
Diss. ETH Nr. 19721

An Efficient Bar Code Recognition Engine
for Enabling Mobile Services

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by

Robert Adelmann

Diplom-Informatiker, Albert-Ludwigs-University Freiburg
born October 01, 1977

citizen of Germany

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner

Prof. Dr. Elgar Fleisch, co-examiner
Prof. Dr. Michael Rohs, co-examiner

2011

2 | Abstract

Abstract | 3

Abstract
In the area of pervasive computing, mobile phones have evolved into attrac-
tive development platforms that show considerable potential when it comes to
bridging the often-cited gap between the real and virtual world. They are
ubiquitous, highly mobile, provide significant computing power, and increas-
ingly also offer an abundance of built-in sensors. With the general availability
of smartphones and affordable data rates, consumers are beginning to use
their mobile phones to interact with physical products found in stores in or-
der to access product-related information and services. To support this inter-
action, consumer-oriented mobile applications require a fast and convenient
way to identify products. Even though Near Field Communication (NFC) and
Radio-Frequency Identification (RFID) technology is very promising for that
purpose, the widespread use of RFID tags on retail products remains unlikely
for the next years. In contrast, bar codes are ubiquitous on virtually all pack-
aged consumer goods world-wide.

Recognizing bar codes with mobile phones induces many challenges, how-
ever. Blurry images from cameras without autofocus, but also shadows and
glare, low video-image resolutions and limited computing power on many
mass-market phones are just some of the inherent difficulties. Furthermore,
developing applications for mobile phones still requires considerable exper-
tise, despite the fact that mobile phones have evolved into attractive devel-
opment platforms over the past years.

This thesis addresses these issues with two main contributions: First, it pre-
sents the design and implementation of a bar code recognition method for
mobile phones that addresses the aforementioned challenges and, in particu-
lar, is capable of recognizing bar codes in blurry images. It provides a com-
parison with existing mobile bar code recognition engines on mobile phones
and shows that the method presented outperforms other solutions in terms of
scan speed and accuracy. The second contribution consists of a rapid proto-
typing environment for mobile phones that enables even non-experts to de-
velop novel mobile services that leverage the bar code recognition in a fast
and easy way.

4 | Abstract

Kurzfassung
Im Bereich des Pervasive Computing haben sich Mobiltelefone mittlerweile zu
attraktiven Entwicklungsplattformen entwickelt, die das Potential besitzen,
den oft zitierten „Graben zwischen der realen und der virtuellen Welt“ zu
überbrücken: Sie sind allgegenwärtig, portabel, verfügen über erhebliche Re-
chenleistung und zunehmend auch über eine Vielzahl integrierter Sensoren.
Durch die Verbreitung von Smartphones und die Verfügbarkeit von günstigen
Datentarifen nutzen Konsumenten die Geräte zunehmend, um mit Produkten
zu "interagieren" und Informationen sowie Dienste zu diesen abzurufen. Für
solch eine Form der mobilen Interaktion ist eine Methode zur einfachen und
schnellen Identifikation von Produkten unerlässlich. Obwohl sich hier Techno-
logien wie Near Field Communication und RFID aufgrund ihrer zahlreichen
Vorteile anbieten, ist ein grossflächiger Einsatz von RFID-Tags auf Produkten
in den nächsten Jahren nicht zu erwarten. Im Gegensatz dazu sind Strichcodes
heute auf nahezu allen Handelsgütern weltweit verbreitet.

Die automatische Erkennung von Strichcodes mit Mobiltelefonen beinhaltet
allerdings zahlreiche Herausforderungen: Unscharfe Bilder aufgrund von Ka-
meras ohne Autofokus, aber auch Schatten und Glanzpunkte, geringe Bild-
auflösungen oder beschränkte Ressourcen auf vielen Geräten stellen nur eini-
ge der Schwierigkeiten dar. Obwohl sich Mobiltelefone in den letzten Jahren
zu attraktiven Entwicklungsplattformen entwickelt haben, erfordert auch die
Anwendungsentwicklung immer noch viel Zeit und Erfahrung.

Die vorliegende Dissertation liefert zwei Beiträge, um diesen Herausforde-
rungen zu begegnen: Der erste Beitrag besteht in der Entwicklung und Im-
plementierung eines Verfahrens für die Erkennung von Strichcodes auf Mobil-
telefonen, welches die genannten Schwierigkeiten adressiert und insbesonde-
re in der Lage ist, Strichcodes auch in sehr unscharfen Bildern zu erkennen.
Das vorgestellte Verfahren wird im Rahmen einer Nutzerstudie und einer de-
taillierten Analyse mit bestehenden mobilen Lösungen zur Erkennung von
Strichcodes verglichen. Es zeigt sich, dass die in dieser Arbeit präsentierte
Erkennungstechnologie flexibler, schneller und genauer als alternative Lösun-
gen ist. Der zweite Beitrag besteht aus einer Software-Entwicklungs-
umgebung, welche es selbst mit der Mobiltelefonprogrammierung nicht ver-
trauten Personen ermöglicht, schnell und unkompliziert neue, auf der Strich-
codeerkennung basierende Dienste zu entwickeln.

Abstract | 5

Contents
Abstract 3

1 Introduction 9

1.1 Motivation ... 9

1.2 General Challenges.. 11

1.2.1 The Mobile Bar Code Recognition Process 11

1.2.2 The Mobile Application Development Process 13

1.3 Contributions .. 13

1.3.1 Bar Code Recognition Method .. 13

1.3.2 SPARK: A Rapid Prototyping Environment for Mobile Services13

1.4 Thesis Outline ... 14

2 Background 15

2.1 Recognition Challenges ... 15

2.1.1 Blurry Images .. 15

2.1.2 Large Variety of Bar Codes Printed on Products 18

2.1.3 Lighting Conditions ... 19

2.1.4 Large Variety of Mobile Phone Models ... 20

2.1.5 User Behavior .. 21

2.2 Bar Code Basics .. 22

2.2.1 Details of EAN13 Bar Codes .. 24

3 Recognition Algorithm 27

3.1 General Architecture .. 28

3.1.1 Code Presence and Orientation Detection.. 31

3.1.2 Scan Line Extraction and Adaptation ... 37

3.1.3 Result Combination ... 40

3.2 Sharp Decoder .. 43

3.2.1 Waveform Binarization .. 45

3.2.2 Symbology Module: Code Detection and Decoding 47

6 | Abstract

3.3 Blurry Decoder ... 51

3.3.1 Our Approach.. 52

3.3.2 Recognition Tables and Table Selection ... 55

3.3.3 Code Position and Symbology Detection .. 59

3.3.4 Lighting Compensation ... 65

3.3.5 Code Distortion Compensation .. 65

3.3.6 Pattern Comparison .. 70

3.3.7 Result Combination ... 77

3.3.8 Final False-Positive Check .. 80

3.4 Related Work on Bar Code Recognition ... 82

3.4.1 Specialized Recognition Systems ... 83

3.4.2 Academic Work .. 83

3.4.3 Commercial Solutions .. 87

3.5 Summary .. 88

4 Implementation 89

4.1 Recognition Engine ... 89

4.1.1 Proof-of-Concept Implementations ... 89

4.1.2 Multi-Platform Support ... 90

4.1.3 Performance Optimizations ... 91

4.1.4 GUI .. 95

4.2 Development Tools ... 96

4.2.1 Algorithm Test Environment ... 96

4.2.2 Recognition Table Creation ... 97

4.2.3 Device-Specific Optimizations ... 103

4.3 Measurements .. 107

4.3.1 Performance of Decoder Types .. 107

4.3.2 Distortion Detection ... 108

4.3.3 Influence of Image Resolution on Recognition Rates 109

4.4 Summary .. 111

5 Evaluation of Bar Code Scanners 112

Abstract | 7

5.1 User Study ... 112

5.1.1 Study Setup ... 113

5.1.2 Quantitative Results ... 119

5.1.3 Qualitative Results .. 125

5.2 Scanner Analysis ... 131

5.2.1 Analysis Setup .. 132

5.2.2 Results of the Feature Analysis .. 135

5.2.3 Quantitative Results ... 136

5.3 General Results and User Interface Guidelines 140

5.3.1 General Results .. 140

5.3.2 User Interface Guidelines ... 142

5.4 Summary .. 145

6 Mobile Services 146

6.1 Application Scenarios .. 147

6.2 Product Identification Technologies ... 149

6.2.1 2D Codes .. 149

6.2.2 Near Field Communication (NFC) Technology 153

6.2.3 Image Recognition .. 154

6.2.4 Manual Code Entry ... 155

6.2.5 Bar Codes ... 157

6.3 Practicability of Mobile Services ... 158

6.3.1 Data Access via Cellular Networks ... 158

6.3.2 Availability of Product-Related Information 160

6.4 Summary .. 161

7 Rapid Prototyping of Mobile Services 163

7.1 Motivation ... 163

7.2 Challenges ... 165

7.2.1 Beginnersʼ Challenges ... 165

7.2.2 General Challenges ... 166

7.3 Rapid Prototyping with SPARK.. 167

8 | Abstract

7.3.1 General Architecture .. 168

7.3.2 SPARK Environment ... 170

7.3.3 SPARK Client.. 173

7.4 Related Work .. 174

7.4.1 Rapid Prototyping Platforms ... 174

7.4.2 Mobile Phone Programming Options .. 175

7.4.3 PyS60-Related Tools... 176

7.5 Use Case 1: Use in Teaching ... 177

7.5.1 Setup ... 177

7.5.2 Results ... 179

7.6 Use Case 2: Product Advisor ... 180

7.7 Summary .. 182

8 Conclusions 184

8.1 Summary .. 184

8.2 Contributions .. 185

8.3 Limitations and Future Work ... 186

9 Appendices 188

9.1 Implementation Details ... 188

9.1.1 Recognition Table Layout ... 188

9.1.2 Recognition Table Set Optimization ... 188

9.1.3 Memory Consumption ... 190

9.2 Details on the User Study ... 190

9.2.1 Scanner Order ... 190

9.2.2 Original German User Comments .. 192

9.2.3 Dynamic Range of Tested Scanners.. 193

10 Bibliography 194

Introduction | 9

1 Introduction
1.1 Motivation
The concept of “bridging the gap” between physical and virtual worlds by
means of linking real objects to virtual information and services is well
known. Since Wellner presented the “DigitalDesk” project in 1993 [1], numer-
ous other researchers have explored this concept, including Barret and Maglio
[2] or Kindberg et al. in their “Cooltown” project [3].

One specific type of real-world objects for which this augmentation with vir-
tual information and services seems very promising are the multitude of
products sold world-wide. Whereas a product's packaging lists already exten-
sive information, such as the product's ingredients or the best-before date for
fresh produce, several limitations exist. The provided information is static and
can therefore not be personalized for different consumers, space on the prod-
uct packaging is limited, and, due to commercial considerations, the infor-
mation that is provided is often biased. Retailers and product manufacturers
might want to provide dynamic and more detailed information to consumers,
e.g., background information about where and under which conditions a pre-
mium product was produced. In contrast, consumers might want to have ac-
cess to information that is usually not present on packaging, such as details
about whether a product contains genetically modified ingredients, independ-
ent product reviews, or price comparisons. Despite the availability of such
information and even though such data might be highly relevant for certain
user groups, having personalized, direct access to it in situations where it
might be useful (e.g., while shopping) can be challenging. With the increasing
proliferation of smartphones, this gap between the user and product-related
data and services can be bridged [4, 5], and consumers are beginning to use
their mobile phones to interact with physical products found in stores.

Figure 1.1 illustrates the prototype of a simple mobile application that we
implemented; once the user defined a profile containing all substances to
which she is allergic, holding the mobile phone in front of the bar code on a
product gives her a simple answer to the question "Is that product fine for
me?". Given that many such consumer-oriented mobile services are most use-
ful when users are on their way somewhere (e.g., when standing in the aisle of
a supermarket), a fast and simple way to identify products is essential. Manu-

10 | Introduction

ally entering a product's name or bar code number is time-consuming and
likely to result in many errors [6].

There are several technologies for the automated recognition of products
available. In particular the use of RFID technology for linking information to
physical objects has been explored in numerous projects, e.g., by Want et al.
[7] and Pohjanheimo et al. [8]. Furthermore, RFID is increasingly used in the
retail industry throughout the supply chain, such as for tagging pallets of
consumer goods. However, despite its benefits, today's tag costs and remain-
ing interference issues with fluids or on metallic surfaces make it unlikely that
RFID tags will appear any time soon on ordinary sales items, such as bottles
or cans [9]. In contrast, bar codes are already present on most consumer
items world-wide.

Figure 1.1 Screenshots of the "Allergy-Check" demo application.

In the past, recognizing standard bar codes with mobile phones required

the use of special laser scanner attachments, and the optical recognition of
codes with camera-equipped phones has been limited to two-dimensional
(2D) codes, such as the Visual Code developed by Rohs [10]. Many 2D codes
have been specifically designed to compensate for the low-resolution and
poor-quality images obtained on consumer-grade phones. Whereas the use of
2D codes for product identification first requires the widespread use of such
labels on sales items, the recognition of standard bar codes with camera-
equipped mobile phones enables a multitude of mobile services, today.

World-wide, sales items are labeled with a bar code, camera-equipped mo-
bile phones are ubiquitous, and there is an abundance of product-related in-
formation available. A fast and robust bar code recognition method targeted
specifically at mobile phones is a central enabling technology for the large-
scale deployment of such consumer-oriented mobile services.

Introduction | 11

1.2 General Challenges
While there seem to be many desirable applications possible, technical issues
remain that hinder the development and adoption of mobile applications that
offer information and services for retail products. In the following, we sum-
marize the challenges inherent to the recognition of bar codes by mobile
phones and the development of mobile applications.

1.2.1 The Mobile Bar Code Recognition Process

The optical recognition of bar codes on mobile phones in typical shopping
environments and scenarios is challenging and differs considerably from rec-
ognizing bar codes in a controlled environment with perfect lighting. Reasons
for this include:

• Blurry images: On mobile phones featuring no autofocus camera, al-
most all images taken at short distance are blurry, which considerably
limits the installed base of supported mobile phones. However, even on
devices with autofocus blurry bar codes are common; due to slow auto-
focus systems, hand movements by users or wrong focus points. The
latter results for small or thin products often in a blurry image of the
product itself including its bar code and a sharp background. Figure
1.2 shows some examples.

• The variety of bar codes found on products: Bar codes come in varying
shapes, sizes and symbologies, including colored codes or codes print-
ed on round, crumpled or otherwise distorted surfaces (see Figure 1.3).

• Difficult lighting conditions: Scanning bar codes in places such as
stores, with various light sources, often results in uneven lighting,
shadows or glare on codes.

• The variety of mobile phone models: When using mobile phones to
recognize bar codes, one has to deal with the plentitude of different
mobile phone models, including different optics, low image resolutions
and limited resources like CPU and RAM on many phones.

• User behavior: User behavior will result in images in which bar codes
are rotated or upside-down, very small, or have an angular perspective.

These inherent practical challenges complicate the recognition process on

mobile devices. Section 2.1 provides more details regarding the most im-
portant effects.

12 | Introduction

Figure 1.2 Examples of blurry images: image of bar code (5410076027705) obtained from a
mobile phone without autofocus camera (left image), blurry image obtained on a device with
autofocus camera but a wrong focus point (upper-right image), and a slightly blurry image
resulting from the fact that the phone's autofocus camera cannot focus on too close objects
(lower-right image). All images can be correctly decoded with the bar code recognition meth-
od presented in this thesis.

Figure 1.3 Examples of images illustrating the variety of bar codes found on products: code
on a crumpled surface with slight glare (upper-left image), thin bar code (upper-right image),
bar code on round surface with transparent background (lower-left image), or bar code with
low contrast (lower-right image)

Introduction | 13

1.2.2 The Mobile Application Development Process

There is an important gap between the manifold opportunities for creating
novel mobile applications on one hand, and the knowledge-intensive and
time-consuming mobile application development process on the other. This
gap disregards an important source of creativity, as the possibilities exceed
the current resources of mobile experts. A lot of users might be motivated to
create novel types of mobile applications using the phonesʼ increasing capa-
bilities, but only few have the time and energy to handle the difficulties of
mobile phone programming.

1.3 Contributions
The following section details the contributions made by this thesis to address
the challenges highlighted above.

1.3.1 Bar Code Recognition Method

The main contribution of this thesis is a method for robust, real-time recogni-
tion of bar codes with mobile phones in realistic settings. The method pre-
sented outperforms existing systems in terms of recognition speed and accu-
racy. Furthermore, it is capable of recognizing bar codes in blurry images,
such as those obtained on phones without an autofocus camera. This consid-
erably increases the number of supported mobile devices.

In this thesis, existing challenges are examined in connection with recogniz-
ing bar codes using mobile phones, the recognition algorithm is presented, as
well as proof-of-concept implementations on major mobile phone platforms.
In order to compare our approach to existing bar code scanners for mobile
phones, a user study and a detailed lab-analysis are presented that evaluate
both the "real-world" performance as well as specific capabilities of scanners
and illustrate the superiority of our approach. Based on this evaluation, gen-
eral observations about usersʼ scan behavior and guidelines for designing us-
er interfaces for mobile bar code scanners are derived.

1.3.2 SPARK: A Rapid Prototyping Environment for Mobile
Services

The second contribution of this thesis is SPARK, a rapid prototyping environ-
ment that facilitates the creation of novel mobile services. It allows non-

14 | Introduction

experts to create mobile applications that use bar code recognition in a fast
and easy way.

The design and implementation of SPARK is presented. Furthermore, the re-
sults of two case studies in which SPARK has been used are shown: A gradu-
ate course on distributed systems in which more than 70 students used
SPARK to develop mobile applications, as well as the development of a mobile
phone-based product information platform – the "Product Advisor".

1.4 Thesis Outline
This thesis is structured as follows: Chapter 2 introduces challenges inherent
to bar code recognition on mobile phones and relevant background infor-
mation about the structure of bar codes. Chapter 3 presents the developed
recognition algorithm and discusses related work. In Chapter 4, we present
proof-of-concept implementations of our algorithm on three major mobile
phone platforms (C++ Symbian, iOS and Android) and the relevant tools used
to develop them, as well as to optimize the recognition method. Chapter 5
reports on our user study and scanner analysis. We also derive general obser-
vations about users' scan behaviors and present guidelines for designing user
interfaces for mobile bar code scanners. Chapter 6 briefly discusses mobile
services and alternative product identification technologies. Finally, we pre-
sent our rapid prototyping environment for mobile services, SPARK, in Chap-
ter 7 and conclude with a summary and discussion of future work in Chapter
8.

Background | 15

2 Background
This chapter covers relevant background information. Section 2.1 describes in
detail the conditions and challenges when recognizing bar codes with mobile
phones. The presented challenges are the basis for design decisions met in
the recognition algorithm (Chapter 3). Section 2.2 continues to provide an
overview of the bar code symbologies that are relevant in our context and
introduces details about the structure of EAN13/UPC-A bar codes. This code
symbology is used as a standard example throughout the description of the
recognition algorithm.

2.1 Recognition Challenges
Recognizing bar codes that are printed on a white sheet of paper in sharp and
high resolution images, with perfect lighting and a straight perspective on the
code is fairly simple. However, when recognizing bar codes with mobile
phones, conditions are rather different [11]. This section provides an over-
view of the various challenges inherent to the mobile services scenario, in
which consumers use their mobile phones to identify products at various lo-
cations, e.g., stores. The challenges listed below are based on experiences
gained from developing the bar code recognition algorithm and several de-
monstrator applications on multiple mobile phone platforms. Furthermore, we
utilized feedback obtained from industry partners like the Metro-Future Store
Initiative [12] or the Markant Group [13] that used the developed software in
their own deployments, and from the user study presented in Chapter 5 of
this thesis.

2.1.1 Blurry Images

One of the biggest challenges of mobile phone-based bar code recognition is
related to the structure of most code symbologies, in which the information is
encoded in bars of four (or more) different widths. Most recognition algo-
rithms require these different bar widths to be detected reliably for successful
decoding. Whereas the resolution of typical phone cameras of 640x480 pix-
els or higher is usually sufficient for this purpose [14], the sharpness of the
obtained images is an issue. Many camera modules built into mobile phones
have only fixed-focus lenses, which result in blurry images of very close ob-

16 | Background

jects. However, even in the case of mobile phone cameras with autofocus (AF),
blurry images remain a problem. Examples of situations that result in blurry
images include the following (see Figure 2.1):

• Blurry images due to phones with fixed-focus cameras. On mobile
phones featuring no autofocus (AF) cameras, images of close objects
will be blurry.

• Blurry images due to hand movements. This occurs especially in the
case of dark environments, when long image exposure times are re-
quired because of to the small image sensors used in mobile phones.

• Blurry images because the camera cannot focus on close objects. Most
AF-systems used in current phones are not able to focus on very close
objects, which results in blurry images in the case of small bar codes.

• Blurry images due to a slow focusing process. AF-systems are often
relatively slow, especially in case of the mechanical systems predomi-
nantly used today. This result in blurry images for some time after the
user holds the mobile phone in front of a bar code or varies the dis-
tance to the code. Furthermore, AF-systems used in mobile phones are
usually not able to determine the required AF-adjustments directly
based on a single blurry image (like in case of reflex cameras). Focus-
ing consists therefore not of a single, targeted correction of the camera
focus, but of a complete and time consuming cycle through all focus
ranges. However, the performance of AF-systems for mobile phones is
expected to increase in the next years [15-18].

• Blurry images due to missing AF control. Not all devices featuring a
built-in AF camera provide the software interfaces required to use or
control the camera focus. For example, no AF control is possible from
J2ME applications and C++ Symbian provided until recently only very
limited AF control on many devices. Despite detailed functionality al-
ready defined in the according APIs on iOS, Android or QT, many fea-
tures are not supported by today's devices. For example, to our
knowledge it is currently not possible on any platform to set the cam-
era focus manually on the closest focusable distance, which would be a
good solution for our use case.1

1 One reason for this limitation is the fact that phone manufacturers include camera modules
in devices that encapsulate many features like autofocus control in the camera module itself.

Background | 17

• Blurry images due to the camera focusing on other objects. When us-
ers are scanning bar codes, the background will often feature other
products (e.g., in stores) or be non-uniform. Especially if the product
that should be recognized takes up only a small portion of the image,
the phone's camera is sometimes not focusing on the product itself, but
ensures the rest of the image is sharp. Only recently some devices al-
low applications to control focus modes and the exact point or area
where to focus.

• Since today's mechanical AF-systems require energy and due to the
limitations stated above, focusing is often not performed continuously,
which results in a less responsive camera focus and therefore often
blurry images.

Figure 2.1 Examples of blurry images: Out-of-focus blur on device without AF camera (upper-
left image), blurry image due to hand movements (upper-right image), blurry image due to
wrong focus point (lower-left image), and slightly blurry image because the AF camera can't
focus on too close objects (lower-right image).

18 | Background

Figure 2.2 Examples of the variety of bar codes: Code with transparent background on round
surface (upper-left image), colored code on crumpled surface (upper-right image), non-
uniform image background including an additional bar code (lower-left image), and a thin bar
code (lower-right image).

2.1.2 Large Variety of Bar Codes Printed on Products

Despite exiting standards and recommendations for bar codes printed on
products (e.g., the ISO specification for bar codes [19] that specifies physical
properties of codes printed on sales items, in order to ensure compatibility
with a wide variety of scanners), in reality a vast variety of code shapes and
sizes are found. On reason for this being the usually very limited and valuable
space on product packages2. Examples for difficulties that arise from this fact
include the following (see Figure 2.2):

2 "Some of our health and beauty care products have very small packaging, and strict regula-
tory requirements mean we have to put a certain amount of text on the boxes, no matter how
small they are – and that means less panel space for communication with our customers."
Bud Babcock, Procter & Gamble [106].

Background | 19

• On many grocery items, codes are printed on flexible and crumpled
surfaces.

• Codes are colored and offer sometimes a very low optical contrast.
However, due to differences in the reflection properties of the used
paint, these codes are still well readable with laser scanners.

• Codes are printed on curved surfaces, complicating the recognition.
• Codes are available in a large variety of sizes ranging from very small

and thin codes to very large ones.
• Finding the bar code that should be recognized in an image in the first

place is not always trivial. Small codes, multiple close codes and other
elements on the product packaging like text or other products visible
in the background complicate this task.

• Some codes do not correspond to the standard for bar codes issued by
GS1. For example, the amount of white space at the beginning or the
end of codes is too short, or codes are printed too small.

• Multiple bar code symbologies are used on products, and distinguish-
ing the symbology at hand can be challenging in case of blurry images.

2.1.3 Lighting Conditions

When recognizing bar codes in places like stores and not in a controlled envi-
ronment, imperfect lighting becomes another issue. Even if the lighting differ-
ences in images on the phone's screen look minor, effects on the image can be
severe. Challenges related to lighting include the following (see Figure 2.3):

• Glare on codes. This typically occurs due to lights installed on the ceil-
ing of stores and due to codes that are printed on reflective surfaces.

• Shadows on codes. For example, when users holds the mobile phone
over a product's bar code in order to scan it, in combination with spot-
lights on the ceiling. In such situations, the user's hand and the mobile
phone often cast shadows on the code.

• Too bright images due to the automatic exposure control on mobile
phones. For example, if the user moves the mobile phone from a dark
spot (camera pointing at a dark floor, or the phone was in a pocket) to
a brighter environment. However, after a few seconds, the exposure
control is usually able to adjust image brightness, making too bright
images not a major problem.

• Too dark images. In practice, this is also no major problem, except for
rather dark places like bars or clubs.

20 | Background

Figure 2.3 Examples of a bar code with shadow (left image) and glare (right image).

Figure 2.4 Examples of the variety of available image formats and resolutions on different
mobile phones as well as image artifacts from image compression.

2.1.4 Large Variety of Mobile Phone Models

In contrast to specialized image recognition systems used for industry appli-
cations, a bar code recognition method intended for consumers has to ad-
dress the large variety of different mobile phone models available. This in-
cludes different available resources, camera optics, or functionalities (APIs)
for controlling the phone's cameras and accessing live video images. Chal-
lenges arising from mobile phones in general and the variety of available de-
vices and software platforms include the following:

Background | 21

• Limited processing power, especially on cheaper phones, but also on
many smartphones, e.g., Nokia N-Series devices.

• Limited run-time memory. Despite some devices having up to 512 MB
of usable application memory, memory consumption remains a prob-
lem. For example, because of system limitations related to multitasking
on the iPhone, applications are expected to require much less memory
or warnings and crashes are likely to occur.

• Limited application size. The size of the complete recognition engine
bundle, which includes the program code and other resources that
should be distributed, is critical. Since the recognition engine is usually
included in other applications, it adds to the final size of the complete
distributable, and even a few megabytes count in the case people in-
stall applications directly over the mobile phone network, e.g., in a
store or after seeing a commercial.

• Different camera modules and APIs result in a variety of image for-
mats, orientations and resolutions. For example, resolutions of live im-
ages accessible for image processing include 160x120 pixels on most
J2ME devices, 320x270 pixels on Nokia Smartphones like the Nokia
X7 (despite its built-in 8MP camera), or up to 1280x720 pixels on the
iPhone 4. On Android devices like the HTC Desire, images obtained
from the camera are not encoded in the RGB, but in the YUV color
format. In this case, we use the pixel-brightness (luminance) values di-
rectly and omit color information in order to save the time required for
color model conversions.

• Some mobile phones automatically apply image processing steps be-
fore images can be accessed by an application. For example, edge
sharpening or compression algorithms that result in image artifacts
(see Figure 2.4).

• Imperfect lenses on mobile phones result in images with varying local
sharpness and distortions, especially in the case of close objects.

2.1.5 User Behavior

Another factor that has to be considered and complicates bar code recogni-
tion on mobile phones is the behavior of users themselves. There are several
potential challenges arising from user behavior:

• Users holding the phone too close to codes so that the code is only
partially contained in the image (e.g., sometimes the case in very blurry

22 | Background

images obtained on phones without autofocus camera) or holding the
phone too far away, resulting in very small codes in the image.

• Users holding the phone not directly above the code that should be
recognized but from an angular perspective, which results in distorted
codes.

2.2 Bar Code Basics
This section covers the relevant details about commonly used bar code sym-
bologies and their usage on products, in order to establish the required back-
ground knowledge for the recognition algorithm covered in Chapter 3. There
is a variety of different bar code symbologies available, but the most relevant
symbologies in a retail context are the following: The European Article Num-
ber (EAN) codes EAN13 and EAN8, the Universal Product Codes (UPC) UPC-A
and UPC-E, and for certain use cases Code39 and EAN128 codes. Figure 2.5
shows example codes and Table 2.1 briefly compares and presents typical use
cases of these symbologies. Our recognition engine is able to recognize all of
these symbologies.

The following section covers the EAN13 and UPC-A bar code symbologies
in more detail. These are the most common symbologies used to tag products
and will serve as a standard example when describing the recognition algo-
rithm in Chapter 3. Other symbologies will be mentioned where relevant. De-
tails about the information theory underlying bar codes can be found in the
journal article "Fundamentals of bar code information theory" by Swartz et al.
[20].

Figure 2.5 Most frequently used bar code symbologies (EAN/UPC) and future codes (Data-
Bar).

Background | 23

Table 2.1 A brief comparison of relevant bar code symbologies (in their standard version
without extensions) and typical use cases:

Symbology Use Case
EAN13 Standard symbology used on most products that encodes 13

digits. The EAN13 (European Article Number) code set is a su-
perset of the UPC-A (Universal Product Code).

UPC-A The UPC-A code symbology is widely used in the US. Its struc-
ture corresponds to that of EAN13 codes with a leading 0.

EAN8 EAN8 codes encode 8 digits and are typically used for small
products or products featuring a strong curvature (in order to
minimize code distortions). Compared to UPC-E codes, they are
more common in Europe. The structure is similar to EAN13
and UPC12 codes, featuring the same start-, end- and middle-
pattern and the same encoding of numbers.

UPC-E UPC-E codes also encode 8 digits, have similar use cases like
EAN8 codes, but are more common in the US. However, their
structure (start- and end-pattern, digit encodings and check
digit calculation) differs from the other symbologies and allows
the digits to be encoded in fewer bars compared to EAN8
codes.

EAN128 EAN128 codes allow not only for the encoding of numbers, but
also alpha-numeric characters (Code128 variant) and are of
variable length. EAN128 codes are often used for couponing,
but also for various other tasks, e.g., for encoding an electronic
device's serial number or for automated document or packet
management. Their structure differs from the other symbolo-
gies and allows, for example, the switching between different
encoding tables and alphabets inside the same code.

Code39 Code39 codes can also encode alpha-numeric characters and
are of varying length. They are often used for in-house labeling
of products, e.g., the re-labeling of products with regular bar
codes with in-house identifiers, for special promotion offers or
other use cases. Their structure differs from the other sym-
bologies. Compared to the EAN/UPC family of codes that en-
code digits in bars of four different widths, Code39 encodes
digits in bars of only two different widths. Compared to
EAN128 codes, this usually results in much larger codes for
the same information.

24 | Background

Figure 2.6 Structure of an EAN13 bar code.

2.2.1 Details of EAN13 Bar Codes

When mentioning the EAN13 code symbology, we will refer to both EAN13
codes and UPC-A codes, since the latter feature the same encoding. EAN13
bar codes encode 13 digits. Like all bar codes of the EAN/UPC family, each
digit is encoded in four fields (two white fields = spaces and two black fields =
bars)3. Both spaces and bars can have four different widths. They can be one,
two, three or four units wide. Taken together, the two bars and two spaces
encoding a digit have always a width of seven units. A bar code is structured
like shown in Figure 2.6. In between a silent area of spaces (usually 5 or more
units wide) and start- and end-patterns (a pattern consists of a bar, space, and
a bar, each one unit wide) are twelve encoded digits (six left bar code digits
and six right bar code digits) divided by a middle pattern (a pattern consisting
of a total of five alternating spaces and bars, each one unit wide). The com-
plete bar code consists of a total of 59 different bars and spaces that have
together a size of 95 units. A left bar code digit can be encoded in two ways,
either with even or with odd parity (see Table 2.2). The first digit is not direct-

3 Colored bar code bars and backgrounds are common too, but the colors usually encode no
additional information.

Background | 25

ly encoded in spaces and bars, but in the parity pattern that is contained in
the encoding of the six left code numbers and shown in Table 2.3.

The encoding table for the left bar code digits is different from the encoding
table for the right bar code digits (see Table 2.2). This allows us to distinguish
consistently between the left and right code side, even in the case bar codes
are read up-side down and there are no human readable digits printed below
the code.

Table 2.2 Encoding table for the left and right bar code digits (1 corresponds to a bar and 0
to space):

Digit Left Digit
Odd Parity

Left Digit
Even Parity

Right Digit

0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 1001000
9 0001011 0010111 1110100

Table 2.3 Encoding table for the first bar code digit that is encoded in the parity pattern of
the six left code numbers:

Digit Parity Pattern of Left Digits
0 Odd Odd Odd Odd Odd Odd
1 Odd Odd Even Odd Even Even
2 Odd Odd Even Even Odd Even
3 Odd Odd Even Even Even Odd
4 Odd Even Odd Odd Even Even
5 Odd Even Even Odd Odd Even
6 Odd Even Even Even Odd Odd
7 Odd Even Odd Even Odd Even
8 Odd Even Odd Even Even Odd
9 Odd Even Even Odd Even Odd

26 | Background

The product identifier 𝑑0 …𝑑12 that is encoded in the bars and spaces is also
structured. Each identifier consists of a system digit 𝑑0, followed by a 2-3 dig-
it country code, a 4-5 digit manufacturer code, a 5 digit product code, and a
single checksum digit 𝑑12. The checksum digit 𝑑12 can be used to verify that
the product identifier has been decoded correctly. It has to hold:

𝑑12 = �10 − �� 𝑑𝑥∙2 + 𝑑𝑥∙2+1
5

𝑥=0
�𝑚𝑚𝑑 10�𝑚𝑚𝑑 10

However, despite this structure, little reliable information can be obtained

directly from the product identifier. For example, the country code of a prod-
uct identifies the country of origin of the company that bought the according
number range from GS1 and does not allow direct conclusions about the
country of origin of a product.4 Using such structural information for improv-
ing the code recognition is in principle possible, e.g., by reasoning that codes
that start with certain country codes are more likely compared to others. The
same holds for information about what kind of bar codes are on products sold
in a certain store, which would allow for optimizations in combination with
location-based services.5 However, in practice this is usually not possible,
since this context information is not available.

