratio may be achievable with
a more direct approach than the one chosen here. In particular
the best lower bound we can provide to compare optimal corner
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Figure 3.29: A polygon in which the optimum corner bisection
(dotted lines) has a cut size that is a factor of 1 + 1/

√
2 larger

than the optimum bisection (dashed line). Obviously this gives a
lower bound for the corresponding grid graph.

cuts with optimum m-cuts is 1 + 1/
√

2 (Figure 3.29). Interest-
ingly the lower bound example is a very simple one. There also
exist more complicated examples based on the insights gained
in this chapter. For instance it is possible to construct examples
where the optimum corner bisection needs three segments. For
this, topologies such as the one shown in Figure 3.11 can be
used. However in all found examples the corner bisection with
minimum cut size was also at most a factor 1 + 1/

√
2 away from

optimum.

Concerning the algorithms presented in Section 3.3, it remains
open how to improve on the logarithmic approximation factor on
the cut size for the k-BALANCED PARTITIONING problem on solid
grid graphs when fast algorithms are desired. In particular since
constant ratios are possible if slower runtimes are accepted (cf.
Section 3.1.1). It is interesting to note that for the BISECTION

problem we were able to devise an algorithm that computes a
near-balanced solution for which the cut size increases the more
stringent the limit on the set sizes is. However the runtime of
the algorithm can be bounded independent of ε as shown by
Theorem 3.48. Alternatively, algorithms which pay the price of
computing near-balanced solutions not in the cut size but in the
runtime could be conceivable.
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For the k-BALANCED PARTITIONING problem the resulting
partition deviates by a factor of 2 from being perfectly balanced
while the runtime is fast, as shown by Corollary 3.52. For practi-
cal purposes it his however desirable to achieve a near-balanced
partition. In particular this is true for data distribution applica-
tions in parallel-computing. If the load of a processor deviates
by a factor of 2 from the perfectly balanced case, then this con-
stitutes a significant slowdown of the whole computation. Hence
an interesting question resulting from this chapter is whether
near-balanced partitions can be computed for solid grid graphs.
The next chapter will show that this is possible in polynomial
time if ε is constant. The cut size of the computed solution
approximates the optimum of a perfectly balanced solution by
a logarithmic factor (independent of ε). However the runtime
grows exponentially with decreasing values of ε. In the final
chapter of this thesis we will show that this is unavoidable.
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Chapter 4

Computing
Near-Balanced
Partitions

In this chapter we generalise to the edge-weighted version of
the k-BALANCED PARTITIONING1 problem in which the cut cost,
i.e. the weighted cut size, needs to be minimised. We consider
near-balanced2 partitions for any given ε > 0. In the first part of
this chapter we present an algorithm that solves the problem for
weighted trees. The cut cost of the computed solution is at most
the cut cost of an optimal perfectly balanced2 partition. The
algorithm runs in polynomial time if ε is constant and in this
sense is a PTAS with respect to the balance of the partition. In
the second part of this chapter we harness results on cut-based
hierarchical graph decompositions into trees, in order to extend
our PTAS for trees to general weighted graphs. The resulting
algorithm approximates the cut cost within a logarithmic factor.

The results presented in this chapter were obtained in collab-
oration with Luca Foschini. They were published as an extended

1Definition 1.1 page 3
2Definition 3.1 page 51

135
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abstract in [24] and will also partially appear in the doctoral
thesis of Luca Foschini. Because of this, the details of the sec-
ond part of this chapter (Section 4.3) are only sketched in this
dissertation. The full proofs can be found in [24] and the thesis
of Luca Foschini.

4.1 Cutting with the Balance in Mind

As mentioned in Chapter 3 the k-BALANCED PARTITIONING prob-
lem when k = 2, i.e. the BISECTION problem, is NP-hard [31].
Unfortunately, when k can be arbitrary it is even NP-hard [1]
to compute any finite approximation when requiring perfectly
balanced solutions. In order to overcome this obstacle, relaxing
the balance constraints has proven beneficial. By that we mean
that the sets of the partitions are allowed to be larger than dn/ke
by some given factor.

We have already seen an example of such an algorithm in Sec-
tion 3.3.5 (page 128) which is based on the techniques developed
by Simon and Teng [65]. This algorithm works in two phases
of which the first cuts the graph into pieces and the second
packs the pieces into k bins, i.e. the sets of the partition. This
is a typical approach to solve the k-BALANCED PARTITIONING

problem. Many of the strategies following this approach aim
at breaking the graph into pieces of size at most dn/ke while
minimising the cut, only to later rely on the fact that pieces of
that size can greedily be packed into k bins without their sizes
exceeding 2dn/ke. In this way the cutting phase can be oblivious
of the packing phase. However it is not hard to imagine how a
slack on the balance of this size can be detrimental to practical
applications. In parallel-computing for instance, a ratio of two on
the balance in the workload assigned to each machine can result
in a slowdown by a factor of two. This is because the completion
time is solely determined by the overloaded machines.

Therefore near-balanced partitions for which ε > 0 can be
chosen arbitrarily, are of greater practical interest. However as
ε approaches 0 and the constraint on the balance becomes more
stringent, the cutting phase must break the given graph into
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Figure 4.1: Two unweighted binary trees that are optimally
partitioned. For the tree on the top k = 8 (with a cut size of 10)
whereas k = 9 (with a cut size of 8) for the tree on the bottom.
The numbers in the vertices indicate the set they belong to and
the cut edges are dashed.

pieces more carefully so that they can later be packed into bins
of the required size. One direct effect is that techniques that
are oblivious of the packing phase while cutting the graph, do
not extend to near-balanced partitions. Hence it is necessary to
combine the packing with a cutting phase that already has the
near-balanced solution in mind.

As argued above, the restriction to near-balanced partitions
poses a major challenge to devising algorithms for k-BALANCED
PARTITIONING. For this reason we consider very simple but
non-trivial instances of the problem, namely trees. Figure 4.1
gives an example of how balanced partitions exhibit a counter-
intuitive behaviour even on perfect binary trees, as increasing
k does not necessarily entail a larger cut size. In the first part
of this chapter we show that when near-balanced solutions are
allowed, we are able to find substantially better solutions for
trees than for general graphs. This is even true when the trees
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are allowed to have positive edge weights. For edge-weighted
graphs we measure the quality of the solution by its cut cost
which is the sum of the weights of the edges connecting different
sets of the partition. We present an algorithm for weighted
trees that computes a near-balanced partition for any constant
ε > 0 in polynomial time, achieving a cut cost no larger than
the optimal of a perfectly balanced partition. This means that
α = 1 and hence the cut cost is not approximated. In this sense
the presented algorithm is a PTAS w.r.t. the balance of the
computed solution. In addition, our PTAS can be shown to
yield an optimal perfectly balanced solution for trees if k ∈ Θ(n),
while on general graphs the problem is NP-hard for these values
of k [39].

In the second part of this chapter we capitalise on the PTAS
for trees to tackle the k-BALANCED PARTITIONING problem on
general graphs with positive edge weights. We use known tech-
niques to decompose a graph into a set of trees [57]. By these
results we can compute solutions for trees using our PTAS, and
yield a near-balanced partition for the graph in which the cut
cost is approximated within α ∈ O(log n). This is sufficient to
simultaneously improve on the previous best result known [1]
of α ∈ O(log1.5(n)/ε2), and answer an open question posed
in the same paper of whether an algorithm exists that has no
dependence on ε in the approximation ratio α on the cut cost.

4.1.1 An Overview of the Used Techniques

Conceptually one could find a perfectly balanced partition of an
edge-weighted tree T with minimum cut cost in two steps. First
all the possible ways of cutting T into connected components
are grouped into equivalence classes based on the sizes of their
components. That is, the sets of connected components W and
W ′ belong to the same equivalence class if they contain the
same number of components of size x for all x ∈ {1, . . . , dn/ke}.
In a first step the set of connected components that achieves
the cut of minimum cost for each class is computed and set
to be the representative of the class. In a second stage only
the equivalence classes whose elements can be packed into k
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sets of size at most dn/ke are considered, and among those the
representative of the class with minimum cut cost is returned.
Clearly such an algorithm finds the optimal solution to the k-BAL-
ANCED PARTITIONING problem, but the runtime is exponential
in n as, in particular, the total number of equivalence classes is
exponential. To get around this problem we instead group sets
of connected components into coarser equivalence classes. These
are determined by subdividing the possible component sizes into
intervals. A coarse class then consists of cuts for which each
interval in total contains the same number of component sizes.
By making the lengths of the intervals appropriately depend
on ε, this reduces the equivalence classes to a polynomial number
if ε is constant. However this also introduces an approximation
error in the balance of the solution.

We will show that for trees there is a dynamic program that
computes the optimum way to cut a tree according to each
given coarse equivalence class in polynomial time. That is, it
computes the representatives of all coarse classes. In a second
phase each of the computed representatives is packed into bins
of size (1 + ε)dn/ke. This is done using a known algorithm by
Hochbaum and Shmoys [33] to approximate the BIN PACKING

problem. The output of the algorithm is the packing among
those that fit into k bins for which the smallest cut cost was
produced in the first phase. The representative of the class to
which also the perfectly balanced optimum belongs has a cut
cost that is at most the optimum. Furthermore we will see that
this representative is packed into k bins by the second phase.
Therefore the output of the algorithm also has a cut cost that is
at most the optimum, i.e. α = 1.

We further harness the PTAS for trees by using it on cut-
based hierarchical decompositions of general graphs. Informally
such a decomposition of a graph G is a set of trees for which
the leaves correspond to the vertices of G, and for which the
cuts approximate the cuts in G. Since α = 1 for the PTAS,
the total approximation factor paid for the graphs is due only
to the distortion of the cuts in the trees. That is, we yield an
α ∈ O(log n) approximation on the cut cost when using the
results from [57]. Note that since the graph is decomposed into
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trees as a preliminary step, the decomposition is oblivious of the
balance constraints related to solving k-BALANCED PARTITION-

ING on the individual trees. Therefore the cut distortion does
not depend on ε.

4.1.2 Related Work

Andreev and Räcke [1] show that approximating the cut size
of the k-BALANCED PARTITIONING problem is NP-hard for any
finite factor on general graphs, if perfectly balanced partitions
are desired. The authors also give a bicriteria approximation al-
gorithm with α ∈ O(log1.5(n)/ε2) when the solutions are allowed
to be near-balanced for arbitrary ε > 0. The method recursively
cuts along approximate solutions to the EDGE SEPARATOR prob-
lem. For this the technique by Leighton and Rao [44] is employed,
which uses approximate solutions to the SPARSEST CUT problem
(see Section 3.3.3 for a detailed description). The best algorithm
known for general graphs [4] approximates the sparsest cut within
a factor of O(

√
log n). In each recursion step of the algorithm

by Andreev and Räcke, due to Theorem 3.44 (page 123), solu-
tions to EDGE SEPARATOR with approximation ratio O(

√
log n/ε)

can be computed by cutting along ε/2-separators. The authors
go on to show that their algorithm approximates the cut cost
of the optimum perfectly balanced partition by the same ra-
tio in each recursion step. They amortise this ratio for each
level of the resulting recursion tree, and note that this tree has
height O(log n/ε). This gives the claimed approximation factor
of α ∈ O(log1.5(n)/ε2) for k-BALANCED PARTITIONING. We im-
prove this result by giving an algorithm achieving α ∈ O(log n).

