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Abstract

The classical way to measure the performance of an algorithm is to consider its worst-case

performance. However, in practice this performance measure is often overly pessimistic. This

stems from the fact that the worst-case analysis is frequently based on few inputs, which might

have a quite artificial structure that does not (or seldom) appear as part of a "typical" input

instance.

A natural alternative is to consider the average-case performance of an algorithm, that is, we

analyse the performance of an algorithm assuming that the input instances are drawn from

all possible instances according to a given probability distribution. In order to analyse the

average-case performance of an algorithm and to design algorithms with better average-case

performance, it is crucial to understand the properties of a "typical" input instance.

In many real-world scenarios - for example in chip manufacturing and drawing of diagrams -

one has to deal with algorithms that take graphs with structural constraints, such as planar

graphs, as input. Investigating properties of such constrained graph classes and developing

new tools and methods, which help to cope with the difficulty of the dependence of the edges,

are central to advance the state of the art in this area of research.

In this thesis, we focus on such constrained graph classes, namely planar graphs with given

average degree, cactus graphs, block graphs, and (maximal) 1^3-minor-free graphs. We are

interested to prove that graphs on n nodes, drawn uniformly at random from the set of

all graphs on n nodes of a class with structural constraints, have specific properties with

high probability (w.h.p., i.e., with probability tending to 1 as n —> 00). We apply different

techniques and provide a new method to obtain results about several graph classes with

structural constraints.

Our first result is about planar graphs. Planar graphs are well-known and well-studied

combinatorial objects in graph theory. Roughly speaking, a graph is planar if it can be

drawn in the plane in such a way that no two edges cross. A random planar graph Rn is

drawn uniformly at random from the set V(ri) of all simple labelled planar graphs on the node

set {1,... ,n}. Here we consider planar graphs with given average degree. More precisely,

we are interested in properties of a random planar graph Rntq which is drawn uniformly at

random from the class V(n, [qn\) of simple labelled planar graphs with n nodes and [qn\

edges, where 1 < q < 3 and the average degree is about 2q.

We exploit proof techniques of McDiarmid, Steger, and Welsh [MSW05, MSW06], to show

that for all 1 < q < 3 the random planar graph Rntq has properties similar to those of a random

planar graph Rn. For example, we show that Rn^q contains w.h.p. linearly many nodes of

each given degree and linearly many node disjoint copies of each given fixed connected planar
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graph. Additionally, we investigate the number of automorphisms and we give lower bounds

on the maximum node degree and the maximum face size of any plane embedding. We also

study the relation between the growth constants of labelled and unlabelled planar graphs

with given average degree.

Some of these results were strengthened and many additional results about planar graphs

were shown by Giménez and Noy [GN05b] using a completely different approach. We also

show how our work relates to these newer results.

A key tool of the method is to show that (\V(n, Yqn\)\/n}?jl/n tends to a limit 7(g) as n tends

to infinity. We also study the behaviour of this function in more detail. In particular we

consider 7(g) as q approaches 1 from below and above and 3 from below, and explain the

discontinuity as we approach 1 from below by changing scale appropriately.

In our second result we use a new method based on Boltzmann samplers [DFLS04] to

investigate two moderately complex graph classes with constraints, namely cactus and block

graph. A cactus graph is a labelled connected graph, in which each edge is contained in at

most one cycle; and a block graph is a labelled connected graph, whose maximal biconnected

blocks are cliques.

Additionally, exploiting the (more classical) generating function framework, we asymptoti¬

cally enumerate the graphs in both classes, derive limit laws for the number of edges, and

explore several other properties. Finally, we show how these results can be applied to straight¬

forwardly derive the average-case complexity of two longest path algorithms for both graph

classes.

The new approach may be used to investigate properties of "typical" members of constrained

graph classes, which seem to be inherently difficult to handle with the analytic combinatorics

approach, for instance properties which cannot be directly addressed with (a finite number of)

parameters of the generating functions, such as the maximum node degree, or the maximum

size of a biconnected block.

Our last result concerns simple labelled A^-minor-free and maximal A^-minor-free graphs,

where maximal means that adding any edge to such a graph yields a A^-minor.

We apply generating function techniques to obtain asymptotic estimates for the number of

(maximal) A^-minor-free graphs. For A^-minor-free graphs we consider 3-connected, 2-

connected, connected and not necessarily connected graphs. We also derive limit laws for

several parameters.

Due to Kuratowski's theorem [Kur30] planar graphs are 1^3,3- and ^-minor-free. Hence,

the class of planar graphs is contained in the class of 1^3-minor-free graphs. Due to Wagner's

theorem [Wag37] the class of triangulations (with the exception of all triangulations on 5

nodes) is contained in the class of maximal A^-minor-free graphs. Determining the number

(of graphs of sub-classes) of planar graphs has attracted considerable attention [BGW02,

GN04, GN05b, BGKN05, BLMK] in recent years. Giménez and Noy [GN05b] obtained

precise asymptotic estimates for the number of planar graphs. The asymptotic number of

triangulations was given by Tutte [Tut62] already in 1962. Investigating how much the
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number of planar graphs (triangulations) differs from (maximal) A^-minor-free graphs is a

first important step in examining how "typical" instances of these graph classes will differ.

For 3-connected A^-minor-free graphs, the change from planar graphs can be easily de¬

scribed: it follows from a theorem of Wagner [Wag37] that the set of 3-connected 1^3,3-

minor-free graphs consists of all 3-connected planar graphs and the complete graph on 5

nodes. Thus, on this connectivity level our graph class differs only in the existence of one ad¬

ditional graph from planar graphs. But as we shall show, adding K$ to the set of 3-connected

graphs yields a slightly larger exponential growth rate for 2-connected, connected, and not

necessarily connected A^-minor-free graphs. It also slightly changes other parameters, for

instance the expected number of edges in a random A^-minor-free graph. For maximal

1^3-minor-free graphs the growth rate also increases slightly compared to triangulations.

To establish these results for 1^3-minor-free graphs, we follow the approach taken for planar

graphs [BGW02, GN05b], i.e., we follow a well-known decomposition along the connec¬

tivity structure of a graph and translate this decomposition into relations of our generating

functions. This is possible as the decomposition for 1^3-mmor-free graphs, which is due

to Wagner [Wag37], fits well into this framework. For maximal A^-minor-free graphs the

situation is different, as the decomposition, which is again due to Wagner, has further con¬

straints. The functional equations for the generating functions of edge-rooted maximal graphs

are easy to obtain but in order to go to unrooted graphs, special integration techniques based

on rational parametrisation of rational curves are needed.





Zusammenfassung

Die klassische Art die Güte eines Algorithmus zu messen, ist seine Worst-case Performance zu

betrachten. In der Praxis zeigt sich jedoch, dass dieses Gütemaß oft übermäßig pessimistisch

ist. Der Hauptgrund dafür ist, dass die Worst-case Analyse häufig auf wenigen Eingaben

beruht, die eine sehr künstliche Struktur besitzen, welche nicht (oder nur selten) in einer

„typischen" Eingabeinstanz auftritt.

Eine natürliche Alternative stellt die Average-case Analyse dar. Dabei wird die Güte eines

Algorithmus unter der Annahme analysiert, dass die Eingabeinstanzen zufällig aus allen

möglichen Instanzen entsprechend einer gegebenen Wahrscheinlichkeitsverteilung gezogen

werden. Für die Average-case Analyse von Algorithmen und die Entwicklung von Algorith¬

men mit besserer Average-case Güte ist es entscheidend, zu verstehen, welche Eigenschaften

„typische" Eingabeinstanzen besitzen.

In vielen praktischen Anwendungen - zum Beispiel im Bereich der Chipherstellung und beim

Zeichnen von Diagrammen - beschäftigt man sich mit Algorithmen, die Graphen mit struktu¬

rellen Einschränkungen, wie z.B. planare Graphen, als Eingabe entgegennehmen. Die Unter¬

suchung von Eigenschaften solcher Graphklassen mit strukturellen Einschränkungen, sowie

die Entwicklung neuer Werkzeuge und Methoden, die helfen die Schwierigkeiten, die durch

die Abhängigkeit der Kanten entstehen, zu überwinden oder zu umgehen, sind von zentraler

Bedeutung für den Fortschritt in diesem Bereich der Forschung.

In dieser Arbeit konzentrieren wir uns auf solche Graphklassen mit strukturellen Einschränkun¬

gen und zwar auf planare Graphen mit gegebenem Durchschnittsgrad, Kaktusgraphen, Block¬

graphen und (maximale) 1^3-Minor-freie Graphen. Wir werden beweisen, dass ein Graph

auf n Knoten, der zufällig und gleichverteilt aus allen Graphen auf n Knoten einer Graph¬

klasse mit strukturellen Einschränkungen gezogen wird, bestimmte Eigenschaften mit hoher

Wahrscheinlichkeit (d.h. mit Wahrscheinlichkeit gegen 1 strebend für n —> 00) hat. Wir

wenden verschiedene Beweistechniken an und stellen eine neue Methode zur Verfügung, um

Resultate über mehrere Graphklassen mit strukturellen Einschränkungen zu erhalten.

In unserem ersten Resultat betrachten wir planare Graphen. Planare Graphen sind kombi¬

natorische Objekte, die in der Graphentheorie seit langem intensiv untersucht werden. Grob

gesprochen ist ein Graph planar, wenn er in der Ebene gezeichnet werden kann, ohne dass

sich zwei Kanten kreuzen. Ein zufälliger planarer Graph Rn wird zufällig und gleichverteilt

aus der Menge V(ri) aller einfachen nummerierten planaren Graphen auf der Knotenmenge

{1,... ,n} gezogen. Hier betrachten wir planare Graphen mit gegebenem Durchschnittsgrad.

Genauer interessieren wir uns für Eigenschaften eines zufälligen planaren Graphen Rn,q, der

zufällig und gleichverteilt aus der Klasse V(n, \_qn\) aller einfachen nummerierten planaren

XI
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Graphen auf n Knoten mit [qn\ Kanten gezogen wird, wobei 1 < q < 3 und der Durch¬

schnittsgrad ungefähr 2q ist.

Wir nutzen Beweistechniken von McDiarmid, Steger und Welsh [MSW05, MSW06], um

für alle 1 < q < 3 zu zeigen, dass der zufällige planare Graph Kn^q ähnliche Eigenschaften

hat wie der zufällige planare Graph Rn. So zeigen wir unter anderem, dass Rn,q mit ho¬

her Wahrscheinlichkeit linear viele Knoten von jedem festen gegebenen Grad und linear

viele knotendisjunkte Kopien jedes festen zusammenhängenden planaren Graphen enthält.

Desweiteren untersuchen wir die Anzahl der Automorphismen. Außerdem geben wir untere

Schranken für den maximalen Knotengrad und die maximale Größe eines Gebiets in jeder

planaren Einbettung an. Zudem untersuchen wir die Beziehung zwischen der Wachstums¬

konstante von nummerierten und nicht nummerierten planaren Graphen mit gegebenem

Durchschnittsgrad.

Giménez and Noy [GN05b] haben einige dieser Resultate verstärkt und neue Ergebnisse

gezeigt, wobei sie einen gänzlich anderer Ansatz verwendet haben. Wir zeigen auch auf,

welcher Bezug zwischen unserer Arbeit und diesen neueren Resultaten besteht.

Wesentlich ist bei der verwendeten Methode, zu zeigen, dass (\V(n, \_qn\)\/n\)l/n für n gegen

unendlich gegen einen Grenzwert 7(g) strebt. Wir untersuchen das Verhalten dieser Funktion

im Detail. Insbesondere betrachten wir 7(g) für q gegen 1 von unten und gegen 3 von oben

strebend und erklären die Diskontinuität, wenn wir uns 1 von unten nähern, indem wir die

Skalierung entsprechend anpassen.

In unserem zweiten Resultat verwenden wir eine neue Methode basierend auf Boltzmann

Samplern [DFLS04], um zwei komplexere Graphklassen mit strukturellen Einschränkungen

zu untersuchen und zwar Kaktus- und Blockgraphen. Ein Kaktusgraph ist ein nummerierter

zusammenhängender Graph, in dem jede Kante in höchstens einem Kreis enthalten ist und

ein Blockgraph ist ein nummerierter zusammenhängender Graph, in dem jeder maximale

zweifach zusammenhängende Block eine Clique ist.

Außerdem zählen wir asymptotisch, unter Verwendung des (klassischen) Ansatzes mit erzeu¬

genden Funktionen, die Graphen beider Klassen, leiten ein Grenzwertgesetz für die Anzahl

Kanten her und untersuchen mehrere andere Eigenschaften. Zuletzt zeigen wir, wie diese

Resultate angewendet werden können, um in direkter Weise die Average-case Komplexität

zweier Längste-Pfade Algorithmen für beide Klassen herzuleiten.

Der neue Ansatz kann verwendet werden, um Eigenschaften „typischer" Mitglieder von

Graphklassen mit strukturellen Einschränkungen zu untersuchen, die inhärent schwierig mit

dem Ansatz der analytischen Kombinatorik handhabbar zu sein scheinen, z.B. Eigenschaften,

die nicht direkt mit (einer endlichen Anzahl von) Parametern der erzeugenden Funktionen

beschrieben werden können. Beispiele sind der maximale Knotengrad oder die maximale

Größe eines zweifachzusammenhängenden Blocks in einem Graph.

Unser letztes Resultat beschäftigt sich mit einfachen nummerierten 1^3-Minor-freien und

maximalen 1^3-Minor-freien Graphen, wobei maximal bedeutet, dass das Hinzufügen einer

beliebigen Kante zu einem solchen Graphen zur Bildung eines 1^3-Mmor führt.
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Wir wenden Techniken mit erzeugenden Funktionen an, um die asymptotische Anzahl (maxi¬

maler) 1^3-Minor-freier Graphen zu erhalten. Für 1^3-Minor-freie Graphen betrachten

wir dreifachzusammenhängende, zweifachzusammenhängende, zusammenhängende und nicht

notwendigerweise zusammenhängende Graphen. Außerdem leiten wir Grenzwertgesetze für

mehrere Parameter her.

Nach Kuratowskis Theorem [Kur30] sind planare Graphen 1^3,3- und K5-Minor-frei. Da¬

her ist die Klasse der planaren Graphen in der Klasse der 1^3-Minor-freien Graphen en¬

thalten. Nach Wagners Theorem [Wag37], ist die Klasse der Triangulierungen (mit Aus¬

nahme aller Triangulierungen auf 5 Knoten) in der Klasse der maximalen 1^3-Mmor-freien

Graphen enthalten. Der Bestimmung der Anzahl (der Graphen von Subklassen) planarer

Graphen kam in den letzten Jahren beträchtliche Beachtung zu [BGW02, GN04, GN05b,

BGKN05, BLMK]. Giménez und Noy haben asymptotische Näherungen für die Anzahl

planarer Graphen hergeleitet [GN05b]. Die asymptotische Anzahl von Triangulierungen

wurde von Tutte [Tut62] bereits 1962 hergeleitet. Zu untersuchen, wieviel sich die Anzahl

planarer Graphen (Triangulierungen) von der Anzahl (maximaler) 1^3-Mmor-freier Graphen

unterscheidet ist ein erster wichtiger Schritt, um zu erforschen, wie sich typische Instanzen

dieser Graphklassen unterscheiden.

Für dreifachzusammenhängende 1^3-Minor-freie Graphen ist der Unterschied zu planaren

Graphen einfach zu beschreiben: es folgt aus einem Theorem von Wagner [Wag37], dass

sich die Menge der dreifachzusammenhängenden 1^3-Minor-freien Graphen aus allen drei¬

fachzusammenhängenden planaren Graphen und dem vollständigen Graphen auf 5 Knoten

zusammensetzt. Somit unterscheidet sich unsere Graphklasse auf dieser Konnektivitätsstufe

nur in der Existenz eines zusätzlichen Graphen von planaren Graphen. Wie wir aber zeigen,

führt das Hinzufügen des K5 zu dreifachzusammenhängenden Graphen zu einer geringfügig

größeren exponentiellen Wachstumsrate für zweifachzusammenhängende, zusammenhängende

und nicht notwendigerweise zusammenhängenden 1^3-Minor-freie Graphen. Es ändern sich

auch weitere Parameter geringfügig, wie z.B. die erwartete Anzahl von Kanten in einem

zufälligen 1^3-Minor-freien Graph. Für maximale 1^3-Mmor-freie Graphen ändert sich die

Wachstumsrate ebenfalls geringfügig verglichen mit Triangulierungen.

Um diese Ergebnisse für 1^3-Mmor-freie Graphen herzuleiten, verwenden wir den Ansatz,

der bei planaren Graphen [BGW02, GN05b] angewandt wurde, d.h. wir folgen einer wohl

bekannten Zerlegung eines Graphen entlang seiner Konnektivitätsstruktur und übersetzen

diese in Beziehungen unserer erzeugenden Funktionen. Dies ist möglich, da die Zerlegung für

-f^3,3-Minor-freie Graphen, die auf Wagner [Wag37] zurückgeht, gut in dieses Rahmenwerk

passt. Für maximale 1^3-Minor-freie Graphen ist die Situation verschieden, da die Zer¬

legung, die wiederum auf Wagner zurückgeht, zusätzlichen Beschränkungen unterliegt. Die

funktionalen Gleichungen für die erzeugenden Funktionen von an Kanten gewurzelten maxi¬

malen Graphen sind zwar einfach herzuleiten, aber um zu ungewurzelten Graphen zu gelan¬

gen sind besondere Integrationstechniken notwendig, die auf der rationalen Parametrisierung

rationaler Kurven basieren.
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CHAPTER 1

Introduction

1.1. Average Case Analysis

The analysis (and development) of algorithms is a fundamental and well-studied area of

computer science. The classical way to measure the performance of an algorithm, such as

the running time or memory consumption, is to consider the worst-case performance of an

algorithm, i.e., to analyse the behaviour of an algorithm for the most ill-behaved input. A

clear advantage of this approach and probably the main reason why research focused on

worst-case analysis in the past decades, is that worst-case bounds guarantee that under

all circumstances the algorithm will need at most the estimated quantity of the considered

resources.

However, the worst-case performance measure also has a major drawback. In practice it turns

out that this performance measure is often overly pessimistic. This might result in favouring

an algorithm which is, despite of its theoretical superiority, not very efficient in practice.

The difference of the theoretical prediction and the observed behaviour stems from the fact

that the worst-case analysis is often based on few inputs, which might have a quite artificial

structure that does not (or seldom) appear as part of a "typical" input instance.

The sorting algorithm Quicksort is probably the best-known example, where one can observe

this kind of behaviour. The algorithm selects a pivot element from the sequence to be sorted,

divides the sequence into elements that are smaller and elements that are larger or equal

than the pivot element, and recursively proceeds on these two sub-sequences; finally, the

recursion stops on a trivial sequence of length at most two. It can be shown that for every

deterministic pivot selecting strategy there exist input sequences of length n that yield a

running time of 0(n2). Compared to other sorting algorithms, as for instance MergeSort,

which have a worst-case running time of O(nlogn), Quicksort appears to be an inefficient

and thus "bad" algorithm. Contrary to that, in practice Quicksort is considered to be one

of the best comparison based sorting algorithms. This empirical observation was supported

by a probabilistic analysis (see e.g., Motwani and Raghavan [MR95]). If all input sequences

are considered to be equally probable, then the probability for the worst-case behaviour to

occur is very unlikely and a good running time of ö(n\ogn) can be expected. From an

algorithm design perspective this average-case result yields that we may want to randomise

the pivot selecting strategy or to permute the input sequence appropriately to obtain a good

average-case performance, even if no assumptions can be made about the distribution of input

sequences.

Furthermore, while for sorting there also exist efficient algorithms in a worst-case sense, for

most combinatorial optimisation problems the situation is different. In the 1970's Cook,

l



2 Chapter 1. Introduction

Karp, Garey, and Johnson [Coo71, GJ79, Kar72] developed with their seminal work on

WP-completeness a rich set of tools, which allow to characterise the solvability of a specific

problem. If we prove that a problem is WP-hard, we classify it as being very difficult to

solve, meaning that the existence of a polynomial (worst-case) time algorithm is very unlikely;

hence, such a proof usually terminates the search for a polynomial time algorithm. From a

practical point of view, this is rather dissatisfying: many important real-world problems,

which have enormous economic potential and impact and whose solution is hence inevitable,

fall into this class. Nevertheless, it may be possible to design polynomial-time algorithms

that calculate good solutions in the "typical" case. That is, we are looking for algorithms

with good expected running time.

From the above discussion it follows that a natural alternative to the worst-case performance

measure is to consider the average-case performance of an algorithm; that is, we analyse the

performance of an algorithm assuming that the input instances are drawn from all possible

instances according to a certain probability distribution.

A plausible approach, taken in this thesis, is to consider all input instances of a given size to

be equally likely. Although at first sight this might appear to be a quite strong restriction, it

is often the only reasonable choice: in practice we frequently don't have enough information

about the distribution of the input instances. Moreover, the lack of tools and techniques to

perform an average-case analysis - the example of Quicksort above is one of the rare cases

where one could carry out an average-case analysis - leads to study such "simplified" models

first.

1.2. An Example - Graph Colouring

From the discussion before, it is clear that, in order to analyse the average-case performance

of an algorithm, we have to choose a probability distribution on the class of possible inputs.

If we consider graph algorithms and if we assume a uniform distribution over all labelled

graphs on n nodes, it is easy to see that this model is equivalent to analysing the behaviour

of the algorithm in question with respect to random graphs. The theory of random graphs

started in the middle of the last century with the pioneering work of Erdös and Rényi. In the

widely known G(n,p) model each edge in graph G on n nodes is present with probability p

independently of all other edges; for a very good introduction to the theory of random graphs

see [Bol85] and [JLROO].

In order to analyse the average-case performance of graph algorithms and to improve them,

many algorithms working on random graphs were investigated. Let us briefly sketch such

an algorithm for determining the chromatic number x(G) of a given graph G - that is the

minimum number of colours needed to colour the nodes of a graph such that no adjacent nodes

have the same colour - a problem which is MV-hard in general. This problem is important in

graph theory itself, but also appears frequently as a core problem within numerous practical

applications. In 1984 Wilf [Wil84] already presented an algorithm, which decides for every

given (positive) integer I and graph G in constant expected time whether x(G) < I - assuming

that all graphs are equally likely. If x(G) < I the algorithm also determines a colouring with

exactly x(G) colours. The reason why this result holds is that almost all graphs contain a
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large number of (/ + l)-cliques and hence are not /-colourable. With very high probability

it suffices to investigate only a small part of the given graph until one finds a (/ + I)-clique

and therefore a certificate for the fact that G is not /-colourable. As the cases that such a

clique is not found are so unlikely, one can afford to use an exhaustive search over all possible

/-colourings to obtain a proper colouring or to determine that the graph is not /-colourable.

Thus, exploiting characteristics of the underlying graph model yields a constant expected

time algorithm.

1.3. Graphs with Structural Constraints

Similar to the example in the previous section, it turns out that in general for the analy¬

sis of the average-case performance and the design of algorithms with better average-case

performance it is crucial to understand the properties of a "typical" input instance. Hence,

for graph algorithms we have to investigate which properties a graph, drawn uniformly at

random from the set of all graphs on n nodes within the considered class, has.

Although the random graph model G(n,p) introduced in Section 1.2, has led to a fruitful

branch in combinatorics and made the average-case analysis of many graph algorithms possi¬

ble, in many real-world applications it does not appropriately model realistic input instances.

In real-world scenarios, one rather has to deal with graphs with structural constraints, such

as planar graphs. Numerous applications with such inputs exist, for example chip manufac¬

turing, drawing of diagrams and many more. Unfortunately, many optimisation problems

remain WP-hard even if the input is restricted to graph classes with structural constraints.

For example, the problem to decide whether one needs three or four colours to colour a planar

graph is still MV-hard (from the celebrated four-colour theorem [AH77, AHK77, AH89]

it follows that we don't need more than four colours).

Performing an average-case analysis for an algorithm, which takes constrained graphs as

input, turns out to be rather difficult. This has several reasons, the main two being the

following. First, there does not exist such a rich set of tools and methods to prove structural

properties for "typical" members of these classes, as for example for the traditional random

graph G(n,p). Second, we have to cope with the difficulty of the dependence of the edges

which makes the analysis in many cases technically quite involved.

Hence, investigating properties of constrained graph classes and developing new tools and

methods to analyse such graph classes are central to advance the state of the art in this area

of research.

1.4. Overview

In this thesis, we focus on graphs with structural constraints as input instances, for example

planar graphs. More precisely, we are interested to prove that graphs on n nodes, drawn uni¬

formly at random from the set of all graphs on n nodes of a class with structural constraints,

have specific properties with high probability (w.h.p., i.e., with probability tending to 1 as

n —> oo). To achieve this, there exist several methods; central to all is the enumeration of the
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graphs in the class in interest. In this thesis, we apply such techniques and provide a new

method to obtain results about several graph classes with structural constraints.

In the first part, we use a purely combinatorial approach, following McDiarmid, Steger, and

Welsh [MSW06], to investigate planar graphs with given average degree. In the second part,

we use analytic combinatorics and generating function techniques to derive the asymptotic

number of cactus graphs, block graphs, A^-minor-free and maximal A^-minor-free graphs

as well as to investigate several of their properties. We also present a new method based on

the framework of Boltzmann samplers - recently introduced by Duchon, Flajolet, Louchard,

and Schaeffer [DFLS04] - which may be used as an alternative to known methods to show

properties of "typical" members of a class under consideration. The new approach seems

especially useful for certain parameters which are difficult (or impossible) to handle with

known methods. We illustrate how this approach works on cactus and block graphs. In the

sequel, we give a more detailed overview over the subsequent chapters.

Chapter 2 - Tools and Techniques

In this chapter we briefly describe the two major approaches in literature for analysing con¬

strained graph classes, namely the combinatorial and the analytic combinatorics approach.

Moreover, we give a brief introduction into a framework for sampling combinatorial objects,

which we will use in a subsequent chapter to develop a new method for investigating struc¬

tural properties of random constrained graphs. We briefly present the main idea of this new

approach, too. The main focus of this chapter is on the exposition of the ideas behind the

different methods and on providing theorems from literature as a basis for the later chapters.

Chapter 3 - Planar Graphs with given Average Degree

Planar graphs are well-known and well-studied combinatorial objects in graph theory. Roughly

speaking, a graph is planar if it can be drawn in the plane in such a way that no two edges

cross. A random planar graph Rn is a simple labelled planar graph that is drawn uniformly

at random from the set V{n) of all simple planar graphs on the node set {I,..., n}.

In this chapter we consider planar graphs with given average degree. More precisely, we are

interested in properties of a random planar graph Rntq which is drawn uniformly at random

from the class V(n, [qn\) of simple labelled planar graphs with n nodes and [qn\ edges, where

I <q<3.

We show that for all I < q < 3 the random planar graph Rn,q has properties similar to those

of a random planar graph Rn, which was investigated in [DVW96, MSW05, GN05b]. For

example, we show that Rn,q contains w.h.p. linearly many nodes of each given degree and

linearly many node disjoint copies of each given fixed connected planar graph. Additionally,

we investigate the number of automorphisms and we give lower bounds on the maximum

node degree and the maximum face size of any plane embedding. We also study the relation

between the growth constants of labelled and unlabelled planar graphs with given average

degree.
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Some of these results were strengthened and many additional results about planar graphs

were shown by Giménez and Noy [GN05b] using a completely different approach. We also

show how our work relates to these newer results.

The proof techniques exploited in this chapter are purely combinatorial and follow McDiarmid,

Steger, and Welsh [MSW05, MSW06]. A key tool of the method is to show that

(\V(n, [qriDl/nl)1/"1 tends to a limit 7(g) as n tends to infinity. We study the behaviour

of this function in more detail. In particular we consider 7(g) as q approaches I from below

and above and 3 from below, and explain the discontinuity as we approach I from below by

changing scale appropriately.

Chapter 4 - Cactus and Block Graphs

Recently, the usage of generating functions has led to immense progress in the enumeration

and the understanding of properties of graph classes with structural constraints, such as pla¬

nar graphs. However, it seems to be inherently difficult to investigate properties of "typical"

members of those classes, which cannot be directly addressed with (a finite number of) pa¬

rameters of the generating functions, such as the maximum node degree, or the maximum

size of a biconnected block.

In this chapter we address this problem. We propose a new method, that is based on the

analysis of the behaviour of Boltzmann sampler algorithms, and may be used to obtain precise

estimates for the maximum degree and maximum size of a biconnected block of a "typical"

member in the class in question.

In contrast to Chapter 3, here we use analytic combinatorics. The main focus, however, is on

the newly developed method based on Boltzmann samplers. We illustrate how our method

works on two graph classes, namely cactus graphs and block graphs, two moderately complex

graph classes with constraints. A cactus graph is a labelled connected graph, in which each

edge is contained in at most one cycle; and a block graph is a labelled connected graph, whose

maximal biconnected blocks are cliques.

Additionally, exploiting the (more classical) generating function framework, we asymptoti¬

cally enumerate the graphs in those classes, derive limit laws for the number of edges, and

explore several other properties. Finally, we show how these results can be applied to straight¬

forwardly derive the average-case complexity of two longest path algorithms for both graph

classes.

Chapter 5 - K% 3-minor-free Graphs

In the last chapter we consider simple labelled A^-minor-free and maximal A^-minor-free

graphs, where maximal means that adding any edge to such a graph yields a Ä^-minor.

Due to Kuratowski's theorem [Kur30] planar graphs are 1^3,3- and ^-minor-free. Hence,

the class of planar graphs is contained in the class of 1^3-minor-free graphs. Due to Wagner's

theorem [Wag37] the class of triangulations (with the exception of all triangulations on 5

nodes) is contained in the class of maximal A^-minor-free graphs. Determining the number

(of graphs of sub-classes) of planar graphs has attracted considerable attention [BGW02,



6 Chapter 1. Introduction

GN04, GN05b, BGKN05, BLMK] in recent years. Gimenez and Noy [GN05b] obtained

precise asymptotic estimates for the number of planar graphs. The asymptotic number of

triangulations was given by Tutte [Tut62] already in 1962. Investigating how much the

number of planar graphs (triangulations) differs from (maximal) A^-minor-free graphs is a

first important step in examining how "typical" instances of these graph classes will differ.

We apply generating function techniques to obtain asymptotic estimates for the number

of (maximal) A^-minor-free graphs. For A^-minor-free graphs we consider 3-connected,

2-connected, connected and not necessarily connected graphs.