4 An exception is the country code 974, which is used to identify books.
5 A large supermarket like the Metro Future Store [12] features around 80000 different
products, while smaller shops still have around 20000 different sales items.

Recognition Algorithm | 27

3 Recognition Algorithm
In this chapter we present a novel algorithm for the recognition of bar codes
on mobile phones that addresses the recognition challenges presented in Sec-
tion 2.1. The main features of the presented algorithm are:

• Recognition of bar codes in images of varying sharpness, from sharp to
very blurry images.

• Recognition of bar codes in images of varying sizes and formats. Typi-
cal image resolutions range from 320x480 pixels on the iPhone 3G
and 3GS to 720x1280 on the iPhone 4. However, due to the capability
of our method to recognize bar codes in very blurry images, even
codes of only 50 pixels length are recognizable.

• A high recognition performance even in the presence of uneven light-
ing or difficult bar codes and a low rate of wrongly recognized codes
(false-positives).

• Support for all major bar code symbologies used in the retail industry,
i.e., EAN13/8, UPC-A/-E, EAN128 and Code39 codes.

• The recognition of bar codes that are arbitrarily oriented in an image.
• Fast recognition, independent of the underlying image resolution and a

low memory footprint

The chapter is organized as follows. Section 3.1 will cover the general archi-
tecture of the recognition algorithm as well as relevant components not di-
rectly involved in decoding bar code numbers. This includes, for example, the
detection of the presence and orientation of bar codes in images (Section
3.1.1) or the extraction of scan lines (Section 3.1.2). In order to maximize
recognition accuracy, our algorithm combines two different methods to de-
code bar code numbers: One for codes in sharp images (Section 3.2) and a
second one suitable for both sharp and blurry images (Section 3.3). Since bar
codes have been in use for some time6, previous work on optical bar code
recognition and the recognition of bar codes on mobile phones exists. Section
3.4 will discuss this related work before Section 3.5 concludes with a brief
summary.

6 The retail industry introduced the European Article Number (EAN) format in 1977.

28 | Recognition Algorithm

Figure 3.1 General architecture of the recognition process.

3.1 General Architecture
Figure 3.1 shows the basic components involved in obtaining the correct bar
code number from a single image, or multiple frames in the case of the
recognition in a video stream. First, we try to detect the presence and orienta-
tion of a bar code in a given image (Section 3.1.1). If no bar code is detected,
the recognition attempt is aborted. If the likely presence of a bar code is de-
tected, several scan lines are placed through the image at the previously de-
termined angle of the bar code in the image, and image brightness infor-
mation is extracted along these scan lines (Section 3.1.2). The resulting wave-
forms are then passed to a bar code decoder in order to extract the number
encoded. In order to increase the overall recognition accuracy and speed, as
well as address the manifold recognition challenges, we rely on two different
bar code decoders:

1. The sharp decoder (Section 3.2) is fast and robust against distorted
codes on round or crumpled surfaces, as well as perspective distor-
tions. However, it is capable of recognizing bar codes in sharp or
slightly blurry waveforms only.

2. The blurry decoder (Section 3.3) can recognize bar codes in sharp as
well as blurry waveforms. The decoding process is in large parts invar-

Recognition Algorithm | 29

iant against the waveform's resolution and sharpness, but requires
more time than the sharp decoder.

Both decoders are used successively. First, the sharp decoder is used on all

scan lines, since it allows for the decoding of multiple scan lines without no-
ticeable performance drawbacks. In case the sharp decoder cannot detect a
bar code, we also use the blurry decoder. Due to its higher performance re-
quirements, the blurry decoder is used only for a single scan line. During the
whole recognition process the output of each component and additional me-
ta-data is collected. Collected information includes:

• Information if a bar code is present in the current image
• The orientation of the bar code
• The number and position of scan lines used
• The start- and end-position of bar codes detected in each scan line
• Information about how reliable decoded bar codes numbers are
• Additional information, including the image sharpness, lighting situa-

tion (glare or uneven lighting) and information at which state the
recognition has been aborted in case a code could not be recognized

Results returned by the two decoders and collected meta-data from several

video frames is then combined in the result combination component (Section
3.1.3) and used to assemble the final recognition state information. The
recognition state information includes:

• Information if a bar code is present in the images and how close the

mobile phone is to this bar code
• The last decoded bar code number, including information like its

symbology and a confidence value describing how confident our al-
gorithm is to have recognized the correct number

• The orientation and position of the bar code in the video images

The additional information, besides the bar code numbers themselves, can

be used to enable applications like the ones shown in Figure 3.2. The "price-
check" demonstrator augments the camera images with a price label showing
the cheapest price for a specific product found online. The price label changes
size, position and orientation with the bar code visible in the images. Further
examples include orientation sensitive sliders or menus that allow users to
select items by changing the orientation of the mobile phone in relation to the

30 | Recognition Algorithm

bar code (see Figure 3.2). Such forms of interaction have the potential to ease
and accelerate the interaction with products and are related to the Visual
Code Widgets [21] presented by Rohs that are based on the 2D visual code.

A variety of parameters influence the recognition process, including the
number of scan lines used, the orientation detection step, and the decoding of
bar codes in the sharp and blurry decoder. These parameters have an influ-
ence on both the accuracy of recognition and the recognition speed. They can
be used to adjust the recognition process to different mobile phones with var-
ying capabilities and resources like CPU and RAM. Optimal parameter values
for specific mobile phones are learned offline on sets of test images and
stored in configuration files. Section 4.2.3 will provide more details on this
optimization process. Configuration files also support simple scripting capa-
bilities that allow the definition of more general configuration files that speci-
fy parameters to use depending on the image resolution or sharpness. Such
general configuration files support multiple mobile phones without the need
to create specific files for each phone type and model. The recognition pa-
rameters component loads the appropriate configuration file for a specific
device or device class and adjusts the recognition process according to its
content. Further details about the relevant parameters controlling the recog-
nition will be provided in the specific sub sections.

Figure 3.2 Screenshots of an augmented-reality price-check application that overlays the real
camera images with a virtual price tag that changes position, orientation and size according
to the bar code visible in the images (left image from an iPhone 3GS). Prototypical application
illustrating orientation sensitive menus (middle images from a Nokia N95 device) and sliders
(right images from a Nokia N70 device).

Recognition Algorithm | 31

Figure 3.3 Steps performed during the orientation detection: 1. Extraction of sub-window
from original image (upper-left image). 2. Detected edges colored according to their type
(image 1) and the resulting edges when applying a further edge detection step to the most
often occurring edge type in image 1 (image 2). 3. Result of the Hough transform (lower-right
image). 4. Search for patterns that are characteristic for the bar code bars in the Hough space
and determination of the bar's angle.

3.1.1 Code Presence and Orientation Detection

Detecting the orientation of bar codes in images such as the ones shown in
Section 2.1 poses the following challenges:

• Since image aspect ratios can vary considerably, bar codes are not
guaranteed to cover a reasonable part of the whole image. For exam-
ple, this is the case on iPhone and on Android devices, on which the
obtained images are in portrait mode (see Figure 4.19 on page 110).

• Since we do not know the image's sharpness beforehand, the proposed
method has to work for all sharpness levels, ranging from sharp to
very blurry images.

32 | Recognition Algorithm

• Noise complicates the process and includes image errors, compression
artifacts, lighting effects or local code defects. Such defects rule out
approaches that try to track the bar code's bars based on the color of
pixels, and requires for a more robust solution.

• The algorithm has to be fast, even in case of high resolution images.

Our method for orientation detection has already been published in [22]
and can be broken down into three steps that are illustrated in Figure 3.3.
First, we perform an edge detection on a pre-defined area of the original im-
age. On the resulting image that contains the detected edges, we apply a
speed-optimized Hough transform [23, 24], and finally search for patterns
characteristic for parallel lines in the Hough space. The Hough transform is a
standard method in image recognition that allows for the detection of analyti-
cally representable features in images, such as straight lines, circles or ellip-
ses. The recognition of these global patterns in the image space is based on
the identification of local patterns in a transformed parameter space. The fol-
lowing sections provide further details regarding these steps.

3.1.1.1 Edge Detection

In order to address the fact that multiple bar codes can be visible in an image,
we focus on a certain area in the original image 𝐼(𝑥,𝑦). This area is defined by
its center point (𝑝𝑎𝑎𝑎𝑎_𝑥,𝑝𝑎𝑎𝑎𝑎_𝑦) and window size (𝑝𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤ℎ,𝑝𝑎𝑎𝑎𝑎_ℎ𝑎𝑤𝑒ℎ𝑤). In
a first step, a very fast edge detection algorithm that is based on simple
threshold values is applied on the image data. A pixel in the resulting edge
image is set, if the difference of its brightness value to the brightness value of
its preceding pixel in x- or y-direction is higher than a threshold value
𝑝𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤. The brightness value of a pixel at position (𝑥,𝑦) is calculated based
on the red, green and blue values of a pixel7:

𝑏𝑏𝑏𝑏ℎ𝑡𝑡𝑡𝑡𝑡(𝑥, 𝑦) =
1
4

 �𝑏𝑡𝑑�𝐼(𝑥,𝑦)� + 2 ∙ 𝑏𝑏𝑡𝑡𝑡�𝐼(𝑥, 𝑦)� + 𝑏𝑏𝑏𝑡�𝐼(𝑥,𝑦)��

7 In many image sensors, more die space is dedicated to the detection of light waveforms
corresponding to the color green, since humans can distinguish the brightness of green tones
much better compared to red or blue ones. When calculating the brightness value, we consid-
er the green value therefore above average, since a larger sensor area usually results in less
noise, especially in low-light situations.

Recognition Algorithm | 33

Instead of considering every pixel in the original window, we consider only
every 𝑝𝑤𝑤𝑟𝑤𝑎𝑑𝑑𝑎𝑡ℎ pixel in x- and y-direction, in order to limit the number of
pixels that have to be accessed and therefore speed-up the process. The value
for 𝑝𝑤𝑤𝑟𝑤𝑎𝑑𝑑𝑎 depends on the image resolution and is chosen in such a way that
the same number of pixels have to be accessed, independent of the underly-
ing image resolution. Image 1 in Figure 3.3 shows the resulting edges. How-
ever, this edge image is not in all cases well suited for a direct application of
the Hough transform, due to three issues:

1. The Hough transform is computationally expensive and the required
time increases linearly with the number of detected edge pixels. This
problem of many edge pixels increases with the requirement to detect
lines both in sharp and very blurry images without knowing the image
sharpness beforehand. If we adjust the threshold value 𝑝𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 to de-
tect only sharp edges, the number of edge pixels decreases, but no
edges are detected any more in very blurry images. If we lower the
threshold value so that edges in very blurry images are detected, we
end up with a large number of pixels in case of sharp images.8

2. Usually, not only edges resulting from the bar code's lines are detected,
but also from other features, e.g., columns of text or the upper and
lower vertical borders of the bar code pattern, which complicates the
orientation detection. Since we cannot assume bar codes to be horizon-
tal or nearly horizontal in an image, considering only edges in a certain
direction is no solution to this problem.

3. Due to the low resolution of the edge window, detected edges in the
case of codes that are neither vertical nor horizontal in the image tend
to merge into each other, making it hard to detect parallel lines.

We address these challenges with a simple measure that reduces the num-

ber of edge pixels that have to be considered for the following Hough trans-
form and the number of edges not belonging to bar code lines. When con-
structing the first edge image shown in Figure 3.3 (image 1), we distinguish
for each pixel what kind of edge caused it: A vertical, horizontal or diagonal

8 Detecting the image's sharpness before the orientation detection is not always reliable, since
at this stage, we do not know if there is a bar code in the image or where and how large it is.
A fast method observing arbitrary image parts may also be inaccurate due to the unknown
background (e.g., a uniform area on the product packaging) or areas of differing sharpness in
the image (e.g., a sharp code on a small product in the foreground and a blurry background).

34 | Recognition Algorithm

edge in the original images. Each edge type corresponds to a different color.
Furthermore, we count how often each edge type occurs. Based on this infor-
mation, we keep only the edge type that occurs most often and discard the
other two types. The underlying assumption here is that most edges will be
caused by the bar code's bars. This step clears the edge image, especially in
the case of diagonal codes. In order to further reduce the number of pixels,
we apply an additional edge detection step, which produces the result shown
in image 2 in Figure 3.3. While this second edge detection step shifts the po-
sition of edges, it preserves the edge orientation, which is relevant for our use
case. Using such a simple edge detection approach produces not the best pos-
sible result, but it can be performed fast and the following Hough transform is
robust enough to handle the remaining imperfections.

3.1.1.2 Hough Transform

In a second step, the Hough transform is used in order to detect straight lines
in the edge image 2 shown in Figure 3.3. We use this method for the detec-
tion of the bar codeʼs lines, since it is very robust regarding noise and partial-
ly hidden or incomplete lines, even if the image resolutions are low (in our
case 160x120 pixels).

For the detection of lines, we use the line equation in its normal form,
where 𝑑 is the distance from the origin and 𝛼 the angle with the normal: (The
upper-left image in Figure 3.3 illustrates this association.)

𝑑 = 𝑥 ∙ 𝑐𝑚𝑡(𝛼) + 𝑦 ∙ 𝑡𝑏𝑡(𝛼)

Using this formula, the Hough transform will in principle map all collinear
points lying on the line described by the above equation in the image space,
to sinusoidal curves in the parameter space that intersect at the point (𝛼, 𝑑).
The algorithm used to calculate the parameter space is fairly simple: All the
pixels in the original edge image are processed one by one. For each pixel at
position (𝑥,𝑦), we are going to obtain a set of (𝛼,𝑑)-pairs by using different
values for 𝛼 in the above line equation. For each resulting point (𝛼,𝑑), the
corresponding entry at that position in the parameter space is incremented by
one unit. When all pixels are processed, the parameter space contains the
number of collinear pixels for all the lines found in the image. The resulting
parameter space for our example is displayed in the lower-right image in Fig-
ure 3.3.

Recognition Algorithm | 35

Figure 3.4 Adjustment of the angle distribution after an orientation has been found, in order
to increase the algorithmʼs robustness and accuracy while maintaining overall speed.

Figure 3.5 Example of the robustness of the described Hough-transform-based approach,
which can determine the correct bar code orientation even in difficult situations like the one
shown.

In order to consider all possible lines in the image space, the values for 𝛼

have to range from 0 to 360 degrees. We can apply a simple trick and save
half the necessary computations by allowing negative values for 𝑑. This way
we have to evaluate only values from 0 to 180 degree. The number of angles
evaluated (the entered values for 𝛼) for each pixel is variable and corresponds
with the width of our parameter space. The more angles we use, the more
accurate and robust the orientation detection becomes, but also the longer
the computations take. Increasing the number of considered angles consider-
ably increases the time needed to calculate the parameter space, since the
calculations are executed for each pixel in the image space. We use 36 differ-
ent angle values, evenly distributed from 0 to 180 at 5 degree steps (the left

orientation / degree

density of angles

oriantation / degree

density of angles

90

0 180 90

90

45 135 0 180 90 45 135

36 | Recognition Algorithm

diagram in Figure 3.4 shows this uniform angle distribution). In order to in-
crease the accuracy as well as the robustness of the orientation detection, we
change the distribution of angles if a bar codeʼs orientation has already been
recognized in previous images in such a way, that there is a higher angle den-
sity around the last detected orientation. For example, the right diagram in
Figure 3.4 shows the new angle distribution if the last detected orientation
angle was 90 degree. This way, we can achieve a higher accuracy and robust-
ness while maintaining the fast execution speed of the algorithm, since the
total number of considered angles (36) remains the same.

In order to accelerate the calculation of the parameter space further and al-
low for an execution of the algorithm in real-time, several other means have
been taken, including the following major one: We use an optimized integer-
based version of the Hough transform that abstains from using time consum-
ing floating point operations and heavily relies on lookup tables. Such an in-
teger-based implementation accelerates the algorithm considerably and Magli
et al. [25] showed that the negative effects on the accuracy, compared to the
floating point based version, are negligible.

3.1.1.3 Pattern Search

After the parameter space has been calculated, it is searched for a set of par-
allel lines belonging to the bar code. In order to accelerate this process, we
can use the fact that all maxima belonging to parallel lines in the image space
will show up in the same column in the parameter space, since all have the
same angle parameter 𝛼. For each column of the parameter space, a value
𝑓(𝛼) is calculated by adding up the differences of adjacent entries in that col-
umn. Figure 3.3 shows the resulting shape of 𝑓(𝛼) for the different columns
in our example. Determining the bar codeʼs orientation is now reduced to the
determination of the column 𝑎1 that contains the highest value 𝑓(𝑎1) – in our
example 11.25 degree. However, a combination of low resolution edge win-
dows and sharp images result often in a second, lower peak at an angle 𝛼2 at
a distance of 90 degree to the first one. This corresponds to the fact that
many of the pixels in the edge window are lying not only on the lines of the
bar code, but also on imaginary lines that are at a 90 degree angle to them
along the bar code. We consider the determined orientation angle 𝛼 = 𝑎1
therefore only then to be reliable if the following two conditions hold:

𝑓(𝛼) > 𝑓(𝛼2) ∙ 1.5

𝑓(𝛼) > 𝑓 ∙ 2

Recognition Algorithm | 37

𝑓 ≝
1

𝑏𝑡𝑡𝑏𝑡ℎ(𝑓)
� 𝑓(𝑥)

𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1

𝑥=0

𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) ≝ 𝑡ℎ𝑡 𝑏𝑡𝑡𝑏𝑡ℎ 𝑚𝑓 𝑡ℎ𝑡 𝑤𝑎𝑤𝑡𝑓𝑚𝑏𝑚 𝑓 𝑏𝑡 𝑝𝑏𝑥𝑡𝑏𝑡

Currently, we use the information in the Hough space only to detect the ori-
entation of bar codes, since this can be determined very robust even under
difficult conditions (see Figure 3.5 for an example). However, the information
contained in the Hough transform could also be used to detect, for example,
the presence of 2D codes in the image. Instead of one prominent peak in
𝑓(𝛼), we would expect in this case two equally prominent peaks at a distance
of 90 degrees for all 2D code symbologies featuring block-typed patterns. The
two peaks correspond to the prominent lines at the pattern edges that have a
relative angle of 90 degree between each other. This information can be used
to integrate our recognition of bar codes with software recognizing 2D codes
and avoid the overhead of a naive solution, which consists of executing both
recognition algorithms in parallel. Results of the code presence and orienta-
tion detection component include information if a bar code is likely present in
the current image and the orientation 𝛼 of the bar code in the image.

3.1.2 Scan Line Extraction and Adaptation

Based on information about the bar code's orientation 𝛼 and the point
(𝑝𝑎𝑎𝑎𝑎_𝑥,𝑝𝑎𝑎𝑎𝑎_𝑦) where the recognition should be performed, we place a set of
𝑝𝑑𝑛𝑛.𝑜𝑓 𝑟𝑑𝑎𝑑𝑜𝑤𝑑𝑎𝑟 scan lines through the image using the well-known Bresen-
ham algorithm [26]. Each scan line 𝑡 is characterized by its distance 𝑑(𝑡) to
the central scan line going through the point (𝑝𝑎𝑎𝑎𝑎_𝑥,𝑝𝑎𝑎𝑎𝑎_𝑦) and its thick-
ness in pixels 𝑡(𝑡).

38 | Recognition Algorithm

Figure 3.6 Position of central scan lines (left images) as well as extracted waveforms along
these scans line in the case of a sharp image (upper-right diagram) and a blurry image as
obtained on devices without autofocus camera (lower-right diagram).

Figure 3.7 Dynamic adaptation of scan line positions over several frames.

Recognition Algorithm | 39

3.1.2.1 Scan Line Extraction

Along each scan line, we extract pixel brightness information 𝑓(𝑥). Pixel
brightness is calculated as already described in Section 3.1.1. In the case a
scan line's thickness 𝑡 exceeds one pixel, we combine the information ob-
tained by the several parallel sub-lines 𝑓𝑑𝑎(𝑥):

𝑓(𝑥) =
1
𝑡
� 𝑓𝑑𝑎(𝑥)

𝑤−1

𝑑𝑎=0

Thin scan lines have the advantage that less pixels of the original image

have to be accessed, while thicker scan lines have the advantage that the
effects of noise and local pixel errors are reduced. Figure 3.6 shows examples
of typical extracted waveforms from a sharp as well as blurry image.

3.1.2.2 Scan Line Adaptation

When recognizing bar codes in video images with typically 10-15 frames/s,
the meta-data collected in the previous video frames is used to adjust the po-
sition and thickness of scan lines in the current image, in order to maximize
the likelihood of recognition. The adjustment is based on the "recognition
success" of each scan line in the last frame. According to its recognition suc-
cess, a scan line is categorized into one of the following five classes:

1. A valid bar code has been recognized along the scan line with a high
confidence.

2. A bar code has been recognized along the scan line, but the result is
not reliable.

3. The start- and end-position of a bar code have been recognized along
the scan line but no code has been recognized.

4. It is likely that a bar code is present in the scan line waveform, e.g., due
to the number of extreme points detected in the waveform 𝑓(𝑥).

5. The scan line contains most likely no bar code.

Based on this classification, the position and thickness of scan lines is ad-
justed according to the following rules:

• Scan lines of category 1 remain at their current position and with

their previous thickness.
• The thickness of scan lines of category 2 is increased up to a certain

threshold, in order to become more robust against local defects.

40 | Recognition Algorithm

• If scan lines of category 1 or 2 are present, scan lines of category 3,
4 and 5 are moved towards the closest such scan line; else, scan lines
of category 4 and 5 are moved towards potentially present scan lines
of category 3.

• With a probability 𝜌 (typically 0.1), scan lines of category 3, 4 and 5
are reset to their original position and width, in order to ensure an
adjustment to changing conditions over time, and to avoid being
caught in local maxima.

Figure 3.7 shows an example of the scan line adjustment process over a se-

ries of three frames 𝑡1 … 𝑡3. The original image is shown at 𝑡0.

3.1.3 Result Combination

In the case of video images, the recognition algorithm combines the results
obtained from several images in a recognition state. The recognition state
consists of the following:

• Information if a bar code is likely present in the video images and if
the mobile phone is currently close to a bar code

• The last decoded bar code, including information about its symbolo-
gy and a confidence value describing how sure our algorithm is to
have recognized the correct number

• The bar code's orientation and position in the image(s)

As already mentioned before, this type of information is relevant for aug-
mented-reality type of applications like the allergy assistant or price label ap-
plication that display information as long as the user is close to a specific
product.

3.1.3.1 Information about Bar Code Presence

A bar code is considered to be present in the images if the orientation detec-
tion component detected a prominent set of parallel lines in at least 50% of
the last 𝑝𝑑𝑛𝑛_𝑜𝑓_𝑓𝑎𝑎𝑛𝑎𝑟 image frames. We do not require all frames to result in
a valid orientation, since certain frames can be severely distorted and blurred
due to hand movements. The number of considered frames depends on the
frame rate available on a specific mobile phone and is typically 5 frames. The
bar code presence indicator reacts not only to bar codes, but all prominent
sets of parallel lines, e.g., also patterns caused by text columns. We therefore

Recognition Algorithm | 41

also provide information if the phone is currently in the proximity of a "real"
code. If a bar code number has been recognized in a frame, we assume to be
close to this bar code until the presence of parallel lines in the video images
cannot be detected for 𝑝𝑑𝑛𝑛_𝑜𝑓_𝑓𝑎𝑎𝑛𝑎𝑟 frames.

3.1.3.2 Information about Decoded Bar Code

In the case any of the two decoders detected a bar code with a confidence
value above a threshold value 𝑝𝑓𝑤𝑑𝑎𝑜_𝑑𝑜𝑑𝑓𝑤𝑤𝑎𝑑𝑑𝑎_𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤, this code is considered.
All bar codes detected in the last 𝑝𝑑𝑛𝑛_𝑜𝑓_𝑓𝑎𝑎𝑛𝑎𝑟 video frames are recorded. In
principle, this information can be used to increase the confidence value in a
bar code that has been recognized in several successive video frames. Never-
theless, since the decoders internally perform already several checks in order
to avoid the detection of wrong code numbers, we do not rely on the aggrega-
tion of results from different frames in order to determine the final bar code.
Especially in the case of very blurry codes, the chance of detecting a wrong
code number is too high when automatically increasing the confidence value
of a bar code with a low confidence value over several video frames.

Figure 3.8 Determination of the approximate code position based on the information re-
turned by the blurry decoder (left images) as well as sharp decoder (right images).

42 | Recognition Algorithm

3.1.3.3 Information about Bar Code Position

Information about the bar code position in an image includes the code orien-
tation 𝛼 in degrees and a rectangular area, in which the code is located. The
latter is defined by four corner points 𝑏0 … 𝑏3. Since the bar code presence and
orientation detection can be incorrect for some frames, e.g., due to hand
movements, a code's orientation value returned as part of the recognition
state is also filtered over the last frames:

𝛼 =
1
𝑤
� 𝛼(𝑡)

𝑝𝑛𝑛𝑛_𝑜𝑜_𝑜𝑓𝑓𝑛𝑓𝑓

𝑤=0

𝑤 = 𝑡𝑏𝑚𝑏𝑡𝑏 𝑚𝑓 𝑤𝑎𝑏𝑏𝑑 𝑚𝑏𝑏𝑡𝑡𝑡𝑎𝑡𝑏𝑚𝑡𝑡 𝑏𝑡 𝑡ℎ𝑡 𝑏𝑎𝑡𝑡 𝑝𝑎𝑛𝑜𝑛𝑑𝑤_𝑓𝑎𝑎𝑛𝑎𝑟 𝑓𝑏𝑎𝑚𝑡𝑡

𝛼(𝑡) = 𝑑𝑡𝑡𝑡𝑐𝑡𝑡𝑑 𝑚𝑏𝑏𝑡𝑡𝑡𝑎𝑡𝑏𝑚𝑡 𝑎𝑡 𝑡ℎ𝑡 𝑡𝑤ℎ 𝑏𝑎𝑡𝑡𝑓𝑏𝑎𝑚𝑡 𝑎𝑡𝑑
 𝛼(𝑡) = 0 𝑏𝑓 𝑡𝑚 𝑤𝑎𝑏𝑏𝑑 𝑚𝑏𝑏𝑡𝑡𝑡𝑎𝑡𝑏𝑚𝑡 𝑐𝑚𝑏𝑏𝑑 𝑏𝑡 𝑑𝑡𝑡𝑡𝑐𝑡𝑡𝑑

The approximate code position is calculated based on the information rec-
orded, e.g., the positions of scan lines and the start- and end-position of po-
tentially detected bar codes in each scan line. If the sharp decoder recognized
a bar code, we use the outermost two scan lines that recognized a bar code to
calculate 𝑏0 … 𝑏3 in image coordinates. In the case the blurry decoder recog-
nized a code with a high enough confidence, we construct the points 𝑏0 … 𝑏3
by assuming a rectangle with a pre-defined width-to-height ratio and the blur-
ry scan line that detected the bar code at its center. Furthermore, the approx-
imate code position reported as part of the recognition state is also filtered
over several video frames, in order to avoid flickering. Figure 3.8 illustrates
the detected approximate code position in the case of a sharp and blurry im-
age.

While this method always results in a rectangular area that perfectly corre-
sponds with the code's orientation and start- as well as end-position, the
height of the rectangular area and its y-position in relation to the code can
vary – in particular, in the case of blurry images when the approximate code
position is based on one scan line. For perfect images, a simple and fast algo-
rithm detecting the upper and lower vertical borders of the bar code could be
implemented. However, in the case of blurry images, and the many imperfec-
tions found in reality, developing a fast and robust method requires more
effort.

Recognition Algorithm | 43

Figure 3.9 Structure of the sharp bar code decoder.

3.2 Sharp Decoder
The decoder for sharp bar code images had four specific design goals:

1. It should be as fast as possible in order to result in a low performance
overhead when run in parallel with the blurry decoder

2. It should be robust against perspective distortions
3. It should be robust against local defects like glare or damaged codes
4. It should allow for the easy addition of new code symbologies

In order to achieve these goals, the sharp decoder uses fast, distortion in-

variant operations for decoding bar codes for each scan line and relies heavily
on the use of multiple scan lines in order to increase robustness. Due to the
scan line-based approach, we do not have to perform time intensive opera-
tions like the binarization process on the whole image but only along certain
scan lines. This drastically increases the recognition speed and reduces the
overall memory consumption in the case of high resolution images. The func-
tionality required to decode a bar code of a certain symbology is encapsulated
in a symbology module (see Figure 3.9). Each symbology module has to im-
plement three components, corresponding to the three main tasks it has to
fulfill:

44 | Recognition Algorithm

1. The Location component, which provides the functionality to detect
the presence, as well as start- and end-position of a bar code in a given
set of alternating black and white fields

2. The Decoder component, which provides the functionality to decode a
bar code from a given set of alternating black and white fields that be-
long to the code pattern

3. The Scan Line Combination component, which provides the functionali-
ty to merge decoder results obtained from different scan lines and uses
the combined information to construct a final bar code

Modules for bar code symbologies can be dynamically added, activated or

de-activated. This can be done, for example, based on the requirements of the
application using the bar code recognition. Figure 3.9 shows the structure of
the sharp bar code decoder that takes a set of scan line waveforms as input
and produces a final bar code as well as meta-data about the recognition pro-
cess as output. We published the general recognition method of the sharp
decoder described in the following already in [22], and a related, but very lim-
ited first algorithm for recognizing sharp bar codes in [14].

First, the original waveforms that are extracted from the scan lines and con-
tain brightness values ranging from 0...255 are binarized (converted to only
two values). On the resulting set of alternative black and white fields, each
active symbology module performs a fast check in order to clarify if a valid
code is contained in the pattern. In the case a symbology passes this test, the
code's start position in the pattern is searched for. If a valid start position was
found, this information is used to decode the bar code in the pattern. This
process is repeated for each scan line. The decoding result of each scan line is
then passed on to the result combination component. This component com-
bines the information obtained from different scan lines and returns the most
likely bar code and a quality factor indicating the confidence in the result.
This information is reported by each active symbology module and passed on
to the symbology combination component. Based on the obtained results and
additional meta-information, e.g., how many scan lines recognized what kind
of code symbology, this component selects and returns the final bar code. In
most cases, only one code symbology will be detected in an image. However,
in images with multiple bar codes present, several symbology modules will
detect a bar code. The following sub-sections discuss relevant components in
more detail: the waveform binarization (Section 3.2.1), and symbology-
specific code location detection, decoding, and result combination steps (Sec-
tion 3.2.2).

Recognition Algorithm | 45

Figure 3.10 Sharp bar code waveform from a Nokia N95 phone that exhibits sharpening
artifacts at the signal's edges and the threshold values, determined with a window size of 70
pixels, used in binarization algorithm 1 to classify pixels as black or white (upper diagram).
Binarized waveform (middle diagram) that corresponds to the final set of black and white
fields (lower image).

3.2.1 Waveform Binarization

First, the waveform data along a scan line is transformed into a set of alternat-
ing black and white fields, using one of two different binarization algorithms.
Which algorithm is the most appropriate, depends on the image resolution
and potentially present artifacts from image compression or sharpening. The
outcome is a set of alternating black and white fields of varying lengths. The
drawback of performing a binarization at such an early stage is the accumula-
tion of errors, as subsequent processing steps might be based on faulty bina-
rization information (i.e., a grey pixel being wrongly judged as being black or

46 | Recognition Algorithm

white), especially in the case of slightly blurry or low-resolution images. How-
ever, it has the advantage that the following operation steps can be performed
very fast. By considering only the relative sizes of consecutive black and white
fields, a high robustness against distortions, e.g., perspective distortions or
distortions due to codes printed on round surfaces, is achieved.

3.2.1.1 Algorithm 1

The first binarization algorithm is based on a simple dynamic threshold ap-
proach, similar to work presented in [27]. It is very fast and robust against
waveform artifacts resulting from image compression or edge sharpening (see
Figure 3.10 for an example). The threshold value 𝑡(𝑥1) used to decide if a pix-
el at position 𝑥1 is converted to black or white is based on the average bright-
ness along the whole scan line 𝑓(𝑥), as well as the local illumination 𝑏𝑚𝑐𝑎𝑏(𝑥1)
around the pixel at position 𝑥1:

𝑡(𝑥) = 𝑝𝑎𝑎𝑤𝑤𝑜 ∙ 𝑓̅ + (1 − 𝑝𝑎𝑎𝑤𝑤𝑜) ∗ 𝑏𝑚𝑐𝑎𝑏(𝑥) ∀ 𝑥 ∈ {0. . . 𝑏𝑡𝑡𝑏𝑡ℎ(𝑓)}, 0 ≤ 𝑝𝑎𝑎𝑤𝑤𝑜 ≤ 1

𝑏𝑚𝑐𝑎𝑏(𝑥) =
1

𝑝𝑤𝑤𝑑𝑤𝑜𝑤 𝑟𝑤𝑠𝑎
� 𝑓(𝑏)

𝑥+
𝑝𝑤𝑤𝑛𝑤𝑜𝑤 𝑓𝑤𝑠𝑓

2 −1

𝑤=𝑥−𝑝𝑤𝑤𝑛𝑤𝑜𝑤 𝑓𝑤𝑠𝑓/2

A pixel at position 𝑥1 is converted to "black" if the following condition holds,

else it will be interpreted as "white":

𝑓(𝑥1) < 𝑡(𝑥1) + 𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 ∀𝑥 ∈ {0 … 𝑏𝑡𝑡𝑏𝑡ℎ(𝑓)},𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 ∈ ℝ

The parameters 𝑝𝑎𝑎𝑤𝑤𝑜, 𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤, and the window size 𝑝𝑤𝑤𝑑𝑤𝑜𝑤 𝑟𝑤𝑠𝑎 are set
dynamically based on the illumination situation found in the original wave-
form. By analyzing the brightness values of pixels along the scan line and
their distribution, the illumination of a scan line waveform is categorized into
six categories, along the two dimensions 𝑏𝑚𝑎𝑏𝑡 𝑏𝑏𝑏𝑏ℎ𝑡𝑡𝑡𝑡𝑡
∈ {𝑑𝑎𝑏𝑑,𝑡𝑚𝑏𝑚𝑎𝑏, 𝑏𝑏𝑏𝑏ℎ𝑡} and 𝑏𝑡𝑏𝑓𝑚𝑏𝑚𝑏𝑡𝑦 𝑚𝑓 𝑏𝑏𝑏ℎ𝑡𝑏𝑡𝑏 ∈ {𝑡𝑚𝑏𝑚𝑎𝑏,𝑏𝑡𝑡𝑤𝑡𝑡}.