The following results can be used to compute partitions in
which the set sizes are at most 2dn/ke. Even et al. [20] present
an algorithm using spreading metric techniques for which the
cut cost is approximated within α ∈ O(log n). As reviewed
in Chapter 3, Simon and Teng [65] conceived a technique that
approximates the cut cost within α ∈ O(

√
log n log k) using

the best algorithm known [4] for the SPARSEST CUT problem.
Later Krauthgamer et al. [42] improved both of these results
to α ∈ O(

√
log n log k) using a semidefinite relaxation which
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combines l22 metrics with spreading metrics. For graphs with
excluded minors (such as planar graphs) it is possible to apply a
spreading metrics relaxation and the famous Klein-Plotkin-Rao
Theorem [40] to compute solutions with a constant approxi-
mation factor on the cut cost. To compute perfectly balanced
partitions, MacGregor [47] gives a greedy algorithm for trees that
yields α ∈ O(∆ log∆(n/k)), where ∆ is the maximum degree of
the tree. To the best of our knowledge the latter two are the
only results for k-BALANCED PARTITIONING on restricted graph
classes, apart from our own.

In addition to the BISECTION problem where k = 2 (as
reviewed in Sections 2.1.2 and 3.1.1), some results are known
for other extreme values of k. For trees the bisection algorithm
by MacGregor [47] mentioned in Section 2.1.2 (page 14) is easily
generalised to solve the k-BALANCED PARTITIONING problem for
any constant k in polynomial time. At the other end of the
spectrum, i.e. when k ∈ Θ(n), it is known that the problem is
NP-hard [39] for any k ≤ n/3 on general graphs. Interestingly
the only (non-trivial) case when k-BALANCED PARTITIONING is
not NP-hard on general graphs is when k = n/2. In this case
the problem can easily be seen to be equivalent to the MAXI-

MUM MATCHING problem, in which a set of non-adjacent edges of
maximum cardinality is to be found. It is well-known that this
problem has polynomial time algorithms [29]. For k ∈ Θ(n) Feo
and Khellaf [27] give an α = n/k approximation algorithm for
k-BALANCED PARTITIONING, which was improved [26] to α = 2
in case k equals n/3 or n/4.

We complete the review of related work by discussing the
literature on cut-based hierarchical decompositions, which we
leverage in our algorithm for general graphs. These decompo-
sitions have been studied in the context of oblivious routing
schemes. Räcke [57] introduced an optimal decomposition with
factor O(log n), which we employ in the present work. More re-
cently, Madry [48] showed that it is possible to generalise Räcke’s
insights to any cut-based problem (see [48] for more details). This
result directly translates to our scenario and hence we use his
notation in the present work.
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4.2 A PTAS for Edge-Weighted Trees

In this section we present an algorithm that computes a near-
balanced partition for any tree T = (V,E, ω) with positive edge
weights ω : E 7→ R+. We will show that the cut cost of the
obtained solution is at most the cut cost of the perfectly balanced
optimum, i.e. α = 1. Since the runtime is polynomial if ε is
constant, the presented algorithm constitutes a PTAS w.r.t. the
balance of the solution. As described in the introduction we
introduce a coarse set of equivalence classes of the connected
components, defined as follows.

Definition 4.1. Let W be a set of disjoint connected compo-
nents of the vertices of T , and ε > 0. A vector ~g = (g0, . . . , gt),
where t = dlog1+ε(1/ε)e+ 1, is called the signature of W if in
W there are g0 components of size in the interval [1, εdn/ke[
and gi components of size in the interval [(1 + ε)i−1 · εdn/ke,
(1 + ε)i · εdn/ke[ , for each i ∈ {1, . . . , t}.

The first stage of our algorithm uses a dynamic programming
scheme to find a set of connected components of minimum cut
cost among those with signature ~g, for any possible ~g. Let W
denote the set containing each of these optimal sets that cover
all vertices of the tree, as computed by the first stage. In the
second stage the algorithm attempts to distribute the connected
components in each set W ∈ W into k bins, where each bin
has a capacity of (1 + ε)dn/ke vertices. This is done using a
scheme originally proposed by Hochbaum and Shmoys [33, 69]
for the BIN PACKING problem. The final output of our algorithm
is the partition of the vertices of the given tree that corresponds
to a packing of a set W̃ ∈ W that uses at most k bins and
has minimum cut cost. Both stages of the algorithm have a
runtime exponential in t. Hence the runtime is polynomial if ε
is a constant.

4.2.1 The Cutting Phase

We now describe the dynamic programming scheme to compute
the set of connected components of minimum cut cost among
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Figure 4.2: A part of a tree in which a vertex v, its rightmost
child u, its predecessor w among its siblings, the set of vertices Lv,
and the m covered vertices by some lower frontier with signature
~g are indicated.

those whose signature is ~g, for every possible ~g. We fix a root
r ∈ V among the vertices of T , and an ordering of the children
of every vertex in V . We define the leftmost and the rightmost
among the children of a vertex, the siblings left of a vertex, and
the predecessor of a vertex among its siblings according to this
order in the natural way. The idea is to recursively construct a
set of disjoint connected components for every vertex v 6= r by
using the optimal solutions of the subtrees rooted at the children
of v and the subtrees rooted at the siblings left of v. More
formally, let for a vertex v 6= r the set Lv ⊂ V contain all the
vertices of the subtrees rooted at those siblings of v that are left
of v and at v itself (Figure 4.2). We refer to a set F of disjoint
connected components as a lower frontier of Lv if all components
in F are contained in Lv and the vertices in V not covered by
F form a connected component containing the root r. For every
vertex v and every signature ~g, the algorithm recursively finds
a lower frontier F of Lv with signature ~g. Finally, a set of
connected components with signature ~g covering all vertices of
the tree can be computed using the solutions of the rightmost
child of the root. The algorithm selects a set having minimum
cut cost in each recursion step. Let Cv(~g,m), for any vertex
v 6= r and any integer m, denote the optimal cut cost over those
lower frontiers of Lv with signature ~g that cover a total of m
vertices with their connected components. If no such set exists
let Cv(~g,m) =∞. Additionally, we define µ := (1+ε)dn/ke, and
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~e(x) for any integer x < µ to be the signature of a set containing
only one connected component of size x. We now show that the
function Cv(~g,m) can be computed using a dynamic program.

Let F∗ denote an optimal lower frontier associated with
Cv(~g,m). We will consider the four cases resulting from whether
or not the vertex v is a leaf, and whether or not it is the leftmost
among its siblings. First consider the case when both properties
are met. That is, v is a leaf and the leftmost among its siblings.
Then Lv = {v} and hence the set F∗ either contains {v} as a
component or is empty. In the latter case the cut cost is 0. In the
former it is ω(e) where e is the edge incident to the leaf that is cut
from the tree. Thus Cv((0, . . . , 0), 0) = 0 and Cv(~e(1), 1) = ω(e)
while all other function values equal infinity. Now consider the
case when v is neither a leaf nor the leftmost among its siblings.
Let w be the predecessor among v’s siblings and u the rightmost
child of v. The set Lv contains the vertices of the subtrees rooted
at v’s siblings that are left of v and at v itself. The lower frontier
F∗ can either be one in which the edge from v to its parent is cut
or not. In the latter case the m vertices that are covered by F∗
do not contain v and hence are distributed among those in Lw
and Lu since Lv = Lw ∪ Lu ∪ {v}. If x of the vertices in Lu are
covered by F∗ then m− x must be covered by F∗ in Lw. The
vector ~g must be the sum of two signatures ~gu and ~gw such that
the lower frontier of Lu (respectively Lw) has minimum cut cost
among those having signature ~gu (respectively ~gw) and covering
x (respectively m − x) vertices. If this were not the case the
lower frontier in Lu (respectively Lw) could be exchanged with
an according one having a smaller cut cost—a contradiction to
the optimality of F∗. Hence in case v is a non-leftmost internal
vertex and the edge to its parent is not cut,

Cv(~g,m) = min
{
Cw(~gw,m− x) + Cu(~gu, x) |

0 ≤ x ≤ m ∧ ~gw + ~gu = ~g
}
. (4.1)

If the edge connecting v to its parent is cut in F∗, then all
nv vertices in the subtree rooted at v are covered by F∗. Hence
the other m−nv vertices covered by F∗ must be included in Lw.
Let x be the size of the component W ∈ F∗ that includes v.
Analogous to the case before, the lower frontiers Lu and Lw
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with signatures ~gu and ~gw in F∗ \ {W} must have minimum cut
costs. Hence the vector ~g must be the sum of ~gu, ~gw, and ~e(x).
Therefore in case the edge e to v’s parent is cut,

Cv(~g,m) = ω(e) + min
{
Cw(~gw,m− nv) + Cu(~gu, nv − x) |

1 ≤ x < µ ∧ ~gw + ~gu + ~e(x) = ~g
}
. (4.2)

Taking the minimum value of the formulas given in (4.1)
and (4.2) thus correctly computes the value for Cv(~g,m) for
the case in which v is neither a leaf nor the leftmost among
its siblings. In the two remaining cases when v is either a leaf
or a leftmost sibling, either the vertex u or w does not exist.
For these cases the recursive definitions of Cv(·, ·) can easily be
derived from Equations (4.1) and (4.2) by letting all function
values Cu(~g, x) and Cw(~g, x) of a non-existent vertex u or w be 0
if ~g = (0, . . . , 0) and x = 0, and ∞ otherwise.

The above recursive definitions for Cv(·, ·) give a framework
for a dynamic programming scheme that computes the wanted
solution set W in polynomial-time if ε is a constant, as the next
theorem shows.

Theorem 4.2. For any tree T and any constant ε > 0 there is
an algorithm that computes W in polynomial time.

Proof. If the tree contains only one vertex the theorem obvi-
ously holds. Otherwise the optimum solution from W that has
signature ~g must contain a connected component that includes
the root r and has some size x. Clearly x is at least 1 and at
most µ. Hence, if u denotes the rightmost child of the root r,
the cut cost C(~g) of the optimal solution for ~g can be computed
in linear time using the formula

C(~g) = min{Cu(~g − ~e(x), n− x) | 1 ≤ x < µ}. (4.3)

An optimal set of connected components with signature ~g can
be computed using the dynamic program given by the above
equation together with the recursive definition of Cv by keeping
track of the set of connected components used in each recursion
step.
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To analyse the runtime let us first bound the number of
signatures ~g that have to be considered for a vertex v in the
dynamic program. Let Nv = |Lv| denote the number of vertices
in the subtrees rooted at the siblings left of v and at v itself.
There are Nv vertices that can be distributed into connected
components of different sizes to form a lower frontier W of Lv.
Each entry gi of ~g counts components of size at least the lowest
value of the i-th interval as specified in Definition 4.1. Hence each
gi is upper-bounded by Nv/((1+ε)i−1 ·εn/k) ≤ k/((1+ε)i−1 ·ε)
if i ∈ {1, . . . , t}, and Nv if i = 0. Therefore the total number of
signatures ~g considered for a vertex v is upper-bounded by

Nv ·
t∏
i=1

k

(1 + ε)i−1 · ε
= Nv

(
k

ε

)t
·
(

1

1 + ε

) (t−1)t
2

≤ Nv
(
k√
ε

)t
,

where the inequality holds since t− 1 = dlog1+ε(1/ε)e. Because
the latter value can be upper-bounded by d1/ε · log(1/ε)e if
ε ≤ 1, since then 1 + ε ≥ 2ε, we can conclude that the number
of signatures is σNv, where σ ∈ O((k/

√
ε)1+d 1ε log( 1

ε )e).