For 3-connected A^-minor-free graphs, the change from planar graphs can be easily de¬

scribed: it follows from a theorem of Wagner [Wag37] that the set of 3-connected 1^3,3-

minor-free graphs consists of all 3-connected planar graphs and the complete graph on 5

nodes. Thus, on this connectivity level our graph class differs only in the existence of one ad¬

ditional graph from planar graphs. But as we shall show, adding K$ to the set of 3-connected

graphs yields a slightly larger exponential growth rate for 2-connected, connected, and not

necessarily connected A^-minor-free graphs. It also slightly changes other parameters, for

instance the expected number of edges in a random A^-minor-free graph. For maximal

1^3,3-minor-free graphs the growth rate also increases slightly compared to triangulations.

To establish these results for 1^3-mmor-free graphs, we follow the approach taken for pla¬

nar graphs [BGW02, GN05b]: we use a well-known decomposition along the connectivity

structure of a graph, i.e., into connected, 2-connected and 3-connected components, and

translate this decomposition into relations of our generating functions. This is possible as

the decomposition for 1^3-minor-free graphs which is due to Wagner [Wag37] fits well into

this framework. Then we use singularity analysis to obtain asymptotic estimates and limit

laws for several parameters from these equations.

For maximal A^-minor-free graphs the situation is different, as the decomposition which is

again due to Wagner has further constraints. The functional equations for the generating

functions of edge-rooted maximal graphs are easy to obtain but in order to go to unrooted

graphs, special integration techniques based on rational parametrisation of rational curves

are needed.

This thesis is based on the papers [GMSW05, GMSW07], [GGNW] and [PW].



CHAPTER 2

Tools and Techniques

In this chapter we give a brief overview over the techniques and tools which we will use in

the subsequent chapters for our analysis of random graphs with structural constraints. The

purpose of the exposition is twofold. Firstly, we want to provide the main ideas of the different

methods and not the (in depth) technical details. We give references to the literature and to

related parts of this thesis for further details. Secondly, we state the fundamental theorems

(without proof) which our work relies on and which we will use later without further reference.

2.1. Combinatorial Approach

In this section, we briefly describe the main ideas behind the combinatorial approach following

McDiarmid, Steger, and Welsh [MSW05, MSW06]. We will use this method in Chapter 3

to deduce properties of random planar graphs with given average degree; there, we will see

that we have to slightly adapt the overall approach to make it applicable for this particular

graph class.

Let G denote the class of labelled graphs we are interested in and let \Gn\ denote the number of

graphs on n nodes in G. To deduce properties of a graph Gn drawn uniformly at random from

Gn, it is central to enumerate the graphs in Gn- The main technical tool of the combinatorial

approach is to prove that there exists a constant 7
- called the growth constant of G - such

that

n

—> 7 as n —> 00. (2.1)

For the combinatorial approach the existence of such a growth constant suffices to prove a

rather general result. More precisely, we want to prove that there exist a linear number of

node disjoint copies of any fixed graph H e G in Gn with high probability. To prove this,

we proceed roughly as follows (for details, see the proof of Theorem 3.21 in Section 3.5): we

assume the contrary, i.e. that the probability that Gn contains linearly many copies of H is

small. Under this assumption, we show that we can construct - by attaching appropriate

graphs to a given graph G - more graphs in Gn than (2.1) allows, which yields the desired

contradiction. The key point in the counting argument is that we can show that each graph

is not constructed too often, since G had few appearances of H. This rather general result

can then be used to prove further structural properties of a random graph Gn.

To show (2.1), we apply Fekete's Lemma (see e.g. [LW92, Lemma 11.6]) which states the

following: if g : N —> R+ is a function such that g(i + j) > g{i) g(j) for all i,j G N, and

c = supng(n)« < 00, then g(n)« —> c as n —> 00. The idea is to set g{n) := \Qn\ poly(n)/n!,

where poly(n)« —> 1 as n —> 00. To prove that supn g(n)« exists and is finite we can often use

the existence of a growth constant of a super class of Q. Now, to prove g{i+j) > g(i) g(j), we

n\

7
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consider all graphs in Q on i+j nodes on the left hand side and each tuple of connected graphs

on i and j nodes respectively on the right hand side. If we can show that an appropriate

portion of all graphs in Qn is connected, then the inequality is fulfilled, as we consider only

graphs with two components on the right hand side. To show that the proportion of connected

graphs in Qn is appropriate, is the second important ingredient of this approach. McDiarmid,

Steger, and Welsh proved that this holds for a wide class of graphs using a Markov chain (see

[MSW05] and [MSW06] for details). We will see later that their result cannot be directly

applied to the graph class we consider in Chapter 3, which makes it harder to deal with.

2.2. Analytic Combinatorics

In this section we very briefly describe the idea behind the analytic combinatorics approach

based on generating functions. A kind of revival of this method started with its successful

application for planar graphs by Giménez and Noy [GN05b]. For precise estimates on the

number of graphs in a given class and certain parameters this approach is quite powerful; for

instance, Giménez and Noy used this method to determine the expected number of edges of

a random planar graph, a problem which was open for quite some time [DVW96, GM04,

OPT03, BGH03].

Here, we only give a brief overview of the method and state the main theorems that we will

need later. Note, that the exposition in the sequel follows closely [FS06], but focuses on the

application of the method for graphs with constraints. For a detailed description of the topic

we refer the reader to [FS06] (and for an introduction to [Wil90]), where one can also find

the proofs.

We will apply the method described here in Chapter 5 to obtain an estimate on the number

of A^-minor-free and maximal As^-minor-free graphs. We will also apply it in Chapter 4.

Moreover, it is the basis for the Boltzmann sampler framework of Duchon, Flajolet, Louchard,

and Schaeffer [DFLS04], which we will briefly describe in Section 2.3 and which we will need

later in Chapter 4 as well.

Before we can explain the method, we need some basic definitions from complex analysis.

This is necessary as, roughly speaking, the method relies on two different views on a power

series. On the one hand we view them and calculate with them as formal power series, which

we use to encode information of the combinatorial objects we are interested in. On the other

hand, if we want to get estimates for the coefficients, then we need to change our point of

view and take the complex analysis part into account.

Definition 2.1 (Definition IV.I of [FS06]). A function f{z) defined over a region Q is

analytic at a point zo e Q if, for z in some open disc centred at zo and contained in Q, it is

representable by a convergent power series expansion

f(z) = Y/cn(z-z0)n. (2.2)
ra>0

A function is analytic in a region Q iff it is analytic at every point of Q.

It can be shown that analyticity and complex differentiability are equivalent notions, i.e., a

function is analytic in a region Q if and only if it is complex-differentiable in Q.
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Let f{z) be an analytic function defined over the interior region Q determined by a simple

closed curve 7, and let zo be a point of the bounding curve 7. If there exists an analytic

function f*(z) defined over some open set Q* containing zq and such that f*(z) = f(z) in

Q* n Q, one says that / is analytically contmuable at zo and that /* is an immediate analytic

continuation of /.

With these notions, we can define what is commonly called a singularity.

Definition 2.2 (Definition IV.4 of [FS06]). Given a function / defined in the region interior

to the simple closed curve 7, a point zq on the boundary (7) of the region is a singular point

or a singularity if / is not analytically continuable at zq.

Now, we are ready to explain how the analytic combinatorics approach works in more detail.

As in the combinatorial approach (see the previous section), the enumeration of the objects in

interest is a key tool (and actually the main application of this method). Let G denote the class

of labelled graphs we are interested in. We define its exponential generating function G(x) =

^ngnxn/n\, where gn = \Gn\ denotes the number of graphs in G on n nodes. (For unlabelled

graphs, we consider the corresponding ordinary generating function G(x) = J2n9nxn) For

a generating function G(x) we denote its n-th coefficient by gn := [xn]G(x).

We say that a number sequence {an} is of exponential order Kn or has exponential growth

rate K (in the combinatorial approach this corresponds to the growth constant, see Section

2.1), in short form an 1x1 Kn if and only if lim sup \an\« = K.

One can prove that the exponential growth rate of the coefficients of a power series such as

G(x) is determined by its singularities on the boundary of the disc of convergence, the so

called dominant singularities. For ease of exposition (and as we will need just this case in the

subsequent sections), we assume in the following that there is only one dominant singularity.

Theorem 2.3 (Theorem IV.7 of [FS06]). If f(z), f : C -> C, is analytic at 0 and R is the

modulus of a singularity nearest to the origin in the sense that

R := sup{r > 0 | / is analytic in \z\ < r},

then the coefficient fn = [zn]f(z) satisfies

For functions with nonnegative coefficients, including all combinatorial generating functions,

one can also adopt

R := sup{r > 0 | / is analytic at all points ofO<z<r}.

In the sequel, most theorems are stated for functions f{z) that are singular at z = 1, a

condition that entails no loss of generality, as the location of the dominant singularities always

induces a multiplicative exponential factor for coefficients. If f{z) is singular at z = w, then

g(z) = f(z uj) satisfies, by the scaling rule of Taylor expansions,

[zn]f(z) = tv-n[zn]f(z u) = u-nlzn]g(z),

and g{z) itself is singular on the unit circle, but not inside the disc.
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Besides the exponential growth rate, we can also get a more precise estimate. From a series

expansion of the generating function at its dominant singularity - the so called singular

expansion
- we can derive the sub-exponential part of the growth rate (see the "transfer

theorem", Corollary 2.5 below).

Before we can formally state this, we need one more definition.

Definition 2.4 (Definition VI.1. of [FS06]). Given two numbers (f), R with R > 1 and

0 < (f) < §> the open domain A(<fi, R) is defined as

A((/>, R) = {z\ \z\ < R, z + I, \Arg{z - 1)| > <j>}.

A domain is a A-domain if it is a A(0, i?) for some R and 0. A function is A-analytic if it

is analytic in some A-domain.

Analyticity of a function f{z) in a A-domain is the basic condition that allows a transfer

of error terms in an asymptotic expansion of f{z) to error terms of its coefficients. This

"transfer" is formalised in the next corollary.

Corollary 2.5 (Corollary VI. 1 of [FS06]). Assume f is A-analytic and, as z —> 1, z e A,

f(z)~(l-z)-a

with a fi Z<o- Then the coefficients of f satisfy

\zn]f{z) ~ Ç\,
Y{a)

where T(a) = /0°° ta~le~tdt is the well-known gamma function.

As mentioned before, one can show that under suitable analytic conditions such a "transfer"

also holds for error terms; for example one can show that if f{z) = 0((1 — z)~a) then it holds

that fn = 0(na~l). For further details see Chapter VI (especially Section VI.4) of [FS06].

Equipped with this, we can describe the overall approach which works roughly as follows.

First, we have to find a unique decomposition of our graph class which we can translate

into relations of the corresponding generating functions. The symbolic method developed

in [FS06] facilitates this translation by providing a set of rules for standard combinatorial

constructions as for instance taking a set of objects, rooting or pointing an object, taking

a sequence of objects, etc. As long as we can describe our decomposition within this set

of construction rules, we can systematically derive relations of the corresponding generating

functions. See Table I for a basic set of translation rules.

The next step is to perform a singularity analysis, that is, we first have to find the dominant

singularity and then to derive a singular expansion for our generating functions. The later

step is usually a tedious but routine calculation which can be carried out using a computer

algebra system such as Maple. For more complicated graph classes such as planar graphs

[GN05b] or A^-minor-free graphs (see Chapter 5), an edge-rooting in the decomposition

often yields that we first have to solve an integral to make this step possible. As a heuristic for

solving such an integral, we can often use the functional inverse of a part of the integrand for

an appropriate substitution. Sometimes, more involved techniques are necessary, see Section
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Combinatorial Construction Exponential Generating Functions

Disjoint Union C = A + B C(z) = A(z) + B(z)

Product C = A • B C{z) = A(z) B(z)

Sequence C = Seq(„4) r*M 1

^l-J l-A(z)

Set C = Set(A) C(z) = exp(A(z))

Cycle C = Cyc(A) C(~\ lntr ( 1
1

^{«)
-

lOg [i-A(z) )

Pointing C = 9A C{z) = A'{z) := z£A(z)
Substitution C = A o B C(z) = A(B(z))

Table 1. Translation rules: Combinatorial constructions for labelled objects

and operations for the corresponding exponential generating functions.

5.3. Moreover, note, that a "typical" decomposition for a graph class frequently yields a

recursive description. The following theorem allows to obtain a singular expansion for such

a generating function. For further details see also the discussion before Theorem VI.6 in

[FS06] and its proof.

Theorem 2.6 (Theorem VI.6 of [FS06]). Let y(z) be implicitly defined by y(z) = z <p(y(z)).

Let (f) be a nonlinear function satisfying the following conditions:

(1) The function <fi(u) is nonlinear, analytic at 0, where it has nonnegative coefficients, and

satisfies (f)(0) / 0, i.e.

(f)(0) + 0, [un](f)(u) > 0, (f)(u) ^ 0o + fan.

(2) Within the open disc of convergence of <p at 0, \z\ < R, where R denotes the radius

of convergence, there exists a (necessarily unique) positive solution to the characteristic

equation

3t, 0 < t < R, (f)(r) - T(f)'(r) = 0.

Let y(z) be the solution of y = u (f>(y) satisfying y(0) = 0. Then, the quantity p = t/<P(t)

is the radius of convergence ofy(z) at 0 (with r the root of the characteristic equation), and

the singular expansion ofy(z) near p is of the form

y(z) T-dJi-- + 52(-iyd3(i
V '

J>2
V

1

Z \ 2

where d\ := J ,„7] and the à3, J >2, being some computable constants.

From the singular expansion we get asymptotic estimates for the coefficients by the transfer

theorems (see Corollary 2.5 above). Figure 1 gives an overview of the steps needed to carry

out a singularity analysis.

If we can introduce a variable into the generating functions which marks a parameter we are

interested in (e.g., a marker for edges in a graph), we may again obtain a singular expansion

of the bivariate generating function; this may eventually allow us to describe the behaviour

of the parameter. The following theorem will be useful in the subsequent chapters. If the
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Given a function f(z) analytic at 0, whose coefficients are to be asymptotically analysed.

(1) Locate the (single) dominant singularity p of f{z).

(2) Check continuation, i.e., establish that f{z) is analytic in some domain of the form

pAo, for a A-domain Ao, where pAo is the image of Ao by the mapping z i—> pz.

(3) Analyse the function f{z) as z —> p in the domain pAo and determine a singular

expansion of the form

where f2(z) <C f\{z) and f\{z) and f2{z) belong to the standard scale of functions

S = {(1 - z)-aX(z)ß}, where \(z) := z~l log(l - z)~l (see Chapter VI.4 of [FS06]

for details).

(4) Use the transfer theorems to translate the main term and the error term to obtain

that

[zn]f(z) = p-n[zn]h(z) + ö{p-n[zn]f2(z)),
n—>oo

where for the corresponding exponent a in f\{z) and f2{z) it hast to hold that

a é Z<0.

Figure 1. Summary of the process of singularity analysis for a single dom¬

inant singularity.

technical conditions (i) through (iii) are fulfilled, it gives us that the parameter marked by

the variable u is normally distributed with given mean and variance.

Theorem 2.7 (Theorem IX.10 (Algebraic singularity schema) of [FS06]). Let F(z,u) be a

bivariate function that is bivariate analytic at (z,u) = (0, 0) and has nonnegative coefficients

there. Assume the following conditions:

(i) Algebraic perturbation: there exist three functions A, B, C, analytic in a domain V =

{\z\ < r} x {\u — 1| < e}, for some r > 0 and e > 0, such that for a fi Z<o the following

representation holds,

F(z, u) = A(z, u) + B(z, u)C(z, u)~a, (2.3)

that p < r is the unique (simple) root in \z\ < r of the equation C(z, 1) = 0, and that

B(p,l)^0.

(ii) Non-degeneracy: one has §^C{p, 1) -§^C{p, 1) / 0, ensuring the existence of a noncon-

stant p{u) analytic at u = 1, such that C(p(u), u) = 0 and p(l) = p.

(iii) Variability: one has

P \_ &(1) &P(1)
,
(&PW)\0

(2.4)
^p(i); p(i) p(i) ^ p(i

Then the random variable with probability generating function

[zn]F(z,u)
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converges in distribution to a Gaussian variable with a speed of convergence that is 0(n 2).

The mean ßn and standard deviation an converge asymptotically to /m and yfan, where

fi = — 8"f^ and a is given by Equation (2A).

2.3. Boltzmann Samplers

The framework of Boltzmann samplers was introduced and developed by Duchon, Flajolet,

Louchard, and Schaeffer in [DFLS04] and only recently extended and applied by Fusy to

derive an efficient sampler for planar graphs in [Fus05]. It constitutes a general and efficient

framework to obtain a random generator for sampling objects from a combinatorial class

uniformly at random. It is an attractive alternative to the recursive method introduced by

Nijenhuis and Wilf [NW78], as it usually delivers faster samplers in theory and especially in

practice.

Here, we briefly present the main ideas of the Boltzmann sampler framework in the case

of labelled objects and exponential generating functions, following [DFLS04] and [Fus05].

For a detailed description of the topic we refer to [DFLS04] and [Fus05]. We will later

use this framework to derive efficient sampling routines for two constrained graph classes,

see Chapter 4. Moreover, we will introduce a new method in Section 4.7 to prove that

"typical" instances of a constrained graph class have specific properties, which is based on

this framework.

Note, that subsequently we will use notation, which was introduced in Section 2.1, as the

framework described here relies on methods of the analytic combinatorics approach.

In practice, one might often prefer approximate-size samplers, which generate objects within

a given range of sizes, to exact-size samplers, as long as the running time is better in the

former case. The Boltzmann sampler framework provides exactly this behaviour: for many

combinatorial classes it allows us to derive an algorithm whose running time is expected

linear in the size of the output object for approximate-size sampling and expected quadratic

for exact-size sampling.

Instead of fixing a particular output size for the random generation (as in the case of the

recursive method), objects are drawn under a probability distribution spread over the whole

class. The probability of an object to be drawn is essentially proportional to the exponential

of its size n (e.g., number of nodes of a graph). More precisely, let C denote the class of

labelled objects, in which we are interested, and let C(x) denote its exponential generating

function. In the Boltzmann model of parameter x, we assign to any object 7 G C of size I7I

the probability

1 rM
p'M =

cw Mi-
<2-5»

if the above expression is well-defined - which is the case if x is within the radius of conver¬

gence of C{x). A Boltzmann sampler YC{x) for class C is a process that produces objects

from C according to the corresponding Boltzmann model, i.e., according to the Boltzmann

distribution (2.5) with parameter x. The parameter x can be tuned in such a way that the

sampler prefers objects of the desired output size. One can prove that the random output
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Construction Boltzmann sampler

Empty atom 1 return 1

Unit atom / singleton Z return Z

Disjoint union C = A + B
TC(x, y): if Bern (A(xJ+$(Xty)) return TA(x, y)

else return TB(x, y)

Labelled product C = A * B

TC{x,y): 7 ^ (TA(x,y),TB(x,y))

DistributeLabels(7)

return 7

Sequence C = Seq>d{A)

TC(x, y): k <- Geom>d(TA(x, y))

7 <— (TA(x, y),..., TA(x, y)) {k independent calls}

DistributeLabels(7)

return 7

Set C = Set>d(A)

TC\x,y): k^Po>d(TA(x,y))

7 <— (TA(x, y),..., TA(x, y)) {k independent calls}

DistributeLabels(7)

return 7

^-substitution C = A ox B

TC(x,y): 7 ^TA(B(x,y),y)

for each labelled atom v G 7 do

replace v by yu <— T5(a;, y)

end for

DistributeLabels(7)

return 7

y-substitution C = A oy B

TC(a;,y): ^ ^TA{x,B{x,y))

for each labelled atom e G 7 do

replace e by 7= <— T5(a;, y)

end for

DistributeLabels(7)

return 7

Table 2. Translation rules: Combinatorial constructions to according Boltz¬

mann sampler. Bern(p) denotes a Bernoulli generator which returns true with

probability p and false otherwise. Po>d(A) and Geom>d(A) denote a Poisson

and a geometric generator which return a value x > d according to a Poisson

and a geometric law respectively.

size N of an object satisfies E [iV^ = xC'(x)/C(x) - see Proposition 1 of [DFLS04]. Below

we also present a sampler which does not need any tuning of the parameter x.

Duchon et al. [DFLS04] provide a set of general procedures, which translate combinatorial

constructions like disjoint union, product, set, etc. into Boltzmann samplers - this is very

similar to the symbolic method provided in [FS06] for generating functions (see also Section

2.2 and Table 1). Fusy [Fus05] extended this set of rules by further constructions, as for

instance unrooting a rooted object. An overview of these rules is given in Table 2. For

correctness proofs of these rules we refer to [DFLS04] and [Fus05].



2.3. Boltzmann Samplers 15

Now, to obtain a realisation of a Boltzmann sampler, we need the following three missing

ingredients.

Firstly, by definition, a Boltzmann sampler requires as input the value of the control pa¬

rameter x that defines the Boltzmann model of use. Moreover, as generating functions may

depend on each other in a specification, we may also need the finite collection of values of

these generating functions evaluated at x to provide them as input to Bernoulli, geometric,

Poisson, and other generators - see also Table 2. We can pre-compute these values once by a

computer algebra system or a multiprecision package; note, that the power series expansions

can be computed in low polynomial complexity.

Secondly, it remains to specify generators for the basic probabilistic laws, for instance a

Poisson Po (A), Bernoulli Bern(p), and geometric Geom(A) generator. Under the assumption

that we have a random generator that draws a random variable uniformly distributed over

the real interval (0,1) at unit cost, we can easily implement such generators (for details see

[DFLS04]). In the model with unit cost for the four elementary real-arithmetic operations,

all these generators have linear running time in the outcome of the drawn variable.

In practice we may implement a Boltzmann sampler by truncating real numbers to some

fixed precision, for example standard floating point numbers. Then, the resulting samplers

operate in time that is linear in the size of the produced object, although they may deviate

(slightly) from uniformity in a small number of cases. One approach to correct this lack of

uniformity is to use an adaptive precision strategy.

Thirdly, we have to provide a routine that distributes labels {1,..., n} onto the atoms of the

object. One can show that it suffices to do so at the end of the sampling process, i.e., the

samplers are only sampling the shape of the object (see [FZvC94] (Section 3)). As sampling

a permutation uniformly at random can be done in linear time (see [Knu81] (page 145)),

this step will not affect the overall running time.

The efficiency of a Boltzmann sampler for a class C depends highly on the type of the singular

expansion of its generating function C(x). More precisely, in order to obtain an expected

linear running time sampler, either the exponent —a of the singular expansion of C has to be

negative or, in the special case that —a = \, we can use a so-called singular ceiled rejection

sampler. This sampler simply discards objects during sampling, as soon as they become too

large.

We can formalise the conditions on the generating function as follows.

Definition 2.8 (Definition 2 of [DFLS04]). A function f{z) analytic at 0 and with finite

radius of analyticity p > 0 is said to be A-smgular if it satisfies the following two conditions:

(i) The function admits p as its only singularity on \z\ = p and it is continuable in a domain

A((/>, r) = {z\ \z\ <r, z^ p, Arg(z - p) £ (-</>, </>)},

for some r > p and some 0 < <fi < ^.

(ii) For z tending to p in the A-domain, f(z) satisfies a singular expansion of the form

f{z) ~ P{z) + co ( 1 - -) +o((l--) ), a e M\ {0,-1,-2,...},
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where P(z) is a polynomial. The quantity —a is called the singular exponent of f(z).

We assemble the basic rejection sampler denoted by /j,C(x; n, e) from a Boltzmann generator

TC(x) for the class C as follows. For any x with 0 < x < pc, where pc denotes the dominant

singularity of the exponential generating function C(x) for C, for a target size n and e > 0 a

relative tolerance:

[iC(x\ n, e) { Returns an object of C in In>£ := [(1 — e)n, (1 + e)n] }

repeat

7 := TC{x)

until |7| G In,e

return 7

The rejection sampler ßC simply tries to sample an object of satisfactory size by repeatedly

calling the sampler TC{x). If we set e = 0, we obtain an exact-size sampler. One can

prove that this sampler indeed is quite efficient for a well-behaved generating function (see

Definition 2.8).

Theorem 2.9 (Theorem 5 of [DFLS04]). LetC be a combinatorial class such that its generat¬

ing function is A-smgular with an exponent —a < 0. Then the rejection sampler [iC(xn\ n, e)

corresponding to a fixed tolerance e > 0 succeeds in a number of trials whose expected value

is asymptotic to the constant

-\- where Ue) = -^- f (1 + s)a-le-<l+^ds.
U(£) r(a) 7_£

Recursive structures tend to conform to a universal complex-analytic pattern corresponding

to a square-root singularity, that is, a singular exponent —a = 1/2. As mentioned before, this

specific behaviour may be exploited, resulting in a singular sampler, that is we set the input

parameter x to the dominant singularity x := pc of C{x). This yields heavy tails in the size

distribution and in particular the expected size of an object is infinite. Thus we cannot use a

straight-rejection sampler as before. But we can use an early interrupt strategy by modifying

all sampling routines of a Boltzmann sampler as follows. Consider a general Boltzmann

sampler TC{x) and let m be an upper bound imposed on the size of the required objects.

We build a modification TC<m(x) of TC{x). We maintain a global counter c which counts

the number of atoms produced at any given time during a partial execution of sampling by

TC(x). The counter is incremented each time an atom is created as long as c < m . However,

as soon as c exceeds m, execution is interrupted and the special symbol _L is returned. Then

rejection can be piled on top of this sampler. The corresponding routine looks as follows:

vC(x\ n, e) { Ceiled rejection sampler }

repeat

j:=TC<m(x;n(l+e))

until (7 / _L) A (|7| > n{\ - e))

return 7

The ceiling technique optimises any Boltzmann sampler for any value of a;; if we set the

parameter to the singular value, i.e., x = p, we obtain an efficient sampling algorithm for
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recursive classes. Before we can formally state this in a theorem, we need to introduce some

more notation.

We say that a function A(z) is aperiodic if d := gcd{n | An / 0} satisfies d = 1.

A recursive class C is defined as the component C = T\ of a system of mutually dependent

equations,

{Ti = *i(Z; JFi, ..., Fm),..., Tm = *m(Z; ;Fi,..., fm)}

where the \I>'s are any functional term involving any of the basic constructors previously

defined (see Table 2 without substitution). The system is said to be irreducible if the de¬

pendency graph between the T-, is strongly connected (every nonterminal T-, depends on any

other Tk).

Theorem 2.10 (Theorem 8 of [DFLS04]). LetC be a combinatorial class given by a recursive

specification that is irreducible and aperiodic. Then the singular ceiled rejection sampler

uC(p;n,e), corresponding to a fixed tolerance e > 0 succeeds in a number of trials whose

expected value grows like m /((e) for a positive constant ((e). Moreover, the cumulated size

Tn of the generated and rejected objects during the call of vC(p\ n, e) satisfies as n —> oo

E[Tra]~"((l-e)5 + (l + e)*)
with its variance, a2 = E [T^] — E [Tn] , being

a2 ~E[Tn}2 + ^ t^(l-e)l +(l+e)iy
Under these conditions, approximate-size sampling and exact-size sampling are of average-

case complexity respectively 0(n) and 0(n2).

2.4. Properties via Boltzmann Samplers

In Sections 2.1 and 2.2 we briefly introduced two common approaches from the literature for

investigating constrained graph classes. In this section, we sketch the main ideas behind a new

approach which is based on the Boltzmann sampler framework of Duchon et al. [DFLS04]

described in Section 2.3. We will illustrate how this method works in detail in Chapter 4,

where we prove that random cactus and random block graphs have certain properties with

high probability.

Let us briefly answer the question "Why do we need yet another approach?". While both

previously introduced methods, the combinatorial and the analytic combinatorics approach,

have their strengths, clearly both of them have also some disadvantages.

The combinatorial approach is by its nature problem-tailored and thus one might have to

adapt it already for slightly different graph classes. Moreover, it sometimes only yields rough

upper and/or lower bounds. Finally, it seems to be quite difficult to obtain estimates of

certain parameters as for example the expected number of edges.

The main problem with the analytic combinatorics approach is that it seems to be inherently

difficult to investigate properties, which cannot be directly addressed with (a finite number

of) parameters of the generating functions, such as the maximum node degree, the maximum

size of a biconnected block, or the degree sequence.
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With the new approach we want to address these problems. Our central idea is to analyse

the execution of an algorithm, which samples uniformly at random graphs from the graph

class in question. If we know what properties the "typical" output of such an algorithm has,

then a random member of the considered graph class will also have those properties w.h.p.

On the other hand, from a technical point of view, the analysis may become much easier if

we reconceive, as just described.

More precisely, our approach is based on the analysis of the behaviour of Boltzmann sam¬

pler algorithms (see Section 2.3), and is an extension to a purely generating function based

approach.

Roughly speaking, we proceed as follows: instead of investigating directly the properties

of the graph class, we consider the execution of its corresponding Boltzmann sampler. We

examine how the shape of a sampled object evolves over a run of the sampler and how this

affects the related property. From this knowledge, we can eventually deduce the probability

that a sampled output object has the property in interest.

Consider the sampling process (for technical reasons we will have to modify the sampler

slightly) as drawing random variables from different probability distributions. The outcome

of the variables determines the shape of the output object and as long as the property we are

interested in depends on the shape (which is true for many interesting properties of a graph),

we can define events which have to hold if an object has a certain property. If we can prove

that all these events hold with high probability, we are done. To achieve this, we usually have

to prove tail estimates for the corresponding probability distributions. For further details,

see Chapter 4.



CHAPTER 3

Planar Graphs with given Average Degree

In this chapter we consider planar graphs with given average degree. More precisely, we are

interested in properties of a random planar graph Rntq which is drawn uniformly at random

from the class V(n, [qn\) of simple labelled planar graphs with n nodes and [qn\ edges, where

1 <q<3.

The proof techniques exploited in this section are purely combinatorial; we follow the ap¬

proach of McDiarmid, Steger, and Welsh [MSW05, MSW06] (see also Section 2.1). A key

tool of the method is to show that (\V(n, \_qn\)\/n^)l/n tends to a limit 7(g) as n tends to

infinity. In the subsequent we also study the behaviour of this function in more detail.

Note that some of the results were strengthened by Giménez and Noy [GN05b, GN05a] or

can be improved using their results. We point out if one of our statements below also relies

on their work.

3.1. Previous and Related Work

Planar graphs are well-known and well-studied combinatorial objects in graph theory. Roughly

speaking, a graph is planar if it can be drawn in the plane in such a way that no two edges

cross. A random planar graph Rn is a simple labelled planar graph that is drawn uniformly

at random from the set V{n) of all simple planar graphs on the node set {1,..., n}.

The random planar graph was first investigated in [DVW96] by Denise, Vasconcellos, and

Welsh. They were mainly interested in the following two questions: how can one quickly

generate such a random planar graph Rn, and what does this random planar graph look like?