Based on the estimated illumination (e.g., 𝑡𝑚𝑏𝑚𝑎𝑏 and 𝑏𝑡𝑡𝑤𝑡𝑡), we select
the according set of values for 𝑝𝑎𝑎𝑤𝑤𝑜, 𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 and 𝑝𝑤𝑤𝑑𝑤𝑜𝑤 𝑟𝑤𝑠𝑎. The best
parameter values for a certain illumination category have been determined
automatically based on sets of test images for each category (see Section
4.2.3 for further information).

Recognition Algorithm | 47

3.2.1.2 Algorithm 2

While being very robust, the performance of algorithm 1 decreases in the
case of slightly blurry images and low image resolutions. Such conditions typ-
ically lead to smoother waveforms with only slightly visible extreme points. In
such situations, and on devices featuring very good image quality, a more
sensitive binarization algorithm is used.

The second binarization algorithm first smoothes the original waveform
𝑓(𝑥) by convoluting it with a small kernel 𝑑(𝑥), which reduces potentially
present noise without affecting the more prominent extreme points in the
signal:

𝑓𝑟𝑛𝑜𝑜𝑤ℎ𝑎𝑤(𝑥) = (𝑓 ∗ 𝑑)[𝑥] ≝� 𝑓(𝑥 − 𝑜𝑎𝑑𝑒𝑤ℎ(𝑘)
2 + 𝑏)𝑑(𝑏)

𝑜𝑎𝑑𝑒𝑤ℎ(𝑘)−1

𝑤=0

𝑏𝑡 ℎ𝑚𝑏𝑑𝑡:� 𝑑(𝑥)
𝑜𝑎𝑑𝑒𝑤ℎ(𝑘)−1

𝑥=0
= 1

Afterwards, the first and second derivative of the resulting waveform

𝑓𝑟𝑛𝑜𝑜𝑤ℎ𝑎𝑤(𝑥) is used to determine the type, position and size of extreme points
in the waveform. Too small extreme points are ignored and based on the in-
formation about the resulting extreme points the pattern of black and white
fields is derived.

Especially in the case of slightly blurry, noisy or low resolution images, it of-
ten depends on details like single pixel errors or local artifacts whether the
complete waveform of a bar code can be binarized correctly. Like already
mentioned in [14], the overall recognition performance of algorithm 1 and
algorithm 2 can therefore be improved by slightly varying the relevant pa-
rameters influencing the binarization output; either in the spatial domain be-
tween different scan lines or time domain in consecutive images in a video
stream.

3.2.2 Symbology Module: Code Detection and Decoding

3.2.2.1 Code Presence and Location Detection

The input of the code location component consists of the type 𝑓𝑏𝑡𝑏𝑑𝑡𝑤𝑦𝑝𝑎(𝑏) ∈
{𝑏𝑏𝑎𝑐𝑑,𝑤ℎ𝑏𝑡𝑡} as well as width 𝑓𝑏𝑡𝑏𝑑𝑡𝑤𝑤𝑤𝑤ℎ(𝑏) ∈ ℕ in pixels of the consecutive
black and white fields. This information is passed on to all active symbology
modules. Each module tries to detect if its symbology is contained in the giv-
en pattern. In many cases, the recognition can be aborted at this stage, e.g., if

48 | Recognition Algorithm

there are not at least 𝑝𝑛𝑤𝑑. 𝑑𝑛𝑛. 𝑜𝑓 𝑓𝑤𝑎𝑜𝑤𝑟 fields present in the pattern (59 fields
in the case of EAN13 or UPC12 codes)9. This allows us to cancel the recogni-
tion as early as possible for scan lines that cannot contain a valid bar code. If
a symbology passes this test, the start position of a corresponding code is
searched in the field pattern. Requirements in doing this are again speed and
the exclusion of patterns not belonging to bar codes, but are caused by other
elements such as text lines printed on a product's package.

A valid start position is searched for by consecutively testing all possible
start fields in the given pattern. A start index 𝑏𝑟𝑤𝑎𝑎𝑤 is valid if it holds:

𝑓𝑏𝑡𝑏𝑑𝑡𝑤𝑦𝑝𝑎(𝑏𝑟𝑤𝑎𝑎𝑤) = 𝑏𝑏𝑎𝑐𝑑

𝑏𝑟𝑤𝑎𝑎𝑤 < 𝑏𝑡𝑡𝑏𝑡ℎ(𝑓𝑏𝑡𝑏𝑑𝑡) − 𝑝𝑛𝑤𝑑. 𝑑𝑛𝑛.𝑜𝑓 𝑓𝑤𝑎𝑜𝑤𝑟

For each valid start index, a series of checks is performed, gradually moving
from fast to perform checks to more time intensive ones. If one of the checks
is not passed, we move on to the next start index. If all checks are passed, the
according start position is reported to the decoder module. Performed checks
depend on the structure and characteristics of the underlying code symbolo-
gy, such as whether the length of encoded information is variable (EAN128 or
Code39 codes) or fixed (EAN13, UPC-A, EAN8 and UPC-E codes). In the case
of EAN13 bar codes, performed checks include the following:

• The three fields belonging to the start pattern must have approxi-

mately the same length
• The fields at positions marking the middle and end delimiter must

have approximately the same size
• There must be a small silent area before and behind the code
• All field widths within the code pattern must have reasonable sizes10

3.2.2.2 Decoding

The decoding process depends on the specific bar code symbology. In the
case of EAN13 codes, this process is straightforward: First, the lengths of
fields belonging to the first digit 𝑓𝑏𝑡𝑏𝑑𝑡𝑤𝑤𝑤𝑤ℎ(𝑏𝑟𝑤𝑎𝑎𝑤)...𝑓𝑏𝑡𝑏𝑑𝑡𝑤𝑤𝑤𝑤ℎ(𝑏𝑟𝑤𝑎𝑎𝑤 + 3) are

9 3 (start delimiter fields) + 6*4 (fields from six left digits) + 5 (middle delimiter fields) + 6 *4
(fields from six right digits) + 3 (end delimiter fields) = 59 fields
10 The max width of a bar is 4 times the unit width, but due to perspective distortion, fields
might be slightly larger or smaller.

Recognition Algorithm | 49

compared to all entries belonging to left-hand digits listed in Table 2.2. We
determine the entry that corresponds best to the observed field widths. This
way, we obtain information about the first digit 𝑑 and its parity value 𝑝. Based
on the latter, it can be distinguish if we are about to read the bar code from
the "correct" direction or if it is upside-down, since the digit closest to the bar
code's start delimiter always has an odd parity, while the one closest to the
code's end delimiter has an even parity.

For the following steps, we assume the bar code to be in the correct posi-
tion. For fields belonging to the six left bar code digits, the above comparison
process with Table 2.2 is repeated to determine the encoded digits 𝑑1...𝑑6 and
the according parity values 𝑝1...𝑝6. For digits on the right code side, compari-
sons are limited to the table for the right hand digits and digits 𝑑7...𝑑12 are
determined accordingly. Furthermore, in each comparison step confidence
values 𝑐1 … 𝑐12 are recorded that indicate how well the best found digits
matched. Finally, the system digit 𝑑0is derived with the help of Table 2.3 and
the parity values 𝑝1...𝑝6.

In order to reduce the number of false-positives, the decoding process is
aborted if the parity values 𝑝1...𝑝6 do not match any pattern in Table 2.3, or in
the case a single confidence factor is below a set limit. In addition, we also
calculate the bar code's check digit 𝑑𝑑ℎ𝑎𝑑𝑘 from the values 𝑑0...𝑑11 and check if
it equals 𝑑12:

𝑑𝑑ℎ𝑎𝑑𝑘 = �10 − �� 𝑑𝑥∙2 + 𝑑𝑥∙2+1
5

𝑥=0
�𝑚𝑚𝑑 10�𝑚𝑚𝑑 10

Finally, the detected digits 𝑑0...𝑑12, confidence factors 𝑐0...𝑐12, as well as in-

formation about the check digit, are passed on to the result combination
component.

For EAN128 codes, the decoding process is slightly more complex, due to
the higher number of different encoded characters (105), the fact that charac-
ters are encoded in 6 consecutive bars, and the existence of different charac-
ter sets. Special control characters allow for the switching between these
character sets inside the same code.

3.2.2.3 Result Combination

The result combination component collects decoded digits and confidence
values from each scan line, and combines this information to the final bar
code number and a single quality factor. This quality factor ranges from 0 to
100 and indicates how sure we are about the correctness of the returned bar

50 | Recognition Algorithm

code number (0 = very insecure, 100 = very sure) 11. The final code number is
then determined based on a set of rules. These rules have been experimental-
ly determined using test sets of bar code images and optimized to reduce the
number of false-positives as much as possible, while remaining sensitive
enough to recognize even difficult bar codes. Rules vary with symbology, but
include the following:

1. If not at least one scan line detected a code with a valid check digit and
a reasonable confidence value, no final code is returned, since the
probability of false-positives is too high

2. The more scan lines recognized the same code number, the higher the
confidence in this code

3. The better the confidence values for single detected digits are, the
higher the confidence in the final code

Figure 3.11 Close-up of blurry bar code image obtained on a device with fixed-focus camera
that will be used as an example throughout the blurry decoder section.

11 Throughout the sharp decoder, no floating point numbers are used in order to increase
portability and the speed on weaker devices. For example, J2ME offers no support for floating
point numbers in CLDC 1.0.

Recognition Algorithm | 51

Figure 3.12 Underlying model of the blurry bar code recognition.

3.3 Blurry Decoder
Figure 3.11 shows a close-up of the blurry example image presented already
in Figure 3.6. This image will be used as an example throughout the descrip-
tion of the blurry bar code decoder. The basic problem when trying the rec-
ognize bar codes in such blurry images is the fact that the individual bars
making up the bar code cannot be distinguished any more, leave alone the
precise widths of single bars. This rules out the recognition method used by
the sharp bar code decoder and requires a different approach.

We assume an underlying model in which the blurry waveform of bright-
ness values is obtained by convoluting the waveform of a sharp bar code with
the point spread function (PSF) of the mobile phone's camera (see Figure
3.12). The point spread function describes the properties of an optical system
and in particular how a single pixel in the original image will be reproduced
in the resulting image. This model is the same as the one used in several re-
lated approaches for recognizing bar codes in blurry waveforms presented in
Section 3.4. These methods try to mathematically determine the bar code
number that corresponds to a sharp waveform that produces the observed

52 | Recognition Algorithm

blurry waveform when convoluted with a fixed PSF. This combinatorial meth-
od has two major drawbacks, however, for recognizing bar codes on mobile
phones:

• It is computationally very expensive and requires several seconds or

minutes, even on high-end desktop machines for a single image.
• Reality is complex and differs from the described simple model in sev-

eral ways. This either drastically increases the time required for the
computations further, e.g., when considering additional degrees of
freedom, or limits the approach to very specific situations.

Due to the many imperfections present on mobile phones and factors influ-
encing the final blurry bar code waveform, the described model differs from
reality. Specific sources for discrepancies include:

• The point spread function of the optical system is not constant on the

whole image and can differ significantly dependent on the position in-
side the image, for example, due to barrel distortions caused by lenses
that become relevant at a close distance to bar codes.

• Perspective distortions are likely to occur due to codes printed on
round surfaces or an angular perspective on codes.

• Noise due to artifacts from image compression or sharpening steps fur-
ther distorts the resulting blurry waveform.

• Lighting along the waveform is often non-uniform.
• The physical size of the code has an effect on the resulting waveform.

The same code number encoded in bar codes of differing physical size
obtained from the same mobile phone result in different waveforms.

• Further subtle facts like the printing quality of the bar code (thin black
bars or thicker bars) have an effect on the result.

3.3.1 Our Approach

Our approach for determining the bar code number encoded in a blurry
waveform differs from the combinatorial approach taken in related work in
order to address the two main issues: algorithm speed and the many imper-
fections found in reality. Based on the determined exact start and end position
of a bar code pattern in the scan line waveform, we subdivide the bar code
waveform into several sections, each containing the waveform resulting from
three consecutive digits and adjacent static elements.

Recognition Algorithm | 53

Figure 3.13 Partitioning of EAN13 bar codes into four smaller segments, each covering three
digits.

Figure 3.13 illustrates this partitioning. For each section, we pre-calculate

the blurry waveform pieces that correspond to all possible sets of three digits
and a known PSF. This is done offline and the pre-calculated patterns are
stored in a recognition table file. In order to determine the underlying bar
code number from a blurry waveform, we compare the waveform piece for
each section with all pre-calculated patterns for this section and search for
the best fitting pattern and its associated set of three digits. This comparison
is optimized and can be performed very quickly. The sub-division of the whole
bar code pattern into blocks of three digits (in the case of EAN13 codes)
proved to be a good compromise between recognition speed and robustness.

Subdividing the whole waveform in sections covering only one digit would
result in a high recognition speed, since each section waveform has to be
compared to at most 20 different patterns (a digit can have values between 0
and 9, and one out of two parities). However, in the case of very blurry imag-
es, the shape of the waveform belonging to a specific digit is heavily influ-
enced by the preceding and following digit, making a correct recognition im-
possible. On the other hand, pre-calculating the waveform of the whole bar
code, or even half of the bar code, would result in too many patterns that
cannot be stored and searched in an appropriate time. In the case of the six
left digits, we would end up with 10*205 = 32*106 different patterns (the first
digit has always the same parity). Our subdivision into blocks of three digits

54 | Recognition Algorithm

proved sufficiently robust against the influence of proximate digits and results
in a total of 13000 pre-computed comparison patterns:

• 10*202 = 4000 patterns for the first section
• 203 = 8000 patterns for the second section (since not all combinations

of digit parities are valid, see Table 2.3, it is sufficient to consider 7000
patterns)

• 103 = 1000 patterns for the third section
• 103 = 1000 patterns for the fourth section

 In order to improve robustness and allow for the recognition of images

with differing sharpness levels, we pre-calculate not only one recognition ta-
ble, but several tables using different PSFs. We also allow the PSFs for differ-
ent waveform sections to differ from each other.

As mentioned above, the observed blurry bar code waveform is influenced
by many factors, e.g., image pre-processing, lens distortions and others. Fur-
thermore, the exact measurement of PSFs on different image regions for a
given mobile phone is non-trivial, at least without professional equipment. In
order to address these issues, we do not try to model all imperfections, but
instead optimize the number of recognition tables, the size and shape of PSFs
for different code sections, as well as several other relevant factors based on a
set of test images taken with a specific mobile phone.

Figure 3.14 Components of the blurry bar code decoder.

Recognition Algorithm | 55

Figure 3.14 illustrates the basic steps and components involved in decoding
a blurry bar code. First, the appropriate recognition table is selected based on
the measured sharpness of the signal in the provided waveform. Section 3.3.2
will provide further details on this and present the information contained in a
recognition table in more detail. Afterwards, the bar code position in the
complete waveform is searched for. Due to challenges inherent to the blurry
waveform and the many possible sharpness levels of images, in combination
with the requirement to locate the code position very precisely, this process is
divided into two steps. First, the approximate position of the code waveform
is detected. Afterwards, the exact bar code start and end position as well as
the bar code symbology contained in the blurry waveform are determined in a
combined step (Section 3.3.3). After extracting the waveform belonging to the
bar code pattern, it is pre-processed in order to compensate for lighting
effects such as shadows (Section 3.3.4) and geometric distortions caused by
codes printed upside-down or on round surfaces (Section 3.3.5). The pre-
processed and normalized waveform is then used as a base for extracting the
waveforms belonging to different code sections, and for searching for the best
fitting pre-calculated pattern from a recognition table for each section (Sec-
tion 3.3.6). Based on the best fitting patterns found for each section, the final
bar code number is then constructed using several measures to detect and
rule our wrong code numbers (Section 3.3.7). Due to the many degrees of
freedom, e.g., the physical code size, code geometry, perspective distortions,
different codes symbologies and others, recognizing only correct and no
wrong code numbers is challenging; especially in the case of blurry images.
Therefore a final quality check is performed after a code number has been
recognized in order to further reduce the number of false-positives (Section
3.3.8). The following paragraphs cover the relevant functionality of the pre-
sented components.

3.3.2 Recognition Tables and Table Selection

Like stated above, our approach consists of comparing pieces of the blurry
code waveform with pre-calculated patterns. Recognition tables store the pre-
calculated patterns and further data required for the recognition process.
Specifically, they contain the following information (see Figure 3.15):

• Pre-calculated patterns for recognizing sets of digits in EAN13, UPC-A,
EAN8 and UPC-E codes

56 | Recognition Algorithm

• Pre-calculated patterns of code start-, end- and middle- patterns (delim-
iter patterns)

• Meta-data about the contained patterns, e.g., the exact relative start-
and end-position of the patterns in the complete code waveform, the
digits and parity values associated with each pattern, the total number
of pre-calculated patterns as well as further information, including the
PSFs used to generate the patterns)

The information in table files is organized and stored in such a way to en-

sure that,

• table files are as small as possible, since they have to be distributed to

the mobile phones. Further implementation-related measures, e.g., ta-
ble compression, support this (see Section 4.2.2).12

• table files can be loaded and organized in memory as fast as possible,
in order to ensure fast startup times of the recognition engine on mo-
bile phones. The information and patterns stored in the tables do not
have to be further processed or re-arranged before they can be used in
the recognition process.

• pattern comparison at a later stage can be performed as fast as possi-
ble. For that additional pre-calculated data is stored in table files. This
includes versions of each pattern in different resolutions and pre-
computed mean and standard deviation values for all patterns. Calcu-
lating this information at runtime would require too much time.

The information stored in table files has a two dimensional layout. Figure

3.15 shows an example of a table file and the basic table layout. Appendix
9.1.1 shows the detailed table layout. Usually, a set of 2 to 4 recognition ta-
bles covering different image sharpness levels is enough to allow for a robust
recognition of bar codes in images of varying sharpness (see Section 4.2.2 for
details). Pre-computed recognition tables are specific for mobile phone mod-
els or classes of mobile phones with similar optics.

12 File size varies with the sharpness of pre-calculated patterns between 200kB and 900kB
for a table file.

Recognition Algorithm | 57

Figure 3.15 Example of a recognition table that contains blurry pre-calculated patterns (left
image). Basic layout of information stored in a table (right image).

3.3.2.1 Table Selection Component

The first action performed by the blurry decoder is to decide which recogni-
tion table is applicable for the observed bar code waveform, because infor-
mation stored in this table is required for most successive steps. A table is
selected based on the shape and size of the PSFs used to pre-calculate its pat-
terns. An ideal table-selection algorithm would determine the PSF underlying
the given blurry scan line waveform and then select the table generated with
the most similar PSF. Since due to the unknown underlying bar code number
and existing imperfections this is very challenging and time consuming, we
rely on a simpler selection method. We estimate the waveform's sharpness
and select the appropriate recognition table based on this value. The sharp-
ness value ranges from 0 for a "perfectly sharp" to 255 for a "perfectly blur-
ry"13 waveform. We tested several algorithms for determining the sharpness
of a waveform, considering waveform characteristics such as standard devia-
tion, the number of extreme points, and others, and found the method de-
scribed in the following sub-section to be sufficiently precise for our use case.

13 Corresponds to a horizontal line.

58 | Recognition Algorithm

3.3.2.2 Sharpness Measurement Algorithm

First, we resize the original waveform 𝑓(𝑥) to a standard length of 640 pixels,
since the length of the original scan lines varies with image resolution. Then,
the resulting waveform is convoluted with a small kernel 𝑑𝑝1 in order to re-
duce noise:

𝑓𝑓𝑤𝑜𝑤𝑎𝑎𝑎𝑤(𝑥) = 𝑓(𝑥) ∗ 𝑑𝑝1 (𝑡𝑡𝑡 𝑡𝑡𝑐𝑡𝑏𝑚𝑡 3.2.1 𝑓𝑚𝑏 𝑡ℎ𝑡 𝑑𝑡𝑓. 𝑚𝑓 𝑡ℎ𝑡 ∗ 𝑚𝑝𝑡𝑏𝑎𝑡𝑚𝑏)

Based on 𝑓𝑓𝑤𝑜𝑤𝑎𝑎𝑎𝑤(𝑥), the biggest difference 𝑚 between two consecutive val-
ues along the waveform is determined. In the case of a perfectly sharp signal
consisting only of the values 0 and 255, this will be 255. In the case of a hor-
izontal line (a "perfectly blurry" signal), we will obtain 0. In order to increase
robustness, the above method is performed not on the complete waveform,
but separately on 𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑎𝑎𝑤𝑤𝑤𝑤𝑜𝑑𝑟 different partitions of the waveform. For
each partition we obtain a value 𝑚𝑥, 0 ≤ 𝑥 ≤ 𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑎𝑎𝑤𝑤𝑤𝑤𝑜𝑑𝑟. The final sharp-
ness value 𝑡 is then calculated as:

𝑡 = 255 −
1

𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑎𝑎𝑤𝑤𝑤𝑤𝑜𝑑𝑟
� 𝑚𝑥

𝑝𝑛𝑛𝑛.𝑜𝑜 𝑝𝑓𝑓𝑝𝑤𝑝𝑤𝑜𝑛𝑓−1

𝑥=0

𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑎𝑎𝑤𝑤𝑤𝑤𝑜𝑑𝑟 ∈ ℕ, 𝑡𝑦𝑝𝑏𝑐𝑎𝑏𝑏𝑦 4

This partitioning is necessary, since we do not know beforehand where ex-
actly in the waveform the signal from the bar code pattern is. It reduces the
influence of local effects such as varying sharpness along the scan line. For
example, a blurry code with a sharp image background might result in a
sharp signal at the waveform borders. Typical ranges for values of 𝑡 are
shown in Table 3.1.

Table 3.1 Conditions of images with sharpness values in the corresponding ranges:

Sharpness Range Conditions of Bar Codes in Images
0...55 All bar code features are relatively sharp
100...145 Code features are slightly blurry
175 Thin bar code lines start to disappear
175...200 Code bars are not distinguishable any more, but human

readable bar code numbers are still recognizable
215 Human readable numbers start to disappear
215...230 Very blurry images with unreadable numbers
230...245 Extremely blurry images

Recognition Algorithm | 59

The obtained sharpness value is sufficiently precise to select the appropri-
ate recognition table, even though it is not linear and varies due to lighting
effects and the variety of elements potentially contained in a waveform be-
sides the bar code pattern. The best mapping of ranges of sharpness values 𝑡
to recognition tables is learned offline based on a test set of images. (See Sec-
tion 4.2.2 for further details.)

3.3.3 Code Position and Symbology Detection

Since our recognition approach relies on extracting the waveform sections
that belong to specific digits, it is crucial to determine the exact start and end
position of the bar code pattern inside the waveform; ideally with an accuracy
of 1-3 pixels in a waveform of 640 pixels length, in order to enable a fast and
reliable search for the most suitable patterns. While this poses no problem in
sharp waveforms, it is challenging in case of very blurry signals. Figure 3.16
shows a blurry waveform extracted from our example image. Issues compli-
cating the exact code start and end position detection include:

• Image sharpness varies from sharp to very blurry images and has a
strong effect on the shape of the obtained waveform.

• In blurry images, the transition from the silent area before and after a
code to the start- and end-pattern is marked by a soft gradient of sev-
eral (up to 25) pixels width (see lower-right image in Figure 3.16).

• It is hard to distinguish the area in the complete waveform, in which
the bar code signal is located, from other elements such as text printed
close to the code; especially in blurry images and since the exact size
and position of the bar code in the waveform is unknown.

• In very blurry images, areas inside the bar code's waveform may ap-
pear that exhibit almost no features (extreme points). Such areas need
to be distinguished from the silent areas adjacent to the bar code.

In addition to the challenges related to the code position detection, directly

determining the symbology of codes in blurry images is not always possible.
The number of visible extreme points in the code waveform varies and is not
sufficient to distinguish code symbologies. In order to address these challeng-
es, we separate the code position detection into two steps. A position detec-
tion step based only on the data available in the given waveform, and a fol-
lowing refinement of the found start and end position with the help of pre-
calculated patterns stored in the recognition table.

60 | Recognition Algorithm

Figure 3.16 Blurry waveform extracted from the lower-left image (upper diagram) and close-
up of the code's start area (lower-right image). The soft slope makes is hard to determine the
exact code start position with an accuracy of1-3 pixels.

Figure 3.17 Detection of the approximate code start and end position.

Recognition Algorithm | 61

3.3.3.1 Position Detection Algorithm

Input parameters for the code position detection algorithm are the waveform
𝑓(𝑥), resized to a standard length of 640 pixels and the sharpness value 𝑡
determined in the previous recognition step. The algorithm is based on the
position and type of extreme points found in 𝑓(𝑥). First, the original wave-
form 𝑓(𝑥) is convoluted with a Gaussian kernel 𝑑𝑝2in order to reduce poten-
tially present noise and artifacts from image sharpening. Based on the result
𝑓0(𝑥), the first derivative 𝑓0(𝑥)̇ is calculated. This waveform is again smoothed
with a kernel 𝑑𝑝3 and too small values are deleted in order to remove less
prominent edges:

𝑓1(𝑥) = �
�𝑓0(𝑥)̇ ∗ 𝑑𝑝3�(𝑥) �𝑓0(𝑥)̇ ∗ 𝑑𝑝3�(𝑥) ≤ 𝑝𝑎𝑤𝑒𝑎 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤
0 �𝑓0(𝑥)̇ ∗ 𝑑𝑝3�(𝑥) > 𝑝𝑎𝑤𝑒𝑎 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤

The resulting waveform is in turn used to calculate the second deviation,

which is also smoothed with a kernel 𝑑𝑝3and finally produces 𝑓2(𝑥):

 𝑓2(𝑥) = (𝑓1(𝑥) ∗̇ 𝑑𝑝3)

Based on 𝑓0(𝑥), 𝑓1(𝑥) and 𝑓2(𝑥), we calculate the position 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏) ∈

{0 … 640} and type 𝑡𝑏𝑚𝑝𝑡𝑤𝑦𝑝𝑎(𝑏) ∈ {𝑏𝑝𝑤𝑎𝑏𝑑,𝑑𝑚𝑤𝑡𝑤𝑎𝑏𝑑} of prominent slopes in
𝑓(𝑥). Figure 3.17 shows the position of detected slopes.

In a next step, the waveform is divided into three different sections: a mid-
dle area and the left- as well as right region adjacent to it (see Figure 3.17).
Slopes located in the left section mark possible start positions of the bar code
waveform, and slopes in the right area correspond to possible end positions.
In most cases, the middle area will be located inside the bar code waveform.
The underlying assumption is that the bar code waveform will take up a rea-
sonable large portion of the complete waveform 𝑓(𝑥). Based on the detected
slope positions 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑚1) … 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑚𝑑) in the central area, the average
distance 𝑑𝑟𝑜𝑜𝑝𝑎 between adjacent slopes and a value 𝑑𝑛𝑎𝑥 is calculated as:

𝑑𝑟𝑜𝑜𝑝𝑎 =
1
𝑡
� 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏 + 1) − 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏)

𝑛𝑛−1

𝑤= 𝑛1

𝑑𝑛𝑎𝑥 = 𝑑𝑟𝑜𝑜𝑝𝑎 ∙ 𝑝𝑤𝑤𝑟𝑤𝑎𝑑𝑑𝑎_𝑓𝑎𝑑𝑤𝑜𝑎

𝑝𝑤𝑤𝑟𝑤𝑎𝑑𝑑𝑎_𝑓𝑎𝑑𝑤𝑜𝑎 ∈ ℝ, 𝑡𝑦𝑝𝑏𝑐𝑎𝑏𝑏𝑦 𝑏𝑡 𝑏𝑎𝑡𝑏𝑡 1.5 … 3.0

62 | Recognition Algorithm

Figure 3.18 Illustration of the position refinement step. The extracted start- and end-areas
(left diagrams) and best matching start- and end patterns (right diagram).

Based on the value 𝑑𝑛𝑎𝑥, we try to identify the slope positions in the left ar-

ea that are likely candidates for the bar code start position. (The search for
possible end positions in the right waveform area works accordingly.) This is
done by iterating trough all slope positions in the left waveform area. A slope
position 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏) is a likely code start position, in the case it fulfills the fol-
lowing conditions:

1. The distance to the following slope position exceeds a certain limit:

𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏 + 1) − 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏) ≥ 𝑑𝑛𝑎𝑥

2. The slope has to be prominent enough:

|𝑓1(𝑏)| ≥ 𝑝𝑟𝑜𝑜𝑝𝑎 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤

3. If it is the correct slope type. For a start position it has to hold:

𝑓1(𝑥) < 0

Figure 3.17 shows all candidates for code start- and end-positions. Finally,

we select the most likely candidate 𝑡𝑏𝑚𝑝𝑡𝑝𝑜𝑟(𝑏𝑟𝑤𝑎𝑎𝑤) out of all possible ones.
This is done by calculating a value 𝑡𝑏𝑚𝑝𝑡𝑎𝑜𝑎𝑒𝑎𝑤𝑤𝑜𝑑(𝑏) for each candidate and
selecting the candidate with the highest value as the bar code's start position
𝑥𝑟𝑤𝑎𝑎𝑤 :

𝑡𝑏𝑚𝑝𝑡𝑎𝑜𝑎𝑒𝑎𝑤𝑤𝑜𝑑(𝑏) = � 𝑓0(𝑑)
𝑟𝑜𝑜𝑝𝑎𝑝𝑜𝑓(𝑤)

𝑘=𝑟𝑜𝑜𝑝𝑎𝑝𝑜𝑓(𝑤)−20

Recognition Algorithm | 63

The underlying idea behind calculating the 𝑡𝑏𝑚𝑝𝑡𝑎𝑜𝑎𝑒𝑎𝑤𝑤𝑜𝑑(𝑏) values is that
the real code start and end position is adjacent to the code's silent areas,
which are in most cases brighter than areas inside the code patterns that fea-
ture only few extreme points. Figure 3.17 shows the found code start- and
end-positions candidates as well as the 𝑡𝑏𝑚𝑝𝑡𝑎𝑜𝑎𝑒𝑎𝑤𝑤𝑜𝑑(𝑏) values of each posi-
tion candidate. The optimal values for parameters used in this algorithm de-
pend on the waveform's sharpness. They are therefore selected dynamically
based on the estimated sharpness value 𝑡.

3.3.3.2 Position Refinement Algorithm

In the case of sharp waveforms, the detected code start and end position
𝑥𝑟𝑤𝑎𝑎𝑤 and 𝑥𝑎𝑑𝑤 are sufficiently precise. For blurry bar codes, this is usually not
the case and requires a position refinement step. The following description
focuses solely on the refinement process for the code's start position, but
works accordingly for the bar code's end position. First, we select the wave-
form section 𝑓𝑜𝑜𝑑𝑎𝑜(𝑥) in a window of size 𝑝𝑜𝑜𝑑𝑎𝑜 𝑟𝑤𝑠𝑎 around the detected start
position 𝑥𝑟𝑤𝑎𝑎𝑤 . The recognition tables contain not only pre-calculated patterns
for different digit combinations, but also patterns covering the bar code start-,
end- as well as middle-pattern. Pre-calculated start patterns cover the start
delimiter and the first code digit. In the case of EAN13 codes, this results in
10 different patterns. We use these to find the position in the extracted wave-
form section 𝑓𝑜𝑜𝑑𝑎𝑜(𝑥), where one of the pre-calculated patterns fits best.

Before doing this, we have to resize the extracted pattern 𝑓𝑜𝑜𝑑𝑎𝑜(𝑥) in order
to ensure it has the same scale like our pre-calculated patterns. When pre-
calculating all patterns, we assumed a certain bar code size in pixels. In a
waveform of 640 pixels length, the pre-calculated pattern of the complete
code had a length of 95* 𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎 pixels14. The used value for 𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎 is typi-
cally 5 pixels and stored in the recognition table. The pre-calculated start pat-
terns cover the start delimiter (3 units), the first digit (7 units), as well as a
certain part of silent area before the code (5 units), which results in a total
pattern length of 15*𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎 pixels. In order to ensure that the extracted
waveform has the same scale like the pre-calculated patterns, it is resized with
a factor 𝜌:

𝜌 =
𝑝𝑜𝑜𝑑𝑎𝑜 𝑟𝑤𝑠𝑎

𝑥𝑎𝑑𝑤 − 𝑥𝑟𝑤𝑎𝑎𝑤
∙ (𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎 ∙ 𝑝𝑟𝑦𝑛𝑏𝑜𝑜𝑜𝑒𝑦 𝑟𝑤𝑠𝑎 𝑤𝑑 𝑛𝑑𝑤𝑤𝑟(15))

14 The 59 different bars in EAN13 codes have a combined length of 95 units.
15 95 for EAN13 and UPC-A codes, 67 in the case of EAN8 and 51 for UPC-E codes

64 | Recognition Algorithm

Having resized the local waveform to 𝑓𝑜𝑜𝑑𝑎𝑜 𝑟𝑑𝑎𝑜𝑎𝑤(𝑥), we calculate for each
pre-calculated start pattern 𝑝𝑎𝑡𝑡𝑡𝑏𝑡𝑑𝑎(𝑥) at each possible position in
𝑓𝑜𝑜𝑑𝑎𝑜 𝑟𝑑𝑎𝑜𝑎𝑤(𝑥) the difference between the two waveforms. For the compari-
sons, an optimized comparison algorithm based on the normalized cross-
correlation [28] is used that is presented in Section 3.3.6. Compared to the
regular cross-correlation, the normalized cross-correlation has the advantage
of compensating for signal mean and scale variations due to lighting effects.
Based on the difference values obtained, we search for the pattern
𝑝𝑎𝑡𝑡𝑡𝑏𝑡𝑏𝑎𝑟𝑤(𝑥) that fits best, and the relative position 𝑑𝑥 in 𝑓𝑜𝑜𝑑𝑎𝑜 𝑟𝑑𝑎𝑜𝑎𝑤(𝑥)
where it fits best. Figure 3.18 shows the extracted local waveforms, as well as
the best found start- and end-pattern. The bar code start position 𝑥𝑟𝑤𝑎𝑎𝑤 is
then is the refined to:

𝑥𝑟𝑤𝑎𝑎𝑤 ← 𝑥𝑟𝑤𝑎𝑎𝑤 − (
𝑝𝑜𝑜𝑑𝑎𝑜 𝑟𝑤𝑠𝑎 ∙ 𝜌

2
+ 𝑑𝑥 + 𝑡𝑟𝑤𝑎𝑎𝑤 𝑝𝑜𝑟 𝑤𝑑 𝑝𝑎𝑤𝑤𝑎𝑎𝑑)

1
𝜌

𝑡𝑟𝑤𝑎𝑎𝑤 𝑝𝑜𝑟 𝑤𝑑 𝑝𝑎𝑤𝑤𝑎𝑎𝑑 = 5 ∙ 𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎
 (𝑝𝑎𝑏𝑎𝑚𝑡𝑡𝑏 𝑡𝑝𝑡𝑐𝑏𝑓𝑦𝑏𝑡𝑏 𝑡ℎ𝑡 𝑡𝑥𝑎𝑐𝑡 𝑏𝑎𝑏 𝑐𝑚𝑑𝑡 𝑡𝑡𝑎𝑏𝑡
 𝑝𝑚𝑡𝑏𝑡𝑏𝑚𝑡 𝑏𝑡𝑡𝑏𝑑𝑡 𝑡ℎ𝑡 𝑝𝑎𝑡𝑡𝑡𝑏𝑡)

3.3.3.3 Symbology Detection

Detecting the bar code symbology that is contained in a given waveform early
on is important in order save time. In contrast to the sharp bar code decoder,
in which a single decoding process can be performed very quickly, the decod-
ing process for the blurry decoder takes considerably longer. This rules out
the simple approach of trying all relevant symbologies successively.