We bound the runtime as follows. For each vertex v we
calculate the number of steps τv that are needed to compute all
entries Cv′(~g,m) for all v′ ∈ Lv. We claim that τv ≤ 3

2σ
2N4

v for
any vertex v. According to Formulas (4.1) and (4.2), in addition
to the number of steps τu and τw to compute the tables for Lu
and Lw, for each m and ~g the minimum value over two options is
found by going through all possible x, ~gu, and ~gw. For any fixed
x there are at most σNu · σNw many possibilities to combine
vectors ~gu and ~gw to form a signature ~g. Since m and x are both
upper-bounded by Nv and Nu +Nw ≤ Nv we get

τv ≤ τu + τw + 2σ2NuNwN
2
v

≤ 3

2
σ2N2

v

(
N2
u +N2

w + 2NuNw
)

≤ 3

2
σ2N4

v .

Since the time to compute Formula (4.3) for each signature
is O(σn), we conclude that the total runtime is O(σ2n4) =
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O(n4(k/
√
ε)2+2d 1ε log( 1

ε )e), which is polynomial if ε is constant.

4.2.2 The Packing Phase

The second stage of the algorithm attempts to pack each set
of connected components W ∈W computed by the first stage
into k bins of capacity (1 + ε)dn/ke. This means solving the
well known BIN PACKING problem, which is NP-hard in general.
However we are able to solve it in polynomial time for constant
ε using a method developed by Hochbaum and Schmoys [33],
which we briefly describe as presented in [69].

Let W ∈ W be a set of connected components with signa-
ture ~g = (g0, . . . , gt). First the algorithm constructs an instance
I of the BIN PACKING problem containing only the components
of W larger than εdn/ke. In particular, the bin capacity is set
to be dn/ke and for every entry 1 ≤ i ≤ t of ~g, gi elements of
size (1 + ε)i−1 · εdn/ke are introduced in I. That is, the size
of each component is converted to the lower endpoint of the
interval which contains it according to Definition 4.1. The num-
ber of elements in I is

∑
i≥1 gi ≤ n/(εdn/ke) ≤ k/ε since there

are n vertices in V and the smallest size of an element in I is
εdn/ke. An optimal bin packing for I can be found in O((k/ε)2t)
time, using a dynamic programming scheme (for more details
see [33, 69]). That is, the runtime is exponential in the number
t of different sizes of the elements. A packing of I into the
minimum number of bins of capacity dn/ke translates into a
packing of the components of W larger than εdn/ke into bins of
capacity (1 + ε)dn/ke, since each element in I underestimates
the size of the component in W that it represents by a factor of
at most 1 + ε.

To complete the packing of W the algorithm distributes
the remaining components of size less than εdn/ke by greed-
ily putting them into bins without exceeding the capacity of
(1 + ε)dn/ke. A new bin is created if placing a component in any
of the bins would exceed the capacity. Distributing the remaining
components can be performed in O(n) time. Let ϑ(W) denote
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the number of bins that this algorithm needs to pack W. Note
that for two sets of components having the same signature the
components larger than εdn/ke will always be distributed in the
same way by the algorithm. However the greedy distribution of
the remaining small components may create more bins for one of
the sets. We show next that if a set of components computed by
the first stage has the same signature ~g∗ as the set of components
induced by an optimal perfectly balanced partition, then the
second stage of the algorithm packs it into at most k bins with
capacity (1 + ε)dn/ke.

Lemma 4.3. Let W∗ having signature ~g∗ be the set of connected
components in an optimal perfectly balanced partition. For the
set W ∈W with signature ~g∗ it holds that ϑ(W) ≤ k.

Proof. We distinguish two cases for the greedy distribution of
the components of W that have size less than εdn/ke depending
on whether or not new bins are created. If no new bins are
created then ϑ(W) is solely determined by the output of the bin
packing algorithm, run with capacities dn/ke on the instance I.
Since S∗ has the same signature ~g∗ asW , all elements ei ∈ I can
be mapped to distinct components Wi ∈ S∗ such that ei ≤ |Wi|.
Hence any packing of S∗ into bins of capacity dn/ke requires at
least ϑ(W) many bins which is optimal for I. Since W∗ requires
at most k optimally packed bins by definition, this proves the
claim in the case no new bins are opened.

If new bins are created by the greedy step, then at least the
first ϑ(W) − 1 bins of the final solution are filled beyond the
extent of dn/ke. Otherwise small components of size at most
εdn/ke could have been fit without requiring the creation of the
last bin. Therefore the total number of vertices in W strictly
exceeds (ϑ(W) − 1)dn/ke. Since the total number of vertices
contained in S∗ equals that of W it follows that at least ϑ(W)
bins are required to pack S∗ into bins of capacity dn/ke, which
proves the claim in the case new bins were created by the greedy
step.

The final step of the algorithm is to output the packing of a
set W ∈W of minimum cut cost among those with ϑ(W) ≤ k.
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The next theorem proves correctness and bounds the runtime of
the algorithm.

Theorem 4.4. For any tree T with positive edge weights, ε > 0,
and k ∈ {1, . . . , n}, there is an algorithm that computes a par-
tition of T ’s vertices into k sets such that each set has size at
most (1 + ε)dn/ke and its cut cost is at most that of an optimal
perfectly balanced partition of the tree. Furthermore the runtime
is polynomial if ε is a constant.

Proof. Let W̃ ∈W be the set of connected components returned
by the algorithm, i.e. if C(~g) denotes the cut cost of the set
W ∈W with signature ~g, then

W̃ = argW∈W min{C(~g) | W has signature ~g ∧ ϑ(W) ≤ k}.
(4.4)

By Lemma 4.3 we know that if W ∈ W has signature ~g∗

then ϑ(W) ≤ k. Thus the minimisation of (4.4) ensures that the

cut cost of W̃ is at most that of a set of components W ∈ W
with signature ~g∗. Since W retains the set of components with
minimum cut cost among all those having the same signature,
it follows that the cut cost of W̃ is at most that of W∗, which
concludes the proof of correctness.

To bound the runtime of the second stage, recall from the
proof of Theorem 4.2 that the total number of considered signa-

tures ~g is σn, where σ ∈ O((k/
√
ε)1+d 1

ε log( 1
ε )e). By Theorem 4.2

the set W, whose size is at most σn, can be computed in time
O(n4σ2). Each of the sets of components of W requires at
most O((k/ε)2t + n) time to be packed in the second stage of
the algorithm. Hence the second stage can be performed in
O(σn((k/ε)2t + n)) total time. This means that the overall run-

time of the algorithm is O(n4(k/ε)1+3d 1ε log( 1
ε )e), which concludes

the proof.
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4.3 An Extension to Edge-Weighted
Graphs

In this section we sketch an algorithm that employs the PTAS
given in Section 4.2 to find near-balanced partitions for general
graphs with positive edge weights. The cut cost computed is at
most α ∈ O(log n) times that of an optimal perfectly balanced
partition. The algorithm relies on using our PTAS to compute
near-balanced partitions for a set of trees that well approximate
the cuts in the given input graph G. These trees form a cut-
based hierarchical decomposition of G and can be found using the
results by Räcke [57]. The reason why this process generates an
O(log n) approximation of the cut cost depends on the properties
of the decomposition, which we now sketch. A decomposition
tree of an edge weighted graph G is an edge weighted tree T for
which there is a one-to-one correspondence between the leaves
of T and the vertices in G. Hence a partition of the vertices of
G corresponds to a partition of the leaves of T , and vice versa.
Accordingly we define a leaf partition L of a tree to be a partition
of the leaf set. The cut cost C(L) of a leaf partition L is the
minimum weight of edges in T that have to be removed in order
to disconnect the sets in L from each other. We make use of the
following result which can be found in [48, 57]. It bounds the
cut costs in a graph and its corresponding decomposition trees
when cutting the graph into two parts.

Theorem 4.5 (follows from [48, 57]). For any graph G with n
vertices and positive edge weights, a family of decomposition trees
{Ti}i of G and positive real numbers {λi}i such that

∑
i λi = 1

with the following properties can be found in polynomial time. Let
an arbitrary partition of the vertices of G into two sets A and B
be given. If C(A,B) denotes its cut cost and Li its corresponding
leaf partition in Ti, we have

• the lower bound C(Li) ≥ C(A,B) for each i, and

• the upper bound
∑
i λiC(Li) ≤ O(log n) · C(A,B).

Since
∑
i λi = 1 the above theorem implies that for at least

one tree Ti it holds that C(Li) ≤ O(log n) · C(A,B). This
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allows for the logarithmic approximation of the k-BALANCED
PARTITIONING problem in graphs using a modified version of
the PTAS given in Section 4.2. We adapt the PTAS to compute
near-balanced leaf partitions of each Ti. That is, it computes
a leaf partition of the l leaves of a tree T into k sets of size at
most (1 + ε)dl/ke each. It is easy to see that the PTAS given in
Section 4.2 can be adapted accordingly. First signatures need to
count leaves instead of vertices in Definition 4.1. Moreover we
need to keep track of the number lv of leaves in a subtree of a
vertex v instead of the number nv of vertices in Equations (4.1)
and (4.2). This yields the following result.

Corollary 4.6. For any tree T with positive edge weights, ε > 0,
and k ∈ {1, . . . , l}, there is an algorithm that computes a parti-
tion of the l leaves of T into k sets such that each set includes
at most (1 + ε)dl/ke leaves and its cut cost is at most that of
an optimal perfectly balanced leaf partition. Furthermore the
runtime is polynomial in k and the number of vertices of T , if ε
is constant.

The algorithm computing near-balanced partitions for gen-
eral edge-weighted graphs works as follows. According to The-
orem 4.5 a family of decomposition trees can be computed for
the given graph G in polynomial time. For each such tree we
compute a near-balanced partition of its leaves into k sets using
Corollary 4.6. We select the computed leaf partition having
the smallest cut cost when applied to G. The output of the
algorithm is then the corresponding vertex partition of G.

Using Theorem 4.5 it is possible to bound the weight Cj of
an edge set cutting out a single part Pj of a partition V. That
is, we set A to part Pj and B to the union of all other parts

in V. Since the sum
∑k
j=1 Cj is exactly twice the cut cost of

the partition V, Theorem 4.5 yields upper and lower bounds on
the cut costs of V and its corresponding leaf partitions in the
decomposition trees. Together with the bound on the cut cost
of a computed leaf partition from Corollary 4.6, this fact makes
it possible to prove the claimed approximation guarantee. A
formal proof of the following theorem can be found in [24] and
the doctoral thesis of Luca Foschini.
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Theorem 4.7. Let G be a graph with n vertices and positive
edge weights, ε > 0 be a constant, and k ∈ {0, . . . , n}. There
is a polynomial time algorithm that computes a partition of the
vertices of G into k sets such that each set has size at most
(1 + ε)dn/ke, and its cut cost is at most α ∈ O(log n) times that
of the optimal perfectly balanced solution.

4.4 Improving the Runtime and
Other Observations

In this chapter, computing near-balanced solutions to the edge-
weighted k-BALANCED PARTITIONING problem was studied on
trees, and these results were applied to general graphs. Trees
prove to be instances which admit a PTAS with approximation
ratio α = 1, the best possible in the bicriteria sense. Additionally
the PTAS also enables us to show that an optimum perfectly
balanced solution to the k-BALANCED PARTITIONING problem
can be computed in polynomial time for trees when k ∈ Θ(n).
This can be seen by for instance setting ε = d1 + n/ke−1 which
is constant in this case. Hence the runtime of the PTAS is
polynomial. It also means that the set sizes of the computed
partitions will be smaller than dn/ke + 1, i.e. they contain at
most dn/ke vertices.

Using standard techniques [66], the dynamic program that
cuts a tree into pieces in the first phase of the PTAS can also
be adapted to bounded tree-width graphs. Hence also for this
graph class a PTAS as the above one exists.