For the first question there are some satisfactory answers. The first to present an algorithm

that generates a random planar graph (exactly uniformly at random) in (expected) polyno¬

mial time were Bodirsky, Gröpl, and Kang [BGK03], who showed that one can generate a

random planar graph on n nodes in expected time 0(n3) per generation (see [FPS05] for an

explanation) and (9(n7(logn)2(loglogn)) preprocessing time. The algorithm is based on the

decomposition of planar graphs into 1-, 2-, and 3-connected components and a generation

algorithm for random 3-connected planar graphs. Recently, Fusy [Fus05] presented an algo¬

rithm which runs in expected quadratic time for exact size sampling and in expected linear

time for approximate size sampling, thus dramatically improving on the running time. This

new algorithm is based on the principle of Boltzmann samplers (see also Sections 2 and 4).

Denise, Vasconcellos, and Welsh [DVW96] gave a remarkably simple construction of a

Markov chain such that the stationary distribution is uniform over all planar subgraphs

of a given graph G. They defined a Markov chain with state space all planar subgraphs of

G (with the same set of nodes as G) and the following transitions: choose an unordered pair

19
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{i,j} of distinct nodes uniformly at random. If the edge e = {%, j} is present in the current

state then delete it, if not then add it whenever planarity is preserved and {i, j} is an edge

of G, otherwise stay in the current state. With G as the complete graph Kn, this gives

what appears to be a fairly effective way of generating a random planar graph; but it turns

out to be difficult to give a bound on the mixing time - a problem which is still unsolved.

Nevertheless using this Markov chain they could give experimental probabilities for various

properties of the random planar graph; for instance the (corrected) experiments suggested

that the expected number of edges of a random planar graph on n nodes is about 2.2n, which

later turned out to be a good estimate (see [GN05b] and [Noy07]).

There has also been some progress towards answers for the second question about properties

of random planar graphs.

The key step in investigating the behaviour of the random planar graph Rn is to estimate

the number of planar graphs. For the set V(ri) of all labelled planar graphs on n nodes,

McDiarmid, Steger, and Welsh [MSW05] showed that

:— —> 7 as n —> oo,
\ ni J

where 7 is the planar graph growth constant. Note that using the same approach they gener¬

alised their results to a much wider class of graphs in [MSW06].

Giménez and Noy [GN04] improve on earlier estimates [DVW96, OPT03, BGH03] and

show using generating functions and singularity analysis that 7 satisfies 7 f« 27.2269 to four

decimal places. Even more recently they give an explicit analytic expression for 7, and show

that

\V(n)\ ~ g n~i jn n\ (3.1)

where the constant g has an explicit analytic expression and is about 4.97 I0~6 [GN05b]. A

corresponding expression for the number of 2-connected planar graphs was given in [BGW02].

This was a major step towards establishing (3.1), see [Noy07] for an excellent discussion.

To deduce certain properties of the random planar graph McDiarmid, Steger, and Welsh

[MSW05] only needed that there exists such a planar graph growth constant and not its

exact value nor the sub-exponential behaviour. In particular, they were able to show, among

other results, that a random planar graph Rn with high probability (w.h.p., that is, with

probability tending to I as n tends to infinity) contains linearly many nodes of each given

degree, has linearly many faces of each given size in any embedding, and contains linearly

many node disjoint copies of any given fixed connected planar graph. Additionally, and

perhaps most surprisingly, they showed that the probability that Rn is connected is bounded

away from zero and from one by non-zero constants.

In [GN05b] (see also [Noy07]) it is shown that the number of edges \E(Rn)\ is asymptotically

normally distributed, with mean ~ nn and variance ~ An, where the constants k and A have

explicit analytic expressions and n œ 2.213 and A œ 0.4303. In particular this means that

the expected number of edges of a random planar graph on n nodes is approximately 2.2I3n,

which was an open problem for quite some time. Thus the average degree in Rn is about

4.416 w.h.p. Furthermore, Giménez and Noy show in [GN05b] additional limit laws for the
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random planar graph, for instance that the number of 2-connected components in a random

connected planar graph and the number of appearances of a fixed connected planar graph

in a random planar graph are asymptotically normally distributed. Furthermore, using their

results one can strengthen some of the theorems in [MSW05] and the next sections; we point

out where we rely on their work in the subsequent.

Most of these improvements are possible due to rather precise asymptotic expressions for

\V(n, [qn\)\ and connected planar graphs with given average degree \Vc(n, |_<7^J)|, for q e

(1,3), which Giménez and Noy [GN05a] obtained using analytic methods, and we may write

as:

\V(n, [qn\)\ ~ a{q) rr^{q)nn\ (3.2)

and similarly

\Vc(n, [qn\)\ ~ ac(q) n-^{q)nn\, (3.3)

where a(q) and ctc{q) are constants.

3.2. Results

In the following sections we are interested in the class V(n, m) of (simple) labelled planar

graphs on n nodes with m edges, and in particular in V(n, [qn\), where the average degree

is about 2q. Subsequently, we show that for all 1 < q < 3 the random planar graph Rn,q,

which is drawn uniformly at random from the set V(n, \_qn\), has properties similar to those

of a random planar graph Rn. In particular we show the following results:

Theorem 3.1. Let 1 < q < 3, let k be a positive integer, and for a graph G let dk{G) denote

the number of nodes with degree equal to k. Then there exists a constant ctk = ctk{q) > 0

such that

Vr[dk(Rntq)<akn]=e-^n\

Theorem 3.2. Let 1 < q < 3, let k > 3 be an integer, and for a planar graph G let fk{G)

denote the number of faces of size k minimised over all plane embeddmgs of G. Then there

exists a constant ßk = ßk{q) > 0 such that

Vi[fk{Ra,q)<ßkn]=e-Q^.

Corollary 3.3. Let 1 < q < 3 and let H be a fixed connected planar graph, where H must

be a tree if q = 1, and for a graph G let fjj{G) denote the maximum number of pairwise node

disjoint appearances of H contained in G. Then there exists a constant a = a(H, q) > 0 such

that

Pr[/ff(fln,?) < H = e"n(ra)•

Note that this last result implies in particular, that for every e > 0 and any sufficiently

large n, a random planar graph Rn,i+e with [(1 + £)n\ edges contains already a K4 and is

thus 4-chromatic. Moreover the probability of containing a K4 is sufficiently large, that the

algorithm that tests whether
aK4ispresent,andifthisisnotthecasefindsanoptimalcolouring,canbemadetoruninexpectedpolynomialtime.Thereforeonecanfindthechromaticnumberofarandomplanargraphwithnnodesand[qn\,1<q<3,edgesinexpectedpolynomial

time.
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Only recently there was progress towards answering the question whether RnA contains also

a Ki for 0 < g < 1. If 0 < g < 1 and H is a given connected planar graph with more than one

cycle, then with high probability Kn^q has no subgraph isomorphic to H. This was observed

recently by Chris Dowden [Dow06]. Hence, in particular, Rn,q is very unlikely to have a

subgraph K4 for q < 1.

Equations (3.2) and (3.3) from [GN05a] make it possible to strengthen a result of [GMSW05]

about the connectivity of Kn,q-

Theorem 3.4. For each 0 < q < 3, there exists a constant ß = ß{q) > 0 such that

{0
for 0 < q < 1

ac{q)/a{q) for 1 < q < 3

1 for q = 3,

as n —> 00, where the constants ct{q) and ctc{q) are as in Equations (3.2) and (3.3) respec¬

tively.

In addition to the structural properties above, we prove lower bounds of the form

(1 + o(l)) lnn/lnlnn on the maximum node degree and maximum face size in any plane

embedding. Note, that McDiarmid and Reed have recently shown that the maximum degree

is G(logn) w.h.p. [MR].

One of the main tools for the proofs of the theorems stated above is a bound on the number

of planar graphs with a given number of nodes. We show that for all 0 < q < 3, there exists

7(<?) > 0 such that

\V(n, [qn\)\\"
, x ,n A,

j J
- 7(g) as n - 00. (3.4)

(For q = 3, we interpret V(n, [qn\) as the set V(n, 3n — 6) of triangulations.)

This result holds also if we replace \V(n, [qn\)\ by connected planar graphs with given average

degree \Vc(n, [qn\)\ (with the same limiting value 7(g)). Let us first consider properties of

the function 7(g), and then look more closely at the limiting result. Recall that k is the

parameter for the mean of the number of edges of the random planar graph Rn, and 7 is the

planar graph growth constant.

Theorem 3.5. The function j(q) on [0,3] satisfies

(1) 7(g) = 0 for 0 < q < 1, 7(1) = e, 7(k) = 7, and 7(3) = 256/27.

(n) 7(g) is continuous and log-concave on [1,3], and it is strictly increasing on [1,k] and

strictly decreasing on [k, 3].

(in) 7(g) is computable, and analytic on (1,3).

This result is based on Theorem 3.6 below together with the following three important con¬

tributions from [GN05b, GN05a]: (a) The expected number of edges in Rn is ~ nn. (b)

From the discussion in [GN05a] following Theorem 3, the function 7(g) is continuous on the

right at 1 (we do not have a combinatorial proof of this), (c) Part (iii).

Now let us look more closely at the limiting result (3.4), and give two directions in which it

can be strengthened, one allowing more freedom in the number of edges and one being far
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more precise. First, if 1 < q < 3 and m = m{n) satisfies n < m < 3n — 6 and m/n —> q as

n —> oo, then

in^y-^i{q) {35)

This result holds also if we replace V by connected planar graphs Vc. These results follow

from the proof of Lemma 3.15 below, using also the fact that 7(g) is continuous on the right

at 1.

As 7(g) = 0 for q < 1 and 7(1) = e, we know that 7(g) is discontinuous at 1 from the left. We

can 'explain' this discontinuity as we approach 1 from below, by changing scale appropriately.

Working at a scale of n/Inn rather than n for edge numbers, the discontinuity on the left at

1 disappears, see Theorem 3.17 below. The main feature now left open about 7(g) is whether

the slope stays finite as q approaches 1 from above, and approaches 3 from below. We see

in Section 3.4 that this is not the case. More precisely, since the function \{q) = In7(g)

is concave and finite on [1,3], its left and right derivatives exist in (1,3) and are finite and

non-increasing: we show that they tend to 00 as q [ 1 and to — 00 as q | 3.

Finally, we show the existence of a growth constant for connected unlabelled planar graphs

with given average degree, its relation to the labelled planar graph growth constant 7(g), and

that Rn,q has w.h.p. an exponential number of automorphisms.

3.3. The number of planar graphs with n nodes and [qn\ edges

We first introduce some notation some of which was already used in the previous sections.

Let V{n) denote the set of all simple labelled planar graphs on the node set {1,... ,n}. Let

V(n, m) denote the set of all graphs in V{n) with exactly m edges and let Vc{n) and Vc(n, m)

denote the sets of connected graphs in V{n) and V(n, m) respectively.

We are interested here in \V(n, m)\ and in \Vc(n,m)\. Clearly, \Vc(n,m)\ < \V(n, m)\. Let

us use t{n) to denote the number of triangulations \V(n, 3n — 6)|. We are now able to state

the main theorem of this section.

Theorem 3.6. For each 0 < q < 3, there is a finite constant 7(g) > 0 such that, as n —>

00, ifO < q < 3 then both (\Vc(n, [qn\)\/n\)l/n and (\V(n, [qn\)\/n\)l/n tend to j(q), and

(t(n)/n\)l/'n tends to 7(3).

The function 7(g) satisfies

(1) 7(g) = 0 for 0 < q < I, 7(1) = e, 7(3) = 256/27, and 7(g) > 0 for 1 < q < 3.

(11) 7(g) is log-concave on [1,3] and continuous on (1,3].

m

en"

Let us note here part of Theorem 3.6 above, namely that 7(g) = 0 for 0 < q < 1: this follows

from the fact that the number of graphs on n nodes and m edges is at most (^) < ( ^
and so by Stirling's formula

W(n,[qn\)\\ $ ((fÇQ"
=
n*-i^_

_> Q
n\ ) (nne-n) (2Q)q

as n —> 00. Thus in Theorem 3.6 the interest in 7(g) is for q G [1, 3].
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To prove Theorem 3.6 we consider the following graph class. Let C(n, m) denote the set of

planar graphs G on n nodes with m! = m — k(G) + 1 edges, where k(G) denotes the number

of components of G, and let \C(n,m)\ denote the number of graphs in this class. Observe

that if m < n — 2 then \C(n, m)\ =0. Also C(n, n — 1) is the set of all forests on 1,..., n, and

similarly C(n, n) is the set of all graphs on 1,..., n with exactly one cycle. The class C(n, m)

has the advantage over V(n, m) that one remains in the class when adding edges between

components or deleting bridges.

Let \Cc(n, m)\ denote the number of connected graphs in C(n, m). Observe that \Cc(n, m)\ =

\Vc(n,m)\, since both sides count connected planar graphs with n nodes and m edges.

Using a result from [MSW05] we will first prove in Section 3.3.1 that \Cc(n, [qn\)\ >

l\C(n, [qn\)\. With this result we will prove the analogue of the first part of Theorem 3.6 for

the graph class C(n, [qn\). In Section 3.3.2 we will then derive that the first part of Theo¬

rem 3.6 holds for V(n, \_qn\). Proofs of the remaining parts of Theorem 3.6, will be given in

Section 3.4.1 and 3.4.2.

3.3.1. The class C(n, [qn\). We call a non-empty class C of finite graphs weakly addable

if for each graph G in C, any graph that is obtained from G by adding an edge joining two

nodes in distinct components is also in C. We will use the following theorem of [MSW05]:

Theorem 3.7. [MSW05, Theorem 2.2] Let C be any non-empty finite set of graphs, and

let C be weakly addable. Let R denote a graph sampled uniformly at random from C. Then

the random number k(R) of components of R is stochastically dominated by 1 + X where

X has the Poisson distribution with mean 1. In particular, Vi[R connected] > 1/e and

E[k(E)] <2.

Observe that for n — 1 < m < 3n — 6, C(n, m) is weakly addable, and thus the next lemma

is an immediate consequence of Theorem 3.7.

Lemma 3.8. Let n be a positive integer and let n — 1 < m < 3n — 6. Let G denote a graph

sampled uniformly at random from C(n,m). Then the random number k(G) of components

of G is stochastically dominated by 1 + X where X has the Poisson distribution with mean 1.

In particular, Pr[G connected ] > \ and therefore \Cc(n, m)\ > \\C{n,m)\.

We will use Lemma 3.8 to prove a result analogous to the first part of Theorem 3.6 for the

class C(n, [qn\).

Lemma 3.9. For each 1 < q < 3, there exists a constant 7(g) with 0 < 7(g) < 7 such that as

n —> 00, for each q < 3

and

Proof. That t(n)/n\ tends to 7(3) = 256/27 follows from [Tut62] where it is shown that the

number tu(n) of rooted (unlabelled) triangulations satisfies that {tu{n))l/n tends to 256/27 as
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n tends to infinity. The result follows since we can label the nodes in n! ways, and a labelled

triangulation (n > 4) can be rooted in 4(3n — 6) ways, since we have 3n — 6 possibilities for

choosing the root edge, two for orienting the edge, and two for choosing the root face.

For 1 < q < 3, we use Fekete's Lemma which states that if g : N —> R+ is a function such that

g(i + j) > g(i) g(j) for all i,j gN, and c = supng(n)« < oo, then g(n)« —> c as n —> oo.

The proof in [LW92] of Fekete's lemma is easily modified to apply also for functions g with

g(i) = 0 for finitely many i.

Suppose first that 1 < q < 3. We set

\C(n, [qn\)\
g{n,q)

4e2n2nl

Since C(n, [qn\) C V(n) we know that c = supng(n,q)n < 7, so it remains to show that

g(i + J,q) >g(hQ) 9(3,0)-

Let no be the smallest integer such that \C(no, [qno\)\ / 0. Note that there exists a connected

planar graph on n nodes and [qn\ edges for all n > no- Further, as [qn\ > n, we can delete

an edge of such a graph and obtain a connected graph. Assume w.l.o.g. that 1 < j. If 1 < no

then \C(i, [qi\)\ = 0 and therefore g(i, q) = 0 and the inequality holds. Otherwise no <i < j

and we construct graphs on 1 + j nodes with [q(i + j)\ edges and two components in the

following way: first, we select 1 nodes out of 1 + j. Then we choose a connected graph on

ï nodes with [qi\ edges and a second connected graph on j nodes with [<?jj edges. The

resulting graph G has [qi\ + [qj\ edges and two components. We may have to delete an edge

in order to construct a graph in C(i + j, [q(t + j)\), since any graph in C(i+j, [q(t + j)\) with

two components needs to have [q(i + j)\ — 1 edges and

L^J + [q.]\ ~ 1 < [q(i+3)\ ~ 1 < [qi\ + L«J-

If we have to delete an edge, we delete it in the component with 1 nodes and [qi\ edges. To

avoid over-counting we have to divide by 2 as in the case 1 = j we constructed every graph

twice. Moreover we have to divide by i2/2 as we may over-count Q) < î2/2 graphs due to

the deletion of one edge. Thus,

Wi+3M(!+3)\)\ (3-6)

CtJ)|Cc(t,L?»J)l|cc(j,L?jJ)l
>

Ï2

- ^^lc^^J)MC0,L«j)|.
This implies

g(i + j,q) =

\C^ + J,[q^ + J)\)\

Ae2(i+j)2(i + j)\

;\C(i,

\C(hW)\\CU,lqj\)\ J24
4e2i2il 4e2j2j! (î+j)2

> g(hq)g(j,q)

ä
è^ioTT???^^»!^^)!
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as , ]_ y2
> jt^yi = 1. Since (4e2n2)« —> 1 asn —> oo, lim (g(n,q))" = lim (|C(n, |önj)|/n!) <

7 exists. D

Let us check now that 7(1) = e. Since C(n,n — 1) is the set of forests on 1,... ,n we have

|C(n,n — 1)| ~ ean"--2, see [Rén59]. But it is easy to check that \C(n,n)\/\C(n,n — 1)| is

Q(n) and 0(n2), and so 7(1) = e as required.

3.3.2. The class V(n, [qn\). Now let us prove the first part of Theorem 3.6. We will do so

by showing that, for each 1 < q < 3, we have

7(g) < liminf (\V(n, [qn\)\/n\)" and limsup(|'P(n, [qn\)\/n\)" < 7(g),

where 7(g) is as in Lemma 3.9. (We already know about q = 3.)

Lemma 3.10. For each 1 < q < 3

,(„)< liminf fl^''-M>l>y.
Proof. As observed earlier, we have \Cc(n, [qn\)\ = \Vc(n, [qn\)\ < \V(n, |_<7^J)|- Also, by

Lemma 3.8, \\C{n, \_qn\)\ < \Cc(n, [qn\)\ and hence 7(g) < liminf (\V(n, [qn\)\/n\)". D

To prove the corresponding result for lim sup, we first need some helpful estimates that relate

the number of planar graphs to the number of components in these graphs.

Recall that V{n) denotes the set of all labelled simple planar graphs on the nodes 1,... ,n.

Let p{n) denote \V{n)\. Let p(n, < t) denote the number of graphs in V{n) having at most t

components, let p(n, > t) denote the number of graphs in V{n) with at least t components,

and let p(n,t) denote the number of graphs in V{n) with exactly t components.

For C(n, [qn\) and V(n, [qn\) we introduce a similar notation, so for example \C(n, [qn\, <

t)\ denotes the number of graphs in the class C(n, [qn\) with at most t components, and

\V(n, [qn\, > t)\ denotes the number of graphs in V(n, [qn\) having at least t components.

Observe that \V(n, [qn\, k)\ = \C(n, [qn + k — lj, k)\, as both sides count planar graphs with

k components and [qn\ edges.

Lemma 3.11. For all integer k > 1 we have

p(n,> k + 1) < — -p(n)
k\

and

\C{n, [qn\ + k,>k + l)\<-- \C(n, [qn\ +k)\.

Proof. We know from Theorem 3.7 that

i\
iy J ~

k\

e-i 1

p(n, > k + 1) < 22 —P() < ^P(")>

%>k

as

^1T ~~fcT^¥ - ~kT ^ (i-k)l
~

k\'
%>k %>k %>k

v '

By Lemma 3.8, we have \C(n, [qn\, > k + 1)| < J2t>k ^]—|C(n, |_<7^J)|- Now we can proceed

as above. D
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We will later prove a more general version of the next lemma, see Lemma 3.20. Nevertheless,

for ease of exposition we will give here a short proof for the special case needed here.

Lemma 3.12. Let 1 < q < 3. Let c > hi-?-y, and let k = k(n) = \cn/lnn\. Then

Pr[-Rn,ç has at least k + 1 components] = e~n^n'.

Proof. By Lemma 3.11,

\V(n, [qn\,> k + l)\ <p(n,> k + 1) < — p(n).

Hence

\V(n, [qn\, > k + 1)|^ n (1 p{n)

\V(n,[qn\)\ J
~

\k\ \V(n,[qn\)\

But as n —> oo, (&!)« —> ec, by [MSW05] (p(n)/nl)n —> 7, and by Lemma 3.10

liminf (\V(n, [qn\)\/n\)" > 7(g). Hence

f\V(n,[qn\,>k + l)\\"
^ _c 7

hmsup 'L;
—^

< e c-4 < 1,

and the lemma follows. D

Lemma 3.13. Let 1 < q < 3. Then

hmsup (|P(n'J9nJ)l)"< 7(g)-

Proof. Let fco = ko(n) = \n/^/\n.n\. As we know from Lemma 3.12 that \V(n, [qn\,>

ko + 1)| = o(\V(n, |_<7^J)|), we certainly have: \V(n, [qn\)\ < 2 \V(n, [qn\,< ko)\ for n

sufficiently large. Therefore it suffices to show that

By Lemma 3.8 and since we get each connected graph on n nodes with [qn\ +k edges by adding

k edges to an appropriate connected graph with [qn\ edges (at most (^) possibilities), we

have:

\C(n, [qn + k\)\ < e \Cc(n, [qn + k\)\

< e\Cc(n,[qn\)\ (^
-,2\ fc

< e|C(n,M)| (^

Next, \C(n, [qn + k\,k + l)\ < \C{n, [qn + k\, > k + l)\ < ±\C(n,[qn + k\)\ < ^\C(n,[qn+ k\)\

by Lemma 3.11. Summing up we get

-en\2fc
\C(n,[qn + k\,k + l)\ < e (—J \C(n,[qn\)\. (3.7)
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conclude that for n sufficiently largeï

\V(n• [qn\, <fo)\ =

fco-1

fc-0

, [qn + k\, k + 1

(3 7)
<

fco
v-^ fen

fc=l

,\2fc

\C(n,[qn\)\

(\
2fco

YoJ \C{nMn\)\

In In In n

< e vin« |C(n, |_<7^J)I

as (^Pï)fc+1 > (f )fc for k < n. So

i

|P(n, |_<Z«J,< fco)|V 2^L" /|C(n, |_<7J)I V
n! /

~~

\ n\ J
2 In In n

for n sufficiently large, and since e v^" —> I as n —> oo, we are done. D

The first part of Theorem 3.6 follows immediately from Lemmas 3.9, 3.10 and 3.13.

3.4. The function 7(g)

In this section we will investigate the behaviour of the function 7(g) in more detail.

3.4.1. Continuity of 7(g). Here, we will show that 7(g) is log-concave and therefore con¬

tinuous, thus proving more of Theorem 3.6.

The following inequality is useful in several places. We have

\P{n,m + l)\ {m + l)>\P{n,m)\ (3n-6-m), (3.8)

as we have at least (3n—6—m) possibilities to add an edge to a graph in V(n, m) and construct

each graph in V(n, m + I) at most (m + I) times. It follows that if 0 < m\ < ni2 < 3n — 6

then

\V(n,mi)\ < — -\V(n,m2)\
mi!(m2 — mi)!

< (^-) |7>(n,m2)|.
\m2 -miJ

Thus if also 0 < ö < 3 and ni2 — ni\ < ön then since m2 < 3n,

/3e\ôra
|P(n,mi)| < (—J \V(n,m2)\. (3.9)

Lemma 3.14. The function 7(g) zs log-concave on [1,3] and continuous on the interval (I, 3].

Proof. Let I < x < z < 3, and let y = x/2 + z/2. We proceed as in the proof of Lemma 3.9

(see Equation (3.6)), and obtain for even n,

|C(n'M)l
> ~(^)\Cc(n/2,[xn/2\)\\Cc(n/2,[zn/2\)\

n\ n\ ri2 \n/2

1 |Cc(f,m)MCc(i,L-
zn

.2' L 2 J^l l^cV2 ' L 2 J
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But

1 |cc(f,m)iicc(f,Lfj)i
n

2 n\ n\
2- 2-

1
, ,.

1

7(œ) 2 7(^)2

as n —> 00 and so

7(2/) >7(^ 7(*)^

Thus

log 7(2/) > - log 7(0:) + - log 7(2;),

so 7(2/) is log-concave on [1,3).

The above result may be extended to [1,3]. Let 1 < x < 3 and let y = x/2 + 3/2. Let n be

sufficiently large that ^ < ^ — 13, and let n be even. We may form a planar graph G on

V = {1,... ,n} with [yn\ edges, as follows. First partition V into two sets of size ^; then

put a planar graph G\ with [^J edges on the first set and a triangulation on the second set;

and finally add six edges to G\, maintaining planarity. The number of times a given graph

G is constructed is at most (3f). Hence

\V(n, [yn\)\ 1 /n\ \T>(n \xn\\\ +(n

n\
~

n\\%)
'

V2

\n%\.\)\ m ,0 A-6

2- 2-

LTJ)| t{-) (3n)

(3n)

But

as n —> 00 and so

|p(f,m)i t(
W\

2- 2-

(3n)-6 ^7(^)27(3)2

log 7(2/) > - log 7(0:) + - log 7(3).

Since 7(2/) is log-concave on [1,3], it follows that it is continuous on (1,3). Also, 7(g) tends

to a limit at least 7(3) as q increases to 3. But the Inequality (3.9) above shows that this

limit is also at most 7(3). Thus 7(2/) is continuous on (1,3] as required. D

3.4.2. Uniform convergence to 7(9).

Lemma 3.15. Let 1 < a < 3 and let rj > 0. Then there exists no such that for all n>no and

all m with an < m < 3n — 6 we have

\V(n,m)\\ 'n
/m\

7
n\ I V n )

< rj.

Proof. We may assume that rj < 1. We have seen that 7(g) is continuous on (1,3]. Hence

7(g) is uniformly continuous on [a, 3]. Let öo > 0 be such that if x, y G [a, 3] and \x — y\ < öo

then |7(a;) —7(2/)! < f}/5-

Let rj = ^-. By (3.9) there exists an n\ and 5\ > 0 such that if n > n\, 0 < m\ < m,2 < 3n — 6

and m,2 — mi < öin + 1 then

\V(n,mi)\ <(l + r]')n\V(n,m2)\.
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Let ö = min{£o,<5i}- Choose a finite list of points a = qo < q\ < < qu = 3 such that

\q% — qi+i\ < ö. Note that for each a; G [a, 3], if a; G [qt, qt+i], then

\V(n, [xn\)\ >(l-v)n\V(n,[qtn\)\

and

\V(n, [xn\)\ < (1 + rf)n \V(n, [ql+m\)\.

Here we interpret \V(n, [qt+in\)\ as t{n) if ql+\ = 3. Let no > n\ be such that for each

n > no,

\V(n,[qtn\)\\l/n
n\

l{l% <
T]

n\

l/ra

for each i = 0,..., k.

Let n > no, and let an < m < 3n — 6. Let i be such that qtn < m < <?t+in. Then

•|P(n,m)|y/w ^ (1 ^/m^MJ)!'

> (l-V)(7fe)-r?/5)

> 7(m/n) — r?,

and

mn.m)^1/"
^ (1 + r?on^,k+mJ)h1/ra

n! n!

D

< 7(m/n) + r?.

This completes the proof of Lemma 3.15.

3.4.3. The Slope of 7(g).

Theorem 3.16. The slope of ^{q) tends to 00 as q j 1 and to —00 as g | 3.

Proof. First we consider the case q j 1. For a planar graph G, let add(G) be the number

of edges e that can be added to G such that G + e stays planar; and let add(n, m) be the

minimum value of add(G) over all graphs G G V(n, m). Observe that

\V(n,m)\ add(n,m) < \V(n,m + 1)| • (m + 1),

as we have at least add(n, m) possibilities to add an edge to a graph in V(n, m) and construct

each graph in V(n, m + 1) at most m + 1 times. Thus

m + 1

|P(n, m)\ < \V(n,m + l)\

and

|P(n, m)\ < \V(n, m + k)\

< \V(n,m + k)\-

as add(n, m) is monotone decreasing in m.

add(n, m)

(m + k) ... (m + 1)

add(n, m + k — 1) •

...

• add(n, m)

(m + k)k
(add(n, m + k))k'

(3.10)
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Figure 1. Octahedron, embedded in the plane.

It follows from Theorem 1.2 in [GM04] that, for any constant K > 0 there exists ö > 0 (with

ö < 1) and no such that add(n, m) > 2Kn for all n > no and all 0 < m < (1 + £)n. Thus if

0 < s < t < 5 then

(3io) /(i + s)ri\ LH-KJ

|7>(n,L(l + *)nJ)| <

(^L2^rJ |7>(n, L(l + i)nJ)|

< jr(*-*)»+i \V(n, L(l+*)nJ)|,

as \_tn\ — [sn\ >tn — l — sn and (1 + $)/2 < 1. Hence using (3.4), dividing by n!, taking the

n-th root, and taking the limit yields

7(1 + s) <K-{t-s) 7(1+*).

Thus X(q) = In 7(g) satisfies

A(l±^A(l±i)>ln^
t-s

Hence the left derivative of X(q) at 1 +1 and the right derivative of X(q) at 1 + s are at least

\nK. Thus the slope of X(q) tends to 00 as q | 1, as required.

Now, consider the case q | 3. Let H be the octahedron (see Figure 1), embedded in the

plane. In [RW88] it was shown that there exist no and rj > 0 such that for all n > no, at

least half the triangulations Tn on n nodes contain at least r]n pairwise node disjoint induced

copies of H. Let 0 < e < rj. (Think of e <C rj.) For each such Tn choose [en\ pairwise node

disjoint induced copies of H and delete the lexicographically first edge on the cycle bounding

the 'inner face' (in the unique embedding). This yields at least

era—1

\[en\) ~ \e)

graphs in V(n,3n — 6 — [en\), as () > (^) . Further, each such graph is 3-connected since

H less an edge is 3-connected, and so by Whitney's theorem [Whi32] each has a unique

embedding on the sphere. It follows that the generated graphs are all distinct. Thus

/fi\en-l 1

|P(n,3n-6- [en\)\ > f-J -|P(n,3n-6)|

and so dividing by n!, taking the n-th root, and taking logarithms yields

1
ln
nV(n,3n-6-[en\)\\

^ ^
,rn

+
1
^

f\V(n, 3n - 6)|

n \ n\ l \e/ n \ n\

Hence, taking the limit and by Equation (3.5) we obtain

A(3-e) >ela(J) +A(3).
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A(3-e)-A(3)
, fn\ ,

,1
v ; w

> In - = In r] + In

Thus

A(3-.

e \e/
'

e

But this holds for each 0 < e < rj. As the right hand side tends to oo as e j 0, this completes

the proof. D

3.4.4. Discontinuity at 7(1). Recall from Theorem 3.5 that 7(g) = 0 for 0 < q < 1 and

7(1) = e. The next result shows that this discontinuity vanishes as we approach 1 from below

if the scale is changed appropriately.