Determining the code symbology contained in the waveform of a bar code
pattern 𝑓(𝑥) is performed in several steps. If the waveform is relatively sharp,
we analyze the number of detected extreme points between the code's start
and end position and decide upon this value if it is an EAN13/UPC-A, EAN8 or
UPC-E bar code. In the case of blurry images, this is not possible, since the
number of extreme points can vary considerably according to the physical
size of the underlying bar code or lighting conditions. In order to determine
the code's symbology in such cases, information gathered by the code posi-
tion refinement algorithm described above is used. The position refinement
algorithm is executed several times, each time assuming another bar code
symbology. For each code symbology, we collect not only the best start- and
end-positions, but also information about how well the best fitting symbology-
specific start- and end-patterns fit the bar code waveform. Based on these

Recognition Algorithm | 65

values, we select the most likely contained symbology as the one with the
best fitting start and end patterns. This approach works sufficiently well, even
though EAN13 codes have the same start- and end-patterns like EAN8 bar
codes. However, since EAN13 and EAN8 bar codes encode a different number
of digits, their code length in terms of unit size differs. This results in differ-
ently resized sections 𝑓𝑜𝑜𝑑𝑎𝑜 𝑟𝑑𝑎𝑜𝑎𝑤(𝑥) of the original waveform at the position
refinement step, which in turn has the effect that pre-calculated start- and
end-patterns belonging to the correct symbology will fit best.

3.3.4 Lighting Compensation

After the exact bar code start- and end-position has been determined, the
waveform section 𝑓𝑑(𝑥) between 𝑥𝑟𝑤𝑎𝑎𝑤 and 𝑥𝑎𝑑𝑤 that belongs to the bar code
pattern is extracted, and a basic compensation for uneven lighting is per-
formed on this waveform (see Figure 3.19). The algorithm used is targeted
specifically for the compensation of soft shadows and uneven lighting. Based
on the calculated mean values 𝑚(𝑥) around each pixel in 𝑓𝑑(𝑥), with a window
size of 400 pixels, the adjusted new waveform 𝑓𝑑𝑎(𝑥) is calculated as:

𝑓𝑑𝑎(𝑥) = 𝑓𝑑(𝑥) + (128 −𝑚(𝑥))

3.3.5 Code Distortion Compensation

Since our recognition approach relies on extracting the waveform sections
that belong to certain digits, based on the detected code's start- and end-
position, it is very sensitive to geometric distortions that can change the rela-
tive position of digits inside the bar code waveform 𝑓𝑑𝑎(𝑥). Such distortions
occur in images with a sideway perspective on the bar code, or bar codes
printed on round and crumpled surfaces. However, due to our scan line-based
approach, at least distortions due to vertically misaligned perspectives in rela-
tion to the bar code pose no problem, since such distortions have no influence
on the waveform obtained along a scan line. The approach for distortion
compensation that is described in the following is suitable of compensating
arbitrary static distortions. Dynamically changing distortions, such as distor-
tions occurring in the case of bar codes printed on a soft and constantly
changing surface, cannot be addressed. In this section, we use the example of
a bar code printed on a round surface to present the distortion compensation.
However, the method can be directly applied to other types of static distor-
tions as well.

66 | Recognition Algorithm

Figure 3.19 Original bar code waveform with m(x)-values (upper diagram) and lighting com-
pensated result (lower diagram).

Figure 3.20 Original bar code waveform (upper-right diagram) extracted from a slightly blur-
ry image of a bar code printed on a round surface (upper-left image). The lower-right diagram
shows the distortion-compensated waveform that corresponds to the same bar code printed
on a straight surface. The slight waveform shifts can be seen at the vertical dotted help-lines.

Recognition Algorithm | 67

3.3.5.1 Distortion Compensation Algorithm

Figure 3.20 shows an example of a bar code printed on a round surface and
the resulting waveform. For illustration purposes, we use a sharp image since
it allows for a better monitoring of distortion effects. The algorithm stays the
same for blurry images. The distortion effect on a code, even on a moderately
round surface, results in offsets for the code's bars of up to 15 pixels com-
pared to the same code on a flat surface. This is too much for the blurry de-
coding process that is able to compensate only for slight offset of up to 5 pix-
els. Modeling of the distortion based on the distance to the bar code, the
roundness of the surface, and the perspective on the code is complex. Instead
of modeling all details, we rely on measuring the occurring distortion.

In order to compensate for distortions, we then use the measured infor-
mation stored in so-called offset maps. Offset maps are pre-calculated offline
for different distortion types. An offset map 𝑚𝑎𝑝𝑤𝑤𝑟.𝑤𝑦𝑝𝑎(𝑥) contains for each
pixel of the original waveform 𝑓𝑑𝑎(𝑥) an offset value that describes how the
pixel has to be moved in order to compensate for the distortion.

We created a Matlab tool that can automatically create offset maps from
test images. In the case of round bar codes, two test images are taken, which
contain patterns of equidistant lines that have the same physical size like a
standard-sized bar code: One image 𝐼𝑎𝑜𝑛𝑑𝑤(𝑥,𝑦) of the pattern on a round sur-
face with a typical curvature, and one reference image on a straight surface
𝐼𝑟𝑤𝑎𝑎𝑤𝑒ℎ𝑤(𝑥,𝑦) (see Figure 3.21). From both images, horizontal scan lines and
the brightness waveforms 𝑓𝑎𝑜𝑛𝑑𝑤(𝑥) and 𝑓𝑟𝑤𝑎𝑎𝑤𝑒ℎ𝑤(𝑥) along these scan lines are
extracted. After blurring both waveforms, the positions of extreme points that
correspond to the 𝑡 black bars 𝑥𝑎𝑜𝑛𝑑𝑤 (𝑏) and 𝑥𝑟𝑤𝑎𝑎𝑤𝑒ℎ𝑤 (𝑏) are detected. Based
on these, the values of the offset map 𝑚𝑎𝑝𝑎𝑜𝑛𝑑𝑤(𝑥) at the 𝑡 bar positions is
computed as:

𝑚𝑎𝑝𝑎𝑜𝑛𝑑𝑤�𝑥𝑟𝑤𝑎𝑎𝑤𝑒ℎ𝑤 (𝑏)� = 𝑥𝑎𝑜𝑛𝑑𝑤 (𝑏) − 𝑥𝑟𝑤𝑎𝑎𝑤𝑒ℎ𝑤 (𝑏) ∀ 0 ≤ 𝑏 < 𝑡

In the case of round surfaces, all other values of 𝑚𝑎𝑝𝑎𝑜𝑛𝑑𝑤(𝑥) are interpo-
lated by fitting a function 𝑝𝑚𝑏𝑦3(𝑥) of degree 3 to the already obtained offset
values at the 𝑡 test bar positions:

𝑝𝑚𝑏𝑦3(𝑥) = 𝑎1 ∙ 𝑥3 + 𝑎2 ∙ 𝑥2 + 𝑎3

68 | Recognition Algorithm

Figure 3.21 Test pattern used for pre-calculating offset maps that are used by the distortion
compensation algorithm. Original pattern (left image) and the same pattern printed out and
wrapped around a round surface (right mage).

Figure 3.22 Waveform obtained from the straight (upper diagram) and round test pattern
(second diagram from above). The offset map calculated from these two waveforms (second
diagram from below) as well as the compensated waveform from the round test pattern using
the determined offset map (lower diagram).

0 100 200 300 400 500 600
0

100

200

300
Waveform of Straight Test Pattern

position / pixels

br
ig

ht
ne

ss
 v

al
ue

fstraight(x)

0 100 200 300 400 500 600
0

100

200

300
Waveform of Round Test Pattern

position / pixels

br
ig

ht
ne

ss
 v

al
ue

fstraight(x)

fround(x)

0 100 200 300 400 500 600
-10

0

10

20
(Integer) Offset Map

position / pixels

of
fs

et
 v

al
ue

mapround(x)

0 100 200 300 400 500 600
0

100

200

300
Round Test Pattern Adjusted With Offset Map

position / pixels

br
ig

ht
ne

ss
 v

al
ue

fstraight(x)

fcom(x)

Recognition Algorithm | 69

 Figure 3.22 shows the waveform of the straight and round test pattern, the
resulting offset map, as well as the corrected waveform of the round pattern
using the information contained in the offset map. With the same approach,
offset maps can be calculated for specific mobile phones and arbitrary surface
geometries.

In order to compensate the distortion during the recognition process on the
mobile phone, we resize the bar code waveform 𝑓𝑑𝑎(𝑥) to its normalized
length 𝑏𝑑𝑜𝑎𝑛 = 𝑡𝑛𝑑𝑤𝑤 𝑟𝑤𝑠𝑎 ∙ 𝑝𝑟𝑦𝑛𝑏𝑜𝑜𝑜𝑒𝑦 𝑟𝑤𝑠𝑎 𝑤𝑑 𝑛𝑑𝑤𝑤𝑟 and use the resulting waveform
𝑓𝑑(𝑥) to calculate the distortion-compensated waveform 𝑓𝑑𝑜𝑛𝑝(𝑥) as:

𝑓𝑑𝑜𝑛𝑝(𝑥) = 𝑓𝑑�𝑥 + 𝑚𝑎𝑝𝑤𝑤𝑟.𝑤𝑦𝑝𝑎(𝑥)�, 𝑚𝑎𝑝𝑤𝑤𝑟.𝑤𝑦𝑝𝑎(𝑥) ∈ ℤ ∀ 0 ≤ 𝑥 < 𝑏𝑡𝑡𝑏𝑡ℎ(𝑓𝑑)

In the case of codes on round surfaces, one important factor that influences
the compensation result has not been considered so far: the position of the
mobile phone in relation to the round code. In order to compensate for this,
we pre-calculate not only one offset-map 𝑚𝑎𝑝𝑎𝑜𝑛𝑑𝑤(𝑥), but a set of offset-
maps, each one assuming a slightly different perspective on the code. At
runtime, we detect the most likely perspective of the mobile phone in respect
to the round bar code and select the appropriate offset map. The perspective
on the bar code is detected by considering the refined position of the bar
code's middle pattern 𝑥𝑛𝑤𝑤𝑤𝑜𝑎 . This position is detected by the previous code
position refinement step described in Section 3.3.3, according to the code's
start- and end-position.

The approach of using pre-calculated offset maps has the advantage that
many imperfections and the lens distortions of mobile phones are perfectly
compensated for. Furthermore, correcting the distortions at runtime on the
mobile phone is very simple and fast. Arbitrary static distortions can be com-
pensated with this approach, as long as the test pattern used for the offset
map generation has a high enough resolution to reproduce the distortion.

3.3.5.2 Distortion Detection

While the previous section presented means to compensate for code distor-
tions, such distortions have to be detected in the first place. In the case of
sharp or only slightly blurry images, most types of distortions can be detected
based on the position and relative distance of extreme points found in the
code waveform. This is not possible for blurry images. We tried different
means to distinguish blurry bar codes on round surfaces or codes photo-
graphed from an angular perspective from well-aligned codes. All tested ap-
proaches turned out to work in general when making certain assumptions,

70 | Recognition Algorithm

e.g., about the physical code size, but failed in the case of very blurry images
or were not sensitive enough. Simply trying all possible distortion variants in
parallel is too time-consuming. The approach currently taken to detect distor-
tions utilizes the fact that the recognition is performed on video images with
several frames per second. In the case of codes on round surfaces, we assume
for each frame with a certain probability 𝑝𝑎𝑜𝑛𝑑𝑤 that the code in the current
frame is printed on a round surface and compensate the waveform for such a
distortion. After the complete recognition process, a quality factor 𝑞 is stored
that indicates how well the best found code candidate fits. Based on these
quality factors recorded from several previous frames, the value of 𝑝𝑎𝑜𝑛𝑑𝑤 is
dynamically adjusted.

When the presence of a bar code is first detected in the images, we assume
with 66% probability that the code is not printed on a round surface and 33%
probability that it is. After each frame, we monitor the quality factors. In the
case the factors indicate that the best found code candidate fits better in
frames, in which we compensated for round codes, 𝑝𝑎𝑜𝑛𝑑𝑤 is changed from
33% to 66%. If in turn, results are better in the case no round bar code is as-
sumed, we change 𝑝𝑎𝑜𝑛𝑑𝑤 back to 33%. With this approach, the recognition of
a single image requires the same time like before, but due to several frames
per second in the case of video images, we have a chance of recognizing
round bar codes. Furthermore, the dynamic adjustment of 𝑝𝑎𝑜𝑛𝑑𝑤 ensures that
over time the correct assumptions are made in most frames. The same ap-
proach is used in order to compensate for codes that are oriented upside-
down in images. While working very well for only few types of distortions,
this passive detection method has its limitations when the number of assumed
distortions increases.

3.3.6 Pattern Comparison

The pattern comparison component is responsible for extracting the wave-
form sections belonging to different sets of digits, and for searching for the
best fitting pre-calculated pattern for each section waveform. Input for this
component consists of the length-normalized, lighting- and distortion-
compensated bar code waveform 𝑓𝑑𝑜𝑛𝑝(𝑥), the waveform's sharpness value 𝑡,
as well as the selected recognition table 𝑡. Each of the four section waveforms
𝑓1(𝑥) … 𝑓4(𝑥) that correspond to the bar code sections shown in Figure 3.13
contains the digit and parity information for three consecutive digits. These
section waveforms are pre-processed and compared to all pre-calculated pat-
terns.

Recognition Algorithm | 71

3.3.6.1 Waveform Extraction and Preprocessing

Information about the length and relative start position of each section in
𝑓𝑑𝑜𝑛𝑝(𝑥) is stored in the recognition table. Based on this information we can
extract the waveform 𝑓𝑟𝑎𝑑(𝑥) for each section. Despite the previous lighting
compensation step, the signal in 𝑓𝑑𝑜𝑛𝑝(𝑥) might still be distorted, e.g., to vary-
ing contrast in different image regions. Therefore, 𝑓𝑟𝑎𝑑 (𝑥) is pre-processed in
order to obtain a normalized waveform that can be compared to the pre-
computed patterns:

𝑓𝑟𝑎𝑑 (𝑥) ← 128 + �𝑓𝑟𝑎𝑑 (𝑥) − 𝑓𝑟𝑎𝑑 ������ ∙
1

𝑡𝑡𝑑(𝑓𝑟𝑎𝑑)

𝑡𝑡𝑑�𝑓(𝑥)� ≝ �
1

𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) − 1
� �𝑓(𝑥) − 𝑓�̅

2𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)

𝑥=0

3.3.6.2 Pattern Comparison Challenges

Comparing the extracted section waveforms with the pre-calculated patterns
poses two main challenges:

1. Robustness and precision: Especially in the case of blurry waveforms,
pre-calculated patterns in the same sections differ only slightly. In
combination with the presence of noise and slight distortions, the used
comparison algorithm has to be very precise in order to detect the cor-
rect pattern. The biggest challenge are slight distortions or minor er-
rors in the bar code position detection, which lead to shifted or differ-
ently scaled signals in 𝑓𝑟𝑎𝑑 (𝑥). The latter might fit, due to these errors,
better to a pre-calculated pattern that corresponds to the wrong digit
and parity combination and less well to the correct one.

2. Performance: In order to detect the closest pattern for all four section
waveforms, we have to compare all 13000 pre-calculated patterns.
Measures taken to increase the algorithm's robustness further increase
the number of required comparisons. In combination with the very
high comparison precision required, a naive approach would be com-
putationally too time intensive for the real-time recognition of images
on mobile phones.

72 | Recognition Algorithm

3.3.6.3 Ensuring Robustness

Detecting the correct pre-calculated pattern for each section waveform
𝑓𝑟𝑎𝑑 (𝑥) is important. In the case a different pattern fits best, a wrong code
number might be recognized. In order to increase robustness and avoid false
detections due to slightly misaligned section waveforms, each waveform
𝑓𝑟𝑎𝑑 (𝑥) is cut out slightly larger than necessary. Each pre-calculated pattern
𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥) is then compared at 𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑜𝑟 different (typically 5) positions to
the section waveform 𝑓𝑟𝑎𝑑 (𝑥). For each (𝑓𝑟𝑎𝑑 (𝑥),𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥))-pair we record the
relative position (offset) 𝑚𝑑𝑎 𝑟𝑎𝑑 at which the pattern 𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥) fits best, and
consider the difference value 𝑑_𝑚𝑏𝑡𝑑𝑎 𝑟𝑎𝑑 at this position as the difference be-
tween these two waveforms.

In order to further increase robustness against misaligned section wave-
forms, we consider sections in a specific order. First, we search for the best
fitting pattern in sections that are likely to produce more robust results, e.g.,
because fewer pre-calculated patterns exist for these sections. The resulting
offset value 𝑚𝑑𝑎 𝑟𝑎𝑑 is then used to slightly adjust the position, where the wave-
form 𝑓𝑟𝑎𝑑 (𝑥) for the next considered section is extracted. For EAN13 codes,
the order is: section 4, section 3, section 1 and then section 2 (see Figure
3.13 for section numbering). The comparison is started with section 4 since it
has only 1000 pre-calculated patterns and is due to the included bar code
end delimiter likely to produce more robust results compared to section 3.

Regarding the algorithm used to determine the similarity of two given
waveforms, we found the normalized cross-correlation [28] to be the most
robust approach. Figure 3.24 shows the extracted section waveforms 𝑓𝑟𝑎𝑑 (𝑥)
and the best fitting pre-calculated patterns 𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥) for all four sections. It
can be seen that, except for section 2, the best matching pattern corresponds
to the correct one. In section 2, two patterns fit slightly better than the pat-
tern corresponding to the correct digits and parity values.

3.3.6.4 Ensuring Performance

In order to speed-up the overall comparison process while maintaining a high
level of precision, several algorithmic measures have been taken that go be-
yond the implementation-specific optimizations presented in Section 4.1.3. In
a first step, the number of necessary pattern comparisons is minimized:

1. The comparison process is aborted as soon as possible. After each sec-

tion, we analyze the five best-fitting pre-calculated patterns and abort
the recognition process if the best found pattern fits not well enough,

Recognition Algorithm | 73

or if all five best matching patterns fit equally well. In the latter case,
the chance of recognizing a wrong pattern is too high.

2. For each section, we analyze the parity values 𝑑𝑝0�������⃗ …𝑑𝑝4�������⃗ that corre-
spond to the five best matching pattern. When processing the next sec-
tion, we consider not all pre-computed patterns, but limit the compari-
son to patterns with corresponding parity values that result in a valid
parity pattern when combined with any of the values in 𝑑𝑝0�������⃗ …𝑑𝑝4�������⃗ .

3. In the case additional knowledge about the bar code numbers that
should be recognized is available, this information can be used to limit
the number of patterns that have to be compared. For example, this is
the case if only books (all bar codes of books start with "978"), or a
limited set of products with known bar code numbers should be rec-
ognized.

Besides reducing the total number of required comparison steps, two

measures have been taken to accelerate the comparison process itself:

1. A hierarchical approach is used to search for the five best matching
patterns to a given section waveform: In each step we compare a set
𝑏_𝚤𝑡𝑝𝑏𝑡����������������⃗ 𝑟𝑤𝑎𝑝 of 𝑡 pre-computed patterns with a specific comparison
function 𝜑 to the section waveform 𝑓𝑟𝑎𝑑 (𝑥). This results in a set
𝑏_𝑚𝑏𝑡𝑝𝑏𝑡�������������������⃗ 𝑟𝑤𝑎𝑝 of the 𝑚 best fitting patterns with 𝑚 < 𝑡. Patterns in
each step are not compared in their original resolution with a length
of 𝑏 = 𝑏𝑡𝑡𝑏𝑡ℎ(𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥)), but in a reduced resolution and a length of
𝑏𝑎𝑎𝑤𝑛𝑑𝑎𝑤 = 𝑏 ∙ 𝑡𝑎𝑎𝑟𝑜𝑜𝑛𝑤𝑤𝑜𝑑 𝑓𝑎𝑑𝑤𝑜𝑎with 0.0 ≤ 𝑡𝑎𝑎𝑟𝑜𝑜𝑛𝑤𝑤𝑜𝑑 𝑓𝑎𝑑𝑤𝑜𝑎 ≤ 1.0. The out-
put of one step is used as input for the next one, successively reduc-
ing the number of the most similar patterns to 𝑓𝑟𝑎𝑑 (𝑥) in 𝑏_𝑚𝑏𝑡𝑝𝑏𝑡�������������������⃗ .
The underlying idea is to compare the large number of initial pat-
terns in low resolutions and with a very fast, but less precise compar-
ison function, and to compare only a subset of well-fitting patterns in
a higher resolution with a more precise comparison function. Figure
3.23 shows the three steps currently used and the applied parame-
ters for 𝑚 and 𝑡𝑎𝑎𝑟𝑜𝑜𝑛𝑤𝑤𝑜𝑑 𝑓𝑎𝑑𝑤𝑜𝑎.

2. The implementations of the three comparison functions 𝜑1 …𝜑3 used
in the different steps are highly optimized and as much information
as possible has been pre-calculated. For example, recognition tables
contain already pre-processed versions of comparison patterns in re-
duced resolutions, as well as the mean and standard deviation values
for each pattern.

74 | Recognition Algorithm

Figure 3.23 Hierarchical approach used to speed-up pattern comparisons. Patterns are com-
pared in successive steps, in a reduced resolution and with different comparison functions.

Figure 3.24 Section waveforms and their best fitting, pre-calculated patterns. In section 2,
not the pattern corresponding to the correct digit and parity combination for our test code
was found as the best fitting pattern, but a different one.

Recognition Algorithm | 75

In the following, the three algorithms 𝜑1 …𝜑3 used for pattern comparisons
are presented. For clarity reasons, we abstain from the fact that the pattern
waveform 𝑏 = 𝑏𝑑𝑎 𝑟𝑎𝑑(𝑥) is compared at different regions inside the section
waveform 𝑓 = 𝑓𝑟𝑎𝑑 (𝑥) and assume both waveforms have the same length.

3.3.6.5 Comparison Algorithm 1

The first comparison algorithm is used to compare the most patterns and has
therefore been optimized for speed and the least possible memory access. It is
simple, but sufficient to eliminate the majority of patterns that do not fit at all:

𝜑(𝑓,𝑏) = � |𝑓(𝑥) − 𝑏(𝑥)|
𝑜𝑎𝑑𝑒ℎ𝑤(𝑓)−1

𝑥=0

3.3.6.6 Comparison Algorithm 2

The second algorithm works similar to the first one, but in addition considers
the first derivative of 𝑓(𝑥) and 𝑏(𝑥). Considering the first derivatives puts
more focus on the correct type and position of extreme points, which increas-
es robustness compared to algorithm 1. Factors describing how much influ-
ence the comparison result of the first derivatives has compared to the result
when comparing the original waveforms have been determined experimental-
ly on test sets of images. The deviation of the comparison pattern 𝑏(𝑥)̇ is cal-
culated at runtime, since this can be done very fast and pre-calculating these
values would double the memory requirements of recognition tables:

𝑏(𝑥)̇ ≝ � 𝑏(𝑥 + 1) − 𝑏(𝑥)
𝑜𝑎𝑑𝑒𝑤ℎ(𝑒)−2

𝑥=0

The deviation of the section waveform 𝑓(𝑥)̇ has to be calculated only once

for all comparisons with pre-calculated patterns in a section. The pattern
difference is then calculated as:

𝜑(𝑓,𝑏) = 0.2 ∙ � � |𝑓(𝑥) − 𝑏(𝑥)|
𝑜𝑎𝑑𝑒ℎ𝑤(𝑓)−1

𝑥=0

� + 0.8 ∙ � � �𝑓(𝑥)̇ − 𝑏(𝑥)̇ �
𝑜𝑎𝑑𝑒ℎ𝑤(𝑓)−2

𝑥=0

�

3.3.6.7 Comparison Algorithm 3

Algorithm 3 is used in the final comparison step and is therefore the most
precise. This algorithm is based on a variant of the normalized cross-

76 | Recognition Algorithm

correlation 𝛾(𝑓,𝑏) [29]. Similar to algorithm 2, pattern similarity is calculated
based on the waveforms and their first derivations:

𝜑(𝑓,𝑏) =
𝛾(𝑓,𝑏) + 𝛾�𝑓̇, �̇��

2

𝛾(𝑓,𝑏) ≝
∑ ��𝑓(𝑥) − 𝑓�̅ ∙ (𝑏(𝑥) − �̅�)�𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1
𝑥=0

��∑ �𝑓(𝑥) − 𝑓�̅
2𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1

𝑥=0 � ∙ �∑ (𝑏(𝑥) − �̅�)2𝑜𝑎𝑑𝑒𝑤ℎ(𝑒)−1
𝑥=0 �

Only the best matching patterns are compared with this algorithm, but still

around 50 * 𝑝𝑑𝑛𝑛.𝑜𝑓 𝑟𝑎𝑑𝑤𝑤𝑜𝑑𝑟 * 𝑝𝑑𝑛𝑛.𝑜𝑓 𝑝𝑜𝑟= 50 * 4 * 5 = 1000 comparisons on
the 50%-sized patterns are performed. Applying the standard formula for cal-
culating the normalized cross-correlation shown above would be too time
consuming. We therefore leverage the fact that the pre-calculated patterns
𝑏(𝑥) are known beforehand, and use this information to optimize the calcula-
tion of 𝛾(𝑓,𝑏) by pre-computing as much information as possible:

𝛾(𝑓,𝑏) ≝
∑ ��𝑓(𝑥) − 𝑓�̅ ∙ (𝑏(𝑥) − �̅�)�𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1
𝑥=0

��∑ �𝑓(𝑥) − 𝑓�̅
2𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1

𝑥=0 � ∙ �∑ (𝑏(𝑥) − �̅�)2𝑜𝑎𝑑𝑒𝑤ℎ(𝑒)−1
𝑥=0 �

def. 𝑟𝑤𝑤()
������

1
𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) ∙�

�𝑓(𝑥) − 𝑓�̅ ∙ (𝑏(𝑥) − 𝑏)
𝑡𝑡𝑑(𝑓) ∙ 𝑡𝑡𝑑(𝑏)

𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1���������
𝑛

𝑥=0

 ⇔
1

𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) ∙ 𝑡𝑡𝑑(𝑓) ∙ 𝑡𝑡𝑑(𝑏)�������������������
∙

𝑑1

� 𝑓(𝑥)𝑏(𝑥) − �̅�𝑓(𝑥) − 𝑓�̅�(𝑥) +
𝑑

𝑥=0
𝑓�̅̅�

 ⇔ 𝑐1 ∙ �� −�̅�𝑓(𝑥)
𝑑

𝑥=0
�

�����������
∙

𝑑2

�� 𝑓�̅̅�
𝑑

𝑥=0
� ∙

���������
𝑑3

�� 𝑓(𝑥)𝑏(𝑥) − 𝑓�̅�(𝑥)
𝑑

𝑥=0
�

 ⇔ 𝑐1 ∙ 𝑐2 ∙ 𝑐3 ∙ �−𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) ∙ 𝑓̅ ∙� 𝑏(𝑥)
𝑑

𝑥=0
� ∙ �� 𝑓(𝑥)𝑏(𝑥)

𝑑

𝑥=0
�

 ⇔ 𝑐1 ∙ 𝑐2 ∙ 𝑐3 ∙ �−𝑏𝑡𝑡𝑏𝑡ℎ(𝑓) ∙ 𝑓̅ ∙ �̅� ∙ 𝑏𝑡𝑡𝑏𝑡ℎ(𝑏)� ∙ �� 𝑓(𝑥)𝑏(𝑥)
𝑑

𝑥=0
�

Recognition Algorithm | 77

𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)=
𝑜𝑎𝑑𝑒𝑤ℎ(𝑒)
�������� 𝑐1 ∙ 𝑐2 ∙ 𝑐3 ∙ �−𝑏𝑡𝑡𝑏𝑡ℎ(𝑓)2 ∙ 𝑓̅ ∙ �̅�����������������

𝑑4

∙ �� 𝑓(𝑥)𝑏(𝑥)
𝑑

𝑥=0
�

 ⇔ 𝑐1 ∙ 𝑐2 ∙ 𝑐3 ∙ 𝑐4���������
𝑑𝑝𝑓𝑓−𝑐𝑜𝑛𝑝𝑛𝑝𝑓𝑤

∙ �� 𝑓(𝑥)𝑏(𝑥)
𝑑

𝑥=0
�

Finally, 𝑐𝑝𝑎𝑎−𝑑𝑜𝑛𝑝𝑛𝑤𝑎𝑤 can be further transformed, to produce the final equa-

tion:

𝛾(𝑓,𝑏) = 𝑐𝑝𝑎𝑎−𝑑𝑜𝑛𝑝𝑛𝑤𝑎𝑤 ∙� 𝑓(𝑥) ∙ 𝑏(𝑥)
𝑜𝑎𝑑𝑒𝑤ℎ(𝑓)−1

𝑥=0

𝑐𝑝𝑎𝑎−𝑑𝑜𝑛𝑝𝑛𝑤𝑎𝑤 =
1

𝑡𝑡𝑑(𝑏) ∙ �̅�
3 ∙ 𝑐

𝑐 =
𝑏𝑡𝑡𝑏𝑡ℎ(𝑓)4 ∙ 𝑓̅3

𝑡𝑡𝑑(𝑓)

The values for 1 𝑡𝑡𝑑(𝑏)⁄ as well as �̅� for each pre-computed pattern are al-

ready stored in the recognition tables, and the value of 𝑐 has to be computed
only once for each size version of a section waveform. This drastically accel-
erates the computation of the normalized cross-correlation in our case.

3.3.7 Result Combination

Table 3.2 shows the output of the pattern comparison component for our ex-
ample bar code. It contains information about the five best matching patterns
in each bar code section. For the 𝑡-th best matching pattern in section 𝑏, in-
formation includes the three digits 𝑑(𝑡, 𝑏) = 𝑑1(𝑡, 𝑏) …𝑑3(𝑡, 𝑏) corresponding
to the pattern, digit's parity values �⃗�(𝑡, 𝑏) = 𝑝1(𝑡, 𝑏) …𝑝3(𝑡, 𝑏), and a difference
value 𝑑𝑏𝑓𝑓(𝑡, 𝑏) describing how well the pattern fits the section waveform.
The offset value 𝑚(𝑡, 𝑏) indicates at which relative position the pattern fits the
section waveform best. The result combination component tries to construct a
correct code number out of this information. In the case of sharp images, the
patterns that correspond to the correct digit and parity values will most likely
be the best matching patterns in each section. For very blurry images, this is
not always the case and therefore requires an approach to detect the correct
pattern combination.