The ratio of α = 1 also enables our PTAS for trees to be ex-
tended into an algorithm for general graphs with approximation
factor α ∈ O(log n), improving on the best previous [1] bound
of α ∈ O(log1.5(n)/ε2). As noted in Section 3.1.1 (page 52) the
same logarithmic approximation guarantee can be obtained for
the BISECTION problem on general graphs. In fact this result was
achieved in [57] by applying the algorithm by MacGregor [47],
which computes optimal bisections for trees (see Section 2.1.2
page 14), to Theorem 4.5. Hence, remarkably, the same approxi-
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mation guarantee can be obtained on the cut cost for the k-BAL-
ANCED PARTITIONING problem in case k = 2 (the BISECTION

problem) and for unrestricted k, if we settle for near-balanced
solutions in the latter case. This is in contrast to the strong
inapproximability results [1] when the solutions are required to
be perfectly balanced.

To improve the above approximation factors, the tree embed-
ding results that we used unfortunately do not seem amenable.
This is because the decomposition trees can also be used for
the so called OBLIVIOUS ROUTING problem which is an online
problem (cf. [57]). For it the gained competitive ratio of O(log n)
is optimal. This can be shown by a counter example [6, 49] in
which any online strategy will have a logarithmic ratio. Fur-
thermore, this counter example consists of a square shaped solid
grid graph with corresponding predefined routes. This seems to
suggest that the presented algorithm of this chapter does not
perform better on solid grid graphs, even though it remains an
open problem to prove this fact. In general, it seems as if radi-
cally different methods are needed to improve on the presented
logarithmic approximation factor.

A remaining question is whether faster algorithms can be
found to compute near-balanced partitions. We showed that we
can achieve approximations on the cut cost that do not depend
on ε. Hence it suggests itself to devise an algorithm that will
compensate the cost of being able to compute a near-balanced
solution for any ε > 0 not in the runtime but in the cut cost.
The next chapter however shows that, unless P=NP, no such
algorithm exists that is reasonable for practical applications.
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Chapter 5

The Hardness of
k-Balanced
Partitioning

In this chapter we investigate the hardness of the k-BALANCED
PARTITIONING1 problem. We consider computing perfectly bal-
anced and near-balanced partitions2, and for both scenarios we
give inapproximability results for a variety of graph classes. For
the perfectly balanced case we show that, unless P=NP, neither
for solid grid graphs3 nor for trees polynomial time algorithms
exist that approximate the cut size within any factor that is
reasonable for practical applications. For trees we extend this
result by considering constant degrees. In particular we show
that the problem is NP-hard for trees with maximum degree 5,
and that it is APX-hard when the degree is upper-bounded by 7.
Additionally we consider computing near-balanced partitions
for any given ε > 0 on trees, solid grids, and general graphs.
We concern ourselves with fully polynomial time algorithms for
which the cut size is approximated within a factor that may

1Definition 1.1 page 3
2Definition 3.1 page 51
3Definition 1.2 page 4
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increase when the bound on the set sizes becomes more strin-
gent. We will show that, unless P=NP, for the considered graph
classes no such algorithm exists that is reasonable for practical
applications. We develop a reduction framework which implies
all but the results for constant degree trees. It identifies some
necessary conditions on the considered graphs which make them
hard for k-BALANCED PARTITIONING.

The results in the first part of this chapter (Sections 5.2
and 5.3) were published in [21] and are the sole work of the
author of this dissertation. The second part (Section 5.4) was
published as an extended abstract [24] and is joint work with
Luca Foschini. Some of the results in the second part will
partially appear in the doctoral thesis of Luca Foschini. In
particular the proof for trees of degree 5 (Theorem 5.13) will
only be sketched here. The details can be found in [24] and the
thesis of Luca Foschini.

5.1 The End of the Road

In this thesis we have so far seen algorithms that solve the
k-BALANCED PARTITIONING problem in a variety of settings. In
particular for arbitrary values of k, in Chapter 3 we presented
an algorithm that is fast on solid grid graphs and approximates
the cut size within a logarithmic factor. However the computed
partition can deviate by a factor of 2 from being perfectly bal-
anced. For this result we harnessed some known techniques
which were developed for general graphs. The methods were
originally devised since, by a result of Andreev and Räcke [1],
in general it is NP-hard to approximate the cut size within any
finite factor if perfectly balanced solutions are desired. However
this hardness result does not exclude the existence of approx-
imation algorithms that compute partitions which are closer
to being perfectly balanced than a factor of 2 as achieved in
Chapter 3. We therefore concerned ourselves with near-balanced
solutions for arbitrary constants ε > 0 in Chapter 4. We gave
an algorithm that for general graphs approximates the cut size
within a logarithmic factor. Even though it runs in polynomial
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time, it is slow since the runtime increases exponentially with
decreasing ε.

The aforementioned inapproximability result by Andreev and
Räcke [1] for perfectly balanced solutions relies on the fact that
a general graph may be disconnected. Hence their reduction is
not feasible when considering connected graph classes such as
solid grid graphs or trees. In this chapter we will show however,
that approximating the cut size of the k-BALANCED PARTITION-

ING problem remains similarly hard for these graph classes. In
particular we prove that for arbitrary k, computing perfectly
balanced partitions for solid grid graphs is NP-hard even when
approximating the cut size within a factor of α = nc, for an
arbitrary constant c < 1/2. For trees we show that this is
true even if c < 1. As we will see, both of these results are
asymptotically tight.

The latter inapproximability result for trees is even valid if
the diameter , i.e. the maximum distance between two leaves in
terms of edges, is bounded by 4. It is easy to see that the k-BAL-
ANCED PARTITIONING problem is trivial on trees of diameter at
most 3. Hence also in this respect our result is tight. However
the proof relies on the fact that the trees used in the reduction
can have arbitrary degrees. It is therefore an interesting question
whether the k-BALANCED PARTITIONING problem remains hard
when the maximum degree ∆ of the trees is bounded. Obviously
for trees with ∆ = 2, i.e. paths, the problem is trivial. However
we are able to show that the problem is NP-hard if ∆ = 5, and
that it is APX-hard when ∆ = 7. These observations are in
contrast with an algorithm that will compute perfectly balanced
partitions for trees while approximating the cut size within a
factor of α ∈ O(∆ log∆(n/k)). This algorithm can be derived
from the work of MacGregor [47] and means that for constant
degree trees a logarithmic approximation can be computed.

An additional observation when considering the algorithms
for solid grid graphs presented in this thesis so far, is the follow-
ing. On one hand we can solve the k-BALANCED PARTITIONING

problem fast if we allow the partition to be off by a factor of 2
from being perfectly balanced. On the other hand we can com-
pute near-balanced solutions for arbitrary constants ε > 0 when
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we allow considerably slower algorithms in which the exponent of
the runtime depends on ε. Ideally we would want an algorithm
that computes near-balanced solutions in fully polynomial time
such that the runtime does not increase exponentially when ε
decreases. More precisely, we want the runtime to be at most
π(n/ε) for some polynomial π(·).

One interesting property of the algorithm computing near-
balanced solutions is that its approximation factor α ∈ O(log n)
on the cut size does not depend on ε. It therefore suggests itself
to devise an algorithm that will compensate the cost of being
able to compute a near-balanced solution for any ε > 0 not in the
runtime but in the cut size. In the following however, we show
that no reasonable algorithm of this sort exists. More precisely,
we show that for solid grid graphs there is no fully polynomial
time algorithm with the following properties, unless P=NP. The
solution computed by the supposed algorithm should be near-
balanced for any given ε > 0, and the cut size may deviate from
the optimum of a perfectly balanced partition by a factor of
α = nc/εd, for any constants c and d where c < 1/2. We will
also show that for trees an analogous statement is true even
if c < 1. For general graphs (which may be disconnected) we
can prove that no such algorithm exists for any finite α. To the
best of our knowledge, these are the first bicriteria inapproxima-
bility results for the k-BALANCED PARTITIONING problem. We
will show that all of these results are asymptotically tight by
providing corresponding approximation algorithms.

5.1.1 An Overview of the Used Techniques

In the first part of this chapter we will give all the above men-
tioned hardness results, except those considering constant degree
trees. The main contribution of this part is a reduction frame-
work with which these hardness results can be generated. In
particular, we identify some sufficient conditions that a graph
class has to fulfil in order to be hard for k-BALANCED PARTI-

TIONING. Intuitively these conditions say that it is expensive to
cut out vertices in terms of the used edges. We will show that
graphs fulfilling the conditions can be used in order to decide
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the 3-PARTITION problem. In this problem a set of integers
and a threshold parameter are given. The integers need to be
partitioned into triples such that each triple sums up to ex-
actly the threshold value. This problem is known to be strongly
NP-hard [30]. We will assume that we can construct a graph
from each 3-PARTITION instance such that the conditions are
fulfilled. We then state a lemma which asserts that an algorithm
which computes near-balanced partitions and approximates the
cut size within some α on the constructed graphs, is able to
decide whether all integers of a 3-PARTITION instance can be
partitioned into the desired triples. By parametrising the in-
volved bounds of the conditions on the respective approximation
factors and showing that for these values the graphs can be
constructed in polynomial time, we yield the above mentioned
inapproximability results.

For grids and trees the sufficient conditions of the reduction
framework are met as follows. As also elaborated on in Chapters 2
and 3.2, a grid graph resembles a discretised polygon. They
therefore also share similar isoperimetric properties. We are able
to use these in order to show that cutting grid graphs with few
edges can only cut off a limited number of vertices. For trees
we instead rely on an entirely different property, namely their
ability to have high vertex degrees. Since from a combinatorial
point of view these graphs are simple but also very different, this
demonstrates the capability of the reduction framework to cover
a wide spectrum of graph classes.

Since for trees the framework relies on high vertex degrees,
we need to employ an entirely different reduction technique in
the second part of this chapter to show our results for constant
degree trees. In particular the APX-hardness proof for trees of
degree 7 uses the version of 3-PARTITION that has a constant
sized gap. That is, it needs to be decided whether all or at
most a constant fraction of the integers can be partitioned into
triples that sum up to the threshold value. This problem is
called GAP-3-PARTITION and is NP-hard [30, 56]. We will use a
gap-preserving reduction for our result. For this we must rely
on the structure of the constructed gadgets in order to make the
respective reductions work. In particular we need gadgets that
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guarantee a number of cut edges proportional to the number of
integers that cannot be packed into triples in a GAP-3-PARTI-

TION instance. For trees of maximum degree 5 we use similar
ideas in a reduction from 3-PARTITION to show that k-BALANCED
PARTITIONING is NP-hard.

5.1.2 Related Work

For a thorough review of related results regarding the k-BAL-
ANCED PARTITIONING problem see Section 4.1.2. This chapter
significantly extends the known hardness results for the problem.
Garey et al. [31] showed that the problem is NP-hard even
for the restricted case when k = 2, i.e. the BISECTION problem.
Additionally Andreev and Räcke [1] proved that for general k it is
NP-hard to approximate the optimum cut size on general graphs
when perfectly balanced solutions are required. This is done by
a reduction from the 3-PARTITION problem. For each of the k
integers of a 3-PARTITION instance a connected graph of size
exactly the value of the integer is constructed. The disconnected
graph containing these k graphs then constitutes the reduced
instance. Since 3-PARTITION is strongly NP-hard [30] the graph
can be computed in polynomial time. It is then easy to see that
the optimum perfectly balanced solution does not cut any edge
if the 3-PARTITION instance is solvable. Otherwise at least one
edge must be cut and hence no polynomial time approximation
algorithm can compute a solution, unless P=NP.