Theorem 3.17. Let ß > 0 be a constant. If m = m(n) = n - (ß + o(l))(n/lnn) then

\V(n,m)\
n\

e1 ^
as n —> 00.

We may now see that the result (3.5) concerning convergence for q e [1,3] can be extended

to all of [0, 3], as long as we insist that if q = 1 then either m > n for all sufficiently large

n, or (1 — m/n) Inn —> 0 or —> 00 as n —> 00. This follows immediately from Theorem 3.17,

as the arguments given in the proof of Theorem 3.16 imply that for 0 < m < n we have

\V{n,m)\ < \V(n,m + l)\.

Theorem 3.17 is a special case of the following rather general theorem. To state the theorem

we need the following definitions. A set A of labelled graphs, closed under isomorphism, is

called small if there exists a constant C such that the set A{n) of graphs in A on the node

set {1,..., n} has size at most Cnn\ for sufficiently large n. Recall that the class A is called

weakly addable if for each graph G in A, if u and v are nodes in distinct components of G, then

the graph obtained from G by adding an edge joining u and v is also in A. (See [MSW06]

for the definition of addable.) Note that the class V of planar graphs is small and weakly

addable, and, as seen before, the class V(n, m) is small but is definitely not weakly addable

(which makes it harder to deal with).

Theorem 3.18. Let Abe a small weakly addable set of graphs containing the set T of forests,

and let A(n, m) denote the set of graphs in A on the node set {1,..., n} with exactly m edges.

Let ß > 0 be a constant. If m = m{n) = n — (/? + o(l))(n/lnn) then

|.A(n,m)|\» !_«
;

—> e
M

as n —> 00.

n\ J

Note that A can be very different from V, with a different growth constant.

In order to prove Theorem 3.18, and thus Theorem 3.17, in the next lemma we count forests

with m edges, and general graphs with m edges and few components. After that we check

that usually
agraphinA(n,m)willnothavetoomanycomponents,sothatwecanusethelastresult.LetQ(n,m)denotethesetofallgraphsonthenodeset{1,...,n}withexactlymedges,letF{n)denotethesetofforestsonnodeset{1,...,n},andletF{n,m)denotethesubsetoftheseforestswhichhaveexactlymedges.LetJFc(n)denotethesetofconnectedforests(i.e.trees)onnnodes.RecallthatforagraphGwedenotebyk{G)thenumberofcomponentsofG.
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Lemma 3.19. Let m = m{n) and k = k{n) be integers such that 1 <n — m < k = o{n). Then

|^(n,m)|=emlnra+o(ra)

and

\{G G Q{n, m) : k(G) < k}\ = emlnn+<nl

Proof. If G g Q(n, m) and k(G) < k then G contains a forest with n — k edges, and we may

obtain G by adding m — n + k edges to this forest. Thus

\{GeÇ(n,m):K(G)<k}\<\F(n,n-k)\ ( ^
).

\77l — ft ~\~ KJ

Also, by Theorem 3.7 (Theorem 2.2 of [MSW05]) we have \F{ri)\ < e\Fc{ri)\ and \T{n,n-

k)\ < \J7(n)\/(k — l)\ (see also Lemma 3.11 above). Observe that by Cayley's famous formula

for the number of trees on n nodes, we have ^(n)! = nn~2, hence

\F(n,n-k)\ <

(k-iy:

Moreover, observe that if t = t{n) = o{n) then

ln(n/£)
,

.

,

t\nn-t\nt = n
K '

=o{n). (3.11)

enn 2 enn 2 eknn 2

Now, as k = o{n) we have

(A;-1)7 "

[h^kf-1
~

(k-l)k~l

= exp((n - 2) In n + k - (k - 1) ln(fc - 1))

< exp(n In n — A; In A; + o(n))

= exp((n — A;) Inn + A; Inn — A; In A; + o(n))

= exp((n — k) In n + o{n))

by Equation (3.11). Thus

\{GeÇ(n,m):K(G)<k}\ < \F(n,n-k)\ ( ^
\ m — n ~r k

n—9 / 9 \ m—n-\-k
enn

z

/ enz
N

<

(fc-1)! \2{m-n + k)/

< e(n-fc) Inn+o(n) p(k-n+m)(ln fc_^+m+lnra+ln f )
_

Note that m — n + k = k — (n — m) = o{n) and hence by Equation (3.11)
n

(A; — n + m) In = oin).
k — n + m

Hence

|{GeÇ(n,m):K(G)<fc}| < exp((n — A;) Inn + (A; — n + m) Inn + o(n))

= exp (m In n + o(n)).

But since 1 <n — m < k, and by Cayley's formula

|{Geg(n,m):K(G)<fc}| > |^(n,m)| > \F{m + l,m)| = (m + l)m_1

= exp(mlnn + o(n)),
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where the last equality holds as m ~ n. This completes the proof of both inequalities in the

lemma. D

Next we check that, with conditions as in Theorem 3.18, usually there will not be too many

components, so that we can use the last result.

Lemma 3.20. Let A be a small weakly addable set of graphs containing the set T of forests.

Let the constant 7 be such that \A(n)\ = 0(^nn\). Let ß > 0 be fixed, and let m = m{n) =

n — (/? + o(l))(n/lnn). Let the constant c > 0 satisfy c > ß + In7 — 1. Then, for Kn,m

uniformly distributed over A(n,m),

Pr[K(Rn>m) > en/Inn] = e"n(ra). (3.12)

Proof. Let k = k(n) = \en/ Inri\. Then

|{G G A{n,m) : k(G) > k}\ < \{G G A{n) : k(G) > k}\ <
'^^

k\

by Theorem 3.7 (Theorem 2.2 of [MSW05]). Assuming m < n — 1,

\A(n,m)\ > \F{n,m)\ > \F{m + l,m)\ = (m + l)m_1

as we saw above. Hence, since kink > -^ In ^ = ïf^(lnc + Inn — In Inn) = en + o(n),

|„4(n)| < a7ran! for some constant a, and (m + l)m_1 = exp(mlnn + o(n)),

PMRn,m)>k] <
KG^.):K(G)>m

<

<

\A{n,m)\

\A{n)\

k\{m + l)m-1

a^nn\

fk\k em\nn+o(n)

= exp (n In n — n + n In 7 — A; In k — (n — /3n/ In n) In n + o(n))

= exp(n(-l + hi7-c + /3 + o(l)))

= e-n(n)

by our choice of c. D

Now we are able to prove Theorem 3.18.

Proof of Theorem 3.18. Let c be as in Lemma 3.20. Then for n sufficiently large

1

and so

Pr[K(JRra>m) > en/Inn] <

\A(n,m)\ < 2\{G G A(n,m) : k(G) < en/Inn}\

< 2\{GeÇ(n,m) : k(G) <cn/lnn}|

m In n+o(n)
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X

Figure 2. The graph H, an appearance of H, and a non-appearance of H.

by Lemma 3.19. Now, since \A(n, m)\ > |JF(n, m)|, we may use Lemma 3.19 again to get

\A(n, m)\ = emlnn+°(.n). Finally, for m as given,

„m In n-\-o(n) \ n

n!
exp I — (mlnn — nlnn + n + o(n)) ) = e1 /3+0(-1-)

which completes the proof. D

3.5. Degrees, Faces, Subgraphs and Connectivity

To prove structural properties of the random planar graph with n nodes and [qn\ edges, for

instance degree, face, and subgraph properties, we start by proving a more general result.

First we define what it means for a graph H to appear in a graph G, following [MSW05].

Let H be a graph on the node set {1,..., h}, and let G be a graph on the node set {1,..., n}

where n > h. Let W C V(G) with \W\ = h, and let the root rw denote the least element

in W. We say that H appears at W in G if (a) the increasing bijection from {1,..., h} to

W gives an isomorphism between H and the induced subgraph G[W] of G; and (b) there

is exactly one edge in G between W and the rest of G, and this edge is incident with the

root rw- See Figure 2 for an example. The marked subgraph in the figure on the right is a

non-appearance of H; in fact it conflicts with both conditions (a) and (b) that have to be

met by an appearance: the increasing bijection from {1,..., h} to W is not an isomorphism

as required, and there is more than one edge between W and the rest of G.

Let fn{G) be the number of appearances of H in G, that is the number of sets W ç V(G)

such that H appears at W in G.

Theorem 3.21. Let 1 < q < 3 and let H be a fixed connected planar graph on the node set

{1,..., h}, where H is a tree if q = 1. Then there exists a = a(H, q) > 0 such that

PT[fH(Rn,q) < an] = e-Q(n)_ (3.13)

Before giving a proof for this theorem, let us note that it implies Corollary 3.3 - a similar

statement but for pairwise node disjoint copies of a subgraph in Rn,q- Given a graph G, let

W be the collection of all sets W ç V(G) such that H appears at W in G: then each set

W G W meets at most h — 1 other sets in W, as the root of W has to be contained in each

appearance that meets W and the root of H can be connected to at most h — 1 cut edges.

Thus there is a set of at least |W|//i pairwise disjoint sets W G W.
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Note, that if 0 < q < 1 and H is a given connected planar graph with more than one cycle,

then with high probability Rn,q has no subgraph isomorphic to H. This was observed recently

by Chris Dowden [Dow06].

However, the last theorem implies that, if we fix any q with 1 < q < 3, then for large n, a

random planar graph Rn>q is very likely to contain a K4 and thus be 4-chromatic. Moreover

the probability of containing a K4 is sufficiently large, that one can find an optimal colouring

in expected polynomial time in the following way, as noted in [MSW05]. We may first test in

linear time (see [PY81]) whether a K4 is present. If a K4 is present, we apply the quadratic

time algorithm to four-colour planar graphs which follows from the proof of the four-colour-

theorem [RSST97]. If no K4 is found, which happens with probability e~n(-n\ we apply the

y^-separator theorem to colour the graph optimally in subexponential time 0(0^) [LT79].

Therefore one can find the chromatic number of a planar graph with n nodes and [qn\ edges

in quadratic expected time.

Proof of Theorem 3.21. We shall follow the lines of the proof in [MSW05] of Theo¬

rem 4.1 there, except that now we need to control the numbers of edges in the graphs we

construct. (In [BGR92] a similar approach, together with generating functions, can be found

for proving an analogous result for submaps of maps.)

We shall choose (small) positive a (see below for the precise value) and prove that, for n

sufficiently large,

Pr[fH(Rn,q) < an] < e~an. (3.14)

For each e > 0, there is a positive integer no = no{e) such that for each n > no we have by

Theorem 3.6

(l-e)nnhf(q)n < \V(n, [qn\)\ < (l+e)nnhf(q)n. (3.15)

Assume that Equation (3.14) does not hold for some chosen e and some n > no- We intend

to show that then for some suitable ö > 0 and h ~ (1 + S)n we have

\V(n,[qn\)\>(l + eyh n\ 7(#,

contradicting (3.15).

Let us first sketch out roughly how we will achieve this contradiction, by constructing many

graphs G' in V(n, [qn\) on the node set {1,..., n}: later we shall return to fill in some more

details. First we choose a subset of h — n ~ ön special nodes ((") choices) and a graph

G G V(n, [qn\) on the remaining n nodes that satisfies fn{G) < an. By assumption there

are at least

e~an \V(n, [qn\)\ > e~an(l - e)nj(q)nn\

such graphs G.

Next we consider the special nodes. We can construct about ^ disjoint copies of H with these

nodes. Then we connect these copies to
G,eachbyasingleedge,tobuildthegraphG1.Nowacountingargumentasin[MSW05]showsthatwehavebuiltmorethan(1+e)nh\^{q)ndistinctplanargraphswithnnodesand[qn\edges,thusyieldingthedesiredcontradiction.ThekeypointinthecountingargumentisthatwecanshowthateachgraphG'isnotconstructedtoooften,sinceGhadfewappearancesofH.
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However, we have to be careful about the number of edges in G'; as H can be an arbitrary

connected planar graph, the construction will not in general lead to [qn\ edges in G'. In this

case, instead of directly dealing with Ü, we build connected planar graphs üi and H2, which

contain H as an induced subgraph and which yield the correct number of edges in G' when

we connect them to G. If we can show that such graphs Hi and H2 must always exist then

we can proceed as in the proof of [MSW05], replacing H by Hi and H2.

Let H have nig edges. If (m# + l)/h = q then we may just use H. For if G has n nodes and

[qn\ edges, and we add a disjoint copy of H together with one edge between H and G, the

resulting graph has n + h nodes and [qn\ + m# + 1 = [q(n + h)\ edges. Note that this case

must hold if q = 1 and H is a tree. If (m# + l)/h ^ q we form üi and H2 as follows.

Let a; be the least integer at least 3 such that

x + niH + 2
n

3a; — 7 + m# + 2
< g and > q.

x + h x + h

\-mH-jThen let y be the greatest integer such that y+T?i+ < Q- Since 1 < q < 3 these constants x

and y must exist. Observe that x < y < 3x — 7, and if we set <?i = y+_5^~2 and <?2 = y+^V^+3
then qi < q < q2-

To build the graph Hi, we start with a copy of if on the nodes x + 1,..., x + h. Then we

take a connected planar graph ü{ on the nodes 1,..., x with y edges, and connect this graph

to H by adding an edge between nodes 1 and x + 1. Observe that Hi has hi = h + x nodes

and mux = mh + 2/ + 1 edges. Since y < 3x — 7 we can form a planar graph H2 by adding

an edge to H[. Let if2 be formed as above but with H2 instead of H[.

Now that we have seen how to construct the graphs Hi and Ü2, let us return to describe the

proof in more detail. The constants a, ß and e may be taken exactly as in [MSW05] except

with h replaced by hi, i.e. let ß = e2^f(q)hl(hi+2)hi\ and a = a(H, q) < l/(c(ü, q)^{q)hl{hi +

2)/&i!) for a constant c{H,q) > e2; this implies that aß < 1 and we may therefore write

(a/3)a = 1 - 3e, where 0 < e < \. Note that

l-Ç^-
-^ > 1. (3.16)

(l-3e)(l+e)2
v ;

Similarly we take ö = ahi. Let k = [an\, and let n = n + Mi.

We construct graphs G" in V(n, [qn\) on the node set {1,... ,n}, as follows. Let ki be the

integer such that

ki = [qn\ - [nq\ + fc(m# + y + 3).

Note that 0 < ki < k by the choice of y as

fl Ti

k(niH + y + 3) = — (m# + y + 3) = (n - n)<?2 > (n - n)q
hi

and the statement follows by the integrality of the terms in question. First we choose a subset

of khi ~ £n nodes as special nodes and a graph G G P(n, |_<7nJ) on the remaining n nodes

that satisfies fn{G) < an. Next we partition the Mi special nodes into k blocks B of size

hi. Let tb be the node with the smallest label over all nodes of the block B. Consider the

blocks ordered by increasing value of the root node: divide the blocks into two sets of sizes ki

and k — ki, the first ki blocks in the order and the rest. On each of the first ki blocks B, we

put a copy of Hi such that the increasing bijection from {1,..., hi} to B is an isomorphism
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between Hi and this copy. We do the same for the second set of k — hi blocks, except with

H.2 instead of Hi. To connect each block ß to G, we choose a non-special node vb in G and

add an edge between vb and vb-

This completes the construction of the graph G'. The number of edges in G' is [qn\ as

ki{mn + y + 2) + (k - ki){niH + y + 3) = [qn\ - [qn\.

Thus indeed G' is in the set V(n, [qn\), as required.

To complete the proof by a counting argument, we proceed as follows (we shall write x instead

of [x\ or \x] in the subsequent to avoid cluttering formulae). For each choice of special nodes,

and each G e V(n, [qn\) on the remaining n nodes, we construct

( an \ 1
=

(ön)\nan
>

{5n)\

\hi---hj (an)l (hi\)an(an)l
~

(hi\a)an

graphs G1.

For considering how often the same graph G' is constructed in this way, we introduce the

following notation: we call an oriented edge e = uv good, if

• it is a bridge in G',

• the component C of G' — e containing u has hi nodes,

• u is the root of C,

• and the increasing bijection of {1,..., hi} to the node set of C is an isomorphism between

C and Hi or H2.

Observe that each added oriented edge vbVb for connecting a copy of Hi or H2 to G is good.

Indeed there is exactly one good oriented edge for each appearance of Hi or H2 in G'. We

shall see that G' contains at most (hi +2)an good oriented edges and so the number of times

that G' can be constructed is at most ({hl^an) < ((hi + 2)e)an.

We may obtain a bound on the number of good edges in G' as follows: (a) By the construction

of G' we added exactly an oriented good edges vbVb- (b) By assumption G contains at most

an appearances of H and hence also at most an good oriented edges e = uv G E(G). (c)

If Hi or H2 contains a cut-edge, some 'extra' good edges may arise in G' when connecting

Hi (or H2) to G (see Figure 3): Consider a block B, and let B denote the connected graph

formed from the induced subgraph G'[B], which is isomorphic to Hi (or H2), together with

the node vb and the edge vbVb- Each good oriented edge must be a cut-edge in such a graph

B oriented away from vb, and in each graph B there are at most hi cut-edges. Thus there

are at most h\cm additional good oriented edges.
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G Hx

Figure 3. If a cut-edge in LL\ exists, some 'extra' good edges may arise if Hi

is connected to G.

Putting the above results together we obtain

|7>((l + *)n,L?(l + *)nJ)| > ((1^)n) e-°"(l - £)»7(?)nn! j^^ ((Äi + 2)e)"

= l(l + ö)n]\ 7((?)(1+<5)ra (l-e)n [e21(q)h'(hi+2)hi\ay
(3 15) ,-, ^

> \V((1 + S)n, [q(l + S)n\)\ (1 + e)-^^ (1 - e)n (1 - 3e)"

> \V{{1 + Ô)n,[q{l + Ô)n\)\f 1~£

-an

(l-3e)(l+e)2

(3>6) \V((1 + Ö)n,[q(l + Ö)n\)\,

yielding the desired contradiction. D

By choosing appropriate graphs H and applying Theorem 3.21, we can deduce Theorems 3.1

and 3.2, arguing as in [MSW05]. For Theorem 3.1 we let H be a star on the nodes 1,..., k + 1

with centre at node k + 1. For Theorem 3.2 we let H be a fc-cycle on the nodes 1,..., k.

We now turn to copies in Rn,q of a p/ane graph _ff, that is of a graph H embedded in the

plane. What does it mean for H to 'appear' in R^q7- Let H and G be two plane graphs.

Let us say that H appears in G at the node set W ç V(G), if (a) the underlying graph of

H appears at W in the underlying graph of G, (b) there is a continuous deformation of the

plane taking H to the induced plane subgraph G[W] of G, and (c) no node of V(G) \ W is

contained in an interior face of G[W]. By arguing as in the case of Theorem 3.2 (see also

[MSW05]) we may obtain the following proposition.

Proposition 3.22. Let H be a connected plane graph. Let fn{G) denote the function which

counts for a planar graph G the maximum over all embeddmgs of G of the number of pairwise

node disjoint appearances of H. Let 1 < q < 3. Then there exists a constant a = a(H, q) > 0

such that

P4MRn,q) < an] = e~n^.

If H is 3-connected then the claim remains true if fn{G) is defined by minimising over all

embeddmgs of G.

Next we prove lower bounds on the maximum degree and maximum face size in a plane

embedding. Note, McDiarmid and Reed have recently shown that the maximum degree is

0(logn) w.h.p.
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Theorem 3.23. Let 1 < q < 3. Then with high probability, in Rntq there is a set of at least

(1 + o(l)) Inn/ In Inn pendant nodes with a common neighbour which lies on a triangle.

Proof sketch. The proof is essentially the same as the one of Corollary 5.3 in [MSW06],

thus we only give a short proof sketch here.

For each G e V(n, [qn\) we consider the set W of nodes of degree 1 which are adjacent to a

node in a triangle. By Theorem 3.21 we know that there exists a > 0 such that Rn^q contains

at least an such nodes with probability tending to 1 as n —> oo.

Now, let H denote the graph induced on the nodes not in W. Then the maximum number

of edges in RnM between a node in H and the nodes in W has the same distribution as the

maximum bin load when we throw \W\ balls independently at random into n' bins, where

n' denotes the number of nodes in triangles in H. But a well-known result concerning balls

and bins shows that if we throw at least an balls into at most n bins, then the maximum bin

load is (1 + o(l)) Inn/ In Inn with high probability and the result follows. D

We can extend the last theorem as follows.

Theorem 3.24. Let 1 < q < 3, and let e > 0. For each n let Tn be a tree with at most

(1 — e) Inn/ In Inn nodes. Then with high probability in RnM there is an appearance ofTn.

Proof. Let k = k{n) = [(1 — e) lnn/lnlnnj. Suppose that the probability that Tn fails to

appear in RnA is at least ö > 0 for infinitely many n. By Theorem 3.23 there is an no such

that for each n > no, with probability at least 1 — 5/2 there is a set of at least k + 1 pendant

nodes in Rntq with a common neighbour v which lies on a triangle. Let n\ > no be such that

2/k < ö for each n>n\.

Let n > m be such that the probability that Tn fails to appear in Rn,q is at least 6. Then

we shall show that 6 < 2/k, a contradiction which will complete the proof.

Let S be the set of graphs G in V(n, [qn\) such that there is a set of at least k + 1 pendant

nodes with a common neighbour vg which lies on a triangle, and the tree Tn fails to appear.

Thus \S\ >ö/2 \V{n,[qn\)\.

Let G G S. Choose a set W of k of the pendant nodes adjacent to vq (there are at least k

ways to do this), and use them to form an appearance of Tn with root adjacent to vq- Clearly

we may recover the graph G from the new graph. Hence

\V(n, [qn\)\ > k\S\ > kô/2 \V(n, [qn\)\,

and so ö < 2/k, as required. D

Clearly, in every embedding of Rn,q one face has to contain the entire tree Tn, and thus we

obtain:

Corollary
3.25.Let1<q<3.WithhighprobabilityeveryplaneembeddingofRnAcontainsafaceincidentwithatleast(1+o(l))lnn/lnlnndistinctedges,andwithfacialwalkoflengthatleast(2+o(l))Inn/InInn.
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Finally, let us consider the connectedness of Rn,q- Note first that Pr[Rn,q is connected] = 0

for 0 < q < 1, as in this case [qn\ < n — 1 for n sufficiently large. For q = 3 we consider

triangulations which are clearly connected. For the remaining interval 1 < q < 3, we know

from (3.2) and (3.3) - strengthening a result of [GMSW05] - that Pr[Rn,q is connected]

tends to the positive constant ctc{q)/ct{q) as n —> oo.

The remaining case is when q = 1. Let us check that here the probability of being connected

tends to 0 as n —> oo. To see this, note first that \F{n,n — 3)| > (!f) \Tc{n — 2,n — 3)| =

(2) (n ~~ 2)ra_4 = Q(nn~2). If we add any three edges to a forest the graph obtained must

be planar, and each planar graph in V(n, n) can be obtained at most n3 times in this way.

Hence \V(n, n)\ = Vt{nn+l). But each graph in Vc(n, n) can be obtained by adding an edge to

a tree, so \Vc(n,n)\ < nn~2 (2) = 0{nn). Thus indeed \Vc(n,n)\/\V(n,n)\ —> 0 as n —> 00,

as required. Summarising the above, we get Theorem 3.4.

3.6. Unlabelled Graphs and the Number of Automorphisms

Next we turn to the number of automorphisms, unlabelled planar graphs and to the relation

between the growth constants of labelled and unlabelled planar graphs. First, we introduce

some more notation. We let aut(G) denote the number of automorphisms of a graph G. Let

UV{n) denote the set of unlabelled planar graphs on n nodes, let WP(n, m) denote the set of

unlabelled planar graphs on n nodes with exactly m edges, and let WPc(n, m) denote the set

of all connected graphs in WP(n, m).

It is shown in [DVW96] that

\UV{n)\l'n^lu (3.17)

as n —> 00, where 7« is the unlabelled planar graph growth constant. (We do not divide

by n\ for unlabelled structures.) Here we show that there is a growth constant 7^(9) such

that \WPc{n, Yqn\)\l/n —> j^(q) as n —> 00. It remains open to show the existence of such a

constant for WP(n, [qn\).

Theorem 3.26. For each 1 < q < 3 there is a finite constant 7^(9) > 0 such that

\UVc(n,lqn\)\^^Yu(q)

as n —> 00.

The proof follows closely the approach of [DVW96] and uses some ideas of the proof of

Theorem 3.6.

Proof. For q = 3 we interpret WPc(n, [qn\) as UP(n,3n — 6), i.e., the class of unlabelled

triangulations on n nodes, and the result follows from [Tut62] (and the constant is 256/27).

So, assume q < 3. To prove the theorem we again want to apply Fekete's Lemma. Recall

that it states that if g : N —> R+ is a function such that

g{i + ])>g{i) g(j) (3.18)

for all 1, j G N, and c = supng(n)« < 00, then g(n)« —> c as n —> 00. As mentioned before,

the proof in [LW92] of Fekete's lemma is easily modified to apply also for functions g with

g(i) = 0 for finitely many 1.
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Figure 4. G\ * G2. The directed edge connects the first with the second root.

Instead of arguing about WPc(n, [qn\), we consider a new graph class of connected hirooted

unlabelled planar graphs B(n, [qn\) on n nodes with [qn\ edges, together with a binary

operation on this class for merging two graphs. The class B(n, [qn\) is defined as follows:

take a graph mUVc(n, [qn\), choose an edge of the graph and call one end-node the first root

r\ and the other end-node the second root r2. Note that \B(n, [qn\)\ = 2[qn\ \WPc(n, [qn\)\.

Moreover, by (3.17), \UVc(n, [qn\)\ < \UV{n)\ = (ju + o(l))n, and so supra \UVc(n, [qn\)\n <

00.

We define the following binary operation * on graphs in B(n, [qn\). Given two graphs G\ e

B(rii, [qrii\) and G2 G £>(n2, |_<7^2j) we construct a new graph G = G\ * G2 by creating an

edge between the first root of G\ and the second root of G2 and another edge between the

second root of G\ and the first root of G2. The first root of G\ becomes the first root of G

and the second root of G2 becomes the second root of G; see Figure 4.

Observe that G has |_<7^iJ + l_<7n2j + 2 edges. As |_<7^iJ + [Qn2\ < [q(n\ + ri2)\ < [qn\\ +

[qri2\ + f, we have to delete I or 2 edges to obtain a graph in B{n\ + ri2, [q(ni + «2)])- We

do so by deleting edges in G\. If n\ > no = \l/(q — 1)1 then we can always do this without

disconnecting G or deleting the root edge.

Observe that if G = G\ * G2 = G'x • G'2, then G\ = G'x and G2 = G'2, as we find G\ and G2

by deleting the edge between n and V2
- the roots of G - and finding the middle edge of the

unique path of length 3 connecting n and V2- The first root of G2 and the second root of G\

are then the endpoints of this edge. Thus

\B{m+n2,[(t{ni+n2)\)\ >
|g(ni,[gni])||g(n2,[gn2])|

nj/8

where we divide by nf/8 >

in G\.

We set

to avoid over-counting due to the deletion of 1 or 2 edges

g(n,q)
\B(n,\qn\)\

2ra4

0

for n>no

otherwise.

Now we use the binary operator * as defined above to verify that g(n, q) satisfies Inequality

(3.18). Let n = ni+n2. W.l.o.g. ni,n2 > no as otherwise Inequality (3.18) clearly is fulfilled.
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Also, w.l.o.g n\ < ri2- Then

=

|ß(n,M)l

>

2n4

\B(ni,[qni\)\\B(n2,[qn2\)\2nl
nj/8 2n\ 2n4

> g(ni,q) g(n2, q),

as «2 > f.

It follows from Fekete's lemma that g(n, q) tends to a limit as n tends to infinity. Hence

\B(n, [qn\)\, and so also \WPc(n, [qn\)\« ,
tend to the same limit, which we denote by 7„(<z);

and the proof is complete. D

The next theorem shows that Rn,q has with high probability an exponential number of auto¬

morphisms.

Theorem 3.27. Let 1 < q < 3. There are constants a, ß, 7 > 0 suc/i £/ia£

Pr[2ara < &ut(Rntq) < 2ßn] = 1 - o{2-^n).

Proof. We mimic the proof of the corresponding result for Rn (Theorem 4.6 in [MSW05]).

Let H be the graph on the node set {1,2,3} with the two edges {1,2} and {2,3}. Then the

number of automorphisms aut(G) is at least 2-^(G) where as before f^{G) is the maximum

number of pairwise node disjoint appearances of H in G. Thus by Corollary 3.3, there are

constants a, 7 > 0 such that

Pr[aut(ik,g) <2an] =o(2-Tra).

Now consider the upper bound on &ut(Rntq). Let ß > 0 satisfy 2/3_7 > 7^/7(9). The

isomorphism class of a graph G in V(n, [qn\), i.e., the set of graphs in V(n, [qn\) isomorphic

to G, has size n!/aut(G). Thus if aut(G) > 2/3ra then the isomorphism class of G in V(n, [qn\)

has size at most nl/2ßn. Hence

2ßn
\UV(n, [qn\)\ > \V(n, LgnJ)|Pr[aut(ik,g) > 2ßn

ni

and so

Pr[aUt(ft,a) > 2*] < iff"'?-1^", 2-*
\V(n, [qn\)\/n\

<
\UV{n)\ 2_ßn

~

\V(n, [qn\)\/n\

(=7) (^ 2-^ + 0(1)

= 0(2"^),

by choice of ß. D

Corollary 3.28. Let 1 < q < 3. T/ie labelled planar graph growth constant 7(g) and the

unlahelled connected planar graph growth constant ^ca{q) satisfy 7(g) < ^ca{q).
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Proof. We follow the proof of Corollary 4.7 in [MSW05].

Again we use the observation that the isomorphism class of a graph G in V(n, [qn\) has size

n!/aut(G). Thus for constants a > 0 and 7 > 0 as in Theorem 3.27 the number of graphs

which are in isomorphism classes of size > 2~ann\ is at most 2~'fn\V(n, [qn\)\, which by (3.2)

and (3.3) is at most ^\Vc(n, [qn\)\ for n sufficiently large. Hence, at least half of the graphs

in \Vc(n, [qn\)\ are in isomorphism classes of size at most 2~annl implying that

\UVc(n, [qn\)\ > ±\Vc(n, M)|/(2"«ran!),

that is

|Pc(W;[gWj)l<21-HZ^c(n,LgnJ)|.
It follows from (3.5) and (3.3) that j(q) < 2~a-icu{q). D

It is known ([BGW02], proof of Theorem 3) that the probability that the number of auto¬

morphisms of a graph with n nodes exceeds a given value is non-decreasing as we move from

labelled to unlabelled graphs. Hence we obtain the following corollary.