78 | Recognition Algorithm

Table 3.2 Output of the parameter comparison component: Information about the five best
matching patterns in each code section. In sections 1, 2, and 4, the best matching patterns
correspond to the correct digit and parity values for our example bar code
(5410076027705). In section 2 the correct pattern is the third best fitting:

Parameters Section 1 Section 2 Section 3 Section 4
best fitting patterns (n = 1)
𝒅𝒅𝒅𝒅(𝟏, 𝒅) 293 362 414 432

𝒅��⃗ (𝟏, 𝒅) (4 1 0) (0 3 6) (0 2 7) (7 0 5)
𝒑��⃗ (𝟏, 𝒅) (o e e) (o o e) (o o o) (o o o)
𝒐(𝟏, 𝒅) 0 0 -2 0
second best fitting patterns (n = 2)
𝒅𝒅𝒅𝒅(𝟐, 𝒅) 397 368 459 482

𝒅��⃗ (𝟐, 𝒅) (4 1 4) (0 7 8) (0 9 7) (3 0 5)
𝒑��⃗ (𝟐, 𝒅) (o e o) (o o e) (o o o) (o o o)
𝒐(𝟐, 𝒅) 0 0 -2 0
third best fitting patterns (n = 3)
𝒅𝒅𝒅𝒅(𝟑, 𝒅) 444 389 575 525

𝒅��⃗ (𝟑, 𝒅) (4 1 9) (0 7 6) (0 2 8) (7 9 5)
𝒑��⃗ (𝟑, 𝒅) (o e o) (o o e) (o o o) (o o o)
𝒐(𝟑, 𝒅) 2 0 -2 -2
fourth best fitting patterns (n=4)
𝒅𝒅𝒅𝒅(𝟒, 𝒅) 455 490 600 541

𝒅��⃗ (𝟒, 𝒅) (4 1 2) (9 3 6) (0 9 3) (3 6 5)
𝒑��⃗ (𝟒, 𝒅) (o e o) (o o e) (o o o) (o o o)
𝒐(𝟒, 𝒅) 0 0 -2 0
fifth best fitting patterns (n=5)
𝒅𝒅𝒅𝒅(𝟓, 𝒅) 537 531 607 572

𝒅��⃗ (𝟓, 𝒅) (2 1 0) (0 3 8) (0 2 3) (3 9 5)
𝒑��⃗ (𝟓, 𝒅) (o e e) (o o e) (o o o) (o o o)
𝒐(𝟓, 𝒅) 0 0 -2 0

Table 3.3 The 10 best found code candidates and their difference value that indicates how
likely they are. A smaller difference value corresponds to a more likely code:

Code Candidate Difference Value 𝒅𝒅𝒅𝒅𝒄𝒄𝒄𝒅𝒅𝒅𝒄𝒄𝒄
5410076027705 397
5410038028805 781
5410078023705 1325
5210076027305 1480

Recognition Algorithm | 79

5410936028705 1599
5410076097395 1670
5410076028795 1703
5210078027365 1708
5410936027395 1810
5210078027365 1813

In a first step, a list containing all possible 54= 625 complete bar code num-

ber candidates is constructed. A single candidate 𝑐𝑎𝑡𝑑����������⃗ �𝑡1, 𝑡2,𝑡3,𝑡4�, 0 ≤ 𝑡𝑥 <
5 is constructed as:

𝑐𝑎𝑡𝑑����������⃗ �𝑡1, 𝑡2,𝑡3,𝑡4� = 〈𝑑𝑟𝑦𝑟𝑤𝑎𝑛,𝑑(𝑡1, 1),𝑑(𝑡2, 1),𝑑(𝑡3, 1),𝑑(𝑡4, 1) 〉

𝑑𝑟𝑦𝑟𝑤𝑎𝑛 = 𝑡𝑦𝑡𝑡𝑚 𝑑𝑏𝑏𝑏𝑡 𝑡𝑡𝑐𝑚𝑑𝑡𝑑 𝑏𝑡 �⃗�(𝑡1, 1) 𝑎𝑡𝑑 �⃗�(𝑡2, 1)

For all possible candidates, we calculate the check digit and remove the

ones that are not valid. For each remaining candidate, we calculate a differ-
ence value and sort the candidates list according to this value, with the most
likely candidate that features the smallest difference value on top. The under-
lying idea behind this value is to promote candidates that are likely to corre-
spond to correct code numbers, and penalize the ones that are likely to corre-
spond to wrong code numbers. The difference value of a candidate is based
on how well its corresponding patterns fit the section waveforms and is mod-
ified by factors 𝜃1 …𝜃𝑛, ∀ 𝜃𝑥 ∈ ℝ+:

𝑑𝑏𝑓𝑓𝑑𝑎𝑑𝑤𝑤𝑤𝑎𝑤𝑎 �𝑐𝑎𝑡𝑑����������⃗ �𝑡1,𝑡2,𝑡3,𝑡4�� = �
1
4
∙� 𝑑𝑏𝑓𝑓(𝑡𝑤, 𝑏)

3

𝑤=1
� ∙ 𝜃1 ∙ … ∙ 𝜃𝑛

Conditions influencing the factors 𝜃1 …𝜃𝑛 include to following:

• The more patterns in any section fit better than the ones belonging to

the analyzed candidate, the less likely it is that this candidate repre-
sents the correct code number

• If all difference values for the candidate's patterns in the different sec-
tions are similar, this is better than situations with relatively bad fitting
patterns in some sections and very good fitting patterns in others. The
latter might indicate problems in sections with high difference values.

80 | Recognition Algorithm

• It is better if all offset values of the candidate's patterns are consistent.
Very large differences between two consecutive offset values indicate
that at least one of the detected patterns is incorrect.

Table 3.3 shows the 10 best fitting code candidates, sorted according to

their difference values. All candidates with a difference value smaller than a
fixed threshold value 𝑑𝑤𝑤𝑓𝑓 𝑛𝑎𝑥 are passed on to the next component that per-
forms a final check in order to further reduce the number of false-positives.

3.3.8 Final False-Positive Check

With the measures taken in the previous result combination component, the
number of false-positives on a difficult set of test images can be reduced to
around 2-3%, while staying sensitive enough to recognize bar codes also in
non-perfect conditions. However, when lowering the 𝑑𝑤𝑤𝑓𝑓 𝑛𝑎𝑥 parameter fur-
ther, such that less false-positives are recognized, the number of correctly
recognized codes is also drastically reduced. In order to overcome this prob-
lem, an independent method of distinguishing correct from wrong code num-
bers is required that relies not on the results directly obtained from the pat-
tern comparison component. One remaining source of uncertainty in the de-
tected code numbers is related to our approach of comparing not a complete
bar code waveform but separate independent waveform sections. This ap-
proach leads to two effects: In the case of blurry, pre-calculated patterns for
section 1 and 4, the waveform at the right respectively left border, and in the
case of patters for sections 2 and 3 the waveform at both borders, will be in-
fluenced by the digit adjacent to the pattern. This effect is already addressed
during the pattern comparison stage by comparing not the full pre-calculated
patterns, but slightly smaller pattern pieces. Nevertheless, this leads to the
situation that the waveform areas at the intersection of two sections have not
been considered in our recognition method. The second effect is related to the
fact that we normalize section waveforms independently from each other be-
fore the pattern comparison step, which results in lost information about the
relative scale of section waveforms between each other.

In order to address these uncertainties related to our section-based ap-
proach and to further reduce the number of false-positives, a final check is
performed on the best-rated code number candidates. For each of these code
numbers, the complete blurry code waveform is constructed, based on infor-
mation about the PSFs stored in the selected recognition table. Figure 3.25
shows the constructed waveform in the case of our most likely code candidate

Recognition Algorithm | 81

(5410076027705) and the original code waveform obtained from the image.
Each constructed waveform is then compared to the original blurry code
waveform, and a final bar code number is selected based on the results:

• If all candidate waveforms fit equally well, we abort the recognition

and return no bar code, since the chance of picking a wrong code
number is too high.

• If the constructed waveform corresponding to the first (most likely)
number candidate fits best and the others fit considerably worse, we
can be sufficiently sure to have recognized the correct code number.

Figure 3.25 Final false-positive check by constructing the blurry code waveform that corre-
sponds to the most likely code candidate (upper and middle diagram) and comparing it to the
blurry waveform obtained from the image (lower diagram). The patterns on the right side of
each diagram correspond to the brightness values shown in the diagrams.

82 | Recognition Algorithm

Figure 3.26 Nokia 6630 Symbian smartphone with laser scanner attachment for mobile
phones.

3.4 Related Work on Bar Code
Recognition

Because bar codes are in use since the 1970ties, a variety of dedicated devic-
es for their recognition, such as laser scanners, CCD devices, wands, and slot
scanners are available. However, the process of recognizing and decoding bar
codes in a reliable way remains a non-trivial task up to this day, even with
these specialized devices [30, 31]. In addition to these devices, also vision-
based systems have been implemented for the decoding of bar codes in au-
tomated document processing or logistics [32, 33]. However, these systems
typically employ specialized camera equipment and are used in a controlled
environment, e.g., with respect to the lighting situation, in order to scan bar
codes in documents or on packages – this is very different from a camera
phone held in the hand of a consumer in a supermarket aisle, scanning a
product on a shelf. Regarding the recognition of bar codes on mobile phones,
some algorithms have been proposed, and in recent years a number of com-
mercial solutions emerged. This section presents related work for the optical
recognition of bar codes, with a focus on the recognition of codes on mobile
phones. Some of the following information has already been published in [22]
and [14].

Recognition Algorithm | 83

3.4.1 Specialized Recognition Systems

A number of professional systems for the visual decoding of bar codes are
available [34, 35]. These solutions typically consist of complete systems,
comprising software and appropriate hardware, such as professional cameras
and lighting, and are highly optimized for particular use cases. Examples in-
clude scanning stations for letters or software specialized in recognizing bar
codes in scanned documents [36] or specific code symbologies [37]. In addi-
tion, other approaches such as recognizing the human readable characters
often printed below bar codes have been presented [38]. Although they offer
good recognition rates, these systems often require special conditions, such
as sharp and high-resolution images or controlled lighting. Furthermore, their
requirements in terms of system resources are in general too demanding for
mobile phones, particularly their execution in real-time on these devices.

An alternative to the optical recognition of bar codes with mobile phones is
the use of small laser scanners that can be attached to selected phone models
[39, 40]. However, the additional energy consumption of these devices as well
as the fact that they have to be attached manually to the mobile phone before
scanning a product poses a serious hindrance in consumer-oriented applica-
tion scenarios (see Figure 3.26).

3.4.2 Academic Work

In the academic literature, bar code recognition was discussed in several pub-
lications. Most solutions are based on the Hough transform [23] as proposed
by Youssef and Salem [41] or Muniz et al. [42], and some rely on neural net-
works to handle imperfect codes [43]. Furthermore, several methods have
been published for specific problems such as locating bar codes in images
[11, 44-47], the direct operation on (JPEG) encoded images [48] or recogniz-
ing codes in the DCT (discrete cosine transform) domain in order to speed-up
processes [49]. While being robust against noise and local problems such as
dirty of damaged codes, these methods are sensitive to perspective distortion
and codes printed on round or otherwise distorted surfaces. Even though the-
se recognition algorithms offer in general a good recognition rate, they are
usually optimized for use cases different from the recognition of codes on
mobile phones, and therefore often rely on sharp images and are computa-
tionally too expensive for an implementation on mobile devices.

As an alternative, several algorithms have been proposed, specifically for
mobile phones. In order to compensate for the often limited processing power

84 | Recognition Algorithm

of mobile devices, many of these algorithms do not analyze the entire image.
Instead, they process only the information along certain scan lines through
the bar code. Using this approach has the drawback that a bar codeʼs position
and orientation has to be detected beforehand, in order to position the scan
lines in the image. Furthermore, these algorithms are affected by local image
defects as a result of reflections, crumpled or damaged bar codes, as well as
low-quality images that exhibit noise and low contrast. As already stated in
[14], there are algorithms that have been targeted specifically at mobile de-
vices, e.g., by Chai and Hock [46], Ohbuchi et al. [50] and others [51, 52], but
these have not been implemented or evaluated on real camera phones. An
exception is the recent work by Li and Zeng [53], who presented and imple-
mented an algorithm for the recognition of bar codes on the iPhone. However,
the full image binarization, sharpening, and edge-detection steps required by
their method are likely to produce performance problems on less powerful
devices. The biggest difference between all of these solutions and our algo-
rithm is the fact that they require sharp images and therefore devices with
built-in autofocus cameras. In practice, attaching macro lenses that result in
sharp images of close objects to the phone, each time a code should be
scanned, is not a viable option.

Figure 3.27 Result (right image) when using Matlab to apply a deconvolution with the Lucy-
Richardson method to the blurry image on the left side, using a fixed, beforehand optimized
PSF.

There are several approaches available for the sharpening of blurry images.

Algorithms such as general deconvolution algorithms [54-57] or algorithms
that take certain characteristics of bar codes into account [58, 59] can help.
However, even with specialized solutions such as [59], the images remain in
general too blurry for a robust recognition. Blind deconvolution approaches

Recognition Algorithm | 85

[60] that additionally try to automatically estimate the underlying point
spread function (PSF) are also a powerful tool for image enhancement, but
perform in our case no better. Figure 3.27 shows the result of a deconvolu-
tion using the Lucy-Richardson method [61] and a known point spread func-
tion (PSF). Theoretical work by Joseph and Pavlidis covers the problem of bar
code detection using peak locations in blurred waveforms, as obtained when
scanning bar codes with a laser scanner [62, 63]. The proposed methods are
well suited for laser beam scanners but do not consider effects such as une-
ven lighting or code position detection and are not optimized for recognition
speed.

Another interesting option for recognizing blurry bar codes has been pre-
sented by Esedoglu [64] and Wittman [31]. Like in [62, 63], these approaches
are based on modeling a blurry bar code signal as the signal of a sharp code
convoluted with a known PSF of the camera used to take the image. Com-
pared to the general convolution approaches presented above, these ap-
proaches additionally consider knowledge about the structure of bar codes.
The correct bar code number is determined using an analytical approach that
tries to find the code number belonging to the sharp signal that produces the
closest results to the recorded blurry signal from the camera when convolut-
ed with the known PSF. Like the general or even most optimized deconvolu-
tion methods, these approaches have in general two difficulties when applied
for the recognition of bar codes on mobile phones. First, the underlying mod-
el is often too simple to meet the conditions found on mobile devices, and
second, the proposed analytical search used to determine the underlying bar
code number is computationally too intensive for the recognition in video im-
ages with multiple frames per second (FPS) on standard mobile phones16. As-
sumptions made that are usually not met in our scenario include the follow-
ing:

• Gaussian-shaped PSFs: The PSF obtained due to out-of-focus blur is
not necessarily perfectly Gaussian-shaped

• Constant PSFs: Imperfections in cheap camera lenses result in vary-
ing PSFs for different image regions

16 In case of Wittman, the algorithm required 6 minutes in MATLAB with a 2.4-GHz processor
for a single bar code waveform.

86 | Recognition Algorithm

• No distortions: Code geometry and perspective imperfections result-
ing from non-perfectly aligned mobile phones or non-straight bar
code surfaces are usually not modeled or models are fairly limited

Regarding the recognition of blurry bar codes on mobile phones, Wang et

al. [65, 66] proposed a well-designed algorithm based on a statistical method
capable of coping with distorted and low-resolution images. Furthermore,
codes are at first located in images using Wavelets. While not requiring the
accurate extraction of the edge or peak locations of bar code bars, the pro-
posed algorithm still relies on extreme points found in the bar code waveform
during character segmentation, and is therefore not able to recognize bar
codes in very blurry images. Furthermore, the proposed algorithm has been
tested on images obtained from a real mobile phone (Nokia 3650), but no
actual implementation of the recognition method on mobiles is presented,
leaving the performance of the presented approach unclear. Ramtin Shams
[66] also developed a method suitable for reading bar codes from low-
resolution images with blurs and noises, even under non-uniform lighting.
Similar to Wang et al., this method also relies on relatively sharp images and
no actual implementation on mobiles is presented.

The work by Rocholl et al. [67] is the most relevant work here, as it also
proposes an algorithm for the recognition of blurry bar codes in images based
on the above-mentioned analytical approach, but includes several speed op-
timizations and has been implemented on a mobile device. Major differences
between our solution and the work presented by Rocholl et al. include the
following:

• In the proposed work, each digit is guessed individually based on the

blurry bar code waveform, greatly reducing the required time for de-
coding the complete bar code number. However, this comes at the
price of not being able to recognize images that are so blurry that the
waveform of a single digit is severely influenced by the previous and
following digit (e.g., as is the case in our example image shown in
Figure 3.11). Furthermore, considering each digit separately is likely
to increase the number of wrongly recognized bar code numbers
(false-positives).

• No method for reliably reducing false-positives, except by means of
the check digit and the determination of the first system digit based
on the parity pattern is presented. This is likely to lead to very high
false-positive rates and may result in the problem that when trying to

Recognition Algorithm | 87

reduce the number of false-positives to a reasonable amount by ad-
justing threshold values, the number of correctly recognized bar
codes is also drastically reduced. The presented brief evaluation con-
tains only the number of correctly recognized codes, without men-
tioning the rate of false-positives.

• Despite being specifically targeted at mobile devices, the presented
method requires around 20 times as long for the recognition of a
single image on the iPhone compared to our solution. The presented
algorithm requires nearly 2 seconds [68], while our method requires
between 70 and 100ms for a single image on the same device.

• The proposed algorithm provides fewer features and is less flexible
compared to our method. For example, it provides no orientation de-
tection of bar codes, is not able to recognize different code symbolo-
gies or codes printed upside-down or on round surfaces. Due to its
approach, it is likely to exhibit a poor recognition performance on
sharp, but crumpled or otherwise distorted images of bar codes.

The work by Rocholl et al. seems to be promising in terms of the underlying

potential of the approach. However, knowing further details regarding the
problem of false-positives, the set of bar codes and conditions the recognition
has been tested on, and the implementation on the iPhone itself would have
been interesting. In order to be able to faithfully compare it to our recognition
method, information about practical challenges, such as locating the start-
and end-positions of bar codes in complex, blurry images and questions like
how well their method is suited for different PSFs as caused by different mo-
bile phone cameras and imperfect lenses, or non-perfectly Gaussian shaped
PSFs would have been interesting too.

3.4.3 Commercial Solutions

Given the commercial interest in mobile services, a number of commercial
solutions for recognizing bar codes has recently become available for the ma-
jor mobile phone platforms iPhone [69], Android [70] and Nokia/Symbian
[71]. Since Android comes with a bar code scanning engine built into the op-
erating system, a larger variety of scanners are available on the iPhone. Only
few solutions are available for Symbian devices, which might be due to the
large variety of software platforms and different device types in the Symbian
domain that complicate the recognition and software development process. In
contrast to our recognition algorithm, most available solutions require sharp

88 | Recognition Algorithm

images and therefore devices with autofocus cameras. However, three other
scanners also support the recognition of codes in blurry images: RedLaser
[72], ShopSavvy [73] and pic2shop [74].17 Compared to these three solutions,
our algorithm offers a higher recognition speed and accuracy as well as
unique features such as the recognition of arbitrarily oriented bar codes.
Chapter 5 provides a detailed analysis of the best available commercial solu-
tions in terms of features, recognition speed and accuracy in comparison to
our algorithm.

3.5 Summary
This chapter presented our algorithm for recognizing bar codes on mobile
phones. The algorithm's architecture differs in several aspects from related
work. It combines two decoder architectures with different strengths and
weaknesses in order to address the various challenges in recognizing bar
codes in realistic application scenarios. Furthermore, our approach is capable
of recognizing codes in very blurry images and relies on pre-computed pat-
terns in order to achieve a high recognition speed and robustness. Based on a
set of parameters, the algorithm can be adjusted for a variety of conditions.
Strengths of the presented algorithm include its fast execution speed and high
recognition accuracy as well as its flexibility in terms of required system re-
sources, supported image resolutions, and sharpness levels. A remaining
problem for some practical scenarios is the limited recognition performance
in the case of irregularly distorted bar codes in very blurry images, e.g., codes
printed on heavily crumpled surfaces.

The next chapter of this thesis will discuss proof-of-concept implementa-
tions of this algorithm and provide relevant details to the parameter optimiza-
tion process. Chapter 5 will then present an in-depth performance evaluation
of these proof-of-concept implementations and compare them to related
work.

17 For commercial systems, there are no details available related to the underlying algorithms
and recognition methods used.

Implementation | 89

4 Implementation
In this chapter we present proof-of-concept implementations of the recogni-
tion algorithm on three major mobile platforms and discuss relevant imple-
mentation-specific topics, such as device independence and performance op-
timizations (Section 4.1). Furthermore, we briefly present the relevant tools
used to develop, as well as optimize, the bar code recognition process (Section
4.2), and conclude with several measurements done with the implementation
that confirm the appropriateness of selected algorithm design decisions (4.3).

Figure 4.1 Implementations on the Nokia N95 8G (Symbian), iPhone 3GS (iOS) and HTC De-
sire (Android).

4.1 Recognition Engine
4.1.1 Proof-of-Concept Implementations

In order to confirm the practicability of the presented recognition method, we
implemented proof-of-concept implementations of the recognition algorithm
and scan GUI for three major mobile phone platforms: iOS, Android, as well as
C++ Symbian. A typical application consists of three basic components pre-
sented in Figure 4.2. The mobile application itself, the implementation of the
recognition algorithm including the recognition tables, and a third component
that is responsible for accessing the camera images and implementing the
recognition GUI. Figure 4.1 shows screenshots of three mobile applications
using our bar code recognition.

90 | Implementation

Figure 4.2 Components of a mobile application that uses the bar code recognition.

4.1.2 Multi-Platform Support

The specific mobile application and the component responsible for the cam-
era access and graphical user interface are platform-specific and have to be
implemented separately for each new mobile phone platform that should be
supported. In contrast to this, the recognition algorithm itself is implemented
in standard C++ and can therefore be directly used on all platforms that sup-
port the inclusion of native code, e.g., iOS, Android, C++Symbian/QT and
Windows Mobile 7. In order to abstract from platform specifics in the algo-
rithm, we rely on two concepts:

1. Configuration files are used to optimize the recognition algorithm for

different device classes and abstract therefore from different optics
or available resources like CPU, RAM, image resolution, and camera
frame-rates on devices.

2. In order to abstract from the platform-specific implementations of
images obtained from the camera, we use the concept of generic im-
ages.

A generic image is an interface defining basic operations for accessing im-

age data that is used by the implementation of the recognition algorithm. The
recognition algorithm relies only on these operations and is therefore inde-

Implementation | 91

pendent from the underlying image implementation. Before an implementa-
tion-specific image obtained from the camera is passed on to the recognition
algorithm, it is converted to a generic image. However, the conversion of im-
age orientation, format and color model to a standard format is not done be-
forehand for the whole image, but in a "lazy" manner on-the-fly, and only for
the image areas and pixels that are required by the recognition algorithm.

4.1.3 Performance Optimizations

The above-mentioned lazy implementation of generic images speeds-up the
recognition process considerably, especially in combination with our scan
line-based recognition method, and the optimized orientation detection in low
resolution sub-images of the original image, since only a subset of all image
pixels have to be considered. Especially in the case of higher resolution imag-
es, this proves to be a large performance advantage compared to implementa-
tions requiring a full conversion of the whole image, and algorithms perform-
ing operations such as binarization on the entire image. Figure 4.3 shows the
percent of pixels of an image with width 𝑤 and height ℎ that have to be ana-
lyzed by our algorithm when recognizing a bar code. We assumed parameters
as they are used in the current implementation: 32 scan lines, the orientation
detection with a window of size 𝑤/2 × ℎ/4 and the consideration of every 𝑡-
th pixel. The value of n is decreased or increased with image resolution in or-
der to obtain always a similarly-sized edge window for the orientation detec-
tion. Particularly in higher resolution images, like they become increasingly
available on modern smartphones (e.g., 1280x960 pixels on the iPhone 4G),
we have to consider only around 4% of the pixels in an image to successfully
recognize a bar code. Nevertheless, our algorithm still benefits from higher
image resolutions in terms of recognition performance due to the scan line-
base decoders.

Figure 4.4 shows the time required by implementations on the three test
devices for the recognition of a bar code in a single image, dependent on the
image characteristics. The times listed do not vary as much as the different
device specification (Table 4.1) might imply. This is due to the fact that the
times measured are influenced by several factors:

• All devices feature a single core processor and the load of tasks run-

ning in parallel to the image recognition vary significantly. For ex-
ample, on the Nokia N95 we update the screen each time we passed
an image to the recognition algorithm, while on the HTC Desire or

92 | Implementation

iPhone, the higher resolution screens are updated asynchronously
from the bar code recognition each time a new frame is available
from the camera. The latter results in a higher frame rate but also
much increased CPU load.

• Compiler specifics can have a major influence on performance, espe-
cially in the case of the blurry decoder, which involves many reoc-
curring operations and memory accesses.

Implementation-specific measures taken to improve the speed of the recog-

nition engine include the following:

• In the case of C++ Symbian, we use a highly optimized method for
resizing the camera images to screen resolution before they are dis-
played.

• As many values as possible have been pre-computed. For example,
look-up-tables for the calculation of 𝑡𝑏𝑡 , 𝑐𝑚𝑡 and 𝑡𝑞𝑏𝑡 values. De-
pendent on the speed of the underlying CPU, we either directly com-
pute these values at runtime or use lookup tables.

• Optimized utility methods for the resizing, comparing, and convolut-
ing of patterns, or for the sorting of values are used. All operations
are either performed in-situ or use pre-allocated memory in order to
avoid often reoccurring memory allocations at runtime.

• All often reoccurring operations rely on integer operations instead of
floating point calculations.

Besides speed, the runtime-memory consumption as well as overall size of

the distributable recognition engine is important. In the case of the iPhone
3GS, the implementation with two recognition tables requires around 7MB
runtime-memory. Figure 9.2 in the Appendix provides further details regard-
ing what algorithm parts require how much memory. Figure 4.5 shows the
same for the space requirements of the whole distributable. The size of the
distributable is limited by using only few tables and compressing table files on
the mobile devices.

Implementation | 93

Table 4.1 Relevant specifications of test devices:
Phone Model CPU Memory Recognition

Resolution
Screen
Resolution

Nokia N95 8g
(Symbian)

332 MHz ARM11 128MB 320x240 up-scaled
to 640x480

240x320

iPhone 3GS (iOS) 600 MHz ARM A8 256MB 320x436 320x480

HTC Desire (Android) 1GHz Snapdragon 576MB 480x640 480x800

Figure 4.3 Percentage of image pixels that have to be observed during the recognition pro-
cess as a function of image resolution.

Figure 4.4 Average times in ms for processing a single camera frame on the three devices.
Processing includes: Obtaining the image from the camera, recognizing the code, displaying
the image on the screen and drawing the GUI.

80x60 160x120 320x240 640x480 1280x960
2560x

1920

5120x

3840

full image 100 100 100 100 100 100 100

our algorithm 56,45 29,79 16,46 9,79 4,11 1,86 0,88

0%

20%

40%

60%

80%

100%

pe
rc

en
t a

cc
es

se
d

im
ag

e
pi

xe
ls

black image

sharp code image

blurry code image

0

20

40

60

80

100

120

Nokia N95
iPhone 3GS

HTC Desire

tim
e

in
 m

ill
ise

co
nd

s

Nokia N95 iPhone 3GS HTC Desire
black image 37 55 10

sharp code image 48 56 30

blurry code image 119,5 88,5 110

94 | Implementation

Figure 4.5 Size of the recognition engine distributable in the case of the iPhone 3GS.

Figure 4.6 Screenshots from the recognition GUI on the HTC Desire.

Size in kB

0 500 1000 1500 2000 2500 3000

Size in kB
Table 1 896,85

Table 2 969,306

Recognition Code 318,97

GUI 325,95

Implementation | 95

Figure 4.7 Example of the image reconstruction based on known overlay data.

4.1.4 GUI

Figure 4.6 shows the graphical user interface (GUI) for scanning bar codes we
implemented on Android. It features a rectangle that indicates the rough size
and position a bar code should have on the screen for an optimal recognition.
However, rotated codes or codes that are smaller or larger than the shown
rectangle can also be recognized. If a bar code is detected in the image, the
displayed message changes to "HOLD STILL", and the code's position is
marked. In the case the code has been recognized, the screen flashes, a sound
is played and the color of the marker around the code changes to green. If a
code that is visible in the images cannot be recognized for some time, it is
hinted to the user that he or she should consider entering the bar code manu-
ally. Manually entering the code is supported with the help of a soft keyboard.

4.1.4.1 Device-Specific Challenges

Practical challenges included the fact that the application orientation on An-
droid devices is always "landscape" if the camera images are visible. This pre-
vented the use of already available GUI elements such as soft keyboards and
required us implement all elements from scratch and draw them 90 degrees
rotated. On iOS up to version 4, no direct access to real-time images from the
camera was provided. Instead, images had to be accessed indirectly by open-
ing the camera perspective and taking screenshots from the device's screen.
However, this resulted in the limitation that all GUI elements drawn on the
screen were contained in the next screenshot and therefore in the image used
for the bar code recognition. We therefore added the possibility to our recog-
nition engine to compensate for drawn overlays. Given an image and infor-
mation about the drawn overlay elements, the drawn elements can be re-
moved from the original image if they have not been drawn opaque. Figure
4.7 shows an example.

96 | Implementation

Figure 4.8 Screenshot of our algorithm test and visualization environment.

4.2 Development Tools
4.2.1 Algorithm Test Environment

Developing the bar code recognition algorithm was complicated by two facts:
The variety of possible bar code images, and the fact that the comparison pat-
terns-based approach for the blurry bar code recognition is non-transparent,
meaning that even minor implementation errors or effects like the rounding
of numbers can have strong effects on the result and are hard to detect. The
variety of possible codes and images might result in the recognition to work
on a test image but to fail on another, only slightly different image. In order to
address these challenges, we developed a visualization and test environment
for image recognition algorithms in Java. Selected aspects of the algorithm
have first been explored using Matlab [75], but the final algorithm has been
developed and optimized in Java with the help of our test environment. Af-
terwards, the Java code has been ported to C++ for efficiency and portability

Implementation | 97

reasons. Figure 4.8 shows a screenshot of the Java test environment. It pro-
vides the following features:

• The environment allows for the real-time visualization of the state of
relevant algorithm components, and thus supports the search for bugs
as well as the prototyping and comparison of different solutions to a
given problem.

• Images to test the algorithm can be loaded directly from disk, or can be
streamed live from a webcam, a web resource or directly from mobile
phones using Bluetooth or WLAN. We implemented according client
applications for Android and C++ Symbian devices; the latter using the
SPARK environment presented in chapter 7.

• Automated tests can be performed in order to observe the effects of
changes to the recognition algorithm or parameters. This can not only
be done on single images, but on a large number of representative test
images.

4.2.2 Recognition Table Creation

Recognition tables contain pre-calculated patterns of bar code sections and
are used in the blurry decoder presented in Section 3.3. Tables are generated
using a Matlab script. Parameters for this script describe the table that should
be generated and include the set of code numbers that should be recognizable
with the generated table (either all numbers or a known subset of numbers),
parameters describing the PSFs for the different bar code sections, the size in
which the patterns should be pre-calculated, as well as the size of the pattern
borders that should be ignored during comparison. (See Section 3.3 for an
explanation the meaning of the different parameters.)

4.2.2.1 PSF Parameterization

The point spread functions used to pre-calculate recognition tables can be
specified by three parameters: 𝑡𝑏𝑠𝑡, specifying the size of the PSF in pixels, as
well as 𝜎 and 𝜏 describing the shape of the PSF. Figure 4.9 shows how these
parameters are used to construct a PSF based on a disk- and Gauss-shaped
function, and Figure 4.10 illustrates how the PSF shape changes in relation to
different values of the two parameters 𝜎 and 𝜏.

98 | Implementation

Figure 4.9 PSF construction based on the three parameters size, σ and τ.

Figure 4.10 PSF shapes of 𝑡𝑏𝑠𝑡 30 as a function of the parameters 𝜎 and 𝜏.

Implementation | 99

4.2.2.2 PSF Measurement

Since measuring the exact PSF shape and size for a given mobile phone model
without specialized equipment is complex, we determine the PSF parameters
that correspond to a specific mobile phone model and physical bar code size
indirectly with the test-pattern 𝐼𝑤𝑎𝑟𝑤 shown in the upper-left image in Figure
4.11. Given a specific mobile phone, we take images of this pattern in three
different sizes. In each of these images 𝐼1 … 𝐼3, the position of the four promi-
nent corner blocks is searched using a 2D normalized cross-correlation. The
lower-left image in Figure 4.11 shows the result of the normalized cross-
correlation between the test image and a block pattern. A subsequent search
for the four most prominent local maxima reveals the exact position of the
four corner blocks. Based on this information, we de-skew the original image
𝐼𝑥 to match the test-pattern 𝐼𝑤𝑎𝑟𝑤 in position and scale. Afterwards, the image
brightness values along a horizontal scan line are extracted at three different
positions in the image 𝐼𝑥 – at the left side 𝑓𝑜𝑎𝑓𝑤(𝑥), in the middle 𝑓𝑛𝑤𝑤𝑤𝑜𝑎(𝑥),
and the right side 𝑓𝑎𝑤𝑒ℎ𝑤(𝑥). Due to the preceding de-skewing process, the ex-
tracted blurry waveforms 𝑓𝑜𝑎𝑓𝑤(𝑥), 𝑓𝑛𝑤𝑤𝑤𝑜𝑎(𝑥), and 𝑓𝑎𝑤𝑒ℎ𝑤(𝑥) are aligned with
the sharp waveforms 𝑓𝑤𝑎𝑟𝑤−𝑜𝑎𝑓𝑤(𝑥), 𝑓𝑤𝑎𝑟𝑤−𝑛𝑤𝑤𝑤𝑜𝑎(𝑥), and 𝑓𝑤𝑎𝑟𝑤−𝑎𝑤𝑒ℎ𝑤(𝑥) extracted
at the same positions from the sharp test image 𝐼𝑤𝑎𝑟𝑤. For each of these three
pairs of a sharp and blurry waveform, the sharp waveform is convoluted with
different PSFs and the pattern difference 𝑑 between this blurred waveform
and the original blurry waveform is measured using the normalized cross-
correlation. We then take the PSF parameters that resulted in the smallest
difference value 𝑑. The PSF parameters are measured at three different image
positions, since image sharpness between these positions can vary significant-
ly on some phone models, e.g., due to lens distortions. Figure 4.12 shows the
original waveform 𝑓𝑛𝑤𝑤𝑤𝑜𝑎(𝑥) and the constructed blurry waveform based on
𝑓𝑤𝑎𝑟𝑤−𝑛𝑤𝑤𝑤𝑜𝑎(𝑥) using the best found PSF. It can be seen that the constructed
blurry waveform matches the original blurry waveform fairly well, which indi-
cates that our model for the shape of PSFs is sufficiently precise.

100 | Implementation

Figure 4.11 Test pattern used for indirect PSF measurement (upper-left image) and image
obtained from Nokia N95 (without using the AF) of this pattern (upper-right image). Result
from the normalized cross-correlation when searching for block patterns (lower-left image)
and detected marker positions in both images used to de-skew the taken test image (lower-
right image).

Figure 4.12 Diagram showing the sharp pattern waveform, the blurry waveform obtained
from the test image and the waveform that has been constructed by convoluting the sharp
pattern with the best found PSF.

0 20 40 60 80 100 120 140 160 180 200
-150

-100

-50

0

50

100

150

position / pixel

im
ag

e
in

te
ns

ity
 v

al
ue

sharp test pattern
blurry waveform from image
sharp pattern convoluted with PSF

Implementation | 101

Figure 4.13 Histogram of difference values when comparing each of the 7000 pre-calculated
patterns in section 2 to each other in the case of blurry and sharp patterns (left diagrams).
Corresponding histograms limited to the first 500 entries (right diagrams).