For trees of maximum degree ∆ it is known that a perfectly
balanced partition that approximates the cut size within α ∈
O(∆ log∆(n/k)) can be computed in polynomial time. This
follows from the results of MacGregor [47]. He devises a greedy
algorithm that will cut any desired number of vertices from a tree
recursively. It is well-known that every tree has a vertex which,
when removed from the tree, leaves only subtrees that each
contain at most half the vertices of the tree [45]. In a recursion
step the algorithm by MacGregor will find this vertex in linear
time and sort the corresponding subtrees by size. It will then
cut off the subtrees in decreasing order until too many vertices
were taken. To correct for the vertices that are superfluous the
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algorithm will continue recursively on the last cut off subtree. In
each recursion step at most ∆ edges are cut, while the recursion
depth is logarithmic. This is because the subtree on which
the recursion continues is always at most half the size of the
current tree. Using a slightly more sophisticated analysis of the
recursion depth one can conclude that at most O(∆ log∆(n/k))
edges are cut. Now this recursive procedure is used k times
for each part of the desired partition and hence the total cut
size is O(k∆ log∆(n/k)). Any perfectly balanced solution has
at least n

dn/ke > k/2 parts. Since the number of parts is integer

and the tree is connected, this means at least k/2 edges must
be cut by the optimum. Hence the approximation ratio of
α ∈ O(∆ log∆(n/k)) follows. MacGregor originally devised this
algorithm to show an upper bound on the bisection width of
trees. He also shows that there are perfect ternary trees that
asymptotically match the logarithmic upper bound [47, 53].

5.2 A Reduction Framework

To derive the hardness results we give a reduction from the
3-PARTITION problem defined below. It is known that this
problem is strongly NP-hard [30] which means that it remains
so even if all integers are polynomially bounded in the size of
the input.

Definition 5.1 (3-PARTITION). Given 3k integers a1 to a3k and
a threshold s such that s/4 < ai < s/2 for each i ∈ {1, . . . , 3k},
and

∑3k
i=1 ai = ks, find a partition of the integers into k triples

such that each triple sums up to exactly s.

We will set up a general framework for a reduction from
3-PARTITION to different graph classes. This will be achieved by
identifying some structural properties that a graph constructed
from a 3-PARTITION instance has to fulfil, in order to show the
hardness of the k-BALANCED PARTITIONING problem. While de-
scribing the structural properties we will exemplify them for
(disconnected) general graphs which constitute an easily under-
standable case. For these graphs Andreev and Räcke [1] already
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showed that it is NP-hard to approximate the cut size within
any finite factor. We will show that, unless P=NP, no fully poly-
nomial time algorithm exists even if the balance is approximated
as well.

For any 3-PARTITION instance we construct a set of 3k graphs,
which we will call gadgets , with a number of vertices proportional
to the integers a1 to a3k. In particular, for general graphs each
gadget Hi, where i ∈ {1, . . . 3k}, is a connected graph on 2ai
vertices. This assures that the gadgets can be constructed in
polynomial time since 3-PARTITION is strongly NP-hard. In
general we will assume that we can construct 3k gadgets for
the given graph class such that each gadget has µai vertices for
some µ specific for the graph class. These gadgets will then be
connected using some number g of edges. The parameters µ and
g may depend on the values of the given 3-PARTITION instance.
For the case of general graphs we chose µ = 2 and we let g = 0,
i.e. the gadgets are disconnected. In order to show that the
given gadgets can be used in a reduction, we will require that an
upper bound can be given on the number of vertices that can be
cut out using a limited number of edges. More precisely, given
any colouring of the vertices of all gadgets into k colours, by a
minority vertex in a gadget Hi we mean a vertex that has the
same colour as less than half of Hi’s vertices. Any partition of
the vertices of all gadgets into k sets induces a colouring of the
vertices into k colours. For approximation ratios α and ε, the
property we need is that cutting the graph containing n vertices
into k parts using at most αg edges, produces less than µ− εn
minority vertices in total. Clearly ε needs to be sufficiently small
so that the graph exists. When considering fully polynomial
time algorithms, ε should however also not be too small since
otherwise the runtime may not be polynomial. For general
graphs we achieve this by choosing ε = (2ks)−1. This means

that µ − εn = 1 since n =
∑3k
i=1 µai = 2ks. Simultaneously

the runtime of a corresponding algorithm is polynomial in the
size of the 3-PARTITION instance since 3-PARTITION is strongly
NP-hard. Additionally the desired condition is met for this
graph class since no gadget can be cut using αg = 0 edges.
The following definition formalises the properties needed for our
reductions.
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Definition 5.2 (reduction set). For each instance I of 3-PAR-
TITION with integers a1 to a3k and threshold s, a reduction set
for k-BALANCED PARTITIONING contains a graph determined
by some given parameters g, µ, ε, and α which may depend on
I. Such a graph constitutes 3k gadgets connected through g
edges. Each gadget Hi, where i ∈ {1, . . . , 3k}, has µai vertices.
Additionally, if a partition of the n vertices of the graph into
k sets has a cut size of at most αg, then in total there are less
than µ− εn minority vertices in the induced colouring.

Obviously the involved parameters have to be set to appropri-
ate values in order for the reduction set to exist. For instance µ
must be an integer and ε must be sufficiently small compared to
µ and n. Since however the values will vary with the considered
graph class we fix them only later. In the following lemma we will
assume that the reduction set exists and therefore all parameters
were chosen appropriately. It assures that given a reduction
set, an approximation algorithm for k-BALANCED PARTITIONING

can decide the 3-PARTITION problem. For general graphs we
have seen above that a reduction set exists for any finite α and
ε = (2ks)−1. This means that a fully polynomial time algorithm
for k-BALANCED PARTITIONING computing near-balanced parti-
tions and approximating the cut size within α, can decide the
3-PARTITION problem in polynomial time. Such an algorithm
can however not exist, unless P=NP.

Lemma 5.3. Let for ε ≥ 0 an algorithm A be given that for
any graph in a reduction set for k-BALANCED PARTITIONING

computes a partition of the n vertices into k parts of size at
most (1 + ε)dn/ke each. If the cut size of the computed solution
deviates by at most α from the optimal cut size of a perfectly
balanced solution, then the algorithm can decide the 3-PARTITION
problem.

Proof. Let k be the value given by a 3-PARTITION instance I,
and let G be the graph corresponding to I in the reduction set.
Assume that I has a solution. Then obviously cutting the g
edges connecting the gadgets of G gives a perfectly balanced
solution to I. Hence in this case the optimal solution has a cut
size of at most g. Accordingly algorithm A will cut at most αg
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edges since it approximates the cut size by a factor of α. We
will show that in the other case when I does not have a solution,
the algorithm will cut more than αg edges. Hence A can decide
the 3-PARTITION problem and thus the lemma follows.

For the sake of deriving a contradiction assume that algorithm
A cuts at most αg edges in case the 3-PARTITION instance I does
not permit a solution. Since the corresponding graph G is from a
reduction set for k-BALANCED PARTITIONING, by Definition 5.2
this means that from its n vertices, in total less than µ − εn
are minority vertices in the colouring induced by the computed
solution of A. Each gadget Hi, where i ∈ {1, . . . 3k}, of G has a
majority colour , i.e. a colour that more than half the vertices
in Hi share. This is because the size of Hi is µai and we can
safely assume that ai ≥ 2 (otherwise the 3-PARTITION instance
is trivial due to s/4 < ai < s/2). The majority colours of the
gadgets induce a partition I of the integers ai of I into k sets.
That is, we introduce a set in I for each colour and put an
integer ai in a set if the majority colour of Hi equals the colour
of the set.

Since we assume that I does not admit a solution, if every
set in I contains exactly three integers there must be some set
for which the contained integers do not sum up to exactly the
threshold s. On the other hand the bounds on the integers,
assuring that s/4 < ai < s/2 for each i ∈ {1, . . . , 3k}, mean that
in case not every set in I contains exactly three elements, there
must also exist a set for which the contained numbers do not
sum up to s. By the pigeonhole principle and the fact that the
sum over all ai equals ks, there must thus be some set I among
the k in I for which the sum of the integers is strictly less than s.
Since the involved numbers are integers we can conclude that the
sum of the integers in I is in fact at most s− 1. Therefore the
number of vertices in the gadgets corresponding to the integers
in I is at most µ(s− 1). Let w.l.o.g. the colour of I be 1. Apart
from the vertices in these gadgets having majority colour 1, all
vertices in G that also have colour 1 must be minority vertices.
Hence there must be less than µ(s− 1) + µ− εn many vertices

with colour 1. Since
∑3k
i=1 ai = ks and thus µs = n/k, these are

less than n/k − εn.
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Figure 5.1: The tree constructed for the reduction from 3-PAR-

TITION. Each gadget Hi is a star of ai vertices. All centre
vertices are connected through H1 which means that the resulting
tree has diameter 4.

At the same time the algorithm computes a solution inducing
a colouring in which each colour has at most (1 + ε)n/k vertices,
since n = µks is divisible by k. This means we can give a lower
bound of n− (k − 1)(1 + ε)n/k on the number of vertices of a
colour by assuming that all other colours have the maximum
number of vertices. Since this lower bound equals (1+ε)n/k−εn,
for any ε ≥ 0 we get a contradiction on the upper bound derived
above for colour 1. Thus the assumption that the algorithm cuts
less than αg edges if I does not have a solution is wrong.

5.3 The Hardness for Grids and Trees

We will now consider some specific graph classes and show that
the k-BALANCED PARTITIONING problem is hard when restricted
to them. In particular we will first consider trees and thereafter
solid grid graphs. For both graph classes we will first identify
the reduction set for k-BALANCED PARTITIONING and then prove
the respective hardness result. The following lemma gives the
reduction set for trees, in which each graph is a star of stars as
shown in Figure 5.1. These have high degrees and hence cutting
off vertices is expensive in terms of the amount of used edges.

Lemma 5.4. Let ε ≥ 0 and α ≥ 1. For any 3-PARTITION

instance with integers a1 to a3k and threshold s, construct a
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tree that consists of 3k stars such that the number of vertices in
each star Hi is µai, where i ∈ {1, . . . , 3k} and µ = d3kα+ εne.
Moreover each centre vertex of a star Hi, for i ≥ 2, is connected
to the centre vertex of H1 through an edge. If they exist, these
trees form a reduction set for k-BALANCED PARTITIONING.

Proof. Note that the gadgets of each tree are connected by
g = 3k−1 edges. Using at most αg, i.e. less than 3kα, edges to cut
off vertices from a single star Hi will cut off less than 3kα leaves.
We can safely assume that ai ≥ 2 for each i ∈ {1, . . . , 3k} since
by s/4 < ai < s/2 the 3-PARTITION instance would otherwise
be trivial. Hence more than half the vertices of the star is still
connected to the centre vertex since each star contains at least
6kα vertices. Therefore a partition of the vertices of all gadgets
into k sets with cut size at most αg will in total produce less than
3kα minority vertices in the induced colouring. This establishes
the desired upper bound on the number of minority vertices for
the reduction set since 3kα ≤ µ− εn.

Using the above reduction set, in the following theorem4 we
show that it is NP-hard to approximate the cut size on trees
within any satisfying factor. Note that the trees in the reduction
set have diameter 4.

Theorem 5.5. There is no polynomial time algorithm for the
k-BALANCED PARTITIONING problem on trees that approximates
the cut size within α = nc for any constant c < 1, unless P=NP.
This is true even if the diameter of the tree is at most 4.