Corollary 3.29. Let 1 < q < 3 and let Un>q denote a graph sampled uniformly at random

from the set of unlabelled simple planar graphs on n nodes with [qn\ edges. There is a

constant ö > 0 such that

Pr[aut(C7ra,g) < 2Sn] = o{2~èn).

3.7. Conclusions

In [DVW96] the first results on the random planar graph were achieved. Since then the

random planar graph has been better understood, but there are still many open questions.

In particular, we know very little about more global structures in random planar graphs. For

example, while we do know that the 3-core of a random planar graph is w.h.p. of linear size,

we do not know bounds on the size of its components. If one restricts the number of edges,

that is, if one considers RnA instead of Rn then even more questions remain open.



CHAPTER 4

Cactus and Block Graphs

In this chapter we investigate cactus and block graphs. In contrast to Chapter 3, here we will

use analytic combinatorics (see also Section 2.2). The main focus of this chapter, however, is

on a newly developed method based on Boltzmann samplers (see also Sections 2.3 and 2.4)

which we will use to show that a random cactus and a random block graph respectively has

specific properties w.h.p.

4.1. Previous and Related Work

In the literature there are two common approaches, which can be used to prove that a ran¬

dom member of a constrained graph class has a specific property. Central to both is the

enumeration of the objects in the class under consideration. The first approach is purely

combinatorial. McDiarmid, Steger, and Welsh were the first to apply this method to ob¬

tain results about random planar graphs [MSW05], and later generalised their results to

a wider class of graphs [MSW06]. Although the approach is quite powerful, it has some

disadvantages: one might have to adapt it already for slightly different graph classes, see e.g.,

Chapter 3, and sometimes it only yields rough lower and/or upper bounds (see Section 4.7).

Furthermore, it seems to be difficult to apply this method to estimate certain parameters,

such as the expected number of edges.

The second approach is based on analytic combinatorics and uses generating functions [FS06].

It has recently led to immense progress in the enumeration and the understanding of prop¬

erties of constrained graph classes, as for instance planar, series parallel, and outerplanar

graphs [BGKN05, GN05b] (see also Chapter 5). However, it seems to be inherently dif¬

ficult to investigate properties of such constrained graph classes, which cannot be directly

addressed with (a finite number of) parameters of the generating functions, such as the

maximum node degree, the maximum size of a biconnected block, or the degree sequence.

Here, we address this problem and propose a method, that is different from the approaches

described above. Our central idea is to analyse the execution of an algorithm, which samples

u.a.r. - uniformly at random - graphs from the graph class in question. If we know what

properties the "typical" output of such an algorithm has, then a random member of the

considered graph class will also have those properties. On the other hand, from a technical

point of view, the analysis may become much easier if we reconceive, as just described.

More precisely, our approach is based on the analysis of the behaviour of Boltzmann sampler

algorithms, and is an attractive alternative to the combinatorial method and an extension

to a purely generating function based approach. The framework of Boltzmann samplers was

45
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developed by Duchon, Flajolet, Louchard, and Schaeffer [DFLS04], and enabled the sophis¬

ticated development of very efficient, but surprisingly simple, algorithms - in practice and

in theory - for sampling objects u.a.r. from such graph classes. As an additional advantage,

these samplers can be derived systematically.

Let us briefly compare the combinatorial, the generating function, and our new approach

on a simple example, namely Cayley trees. With the combinatorial approach we easily

obtain the exact number tn := nn~2 of labelled trees on n nodes. The method relies on a

bijection between trees on n nodes and the encoding of a tree as a string - the well-known

Prüfer code. Moon [M0068] used this to obtain precise asymptotic bounds for the maximum

node degree in a random tree. Although it works quite well for trees, the problem-tailored

approach yields difficulties (and often weaker results), as soon as the complexity of the graph

class in consideration increases. If we use generating functions, we obtain by a singularity

analysis an asymptotic estimate of the form tn ~ n\ (
—r==g + 0(n~2 ) J. This approach has

the advantage that it works for more complex graph classes as well, and that it might be

used to obtain results about the expected number of edges, for instance (of course, for graph

classes different from trees). On the other hand, as soon as we are interested in parameters

like the maximum degree, or the maximum size of a biconnected component, especially in

more complex graph classes, it becomes much harder to introduce the right parameters in

the generating functions and to analyse them. Contrary, our new method via Boltzmann

samplers delivers the precise asymptotic behaviour of the maximum node degree, as well as

the complete degree sequence for Cayley trees; moreover, it has the benefit that it generalises

easily and mechanically to moderately complex graph classes, as we will demonstrate in this

chapter. Our method yields precise estimates - that is the precise asymptotic behaviour -

for the maximum node degree and maximum size of a biconnected block of a random graph

within the class under consideration. We are confident that the method is applicable to other

parameters and graph classes as well.

Here we will study and illustrate how our method works on two graph classes of moderate

complexity, namely cactus and block graphs, which were first defined by Uhlenbeck [Uhl]

and Riddell [Rid51], following a paper by Husimi [Hus50] on the cluster integrals in the

theory of condensations. A cactus graph is a labelled connected graph, in which each edge is

contained in at most one cycle. A block graph is a labelled connected graph, whose maximal

biconnected blocks are cliques.

The problem of finding the number of cactus graphs was proposed by Uhlenbeck, who showed

how this result can be used in the theory of condensation. Harary and Uhlenbeck [HU53]

were the first to derive an exact counting formula - using generating functions - in terms of

the number of nodes and the number of cycles nt of length % = 3,.... Later, first properties

as for example the dissimilarity characteristic of these graphs were studied [HN53].

Nowadays, cactus and block graphs are well-known and well-studied combinatorial objects,

and have applications in physics, computer science, and bioinformatics: cactus graphs are,

for instance, used in combinatorial optimisation for encoding all minimum cuts of a graph

[Fle99] in polynomial time which has further relevance for example in network failure detec¬

tion [KSS04]. In physics they appear (in restricted form) often as an underlying model for
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instance in the area of error-correcting codes [VSKOO], p-spin interaction models [RK92],

and polymer interactions [SSCM04].

When modelling real world scenarios on graphs, (weighted) block graphs come up quite nat¬

urally in many applications, especially if one wants to represent similarities or dissimilarities

between groups of objects. One of these applications appears for instance in the area of

bioinformatics, where they are used in the context of phylogenetic trees [BHM02].

As both graph classes appear quite often in practical applications, much effort was put into

developing efficient algorithms specifically designed to work well on these graphs [BMBS05,

UU04, Won99, YC94, ZZ04].

4.2. Results

We first derive for both graph classes in interest efficient samplers based on the Boltzmann

sampler framework, which was recently introduced by Duchon et al. in [DFLS04]. They will

be crucial for our further analysis.

Theorem 4.1. Let n e N and 0 < e < 1. There exists a randomised algorithm with ex¬

pected quadratic running time, which produces block graphs of size n uniformly at random.

Furthermore, there exists a randomised algorithm with expected linear running time, which

produces random block graphs with size in the interval I£ = (n(l — e),n(l +e)), such that the

distribution of block graphs is uniform on each size k e I£. The variance of the running time

is in both cases quadratic in the expected running time. The same holds for cactus graphs.

We also provide carefully optimised implementations of the above samplers which allow us to

sample graphs of up to 107 nodes within a few seconds, see [PW06] and Section 4.6.2. We

call a simple labelled graph whose connected components are cactus graphs a desert graph]

and a simple labelled graph whose connected components are block graphs a city graph. Our

main results on the structure of a random city and a random desert graph, i.e. a graph drawn

uniformly at random from the set of all graphs on n nodes within the corresponding class,

are summarised in the following theorems. Similar results also hold for random block and

cactus graphs. In the subsequent, we mean by "=" rounded to the last digit shown. First,

we state the results which can be proved with our new method.

Theorem 4.2. Let Dra denote a random desert graph on n nodes. There exists a constant

K* = 0.4563, such that for
everye>0thefollowingstatementsholdforalmostalln:(i)Themaximumnodedegreeof~Dntakesvaluesin((2—e))0°wL,(2+g)i0giogrJw-h-P-(n)ThelargestcycleinDrahassizein((1—e)logj_n,(1+e)logj_n)w.h.p.KoKoTheorem4.3.LetYndenotearandomcitygraphonnnodes.Foreverye>0,thefollowingstatementsholdforalmostalln:(i)ThemaximumnodedegreeofYntakesvaluesin((1—e)°g3",(1+s)°f3")w.h.p.(n)ThelargestcliquemYnhassizem((1-g)lolofo"(1+g)lo'°f0gra)

w.h.p.
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Observe that in both cases, we obtain the precise asymptotic behaviour of the parameters

in question. It seems that as soon as we consider more complex objects than trees, some

of the involved constants become quite unpredictable and it might be very difficult - if not

impossible - to obtain them by a purely combinatorial approach. Furthermore, note that both

graph classes are examples, where the general lower bound on the maximum node degree of

(1 + o(l))i0giogn f°r addable graph classes, given in [MSW06, Corollary 5.3], is not tight.

Roughly speaking, we proceed as follows to prove the above theorems: instead of investigating

directly the properties of the graph class, we consider the execution of its corresponding

Boltzmann sampler. We examine how the shape of a sampled object evolves over a run of the

sampler and how this affects the related property. From this knowledge, we can eventually

deduce the probability that a sampled output object has the property in interest.

Note that the chromatic number of a block graph equals its maximum clique size. Moreover,

by the proof of Theorem 4.3 we also obtain that for all sufficiently large n the probability

that a random block graph contains a clique of size at most alo °wL is at least 1 — nl~a.

This directly implies the following corollary.

Corollary 4.4. Let x(G) denote the chromatic number of a graph G. Let e > 0. Let Bn be

a random block graph on n nodes. Then, as n —> oo,

logn
Pr x(B„)<(l+e)

log log n
1.

As already mentioned, enumerating the objects in the graph class in question is important

for understanding its structural properties. Here we exploit generating function techniques,

which were only recently applied to obtain similar results for planar, series parallel, and

outerplanar graphs [BGKN05, GN05b], and are well described in the forthcoming book

"Analytic Combinatorics" by Flajolet and Sedgewick [FS06]. Altogether, we obtain a fairly

complete picture of desert and city graphs. In the sequel, Po (A) is the Poisson distribution

with mean A.

Theorem 4.5. Let dn denote the number of desert graphs on n nodes and let kn denote the

number of cactus graphs on n nodes. Then

dn ~ ad Pkn n~5/2 nl and kn ~ ak pln n~5/2 n\, (4.1)

where ad = 0.1605, ak = 0.1201, and p^1 = 4.1887 are explicitly given constants.

Theorem 4.6. Let yn denote the number of city graphs on n nodes and let bn denote the

number of block graphs on n nodes. Then

yn ~ oty p^n n~5/2 n\ and bn ~ ab p^n n~5/2 n\, (4.2)

where ay = 0.2515, ab = 0.1807 and p^1 = 3.7824 are analytically computable constants.

Our next theorem is about the chromatic number of a random cactus graph. Observe that a

cactus graph is either 2- or 3-colourable (if it is a tree or contains
onlyevencyclesandifitcontainsanoddcyclerespectively).Thenexttheoremstatesthatthechromaticnumberofarandomcactusgraphis2withexponentiallysmallprobability.
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Theorem 4.7. Let x(G) denote the chromatic number of a graph G. Let Kn be a random

cactus graph. Then, as n —> oo,

Pr[X(Kra) = 2] ~ ^Q - 0,
akpk

where ak = 0.1201, äk = 0.1360, p^1 = 4.1887, and pk~l = 3.5505 are explicitly given

constants. Furthermore, Pr[%(Kra) = 3] —> 1 exponentially fast.

It is easily seen that the above theorem also holds for desert graphs. Next we turn to the

expected number of components and then to the connectedness of a random desert and

random cactus graph.

Theorem 4.8. LetDn denote a random desert graph. Then the number of components o/Dra

is asymptotically distributed as l+Po(Äo), where Ko = 0.2393 is an explicitly given constant.

This theorem directly implies the following corollary.

Corollary 4.9. The expected number of components in a random desert graph is asymptot¬

ically equal to 1 + Kq = 1.2393.

Theorem 4.10. Let Dra be a random desert graph and let Kn be a random cactus graph.

Then, as n —> oo

Pr[Dra is connected] -> e~K° = 0.7488,

Pr[Dra is biconnected] ~ cy^lac n^ pi —> 0,

Pr[Kra is biconnected] ~ a^lac n? p^ —> 0,

where Kq, ac, ak, and pk are explicitly given constants.

The next parameter we study is the number of edges. Note that for each cycle in a cactus

graph, we get an excess of one edge compared to a tree. The next theorem shows that the

number of edges is asymptotically normally distributed with known parameters.

Theorem 4.11. The number of edges in a random desert graph is asymptotically normally

distributed with mean ßn and variance o\, which satisfy

ßn ~ nn and o~n ~ An,

where k = 1.1915 and A = 0.0627 are explicitly given constants. The same is true for the

number of edges in a random cactus graph.

Notice that the last theorem implies that the number of edges is sharply concentrated around

its expected value. By the Polyhedral formula of Euler we obtain the following corollary.

Corollary 4.12. Let Cn denote the number of cycles in a random desert graph. Then the

mean value ßn = E [Cn] and variance a^ = Var [Cn] satisfy

ßn ~ nn and o~n ~ An,

where k = 0.1915 and A = 0.0627 are explicitly given constants.
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Analogously, we obtain the following results for random city and random block graphs.

Theorem 4.13. Let Yn be a random city graph. Then the number of components ofYn is

asymptotically distributed as 1 + Po(Bq), where Bq = 0.3304 is an analytically computable

constant.

Corollary 4.14. The expected number of components in a random city graph is asymptoti¬

cally equal to 1 + Bq = 1.3304.

Theorem 4.15. Let Yn be a random city graph and let Bn be a random block graph. Then

as n —> oo

Pr[Yra is connected] -> e~B° = 0.7187,

Pr[Yra is biconnected] —> 0,

Pr[Bra is biconnected] —> 0,

where Bq is an analytically computable constant.

As mentioned before, our main aim of examining properties of graph classes is to obtain the

average-case performance of algorithms. In [UU04] Uehara and Uno provide algorithms for

computing the longest path in a cactus graph and in a block graph. The running time of the

former algorithm depends quadratically on the size of the largest cycle, whereas the running

time of the later is 0(n + m) for a block graph on n nodes with m edges - see Theorem

2 and the proof of Theorem 4 in [UU04]. Now, note that by the proofs of Theorems 4.3

and 4.2, we also obtain that for all sufficiently large n the probability that a random block

graph contains a clique of size at most ctlo°fn is at least 1 — nl~a (as noted earlier) and

similarly, that the probability that a random cactus graph contains a cycle of length at most

cdogn is at least 1 — nl~a, whenever a > 3. From the upper bound on the maximum clique

size we can deduce that a random block graph has at most nlo°^" edges w.h.p. By these

two observations we obtain the following corollary.

Corollary 4.16. A longest path in a random cactus graph of size n can be computed in

0(n(logn)2) expected time and in a random block graph in O ( t" ?^" J expected time.

4.3. Graph Classes and Notation

Before we proceed, let us introduce some notation, which we are going to use in the remainder

of the chapter. Let JCn denote the set of all cactus graphs on n nodes and let K(x) = Yn T^^a
denote the exponential generating function of cactus graphs, where kn := |/Cra|. Moreover, let

K(x,y) = J2nm -JnfLxnym denote the bivariate generating function of cactus graphs, where

x marks nodes, y marks edges and kn^m is the number of cactus graphs on n nodes with

exactly m edges. A graph whose connected components are cactus graphs is called a desert

graph. Let Vn denote the set of all desert graphs on n nodes, and let D(x) = Yn ^xU
denote the exponential generating function for those graphs, where dn := \Vn\. Similarly,

let D(x, y) = J2n m ~JnfLxflym denote the bivariate exponential generating function of desert

graphs according to nodes and edges. Analogously, we denote by C(x) and C(x,y) the

exponential generating function of a single edge and cycles of length at least 3. We proceed in
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a similar fashion for block graphs. We denote by B(x) the exponential generating function,

which enumerates block graphs, and by Y(x) the exponential generating function for city

graphs, i.e., graphs whose connected components are block graphs. Finally, let Q{x) denote

the generating function for cliques of size at least 2.

Finally, we will often need a "pointing operator" to distinguish an atom of our combinatorial

objects from all other atoms; for example we want to distinguish a node in our graph as a

root node. On generating function level, this pointing operation means taking the derivative

with respect to the according variable, and multiplying by it. To shorten notation, we define

G*{x) := x-^G(x), where G is an exponential generating function.

4.4. Decomposition and Generating Functions

A standard decomposition of a graph into connected and 2-connected blocks delivers us with

the relations for our generating functions (see e.g. [FS06](p.95) and [HP73](p.lO)).

Lemma 4.17. Let D(x,y), K(x,y), and C(x,y) denote the bivariate exponential generating

functions for desert graphs, cactus graphs and cycles of length at least 3 and a single edge.

Then it holds

D(x,y) = exp(K(x,y)) and K'(x,y) = rcexp ( —C(K'(x,y),y) J , (4.3)

C(x,y) = - log (
1 _ j - -x2y2 + -x2y - -xy. (4.4)

Note that in (4.3) we write J^C(K'(x,y),y) for -§^C(u,y)\u=K»(x,y)y i-e- we ^TS^ take the

derivative of C(x,y) with respect to x and then evaluate this function at (K'(x,y),y), but

we will use the above simplified notation subsequently. Observe that setting y = 1 in the

above lemma yields a relation for the corresponding univariate generating functions.

Similarly, we can derive the relations for city and block graphs.

Lemma 4.18. LetY(x), B(x), and Q{x) denote the exponential generating functions for city

graphs, block graphs and cliques of size at least 2. Then it holds

Y{x) = exp(5(a;)) and B'{x) = rcexp
(
—Q{B\x)) ) , (4.5)

Q(x) = exp(a;) — 1 — x. (4.6)

From these equations we can derive singular expansions of the involved generating functions

(see Section 4.5). Furthermore, the above decomposition allows us to design the Boltzmann

sampler for cactus and block graphs (see Section 4.6).4.5.SingularExpansionsandAsymptoticEstimatesInthissection,wewillderivesingularexpansionsforthegeneratingfunctionsofdesert,cactus,city,andblockgraphs.Fromthese,wecanthenobtainasymptoticestimatesforthenumberofgraphsonnnodesinthecorrespondingclass.
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Lemma 4.19. Let Dix, y) and Kix,y) denote the bivariate exponential generating functions

of desert and cactus graphs. Then, for all y G (0,1], D{x,y) and K(x,y) have the same

singularity p{y). Moreover, for X = ( 1 ^ J, they have singular expansions of the form

K(x,y)=K0(y) + Kl(y)X + K2(y)xl+O(X2), (4.7)

where Kt(y), i = 0,1,2 are explicitly given functions of y and

D(x, y) = D0(y) + Dx{y)X + D2(y)xl + 0(X2), (4.8)

where Dt(y), i = 0,1,2 are explicitly given functions of y.

Proof. Let y G (0,1] be fixed. In order to obtain a singular expansion for K(x,y) and

Dix, y), we need to locate the dominant singularity p{y) of Dix, y). Since Dix, y) = ex_p(K(x, y))

and exp is an entire function, the functions Dix, y) and Kix, y) have the same singularities.

Hence we will firstly concentrate on Kix,y).

Notice that the singularities of -j^.C{x,y) and K*{x,y) are the same as those of C{x,y) and

K(x,y) respectively. From (4.3) it follows that the functional inverse ip(u,y) of K*(x,y) is

ip(u,y) =uexpf-—C{u,y)\ , (4.9)

as ip(K*(x,y),y) = x.

The dominant singularity of ip(u, y) is the same as that of Cix, y) which clearly is singular

at R{y) = -. From Theorem 2.6 (Theorem VI.6 of [FS06]) it follows that we have to decide

if -§^ip(u,y) has a real zero r{y) G (0,R(y)). If this is the case, then ip(u,y) ceases to be

invertible at r{y) and K*{x,y) has a singularity at p{y) = tp(r(y),y). Solving J^tp(u,y) = 0

yields a real zero at

M =

2 -3y2 + y3 6y5 - 4y6 ß{y)

3-2y3 + y4 3(-2y3+y4)/3(y) 3(_2y3+y4)^

where

/%) = (54y7 - 45y8 + 8y9 + 3\/3Vl08y14 - 172y15 + 91y16 - 16y17)
3

.

One can check that 0 < r(y) < R{y) for all 0 < y < 1, so the singularity of K*(x,y) is at

p = p{y) = ip(T(y),y). In particular, for y = 1, we have a real zero at

i

(17 + 3V33)3 2 4

and K*(x, 1) = K'(x) has a singularity at

pfc = V(r(l), 1) = f-^a + \a~l + D e-H+i^-t^T'-Hè«-!«-1 = 0.2387,

where a = (17 + 3V33)3.

Let for the remainder of this proof ^'(u, y) = -^ip(u, y) and define similarly higher derivatives.

Now we are able to compute the asymptotic expansions. The Taylor expansion of ip(u, y) at

u = r{y) is

x = ^K\x,y),y) = p{y) + ^T^ {K'{x,y) - r{y))2 + ^'"^^ (K'{x,y) - r{y)f + ...,
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as ip'(u,y) vanishes at r(y). Hence we have a locally quadratic dependency between K'(x,y)

and its functional inverse tp(u, y). We can derive a full formal expansion of K'(x, y) in powers

of (1 — x/p(y)) by repeated substitution (see also the discussion before Theorem VI.6 and its

proof in [FS06]) and finally we obtain

K.(llI() = A;(I() + Krto)(i-^)è + iQ(»)(i-ï|j)+o((i-^),).(4.io)
where

K0(y)-r(y),Kl(y)- y _^(T(y)>y)»
**(*) -

3 ^"(r(y),^

are explicitly given constants. Now, we can derive a singular expansion for K(x, y) by inte¬

grating -§iK(x,y) =
K ^'y>. We get

K(x, y) = K0(y) + K^y)X + K2(y)xl + K3(y)X2 + O (jd) , (4.11)

where X = ( 1 pr- J and

^i(y) = -^ô(y), ^2(2/) = -^r(y), #3(j/) = -\{K'0{y) + K'2{y)).

Ko(y) cannot be determined in this way, but we can compute it using integration by parts

and substitution - the proof follows closely the lines of proof of Theorem 1 in [GN05a]. We

change variables, t = K'(s,y), thus s = ip(t,y) = texp (—^C(t,y)) and obtain

K*{x,y)

K{x>y) = £!£Mlds= J _i_^my)yt (4.12)

0

We use integration by parts and (4.12) becomes

K*{x,y) K'(x,y)
( 9;tP(t,y))dt

= (tlogtP(t,y))\*Jj'y) - f logtP(t,y)dt
4>(t,y) \dt

= K'{x, y) log a; - K\x, y) log K\x, y) + K'{x, y) + C{K'{x, y), y).

Hence we get

K0(y) = K{p{y),y) = r(y) log(p(y)) - r(y) logr(y) + r(y) + C(r(y),y).

Finally, we can derive a singular expansion for D(x,y) = exp(K(x,y)) by simply applying

the exponential function to (4.11) and obtain

D(x,y) = eK°^ (l + Kx{y)X + K2(y)X^ + O (X2) . (4.13)

Therefore, the coefficients Do(y),Di(y) and D2{y) from (4.8) are given by

D0{y)=eK^\ D1(y) = -eK^K^y) and D2{y) = ~eK^K{{y).

D

Lemma 4.20. LetY(x) and B{x) denote the exponential generating functions of city and block
graphs.ThenY(x)andB(x)havethe

sa

they have singular expansions of the form

graphs.ThenY(x)andB(x)havethe

same singularity pb- Moreover, for X = ( 1 — f-

B(x) = B0 + BlX + B2X2 +0(X'), (4.14)
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where B%, % = 0,1,2 are analytically computable constants and

Y(x) = Yo + Y1X + Y2xl+0(X2), (4.15)

where Y%, % = 0,1,2 are analytically computable constants.

Proof. The proof is very similar to the one of Lemma 4.19. Therefore we omit some details

to avoid repetition. In order to obtain a singular expansion for Y(x) and B(x), we first need

to locate the dominant singularity pb of Y{x). Since Y(x) = exp(£>(a;)) and exp is an entire

function, Y(x) and B{x) have the same singularities. Hence we will concentrate on B{x).

Notice that the singularities of -§^Q{x) and B'(x) are the same as those of Q(x) and B(x)

respectively. From (4.5) it follows that the functional inverse ip(u) of B*{x) is

ip(u) = uexp (-^-Q(u)J , (4.16)

as ip(B'(x)) = x. This time Q(x) is an entire function and thus has a singularity at R = oo.

d^1Again, we apply Theorem 2.6. One can check that solving ^ip(u) = 0 yields a real zero at

r G (0, R), where r is the solution to the equation

1 — -uexp(-u) = 0.

As ip(u) ceases to be invertible at r, B*{x) has a singularity at pb = V;(r)- Now, we mimic

the proof of Lemma 4.19 to obtain a singular expansion for B*{x) at pb from the Taylor

expansion of ip(u) at r by repeated substitution and we obtain

B-M^ + ^l-^+^l-^+O^-i)1). (4,7)

where

Br. = t, Bi = —

t / ————- and B0
=

——.—-tt

\j -tp"(r)
2

3 V"(t)2

are analytically computable constants. Now we can derive the singular expansion (4.14)

for B{x) by integrating -§^.B{x) = —^-L. Furthermore, the constant Bo can be obtained by

integration by parts and substitution analogously to the proof of Lemma 4.19. The coefficients

we obtain are given by

Bo = B(pb)=Tlog(pb)-TlogT + T + Q(T), Bl = -B'0 and B2 = -2-B\.

Finally, we can derive the singular expansion (4.15) for Y(x) = exp(£>(a;)) by simply applying

the exponential function to (4.14) and we obtain the coefficients

lo = eB°, Fi = -eBoB'0, and Y2 = -\eB°B\.
D

Now, we can apply the transfer theorems of [FS06] (see also Section 2.2) to the singular

expansions of Lemma 4.19 and we obtain asymptotic estimates for the number of desert and

cactus graphs on n nodes.
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Proof of Theorem 4.5. Equation (4.1) follows by applying Corollary 2.5 (Corollary VI.1

of [FS06]) to the singular expansions oi D(x, y) and K(x, y), which were derived in Lemma 4.19.

We obtain

Od-2)2(1) t-^
= e^W-W ,lf]\

1A
= 0-1605

4y^ 2V^V -^"(r(l),l)

and similarly

1 / 2p(l)
afc - -^W J\ = 0.1201,

where ip(u,y) is given by (4.9) and ip"(u,y) = -§jjip(u,y). D

Theorem 4.6 can be proved in the same way but using the result of Lemma 4.20.

4.6. Sampling

In this section, we will use the knowledge about the generating functions derived so far to

obtain efficient sampling procedures for the graph classes in interest. We will use Boltzmann

samplers to derive these algorithms; see Section 2.3 for a brief introduction and [DFLS04]

for a detailed description of the topic.

4.6.1. Boltzmann Samplers. Recall that the efficiency of a Boltzmann sampler for a com¬

binatorial class C depends highly on the type of the singular expansion of its generating func¬

tion C(x), see Section 2.3. In order to obtain an expected linear running time sampler, either

the exponent —a of the singular expansion of C has to be negative or, in the special case

that —a = ^, we can use a so-called singular ceiled rejection sampler, which discards objects

during sampling, as soon as they become too large.

Here, we will derive a ceiled rejection sampler for block graphs - the sampler for cactus graphs

can be derived in the same way. The sampler has the general advantage of its kind, that is

we don't have to tune it explicitly for a specific output size; moreover, in our case we have

to pre-compute only two constants (see below). Furthermore, it turns out that the singular

rejection sampler is very well suited for our further analysis.

Observe that the singular expansions for cactus graphs and block graphs do not have the

right exponent —a = \, see Lemma 4.19 and 4.20. But we can overcome this by pointing

our structures - it then can easily be checked that the resulting generating function relations

(see (4.3) and (4.5)) fulfil the preconditions of Theorem 2.10 (Theorem 8 of [DFLS04]). In

the following, we give an exposition of our sampling algorithm for block graphs. We refer

the reader to Section 2.3 for the transfer rules we use to compile our decomposition into an

algorithm.

The singular rejection sampler repeatedly samples block graphs according to the Boltzmann

distribution (2.5), until an object with size in ((1 — e)n, (1 + e)n) is sampled. It maintains

a global variable nodes, which counts the number of nodes which were generated through

recursive calls.
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TuB(n,e): repeat

nodes <— 0

j^TB*(n,e)

until |7| > (1 — e)n

label the nodes of 7 uniformly at random

return 7 (and discard the root)

The sampler for rooted block graphs works as follows. Roughly speaking, a rooted block

graph is a set of biconnected rooted block graphs, merged at their roots, in which every node

is again replaced by a rooted block graph. This decomposition is the origin of the relations

of the exponential generating functions for block graphs and cliques, see Lemma 4.18. The

sampler works similarly: it starts with a single node, chooses according to a carefully chosen

probability distribution a random number of cliques adjacent to it, and then replaces each

generated node by a randomly drawn rooted block graph.

TB'(n, e): 7 <— a single root node r

nodes <— nodes + 1

k^Po{^Q(B-(pb)))
for (j = 1... k)

V-rQ-<(1+£)ra(i3-(p6))
if (7' equals _L) return _L

7 <— merge 7 and 7' at their root nodes

for (each node v / r of 7)

nodes <— nodes — 1

jv<-TB'(n,e)

if (7^ equals _L) return _L

replace all nodes v / r of 7 with yu

return 7

Finally, the sampler TQ'<m for cliques chooses the size of the objects it outputs according to

its probability in the Boltzmann model. It returns a default empty object (_L), if the size of

the generated object would have been too large. Before we can state it formally, let us define

the distribution it samples from.

Definition 4.21. The clique distribution with parameter x > 0, denoted by Cl(x) is defined

by

Vi[Cl{x) = k] := I Q'^-iy k^2

y 0 otherwise,

where Q*{x) := x(ex — 1) is the exponential generating function for rooted cliques of size > 2.