Figure 4.14 Distinguishability of pre-calculated patters as a function of table sharpness and
the observed bar code section.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
x 105

scaled difference value

am
ou

nt
 o

cc
ur

an
ce

 o
f d

iff
er

en
ce

 v
al

ue

Scaled Histogram of All Difference Values (Blurry Patterns)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

difference value

am
ou

nt
 o

cc
ur

an
ce

 o
f d

iff
er

en
ce

 v
al

ue

Histogram of first 500 Difference Values (Blurry Patterns)

h(x)
x

pstart

x
pend

x
next

0 20 40 60 80 100
0

2

4

6

8

10

12

14
x 105

scaled difference value

am
ou

nt
 o

cc
ur

an
ce

 o
f d

iff
er

en
ce

 v
al

ue

Scaled Histogram of All Difference Values (Quite Sharp Patterns)

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

difference value

am
ou

nt
 o

cc
ur

an
ce

 o
f d

iff
er

en
ce

 v
al

ue

Histogram of first 500 Difference Values (Quite Sharp Patterns)

h(x)
x

pstart

x
pend

x
next

d

d

1
2

3
4

0

10

20

30

40

8 10 12 14 16 18 20 22
24

26
28

30
section nr.

d_
no

rm

PSF size in pixel used to generate table

102 | Implementation

4.2.2.3 Similarity of Pre-Calculated Patterns

In the case of blurry pre-calculated patterns, patterns in the same section
differ only in details from each other. However, all patterns for a bar code sec-
tion remain distinguishable with the pattern comparison algorithm presented
in Section 3.3.6. The most critical bar code section in this regard is section 2,
since it contains the most (7000) pre-calculated patterns. Figure 4.13 show
the histogram ℎ(𝑥) of difference values obtained, when comparing each pat-
tern in section 2 to each other with comparison algorithm 3 (Section 3.3.6.7).
Several observations can be made and are described in the following:

The peak in ℎ(𝑥) between the marked positions 𝑥𝑝𝑟𝑤𝑎𝑎𝑤 and 𝑥𝑝𝑎𝑑𝑤 results
from comparing each of the 7000 pattern with itself. Due to implementation
specifics ,e.g., lookup tables for calculating the sqrt-values, comparing the
same pattern does not necessarily result in a value of zero. It holds that:

� ℎ(𝑏)
𝑥𝑝𝑓𝑛𝑤

𝑤=𝑥𝑝𝑓𝑝𝑓𝑓𝑝
= 7000

The first position 𝑥𝑑𝑎𝑥𝑤 > 𝑥𝑝𝑎𝑑𝑤 with ℎ(𝑥𝑑𝑎𝑥𝑤) > 0 corresponds to the mini-

mal found difference value between two non-equal patterns in the observed
bar code section. We can therefore use the distance 𝑑 = 𝑥𝑑𝑎𝑥𝑤 − 𝑥𝑝𝑎𝑑𝑤 as a
measure how distinguishable the pre-calculated patterns are. In case of 𝑑 = 0,
it is not possible to distinguish all patterns from each other. The larger 𝑑 is,
the better distinguishable the patterns are.

Figure 4.14 shows the values of 𝑑𝑑𝑜𝑎𝑛 = 𝑑/(𝑚𝑎𝑥 𝑑𝑏𝑓𝑓𝑡𝑏𝑡𝑡𝑐𝑡 𝑤𝑎𝑏𝑏𝑡) as a
function of the sharpness of patterns contained in a recognition table and the
observed bar code section. It can be seen that the distinguishability of pat-
terns (the value of 𝑑𝑑𝑜𝑎𝑛) increases with pattern sharpness18, and that pat-
terns in sections 3 and 4, which contain only 1000 different pre-calculated
patterns, are better distinguishable. In relation to the inner sections 2 and 3,
the distinguishability of patterns in sections 1 and 4 that are located at the
bar code borders is slightly lower, despite them containing the same number
of, or even less, patterns. The reason for this is the fact that the pre-calculated
patterns of the outer sections 1 and 4 include the bar code start- and end-
delimiters, as well as silent areas, which are very similar for all patterns.

18 A smaller size of the PSF corresponds to sharper patterns given the other two parameters
controlling the PSF's shape remain the same.

Implementation | 103

Figure 4.15 Percentage of correctly recognized codes by the sharp decoder from a test set of
difficult-to-recognize sharp images as a function of the two main parameters controlling the
scan line binarization process.

4.2.3 Device-Specific Optimizations

4.2.3.1 Parameter Optimizations

Like already stated in Chapter 3, a set of parameters stored in configuration
files controls the recognition algorithm. The optimal parameter values for a
specific mobile phone model are determined based on a set of test images of
bar codes taken with this mobile phone. We generated sets of test images for
important mobile phone types and more generic sets of test images that con-
tain images obtained by common autofocus-enabled devices. A typical test set
comprises around 1500 images of codes of varying physical size and in the
case of autofocus devices different sharpness levels. For each test image there
exists also a data file that contains meta-data about the test image, e.g., the
correct number of the bar code contained in the image. The first step taken in
order to optimize a set of recognition parameters 𝑝1 …𝑝𝑡 for a test set of im-
ages 𝐼0 … 𝐼𝑚, is to construct all possible value combinations �⃗�1 … �⃗�𝑎 for the
recognition parameters:

�⃗�𝑥 = {𝑤1, … 𝑤𝑑}, 𝑤𝑦 = 𝑤𝑎𝑏𝑏𝑑 𝑤𝑎𝑏𝑏𝑡 𝑚𝑓 𝑝𝑎𝑏𝑎𝑚𝑡𝑡𝑡𝑏 𝑝𝑦 ∀0 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑦 ≤ 𝑡

104 | Implementation

Afterwards, the bar code recognition is performed 𝑏 times on each image,
each time with a different set of values �⃗�𝑥 for the parameters 𝑝1 …𝑝𝑡. For eve-
ry image and value combination, the recognition result, i.e., correct code rec-
ognized, no code recognized, or wrong code recognized19 is recorded. Based
on the aggregated results, we can extract the set of parameter values
�⃗�𝑜𝑝𝑤𝑤𝑛𝑤𝑠𝑎𝑤 that performs best according to selected optimization criteria. Ex-
amples for optimization criteria include the following, or combinations of the
following criteria:

• Most images correctly recognized
• Least images wrongly recognized
• In all sets of images that contain the same bar code number at least

one image should be recognized correctly

Figure 4.15 shows an example for the optimization of the two main parame-

ters 𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 and 𝑝𝑤𝑤𝑑𝑤𝑜𝑤 𝑟𝑤𝑠𝑎 that control the binarization of waveforms in
the sharp decoder (Section 3.2.1). The diagram shows the percent of correctly
recognized sharp test images in the case of different combinations of these
two parameters. Measurements are based on a test-set of 608 normal lit test
images. It can be seen that for the analyzed test set of images values of
𝑝𝑏𝑤𝑑 𝑤ℎ𝑎𝑎𝑟ℎ𝑜𝑜𝑤 = 0 and 𝑝𝑤𝑤𝑑𝑤𝑜𝑤 𝑟𝑤𝑠𝑎 = 90 result in the most correctly recognized
images. The optimal values can be different in the case of dark or unevenly lit
images, or images that exhibit prominent sharpening or compression artifacts.

Since the computational effort of the described method grows exponentially
with the number of parameters that should be optimized, the optimization is
limited to sets of parameters that comprise only few parameters, and parame-
ters that are largely independent from each other. Furthermore, our imple-
mentation has been parallelized and optimized for speed. It can therefore be
performed concurrently on an arbitrary number of threads. By switching from
the currently used exhaustive search strategy in the space of all possible pa-
rameter combinations to more guided strategies using heuristics, further im-
provements are possible.

19 The meta-data available for each image file contains the correct code number, which allows
us to detect if a code has been recognized correctly or wrongly.

Implementation | 105

Figure 4.16 Sharpness distribution of test images taken on a device with (iPhone 3GS) and
without (iPhone 3G) autofocus camera. The sharpness range covered by pre-calculated
recognition tables is also shown.

4.2.3.2 Table Set Optimizations

In Section 4.2.2 we described how the optimal PSF parameters for a given test
image can be determined. However, when trying to determine the optimal set
of recognition tables that results in the most correctly recognized images
from a given test set of images, three questions remain:

1. How many tables are sufficient to obtain a good recognition rate on

the whole test set of images?
2. What test images should be selected to calculate the PSF parameters

for the recognition tables to generate?
3. Which of the pre-calculated recognition tables should be used at

runtime in what sharpness range? Answering this question is further
complicated by the fact that the measured sharpness values also vary
slightly dependent on other image features than the waveform's
sharpness. (See Section 3.3.2 for details.)

In order to optimize the recognition for a given set of test images 𝐼0 … 𝐼𝑚 we

therefore used the following approach to determine the optimal number of
tables, PSF parameters, as well as activation sharpness-ranges for these ta-
bles. In a first step, we constructed 27500 recognition table files, each one
created with slightly different PSF parameters. This is done by varying the
three parameters 𝑡𝑏𝑠𝑡, 𝜎 and 𝜏 that control the shape of PSFs at different bar
code sections. Next, we performed the recognition once for each combination
of a test image 𝐼𝑥 and a recognition table 𝑇𝑦. In the case of 1500 test images,

0 50 100 150 200 250 300
0

5

10

15

20

25

30

sharpness value

am
ou

nt
 o

f t
es

t i
m

ag
es

Histogram of Sharpness Values in 1994 iPhone 3GS Test Images

amount occurances of sharpness value
table activation border

0 50 100 150 200 250 300
0

5

10

15

20

25

30

sharpness value

am
ou

nt
 o

f t
es

t i
m

ag
es

Histogram of Sharpness Values in 1026 iPhone 3G Test Images

amount occurances of sharpness value
table activation border

iPhone 3GS
RecognitionTable 2

iPhone 3GS
RecognitionTable 1

iPhone 3G
RecognitionTable 1

iPhone 3G
RecognitionTable 2

106 | Implementation

this results in 41250*103 recognition runs. For each run, we recorded the
following values20:

1. The outcome of the recognition, i.e., a correct code is recognized, no

code is recognized or a wrong code is recognized
2. The quality factor indicating how well a detected code fits
3. The sharpness value measured by the blurry decoder along the cen-

tral scan line

The values obtained when recognizing all test images with a single recogni-
tion table are stored in a protocol file for this table. Appendix 9.1.2 shows an
example of a protocol file.21 Based on the information contained in the result-
ing 27.500 protocol files, we search for an optimal result according to a set of
optimization criteria, similar to the procedure used for parameter optimiza-
tion. For a given test set of images, the obtained result comprises the follow-
ing information:

1. The minimum number of tables required to obtain a good recogni-

tion rate on the test set of images
2. The optimal PSF parameters for each recognition table
3. The range of sharpness values in which each recognition table

should be used

Figure 4.16 shows the measured sharpness values of images in a test set
from the iPhone 3GS that features an autofocus camera (left diagram) and the
iPhone 3G that has only a fixed focus camera (right diagram). It can be seen
that the sharpness values of images obtained on the iPhone 3GS contain more
sharp images (lower sharpness values) than the test images on the iPhone 3G,
which are all blurry. Test images on both devices have been taken from bar
codes on real products of different physical size, ranging from small to large
bar codes. In order to limit the size of the final recognition engine distributa-
ble, we used only two recognition tables on each device. Figure 4.16 shows
the sharpness ranges, in which the two recognition table are used. The recog-

20 Similar to the parameter optimization, all relevant processes for the table set optimization
have been parallelized. On a desktop PC with 16 CPU cores and 1500 test images, perform-
ing all recognitions takes on average 72 hours.
21 In order to reduce the space requirements as well as speed-up the loading of the 27500
protocol files into memory, protocol files are packed in ZIP archives.

Implementation | 107

nition performance of the blurry decoder can be improved by using more
recognition tables. For example, on the iPhone 3GS, most images with sharp-
ness values between 0 and 133 can be correctly recognized using recognition
table 1. However, in the cases where the sharpness of the image and pre-
calculated patterns in the table differ too much, the final step in the blurry
decoder that checks for false-positives might reject a correctly recognized
code number, since the confidence in the result is too low (see sections 3.3.7
and 3.3.8 for details). On the iPhone 3GS, this is in practice not a big problem,
since many sharp images (e.g., images with sharpness values below 100) can
be recognized by the sharp decoder. The implementations of our bar code
recognition engine used in the user study (see Chapter 5) all use two recogni-
tion tables.

4.3 Measurements
4.3.1 Performance of Decoder Types

Like already stated in the recognition algorithm, we combine two approaches
to recognize bar codes: the sharp decoder and the blurry decoder. Figure 4.17
shows how many out of 1994 test images taken with the iPhone 3GS can be
recognized when limiting the recognition to either the blurry or the sharp
decoder. The sharpness distribution of used images can be seen in the left
diagram in Figure 4.16. Even when both decoders are used, not 100% of all
test images are recognized. This has the following reasons:

1. Images include difficult to recognize codes, e.g., very small codes
2. Only two recognition tables are used for the blurry decoder
3. The recognition algorithm is used in a "single image"-mode, which re-

sults in the situation no information can be used that is obtained over
several video-frames as on the mobile devices

It can be seen, that on this test set of images and two recognition tables, the
blurry decoder can correctly recognize the majority of images (87.63%). Like
expected, the sharp decoder is limited to sharp images and can recognize
therefore only 42.78% of all images. An additional challenge for the sharp
decoder on this test set is the low resolution of test images of 320x436 pix-
els. This results in scan lines of 320 pixels length, in which the whole bar
code pattern was on average only180 pixels wide. The latter complicates the
binarization process, especially in slightly blurry images.

108 | Implementation

Figure 4.17 Recognition result on a test set of 1994 images of varying sharpness taken with
the iPhone 3GS. Two recognition tables are used for the blurry decoder.

Figure 4.18 Measured activations of the round and upside-down code distortion compensa-
tion in a series of 100 video frames. The video images showed the bar code visible in Figure
3.20 that is upright and printed on a round surface.

4.3.2 Distortion Detection

Detecting bar codes on round surfaces or codes that are oriented upside-
down in images is difficult, especially in the case of blurry images. Due to this,
Section 3.3.5 introduced a mechanism that activates the distortion compensa-
tion for bar codes on round surfaces or upside-down oriented codes in de-
pendence of probability values. These probability values indicate how likely it
is that a distortion is present in the observed video images and are adjusted

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

both decoders
only sharp decoder

only blurry decoder

pe
rc

en
t

both decoders only sharp decoder only blurry decoder
not recognized 10,31% 57,22% 12,37%

wrongly recognized 0,00% 0,00% 0,00%

correctly recognized 89,69% 42,78% 87,63%

0 10 20 30 40 50 60 70 80 90 100
off

on

frame number in sequence

st
at

us

Round Code Compensation Activation

0 10 20 30 40 50 60 70 80 90 100
off

on

frame number in sequence

st
at

us

Upside-Down Code Compensation Activation

Implementation | 109

over time, based on the meta-data collected by the recognition engine. Figure
4.18 depicts measurements from our implementation that show in which
frames in a series of 100 images the compensation for round and upside-
down codes has been activated, for an upright code on a curved surface. The
results indicate that our indirect detection of distortions in video images
works in practice as expected.

4.3.3 Influence of Image Resolution on Recognition Rates

The resolution of the video images available for the recognition on different
mobile operating systems and devices can vary drastically. We therefore ex-
amined how image resolution affects recognition rates. In order to do this, we
used a test set of 322 test images. The test set included codes of varying diffi-
culty, e.g., rotated and upside-down oriented codes, as well as codes on round
and crumpled surfaces. All images have been taken with the iPhone 4G, have
a native resolution of 720x1280 pixels and are either sharp or only slightly
blurry. We performed the recognition on the images in this test set and varied
both the image resolution and the decoders used for the recognition. Figure
4.20 shows the results. When interpreting the results, it has to be considered
that bar codes contained in the images covered in general only 50-60% of the
image's width, meaning that if codes could be recognized in an image of
360x640 pixels, many of these codes had a length of only180 pixels. The fol-
lowing can be observed:

1. Above an image width of 180 pixels, the recognition result is in large
parts independent of the underlying image resolution.

2. The recognition performance of the sharp decoder decreases rapidly
for images with a width of 270 pixels and less. Since the sharp decoder
relies on detecting and distinguishing different widths of the code's
bars, this is expected.

3. The blurry decoder is able to recognize images even in very low resolu-
tion images. Well printed codes on flat surfaces can be correctly rec-
ognized in images with widths as low as 100 pixels; a few codes even
in the 68 pixel wide images. This corresponds to bar code patterns
consisting of only 50 or less pixels.

110 | Implementation

Figure 4.19 The same test image in three different resolutions and the corresponding details
of the contained bar codes.

Figure 4.20 Percentage of correctly recognized test images as a function of image resolution.
Results are shown for the standard recognition algorithm that uses both decoders, as well as
situations in which we limit the recognition to the sharp decoder, and the blurry decoder.

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

720 x

1280

576 x

1024

432 x

768

360 x

640

270 x

480

180 x

320

135 x

240

100 x

180

80 x 14468 x 120 45 x 80

pe
rc

en
t c

or
re

ct
ly

 re
co

gn
iz

ed
 im

ag
es

resolution of test images / pixels

both decodes only sharp decoder only blurry decoder

Implementation | 111

4.4 Summary
In this chapter, we verified the practicability of the bar code recognition algo-
rithm described in Chapter 3 by providing proof-of-concept implementations
on three different mobile phone platforms. We presented relevant details re-
garding the pre-calculation of recognition tables and tools used to develop
and optimize our recognition method. The presented results regarding the
speed and memory consumption of implementations and the influence of im-
age resolution on recognition rates show the intended flexibility of our recog-
nition method. This supports its applicability for a wide range of mobile de-
vices. The following Chapter 5 provides an in-depth evaluation of the scan
accuracy and speed of our implementation, and compares it to the most rele-
vant other bar code scanners available.

112 | Evaluation of Bar Code Scanners

5 Evaluation of Bar Code
Scanners

In this chapter, we provide an in-depth evaluation of existing bar code recog-
nition engines. Given the proliferation of smartphones, cheap data rates, and
mobile applications over the last years, the number of available mobile ser-
vices has dramatically increased. This is particularly true with platforms like
the iPhone (and, increasingly, Android) and in shopping-related application
areas such as product-price comparisons. Due to this increased interest in
mobile services, a series of bar code scanning engines has emerged in the last
2 to 3 years. The more prominent of these applications are RedLaser or the
Google Scanner [76] built into the Android OS. While a user study conducted
by Reischach et al. in 2009 revealed poor recognition performance of most
scanners [77], many scanners have evolved and improved since then.

In order to evaluate recognition engines, we conducted a user study with 16
participants to evaluate "real-word" performance (Section 5.1) and a detailed
analysis under controlled conditions to determine the features and character-
istics of the best scanners available (Section 5.2). Based on the quantitative
and qualitative results of the user study and scanner analysis, we came up
with general observations about users' scanning behavior and the capabilities
and limitations of bar code scanners (Section 5.3.1). Finally, we use this in-
formation to state user interface guidelines for mobile phone-based bar code
scanners (Section 5.3.2).

With respect to the comparison of our proposed recognition engine with
other solutions, results show that our recognition engine outperforms other
solutions in terms of scan speed and accuracy on all tested mobile devices.

5.1 User Study
This study evaluates the usefulness of existing bar code scanners for consum-
er-oriented mobile services under realistic conditions. We compare the five
best-performing solutions from our scanner analysis (Section 5.2) on three
mobile phones in a realistic set-up with 16 participants. We perform a quanti-
tative analysis, in which the scanning speed and accuracy of scanners (how
often code numbers are recognized correctly, recognized incorrectly, or not at

Evaluation of Bar Code Scanners | 113

all in a given time period) are measured, and a qualitative evaluation of the
usersʼ comments and scan behaviors.

5.1.1 Study Setup

The following major factors influence the success and time required to scan
bar codes with mobile phones:

1. The used mobile phone model and its built-in camera. The camera's
resolution, autofocus characteristics (such as focus speed and minimal
focusable distance), as well as built-in software for autofocus and ex-
posure control

2. The selected set of test products (e.g., the weight and shape of prod-
ucts) and the bar codes on these products

3. Environmental conditions such as the lighting situation
4. Participants' experience in scanning bar codes and the handling of cer-

tain mobile phone models

5.1.1.1 Used Mobile Phones

We selected three mobile phones with different characteristics for the test:
The iPhone 3GS [78], iPhone 3G [79] and an Android HTC Desire [80] (see
Figure 5.1). The iPhone 3GS has been selected as our standard platform, since
it is a modern smartphone, features an autofocus camera and, due to its
commercial success, most scanner applications are available and optimized
for this platform. As a second phone, we selected the iPhone 3G that has a
fixed-focus camera, in order to test the ability of scanners to recognize codes
in blurry images. Third, we selected the Android HTC Desire, in order to be
able to compare our solution to Google's most recent recognition engine,
which is available only on this platform. In addition, the HTC Desire is a pow-
erful phone (1GHz CPU) featuring a high-quality camera with an autofocus
that is faster and able to focus on closer distances than the camera in the
iPhone 3GS can. This allows us to observe the effect of the camera and auto-
focus quality on the results. We excluded C++ Symbian/QT devices (Nokia),
since many tested recognition engines are not available on this platform and
we had to limit the numbers of scanners considered in our study.

114 | Evaluation of Bar Code Scanners

Figure 5.1 Mobile phones used for the study: An iPhone 3GS with autofocus camera (left
image), iPhone 3G with a fixed-focus lens (middle image) running iOS, and the HTC Desire
with a fast autofocus camera running Android OS (right image). The "ScanDK"-demo applica-
tion uses our bar code recognition method.

Table 5.1 Bar code scanners tested in the user-study and scanner analysis. Scanners able to
recognize codes in blurry images (e.g., on the iPhone 3G) are marked with an asterisk:

Scanner Name Software Version Tested Platform
RedLaser* 2.9.0 iPhone3G/3GS
Shopsavvy* 4.0.1 iPhone3G/3GS
ScanDK* 1.4.0 iPhone3G/3GS, HTC Desire
Pic2shop* 4.1 iPhone3G/3GS
NeoReader 2.00 iPhone3GS
i-nigma 3.07.01 iPhone3G/3GS
QuickMark 3.8.9 iPhone3GS
Barcode Ninja 1.0 iPhone3GS
Barcode Scanner 2.1 iPhone3GS
BarcodePlus 1.2 iPhone3GS
Google Build-In Scanner OS version 2.2 HTC Desire

Evaluation of Bar Code Scanners | 115

5.1.1.2 Tested Bar Code Scanners

The number of bar code scanners considered in this study has been limited,
since we wanted to limit the expenditure of time by each participant to ap-
proximately one hour, while still covering a realistic set of demo products and
three different mobile phone models. Among the scanners tested in our be-
forehand performed scanner analysis (Section 5.2), we selected all solutions
that could recognize bar codes in blurry images, which coincides with the
most renown and commercially successful scanners at the time of the study in
November 2010: RedLaser [72], ShopSavvy [73] and pic2shop [74]. As a rep-
resentative of all other scanners that performed well in our scanner analysis
but were not able to recognize blurry bar codes, we selected i-nigma [81] on
the iPhone 3GS because it is able to recognize rotated bar codes. On the An-
droid platform, we compared our solution to the Google scanner. For each
scanner, we used the most recent software version available at the time. Our
recognition method is implemented in the ScanDK application (see Figure
5.1). Table 5.1 provides an overview of the tested applications on each device
and their software version.

5.1.1.3 Test Products

We selected 11 test products for our user study. The set of products has been
chosen to represent typical bar code types found in reality. It consists of 6
well recognizable codes and 5 more difficult codes. We deliberately included
some difficult-to-recognize codes in order to challenge scanners, even though
we expected that due to the blurry images, not all scanners on the iPhone 3G
would recognize all codes. In order to be able to better compare the perfor-
mance of scanners on the iPhone3G on blurry images, we had users scan a
second test set consisting of four easy-to-recognize codes on books. All test
products featured EAN13 or UPC-A bar codes, since not all scanners were
able to read other code symbologies. Figure 5.2 shows the used demo prod-
ucts, their bar codes and briefly describes the specifics of each code.

5.1.1.4 Participants

We conducted the study with 16 participants (9 male, 7 female) ranging in
age from 21 to 43. Participants came from several professional backgrounds.
All participants owned a mobile phone: 4 owned an iPhone, 6 an Android de-
vice and 9 owned other devices, mostly phones from Sony Ericsson.

116 | Evaluation of Bar Code Scanners

Figure 5.2 Test products: Easy-to-recognize code (1), normal bar code that was often
scanned upside-down (2), colored and thin bar code resulting sometimes in blurry images (3),
thin and multiple codes (4), code on non-straight and slightly transparent surface (5), slightly
crumpled and transparent code frequently exhibiting glare (6), code on heavy product that
was often scanned from an angular perspective (7), small code (8), crumpled code with often
occurring glare (9), code on round surface (10), multiple codes (11), code on non-straight
surface with frequently occurring glares (12).

Evaluation of Bar Code Scanners | 117

Figure 5.3 General setup with demo products on table (right image) and a stationary web
cam filming the global scene (left image).

Figure 5.4 Setup to fixate web cam above mobile phone, in order to record user interaction
and the scanning process with 30 frames per second (left image). Example screenshot from
recorded video (right screenshot).

The study consisted of an introduction, three scan sessions (one for each

mobile phone) and a final questionnaire. Each scan session consisted of a scan
run for each tested scanner. Each scan run started with a brief introduction to
the scan software and a test phase, in which participants could try to recog-
nize the first test product (number 1 in Figure 5.2) until they felt confident
with the scanner. Afterwards, participants scanned the bar codes of all demo
products, always in the same order. At the end of each scan run, they were
given a brief questionnaire about the scanner they had just tested. We rec-

118 | Evaluation of Bar Code Scanners

orded both the global scene (see Figure 5.3) as well as the action on the mo-
bile phoneʼs screen (see Figure 5.4) with webcams. Recording the global sce-
ne allowed us to observe how users approach test products, e.g., if they take
and align the product in their hands or if they move the phone to the prod-
uctʼs bar code. Recording the phoneʼs screen allowed us to perform the fol-
lowing analyses based on the recorded videos after the study:

• Measure the time an application required for each scan. We stopped
the time between a productʼs bar code being visible on the phoneʼs
screen and its recognition. If the code could not be recognized within
15 seconds, we aborted and rated this try as time-out. In this case, us-
ers continued with the next product

• Record if a bar code has been recognized correctly (correct) or incor-
rectly (false-positive)

• Record user comments and reactions during the scan runs
• Observe how participants approach bar codes and orient the mobile

phone, e.g., if they try to scan bar codes upside-down
• Observe how users react in case a code cannot be recognized after a

few seconds, e.g., if they try to vary the distance to the code
• Analyze typical recognition problems, respectively why a code might

not be recognized, e.g., if there is glare on the code's image or if the
user is holding the phone too far away

The order in which participants tested the mobile phones (scan sessions)

and individual scanner applications on these phones (scan runs) was random-
ized in order to account for learning effects. Table 9.1 and Table 9.2 in the
appendix show the order in which different participants tested mobile phones
and scanner applications.

Evaluation of Bar Code Scanners | 119

Figure 5.5 Scan accuracy on the iPhone 3GS (upper-left image), HTC Desire (upper-right
image) and iPhone 3G (lower-left image) for all test products. iPhone 3G results for well rec-
ognizable codes on books (lower-right image). ScanDK is our method.

5.1.2 Quantitative Results

5.1.2.1 Scan Accuracy

We evaluated scanner accuracy based on three variables: The number of bar
codes recognized correctly and the number of codes recognized incorrectly in
the set time limit of 15 seconds, as well as the number of time-outs, meaning
no recognition within the time limit. Figure 5.5 shows the results for the test-
ed scanners on the three mobile phones. Recognition accuracy on the iPhone
3GS on our main test set of products was in general very good, with pic2shop
and i-nigma recognizing fewer codes correctly and a high number of false-
positives in the case of RedLaser. On the HTC Desire, both the Google built-in
solution as well as our scanner (ScanDK) was able to recognize most codes

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopSavvy ScanDK pic2shop i-nigma
time-outs 7,81 2,09 2,08 23,96 30,73

false-positives 10,42 4,71 1,04 4,69 1,04

correct codes 81,77 93,19 96,88 71,35 68,23

Scan Accuracy on iPhone 3GS

0%

20%

40%

60%

80%

100%

Google
ScanDK

pe
rc

en
t o

f a
ll

sc
an

s

Google ScanDK
time-outs 6,25 1,56

false-positives 2,08 1,04

correct codes 91,67 97,40

Scan Accuracy on HTC Desire

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopSavvy ScanDK pic2shop
time-outs 52,60 60,21 35,94 30,73

false-positives 2,60 9,95 2,60 9,90

correct codes 44,79 29,84 61,46 59,38

Scan Accuracy on iPhone 3G

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopSavvy ScanDK pic2shop
time-outs 18,75 9,38 0,00 3,13

false-positives 0,00 6,25 3,13 9,38

correct codes 81,25 84,38 96,88 87,50

Scan Accuracy only Books on iPhone 3G

120 | Evaluation of Bar Code Scanners

with only few false-positives. On the iPhone 3G (without autofocus), scan ac-
curacy was much lower, because of the blurry images in combination with our
main test set of products that included problematic (e.g., crumpled) bar codes.

When looking at the scan accuracy for a well-recognizable subset of codes
(products 1,2,3,7,8 and 11 in Figure 5.2) shown in Figure 5.6, it can be seen
that on the iPhone3GS all scanners except i-nigma exhibit a good recognition
performance, and on the iPhone3G scanner performance is much improved
for most scanners. This corresponds with the results of the iPhone3G on our
second test-set including only very well recognizable codes (see lower-right
image in Figure 5.5). In return, looking at the scan accuracy for difficult-to-
recognize codes (products 4, 9, 10 and 12 in Figure 5.2) reveals a decreased
recognition accuracy of all scanners on the iPhone3G (see Figure 5.7).

This leads to the observation that recognizing bar codes on mobile phones
without an autofocus camera works very well for clearly visible bar codes on
a straight surface, such as those found on books, CDs, or electronic products,
but has its limitations when trying to recognize bar codes on grocery items,
with their large variety of flexible bar code surfaces and geometries.

Our scanner was able to recognize more codes correctly than other solu-
tions and produced fewer false-positive results, with the exception of Red-
Laser on the subset of easy-to-recognize codes on the iPhone 3G. These re-
sults also hold for different subsets of test-persons (novice or expert scan-
ners) and parameters like the assumed time-out value of 15 seconds.

Figure 5.6 Results scan accuracy on iPhone 3GS (left image) and iPhone 3G (right image) for
easy-to-recognize test products.

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop i-nigma
time-outs 2,08 0,00 0,00 9,38 34,38

false-positives 11,46 4,21 0,00 0,00 0,00

correct codes 86,46 95,79 100,00 90,63 65,63

Scan Accuracy on iPhone 3GS

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop
time-outs 29,17 51,58 10,42 22,92

false-positives 0,00 7,37 1,04 3,13

correct codes 70,83 41,05 88,54 73,96

Scan Accuracy on iPhone 3G

Evaluation of Bar Code Scanners | 121

Figure 5.7 Results scan accuracy on iPhone 3GS (left image) and iPhone 3G (right image for
difficult-to-recognize test products.

Figure 5.8 Number and symbology of wrongly recognized codes on iPhone 3GS (upper-left
image), HTC Desire (upper-right image) and the iPhone 3G (lower-left image).

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop i-nigma
time-outs 14,06 4,69 6,25 54,69 37,50

false-positives 9,38 4,69 1,56 10,94 1,56

correct codes 76,56 90,63 92,19 34,38 60,94

Scan Accuracy on iPhone 3GS

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop
time-outs 78,13 82,81 62,50 53,13

false-positives 1,56 3,13 0,00 14,06

correct codes 20,31 14,06 37,50 32,81

Scan Accuracy on iPhone 3G

unkonwn
EAN8/UPC-E

EAN13/UPC-A
0

5

10

15

nu
m

be
r o

f o
cc

ur
an

ce
s

RedLaser ShopSavvy ScanDK pic2shop i-nigma
unkonwn 5 1 0 0 0

EAN8/UPC-E 14 2 2 0 0

EAN13/UPC-A 1 6 0 9 2

Types of False-Positives on iPhone 3GS

unkonwn
EAN13/UPC-A

EAN8/UPC-E

0

1

2

3

4

Google ScanDK

nu
m

be
r o

f o
cc

ur
an

ce
s

Google ScanDK
unkonwn 0 0

EAN13/UPC-A 0 0

EAN8/UPC-E 4 2

Types of False-Posives on HTC Desire

unkonwn
EAN8/UPC-E

EAN13/UPC-A
0

5

10

15

20

nu
m

be
r o

f o
cc

ur
an

ce
s

RedLaser ShopSavvy ScanDK pic2shop
unkonwn 1 1 0 0

EAN8/UPC-E 0 5 4 0

EAN13/UPC-A 4 13 0 19

Types of False-Positives on iPhone 3G

122 | Evaluation of Bar Code Scanners

Since incorrectly recognized code numbers often pose a serious problem
(e.g., for mobile services such as the allergy-check application presented in
Figure 1.1), we analyzed the symbologies the incorrectly recognized codes
had. Figure 5.8 shows the occurring types of false-positives based on all test
products. All test-codes used in the user study were EAN13 or UPC-A codes.
In the case of our recognition engine, all occurring false-positives were EAN8
or UPC-E codes. This is not surprising, since the parameters for false-positive
avoidance have not been systematically adjusted for these shorter bar code
symbologies so far, like they have been for EAN13 and UPC-A codes. This has
two implications:

1. The number of occurred false-positive codes can likely be reduced by
performing similar parameter optimizations already conducted in the
case of EAN13 and UPC-A codes.

2. The recognition of EAN8 and UPC-E codes in applications that do not
require them (e.g., services to books) could be deactivated. For exam-
ple, pic2shop can recognize only EAN13 and UPC-A codes.

5.1.2.2 Scan Speed

We also evaluated the average time a single code scan required, based on the
phone screens' recordings taken during the user study. We measured the time
between the moment a productʼs code was visible on the phoneʼs screen and
had a reasonable, recognizable size until the recognition of this code (correct
or false-positive). If a code could not be recognized within 15 seconds, we
aborted and did not consider this time. Results are shown in Figure 5.9. Our
scan engine is the fastest solution on each tested platform. On the iPhone 3G,
our scanner was nearly three times as fast as the slowest solution (RedLaser).
Especially in situations where the scan accuracy of readers is comparable, our
solution has a major speed advantage over other scanners. For example, in
the case of the iPhone 3G and easy-to-recognize codes on books, our solution
is more than 5 times as fast as the slowest solution (RedLaser), or on the An-
droid platform, where we required on average only 60% of the time for a scan
the Google scanner requires. The timing results obtained depend on the as-
sumed time-out value of 15 seconds. However, even if we vary the time-out
value or the subset of considered products, the general results stay the same.

Evaluation of Bar Code Scanners | 123

Figure 5.9 Average times for a single scan on the iPhone 3GS (upper-left image), HTC Desire
(upper-right image), iPhone 3G (lower-left image) for all products and the iPhone 3G for well
recognizable codes on books (lower-right image).

Figure 5.10 Scan accuracy for bar code on a round surface on the iPhone 3GS (left image)
and iPhone 3G (right image).