Proof. We need to show that a reduction set as proposed in
Lemma 5.4 exists in order to use it together with Lemma 5.3.
To prove the existence we show that the number of vertices
of a tree as suggested by Lemma 5.4 is finite and hence its
construction is feasible. Since the balance of the solution is not
to be approximated we set ε = 0 which means that µ = d3kαe.
We assume w.lo.g. that α ≥ 1 and hence µ ≤ 6kα. By letting

4An alternative proof to this theorem appears in [24] and the doctoral
thesis of Luca Foschini.
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α = nc the number of vertices is

n =

3k∑
i=1

µai ≤ 6k2snc.

Solving this inequality for n gives n ≤ (6k2s)
1

1−c which is finite
since c < 1. Additionally n is polynomial in the size of the
3-PARTITION instance since c is a constant and 3-PARTITION is
strongly NP-hard. By Lemma 5.3 a polynomial time algorithm
that computes a perfectly balanced partition on any tree given
by the reduction set and approximates the cut size within α
can decide the 3-PARTITION problem. Since the trees can be
constructed in polynomial time this gives a contradiction unless
P=NP, which concludes the proof.

Next we show that no satisfactory fully polynomial time
approximation algorithm exists that computes near-balanced
solutions.

Theorem 5.6. For the k-BALANCED PARTITIONING problem on
trees, unless P=NP there is no fully polynomial time algorithm
that for any ε > 0 computes a solution in which each of the k
sets has size at most (1 + ε)dn/ke and for which α = nc/εd, for
any constants c and d where c < 1. This is true even if the
diameter of the tree is at most 4.

Proof. In order to prove the claim we need to show that a
reduction set as suggested by Lemma 5.4 exists and can be
constructed in polynomial time. To prove the existence we show
that the number of vertices of a tree as suggested by Lemma 5.4
is finite and hence its construction is feasible. We assume w.l.o.g.
that α ≥ 1 and hence µ = d3kα+ εne ≤ 6kα + 2εn. Since the
algorithm can compute a near-balanced partition for any ε > 0
we set ε = (4ks)−1. Thus the number of vertices in a tree of the
reduction set is

n =

3k∑
i=1

µai ≤ 6k2sα+ 2ksεn = 6k2s(4ks)dnc + n/2.

Solving this inequality for n gives n ≤ (12k2s(4ks)d)
1

1−c which
is finite since c < 1. Additionally if c and d are constants, any
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Figure 5.2: The solid grid graph constructed for the reduction
from 3-PARTITION. The gadgets which are rectangular grids are
connected through the bottom left and right vertices.

tree in the reduction set can be constructed in polynomial time
since 3-PARTITION is strongly NP-hard. For ε = (4ks)−1 a fully
polynomial time algorithm has a runtime that is polynomial in
the 3-PARTITION instance when executed on the corresponding
tree in the reduction set. However, unless P=NP, this algorithm
cannot exist since it decides the 3-PARTITION problem due to
Lemma 5.3.

Lemma 5.4 shows that high degree vertices can lead to inap-
proximability results for the k-BALANCED PARTITIONING prob-
lem. Grid graphs do not have high degrees. Instead however, we
are able to harness their isoperimetric properties to gain similar
hardness results. We establish these by using a set of rectangular
grid graphs which are connected in a row (Figure 5.2). By a
rectangular grid graph we mean a solid grid graph with the
following properties. In its natural planar embedding for which
the vertices are coordinates in N2 and the edges have unit length,
the straight line edges touching the exterior face together form
an orthogonal rectangle. The width of a rectangular grid graph
is the number of vertices sharing the same y-coordinate in this
embedding. Accordingly the height is the number sharing the
same x-coordinate. We first prove that such topologies can be
used as reduction sets for k-BALANCED PARTITIONING.

Lemma 5.7. Let ε ≥ 0 and α ≥ 1. For any 3-PARTITION

instance, let a solid grid graph be given that consists of 3k
rectangular grids which are connected in a row using their lower
left and lower right vertices. Moreover let the height and width of
a rectangular grid Hi, where i ∈ {1, . . . 3k}, be

⌈√
(3kα)2 + εn

⌉
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and
⌈√

(3kα)2 + εn
⌉
ai, respectively. If they exist, these grid

graphs form a reduction set for k-BALANCED PARTITIONING.

Proof. Consider one of the described graphs G for a 3-PARTI-

TION instance, and notice that its gadgets are connected using
g = 3k − 1 edges. Since both the height and the width of
each rectangular grid Hi is greater than αg, using at most αg
edges it is not possible to cut across a gadget Hi, neither in
horizontal nor in vertical direction. Consider the polygon PHi

that can be constructed from Hi as described in Chapter 3 (cf.
Figure 3.3). Under the condition that the cut size must be
smaller than the height and the width of the rectangular polygon
PHi , the maximum area can be cut out from PHi by a square
shaped cut in one of its corners. This is due to the isoperimetric
properties [67] of PHi

. The size of the resulting cut out area
is an upper bound on the number of vertices that can be cut
out from Hi with the same cut size. This also follows from [54,
Lemma 2] in which the maximum number of vertices that can
be cut out from a grid graph using a fixed number of edges is
determined. Hence using at most αg edges, at most (αg/2)2

vertices can be cut out from Hi. This also means that in any
colouring induced by a partition of the vertices of the grid graph
G into k sets with cut size at most αg, there are at most (αg/2)2

minority vertices in total. Since the size of each gadget is its
height times its width, the parameter µ is greater than (αg)2+εn.
Hence the number of minority vertices is less than µ− εn.

The above topology is used with varying sizes of the gadgets
in order to prove the desired results. We first show that it is
NP-hard to approximate the cut size within any satisfying factor.

Theorem 5.8. There is no polynomial time algorithm for the
k-BALANCED PARTITIONING problem on solid grid graphs that
approximates the cut size within α = nc for any constant c < 1/2,
unless P=NP.

Proof. We need to show that a reduction set as proposed in
Lemma 5.7 exists in order to use it together with Lemma 5.3.
To prove the existence we show that the number of vertices
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of a grid as suggested by Lemma 5.7 is finite and hence its
construction is feasible. Since the balance of the solution is not
to be approximated we set ε = 0. The parameter µ is determined
by the height and width of the gadgets which in this case are
d3kαe and d3kαeai, respectively, for a gadget Hi. We assume
w.l.o.g. that α ≥ 1 which gives µ = d3kαe2 ≤ (6kα)2. The
number of vertices of the resulting grid is

n =

3k∑
i=1

µai ≤ (6knc)2ks.

Solving this inequality for n gives n ≤ (36k3s)
1

1−2c which is
finite if c < 1/2. Additionally it is polynomial in the size of the
3-PARTITION instance since c is a constant and 3-PARTITION is
strongly NP-hard. By Lemma 5.3 a polynomial time algorithm
that computes a perfectly balanced partition on any grid given
by the reduction set and approximates the cut size within α
can decide the 3-PARTITION problem. Since the grids can be
constructed in polynomial time this gives a contradiction unless
P=NP, which concludes the proof.

Finally we show that no fully polynomial time algorithm
exists that approximates the optimum cut size within any rea-
sonable factor for solid grid graphs.

Theorem 5.9. For the k-BALANCED PARTITIONING problem on
solid grid graphs, unless P=NP there is no fully polynomial time
algorithm that for any ε > 0 computes a solution in which each of
the k sets has size at most (1+ε)dn/ke and for which α = nc/εd,
for any constants c and d where c < 1/2.

Proof. Again, we prove the existence of the reduction set given
in Lemma 5.7 by showing that the number of vertices of a grid
suggested by the lemma is finite. Assuming w.l.o.g. that α ≥ 1 we
get

⌈√
(3kα)2 + εn

⌉
≤ 2

√
(3kα)2 + εn. Hence the parameter

µ, which is determined by the width and height of the gadgets,
is at most 4(3kα)2 + 4εn. We assume that a fully polynomial
algorithm exists which computes near-balanced partitions for
any ε > 0. Therefore we may set ε = (8ks)−1 which also means
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that the runtime of the algorithm is polynomial in the size of the
3-PARTITION instance, since 3-PARTITION is strongly NP-hard.
The number of vertices can be upper-bounded by

n =

3k∑
i=1

µai

≤ (4(3knc/εd)2 + 4εn)ks

= 36k3s(8ks)2dn2c + n/2.

Solving this inequality for n gives n ≤ (72k3s(8ks)2d)
1

1−2c which
is finite since c < 1/2. Also it is polynomial if c and d are
constants since 3-PARTITION is strongly NP-hard. Therefore the
algorithm can decide the 3-PARTITION problem in polynomial
time due to Lemma 5.3. This however is a contradiction unless
P=NP, which concludes the proof.

5.4 The Hardness for Constant
Degree Trees

We now consider the problem of finding a perfectly balanced
partition of a tree when the tree has constant degree. We will
show hardness results for this problem when the maximum degree
is 5 and when it is 7. The first reduction for maximum degree 7
is from the GAP-3-PARTITION problem. This is the 3-PARTI-

TION problem in which, for a given ρ, either all or at most a ρ
fraction of the integers can be partitioned into the desired triples.
Formally it is defined as follows.

Definition 5.10 (GAP-3-PARTITION). Let 3k integers a1 to a3k,
a threshold s, and ρ > 1 be given, such that s/4 < ai < s/2,∑3k
i=1 ai = ks, and the integers can either be partitioned into k

triples that sum up to exactly s or at most k/ρ of them. Decide
whether k or at most k/ρ such triples can be found.

There is a constant ρ > 1 such that the GAP-3-PARTITION

problem is NP-hard. This is true even if all integers are poly-
nomially bounded in k. These results follow from the original
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NP-hardness proof of 3-PARTITION by Garey and Johnson [30]
and the results by Petrank [56]. The latter result introduces a
constant sized gap for the 3D-MATCHING problem. By considering
the reductions given by Garey and Johnson from 3D-MATCHING to
3-PARTITION it can readily be seen that they are gap-preserving
(cf. [5]). Since these reductions also establish the strong NP-
hardness of 3-PARTITION, the GAP-3-PARTITION problem has
both claimed properties.

We show that the problem of finding a perfectly balanced
partition with minimum cut size of a tree is APX-hard even if
the maximum degree of the tree is at most 7. To prove this
result we use a gap-preserving reduction from GAP-3-PARTITION

in the following theorem.

Theorem 5.11. Unless P=NP, there exists a constant ρ such
that the k-BALANCED PARTITIONING problem on trees cannot be
approximated in polynomial time within α = 1 + (1− ρ−1)/24,
even if the maximum degree is at most 7.

Proof. Consider an instance I of GAP-3-PARTITION with poly-
nomially bounded integers that are divisible by 12. Obviously
all hardness properties are preserved by this restriction since
GAP-3-PARTITION is strongly NP-hard and we may multiply
each integer and the threshold parameter of an arbitrary in-
stance by 12. As a consequence all integers are divisible by 4
and s > 20, which will become important later in the proof. For
each ai in I, construct a gadget Hi composed by a path on ai
vertices (called an ai-path) connected to the root of a tree on s
vertices (referred to as an s-tree). The root of the s-tree branches
into four paths, three of them with s/4 vertices each, and one
with s/4− 1 vertices. Additionally the roots of the s-trees are
connected in a path, as shown in Figure 5.3. We define Y to be
the set of edges connecting different His and X the set of edges
connecting an ai-path with the corresponding s-tree in each Hi.