With this, the sampler can be implemented as follows:
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TQ'<m(x): k^Cl(x)

nodes <— nodes + (k — 1)

if(nodes > m)

generate (fc — 1) — (nodes — m) nodes (*)

return _L

else return a rooted clique on k nodes

It can easily be checked that the sampler above generates cliques according to the Boltzmann

distribution (2.5), if it does not early interrupt (returning _L). Note that in the line marked

by (*), the sampler returns _L after it has generated as many nodes as it is necessary to have

generated precisely m nodes in the object sampled in the current execution of TB*. This is

a detail convenient for the analysis which is useful in the proof of Theorem 4.28.

Observe, that although the decomposition tells us to use the derivative -j^.Q{B*'(pb)) for

sampling cliques, we use a sampler TQ' for rooted cliques, since this is more convenient.

That these two variants are indeed equivalent, can be seen as follows: taking the derivative

§^Q{B*'(pb)) means that we shift the series by one, i.e. we sample cliques of size k — 1 and

attach these to the node v for which we are currently sampling cliques, adding edges between

all nodes of the clique and v. On the other hand, we can also sample a rooted clique of size

k and merge the root node with the current node v. Note that the Boltzmann distribution

is in both cases the same. For k > 2 we have according to (2.5) that the probability that we

draw a clique of size k is in the first case xk~l /(Q'(x)(k — 1)!) = xk~l/((ex — l)(k — 1)!) and

in the second case xk/ (Q* (x)(k — 1)!) = xk~l/((ex — l)(k — 1)!) as we have k possibilities to

root a graph on k nodes. Note that this observation holds in general.

This completes the specification of the sampler for block graphs. Now, by applying Theorem

2.10 (Theorem 8 of [DFLS04]), Theorem 4.1 follows immediately. In a completely analogous

way we may obtain a sampler for cactus graphs. As a technical tool, we will later need the

following lemma, which says that all possible output sizes are almost equally probable to

occur, even if we constrain the number of atoms the sampler can generate.

Lemma 4.22. Let 0 < e < \. Whenever n is sufficiently large the following statement holds.

For every s e N and t e No define the quantity

ps,t '= Pr [\FvB(n, e)\ = s and TuB(n, e) created precisely t + s nodes]. (4-18)

3

For all s = an, where ae(l-£,l + e) it holds ps,t ~ a~2 pnt.

Proof. Let ni,ri2 e ((1 — e)n, (1 + e)n). Consider the execution of the sampler TuB, and

observe that every sequence of generated and discarded objects resulting in an object 0\ of

size ni, can be transformed into a sequence which results in an object O2 of size «2- This can

be done by keeping the random choices of the sampler which resulted in discarded objects,

and by substituting the random choices in TB' which generated 0\ with the choices which

generate O2. More formally, denote with B*<s the set of rooted block graphs
onatmosts
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nodes, and define for every t G No the set of sequences of objects

e

St := {(Ri,..., Re) l<£<t and ^|iît|=t and

Vie{l,...,£}:RteB'<{1_e)nu{±.}

which form a prefix of a sequence that finally yields an object which is accepted by the sampler

TvB. Note that here we assume that |_L| = [(I +e)ri\, as TB* interrupts its execution (and

returns _L) immediately after precisely [(I +e)n\ nodes were generated. With this notation,

the probability from (4.18) can be written as

P*t=\ Y, f[Pr[rB%n,e) = Rt}\ Pv[\TB%n,e)\=s}. (4.19)

\{Ri,...,Rz}eSti=l J

It is easy to see that the first sum in this expression is the same for all s e ((I — e)n, (l+e)n),

i.e. the probability that TvB samples an object of size s differs only in the last term for

different sizes. Hence, we only have to consider Pr [|PB#| = s\.

Due to Theorem 4.6 the number of rooted block graphs b'N on N nodes is asymptotically

c''Pb N~ïN\, for an appropriately chosen constant c'. But this implies that the probability
3

that TB* outputs an object of size (I — e)n < N < (I + e)n is asymptotically c • N~2, for a

constant c. Indeed, by (2.5) we have

A
nN

1
nN

1 Pb
..

Jn-NAT-$AT\ l Pb
11 l ' ,l l N

B'(pb) NI Pb
B'(pb) M

•

Combining this with (4.19) yields immediately the claim. D

Observe that we can derive an analogue lemma for cactus graphs in the same way.

4.6.2. Implementation and Statistics. Our implementation of the Boltzmann sampler

for cactus graphs and for block graphs can be found at [PW06]. In this section we describe

some details of it, which are highly relevant for the performance of our program.

We implemented the singular Boltzmann sampler for cactus graphs and for block graphs.

Both of them turn out to be rather efficient. Note however, that we did not try to tune the

code furthermore, even if further improvements - especially in the case of block graphs - are

possible.

As follows from the previous section, the only computations we need to make in advance for

the cactus graph sampler are to compute the values K'(pk) and ^C(x)\x=K,, -,
needed in

the sampler TK^m(pk) which reduces to calculating the constant K'(l) from (4.10) and to

evaluating the explicitly given generating function §^C{x) at x = K'(l) (and analogously for

the block graph sampler). These computations can be accomplished up to arbitrary precision

for example with Maple; in our implementation we used 80-bit floating point numbers1.

If one wants to avoid the seldom cases, when the precision of numbers does not suffice to

draw uniformly at random, one can also use a package for arbitrary precision numbers.

IEEE 754 double-extended precision
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A main task of the program is to build and merge graphs at given nodes. For an efficient

implementation of this operation we use the half-edge data structure [Wei85], which allows

us to implement the merging operation in constant time.

The procedures described in Section 4.6.f are straightforward to implement in any program¬

ming language and using the half-edge data structure [Wei85] yields already a quite efficient

sampler for up to fO4 nodes. We propose here three major modifications which result in an

enormous speed-up:

• we use our own memory management for the graph structure,

• we use an iterative instead of a recursive approach for substitution in the sampler and

• we use tables for the Poisson, cycle and clique distribution which have been computed

in advance.

These modifications allow us to sample graphs with up to fO7 nodes in only a few seconds.

The first modification is necessary, as the sampler rejects very often with too small objects if

the target size is large. Thus the memory management overhead impacts overall running time,

if we use the standard memory allocation functions. Therefore we propose two modifications:

first, we allocate one block of memory at the beginning of our sampler, which is large enough

to contain the whole graph if we hit the given upper bound. In case of cactus graphs space

for 3n half-edges is enough. Since we don't have a linear bound on the number of edges in

the case of block graphs, we would have to allocate space for 0(nlogn/loglogn) half-edges.

But this seems too pessimistic and in practice the sampler worked fine with space for 0{n)

half-edges (see below for an explanation). Now, our second, more important modification

is based on the observation that we can follow the recursive structure of the samplers given

above to manage the reserved space like a stack to build the graph on. We use a variable as

a kind of stack pointer which tells us where to write the next half-edge that is created. If the

whole graph is rejected because the branching process dies out early or the object becomes

too large, we just have to reset one variable, i.e., we delete the generated graph with a single

instruction.

To avoid being limited by the stack depth and tremendously reducing the number of function

calls, we propose the second modification: we use an iterative approach to replace nodes by

rooted cactus graphs and block graphs respectively. For each node that is created in the

sampling process we keep an "active" flag for one of the adjacent half-edges that tells us if

this node has already been substituted by a rooted object. Then we just process our stack

from bottom to top and substitute the next active node until no more active nodes can be

found. Notice that we never have to explicitly carry out a substitution operation; instead

we can attach newly generated blocks (i.e., cycles and cliques respectively) at the already

existing node by modifying the pointers of the half-edge structures.

Our last performance improvement is to reduce the number of floating point operations by

computing the tables for the distribution functions up to machine precision in advance.

An obvious possible improvement for the block graph sampler which we did not implement

is to avoid building the cliques explicitly but to store only the nodes and the information
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to which clique they belong. Then one just outputs the edges at the output stage of the

program.

The described improvements made it possible to sample cactus and block graphs with up to

10, 000, 000 nodes within about 30 seconds of running time on a Intel Xeon 2.2 Ghz machine

with 1 GB of RAM running Debian Linux.

We gathered some statistics with our samplers which support the theoretical results that we

will prove in Section 4.7. In the top of Figure 1 we plotted a histogram for the maximum

degree of random block graphs and random cactus graphs taken from 5,000 runs of our

samplers with parameters n = 106 and e = 0.05. Confirming our theoretical results, the

maximum degree is slightly larger in random block graphs (green dashed) than in random

cactus graphs (solid red).

A histogram for the maximum clique size in random block graphs and the maximum cycle

size in random cactus graphs can be found in the bottom of Figure 1, where the data was

again taken from 5,000 runs of our samplers with the same parameters as above. Again, the

gathered data supports our theoretical predictions of Theorems 4.2 and 4.3.

Finally, we counted the number of edges in random cactus graphs and random block graphs

- the results are presented in Figure 2. We sampled graphs with sizes in [100,105] using a

step size of 50 and e = 0.02 where we have taken the average of 50 graphs for each target

size. In the case of cactus graphs (top), the plot clearly has the expected structure due

to Theorem 4.11. For block graphs (bottom) we get a somehow larger number of expected

edges, but it still seems to be clearly linear in n, as it levels off at a value around f« 1.283n. It

remains an open problem to derive this observation theoretically - unfortunately we cannot

prove how many edges we expect, as we cannot apply the theory developed in [FS06] to the

bivariate generating function for cliques with respect to number of nodes and edges

eSîA
ra>2

4.7. Structural Properties

4.7.1. Preliminaries. Next, we give all proofs and lemmas, which are additionally needed

to prove our main result about the maximum degree and maximum size of a biconnected

block in a random city and desert graph, see Theorems 4.2 and 4.3. The subsequent lemmas

provide us for various probability distributions with estimates for their tails. We start with

an easy observation, which will become helpful at several places. Recall Definition 4.21, and

observe that for k > 2 and all x > 0 we have

Pr|C1(l) = fc| = q-wft-i)l ä 0W = Pr[P°(l) = *~1]- (4'20)

and similarly

Pr [CI (x) = k}< -^— • Pr[Po (x) = k - 1] =: cx • Pr[Po (x) = k - 1]. (4.21)

Before we proceed, let us state a well-known estimate for the tail of the Poisson distribution,

which will be useful at several places in the proofs below.
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Figure 1. Maximum degree (top) and maximum cycle size, maximum clique

size respectively (bottom) in a random cactus graph and a random block graph.

Red solid lines for cactus graphs and green dashed lines for block graphs. The

plot shows the result of 5,000 runs of the Boltzmann samplers with parameters

n = 106 and e = 0.05. On the a>axis the maximum degree and maximum cycle

length, maximum clique size respectively and on the y axis the amount of graphs.
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Figure 2. Average number of edges in a random cactus graph (top) and

random block graph (bottom). The plot shows the average over 50 runs for

n = 100,..., 105 with a step size of 50 and e = 0.02.

Lemma 4.23. Let a, A > 0 be constants. There exists no = no(a, A) such that for n>no

Pr Po(A) > a
logn

log log n
Pr Po(A) a

logn

log log n
n

-a+o(l)
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Proof. We omit |\] to keep the calculations short. Let u(n) := a, °f
, and observe that

log log n
'

Pr [Po(A) > u{n)} = J^
k>u(n)

Pr [Po(A) = u{n)} • J^
A*

Pr [Po(A) = u(n)]

Now we show the second part of the statement. Using x\ = (1 + 6(a; 1)) • ^/2nx (|)x, we

obtain

/ \ ^°Sn 1/0

t, ft, /,n / m \
^

/- /-.xx \ / Ae log log n \
a

los losn /loglogn\ '

Pr[Po(A)=u(n)]=e-A——T = (1 + o(l))e"A —^f-f- L,^) •

(-u(n))!
v" ' "v"//"

\^ cdogn J \v27ra;logn/

Note that for every positive constant c we have (cloglogn)l°zl°%n ( "îo"^") = n •
For

sufficiently large n we obtain

Pr [Po(A) = u(n)} = ———- • (logn) "^

(27ra;)i/^

log" /-,\ i /1\

s1^" • no{~ '
= n~a+o{~ '.

D

Before we proceed, let us first make a technical definition. We say that a random variable X

is swmC%we-distributed with parameters A and /x, X ~ SCI (A, /x), if it is the sum of Po(A)

independent CI (/x) — 1 distributed random variables. A crucial ingredient in our proof for

the magnitude of the maximum degree in a random block graph will be the following lemma,

which is a statement about the tail of a sumClique distributed random variable.

Lemma 4.24. Let A, /x > 0 and 0 < e < | be constants. There is an no = no{e) > 0 such that

whenever n > no it holds

Pr SCl(A,/x) > (1-e)
logn

log(3)Cn)
» n 1+2 and Pr SCl(A,/x) > (1+e)-

logn

log(3)(n)
<n~

Proof. In the following we shall omit |\] to keep the calculations concise, but it can easily be

verified that our statements are also true in the general case. It is well-known that a sum of

Poisson variables is distributed as a single Poisson variable with the sum of their parameters.

Recall (4.20) and (4.21), and note that for all t, s e N, if Ci,..., Ct are independent clique-

distributed variables with parameter /x, we obtain

Pr [Po (tfj) = s] < Pr

'

t

E C\-l = s < c* -Pr[Po(t/x)=S] (4.22)

logera
"11U qV"J '

log log ra-
Let us abbreviate b{n) :=

^^ and q{n)
:= lo'g0f0"ra. With (4.22) we obtain

•PrPr[SCl(A,/x) > (l-e)fe(n)] > Pr Po(A) = -<j(n)
9

'

t

E
.i=i

> Pr Po(A) = -g(n)

Cl(/x)-l>(l-e)6(n) | £ = -q(n)

e/j,
•Pr |Po(^g(n))

> (1 - e)b(n)

We estimate the terms on the right hand side of the above inequality one by one. The first

probability is due to Lemma 4.23, if n is sufficiently large, n~9+°(1). In the sequel we will

show that for all constants a, ß > 0

Pr [Po (aq(n)) > ßb{n)] = n_/3+o(1), (4.23)
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which immediately completes the proof of the first statement of the lemma. Indeed, with the

definition of the Poisson distribution and the estimate x\ = (I + o(l)) (f ) \l2nx we obtain

Pr [Po (aq(n)) > ßb{n)] = ^ e"

t>ßb{n)

-aq(n) («?("))

= (l + o(l)) e
_aq{n) (aq(n)fb^

r(3),
= no{i) l^L lo§ 'n

\ ß log log n

(ßb(n))\

log(3)n
= n-ß+o(l)_

Now we show the second statement of the lemma. Recall (4.22) and note that for all t >

log«.

log log n
Ai > A2 > I we have Pr [Po (Ai) > t] > Pr [Po (A2) > t}. We obtain with q(n) - -^~

Y,d(ti)-l>(l+e)b(n)
t=i

Pr[SCl(A,/x) > (l + e)b(n)} = ^Pr[Po(A)=£] Pr

2q(n)

< ^Pr[Po(A)=t] Pr[Po(t/x) > (1 + e)b(n)\ c„

t=o

+ Pr[Po(A) >2q(n)

(Lem 4 23)
< n°w Pr [Po (2q(n)) > (1 + e)b(n)} + n"2+o(1)

(4 23)
< n-l-+°(l) + n-2+o(l)<n-l-fi

as cM = 6(1). D

Similarly, to prove the estimates on the maximum clique size in a random block graph and

the maximum node degree and maximum size of a cycle in a random cactus graph, we need

the analogon of Lemma 4.24 for the tails of a clique and a cycle distributed random variable.

Lemma 4.25. Let X,e > 0 be constants. There is an no = no(e) > 0 such that whenever

n > no it holds

Pr CI (A) >(l-e)
logn

log log n
> n-i+e+°(i) and Pr CI (A) >(I+e)

logn

log log n
< n

-l-£+o(l)

Proof. By (4.21) and Lemma 4.23 we have for t = (1 + e)
log n

log log n

oo \

Pr[Cl(A)>£] = ^ Pr [CI (A) = a;] < ^ ^—-Pr [Po (A) = a; - I]
x=t x=t

<

ex-l
-Pr[Po(A)>t-I] <n-l-£+o{-l)

Using (4.20) and Lemma 4.23 we obtain for t = (1 — e^—ogn
log log n

Pr [CI (A) > t] > Pr [CI (A) = t] > Pr [Po (A) = t - 1} > n-1+£+°w.

D

The cycle distribution needed by the sampler for (rooted) cactus graphs is defined as follows.
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Definition 4.26. The cycle distribution denoted by Cy (x) is defined by

k = 2
C'(x)

Vr[Cy{x) = k] = \ ü£® k>2

0 otherwise,

where C*{x) is the exponential generating function for rooted cycles and a single rooted edge.

Lemma 4.27. Let X,e > 0 be constants. There is an no = no{e) > 0 such that whenever

n > no it holds

Pr Cy (A) > (1 - e) logi n] > n-i+e+°U) and Pr Icy (A) > (1 + e) logi nl < n"1"6^1).

Proof. By the definition of the cycle distribution we have

EÀ 1 À -*>

r/ N n

2C«(A)
=

2C«(A) T^A
fc=r(l-£)logi n]

V > V >

Pr Cy(A) > (l + e)logi n

and

Pr Cy(A) >(l-e) log in

= n"1_£+o(1)

>Pr Cy(A) = [(!-£) log inl

[(l-e)logi n]
A A

= n-l+£+o(l)_
2C»(A)

D

4.7.2. Completing the Proofs. In this section we are going to demonstrate our new proof

method in detail by estimating the maximum node degree in a random block graph. Addi¬

tionally, we provide the proofs of the remaining theorems stated in Section 4.2.

Theorem 4.28. Let e > 0. For almost all n, it holds that the maximum node degree in a

random block graph is w.h.p. in the intervalX£,n := ((1 — e)d(n), (1 + e)d{n)), where d{n) :=

log».

log(3) )

Proof. The main idea in the following proof is to consider the process of object construction

during a run of the singular Boltzmann sampler TuB for block graphs, as it is described

in Section 4.6. Recall that the output of TuB is a random block graph according to the

Boltzmann distribution (2.5), and here we want to make a statement about random block

graphs Bn of a given size n. As described below, it turns out to be very convenient to study

the properties of the generated shapes of TuB, instead of studying properties of Bn directly.

As we shall see, these will translate to properties of random block graphs in a straightforward

way.

Before we proceed, let us modify slightly the sampling algorithm defined in Section 4.6. This

is done for solely technical reasons, and will become clear later. The idea behind the singular

rejection sampler TuB is to repeatedly sample and reject rooted block graphs, until TB*

outputs an object of the desired size. TB* proceeds as follows: for every generated node v, it

calculates a random value pv according to a Poisson law with parameter A := -§^Q(x) \X=B,, »,

and then calculates pv independent random values according to a clique law with parameter

ß := B'(pb). Then it generates rooted cliques with sizes given by the random values, joins

them at their roots, and proceeds in an identical way for all newly created nodes, until the

process dies out. The important modification in the sampling procedure below is that we
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let the sampler TuB make precisely [nlogn] random choices, abort after that immediately

its execution, and output the first object of size in X := (^, ^), if there is any that was

generated during a call of TB':

TuB{n): for(i = 1... [nlogn])

pt <— random value according to Po (A)

(CJ ,..., CpJ) <— p% independent random values according to CI (/x)

^^EiWcf-1) (**)

run the sampler TuB{n, \) with the above random values, and do not

stop its execution if it generated an object with size in (|, ^), and

abort it as soon as all [n log n] random values were exhausted

if(above execution of TuB{n, |) generated an object with size in (|, ^))
return the first such object (and label its nodes uniformly at random)

else return _L

The values dt calculated in the line marked with (**) are needed later in the analysis. Before

we proceed, let us make some important observations. TuB behaves very similar to the

sampler TuB described in Section 4.6. The only difference is that if it generates an object of

size in X, it does not output it directly, but continues its execution until it has generated at

least nlogn nodes. On the other hand, if it does not succeed in sampling an object of the

desired size, it returns a default object _L. Moreover, observe that the sampler TB', called

by the algorithm above, if it built a graph on s nodes, then it used exactly s (consecutive)

values pt,... ,Pi-\-s, and the corresponding random clique-distributed values to do so.

In order to prove the theorem, we will proceed in two steps. Let B' denote the set of all block

graphs with maximum degree in \JS>1 X£)S. First, we are going to show

Pr TuB{n) e& =l-o(l), (4.24)

i.e., with high probability, the sampler TuB{n) will output an object, which is not _L, and

which has the property that its maximum degree lies in the desired interval. Then, in the

second part of the proof, we will show that the above statement indeed proves the theorem.

First we show (4.24). Observe that the sampler TuB, when called by TuB, samples only the

shape of a graph - the labels are distributed on the nodes at the end of the process. For a

labelled graph G define s{G) to be its shape, i.e., the corresponding unlabelled graph, and

for a shape S, let £(S) be the set of labelled graphs with shape S, and let |5| denote the

number of nodes in S.

Furthermore, set s(B') := Uceß' S(G). Now, for a shape S with |5| G X, let Pr[5] be the

probability that S is the first shape of size in X generated by the repeated execution of TB',

and let Pr [G \ S] be the probability that the sampler outputs the labelled graph G, given

that the shape S had been generated. Observe that Pr [G \ S] = au,X ', if S = s(G), and zero
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otherwise, where aut(5) denotes the number of automorphisms of S. With this, we get

Pr \TvB{n) <E B'] = ^ Pr[S] ^ Pr [G \ S]

ses(B') Gee(s)

antr^ (4-25)
= Y. ^[S\-\l{S)\-^- = E Pr^>

ses(B')
' ''

ses(B')

_

|s|where the last step follows from the fact \£(S)\ = aUg-,. Hence, in order to show (4.24), it

will suffice to prove that the shape generated by TuB, during its execution in TuB, has with

high probability the property that its maximum degree is in the desired interval.

Let us now focus on the evolution of the node degrees during the sampling process. The sam¬

pler repeatedly calls TB'(n, |), which starts with a single node v. This algorithm calculates a

random value pv according to a Poisson law with parameter A, and then calculates pv random

(v) (v)
values C\ ,... ,CPv according to a clique law with parameter /j. This determines the size

(v) (v)
and structure of the neighbourhood of v. Then it creates pv cliques with sizes C\ ,..., CPv ,

and joins them together at their roots (and v). Finally, for each of the newly created nodes,

the same procedure is repeated independently until the process dies out, or it is interrupted,

because too many nodes were generated. Thus, the degree of a node is given by the outcome

of a swmC%we-distributed random variable with parameters A and /j, plus the size of the

clique, in which this node is contained, minus one. All in all, a lower bound for the degree of

a node v generated during the sampling process is its sumClique-v&lue scl(v), and an upper

bound is the size of the clique it is contained in plus scl (v).

Let e' := f. With the above discussion in mind, consider the execution of TvB{ri), which

generates the random values pt, C and d% (in the line marked with (**) in the exposition

of the algorithm), and let us define the following four events:

(A) TvB(n) + -L.

(£>) Every sequence of ^ consecutive values dt contains a value larger than (1 —e')d(n), i.e.,

B:= |(di,...,dfniDgnl) VI <i < [nlogn] - - : 3i < j < i + - : d3 > (1 - s')d{n) j .

(C) There is no 1 < i < [nlogn] such that dt > (1 +e')d{n).

Tog log n
'{V) For all 1 < i < [nlogn] and 1 < j < p% we have CW < 2^^L

The motivation behind the above events is that if they occur simultaneously, then the shape

generated by TuB will have the property that its maximum node degree is in I£>n. In fact,

suppose that \TvB(n)\ / _L, i.e. A holds. Then there is an index ïq and a number s G (f, ^p),
such that the sampler TB', given the random choices pl0,... ,p%0+s and the corresponding

values (CJ ,..., Cp°o),..., (CJt0 ,..., Cp°o+ss ), outputs a shape of size s. Now, suppose

that additionally B, C and V occur. Then, due to B, there is an index io <i' <io + s, such

that d%* = ^j=i(Cj — 1) > (1 — £r)d(n), i.e. TvB(n) has a node of at least that degree.

Furthermore, due to C and V, there is for sufficiently large n no node with degree larger than

logn . ,. ,.
. logn . ,. logn . .

,.
.

2-^ + (1 + e')d(n) = 2-^ + (1 + e7)—^- < (1 + e)d(n).
loglogn loglogn log(3) n
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Hence, with (4.25) we have

Pr TvB{n) e& > Pr [A and B and C and V]. (4.26)

In order to show (4.24), we have to prove that the probabilities for the events A, B, C, and

V are all o(l).

Let us first calculate Pr \A\. Recall that with Theorem 2.10 (Theorem 8 of [DFLS04]), we

obtain that the expected number of nodes Nn generated by TuB(n, ^), until it outputs an

object, is 6(n), and that the variance is 6(n2). Hence, using the fact that TvB generates at

least nlogn nodes, we get

Var [Ay
Pr TvB(n) = ± <Pr[Nn >nlogn] <

(n\ogn-E[Nn})2
= e

log2n
o(l). (4.27)

Next, we consider the probability of the event B. Observe that the dt's are independent

sumClique-distributed random variables with parameters A and ß. Due to Lemma 4.24, the

probability that a SC1(A,/j) random variable is larger than (1 — e')d(n) is at least n_1+^,

which implies that the probability that !| independent SCI (A, /x) variables are all smaller

than (1 — e')d(n) is at most (1 — n~l+^)^. As the number of ways to choose | consecutive

indexes out of [nlogn] indexes, i.e., the number of possible i's in the definition of B, is at

most \nlogn\, we obtain

Pr \B\ < \n\ogn~\ (I — n
1+

2 ) 2 < |~nlogn]-e 2rair = o(l). (4.28)

Now we consider the probability of the event C. By Lemma 4.24, the probability that a

SCl(A,/x) variable is larger than (1 +e')d(n), is at most n~l~^. Hence, we obtain

Pr \C\ < \nlogn\ n o(l). (4.29)

Finally, we will estimate Pr [£>]. Due to Lemma 4.25, the probability that a Cl(/x) random

variable is larger than 2t °^n ,
is for sufficiently large n at most n~2+°^1'. As the number of

clique-distributed random variables is distributed as the sum of [nlogn] independent Po(A)

variables, we obtain

Pr[P] < ^Pr[Po([nlogn]A) =t] • t • n_2+o(1) < \\n\ogri\-n 2+0(1)
_ o(l),

t>0

which proves with (4.26), (4.27), (4.28), and (4.29) the claim (4.24).

To complete the proof, we now show how (4.24) implies the theorem. In fact, let Bn be a

random block graph on n nodes. Let ö > 0 be arbitrarily small, and choose a sufficiently

large n such that

Pr TvB(n) G B'] > 1 - Ö and J^ Pr \\TvB(n)\
=s>l-ö.Suchannalwaysexists,dueto(4.24)and(4.27).ButthenwehavePrTuB(n)eB']<Ö+YlPr[r^-B(n)GB1\TvB(n)\=f<,<fPr

\TvB{n)
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which yields with our assumptions on ö

1-25 < Y^ Pr[BseB/]Pr[|fi/.B(7i)|=s (4.30)

Before we proceed, we are going to show that for all s = an, where a G (i, |), the probabilities

Pr

wit

\TvB{n) differ in at most a multiplicative factor. In fact, denote as in Lemma 4.22

i pStt the probability that TuB returns an object of size s, and having generated precisely

t + s nodes during its execution. Then, for all s as above

(Lemma 4.22)
Pr \TvB{n)

3

a "2 J2 Pn,t,

t<\n log n\

= J2 p°.t

t< \nlogn\

and the claim follows, as the last sum is independent of s.

But this yields with (4.30) that, say, for more than (1 —30\/J)n numbers S\,... in the interval

(if, ^p), we have Pr [BSi G B'\ > 1 — Vö, as otherwise the sum on the right-hand side of (4.30)

would have been smaller than 1 — 25. Assume the contrary, i.e. let ii,... ,ix, x > 30Vön with

Pr [Bh e&] <l-VSiorj = l,...,x. Let b := £*=1 Pr \\fuB(n)\ = d . By (4.30)

1 - 20 < J^ Pr [B, G B1] Pr \\fvB(n

< b(l - VS) + (1 - b)

< 1 - bVô,

and thus b < 2\fE.

Let S := ^t<rraiogral Pn,t- Then we have by the above observation

S < Pr |ri/5(n)| =s < 5. (4.31)

Moreover, since we know that ^<s<3 Pf |Tz/£>(n)| = s| > 1 — 5, we have

!<*<¥

1-<J< ^ Pr |ri/5(n)|=s ~S J2 (
f s

f<,<f
Vn

< Sn

is
3

«2^

Summing up, we get

and thus S > —3
ra22

Sx < J^Pr \\TuB(n) <2Vô

j=i

3\f 2VSn2 2

< 30Vö yielding the desired contradiction.and hence x <
(§)2 —j^j

Hence, for every 6 > 0, in every interval of the form (|, ^), when n is sufficiently large, we

have at most 30Vön numbers with Pr [BSi G B'\ < 1 — \/#. This completes the proof of the

theorem. D

Let us briefly sketch why the result also holds for random city graphs. Let d(n) = °f^ and

X£)n be defined as in Theorem 4.28 above. By Theorem 6.4 of [MSW06] we know that for

any e > 0 at least 1 — e of all city graphs have a giant component which contains all but at
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most k nodes, where k = k(e). From the proof of Theorem 4.28 it follows that for all large

enough n the probability that a random block graph has no node of degree in X£,n is at most

\ . Now, a counting argument yields that we have at most

(l-o(l))k(l)bn.k-^2k2 «yra
\kj log n

city graphs on n nodes with degree not in J£)ra, which is o(yn). Hence the theorem also holds

for random city graphs, which proves the first part of Theorem 4.3. We can proceed similarly

for the remaining parts of Theorem 4.2 and 4.3 - see the following proofs.

Now, we give the proofs for the other properties stated in Theorems 4.2 and 4.3. As they

follow exactly the pattern of the proof of Theorem 4.28, we keep them short and highlight

only the important differences. First, observe that we can easily adapt the sampler TuB

defined in the proof of Theorem 4.28 for the case of cactus graphs: instead of TuB we call the

singular rejection sampler TuK as a subroutine, which can be compiled systematically from

the relations of the generating functions in a similar way as for block graphs, see Section 4.6.

The sampler TuK draws [nlogn] Poisson distributed random variables pi,... ,p\n\ogn\i but

with a different parameter A := -§^C(x)\x=K%, *.. Moreover, we draw the (CJ' ,... ,CpJ)
independent random values according to the cycle distribution Cy(/x), where p, := K'(pk).

The remainder of the proof is the same, except for the following: we have to adapt the

definition of the dt's (marked with (**) in the exposition of TuB on page 66) in case of the

maximum node degree in a random cactus graph, and we have to redefine the events £>, C, D

accordingly. We always keep event A. We will give these new definitions and changes in the

following proofs.