RedLaser ShopS. ScanDK pic2shop i-nigma

time/ms 5806 2681 2086 3449 5126

0

1000

2000

3000

4000

5000

6000

7000

8000

av
er

ag
e

tim
e

fo
r s

ca
n

in
 m

ill
ise

co
nd

s

Average Scan Time on iPhone 3GS

Google ScanDK

time/ms 3282 1999

0

500

1000

1500

2000

2500

3000

3500

4000

4500

av
er

ag
e

tim
e

fo
r s

ca
n

in
 m

ill
ise

co
nd

s

Average Scan Times on HTC Desire

RedLaser ShopS. ScanDK pic2shop

time/ms 5686 5968 3804 4084

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

av
er

ag
e

tim
e

fo
r s

ca
n

in
 m

ill
ise

co
nd

s

Average Scan Times on iPhone 3G

RedLaser ShopS. ScanDK pic2shop

time/ms 9190 5562 1656 3816

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

av
er

ag
e

tim
e

fo
r s

ca
n

in
 m

ill
ise

co
nd

s

Average Scan Times for Books on iPhone 3G

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop i-nigma
time-outs 0,00 0,00 0,00 37,50 6,25

false-positives 31,25 12,50 0,00 18,75 0,00

correct codes 68,75 87,50 100,00 43,75 93,75

Scan Accuracy on iPhone 3GS

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f a
ll

sc
an

s

RedLaser ShopS. ScanDK pic2shop
time-outs 62,50 75,00 56,25 25,00

false-positives 6,25 0,00 0,00 43,75

correct codes 31,25 25,00 43,75 31,25

Scan Accuracy on iPhone 3G

124 | Evaluation of Bar Code Scanners

Figure 5.11 Percentage of situations in which users tried to scan codes from certain orienta-
tions for all test products (left image) and only for the Pringles test product (right image).

5.1.2.3 Alignment of Codes

In addition to scan accuracy and speed, we investigated how users align bar
codes on the phone's screen. Based on the web cam videos, we analyzed how
often people tried to scan codes upright, upside-down or rotated. Figure 5.11
shows the percentage of scans in which users tried to scan a code in a certain
position. When considering all test products, in 6% of all scans users tried to
scan a code upside-down. However, when looking at specific products such as
the test product 2 shown in Figure 5.2 (a Pringles pack), which often resulted
in the bar code being upside-down when someone took the product naturally
in his or her left hand, 28% of users did try to scan the code upside-down.
Analyzing user behavior on the videos showed that most users did not try to
turn around an upside-down code, even if the reader was not able to recog-
nize the code for some time.

Given all scans, in only 1% of cases users tried to scan codes that were not
horizontally on the phoneʼs screen but otherwise oriented. A possible reason
for this is that in our test setup people had generally good access to the prod-
ucts and could hold most of them in their hands. In addition, the layout and
user interface elements of most tested scanners instructed users to orient the
codes horizontally.

5.1.2.4 Recognition of Round Codes in Blurry Images

When looking at the scan accuracy on the iPhone 3G in the case of the water
bottle that features a round bar code (see Figure 5.10), it can be seen that the
round code poses a challenge to all readers and is likely to produce false-
positives (e.g., pic2shop with 44% false-positives on the iPhone 3G). However,
a correct recognition in 44% of all scans in case of our scanner on the iPhone
3G indicates that the compensation for round codes described in Section

6%

93%

1%

Tried Orientations for All Codes

upside-down upright rotated

28%

72%

0%

Tried Orientations for Pringles Pack

upside-down upright rotated

Evaluation of Bar Code Scanners | 125

3.3.5 works in practice, especially since glare often complicated the recogni-
tion of this code.

5.1.2.5 Recognition Problems

Each time a code could not be recognized, we documented the prevailing
conditions. Figure 5.13 shows how often certain conditions occurred in the
case of time-outs for different scanners. Results indicate that in the case of i-
nigma, the only tested scanner on the iPhone 3GS not able to scan blurry
codes, blurry images were involved in many time-outs. The same problem
with blurry codes also occurs for the Google scanner on the HTC Desire. On
the iPhone 3G it is not surprising that in all time-outs, images have been blur-
ry, however, special code shapes (crumpled, round or otherwise distorted
codes) seem to be a prominent problem on the iPhone 3G.

These results indicate that blurry codes remain a problem, even for devices
equipped with autofocus cameras. On such devices, images can be blurry, for
example, if bar codes are small (and therefore the camera cannot focus on
them), when the autofocus is slow, does not work or cannot focus on the bar
code.

5.1.3 Qualitative Results

Qualitative results comprise both feedback from users obtained as part of the
scanner and final questionnaire as well as recorded user comments and ob-
served behavior.

5.1.3.1 Scanners-Related Feedback

After each scan run with a specific scanner, we asked users in the scanner
questionnaire to rate the scanner's recognition speed as well as how easy it
was to scan a code with this scanner. Figure 5.14 shows the results. Comple-
mentary to this feedback given by users, we counted the number of positive
and negative user reactions towards the scan performance during the scan
process, based on the recorded videos (see Figure 5.15).

In the final questionnaire we also asked users "Given the choice, which
scanner(s) would you like to use?" on each platform. While most users pre-
ferred our scanner, pic2shop on the iPhone 3G and the Google scanner on the
HTC Desire were also chosen often (see Figure 5.15). Asked why they pre-
ferred certain scanners over others, most users cited "speed of recognition" as
the most important factor.

Results indicate that although all of the scanners were good and relatively
fast (compared to results of previous studies like [77]), the difference in scan

126 | Evaluation of Bar Code Scanners

speed and accuracy was noted by users and correlate with user ratings and
reactions. Especially slow recognition speed seemed to provoke negative user
reactions, whereas the effect of false-positives on negative user reactions was
not that prominent. The latter may change, for example, if we had required
users not to simply scan a product's code, but to retrieve product-related in-
formation, in which case an incorrectly recognized code would have a real
impact.

Figure 5.12 User interfaces of scanners tested in the user-study. Interface types include rec-
tangle-shaped (RedLaser, ShopSavvy and ScanDK), scan line-shaped (pic2shop, Google) as
well as no (i-nigma) viewfinder elements.

Evaluation of Bar Code Scanners | 127

Figure 5.13 Prevailing conditions in case of time-outs for the different scanner applications
and mobile phones. In case of the iPhone 3GS it is visible that although the mobile phone has
a built-in autofocus camera, i-nigma could often not recognize a code because the image was
blurry.

RedLaser

ShopSavvy

ScanDK

pic2shop

i-nigma

0

10

20

30

40

conditions present when timeouts occured

nu
m

be
r o

f o
cc

ur
en

ce
s

Timeout Conditions on iPhone 3GS

Google

ScanDK

0

5

10

conditions present when timeouts occured

nu
m

be
r o

f o
cc

ur
en

ce
s

Timeout Conditions on HTC Desire

RedLaser 3G

ShopSavvy 3G

ScanDK 3G

pic2shop 3G

0

50

100

150

conditions present when timeouts occured

nu
m

be
r o

f o
cc

ur
en

ce
s

Timeout Conditions on iPhone 3G

128 | Evaluation of Bar Code Scanners

Figure 5.14 Scanner speed and scanner ease-of-use as rated by users.

very

fast

quite

fast
ok

quite

slow

very

slow

RedLaser 2 2 5 6 1

ShopSavvy 6 8 2 0 0

ScanDK 13 3 0 0 0

pic2shop 2 4 8 2 0

i-nigma 0 2 6 6 2

0

2

4

6

8

10

12

14

nu
m

be
r o

f r
at

in
gs

Perceived Scanner Speed on iPhone 3GS

very

good

quite

good
ok

quite

bad

very

bad

RedLaser 1 6 9 0 0

ShopSavvy 4 9 3 0 0

ScanDK 14 2 0 0 0

pic2shop 3 10 3 0 0

i-nigma 0 1 11 2 2

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f r
at

in
gs

Perceived Ease of Use on iPhone 3GS

very

fast

quite

fast
ok

quite

slow

very

slow

Google 5 8 1 1 0

ScanDK 12 2 2 0 0

0

2

4

6

8

10

12

14

nu
m

be
r o

f r
at

in
gs

Perceived Scanner Speed on HTC Desire

very

good

quite

good
ok

quite

bad

very

bad

Google 5 8 2 1 0

ScanDK 12 4 0 0 0

0

2

4

6

8

10

12

14

nu
m

be
r o

f r
at

in
gs

Perceived Ease of Use on HTC Desire

very

fast

quite

fast
ok

quite

slow

very

slow

RedLaser 0 1 2 6 6

ShopSavvy 0 0 5 6 3

ScanDK 2 5 7 1 0

pic2shop 3 1 8 2 1

0

1

2

3

4

5

6

7

8

9

nu
m

be
r o

f r
at

in
gs

Perceived Scanner Speed on iPhone 3G

very

good

quite

good
ok

quite

bad

very

bad

RedLaser 1 1 5 5 3

ShopSavvy 0 3 6 6 1

ScanDK 7 5 3 0 0

pic2shop 4 6 1 3 1

0

1

2

3

4

5

6

7

8

nu
m

be
r o

f r
at

in
gs

Perceived Ease of Use on iPhone3G

Evaluation of Bar Code Scanners | 129

Figure 5.15 Number of positive and negative user reactions towards the performance of
scanners (left images). Number of times a specific scanner was selected after asking users
"Given the choice, which scanner(s) would you like to use?" (right images).

positive

negati…0

10

20

30

nu
m

be
r o

f r
ea

ct
io

ns

User Reactions on iPhone 3GS

RedLaser

9%
ShopSav

vy

10%

ScanDK

71%

pic2shop

10%

Which scanner on the iPhone 3GS

would you use?

RedLaser ShopSavvy ScanDK pic2shop

positive

negative

0

5

10

15

20

25

Google
ScanDK

nu
m

be
r o

f r
ea

ct
io

n

User Reactions on HTC Desire

Google

32%

ScanDK

68%

Which scanner on the HTC Desire would

you use?

Google ScanDK

positive

negative0

5

10

15

20

25

RedLaser
ShopSavvy ScanDK

pic2shop

nu
m

be
r o

f r
ea

ct
io

ns

User Reactions on iPhone 3G

ScanDK

54%

pic2shop

46%

Which scanner on the iPhone 3G would

you use?

ScanDK pic2shop

130 | Evaluation of Bar Code Scanners

5.1.3.2 User Interface-Related Feedback

The tested scanners feature different types of user interfaces (see Figure
5.12). The user interfaces can be divided into three classes based on the type
of viewfinder elements they provide:

1. Rectangle-shaped viewfinder elements, requiring or motivating the us-
er to locate the bar code inside the rectangle (RedLaser, ShopSavvy,
our scanner and Google)

2. Scan line-shaped viewfinder elements, requiring or motivating the user
to ensure the displayed line crosses the bar code on the screen
(pic2shop, Google)

3. No user interface elements (i-nigma)

Asked what kind of viewfinder type they preferred, 9 users answered the
rectangle-shaped viewfinder, 10 preferred the line and none preferred no
viewfinder at all (multiple selections were possible). Regarding the scan orien-
tation (landscape or portrait), 11 users preferred scanning in portrait mode
and 1 user the landscape orientation. Another user stated he would like to
have the choice. Regarding user comments and reactions during the scan
runs, the scan line based user interfaces were perceived as very easy to un-
derstand and use. Among the comments in the case of pic2shop were: "The
good thing about the red line is that he tells me how to hold it (the phone)" 22
or "very user friendly".

In contrast, the feedback provided by pic2shop and by other scanners when
the bar code could not be recognized in the first few seconds, was often un-
clear to users. Comments included "I don't know what this red or green
means, it is completely random. It showed me already so many green lines,
the code should be definitely recognized by now" (pic2shop), "I don't get it,
you have no clue about what is happening" (i-nigma) or "I'm not sure if I'm
too stupid or the scanner" (RedLaser).

5.1.3.3 General Observations and User Behavior

Based on user comments and behavior we made the following observations:

22 User comments have been translated from German. The original comments transcribed
from the recorded videos are listed in Appendix 9.2.2.

Evaluation of Bar Code Scanners | 131

• It seems difficult for many users to determine which codes are easy
and which are hard to recognize: While it is clear to most users that
very crumpled, thin or small codes are difficult to recognize, round
codes, codes on uneven surfaces like the water pack, toothpaste or
otherwise difficult codes were not perceived as difficult. Comments
included: "I wondered a few times why certain codes are recognized
so fast and others not at all. How can this be?", "What is so difficult
about this code?" or "Why do they (scanners) have problems with
this code?"

• Many users do not seem to recognize glare as a problem: Users who
were experienced23 with bar code scanners tried to avoid getting
glare on codes. However, many others did not try to avoid glare, e.g.,
in the case of the water bottle, even if the code could not be recog-
nized.

• It does not seem clear to all users that a well-aligned code on the
phone's screen improves the recognition. Some users held the phone
too far from the code, resulting in the code being small on the
screen. Others held the phone at a sharp angle to the code and re-
mained in such positions. Comments in such situations included for
example: "He (the scanner) does not like that (code). But he (the
code) looks so easy."

• If codes could not be recognized in the first few seconds, many users
did not try to change the situation (e.g., by varying the distance to
the code), but tried instead to hold the phone even more steadily (as
indicated on some user interfaces). Related comments included:
"Yeah, I'm holding still man... do something!"

• In the case of multiple or very thin bar codes on the image, users
found it easier to align the phone if the user interface had a line-
based viewfinder; especially in comparison with a rectangle-shaped
viewfinder or no viewfinder elements at all.

5.2 Scanner Analysis
Complementary to our user study, we performed a detailed analysis of bar
code scanners under controlled conditions. Results obtained in the user study
presented in the previous section do not necessarily represent the raw per-

23 Users who have used bar code scanning on their mobile phones before our user study.

132 | Evaluation of Bar Code Scanners

formance of bar code scanning algorithms, but the "real-world" performance
of complete systems. They are influenced by test users (e.g., novice or experi-
enced users), hard to control environmental conditions (e.g., shadows and
glare on codes, dependent on the scan position) and other imperfections (e.g.,
uncontrolled autofocus behavior).

In the scanner analysis, we investigated scanner features (e.g., the kind of
bar code symbology they can read), as well as recognition accuracy and speed
for different bar code types and lighting conditions. In contrast to the user
study, in which scanners were tested in a realistic environment, we deliberate-
ly ruled out the human factor (the complete study was performed by a single,
expert scanner) as well as the environmental factor (the analysis was per-
formed under controlled conditions) in order to obtain a clearer picture of the
strengths and limitations of scanners. In this section we present the set-up of
our analysis and selected results in order to complement the findings of our
user study.

5.2.1 Analysis Setup

5.2.1.1 Tested Bar Code Scanners

The scanners that were tested included all applications that had been tested
in the user study in addition to five scanners that were not able to recognize
codes in blurry images but which exhibited a good scan performance. We
used the same mobile phones as in the user study. Out of all available applica-
tions, the applications tested were selected based on the following criteria:

• They were available in the iPhone App store at the time of our analysis
(November 2010)

• They exhibited a good scan performance
• They could recognize arbitrary EAN13 and UPC12 codes. (For exam-

ple, some applications were able to recognize only bar codes of books
starting with "978...")

5.2.1.2 Analyzed Conditions

We analyzed recognition speed and accuracy in dependence on the following
conditions:

• Code size: Ranging from very small codes to very large bar codes
• Code color: Including codes with varying bar and background colors
• Code shape: Ranging from straight codes to very crumpled codes

Evaluation of Bar Code Scanners | 133

• Difficult codes: Including damaged bar codes or codes with text written
on top of them

• Lighting conditions: Including glares, shadows and very dark environ-
ments

Figure 5.17 provides an overview of the used test products as well as lighting
conditions for each test. Each scanner was tested in 31 situations. With each
scanner and mobile phone, we performed five scans for each test situation,
resulting in a total of 155 scans for each scanner. We placed each test prod-
uct in our setup (see Figure 5.16) that allowed us to control the lighting con-
ditions. For each scan run, we measured the time between removing the mo-
bile phone from a defined start position until the bar code was recognized.
We moved mobile phones as quickly as possible and always directly to an
optimal position in front of the bar codes:

• We ensured that the perspective on the code is directly from above

and not angular,
• The code had an optimal size on the phone's screen (tested beforehand

for each scanner),
• The images were perfectly sharp (to account for scanners that cannot

recognize codes in blurry images)

We again recorded the mobile phone's screen during the tests using the
setup shown in Figure 5.16. Based on the recordings, we measured the time
each scan required and whether a code has been recognized correctly or in-
correctly. If a code could not be recognized after 20 seconds, we aborted.

Figure 5.16 Mobile phone and camera holder used to record the phone's screen (left image).
Set up of our scanner analysis (right image). We used two daylight lamps in combination with
a photo tent for controlled lighting conditions.

134 | Evaluation of Bar Code Scanners

Figure 5.17 Subset showing 20 out of the 31 tested bar codes and conditions in the scanner
analysis.

Table 5.2 Features supported by scanner applications in the case of sharp images (on the
iPhone 3GS and HTC Desire):

Scan Features Red-
Laser

Shop-
Savvy

ScanDK pic2
shop

i-nigma Quick
Mark

Bar-
code
Ninja

Scan-
ner

Bar-
code
Plus

Google

SUPPORTED BAR CODE SYMBOLOGIES
EAN13/UPC-A YES YES YES YES YES YES YES YES YES YES
EAN8 YES YES YES NO YES YES NO YES YES YES
UPC-E YES NO YES NO YES NO NO NO YES YES
EAN128 NO NO YES NO YES NO NO YES YES YES
Code39 NO NO YES NO NO NO NO YES YES YES
GENERAL FEATURES
Auto. Symbology Detection PARTIALLY YES YES YES YES YES YES YES YES YES
Code Position Highlighting NO NO YES NO NO NO NO NO YES YES
SCANNING OF ROTATED BAR CODES
Upside-Down Codes YES YES YES NO YES YES NO YES YES YES
Codes in 90 Degree NO YES YES NO YES YES NO YES YES NO
Arbitrarily Oriented Codes NO NO YES NO YES NO NO NO NO NO

Table 5.3 Features supported by scanner applications in the case of blurry images (on the
iPhone 3G):

Scan Features RedLaser ShopSavvy ScanDK pic2
shop

SUPPORTED BAR CODE SYMBOLOGIES
EAN13/UPC-A YES YES YES YES
EAN8 YES YES YES NO
UPC-E YES NO YES NO
EAN128 NO NO NO NO
Code39 NO NO NO NO

Evaluation of Bar Code Scanners | 135

GENERAL FEATURES
Auto. Symbology Detection PARTIALLY YES YES YES
Code Position Highlighting NO NO YES NO
SCANNING OF ROTATED BAR CODES
Upside-Down Codes YES YES YES NO
Codes in 90 Degree NO YES YES NO
Arbitrarily Oriented Codes NO NO YES NO

5.2.2 Results of the Feature Analysis

We tested each bar code scanner application for the following features:

• Supported bar code symbologies: Not all available scanners are able to
read all bar code symbologies relevant for mobile services (see Section
2.2 for details regarding the different symbologies).

• Auto-symbology detection: Not all scanners are able to automatically
detect a bar code's symbology in the image. Some require users to
manually set the symbology of certain bar codes that should be recog-
nized in the application settings, or provide a switch on the scanner's
user interface.

• Code position highlighting: Indicates whether a scanner highlights the
recognized code visually after recognition. This feature reassures users
that the correct code has been scanned when multiple bar codes are
present in an image.

• Upside-down code scanning: Indicates whether a scanner is able to
read codes positioned upside-down on the phone's screen.

• Vertical code scanning: Indicates whether a scanner is capable of read-
ing codes positioned vertically on the phone's screen. This is often
achieved by rotating one or multiple scan lines 90 degree and does not
require a scanner to be able to read arbitrarily rotated bar codes.

• Rotated code scanning: Indicates whether a scanner is able to recog-
nize codes arbitrarily rotated on the phone's screen.

Table 5.2 presents the supported features of scanners in the case of sharp

images (e.g., on the iPhone 3GS and HTC Desire) and Table 5.3 shows the
same for blurry images such as on the iPhone 3G. On the latter, several fea-
tures are harder to achieve due to the blurry images obtained on this device.

Flexibility regarding the exact alignment of bar codes on the phone's screen
is relevant in practice, especially in situations in which the exact alignment is
difficult. For example, for heavy products, items on high shelves, or products
locked in show-cases. Features supporting this flexibility are the possibility to
scan upside-down, vertical or otherwise oriented bar codes on the screen. An-

136 | Evaluation of Bar Code Scanners

other important factor is the largest and smallest allowed size of bar codes on
the phone's screen for being still recognizable. We measured these values for
each scanner and calculated the dynamic range of each scanner as follows:
dynamic range = lp – sp, whereas lp corresponds to the largest still recog-
nizable code size in percent of screen width and sp to the smallest still recog-
nizable code size in percent of screen width. The larger the dynamic range,
the more flexible scanners are with respect to the required distance to the
code. Figure 9.3 in the Appendix shows the determined dynamic range for
tested scanners on the iPhone 3GS.

5.2.3 Quantitative Results

When comparing scan accuracy and the average time required for a single
scan based on all 31 tests, the relative results between scanners correspond
generally to results obtained in the user study. Figure 5.19 shows the meas-
ured scan accuracy. For the iPhone 3G the number of correctly recognized
codes in the scanner analysis is in general higher and the differences among
scanners are slighter. This might be attributable to the optimized scan behav-
ior and controlled lighting conditions. Figure 5.18 presents the scan speed.

5.2.3.1 Speed and Accuracy Advantage of Blurry Code Recognition

When looking at the scan accuracy for very small bar codes (see Figure 5.20),
it can be seen that the accuracy of most scanners that cannot recognize blur-
ry bar codes on the iPhone 3GS is quite low. This is due to the fact that the
iPhone's camera cannot focus on very close objects and the images remain
slightly blurred.

Figure 5.22 shows the scan speed for easy-to-recognize bar codes. The iPh-
one 3GS scanners that are able to recognize codes in blurry images are (with
the exception of RedLaser) usually faster than scanners requiring sharp imag-
es. This is the case, despite the fact that all scanners exhibit a good scan accu-
racy and the perfect positioning of all scanners during the test that ensured
cameras could focus on the codes. This speed advantage is a result of the time
the camera required to focus. Results on the HTC Desire are even more pro-
nounced, with the Google scanner requiring nearly three times (2.72) as long
for a scan than our solution.

Evaluation of Bar Code Scanners | 137

Figure 5.18 Average scan speed for a single scan, based on all 31 tests.

Figure 5.19 Scan accuracy for all 31 test situations.

RedLaser ShopSavvy ScanDK pic2shop NeoReader i-nigma QuickMark BarcodeN. Scanner BarcodeP.

time in ms 3168 2187 1747 2219 2701 2730 2914 3748 3277 3085

0

1000

2000

3000

4000

5000

tim
e

in
 m

ill
ise

co
nd

s

Average Scan Times on iPhone 3GS

RedLaser ShopSavvy ScanDK pic2shop

time in ms 2910 3049 1819 3020

0

500

1000

1500

2000

2500

3000

3500

tim
e

in
 m

ill
ise

co
nd

s

Average Scan Times on iPhone 3G

Google ScanDK

time in ms 2911 1557

0

1000

2000

3000

4000

tim
e

in
 m

ill
ise

co
nd

s

Average Scan Times on HTC Desire

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop NeoReader i-nigma QuickMark BarcodeN. Scanner BarcodePlus
time-outs 12,73 15,57 0,00 16,35 12,90 23,08 5,52 20,42 5,42 5,77

false-positives 6,06 7,19 0,64 2,52 0,00 0,64 4,91 18,85 6,63 0,64

correct codes 81,21 77,25 99,36 81,13 87,10 76,28 89,57 60,73 87,95 93,59

Scan Accuracy on iPhone 3GS

0%
20%
40%
60%
80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop
time-outs 33,54 29,81 24,52 26,35

false-positives 3,73 3,73 0,00 7,19

correct codes 62,73 66,46 75,48 66,47

Scan Accuracy on iPhone 3G

0%

20%

40%

60%

80%

100%

Google
ScanDK

pe
rc

en
t o

f s
ca

ns

Google ScanDK
time-outs 12,35 5,77

false-positives 4,32 0,64

correct codes 83,33 93,59

Scan Accuracy on HTC Desire

138 | Evaluation of Bar Code Scanners

Figure 5.20 Scan accuracy on the iPhone 3GS for a small bar code.

Figure 5.21 Scan accuracy on the iPhone3GS for codes on a non-straight (e.g., crumpled or
round) surface.

Figure 5.22 Speed results for easy-to-recognize bar codes.

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop NeoReader i-nigma QuickMark BarcodeN. Scanner BarcodePlus
time-outs 0,00 0,00 0,00 0,00 0,00 100,00 100,00 25,00 42,86 100,00

false-positives 0,00 0,00 0,00 0,00 0,00 0,00 0,00 37,50 28,57 0,00

correct codes 100,00 100,00 100,00 100,00 100,00 0,00 0,00 37,50 28,57 0,00

Scan Accuracy on iPhone 3GS

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop NeoReader i-nigma QuickMark BarcodeN. Scanner BarcodePlus
time-outs 55,56 50,00 0,00 53,57 20,00 44,00 0,00 61,29 11,54 0,00

false-positives 7,41 10,71 3,85 10,71 0,00 0,00 3,85 19,35 3,85 0,00

correct codes 37,04 39,29 96,15 35,71 80,00 56,00 96,15 19,35 84,62 100,00

Scan Accuracy on iPhone 3GS

RedL. ShopS. S.DK pic2s. NeoR. i-nig. Q.M. Bar.N. Scann. Bar.P.

time in ms 2907 1666 1070 1933 2562 2839 2343 3485 2609 2710

0

500

1000

1500

2000

2500

3000

3500

4000

tim
e

in
 m

ill
ise

co
nd

s

Average Scan Times on iPhone 3GS

Google ScanDK

time in ms 2036 747

0

500

1000

1500

2000

2500

tim
e

in
 m

ill
ise

co
nd

s

A. S. Times on HTC Desire

Evaluation of Bar Code Scanners | 139

Figure 5.23 Scan accuracy in the case of shadow on the bar code.

5.2.3.2 Limitations of Blurry Code Recognition

Despite its advantages in scan speed and accuracy for well-lit, straight bar
codes, blurry code recognition has its limitations when the code geometry is
round, crumpled or otherwise distorted and lighting is difficult. This can be
seen in the case of very blurry images, but there was also a decline in scan
performance among the scanners that were capable of recognizing blurry
codes on the iPhone 3GS. Figure 5.21 shows the average scan accuracy on a
set of difficult test runs. With the exception of our scanner, all scanners able
to scan blurry bar codes exhibit a poor performance, while many scanners
that are able to recognize only sharp images show much better results (except
for BarcodeNinja, which performed poorly in general). We do not know what

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop NeoReader i-nigma QuickMark BarcodeN. Scanner BarcodePlus
time-outs 100,00 100,00 0,00 33,33 0,00 20,00 0,00 100,00 0,00 0,00

false-positives 0,00 0,00 0,00 16,67 0,00 0,00 0,00 0,00 0,00 0,00

correct codes 0,00 0,00 100,00 50,00 100,00 80,00 100,00 0,00 100,00 100,00

Scan Accuracy on iPhone3GS

0%

20%

40%

60%

80%

100%

pe
rc

en
t o

f s
ca

ns

RedLaser ShopSavvy ScanDK pic2shop
time-outs 100,00 100,00 0,00 80,00

false-positives 0,00 0,00 0,00 0,00

correct codes 0,00 0,00 100,00 20,00

Scan Accuracy on iPhone3G

0%

20%

40%

60%

80%

100%

Google
ScanDK

pe
rc

en
t o

f s
ca

ns

Google ScanDK
time-outs 100,00 0,00

false-positives 0,00 0,00

correct codes 0,00 100,00

Scan Accuracy on HTC Desire

140 | Evaluation of Bar Code Scanners

methods scanners use to decode bar codes; however, the results indicate that
the methods used by scanners that were capable of scanning blurry codes are
less suited for difficult conditions. Our scanner performs well on all tests. This
can likely be attributed to the two decoder approach (see Chapter 3), which
supports our design decision. Figure 5.23 shows the scan accuracy in case of
shadows on the bar code. Results confirm that our compensation for uneven
lighting introduced in Section 3.3.4 performs well.

5.3 General Results and User Interface
Guidelines

Based on our user study and scanner analysis, the implemented demonstra-
tors as well as feedback from industry partners such as the Metro Future
Store Initiative [12] or the Markant Group [13], we made several observations
regarding the scan behaviors of users and limitations of the tested scanners.
In this section, we summarize these observations (Section 5.3.1) and propose
guidelines for designing user interfaces of bar code scanners for mobiles
phones (Section 5.3.2).

5.3.1 General Results

5.3.1.1 Performance of Bar Code Scanners

Regarding the performance of bar code scanners, we made the following ob-
servations:

• Recognizing bar codes on devices without autofocus cameras works
well for easy-to-recognize bar codes on flat surfaces, such as those typ-
ically found on books, DVDs, or electronics, but there are serious limi-
tations in the case of irregular surfaces, such as crumpled codes often
found on grocery items.

• Blurry images are still a problem even on devices with autofocus cam-
eras. They complicate, or even prevent, the recognition of small bar
codes and slow down the recognition process.

• The scan accuracy of most tested scanners for easy-to-recognize bar
codes is good. However, there are large differences among scanners for
difficult bar codes and poor lighting conditions (e.g., shadows).

• The same relative differences in scan speed and accuracy of scanners
observed under controlled conditions and obtained with an expert user

Evaluation of Bar Code Scanners | 141

(in the scanner analysis), are also observed in the case of realistic con-
ditions and less experienced users (in the user study).

• False-positives occur frequently (up to 10% of all scans for some scan-
ners). False-positives are most common with bar codes that are not flat,
and when the phone is further away from the bar code, so that the bar
code appears very small on the phone's screen but is still recognizable.

5.3.1.2 Scan Behavior of Users

We made the following observations about the scan behaviors of users:

• Most users try to orient bar codes horizontally on the phone's screen, if
they can (e.g., when they have good access to products). Only few us-
ers tried to scan bar codes that are not horizontally aligned on the
screen but otherwise oriented.

• Users will often not distinguish bar codes being upright from those
that are upside-down on the screen.

• The most important criterion for users to choose a specific scanner is
scan speed (given false-positives are not considered). They expect bar
codes to be recognized within the first few seconds.

• It is difficult for users to distinguish among easy- and hard-to-recognize
bar codes, especially on mobile phones without an autofocus camera
and with the exception of obviously crumpled or damaged bar codes.

• Many users do not realize that even minor glares, an angular perspec-
tive on codes or the wrong distance to the bar code pose major prob-
lems for most scanners.

• If bar codes are not recognized after a few seconds, users generally do
not know how to proceed in order to maximize their chances of having
the scanner recognize the bar code.

• Most users prefer holding the phone in portrait orientation while scan-
ning.

• Users prefer viewfinder elements that help them to align the bar code
on the phone's screen. Even though users, according to our question-
naire, preferred rectangle- and line-shaped viewfinder elements alike,
user feedback recorded during the scan runs indicated that interfaces
that feature line-shaped viewfinders are perceived as easier; especially
when multiple codes or thin bar codes are present in an image.

• The most common problems related to user behavior that prevented
the recognition of codes were the scanning from an angular perspec-
tive, and holding the mobile phone too far from the code.

142 | Evaluation of Bar Code Scanners

5.3.2 User Interface Guidelines

In practice, the user interface of a bar code scanner should serve multiple,
sometimes even mutually exclusive purposes. Depending on the underlying
application, it should allow both novice and expert users to scan bar codes as
quickly and effortlessly as possible, entertain users, or communicate infor-
mation like a brand name or logo, to name but a few goals. In terms of the
following guidelines, we focus solely on optimizing the recognition process
itself, and try to find a compromise that is suitable for experienced and inex-
perienced scan users alike.

The process of recognizing a bar code can be separated into different, po-
tentially overlapping phases, based on the time passed:

1. The alignment phase: From starting the scanner application until the
phone is positioned in front of the bar code that should be recognized
and the code is aligned on the phone's screen

2. The early recognition phase: Starts after the bar code has been aligned
and lasts for the first 3-5 seconds, or until the code has been recog-
nized or the user aborted the recognition process

3. The extended recognition phase: Starts after the early recognition
phase in the case no code could be recognized, and lasts either until a
code has been recognized or the user aborted the recognition process

4. The feedback phase: Starts after a code has been recognized and lasts
until the next, application-specific action starts (e.g., the focus switch
from the recognition screen back to the application's main user inter-
face)

Each phase has different goals that should be achieved in order to optimize

the overall recognition process in terms of speed and ease-of-use:

1. In the alignment phase, users should be supported in aligning the bar
code on the phone's screen in an optimal position. The optimal posi-
tion depends on the scan technology used, but usually means that the
code is horizontally aligned, has a size on the phone's screen that is op-
timal for the specific scanner (typically around 70% of the screen's
width), and the perspective on the code is from straight above.

2. In the early recognition phase, feedback should be provided to the user
in order to signal the presence of a bar code in the images and the op-
eration of the bar code recognition process. In the case of easy-to-

Evaluation of Bar Code Scanners | 143

recognize bar codes, the code is usually recognized immediately or af-
ter the first few seconds.

3. If the code could not be recognized in the early recognition phase, de-
tailed feedback should be given to users about how to proceed. Prefer-
ably, this should be context-sensitive, based on the problem at hand.
Users should be instructed to align the code in an optimal position (see
details in alignment phase), to avoid glares and shadows on the code,
and to ensure that images are sharp. If the code still cannot be recog-
nized, users should slowly vary the distance to the bar code in order to
maximize the odds for recognition. If a code is non-recognizable (such
as when the code features an unsupported symbology or is damaged),
this should be communicated to the user. For such situations, fallback
solutions should be available that allow for the manual entering of a
product's name or bar code number.

4. After the code has been recognized, direct feedback should be provid-
ed to users. The suitable form of feedback, e.g., optical, acoustic, or
haptic through vibrations, depends on the user's preferences and con-
text. In the case of multiple bar codes in the image, the recognized
code should be highlighted.

Figure 5.24 Images illustrating the state of the user interface during the alignment phase
(left image), extended recognition phase (middle image) and feedback phase (right image).