At a high level, we set out to prove that if all k integers in I
can be partitioned into triples that sum up to exactly s, then
the constructed tree T can be split into 4k parts of a perfectly
balanced partition with cut size 6k − 1. If however at most
k/ρ such triples can be found, T requires at least (1− ρ−1)k/4
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Figure 5.3: Construction for Theorem 5.11. Each gadget Hi is
composed by an ai-path connected to the root of an s-tree through
an edge from X (grey). Each s-tree branches into four paths of
(almost) the same length. Two adjacent gadgets in a path are
connected through the roots of their s-trees with an edge from Y
(dashed).

additional cut edges. This means that an algorithm computing

an approximation within a factor smaller than 6k−1+(1−ρ−1)k/4
6k−1 of

the optimum cut size, can decide the GAP-3-PARTITION problem.
Since the ratio 1 + (1− ρ−1)/24 is smaller, the theorem follows.

It is easy to see that if all k integers of I can be partitioned
into triples of size exactly s, cutting exactly the 6k − 1 edges in
X and Y suffices to create a valid perfectly balanced partition
into 4k parts.

It remains to be shown that (1−ρ−1)k/4 additional edges are
required when the integers in I can be partitioned into at most
k/ρ triples of size exactly s. Let in this case Z∗ be an optimal
set of edges that cuts T into 4k parts of a perfectly balanced
partition. We argue that by incrementally repositioning cut
edges from the set Z := Z∗ \ (X ∪ Y ) to edges in (X ∪ Y ) \ Z∗,
eventually all the edges in X ∪ Y will be cut. However, the
following lemma implies that a constant fraction of the edges
initially in Z will not be moved. We will then argue that the
more triples of I can not be packed into triples of size s, the
more edges are left in Z. Thus the more edges must additionally
have been in Z compared to those in X ∪ Y . We rely on the
following technical lemma which we will prove later.

Lemma 5.12. If s > 20 then |Z| ≥ 2|(X ∪ Y ) \ Z∗|.
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Consider the following algorithm A which repositions cut
edges from a perfectly balanced partition into 4k parts. As long
as there is an uncut edge e ∈ X ∪ Y , A removes any cut edge
left in Z and cuts e instead. At the end of the process, when
all edges in X ∪ Y are cut, A removes the set of cut edges still
left in Z denoted by Z ′. Then |Z ′| is the number of additional
edges cut in the case at most k/ρ triples that sum up to exactly
s can be formed from the integers. When repositioning a cut
edge from Z to X ∪ Y , or when removing the edges in Z ′, A
modifies the sizes of the sets in the partition induced by the cut
set, and the balance might be lost. In particular, when a cut
edge e ∈ Z is removed, the algorithm will join the two connected
components induced by the cut set and incident to e to form
a single component. The algorithm will then include it in an
arbitrary one of the sets that contained the two components.
This changes the sizes of at most two sets in the partition. When
a new cut is introduced by A, a component is split into two and
the two newly created components are retained in the same set,
thus no set size is changed.

By Lemma 5.12 there are at least as many edges in Z ′, as
there are edges that are repositioned from Z to X ∪ Y . Since
each edge from Z repositioned by A causes at most two changes
in set sizes, the total number of set size changes performed by
A is at most 4|Z ′|.

When A terminates only edges from X ∪ Y are cut. There-
fore the remaining connected components correspond to the 3k
integers ai of I and 3k integers of size s. The integers in I can
be partitioned into at most k/ρ triples of size exactly s. Hence
at least (1− ρ−1)k of the sets of the resulting partition do not
have size exactly s. This means that A must have changed the
size of at least (1 − ρ−1)k sets, since it converted a perfectly
balanced partition of T into a solution to GAP-3-PARTITION with
at least (1 − ρ−1)k unbalanced sets. This finally implies that
4|Z ′| ≥ (1− ρ−1)k, which concludes the proof since |Z ′| is the
number of additional cuts required.

To complete the above proof we still need to prove the tech-
nical lemma.
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Figure 5.4: Part of the construction of Lemma 5.12 with com-
ponents W and T ′ highlighted

Proof of Lemma 5.12. The crucial observation leading to the
claim is that in any perfectly balanced partition of T into 4k
parts, after removing the edges in Z∗ from T every connected
component has size at most s. We distinguish two cases. First
consider an edge e ∈ X \ Z∗ such that all its adjacent edges in
Y are also in Z∗. Let Hi be the gadget in which e is contained.
The tree Hi has a total size of s+ ai. Since ai > s/4 and each
branch of the s-tree in Hi has at most s/4 vertices, there must be
at least two edges from Z in Hi in order to cut away ai vertices.

Otherwise consider a connected component W that contains
uncut edges from (X ∪ Y ) \Z∗. Let X ′ and Y ′ denote the edges
in W from X and Y , respectively. Notice that |Y ′| ≥ 1 since the
other case was considered above. Let T ′ be the subtree of T that
results by extending W with all the ai-paths incident to an edge
in X ′ and all the s-trees incident to an edge in Y ′ (see Figure 5.4).
Each branch of an s-tree and each ai-path in T ′ has at least
s/4− 1 vertices. As s > 20, if at least 5 branches of s-trees or
ai-paths were fully included in W (before the extension to T ′)
this connected component would contain more than s vertices.
This is a contradiction since every connected component has size
at most s. Therefore there are at most 4 such included branches.
The branches that are not fully included in W but in T ′, each
contain an edge from Z. Since T ′ contains at least 4(|Y ′|+ 1)
s-tree branches and |X ′| ai-paths, we can conclude that the
number of edges from Z in T ′ is at least |X ′| + 4|Y ′|. Notice
that |Y ′| ≥ |X ′| − 1 since otherwise W would be disconnected.
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Figure 5.5: Construction for Theorem 5.13. The used trees
are almost the same as for Theorem 5.11 (Figure 5.3). The only
difference is that the gadgets are connected in a path through one
of their leaves instead of their roots.

Using the fact that |Y ′| ≥ 1 we obtain

|X ′|+ 4|Y ′| ≥ 2|X ′| − 1 + 3|Y ′| ≥ 2|X ′ ∪ Y ′|.

This proves our claim for the tree T ′. Since the gadgets in
any possible T ′ and the gadgets considered in the first case are
pairwise disjoint, this concludes the proof.

Using similar ideas as in the above proof, if we restrict the
degree to be at most 5 we can still show that the problem remains
NP-hard. For this we use a reduction from 3-PARTITION together
with a slightly different construction than the one shown in
Figure 5.3. Instead of connecting the s-trees through their roots,
the Y edges connect the leaves of the shortest branches of the
s-trees (Figure 5.5). Connecting the gadgets through the leaves
will only guarantee one additional cut edge if the 3-PARTITION

instance is not solvable. This is why this construction can not
be used for the APX-hardness proof above, in which more edges
were needed to be cut the less triples could be formed from the
integers.

However for the trees as shown in Figure 5.5 it is possible
to show that exactly the 6k − 1 edges in X and Y are cut if all
k integers in I can be partitioned into triples of size exactly s,
while otherwise at least 6k edges are cut. Since the 3-PARTI-

TION problem is strongly NP-hard this suffices to establish the
following result, of which the proof can be found in the doctoral
thesis of Luca Foschini.
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Theorem 5.13. The k-BALANCED PARTITIONING problem on
trees has no polynomial time algorithm even if the maximum
degree is at most 5, unless P=NP.

5.5 Tightness of the Hardness Results

We presented a reduction framework which establishes the hard-
ness of the k-BALANCED PARTITIONING problem for various graph
classes. We specifically considered solid grid graphs and trees.
For these we showed inapproximability results when perfectly
balanced solutions are desired. Also we showed that, unless
P=NP, there are no fast approximation algorithms that com-
pute near-balanced partitions for arbitrary ε > 0. This is true
even if the cut size may deviate from the optimum the more
stringent the bound on the set sizes given by ε is. The latter
bicriteria inapproximability proof was also considered for general
graphs. These gave the first hardness results of this sort for
the k-BALANCED PARTITIONING problem. At the same time we
strengthened the known results for general graphs.

To meet the conditions identified by the reduction framework,
we relied on the isoperimetric properties of grid graphs in order to
show that a limited amount of edges can only cut off a bounded
number of vertices. For trees we were able to harness high
vertex degrees in order to meet the required conditions. This
shows that even though trees and grid graphs have very different
characteristics, their complexity with respect to the k-BALANCED
PARTITIONING problem is similar. At the same time, by covering
combinatorially simple but dissimilar graph classes, the ability
of the framework to capture a fundamental trait of the problem
is demonstrated. It remains to apply the framework to other
graph classes that do neither share the isoperimetric properties
of grids, nor the high vertex degrees of trees. One additional
graph class that can be considered, but naturally shares the same
respective properties with solid graph graphs, are simple shaped
grid graphs containing holes. It is easy to see though, that for
instance rectangular grid graphs having rectangular holes share
the same hardness with solid grids. This can be established by
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adding the respective edges that connect the upper left and right
vertices of the gadgets in Figure 5.2 and slightly adapting the
involved parameters.

All the hardness results derived in the first part of this chapter
are asymptotically tight. For trees with arbitrary degrees this
can be seen by considering a trivial approximation algorithm
that simply cuts all edges and then greedily puts the vertices into
sets of size at most dn/ke. Since a tree is connected and thus the
optimum must cut at least one edge, this means that the cut size
is approximated within a factor of n. Note that this algorithm
shows the tightness of both Theorems 5.5 and 5.6, since for the
latter it constitutes a fully polynomial time algorithm and a
perfectly balanced partition is also near-balanced.

For connected grid graphs we can devise an approximation
algorithm that computes perfectly balanced partitions using
a greedy scheme similar to that used by MacGregor [47] for
trees (cf. Section 5.1.2). We use Theorem 2.7 which says that
any number of vertices can be cut from a grid graph using at
most O(

√
n) edges. In fact it is possible to devise a polynomial

time algorithm that does this (cf. [18]). Hence we can greedily
cut out the parts of a perfectly balanced partition repeatedly,
using at most O(k

√
n) edges in total. The optimal perfectly

balanced solution has at least n
dn/ke > k/2 parts. Since the

number of parts is integer and we assume the given grid graph to
be connected, the optimal cut size is at least k/2. Therefore the
approximation ratio of this algorithm is O(

√
n), which shows

the asymptotic tightness of both Theorems 5.8 and 5.9.

In addition to using the reduction framework we considered
constant degree trees and showed that the complexity of the
k-BALANCED PARTITIONING problem increases with the degree
(Figure5 5.6). For trees of maximum degree 2, i.e. paths, the
problem is trivial, while if the degree is 5 it becomes NP-hard.
For degree 7 it is already hard to approximate within some
constant, whereas for arbitrary degrees no approximation exists
that is reasonable for practical applications. It remains open
to generalise our results to show a tighter dependency of the

5This Figure can also be found in the doctoral thesis of Luca Foschini.
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NP-hard for

Figure 5.6: The complexity results derived in this chapter for
trees (big dots), depending on their maximum degree ∆. The
hardness results are contrasted with the approximation algorithm
by MacGregor [47]. For constant degree trees this algorithm
entails a logarithmic gap between the complexity bounds.

hardness on the maximum degree ∆. In addition, the possibility
of an approximation algorithm for perfectly balanced partitions
with a better ratio than α ∈ O(∆ log∆(n/k)), as provided by the
greedy scheme of MacGregor [47], remains open. In particular,
for constant degree trees this algorithm gives a logarithmic
approximation on the cut size. At the same time Theorem 5.11
does not rule out an algorithm that approximates the cut size by
the factor α = 25/24 if ∆ ≤ 7. It also remains an open problem
to determine the hardness of the problem when ∆ equals 3 or 4.
In particular it is not even known whether optimum solutions
can be computed in polynomial time for perfect binary trees.
Note however that the latter problem defines a sparse language
since there is only one such tree per input length. As a result
this means [50] that the problem on perfect binary trees can not
be NP-hard, unless P=NP.
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Chapter 6

Quo Vadis?