Proof of Theorem 4.2, part (i). From the discussion before, it follows that we can follow

the scheme of proof of Theorem 4.28. We define the sampler TuK by adapting the sampler

TuB as described before. Let d(n) := lo°^" ,
let e > 0 and define T£,n := ((2 — e)d(n), (2 +

e)d{n)).

Observe that the maximum node degree in a random cactus graph is determined similar as

in a random block graph. First the number of components for a node v is drawn according

to a Poisson distribution with an appropriate parameter A (see discussion before). Then for

each component a Cy (/x) distributed random variable is drawn to determine the size of the

corresponding cycle. Note, that every adjacent edge contributes 1 and every adjacent cycle

2 to the degree of node v. The following function will be convenient:

/(Cy (,.)) =
i1 ifCy(")=2

M

\ 2 ifCy(/x) >3

Now, define d% :<— ^i<7<Pl /(C, ) for i = 1,..., [nlogn]. Hence, d% is a lower bound on the

node degree of node i and dt + 2 is an upper bound as we assumed that node i is part of a

cycle and thus has already degree 2. Recall that the dt's are drawn independently.

Obverse that we can now follow the argumentation of the proof of Theorem 4.28. What is

left, is to define new events B, C - it follows from the above discussion that we don't need an

equivalent of event V - and show that they occur w.h.p. Let e' := |. We define the events

as follows:
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(B) Every sequence of \ consecutive values dt contains a value larger than (2 — £r)d(n), i.e.,

B := Ud\,... ,d|-raio.gn\ VI < i < [nlogn] ^:3i<j<i + ^:d,>(2-£')d(n)}.
(C) There is no 1 < i < [nlogn] such that dt > (2 + e')d{n).

First, we consider the probability of the event B. Let a := Pr[Cy(/x) = 2] and let Iß :=

/(Cy(/x)). We have by Lemma 4.23

Pr

'Po(A)

E /„ > (2 - e')d{n) >Pr Vo{\) = {l--)d{n) •Pr

{l-\)d{n)

Ë Iß>(2-e')d(n)

>n-i+|.(l_a)(i-|M»)=n-i+T Mi)

With this and as the number of ways to choose f consecutive indexes out of \nlogn\ indexes,

i.e., the number of possible i's in the definition of B, is at most [nlogn], we obtain

/ e'

Vy\B\ < [nlogn]-(l-n"1+^)t < \n\ogn\ e~^ = o(l). (4.32)

Now we consider the probability of the event C. Observe that a sum of j /(Cy (/x)) distributed

random variables can only be larger than some value t, if we sum over at least | such values,

as /(Cy(/x)) < 2. Thus we have

Pr

'Po(A)

E/(cy M) > (2 + e'Mn) < ^TPr[Po(A)=j]Pr
j>0

Y,f(Cy(p))>(2 + e')d(n)
%=i

< Y^ Pr[Po(A) = j] <n~l-

3>(l+^)d(n)

where the last step follows by Lemma 4.23. Hence, we obtain

Pr \C] < \n\ogn\ n~l~^ = o(l).

This completes the proof.

(4.33)

D

Proof of Theorem 4.2, part (ii). Again, we can follow the pattern of proof of Theo¬

rem 4.28. We define the sampler TuK by adapting the sampler TuB as described before. Let

c{n) := logi n, let e > 0 and define X£,n := ((1 — e)c(n), (1 +e)c{n)). Note that the maximum

size of a cycle in a random cactus graph is determined by the random variables C which

are independently Cy (/x) distributed.

Again, we can follow the argumentation of the proof of Theorem 4.28. What is left, is to

define new events B and C and show that they occur w.h.p. Let e' := |. We define the events

as follows:

(£>) Every sequence of | consecutive values C contains a value larger than (1 — e')c(n),

i.e.,

^^{(cj1),...,^,...,^^10^1),...,^,10^^)

VI < I < \nlogn] - | : 3/ < i < I + | : 31 < j < Pl : C,W > (1 - e')c(n)\ .

2 2 J
j

(C) There is no 1 < i < \nlogn],l < j < pt such that C > (1 + e')c(n).
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First, we consider the probability of the event B. Due to Lemma 4.27 we have

>Pr[Po(A) = l]-Pr[Cy(/x) > (1 - e')c{n)] > n-1+£'+o(1).Pr

Po(A)

E Cy (/x) > (1 - e')c(n)

With this and as the number of ways to choose § consecutive indexes out of \nlogn] indexes,

i.e., the number of possible l's in the definition of B, is at most [nlogn], we obtain

Pr[B] < [nlogn] • (1 - n-1+£'+o(1))? < \n\ogn\ er^'+°w = o(l). (4.34)

Now we consider the probability of the event C. Due to Lemma 4.27, the probability that a

Cy (p) random variable is larger than (l+e')c(n), is for sufficiently large n at most n~l~£ +°(l>.

As the number of cycle-distributed random variables is distributed as the sum of \nlogn]

independent Po (A) variables, we obtain

PrP] ^ S^¥r[¥o(\n\ogn\\)=t]-t-n-l+£'+o{l) < Afnlogn] • n"1"6'^1) = o(l).

D

Proof of Theorem 4.3, part (ii). Again, we can follow the pattern of proof of Theo¬

rem 4.28. We can use the same sampling procedure TuB. Let c(n) := lo°^" ,
let e > 0

and define X£,n := ((1 — e)c(n), (1 + e)c{n)). Note that the maximum size of a clique in a

random block graph is determined by the random variables C which are independently

Cl(/x) distributed.

We can follow the argumentation of the proof of Theorem 4.28, we only have to define new

events B and C and show that they occur w.h.p. Let e' := f. We define the events as follows:

(£>) Every sequence of | consecutive values C contains a value larger than (1 — e')c(n),

i.e.,

^^{(CÎ1),...,^),...,^^10^1),...,^,10^!))
I v J- yi- ' ' i- .F|nlogn|

'

VI < I < \n\ogn] - ^ : 3/ < i < I + J : 31 < j < Vl : C{f> > (1 - e')c(n) }> .

2 2 J

(C) There is no 1 < i < \nlogn],l < j < pt such that C > (1 + e')c(n).

First, we consider the probability of the event B. Due to Lemma 4.25 we have

Pr

'Po(A)

E CI (/x) > (1 - eXn) >Pr[Po(A) = l]-Pr[Cl(/x) > (1 - e')c(n)] >n-1+£'+°w.

With this and as the number of ways to choose § consecutive indexes out of \nlogn\ indexes,

i.e., the number of possible l's in the definition of B, is at most [nlogn], we obtain

Pr[B] < [nlogn] • (1 - n-1+£'+o(1))? < \n\ogn\ er^'+°w = o(l). (4.35)

Now we consider the probability of the event C. Due to Lemma 4.25, the probability that a

CI (p) random variable is larger than (l+e')c(n), is for sufficiently large n at most n~l~£ +°(l>.
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As the number of clique-distributed random variables is distributed as the sum of \nlogn\

independent Po (A) variables, we obtain

PrP] ^ ^Vr[Vo(\n\ogn\\)=t]-t-n-l+£'+o{l) < A fa log nl • n-i-e'+°(i) = 0(1).

D

In the next proofs we apply (more classical) generating function techniques to obtain the

remaining structural results about random block and random cactus graphs as stated in

Section 4.2.

Proof of Theorem 4.7. As a tree is bipartite, we can colour it using only 2 colours. More¬

over we can colour any even cycle with 2 colours. Thus, we only need 3 colours, if a cactus

graph contains an odd cycle as a biconnected component. In the same way as in Section 4.5

we can derive a singular expansion for the class ]C of cactus graphs which have only even

cycles as biconnected components and hence are 2-colourable. Again, we can obtain asymp¬

totic estimates for the coefficients kn of the generating function - i.e. the number of cactus

graphs on n nodes which contain only even cycles - from the singular expansion by Corollary

2.5 (Corollary VI.1 of [FS06]). Then the probability for a random cactus graph for being

2-colourable is I21. In the sequel we show that

r 6

~ ak n 2ft ~n,

where äk = 0.1360 and pk
1
= 3.5505. This concludes with Theorem 4.5 the proof.

Let C(x) denote the exponential generating function for even cycles of length at least 3 and

a single edge. With C(x) the exponential generating function of all cycles of length at least

3 and a single edge as defined in Section 4.5, we have

C{x) = ]2{C{x) + C{-x)),

as C(—x) cancels every odd term and the factor \ avoids that we count every even term

twice.

Let K{x) denote the exponential generating function for cactus graphs that contain only even

cycles. Now set y = 1; again from the well-known decomposition of a graph into 2-connected

components we obtain the relations

K\x) = *exp (J-C (£•(*))) and C{x) = \ log (^) + \ log (j±-) + ^2.(4.36)
Notice that the singularities of -^C(x) and K*{x) are the same as those of C(x) and K(x).

From (4.36) it follows that the functional inverse ij){u) of K'(x) is

ï>(u) = uexp (-—C(u)j , (4.37)

as ip(K'(x)) = x. This time C(x) has two singularities of modulus 1 at R\ = 1 and R2 = —1.

We use again the functional inverse of K*(x) to obtain
asingularexpansionforK*(x)andthenbyintegrationasingularexpansionforK(x).Asbefore,wethenapplyTheorem

2.6
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(Theorem VI.6 of [FS06]). One can check that solving jf^ip(u) = 0 has a real zero at

r G (0, -Ri), where r is the solution to the equation

-2 + 4a;2 - 2a?4 + 2x - x3 + x5 = 0,

and r = 0.5476.

Thus the singularity of K'(x) is at pk = Ï>{t). From the singular expansion we obtain the

following asymptotic estimate for the number of cactus graphs with even cycles only

cn~ akn 2 Pk ;

where äk = 0.1360 and pk~l = ^(r)-1 = 3.5505. This completes the proof. D

Proof of Theorem 4.8. The proof is the same as in [GN05a] except for the difference in

the constants due to the different underlying graph class. For fixed k the generating func¬

tion of desert graphs with exactly k connected components (i.e. cactus graphs) is K(x)k/k\.

Moreover, for fixed k we have

[xn]K(x)k ~kK%-l[xn]K(x),

as kK0~ is the leading term in the singular expansion of K(x). Thus the probability that a

random desert graph has exactly k components is asymptotically

[xn]K{x)/k\ kKt1 Ko
=

Kt1 Ko

[xn]D(x)
~

M (k-l)l

which implies the theorem. D

We may prove the corresponding result for city and block graphs, i.e. Theorem 4.13, in an

analogous way.

Proof of Theorem 4.10. By Theorem 4.5 we have as n —> oo

Pr[Dra is connected] - — = e~K° = 0.7488.

Also

ad

5
n

CV 77 2 (y

Pr[Dra is biconnected] ~ — —> 0,
ad

as pk < 1 and n —> oo. Finally,

^
n

CV 77 2 O

Pr[Kra is biconnected] ~ — —> 0,
ak

as pk < 1 and n —> oo. D

We can prove Theorem 4.15 in the same way, using the estimates of Theorem 4.6.

Proof of Theorem 4.11. To prove the theorem, it suffices to derive a singular expansion

for the bivariate generating function of desert graphs, where the second parameter marks the

number of edges. Then we can apply Theorem 2.7 (Theorem IX.10 of [FS06]) to obtain the

result.
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Let D(x, y) denote the bivariate generating function for desert graphs. In Lemma 4.19 it was

shown that D(x, y) has the singular expansion

D(x, y) = D0(y) + Dl{y)X + D2(y)xl + 0(X2),

where X = ( 1 — -r-s J and the Dl{y) and p{y) are given explicitly. Now, we apply Theorem

2.7; for this, we set the bivariate functions A, B, C as follows:

A(x,y)=D0(y) + Dl(y)X + O(X2), B(x,y) = K2(y) and C(x,y) = (l
p{y)

and a = — |. With these definitions, it is easily checked that the preconditions of Theorem 2.7

(Theorem IX. 10 in [FS06]) are fulfilled. It follows that the number of edges in a random

desert graph with n nodes is normally distributed with expectation and variance given by

the expressions

du

9
p{u)

_ n

( £jp(u)
_1 o i du2

y^zl- n and at =
u=l Vn

+
(^n\2,

n_

p(l)
n I p(l) n U

A similar calculation proves the same result for random cactus graphs; this proves the theo¬

rem. D

4.8. Conclusions

In this chapter we introduced a new method, that is based on the analysis of Boltzmann sam¬

plers and may be used to obtain precise estimates for the maximum degree and maximum size

of a biconnected block of a "typical" member of a constrained graph class. We demonstrated

the method on two moderately complex graph classes, namely cactus and block graphs. It

would be interesting to apply the method to more complex graph classes, for instance out-

erplanar graphs, planar graphs or triangulations, as well as to study different parameters,

especially the degree sequence.





CHAPTER 5

A3 3-minor-free Graphs

In this chapter we are interested in the number of simple labelled A^-minor-free and maximal

1^3-mmor-free graphs, where maximal means that adding any edge to such a graph yields

a 1^3-minor. We use analytic combinatorics (see also Section 2.2) to obtain asymptotic

estimates for the number of A^-minor-free and maximal A^-minor-free graphs. We also

derive limit laws for some parameters of a random A^-minor-free graph.

5.1. Previous and Related Work

It is known that there exists a constant c, such that there are at most cnnl A^-minor-free

graphs on n nodes. This follows from a result of Norine, Seymour, Thomas, and Wol-

lan [NSTW06] which states that every proper subclass of all graphs which is closed under

isomorphism and taking minors has at most cnnl graphs on n nodes. Obviously, this gives

also an upper bound on the number of maximal A^-minor-free graphs as they are a proper

subclass of 1^3-minor-free graphs.

In [MSW06], McDiarmid, Steger and Welsh give conditions in which cases an upper bound

of the form cnnl on the number of graphs \Cn\ on n nodes in graph class C yields that

(\Cn\/n\)« —> c > 0 as n —> 00. These conditions are satisfied for 1^3,3-minor-free graphs, but

not in the case of maximal A^-minor-free graphs as one condition requires that two disjoint

copies of a graph of the class in question form again a graph of the class.

Thus we know that there exists a growth constant c for 1^3-minor-free graphs, but not

its exact value. For maximal A^-minor-free graphs we only have an upper bound. Lower

bounds on the number of graphs in our classes can be obtained by considering (maximal)

planar graphs. Due to Kuratowski's theorem [Kur30] planar graphs are 1^3,3- and K5-

minor-free. Hence, the class of planar graphs is contained in the class of A^-minor-free

graphs. The class of triangulations is contained in the class of maximal A^-minor-free

graphs due to Wagner's theorem [Wag37] (with the exception of all triangulations on 5

nodes). Hence, we can use the number of planar graphs and the number of triangulations as

lower bounds. Determining the number (of graphs of sub-classes) of planar graphs attracted

considerable attention [BGW02, GN04, GN05b, BGKN05, BLMK] in recent years.

Giménez and Noy [GN05b] obtained precise asymptotic estimates for the number of planar

graphs. The asymptotic number of triangulations was given by Tutte [Tut62] already in

1962. Investigating how much the number of planar graphs (triangulations) differs from
(maximal)A^-minor-freegraphswasalsothemainmotivationforourresearch.Herewewillderiveasymptoticestimatesforthenumberof(maximal)A^-minor-freegraphs.For1^3-minor-freegraphsweconsider3-connected,2-connected,connectedandnotnecessarilyconnectedgraphs.Investigatinghowmuchthenumberofplanargraphs(triangulations)

77
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differs from (maximal) A^-minor-free graphs is a first important step in examining how

"typical" instances of these graph classes will differ.

For 3-connected A^-minor-free graphs, the change from planar graphs can be easily de¬

scribed: it follows from a theorem of Wagner [Wag37] that the set of 3-connected 1^3,3-

minor-free graphs consists of all 3-connected planar graphs and the complete graph on 5

nodes. Thus, on this connectivity level our graph class differs only in the existence of one ad¬

ditional graph from planar graphs. But as we will show, adding K$ to the set of 3-connected

graphs yields a slightly larger exponential growth rate for 2-connected, connected, and not

necessarily connected A^-minor-free graphs. It also slightly changes other parameters, for

instance the expected number of edges in a random A^-minor-free graph. For maximal

1^3-minor-free graphs the growth rate also increases slightly compared to triangulations.

5.2. Results

We derive precise asymptotic estimates for the number of simple labelled A^-minor-free and

maximal A^-minor-free graphs on n nodes, and we establish several limit laws for parameters

in random 1^3-minor-free graphs. More precisely, we show that the number gn, cn, and bn

of not necessarily connected, connected and 2-connected A^-minor-free graphs on n nodes

and the number mn of maximal A^-minor-free graphs on n nodes satisfy

_

7
_

gn ~ ag n 2 pgn n\,

cn ~ acn 2 Pcn n\,

bn ~ ab n"2 p-'n n\,

mn ~ amn~2 p"ra n\

where ag = 0.42643 • I0"5, ac = 0.41076 • I0"5, ab = 0.37074 • I0"5, am = 0.40553 • I0"4,

Pc1 = Pg1 = 27.22935, p^1 = 26.18659, and p^1 = 9.496II9 are analytically computable

constants. Moreover, we derive limit laws for A^-minor-free graphs, for instance we show

that the number of edges is asymptotically normally distributed with mean nn and variance

An, where k = 2.21338 and A = 0.43044 are analytically computable constants. Thus the

expected number of edges is only slightly larger than for planar graphs [GN05b].

To establish these results for 1^3-minor-free graphs, we follow the approach taken for planar

graphs [BGW02, GN05b]: we use a well-known decomposition
alongtheconnectivitystruc¬tureofagraph,i.e.intoconnected,2-connectedand3-connectedcomponents,andtranslatethisdecompositionintorelationsofourgeneratingfunctions.Thisispossibleasthede¬compositionfor1^3-minor-freegraphswhichisduetoWagner[Wag37]fitswellintothisframework.Thenweusesingularityanalysistoobtainasymptoticestimatesandlimitlawsforseveralparametersfromtheseequations.FormaximalA^-minor-freegraphsthesituationisdifferent,asthedecompositionwhichisagainduetoWagnerhasfurtherconstraints(itrestrictswhichedgescanbeusedtomergetwographsintoanewone).Thefunctionalequationsforthegeneratingfunctionsofedge-rootedmaximalgraphsareeasytoobtainbutinordertogotounrootedgraphs,specialintegrationtechniquesbasedonrationalparametrisationofrationalcurvesareneeded.Inthiswaywe
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can derive equations for the generating functions which involve the generating function for

triangulations derived by Tutte [Tut62].

Overview and Notation

In the subsequent sections, we proceed as follows. We turn to maximal 1^3-minor-free and

1^3-minor-free graphs in Sections 5.3 and 5.4 respectively. In each of these sections, we will

first derive relations for the generating functions based on a decomposition of the considered

graph class and then apply singularity analysis to obtain asymptotic estimates for the number

(and properties) of the graphs in these classes.

Throughout this chapter variable x marks nodes and variable y marks edges. Unless we

specify the contrary, the graphs we consider are labelled and the corresponding generating

functions are exponential. We often need to distinguish an atom of our combinatorial objects;

for instance we want to mark a node in a graph as a root node. On generating function level

this means taking the derivative with respect to the corresponding variable and multiplying

the result by this variable. To simplify the formulas, we use the following notation. Let

G(x,y) and G(x) be generating functions, then we abbreviate G'(x,y) = x-^G(x,y) and

G'(x) = x-^G(x). Additionally, we use the following standard graph notation: let G be a

graph, then we denote by V(G) and E(G) the node- and edge-set of graph G.

5.3. Maximal K% 3-minor-free graphs

Already in the 1930s, Wagner [Wag37] described precisely the structure of maximal 1^3,3-

minor-free graphs. Roughly speaking his theorem states that a maximal graph not containing

Kst3 as a minor is formed by gluing planar triangulations and the exceptional graph K$ along

edges, in such a way that no edge glues two different triangulations. Before we state the

theorem more precisely, we introduce the following notation (similar to [Tho99], see also

Section 5.4.2).

Definition 5.1. Let G\ and G2 be graphs with disjoint node-sets, where each edge is either

coloured blue or red. Let e\ = (a, b) e E(G\) and e2 = (c, d) e E(G2) be an edge of G\ and

G2 respectively. For 1 = 1,2 let G[ be obtained by deleting edge e\ and colouring edge e2

blue if ei and e2 were both coloured blue and red otherwise. Let G be the graph obtained

from the union of G[ and G'2 by identifying nodes a and b by c and d respectively. Then we

say that G is a strict 2-sum of G\ and G2. We say that a strict 2-sum is proper if edges e\

and &2 are neither red.

Theorem 5.2 (Wagner's theorem [Wag37]). Let T denote the set of all labelled planar

triangulations except for the triangulations on 5 nodes. Let each edge of a graph in T be

coloured red. Let each edge of the complete graph K$ be coloured blue. A graph is maximal

Ksß-mmor-free if and only if it can be obtained from graphs in T and K$ by proper, strict

2-sums.

Let A be the family of maximal graphs not containing Kst3 as a minor. Let Ti be the family of

edge-rooted
graphsinA,wheretherootbelongstoatriangulation,andletTbeedge-rootedgraphsinA,wheretherootdoesnotbelongtoa

triangulation.
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Let To(x,y) be the generating function of edge-rooted planar triangulations (the root-edge is

included) except for the triangulations on 5 nodes, and let Ko(x, y) be the generating function

of edge-rooted K$ (the root-edge is not included). Let A(x,y), F(x,y), and H(x,y) be the

generating functions associated respectively to the families A, J7, and TL. In all cases the two

endpoints of the root edge do not bear labels, and the root edge is oriented; this amounts to

multiplying the corresponding generating function by 2/x2. Notice that

2 9/ 10a;5\ 9x3
Ko =

^dy-{y ¥j=yy
Since edge-rooted graphs from A are the disjoint union of TL and J7, we have

2 dA{x,y)
x2 dy

The fundamental equations that we need are the following:

H(x,y)+F(x,y) = -^y yJy'. (5.1)

H = TQ(x,F) (5.2)

F = yexp(K0(x,H + F)) (5.3)

The first equation means that a graph in TL is obtained by substituting every edge in a

planar triangulation by an edge-rooted graph whose root does not belong to a triangulation

(because of the statement of Wagner's theorem). The second equation means that a graph

in T is obtained by taking (an unordered) set of K^s in which each edge is substituted by

an edge-rooted graph either in TL or in T.

Eliminating H we get the equation

F = yexp(Ko(x,F + T0(x,F))). (5.4)

Hence, for fixed x,

ip(u) = uexp(—Ko(x,u + Tq(x,u)) = -uexp I — —-(u + To(x,u))9 ) (5.5)

is the functional inverse of F(x,y).

In order to analyse F using Equation (5.3) we need to know the series To(x,y) in detail. Let

Tn be the number of (labelled) planar triangulations with n nodes. Since a triangulation has

exactly 3n — 6 edges, we see that

T{x,y) = Y,Tny
3ra-6x

is the generating function of triangulations. And since

m , ,
2 dT(x, y) 3 o g

T0(x,y) = -^y \,y! - -x3y9,

xz dy 2

where we subtract the last polynomial to exclude the triangulation on 5 nodes, it is enough

to study T.

Let now tn be the number of rooted (unlabelled) triangulations with n nodes in the sense of

Tutte and let t(x) = Yl tnXn be the corresponding ordinary generating function. We know

(see [Tut62]) that t(x) is equal to

t = x28(l - 29)
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where 9(x) is the algebraic function defined by

9(1-9f = x.

It is known that the dominant singularity of 9 is at R = 27/256 and 9(R) = 1/4.

There is a direct relation between the numbers Tn and tn. An unlabelled rooted triangulation

can be labelled in n\ ways, and a labelled triangulation (n > 4) can be rooted in 4(3n — 6)

ways, since we have 3n — 6 possibilities for choosing the root edge, two for orienting the edge,

and two for choosing the root face. Hence we have

tnn\ = 4(3n - 6)Tn, n > 4, t3 = T3 = l.

The former identity implies easily the following equation connecting the exponential gener¬

ating function T(x,y) and the ordinary generating function t(x):

dT
_

3x^ t(xy3)
V~dy~V T

+
^^'

Hence we have

m , s
2 dT ox t(xy3) 3

, q

TQ(x,y) = -^y^- =
V
~ + -^-Nr ~ -x V

v ,yj
x2y dy

y
2 2x2y6 2

y

The last equation is crucial since it expresses To in terms of a known algebraic function. It

is convenient to rewrite it as

To(x,y)=y3^ + -L(x,y)(l-2L(x,y))--x3y9, where L(x,y) = 9(xy3). (5.6)

The series L(x, y) is defined through the algebraic equation

L(l - L)3 - xy3 = 0. (5.7)

This defines a rational curve, i.e. a curve of genus zero, in the variables L and y (here x is

taken as a parameter) and admits the rational (actually polynomial) parametrisation

L = X(t) = --2, y = t(t) = ±3-. (5.8)

This is a key fact that we use later.

We have set up the preliminaries needed in order to analyse the series A(x,y), which is the

main goal of this section. From (5.1) it follows that

„, ,
x2 fy H(x,t)

,

x2 fy F(x,t)
,

A(x,
y)
= — dt + —

v ' ;
dt.V UJ

2 J0 t 2 J0 t

The following lemma expresses A(x, y) directly in terms of H and F without integrals.

Lemma 5.3. The generating function A(x,y) of maximal graphs not containing K%^ as a

minor can be expressed as

A(x, y) = -£- [27(H + F) log ( - ) + 10L + 20L2 + 15 log(l - L) - 30F - hxF3 + 5x3F9 ) ,

60 v V y

(5.9)

where L = L(x, F(x,y)), H = H(x,y) and F = F(x,y) are defined through (5.7), (5.2) and

(5.3).
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Proof. Integration by parts gives

2

A(x,y) = y jT H(x,t) + F(x,t)
^ = x^{R + p) ^^ _ x_x ^

where
rv

I = / log(t) (H'(x, t) + F'(x, t)) dt
Jo

and derivatives are with respect to the second variable. Because of (5.5), the change of

variable s = F(x, t) gives t = tp(s) and

3

log(t) = log(S)-^r(S + T0(a;,S))9.

Since H = T0(x, F) we have H' = %{x, F)F' and so

1 = 1 (log(s)-^(s + Mx,s))9^{l+T>(x,s))ds
x3(F + T0(x,F))w />F1

... .. ..

,
= —-

10 +7 log(s)(l+1*0(x,s))ds

= -±(H + F)\og(^)+JQ log(s){l + T>(x,s))ds,

where the last equality follows from Equation (5.3).

It remains to compute the last integral. From (5.6) it follows easily that

/
3w2£ / 1 \ 27 o o

,

T" = -Y" \l + Ö~W)
~

T* " ' (5'U)

Now we change variables according to (5.8) taking s = {(£), so that L = X(t). Let ( be the

inverse function of £, so that t = ((s). Observe that ((s) satisfies

C4 + x2C + x3s = 0.

Then we have

fF
/ log(s)(l + r0(x,s))ds (5.12)
Jo

rC{F)

logget)) (i+-^-- (i
+

,,
\uyy\ m dt

bVSV"V
'

2 V (l-A(t))2

«F) 27

logm)^-*3 m)8?(t)dt.
0 z

The second integral on the right hand side can easily be solved and after substituting the

expressions for {(£) and A(t), the integrand in the first integral is equal to

1
'• +3 , 2Wo5 , o.8 , c.5m2 , c,2„4\. '

t +Xt
f(x>t) = —-~s (4t +x ) i2x +3i8 + 6fV + 6ra;4)

In .

3

The function /(a;, t) can be integrated in elementary terms, resulting in

,C{F)f(xt)dt-(-^-^-<--<--<--^)log(-<^±^

o A<M^-^ 2a:4 2a:8 ^ x3 x 2xe J
ë
\ x3

+ 7-^-^+(- +
(-

+
^

+
^--log(l+(-

6x4 6x2 x x3 2x6 6x8 2 V x2
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where ( = ((F). All terms with ( are powers of either of the two forms

so we can write the integral of f(x,t) explicitly in terms of F and L = L(x,F), and overall

we get for the integral of Equation (5.12)

1r4 3 o
5r2

T „

3 o n\,
,_

L4 L3 7L2 L log(l - L)
^

x3F9
-L4 + -L3 - -L2 + L + F - -£3F9 og(F)H 1 1 1—— J—F-\ .

2 2 2 2 y
6V ;

6 2 6 6 2 6

We simplify this expression further using that, according to Equations (5.2), (5.6) and (5.7),

H = T0(x, F) = - (xF3 + L(l - 2L) - 3a;3F9) = -(-L4 + 3L3 - 5L2 + 2L- 3L3(1 - L)9).

(5.13)

Obtaining the final expression for A(x,y) is just a matter of going back to Equation (5.10)

and adding up all terms. D

Summarising, we have an explicit expression for A in terms of x, y, H(x, y) and F(x, y) which

involves only elementary functions and the algebraic function L{x,y). Moreover, note that

H(x,y) can be written in terms of L(x,F) by Equation (5.13). Our goal is to carry out a

full singularity analysis of the univariate generating function A(x) = A(x, 1). To this end we

first perform singularity analysis on F(x) = F(x, 1).

Lemma 5.4. The dominant singularity ofF(x) is the unique p > 0 such that pF(p)3 = 27/256.

The approximate value is p = 0.10530617. The value F(p) = 1.0005143 is the solution of

273 / / 59 3 / 27 \3\ 1N
i =

eXPl«n56»^+^5Î2-2^J }l] '• <514)

Proof. The function F(x) satisfies

$(x, F) = exp (^ (F + TQ(x, F))A - F (5.15)

Thus the dominant singularity p of F(x) may come from To or from a branch point when

solving (5.15). Assume that there is no such branch point. Then, since L(x,y) = 9{xy3)
and the dominant singularity of 6 is at 27/256, we have that L(p, F(p)) = 1/4 and pF{p)3 =

27/256. Substituting on $(x,F) = 0 we obtain Equation (5.14), where t stands for F(p).

The approximate value is t = 1.0005143, which gives p = 0.10530617, slightly smaller than

R = 27/256 = 0.10546875.

We now prove that there is no branch point when solving $. If this were the case, then there

would exist p < p such that 8f^(p, F(p)) = 0, where

^{x, F{x)) =Y^(-3£2 + 3L - 27(L(1 - L)3)3 + 2F + 3xF3)x3

(2F + xF3 + L- 2L2 - 3(L(1 - L)3)3)8 - 1. (5.16)

follows by differentiating Equation (5.15), by using $(x,F(x)) = 0 and Equations (5.7),

(5.11), and (5.13).
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Consider 3f®(x, F, L) as a function of three independent variables, where x > 0, F > 1 and

0 < L < 1/4. It follows easily that it is an increasing function on any of them. Hence

0 = 9F$(p, F(p), L(p, F(p))) < 9F$(p, F(p), 1/4),

since, by assumption, p < p. On the other hand 9i?$(p, t, 1/4) = —0.9940, so by comparing

this with 9i?$(p,F(p), 1/4) we deduce that t < F(p). Since 1 = F(0) < t, by continuity of

F{x) there exists a value x G (0, p) such that F{x) = t, and by the monotonicity of $(x, F)

for fixed F there is a unique solution x to $(x,t) = 0. This solution is precisely x = p,

contradicting p < p.