Throughout this thesis our aim was to give a theoretical foun-
dation to understand the k-BALANCED PARTITIONING problem,
with the practical application of distributing data in parallel-
computing as background. Therefore we considered special cases
of this problem that were tailored to represent practical needs
as precisely as possible. In particular we modelled the graphs
encountered in FEM simulations as grid graphs, and we were
not satisfied with algorithms that were too slow or gave insuf-
ficient approximation guarantees. We explored how runtimes
and approximation ratios can be traded for one another, and
where the limits of finding such tradeoffs lie. Approaching the
problem in these ways, it became apparent how its complexity
boundaries depend on these tradeoffs.

For the special case when k = 2 (the BISECTION problem) the
runtime can be traded for the solution quality. Even though we
showed how the optimum on solid grid graphs can be computed
in O(n4) time, we also found much faster algorithms computing
good bicriteria approximations in O(n1.5) time. The two criteria
we considered are the balance of the set sizes and the cut size. For
general k the runtime can also be traded for the solution quality,
and furthermore this is necessary. When allowing the partitions
to be a factor of 2 from perfectly balanced, we improved the

181
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runtime for solid grids by allowing more edges to be cut. In
particular it is known that the cut size can be approximated
within a constant factor in Õ(n3) time, or Õ(n2) expected time.

We improved the runtime to Õ(n1.5) by allowing a logarithmic
approximation ratio on the cut size. We further considered
computing near-balanced partitions for arbitrary ε > 0, and
showed that this can be achieved by allowing the runtime to
increase when the limit on the balance becomes more stringent.
However we also showed that the cut size does not need to
increase at the same time. Furthermore we proved that it is
not possible to trade the limit on the balance with the cut size,
without also significantly increasing the runtime. Therefore the
tradeoff between fast runtime and small set sizes is necessary.

Surprisingly often the above results for grid graphs were
accompanied by results for trees, despite the fact that trees are
very different from grids from a combinatorial point of view.
On one hand, algorithms for trees were often the key to finding
methods for grid graphs. On the other hand, the hardness of
k-BALANCED PARTITIONING for trees gave an interesting contrast
to the hardness for solid grids. Figure 6.1 summarises the best
approximation factors achievable for both graph classes. For
perfectly balanced solutions trees are harder to solve than grids,
as witnessed by the results in Chapter 5. For near-balanced
partitions however, the fact that trees do not have cycles makes
it easier to devise approximations algorithms for them. This is
capitalised in the dynamic program presented in Chapter 4.

Especially our bicriteria inapproximability results seem to
suggest that no satisfying algorithms can be found, even for
such simple graph classes as solid grid graphs or trees. Are
the insights gained in this thesis, together with the related
results, therefore all there is to say about the considered problem?
In the following, we will summarise some possible ways how
to circumvent the complexity results. For instance they do
not rule out the existence of randomised algorithms that will
perform well most of the times. Also it is not clear how the
problem behaves on random inputs. That is, it may be possible
that on a random graph the problem is considerably easier.
Another alternative could be to examine k-BALANCED PARTI-
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Figure 6.1: Illustrations of best approximation factor α known
against k and ε, for solid grid graphs (top) and trees (bottom).
The plane (α, k) represents the case of perfectly balanced solutions.
Here trees can be solved with better approximation quality than
grids. For near-balanced partitions trees are better solvable.
( 1 follows from [27], 2 from [20, 40], and 3 from [47]. All other
results are proved in this thesis.)
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TIONING from a smoothed analysis point of view. It may be
that the hard instances of the problem are isolated and therefore
will hardly ever turn up in practical applications. Yet another
possibility is to analyse the problem from a fixed parameter
tractability point of view. That is, possibly there exists some
parameter of the input for which a polynomial time algorithm
can be found if the parameter is fixed to a constant. The only
result known in this direction is for bounded tree-width graphs
(cf. Section 4.4).

Alternatively a different model of the input instances could
be chosen altogether. One possibility would be to consider
graphs in which the optimal solution is guaranteed to consist
of connected parts. This is justified by the observation that
real-world instances typically do not encounter the “bottleneck”
structure that the graphs used in our hardness proofs have. That
is, they do not contain big components such as those acting as
gadgets in the reductions, which are connected by only very few
edges. Also the heuristics that are used to solve the problem
in practice often compute solutions in which all cut out parts
are connected. In general however the problem of finding a
solution in which all parts are connected is not well-defined.
Note that when considering bisections in planar graphs this
condition means that the optimum consists of a single segment.
There are for instance graphs in which a bisection cut out by a
single segment does not exist (Figure 6.2).

In case it is guaranteed that for a given graph both parts of
the optimal bisection are connected components, then for solid
grid graphs the observations given in Chapter 2 can be used to
compute an optimum solution in O(n2) time. This is because
according to Lemma 2.10 (page 30) all relevant segments can be
enumerated in this time. Unfortunately the observations on near-
optimal corner cuts from Chapter 3 can not be used to compute
approximations in linear time by only considering straight and
corner segments. This is because there are grid graphs in which
any single such segment is an unsatisfying approximation for the
optimum bisection (Figure 6.3).

Interestingly, for trees and arbitrary k the problem becomes
trivial when all parts are connected in an optimum solution.
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Figure 6.2: A graph, which is a tree and a solid grid graph,
in which no bisection has two connected parts. Note that the
middle vertex must be contained in one of the parts. This makes
it impossible for the other part to be connected because of the
sizes of the spokes.

Figure 6.3: A grid graph in which the optimum bisection
(dashed line) has cut size Θ(n1/4). It is easy to see that any
single straight segment contains Ω(

√
n) edges. At the same time

any single corner segment either has length Ω(
√
n) or cuts out

at least n/2 + Ω(
√
n) vertices.
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A simple algorithm repeatedly cutting off the largest subtree
of size at most dn/ke will find the optimum in this case. This
observation means that for trees the complexity of the k-BAL-
ANCED PARTITIONING problem results from the fact that it is
hard to combine cut out components into parts. That this aspect
of the problem is hard is not surprising since it corresponds to
the NP-hard BIN PACKING problem [30]. By demanding that all
parts are connected in an optimal solution the packing aspect of
the problem is omitted. However for general graphs it remains
unclear how this helps in deciding which edges to cut. Also for
solid grid graphs it remains an open problem whether this helps
algorithmically. Possibly, at least good approximations exist in
this case.

Thus, there still seem to be possibilities to find algorithms
with provably satisfying properties. Especially randomised
schemes, fixed parameter algorithms, or even stricter assump-
tions on the inputs may provide algorithms that solve the prob-
lem contently. On the other hand, our hardness results entail
that for arbitrary k it remains unexplained how deterministic
methods can produce satisfying results. This is particularly true
for graphs resulting from FEM simulations since we chose solid
grid graphs as models, and these have a simpler structure than
the graphs arising in practice. This is because solid grid graphs
form a subclass of the (possibly) irregular three-dimensional
topologies containing holes, that can be found in real-world
applications.
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Glossary

Graphs

G graph or grid graph
v, w, u vertices
V set of vertices
n number of vertices in a graph
e edge
ω edge weight
E,X, Y, Z sets of edges
T tree
r root of a tree
l number of leaves in a tree
D dual graph
f face
p, q paths
∆ maximum degree
W connected component
x size of a connected component
W set of connected components
W set of sets of connected components

Partitions and Cuts in Graphs

V vertex partition
L leaf partition
k number of parts in a partition

195



196 Glossary

m number of cut out vertices
A,B, P, P parts
P set of parts
C cut size
s, t, u, r segments
b bar segment
f bend
S, T sets of segments
T segment family
S all relevant segments of a solid grid graph
C straight and corner segments

Polygons

P,Q,D ,L ,X ,Y polygons and sub-polygons

C ,V ,V corridor and parts of corridors
R rectangle
S square
T tail
Z visible area from a line
β, γ boundaries
p, q, r points
P set of points
a, b, d sizes of areas
h height
w width
x, y coordinates
z coordinate offset
Q set of unit squares
U set of unit length lines
I, J,K intervals on axes

Cuts in Polygons

m size of cut out area

A ,B,C ,C parts in a polygon
C cut size
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λ, µ, δ, ρ, σ, τ lines
L,M,K sets of lines
Λ,∆,Ξ virtual lines
l length

Algorithms

A algorithm
α approximation factor on the cut size
ε approximation factor on the balance
β approximation factor
K IFS covering set
b balance of an edge separator
d difference between balances
µ maximum size of a part
~g signature
~e unit vector
σ number of signatures
t runtime parameter & size of signature
τ number of execution steps
L set of vertices in subtrees
N number of vertices in subtrees
F lower frontier
I instance
e element of bin packing instance
ϑ number of bins
λ weight of decomposition tree

Reductions

ρ constant approximation factor
s threshold
ai integer
I set of integers
I set of sets of integers
H gadget
g number of edges connecting gadgets
µ parameter determining the size of a gadget
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Miscellaneous

c, d constants
i, j, l, r indices
I, J sets of indices
π polynomial
f, ϕ functions



Index

approximation, 5
bicriteria, 5

APX-hard, 9

b-separator, 122
optimal, 122

bar, 17
broken, 17
horizontal, 32
line, see line,bar
vertical, 32

bend, 17
consecutive, 17

bisection, 12
width, 12

boundary point, 55
break, 17, 19, 108

concave, 19, 60
convex, 19, 60
corner

concave, 79
of a corner line, 56
of a rectangular line, 58
of a virtual corner line, 68
of a virtual pseudo-corner

line, 108
corridor, 97
curve, 54

of a tail, 91
segment, 55

cut, 13, 54

guillotine, 48
sparsest, 118
width, 23

cut cost, 138
of a leaf partition, 150

cut size
of a partition, 3
of an m-cut, 16, 55

cutting out, 16

decomposition tree, 150
deficit, 62
defining rectangle, 58
dense graph, 52
diameter, 157
dual graph, 12

end at, 17

FEM, 1
fully polynomial time, 158

gadget, 162
grid graph, 4

rectangular, 168
solid, 4

hole, 4

IFS, 26
covering set, 27

leaf partition, 150
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left of, 143
leftmost, 143
length, 54, 68, 74

horizontal, 69
vertical, 69

line
bar, 55

horizontal, 55
vertical, 55

corner, 56
crossing, 58
grid, 97
overlap, 58
rectangular, 58
staircase, 57
straight, 56

lower frontier, 143

m-cut, 16, 55
corner, 24, 55
non-crossing, 25, 58
optimal, 16, 55
restricted, 24

majority colour, 164
min-convolution, 15, 28
minority vertex, 162

orientation, 57

part, 3
A- and B-, 16
A - and B-, 58

partition, 3
near-balanced, 51
perfectly balanced, 51

pointing in a direction, 17, 56
common, 17
opposing, 17

polygon, 54
orthogonal, 54
simple, 54

predecessor, 143
problem

3-PARTITION, 161
3D-MATCHING, 172
BIN PACKING, 147, 186
BISECTION, 12
EDGE SEPARATOR, 50
GAP-3-PARTITION, 171
k-BALANCED PARTITIONING,

3
MAXIMUM MATCHING, 141
OBLIVIOUS ROUTING, 153
SPARSEST CUT, 50

PTAS, 7

reduction set, 163
rightmost, 143

segment, 13
clamp, 18
corner, 17
square, 18
stair, 17
straight, 17

signature, 142
sparsity, 118
surplus, 62

tail, 91
small, 91
tiny, 113

tree-width, 4

virtual line
corner, 68
pseudo-corner, 108
staircase, 74
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