D

Proposition 5.5. Let p and t be as in Lemma 5.4. The singular expansion of F(x) at p is

F(x) = t + F2X2 + F3X3 + 0(X4),

where X = a/1 — x/p, and F2 and Fs are given by

_

6t(16777216t + 9010867) log (t)
_

tlog(t)M
2~

Q
' 3 ~

Q5/2

Q = 301989888t log(t) - 33554432t + 127927431 log(t) - 3807575,

M = 6291456P^ (33554432t + 34268175 log(t) +3807575),

P = -201326592t - 205609050 log(t) - 22845450.

Proof. To obtain the coefficients of the singularity expansion, including the fact that F\ = 0,

we apply indeterminate coefficients Ft, Lt of X% to Equations (5.15) and

L(x)(l - L{x)f - xF{xf = 0,

where X = ^J\ — x/p, so that x = p(l — X2). These calculations are tedious, but can be

done with a computer algebra system such as Maple. D

Proposition 5.6. Let p and t be as in Lemma 5.4. The dominant singularity of A(x) is p,

and its singular expansion at p is

A{x) = A0 + A2X2 + A4X4 + A5X5 + Ö(X6),

where X = a/1 — x/p and Aq, A2, A4 and A$ are given by

243 1 /
„, , , 102804525, , ,

54165615
,

/3
*» =1310720? (-27il°g(i)

+30t-
13554432- "*<'> " Ï67772Î6

" 16k* (4

1 /_„.„„_-.„„„„
._-. ,r2 //, ^,\ Tr 1 /.\2 I Ts 1 I \ 0+2

5858615
,
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where G = 3807575/33554432, K = lf5lf4f2 +t, N = K log(t) - G - \t, and Q, M and P

are as in Proposition 5.5.

Proof. We just compute the singular expansion

A(x) = Y,AkXk,
fc>0

by plugging the expansions for F{x) and L(x) of Proposition 5.4 in (5.9).

D

Theorem 5.7. The number An of maximal graphs with n nodes not containing K^ as a

minor is asymptotically

An~ a n~7/27ran!,

where 7 = 1/p = 9.496119 and a = -15A5/8y/ïr = 0.40553 10"4.

Proof. This is a standard application of singularity analysis (see Corollary 2.5 (Corol¬

lary VI.1 of [FS06])) to the singular expansion of A{x) obtained in the previous lemma. D

5.4. K3 3-minor-free graphs

In this section, we derive the asymptotic number of ^^3-minor-free graphs and properties of

random A^-minor-free graphs.

5.4.1. Notation. We introduce some more notation, which we will need in this section. Let

G(x, y), C(x, y) and B(x, y) denote the exponential generating functions of simple labelled not

necessarily connected, connected and 2-connected 1^3-minor-free graphs respectively, where

x marks nodes and y marks edges. We will use the additional variable q to mark the number

of K^s used in the "construction process" of a 1^3-minor-free graph (see below for a more

precise explanation), but we won't give it explicitly in the argument list of our generating

functions to simplify expressions.

Finally, for stating Lemma 5.10 and its proof, we will need the following notation from

[Wal82]. We denote by a brick a 3-connected graph with at least 4 nodes, by a (multi-)block

a 2-connected (multi-)graph with at least 2 nodes, by a network N a multigraph with two

distinguished nodes - called its poles and labelled 0 and 00 - such that the multigraph N*

obtained from N by adding an edge between the poles of N is 2-connected.

Furthermore, we define the following network types:

• chain: network consisting of 2 or more edges connected in series with the poles at its

terminal nodes

• bond: network consisting of 2 or more edges connected in parallel with the poles at its

terminal nodes

• pseudo-brick: a network N such that N* is a brick

Let M be a multi-block with at least 2 edges and let X = {Ne,e G E(M)} be a set of

networks, disjoint from each other and from M, each having at least one edge. Let G = M(X)

be the multi-block or network obtained from M by choosing an orientation (u, v) for each
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edge e e E(M) and replacing e = (u, v) by Ne identifying u with 0 and v with oo. Then

G = M(X) is called a superposition with core M and components ./Ve £ -X"- A decomposition

of a network or multi-block is a representation of it as a superposition.

A network TV is called an h-network, a p-network or an s-network if it admits a decomposition

whose core is a pseudo-brick, a bond or a chain, respectively.

5.4.2. Decomposition and Generating Functions. We want to apply singularity analy¬

sis to derive asymptotic estimates for the number of 1^3-minor-free graphs. To achieve this,

we first present a decomposition of this graph class which is due to Wagner [Wag37]. Then

we will translate it into relations of our generating functions.

As seen in Theorem 5.2 above, Wagner [Wag37] characterised the class of maximal 1^3,3-

minor-free graphs. As a direct consequence we also obtain a decomposition for A^-minor-free

graphs. We will present here a more recent formulation of it, given by Thomas, Theorem 1.2

of [Tho99]. Roughly speaking the theorem states that a graph has no minor isomorphic to

Kst3 if and only if it can be obtained from a planar graph or K$ by merging on an edge,

a node, or taking disjoint components. To state the theorem more precisely, we need the

following definition of [Tho99].

Definition 5.8. Let G\ and G2 be graphs with disjoint node-sets, let k > 0 be an integer,

and for 1 = 1, 2 let Xt ç V{Gt) be a set of pairwise adjacent nodes of size k. For 1 = 1,2 let G[
be obtained by deleting some (possibly none) edges with both ends in Xt. Let / : X\ —> X2

be a bijection, and let G be the graph obtained from the union of G[ and G'2 by identifying

x with f{x) for all x <E X\. In those circumstances we say that G is a k-sum of G\ and G2.

Now, we can state the theorem as a consequence of Wagner's theorem in the following way.

Theorem 5.9 ([Wag37], see also Theorem 1.2 of [Tho99]). A graph has no minor isomorphic

to Kst3 if and only if it can be obtained from planar graphs and K$ by means of 0-, 1-, and

2-sums.

Observe that for 2-connected 1^3-minor-free graphs we only have to take 2-sums into account

as 0- and 1-sums do not yield a 2-connected graph. This way the decomposition of Wagner

fits perfectly well into a result of Walsh [Wal82] which delivers us - similar to planar graphs

(see [BGW02]) - with the necessary relations for our generating functions.

The second ingredient for obtaining relations for our generating functions is to use a well-

known decomposition of a graph along its connectivity-structure, i.e. into connected, 2-

connected, and 3-connected blocks.

For ease of exposition, we give the following lemma (and a proof) which is a special case

of Proposition 1.2 of [Wal82] (see also Proposition 5.19 in Section 5.4.6 for the original

formulation by Walsh) and adopt also the notation of Walsh for the reader already familiar

with it.

Lemma 5.10. Let H be a fixed finite set of 3-connected graphs. LetC be the class of all graphs

which are H-minor-free, i.e. they do not containanyminorwhichisisomorphictoagraphHGH.LetF(x,y)andB(x,y)denotethebivanategeneratingfunctionsof3-connected
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graphs with at least 4 nodes and 2-connected graphs with at least 2 nodes in C. Similarly, let

K(x,y), D(x,y) and P(x,y) denote the generating functions for networks with non-adjacent

poles, all networks with at least one edge and s-networks, respectively, where all of these

networks are contained in C. Then it holds

d_
x2 3D2dDF{x,D)

= \og{K{x,y))-P{x,y), (5.17)

K{x,y) = ~B{x,y), (5.18)
xz oy

D(x,y) = (l+y)K(x,y)-l, (5.19)

P{x,y) = xD{x,y){D{x,y)-P{x,y)). (5.20)

Proof. To prove the theorem, we count all networks with non-adjacent poles. From a

theorem of Trakthenbrot [Tra58] (see Theorem 5.20 in Section 5.4.6) it follows that these

networks are either h-, s-, or p-networks with non-adjacent poles. Thus we have

H(x, y) + P(x, y) + S(x, y) = K(x, y),

where H(x, y) and S(x, y) count ^-networks and p-networks with non-adjacent poles.

Now, observe that H(x,y) = ^2-^-F(x,D(x,y)), as we take a 3-connected graph choose

an edge and its end nodes as the poles and plug-in any network for each edge. Now, to

prove Equation (5.17), it is left to find an expression for K(x,y) — S(x,y). Notice that

U(x, y) = K(x, y) — S(x, y) are exactly all non-p-networks with non-adjacent poles. But

then we can obtain all networks with non-adjacent poles by taking a parallel union of those

networks, i.e. K(x,y) = exp([/(a;, y)) and thus U(x,y) = \og(K(x,y)). Hence, altogether we

obtain (5.17). Observe that by this construction, i.e. using a parallel union of non-p-networks

with non-adjacent poles, we cannot introduce a 3-connected minor, since there is always a

2-cut between the networks in such a parallel union. So, if we want to drop the condition

of being 3-connected for the excluded minors, we would have to argue why we do not build

graphs that are no longer in the class C.

Equations (5.18) - (5.20) can be derived as follows. If we take a 2-connected graph, choose

one edge as a root edge, which is not included, and label its end nodes 0 and oo we clearly

get all networks with non-adjacent poles. Thus (5.18) holds.

Furthermore, we get all networks with at least one edge by considering all networks with

non-adjacent poles and adding an edge between the poles of each such network, and thus

Equation (5.19) holds.

Finally, E(x, y) = D(x, y) —P(x,y)countsallnetworkswhicharenots-networks.Thustheseriesunionofsuchnetworksexhaustsalls-networksbyTrakhtenbrot'sTheorem[Tra58](Theorem5.20).ButthenP(x,y)=(l/a;)(l/(l-xE(x,y))-l-xE(x,y))=xE(x,y)2(l-xE(x,y))~l,astheseriesnetworkhasatleastlength2andwemultiplyE(x,y)byxandthewholetermby(1/x)sincemergingtwopolesyieldsanextrainternalnode.SubstitutingE(x,y)=D(x,y)—P(x,y)yieldsEquation(5.20).Again,theconstructionofaseriesunioncannotintroduceaminorinourgraph,aswehavecut-nodesbetweenthenetworks.Forthisconstruction2-connectivityoftheminorswouldbesufficient.D
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As already mentioned in the proof of Lemma 5.10, it is crucial that we obtain by the parallel

or series union of networks again a graph within our class. Maximal K5-minor-free graphs are

an example, where the construction yields graphs which are no longer in the original graph

class; the series union of networks can yield a graph which is not maximal anymore, although

the networks themselves are maximal ^-minor-free.

Using Lemma 5.10 we get the following result for A^-minor-free graphs.

Lemma 5.11. Let G(x,y), C(x,y) and B(x,y) denote the bivanate exponential generating

functions for not necessarily connected, connected, and 2-connected K^-minor-free graphs.

Then we have

G{x,y) = exp {C{x,y)) and C'{x,y) = rcexp ( —B {C'{x,y),y) J . (5.21)

Moreover, let M(x,y) denote the bivanate generating function for 3-connected planar maps

which fulfils

where U(x, y) and V(x, y) are algebraic functions given by

U = xy{l + Vf, V = y(l + U)2, (5.23)

then we have

£BiXtV) = ç(i±°my (,24)

where D(x, y) is defined implicitly by D(x, 0) = 0 and

2x2D 6 b\l + y J 1 + xD

where q marks the monomial for K$.

Proof. Equations (5.21) follow from a well-known decomposition of a graph into its con¬

nected components and 2-connected blocks (see e.g. [FS06](p.95) and [HP73](p.lO)). Using

Euler's Polyhedral formula, Equations (5.22) and (5.23) follow from [MS68], where Mullin

and Schellenberg derived the generating function for rooted 3-connected n-node m-face planar

maps.

Solving Equation (5.18) for -§^B(x,y) and substituting K(x,y) from Equation (5.19) we

obtain (5.24).

Finally, substituting J^F(x,D) = M(x,D)/4D + J^x5Dw/5\ and (5.20) into (5.17), we

obtain Equation (5.25). Observe that the substitution for F(x, D) follows from Theorem 5.9,

which states that 3-connected 1^3-minor-free graphs consist of 3-connected planar graphs

and K5. Now, as ^y§zG;i{x,y) = M(x,y), where G;i{x,y) counts 3-connected planar graphs,

we substitute M{x,D)/AD for the 3-connected planar graphs. For K5 we add -^jX5Dw/5\.
observe that we have to add only one monomial for K$ as the case where the edge between

the poles of the corresponding network is not present is already included in M(x,D) since

K5 minus an edge is planar. D
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5.4.3. Singular Expansions and Asymptotic Estimates. We use the relations of the

generating functions obtained so far to derive singular expansions for the generating functions

of the different connectivity levels. We start from 3-connected A^-minor-free graphs and

then go up the connectivity hierarchy level by level. Eventually, this will allow us to derive

asymptotic estimates for the number of and properties of not necessarily connected 1^3,3-

minor-free graphs in the subsequent section.

We start with 3-connected A^-minor-free graphs. We have to introduce only a slight modi¬

fication into the formulas already known for planar graphs ([BGW02, GN05b]).

From Lemma 5.11 we can derive analogously to [BGW02] a singular expansion for D(x,y).

It will turn out that the singularity of D(x, y) changes only slightly compared to the case of

2-connected planar graphs, but yields a larger exponential growth rate.

To simplify expressions, we will use the following notation. The equation Y(t) = y has a

unique solution in t = t(y) in a suitable small neighbourhood of 1. Then we denote by

R(y) = C,(t(y)). See Section 5.4.5 for expressions for Y(t) and (.

Lemma 5.12. For fixed y m a small neighbourhood ofl, R(y) is the unique dominant singu¬

larity of D(x,y). Moreover, D(x,y) has a branch-point at R(y), and the singular expansion

at R(y) is of the form

D(x, y) = D0(y) + D2(y)X2 + D3(y)X3 + 0(X4)

where X = ^/l — x/R(y) and the Dt(y), 1 = 0,..., 3 are given in Section 5.4.5.

Proof. We mimic the proof of Lemma 3 in [BGW02].

D(x,y) is defined by Equation (5.25). As it changed only slightly and we did not introduce

a new possible source for the singularities by adding the monomial for K$, we only have to

assure that the arguments of [BGW02] still hold.

As was shown in [BR84] the singularity ( of M(x,y) is related to y by Equations (5.23)

and the equation 1 + U + V — 3UV = 0 with x = (. Now, if we set Uq = l/(3t), we

obtain V = —(St — l)/(3(t — 1)) from the last equation. Moreover, using (5.23) we get

C = -((t-l)3(3t + l))/(16t3).

Replacing y by D and using Equations (5.23) and (5.25) we obtain Y(t) and Do(y) as given

in Section 5.4.5.

Now, replacing y by D in Equations (5.22) and (5.23) and using additionally (5.25) we obtain

the following two equations
inx,UandDU=xD(l+D(l+U)2)20=D(111(l+U)2(l+m+U)2)2)qx3D92\l+xD1+D(l+U+D(l+Uff)6,(l+D\xD2~loë-7-,—+1+yJ1+xDFromthesetwoequationswecanseethatUandDhaveasymptoticexpansionsofsquareroottype,i.e.inX=^/l—x/(,aroundthesingularity(.SubstitutingD=^Dt(y)Xl

and
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U = ^Ut{y)X% into the two equations, and equating coefficients of powers of X we obtain

the remaining Dt(y) and Ut(y) which are given in Section 5.4.5.

What is left, is to assure that M(x,y) is still the source of the singularity of D(x,y), i.e. we

need to show that

(a) a branch point in solving (5.25) and

(b) 1 + xD = 0 and/or log((l + D)/(l + y)) becomes unbounded

do not provide singularities in the disc \x\ < (. We follow again closely the proof of Lemma 3

in [BGW02].

Let us first consider source (a). Let H(D,y) denote the left side of (5.25). Then

9H_ 1

dy 1+y

and

0 1 d (M(x,D)') l-xD2{2 + xD) 3qx3D8
dD ~2ä?dD\ D J

~

(1 + D){1 + xD)2
+

2

Since ( > 0, Do = D((, Y(t)) > 0 and the power series for D and M has nonnegative

coefficients, we get by (5.22) and (5.23)

_d_
dD

H(x,D) >

>

1-xD2(2 + xD)

(l + D)(l + xDf

d M(x,D)
dD 2x2D

+
Zqx6D

3n8

l-(D0(y)2(2 + (D0(y))

(l + Do(y))(l + (D0(y))2

d M(x,D),
dD 2x2D \x=C,D=D0(y) +

3q(3D0(yf
\q=l

t2(l - t)(400 + 1808t + 2527t2 + 1155t3 + 237t4 + 17t5 19683t7(l - t)
~

2(l + 3t)2(l + 2t)2(3 + t)2
+

8192(3t + l)5'

which is greater 0 when \x\ < (. Therefore x is not a singularity from source (a).

Finally, we consider source (b). Since M(x, D) is well defined, it follows from (5.25) that the

last two terms must both be unbounded. Hence, 1 + xD = 0 and 1 + D = 0. Soa; = l and

D = — 1 which contradicts the fact that D(l, Y(t)) > 0. D

Next we solve Equation (5.24) for B(x,y) and obtain:

Lemma 5.13. Let W(x,z) = z(l + U(x,z)). The generating function B(x,y) of 2-connected

K'i^-minor-free graphs admits the following expression as a formal power series:

qx5D(x,y)w

where

and

ßi(x,y,z)

ß2(x,Z,w)

B(x, y) = ß(x, y, D(x, y), W(x, D(x, y))) +
120

(5.26)

ß(x,y,z,w) = —ßi(x,y,z) - -fo(x,z,w),

z(6x
— 2 + xz)

, .,

fi+y
V

— + (1 + z) log
' y

Ax \1 + z

2(1 +x)(l + w){z + w2) + S(w - z)

log(l + z) log(l + xz)

2(1 + w)2 2x

2x2

log(l + xz + xw + xw*

+
l-Ax

2x
log(l + w) +

l-4x + 2x2

4x
log

1 — X + wz — xw + xw \

(1 -x)(z + w2 + 1 +w)J
'
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Proof. The proof follows closely the lines of proof of Lemma 5 in [GN05b]. To avoid

repetition we present only the calculations which are different to [GN05b] due to the different

underlying graph class.

From Equation (5.24) we obtain

„, x
x2 fyl + D(x,t)1 x2

,
.

,
x2 fy Dix, t)

,

B(x,y) = — K-^Ldt = —log(l+y) + —
v '

;dt.V ,yJ
2 JQ 1+t 2

BV yj
2 JQ 1 + t

Integrating by parts we get

f ^Ydt = Ml + t)D(x, y) - J" log(l + t)^D(x, t)dt.

Consider a; as a fixed value. From Equation (5.25) it follows that

,
. . . .

/ Mix, u) xu2 qx3u9
m = -! + (!+«) exp (-^i

-— -—

is a functional inverse of D(x,y) with respect to y, as <p(D(x,y)) = y. Notice that compared

to the case of planar graphs, we introduce here the only difference in the calculations since

Equation (5.25) changed, but the rest stayed the same.

We substitute s = D(x,y) and we have t = <fi(s). Then

D(x,y) D(x,y) D(x,y)

108(1+*)^«,«)*= J (log(1+ ,)-—)&- y -^ds- J 'l^ds,
0 0 0

where the last term appears due to the change of the graph class.

The first and the last integral have a simple primitive and we are left with an integral

involving M{x,y). Now, we can proceed as in the proof of Lemma 5 in [GN05b]: using

Equations (5.22) and (5.23) and the definition of W{x,z), we can solve this integral using

substitution (and the functional inverse of Wix, z) according to the second variable) in a

similar way as the integral above. As the calculations for solving this integral do not differ

from the case of planar graphs, we refer to [GN05b] for further details. D

We can use this lemma to obtain the singular expansion for B{x,y).

Lemma 5.14. For fixed y in a small neighbourhood ofl, the dominant singularity of B(x,y)

is equal to R{y). The singular expansion at R{y) is of the form

B(x, y) = B0(y) + B2(y)X2 + B4(y)X4 + B5(y)X5 + 0(X6) (5.27)

where X = ^/l — x/R(y), and the Bt(y), i = 0,..., 5 are analytic functions in a neighbour¬

hood ofl.

Proof. From Equation (5.26) we can see that for y close to I the only singularities come

from the singularities of Dix, y); hence the first claim of the theorem follows.

The singular expansion for Bix,y) can be obtained
usingEquation(5.26)andthesingu¬larexpansionforDix,y).WesubstitutethesingularexpansionforDix,y),U{x,D{x,y))in(5.26).Thenwesetx=((£)(!—X2)andy=Y(t)andexpandtheresulting

expression.
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Now, collecting and simplifying the coefficients of the X% for i = 1,..., 5 is a tedious cal¬

culation, but can be done with a computer algebra system such as Maple. This yields the

expressions for the Bt(y) given in Section 5.4.5. D

For connected and not necessarily connected A^-minor-free graphs, we can derive singular

expansions by carrying out an analogous calculation as in the proof of Theorem 1 in [GN05b].

We only have to adapt for the different Dt(y) and Bt(y). One can easily check that the

intermediate step of Claim 1 in [GN05b] still holds and the rest of the calculations stays

the same. The coefficients of the expansions, which we obtain in this way, can be found in

Section 5.4.5.

Lemma 5.15. For fixed y in a small neighbourhood ofl, the dominant singularity ofC(x,y)

and G(x,y) is equal to R{y). The singular expansions at R{y) are of the form

C{x, y) = C0(y) + C2{y)X2 + C4(y)X4 + C5(y)X5 + 0(X6) (5.28)

and

G{x, y) = G0(y) + G2{y)X2 + G4(y)X4 + G5(y)X5 + 0(X6) (5.29)

where X = a/1 — x/R(y), and the C\(y) and Gt(y), i = 0,..., 5, are analytic functions in a

neighbourhood ofl.

From Lemmas 5.14 and 5.15 we obtain the following asymptotic estimates using Corollary

2.5 (Corollary VI.l of [FS06]).

Theorem 5.16. Let gn, cn, and bn denote the number of not necessarily connected, connected

and biconnected, respectively, K3,3 -minor-free graphs on n nodes. Then it holds

gn ~ ag n 2 pgn n\, (5.30)

Cn ~ etc n 2 Pca n^i (5.31)

bn - abn-iplnn\, (5.32)

where ag = 0.42643 10"5, ac = 0.41076 10"5, ab = 0.37074 10"5, p~l = p~l = 27.22935,

and p^1 = 26.18659 are analytically computable constants.

5.4.4. Structural Properties. If we consider a random A^-minor-free graph, i.e. drawing

a 1^3-mmor-free graph on n nodes uniformly at random from all such graphs on n nodes,

we can derive the following properties using the algebraic singularity schema of Theorem 2.7

(Theorem IX. 10 of [FS06]).

Theorem 5.17. The number of edges in a not necessarily connected and connected random

K'i^-mmor-free graph is asymptotically normally distributed with mean ßn and variance a2,

which satisfy

ßn ~ nn and o~n ~ An,

where k = 2.21338 and A = 0.43044 are analytically computable constants.

Recall that we introduced the variable q in the equations of the generating functions above to

mark the monomial for K$. We can use this variable to obtain a limit law for the number of

K5 used in the construction process (following theabovedecomposition,seeTheorem5.9)of
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a random A^-minor-free graph. The next theorem shows that a linear number of K$ is used,

but the constant is very small; this is exactly what one would expect as the expected number

of edges is only slightly larger than for planar graphs (see Theorem 5.17 and [GN05b]) -

note that merging a K5 in the construction process adds only 3 new nodes, but 9 new edges.

Theorem 5.18. Let C(G) denote the number of K$ used in the construction of a random

Ksß-mmor-free graph G according to Theorem 5.9. Then C(G) is asymptotically normally

distributed with mean ßn and variance <r2, which satisfy

ßn ~ nn and o~n ~ An,

where k = 0.92391 10~4 and A = 0.92440 10~4 are analytically computable constants. The

same holds for a random connected K3,3-minor-free graph.

5.4.5. Expressions for the Coefficients. Here, we give the expressions for the coefficients

of the singular expansions of D(x,y), U(x,y), B(x,y), C(x,y), and G(x,y) as well as the

expressions for the singularities. We use the same approach as in [BGW02] and parametrise

the expressions in the complex variable t.

t2
h = , -^

(l3122<?t9 + 45927<?t8
- 1658880t7 + 19683<?t7

8192(3t + l)6(2t + l)(t + 3)
v H H H

-12496896t6 - 8847360t5 + 6832128t4 + 10399744t3 + 4739072t2 + 958464t + 7372

W
(3t + l)(t-l)

8)

C
(t-l)3(3t + l)

16t3

Q = 78732t9 - 1328940t8 - 26889705t7 - 153744066t6 - 415828997t5 - 522964992t4

-342073344t3 - 121237504t2 - 22151168t - 1638400

78732t11 + 472392t10 - 2668221t9 - 816345t8 + 92026557t7 + 562023429t6

+1040556032t5 + 926367744t4 + 455663616t3 + 127336448t2 + 19005440t + 1179648

K =

U0

Vi

U2

1

3t

2 (3t + l)Ky
~27t3(t + l)Qj

(V + l)2
o, 0.0

(6198727824t20
+ 180231719760t19 + 891036025560t18

54t2(t + l)2Q2
V

-12902936763600t17 - 197722264231071t16 - 1821396525148269t15

-13816272361145022t14 - 79424397121737354t13 - 324711461744767867t12

-931873748086896665t11 - 1881275802907541504t10 - 2713502925437276160t9

-2843653010633469952t8 - 2190731661037666304t7 - 1246514524950953984t6

-521994799964094464t5 - 158674913803108352t4 - 34025665074298880t3

-4876321721155584t2 - 418948289921024t - 16312285790208)
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D'o

3t2

(3t + l)(t-l)

Di = 0

f(2f 4- i)2

D2 =

--,

V x7 '

„

(19683t8
+ 118098t7 - 1592325t6 - 10616832t5 - 30670848t4

(3t + l)(t-l)Q
v

+7602176t3 + 24444928t2 + 9830400t + 1179648)

131072
D ((-^ttI)1^2^^)^^2^1^9Q2

Pi = 1549681956t24 - 68328432252t23 - 646991330895t22 + 1383569088336t21

-57934645367238t20 - 1030641858893628t19 - 5581315778170878t18

-9690527546116164t17 + 14823917538797880t16 + 66591676440148968t15

-6807229356797163t14 - 121180156627243452t13 - 38691868953118942t12

+93938978979606528tn +65141137737269248t10 - 21686663626104832t9

-36470289308778496t8 - 9659501232001024t7 + 4668686142685184t6

+4119895696351232t5 + 1329802690691072t4 + 223343466774528t3

+17853474406400t2 + 207232172032t - 40265318400

P2 = -472392t12 - 2991816t11 + 15064542t10 + 10234512t9 - 550526652t8

-3556193688t7 - 7367383050t6 - 7639318528t5 - 4586717184t4 - 1675345920t3

-368705536t2 - 45088768t - 2359296

Bo =

i-f_Aft+iy(i_1)6[nf -"-1 )
4t6 ^ 256 V 3/ \3t2-2t-l)

32 512 128 32 256 16 512 128 J \ (£ +1

^ y i6 t y
2 V16 * )

4

8 ,t4-^t3 + 2t2-±)ln(-(t-l)-1))f

(t — 1)
i '-

=
(19683 t13 - 131220 t12 - 183708 t11 + 360921744 t

41943040t4 (3 t + l)5(t + 3)
v

+200542373119 + 388717758018 + 560303331017 + 482177024016 + 20139212801

+22904832014 - 97157120 t3 - 31436800 t2 - 2048000 t + 122880)

Bi = 0

Bo
9(t + |)(t-iy

1024 t6

+H>+1)M(3i+.1)?,-1))+^M-(i-i)-
(t -1)4

+ i '-
=

(19683 t11 - 13122 t10 - 190269 t9 + 122862096 ts
8388608t4 (t +3) (31 + 1)5

v

+62691418817 + 555393024 t6 + 28803072 t5 - 163438592 t4 - 81084416 t3

-1485209612 - 7208961 + 49152)
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B3 = 0

Pi 9(t + |)2(t - l)6(-2 ln(t + 1) + ln(2t + 1))
Bi =

8388608t4(t + 3)(3t + l)5Q 1024t6

ßs =

3a-P|(*-i)

2880(3t + l)5(t + l)tQ2

Co = R + Bo + B2

C\ = 0

C2 = -E

C3 = 0

ß+
ß2

2B4-R
Ca =

C5 = B5[l-2-f

Go -

= ec°

Gi --= 0

G2 == eCoC2

Gs --= 0

G4 == ec°(c4 + ^
G5 --= eCoC5

5.4.6. Network Theorems. For easier referencing we state here two theorems from litera¬

ture, which we need at several places in this chapter. The first theorem is by Walsh [Wal82]

and concerns - roughly speaking - the relation of the generating functions of 2-connected and

3-connected graphs of a graph class. The second theorem is by Trakhtenbrot [Tra58] and

states that there exists a decomposition of a network, which is unique and involves only three

different kind of network types. For an explanation of the notation used in both theorems,

see Section 5.4.1.

Proposition 5.19 (Proposition 1.2 of [Wal82]). Let X be a set of bricks, X' be the set of

pseudo-bricks N such that N* G X, X" be the set of networks obtained by requiring the cores

of h-networks to be taken from X', and Y be the set of blocks N* such that N G X". Then
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the following equations are valid if F(x,y) counts X and B(x,y) counts Y.

\^-F{x,D) = \og{K{x,y)) - P{x,y) (5.33)
xz oJJ

K(x,y) = ^§yB(x,y) (5.34)

D{x,y) = {l+y)K{x,y)-l (5.35)

P{x,y) = xD{x,y){D{x,y)-P{x,y)) (5.36)

Theorem 5.20 (Trakhtenbrot [Tra58]). Any network with at least 2 edges belongs to exactly

one of the 3 classes: h-networks, p-networks, s-networks. An h-network has a unique decom¬

position and a p-network (resp. an s-network) can be uniquely decomposed into components

which are not themselves p-networks (s-networks), where uniqueness is up to orientation of

the edges of the core, and also up to their order if the core is a bond.

5.5. Conclusions

In this chapter we obtained asymptotic estimates for the number (and properties) of 1^3,3-

minor-free and maximal A^-minor-free graphs. While this is a first important step to better

understand these graph classes, it would be interesting to investigate more parameters and to

examine maximal A^-minor-free graphs if we allow the number of edges to vary. Moreover,

due to Kuratowski's theorem, it is natural to consider also the class of (maximal) ^-minor-

free graphs.
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