144 | Evaluation of Bar Code Scanners

5.3.2.1 User Interface Concept

The following user interface (UI) concept complies with the above-presented
guidelines and represents one possible UI implementation for scanners that
addresses both novice users and scan experts. It serves as an example and has
not been evaluated with test users (compare to screens shown in Figure 5.24):

1. Alignment phase: After starting the scan process, the UI is simple and
contains only a scan line that indicates to users to place the scan line
through the bar code (see left image in Figure 5.24). The length of the
scan line indicates the approximate size that a bar code should have on
the screen. Furthermore, the scan line helps users to align the phone in
the case of thin bar codes or multiple codes correctly. Furthermore,
advanced users can avoid local glare and damages on codes. No addi-
tional hints are provided at this phase. Our assumption is that expert
users do not need further recognition tips, and novice users do usually
start without first reading instructions, or sometimes do not under-
stand them (e.g., when they are written in a foreign language that the
user does not understand).

2. Early recognition phase: If the recognition algorithm detects a bar
code, we change the color of the scan line to signal to users that the
recognition engine is working. No additional feedback is provided,
since experience shows that in most cases bar codes are either recog-
nized immediately, or a longer phase requiring corrections from the
user follows.

3. Extended recognition phase: If no code has been recognized, we pro-
vide feedback to the user in order to ensure that the code has the op-
timal size on the screen, and the perspective on the code is from
straight above. This is done by drawing rectangles that indicate the op-
timal and the current code position, as well as arrows highlighting the
difference between these two rectangles (see middle image in Figure
5.24). If the code still cannot be recognized after being close to the op-
timal position, we can vary the size of the target rectangle that indi-
cates the optimal code position so that users can adjust the distance to
the code. Highlighting the current bar code's position also ensures us-
ers that the correct code is processed. If the code still cannot be recog-
nized, we advise the user that he or she should enter the code number
manually.

Evaluation of Bar Code Scanners | 145

4. Feedback phase: After a code has been recognized, we provide imme-
diate feedback by flashing the screen, playing a brief sound or activat-
ing the phone's vibration alert. In addition, the color of the scan line is
changed to green and the recognized bar code is highlighted on the
screen.

At any time, the user can enter the code number or name manually and
abort the recognition process by pressing a button.

5.4 Summary
Compared to earlier studies [77], all tested scanners showed much-increased
recognition speed, accuracy, and performed well on easy-to-recognize codes.
However, substantial differences between scanners remain. Our user study
and the scanner analysis showed that our solution outperforms other solu-
tions in terms of scan accuracy and recognition speed. The advantage of our
scan engine compared to the other considered solutions is especially apparent
in the case of difficult bar codes (e.g., codes on crumpled surfaces) and poor
lighting conditions such as shadows.

In addition to the comparison of bar code recognition engines, we made
some general observations about users' scan behaviors and gave guidelines
for designing user interfaces for bar code scanners on mobile phones.

146 | Mobile Services

6 Mobile Services
While being a broadly applicable identification technology, one important use
case for bar code recognition on mobile phones are consumer-oriented mo-
bile applications that provide services and information to products. This sec-
tion presents an overview of such "mobile services".

We provide an exemplary overview of application scenarios (Section 6.1)
and analyze the strengths and weaknesses of different identification technol-
ogies for these use cases (Section 6.2). Section 6.3 concludes with a brief dis-
cussion of two additional components that affect the practicability of con-
sumer-oriented mobile services. The first is mobile network performance and
coverage (such as in stores), which is relevant when retrieving product-
related data; the second deals with the availability of appropriate sources for
such data.

With respect to product identification technologies, we argue that bar code
recognition has certain advantages compared to 2D optical code recognition,
NFC technology, and general image recognition for many consumer-oriented
retail applications and that the bar code recognition is likely to remain rele-
vant in the foreseeable future.

Figure 6.1 Screenshots from mobile phones illustrating some of the mobile services we pro-
totypically implemented.

Mobile Services | 147

6.1 Application Scenarios
With the proliferation of smartphones that are capable of installing and run-
ning third-party applications in recent years, an increasing number of mobile
applications have appeared that offer product-related services and infor-
mation. Many of these applications would benefit from automated product
recognition technology. To provide an overview of possible services, the fol-
lowing table includes brief descriptions of several consumer-oriented mobile
services. Figure 6.1 shows screenshots of demonstrators that we implemented
for some of these services.

Table 6.1 Example applications offering information and services to products:

Name Description
Allergy-Assistant After users defined a list containing all of the sub-

stances to which they are allergic (e.g., on the Web
or directly on a mobile phone), the application tells
them if a specific product is fine for them or not,
after they scanned the product's bar code.

Price Comparison Many online platforms offer up-to-date price infor-
mation for specific sales items (e.g., electronics,
books, or DVDs). After scanning a productʼs bar
code, users can check directly in stores how much
they would have to pay for the same product at
another retailer.

Instant eBay-Auctions When selling less valuable items, such as books or
CDs on eBay, the required effort (e.g., manually cre-
ating a new eBay auction, writing a description of
the item, and taking pictures) can easily outweigh
the expected gain. After scanning a product's bar
code with the “Instant eBay-Application”, a descrip-
tion and images of the item are obtained from Am-
azon. Based on this information, a new eBay auc-
tion is generated automatically. Finally, the user is
informed if the product is sold. This reduces the
effort required when selling small items to scanning
the item's bar code.

Product Ratings Users can check online product ratings to obtain a
second opinion in addition to the product infor-

148 | Mobile Services

mation provided in the store and on the productʼs
packaging. Ratings can be obtained from other
stores (e.g., Amazon), or from user communities.

Inventory-
Management

Even though a smartphone might never be able to
compete with specialized identification equipment
(e.g., professional, ruggedized laser scanners) in
business environments, there are many use cases,
in which smartphones suffice. They are capable of
recognizing bar codes and can be used, for exam-
ple, to scan and catalogue items in a warehouse or
to generate an inventory of a user's private books
or CDs.

Self-Checkout Especially when buying only a few items, having to
wait in line at the checkout can be cumbersome.
Self-checkout applications allow users to scan the
content of their shopping carts with their
smartphones and check-out at automated terminals
by means of their mobile phones (see the Metro
MEA project [82]).

Extended Packaging Space on the packaging of many items is limited for
many reasons, including a small overall package
size or legal regulations requiring certain infor-
mation to be present. Especially with premium
products, manufacturers would prefer to include
more information about the product (e.g., how and
where it was manufactured), dynamic content (e.g.,
videos), or interactive content (e.g., games or lotter-
ies). Smartphones that are capable of recognizing
products are well-suited platforms for delivering
this additional content to consumers.

Country-Check Users can check in which country a product was
manufactured. Providing this information in a fast
and transparent way to consumers enables them to
make informed decisions while shopping. The same
holds for other product-related data, e.g., infor-
mation about specific product ingredients, such as
genetically modified substances, which might be
highly relevant for certain user groups.

Mobile Services | 149

Figure 6.2 Examples of 2D code symbologies.

6.2 Product Identification
Technologies

6.2.1 2D Codes

Compared to traditional bar codes, 2D codes also use the second dimension to
encode data in patterns of varying size, shapes and colors. Depending upon
the specific code symbology and pattern size, 2D codes have several ad-
vantages compared to bar codes:

• They can in general include more data than bar codes, especially if
codes with many small features (e.g., black or white blocks) are used.

• Due to prominent guiding patterns present in many 2D codes, they are
more robust against misalignments.

• If larger patterns are used, 2D codes are quite robust against low-
quality and blurry images. Extensive built-in error correction mecha-
nisms and error correction code words (e.g., in the case of the PDF417
code) further increase this robustness.

150 | Mobile Services

In particular the robustness against misalignments and low-quality, low-
resolution images of certain 2D codes, for example, the Visual Code devel-
oped by Michael Rohs [10], allows for the optical recognition of 2D codes
with older mobile phones. Therefore, many research projects used 2D codes
to link real-world objects to virtual information [8, 83].

There is a wide variety of different 2D code symbologies available for
different use cases and application scenarios (see Figure 6.2). Certain codes
such as the VisualCode, ShotCode, or Pictorial Code24 [84], were developed
specifically with low-quality mobile phone cameras in mind, whereas others,
like the Datamatrix or QR code, were also developed to improve data capacity
for industrial applications [85]. Furthermore, certain codes provide additional
features that enable new forms of interaction. For example, the VisualCode
that features two prominent guiding bars and therefore allows for a robust
detection of the camera's position in relation to a code. This information can
be used to map arbitrary image coordinates to corresponding coordinates in
the code's pane, which allows for example for the interaction with different
elements printed on a magazine's page, while requiring only one code for the
whole page [21]. The VisualCode developed by Rohs and the Pictorial Code
from Tack-don Han are optical codes with limited data storage capabilities,
but in turn their large patterns allow for the codes to be recognized even in
the case of blurry images on fixed-focus camera phones.

QR codes [86] were developed in 1994 and have since then been widely
used, especially in Japan. QR codes can be found on vending machines, in
magazines, on the packaging of certain products, on street signs, and in vari-
ous other places. This widespread adoption of QR codes is due to the fact that
NTT DoCoMo [87] included QR code readers early on in many mobile hand-
sets it sold. Standard QR codes have a maximum pattern size of 177x177
blocks and encode up to 2.953 bytes of data, which corresponds to 4.296
alphanumeric characters [88]. Whereas reading large QR codes, such as those
printed on advertising billboards, is possible on devices without auto-focus
cameras, smaller QR codes, particularly those containing a large amount of
data, require auto-focus-enabled devices. Compared with other proprietary 2D
code symbologies, QR codes have become an open international standard
(ISO/IEC 18004 [89]) .

24 The Pictorial code encodes 10 digits and features a matrix of 5x5 elements of varying
shapes and four possible colors.

Mobile Services | 151

Figure 6.3 Application examples of 2D codes: posters (upper-left image), magazines (upper-
right image), tagging of electronic devices (lower-left images), and for linking real-world de-
vices to their Web-presence (lower-right image).

152 | Mobile Services

Despite the advantages of 2D codes, their use as universal identifiers for re-
tail products is limited by the fact that bar codes are currently the standard-
ized means for product identification. Bar codes are already present on virtu-
ally all items. Furthermore, hardware for scanning these codes is available
throughout the supply chains world-wide. Therefore, the use of 2D codes is
likely to be limited to application scenarios where either new codes have to be
printed anyway or there are special requirements; for example, specific aes-
thetic considerations in magazines or advertisements, or in situations in
which the encoding of more data is required than would fit in a standard bar
code (e.g., for vouchers [90]). Increasingly, 2D codes are also being used to
provide direct Web-links for objects and places, such as in the FavoritePlaces
project launched by Google [91]. The latter encourages businesses to place an
AR code in their windows. By scanning this code, customers can access addi-
tional information about the store (such as user reviews) or obtain coupons.
Figure 6.3 illustrates some typical use cases of 2D codes.

While not the predominant choice for product identification, 2D codes and
their many variants, such as 3D or 4D codes, which add dimensions via colors
[92] or patterns that change over time (for example, on displays like in work
presented by Langlotz and Bimber [93]), offer a number of advantages with
respect to the optical recognition and remain a particularly attractive choice
for many other application areas.

Figure 6.4 NFC/RFID tag and the Nokia 3220 device with NFC support (left image), and the
Google Nexus S device with NFC support (right image).

Mobile Services | 153

6.2.2 Near Field Communication (NFC) Technology

Near Field Communication (NFC) is a technology that allows for the short-
range exchange of data between a device and an NFC/RFID tag. Communica-
tion is based on inductive-coupling and generally requires no line-of-sight
between the reading device and the tag [94]. In addition to early prototypical
mobile phones featuring NFC technology, such as the Nokia 3220 (see Figure
6.4), recently an increasing number of consumer devices with NFC technology
are appearing on the market (e.g., the Google Nexus S).

NFC/RFID technology has several advantages compared to the optical
recognition of bar codes. Most notably, the recognition process itself can be
automated. Instead of scanning each item in a large palette of products sepa-
rately, in theory, all items can be scanned in parallel. This saves both time and
labor in industrial environments. RFID technology has therefore advantages in
domains in which fully automated, high-throughput product identification is
required. However, regarding the identification of single items by a consumer,
RFID technology also has major advantages compared to bar codes. RFID tags
can store more data, and on some tags, this data can also be changed dynami-
cally. In combination with the Electronic Product Code (EPC) [95], sales items
can be assigned a world-wide unique identification number. In contrast to bar
codes, this unique number allows not only for the identification of a product
type, but also the identification and tracking of product instances. These
unique properties of the NFC/RFID technology enable services not possible
using traditional bar codes, such as anti-counterfeit measures [96, 97].

Despite the benefits of RFID technology, an item-level rollout, such as hav-
ing an RFID tag on every single supermarket product, is still expected to be
several years away. Current tag costs, as well as interference issues with wa-
ter or on metallic surfaces, at least for cheaper tags, make the widespread
appearance of RFID tags on everyday supermarket items relatively unlikely
anytime soon. RFID tag use will likely be restricted to specialized application
areas, in which these problems are not particularly prominent, such as in tag-
ging library books, clothing, or higher-priced items. Mobile payment [98] and
ticketing [99] also represent typical application scenarios for NFC-enabled
mobile phones.

Compared to optical recognition technologies, NFC technology promises a
better user experience due to its reduced line-of-sight requirements and lower
susceptibility to dirty or damaged codes and environmental conditions, such
as lighting. However, studies indicate that the user experience is comparable
to the optical recognition of codes on mobile phones, at least with current

154 | Mobile Services

technology. The results of a study from OʼNeill et al. [100] that compared the
ease of scanning in the case of 2D codes and NFC tags indicate that untrained
users preferred the optical codes, whereas trained users were faster when
recognizing the NFC tags. Reischach et al. [6] also compared the speed and
ease of scanning technologies in a user study. They concluded that bar code
recognition on mobile phones could be conducted nearly as quickly and con-
veniently as scanning RFID tags. Using NFC to identify a product in this study
took users on average 3.3 seconds, as opposed to an average of 5.5 seconds
with bar code recognition and an early version of our recognition software
[22] on a Nokia N95 device (see Figure 6.5). In our study reported in Section
5.1, scanning bar codes on an iPhone3GS or Android HTC Desire mobile
phone took users on average 2 seconds with the recognition engine presented
in this thesis. However, results for NFC may change in the future with ad-
vancements in NFC technology itself and its improved integration into mobile
devices.

6.2.3 Image Recognition

General image recognition techniques that do not rely on special markers at-
tached to products, but instead identify a product based directly on one or
multiple images are a promising technology. Various recognition methods
have been proposed [101-103]. Commercial implementations include Google
Goggles [76] and services provided by Kooaba [104].

One advantage of this technology is that products not featuring bar codes
have the potential to be recognized. This enables, for example, post-sale ser-
vices to products for which the bar codes are no longer available, e.g., be-
cause they were located on the packaging, or services for products in stores
with missing bar codes.25 However, for our specific use case of recognizing
retail products, general image recognition technology has also several draw-
backs:

• Identification of the enormous number of products available requires a
large database of product images or product feature sets, which must
be created and maintained. This process is currently not feasible for all
products sold worldwide.

25 Retailers sometimes remove bar codes from products in the sales floor in order to hinder
comparability, e.g., in case of electronics.

Mobile Services | 155

• If present, such databases must be stored somewhere and searched in
a reasonable time. Such tasks that are in general not feasible directly
on mobile phones and therefore require a server-based approach, or
combined approaches, such as those described in [105], in which ob-
jects are tracked on mobile devices but the object identification is per-
formed on a remote server.

• The variety of products available combined with the degree of freedom
users have in taking images of a product pose a serious challenge: Us-
ers can vary the angle or distance from which an image is taken, the
lighting may differ, and other products on the shelf may appear in the
background, to name but a few issues.

In spite of these challenges, which prevent the use of image recognition in

identifying a wide range of general products on mobile phones, the technolo-
gy offers a great deal of potential and advantages in situations in which the
set of objects to be recognized can be limited and the degrees of freedom in
taking images of the product can be reduced. Such situations encompass the
recognition of book covers, the imprints on wine bottles, the facade of famous
buildings, or movie posters.

6.2.4 Manual Code Entry

The most straightforward method by which to identify a product is to manual-
ly enter a product's code or name, particular as this method is available on all
mobile phones, regardless of their capabilities. Reischach et al. investigated
the advantages of automatic product identification versus manual product
identification in a user study with 17 participants [6]. The means of product
identification considered included:

• Manually entering a product's EAN13 bar code number
• Manually entering a search term (such as the product name)
• Optical bar code recognition
• NFC tag scanning
• EPC26 tag scanning

26 The Electronic Product Code (EPC) standard allows for RFID tags to be identified using UHF
signals (860-960 MHz) from a distance of up to 5 m and is mainly intended for supply chain
applications. The Nokia prototype E61i, featuring an integrated EPC UHF reader, was used for
the study.

156 | Mobile Services

Results indicate that automatic recognition technologies have a major ad-
vantage over manual code entry or search term entry in terms of perceived
ease-of-use and identification speed (see Figure 6.5). Scanning NFC tags
turned out to be nearly eight times faster than the manual search term entry.
Manually entering a 13-digit bar code took participants around 14.4 seconds.
These findings indicate that while manual code or search term entry remains
an important fall-back solution for phones without a camera or situations in
which the automated identification fails, e.g., due to lacking or damaged la-
bels, it is not an alternative equivalent to the automatic identification of prod-
ucts.

Figure 6.5 Average required scan time and rated ease-of-use for different interaction meth-
ods as determined by Reischach et al. [6].

Figure 6.6 Examples of DataBar codes on fruit.

0

5

10

15

20

25

30

35

40

45

manual

code

entry

manual

product

search

bar code

scan

NFC tag

scan

EPC tag

scan

tim
e

in
 se

co
nd

s

Average Scan Times

0

1

2

3

4

5

6

manual

code

entry

manual

product

search

bar code

scan

NFC tag

scan

EPC tag

scan

ra
tin

g
(0

=
 d

iff
ic

ul
t,

5
=

 e
as

y
to

 u
se

)

Rated Ease of Use

Mobile Services | 157

6.2.5 Bar Codes

Bar codes were introduced in the retail industry in 1974 [106] as a means of
automatically identifying products. Today, they represent the standard meth-
od of uniquely identifying merchandise items worldwide. The bar code stand-
ard and the process of issuing unique numbers is managed by GS1 [107]. Alt-
hough different bar code symbologies are available, the EAN/UPC code family
is the one most widely used on products (see Figure 2.5).

The strongest argument for using bar codes to identify products by means
of mobile phones is the fact that they are already an established standard and
available on most products. A complete replacement of bar codes as the pri-
mary means of product identification, e.g., with RFID or 2D codes, remains
unlikely for the foreseeable future. The requirement of replacing existing
scanning hardware used in the industry in such a case is a substantial argu-
ment on its own. Furthermore, in 2010, GS1 introduced the successor of the
codes that are currently used, namely the GS1 DataBar27 code [108]. This
code is another bar code and is intended to supplement codes that are cur-
rently used, specifically in areas in which existing EAN/UPC codes have their
limitations [106] and until technologies such as RFID are ready for an item-
level tagging:

• Small and hard-to-mark goods: DataBar codes can be printed smaller
and offer the option of being printed in a stacked form with two bar
codes on top of one another, which is more suitable for round surfaces.
Due to this flexibility, items can be tagged that are currently not la-
beled, such as fruits, making the manual weighting process obsolete
(see Figure 6.6).

• Couponing: DataBar codes can store a larger number of digits and
therefore enable additional services, such as couponing.28 29 [109]

• Variable measure products: Pilot tests are being conducted with varia-
ble measure products, such as meat, seafood, or cheese. In such cases,

27 Formerly referred to as Reduced Space Symbology (RSS)
28 "In the US, coupons are a significant business. Unfortunately, it has been limited by con-
straints around old coupon guidelines and bar code structures. GS1 DataBar will revitalize
and provide the potential to greatly improve the coupon industry." Doug Naal, Kraft [163].
29 Since January 2011, all manufacturer coupons in the United States and Canada have tran-
sitioned to the GS1 DataBar symbology [108].

158 | Mobile Services

information such as "best before date", the country of origin, or prod-
uct weight can be encoded in the bar code.

New scanning equipment sold in the recent years is already able to scan
DataBar codes, and existing systems have been upgraded where possible
[110]. Our recognition method can be extended easily for the recognition of
such DataBar codes.

The main drawback of bar codes, compared with 2D codes and NFC, is the
limited amount of information that can be encoded. Bar codes can identify
product types, but not single items. While this limitation excludes certain ser-
vices, such as anti-counterfeiting, being able to identify the product type is
sufficient for most mobile services presented in Section 6.1. In spite of their
limitations, bar codes represent a good solution for product identification in
many consumer goods applications today and for the foreseeable future.

6.3 Practicability of Mobile Services
Aside from product identification, two other aspects influence the practicabil-
ity of mobile services, namely access to and the availability of product-related
data.

6.3.1 Data Access via Cellular Networks

After product recognition, many mobile services rely on remote access to
product-related information. In practice, information might be stored on the
mobile device itself or can be locally accessed using WLAN or Bluetooth in-
frastructures where available. However, the most prominent technology for
enabling a ubiquitous connectivity in the case of mobile phones are cellular
networks. GSM (Global System for Mobile Communication) and EDGE (En-
hanced Data Rates for GSM Evolution) networks are already deployed in most
countries worldwide30 [111]. Faster 3G technology networks, such as HSPA
(High Speed Packet Access) networks, are also increasingly available31 [112],
and the next generation LTE (Long Term Evolution) already approaches32
[113]. Access to product-related data and services requires sufficient network

30 As of January 2011, 531 EDGE networks exist in 196 countries [111].
31 In January 2011, 416 HSPA networks were launched in 161 countries [112].
32128 LTE network deployments are planned or in progress in 52 countries, including 17
systems that have already been launched commercially [114].

Mobile Services | 159

bandwidth, short communication delays, and network coverage in relevant
places, such as stores.

Bandwidth: While data rates on GPRS (General Packet Radio Service) net-
works (up to 114 kBit/s) and EDGE networks (up to 384 kBit/s) are already
sufficient for many services that require only a limited amount of data to be
transmitted to the mobile phone, the data rates of 3G (such as UMTS, HSPA,
HSPA+) or 4G (LTE) networks are even sufficient for multi-media content
streaming. Already 65% of HSPA networks support a 7.2 MBit/s or higher
peak downlink capability, and even the HSPA+ networks (HSPA Evolution,
commonly referred to as HSPA+) that support up to 42 MBit/s peak downlink
data speed are market ready. Some operators are already preparing to intro-
duce the next evolutionary step at 84 MBit/s.33 Targets for LTE include peak
downlink data rates of at least 100 MBit/s and uplink peak data rates of 50
MBit/s [114].

Table 6.2 Measured round-trip-times in 2007 of cellular networks in milliseconds based on
1000 runs:

 GPRS HSDPA
Average 383.2 ms 215.2 ms
Minimum 186 ms 171 ms
Maximum 9429 ms 1844 ms

Latency: Generally even more critical than bandwidth are network delays.

According to results from Stuckmann, Ehlers, and Wouters [115] from 2002,
with the TCP protocol one can expect round-trip times of 500ms – 2s for
GPRS/EDGE networks and 100ms-200ms for UMTS/HSDPA networks. How-
ever, latency on mobile phone networks is influenced by several factors that
are difficult to predict, such as the network operator, mobile phone model,
and the quality of reception in certain locations. Reliable results are therefore
hard to produce. We performed our own spot test by measuring the round-
trip-times between a client application written in J2ME on a Nokia N95 mo-
bile phone and a Java-based server on a regular PC, both at the same location
in 2007. Table 6.2 lists the measured times for messages sent on a GPRS and

33:"HSPA+ is now mainstream. This has been achieved in only 23 months since the first
HSPA+ system was commercially launched. The recent trend was for operators introducing
mobile broadband services to launch with HSPA. Most operators entering the market today
are going straight to HSPA+.", Alan Hadden, President of the GSA [112].

160 | Mobile Services

an HSDPA network. Despite the lack of reliability in such measurements, the
results indicate, that for mobile services that require data only once after a
product has been scanned, the delays currently found on mobile phone net-
works are already within an acceptable range. Furthermore, the situation is
set to improve with technologies like LTE that promise delays below 5ms
[116].

Coverage: As of 2011, the network coverage of most mobile phone opera-
tors in densely populated areas can be considered to be sufficient. GSM cov-
erage maps provided by Mobile World Live [117] show nearly 100% coverage
in urban areas in Europe and the United States. Furthermore. tests we per-
formed in 2011 in various stores in Switzerland and Germany indicated a
good mobile phone reception in most locations.

6.3.2 Availability of Product-Related Information

With a robust and fast identification technology, such as the bar code recog-
nition, and sufficiently fast cellular networks, most services presented in Sec-
tion 6.1 can be realized from a technical point of view. However, one central
component of these services has not been addressed so far: The availability of
product-related data.

Whereas some services listed in Table 6.1 do not require previously availa-
ble data about products to be useful (e.g., the Inventory-Management applica-
tion) or only information about a limited set of products (e.g., price infor-
mation about the products sold in a specific store for self-checkout), many
consumer-oriented applications require data about a large number of prod-
ucts (e.g., the Allergy-Assistant or Product-Rating services). Users are likely to
lose interest if the service they use provides information only for every tenth
product they scan. In addition, services, such as the Allergy-Assistant, require
not only detailed information about ingredients for a large number of prod-
ucts, but this information should be reliable, up-to-date, and comprehensive.
In the following, we list different sources of product-related information as
they are available of today.

One possible source of information about products are companies, such as
Amazon [118], BestBuy [119], Google [120], and others that offer already
Web-based, product-related services, including shopping, price comparisons,
and product ratings. This information is in general available for a large set of
products, up-to-date, and available to third-party developers. While access to
this data is often free for prototype creation and testing, commercial use of
the provided data is regulated, and there are some forms of legal or technical

Mobile Services | 161

limitations in place, e.g., the maximum amount of requests to the Web-
services offered is limited to a certain number of requests per day.

In addition to the aforementioned companies, there are numerous associa-
tions and consumer watch groups that have product-related data. Examples
include the Alliance for Justice (AFJ) [121], Consumer Action [122], MaxHa-
velar [123], Ktipp [124], ÖkoTest [125], and others. While this data is usually
available only for a limited set of products and is not always accessible online,
the information, such as in-depth test reports, is in general quite detailed and
highly relevant for certain user groups.

Another option to obtain product-related data involves community- and
crowd sourcing-based approaches. There are several projects that allow users
to enter and manage product-related data, e.g., WikiFood [126] and Co-
decheck [127]. While these projects are a potential source of otherwise una-
vailable knowledge, such as user comments and personal opinions, the infor-
mation usually does not cover all available products and might be too unreli-
able for some applications (e.g., the Allergy-Check application).

Traditionally, product-related data that is relevant throughout the supply
chain has been managed and provided in the industry by data pools, such as
SINFOS, 1SYNC, iTrageNetwork. GXS, and others. Information about these
sources as well as a complete list of currently certified data pools can be
found in [128]. These data pools include information like package size and
product weight. For many food items, there is also a list of ingredients availa-
ble. To allow for a centralized access to this information, the data pools are
synchronized and connected with the Global Data Synchronization Network
(GDSN) provided by GS1 [129]. However, even though these data pools con-
tain detailed information in certain product categories, the information is in
general not freely available or complete, given the abundance of items sold in
typical stores.

6.4 Summary
There is a large variety of product-related mobile applications imaginable that
enable consumers to access information and services to retail products. In
contrast to traditional, product-related websites consumed in front of a sta-
tionary personal computer, many of these applications are most useful in a
mobile scenario, such as when people are standing in a supermarket aisle and
considering buying a product. In such a scenario, a streamlined user interac-
tion, including a fast and convenient way to identify products, is essential.

162 | Mobile Services

In this chapter, we presented examples of consumer-oriented mobile ser-
vices and discussed relevant product identification technologies. Besides the
recognition of bar codes, we covered the optical recognition of 2D codes,
RFID/NFC technology, general image recognition, as well as the manual input
of product numbers or names. While each technology has its use cases and
many have specific advantages compared to the recognition of bar codes, bar
code recognition technology is especially suited for enabling mobile services
today and in the foreseeable future. All components required for such ser-
vices are already available. Most sales items have bar codes printed on them,
many users have camera-equipped mobile phones, and mobile data plans are
becoming more common. Furthermore, using the existing bar code numbers
as primary means for product identification has the advantage that already
existing, product-related information can be leveraged.

Rapid Prototyping of Mobile Services | 163

7 Rapid Prototyping of
Mobile Services

Over the past few years, mobile phones have evolved into attractive platforms
for novel types of applications. However, compared to the design and proto-
typing of desktop software, mobile phone development still requires pro-
grammers to have a high level of expertise in both phone architectures and
low-level programming languages. In this chapter, we analyze common diffi-
culties in mobile phone programming and present SPARK, a rapid prototyping
environment for Symbian smartphones that allows non-experts to create ad-
vanced mobile services in a fast and easy way. We also present the results of
two case studies in which SPARK has been used: a graduate course on distrib-
uted systems in which 73 students used SPARK to develop mobile applica-
tions, and the development of a mobile phone-based product information
platform. Information about SPARK contained in this chapter was already
published in [130].

7.1 Motivation
Mobile phones are attractive development platforms: They are ubiquitous,
highly mobile, provide significant computing power, and increasingly also
offer an abundance of built-in sensors. Concrete projects use mobile camera
phones to recognize bar codes or 2D codes and offer services to retail prod-
ucts, such as those presented in the previous Chapter 6, or use the phoneʼs
built-in GSM, GPS or WLAN modules for location-based services [131]. Others
perform “reality mining” through Bluetooth sightings in order to map social
networks and everyday activities [132] or generate noise-maps of environ-
ments with the help of the phoneʼs built-in microphone [133, 134].

Despite todayʼs abundance of feature-rich mobile phone hardware and
powerful software platforms, creating applications that leverage the plat-
formsʼ potential is still a time-consuming process that challenges non-expert
developers by requiring in-depth know-how [135]. This is especially true for
applications that require full control of the device and its sensors. JavaME
[136], the Java runtime available on many mobile phones, is, due to its limited
APIs, severely restricted when it comes to full phone control. This forces

164 | Rapid Prototyping of Mobile Services

many application designers to delve into low-level programming languages,
such as C++ Symbian [137] or Objective C [138]. While a number of scripting
languages are available for mobile phones (e.g., Lua [139], Ruby [140], Flash-
Lite [141] or Hecl [142]), they come with drawbacks. Either they are still in
the early development stages (e.g., Lua and Ruby), run on top of the phoneʼs
Java runtime and thus fare no better than Java ME (e.g., Hecl), or allow only
limited device control (e.g., FlashLite).

One notable exception is the Nokia-initiated Python language for S60
(PyS60) [143, 144], as it builds on an easy-to-learn scripting language, is im-
plemented in native Symbian C++ and therefore offers direct access to most
available phone functions. Furthermore, it is extensible through C++ modules.
However, PyS60 development is not without difficulties. Its Symbian heritage
requires programmers to be comfortable with the typical Symbian develop-
ment process, e.g., how to package an application for distribution or sign an
application in order to gain access to sensors like GPS. The latter requires
knowledge about how to obtain the appropriate certificates and of the com-
plex Symbian Signed [71] process. Last but not least, any application devel-
opment on Symbian phones, be it low-level, Java-based, or scripted, faces ad-
ditional challenges when it comes to general development issues: Developers
must repeatedly upload, debug, and update their software on the actual de-
vices, a process that is frequently time-consuming and fraught with errors on
Symbian devices. Furthermore, they have to ensure that the software runs on
different device types or update already deployed applications, e.g., in order
to fix bugs.

The goal of our system is to provide an easy and fast to use development
environment for mobile phone applications, particularly for developers unfa-
miliar with mobile phone programming. This is achieved by providing a rapid
prototyping environment that leverages the strengths of the existing PyS60
eco system and systematically addresses the problems of mobile phone proto-
type development.

We structured the rest of this chapter as follows: Section 7.2 describes the
remaining difficulties with the PyS60 development process in particular and
of application design for mobile phones in general. Drawing from these chal-
lenges, Section 7.3 then presents the SPARK architecture and its implementa-
tion. Section 7.4 compares SPARK with existing solutions and discusses alter-
native application development options. SPARK has been used in a number of
our research projects, in teaching, and in several larger projects with industry
partners. Sections 7.5 and 7.6 discuss two example case studies: a student

Rapid Prototyping of Mobile Services | 165

class on distributed systems and the "Product Advisor", a customizable plat-
form for mobile services.

7.2 Challenges
Based on several PyS60 projects conducted in the past, we identified a num-
ber of general areas that make the application development process challeng-
ing. These areas are especially problematic for beginners, who face a steep
learning curve even when using PyS60 instead of C++ Symbian. Further issues
arise in application scenarios that target large user deployments and frequent
code updates, e.g., as part of an early adopter rollout or during long-term user
studies.

7.2.1 Beginnersʼ Challenges

When teaching colleagues and students on how to use PyS60, we noted three
main obstacles for beginners: application signing, application packaging, and
setting up a working development environment:

7.2.1.1 Application Signing

With Symbian OS v9, Symbian introduced a security system that is based on
application capabilities34 and certificates [71]. Gaining access to certain fea-
tures (e.g., the GPS module or GSM cell information) requires users to choose
or compile the Python interpreter and PyS60 modules with the required ca-
pabilities and sign them with a certificate covering these capabilities. Getting
to know the complex "Symbian Signed"-processes, obtaining software mod-
ules that have been compiled with the appropriate capabilities, as well as ob-
taining certificates that grant more capabilities, is a complicated and time
consuming task.

7.2.1.2 Application Packaging

To distribute an application on multiple devices, all application files must be
packaged as a Symbian Installation System (SIS)35 file. This requires not only

34 Capabilities control access to various sensitive features of the phone (17 in total), for ex-
ample, the userʼs current location. If a developer wants a PyS60 program to query the current
location, its calling shell must have been registered with this “capability” and subsequently
digitally signed with a capability-enabling certificate. Some capabilities can be “self-signed”,
others can only be signed by the phone manufacturer.
35 SIS files package application files for installation.

166 | Rapid Prototyping of Mobile Services

performing the above-mentioned application signing but also choosing a
matching application identifier (which must be in a particular range based on
the certificate used for signing), building the SIS file, and providing an appro-
priate application icon in a special SVGT format [145].

7.2.1.3 Development Environment Setup

Compared to other programming alternatives (especially C++ Symbian),
PyS60 drastically simplifies the process of programming. However, even
though PyS60 comes with a range of tools to support development, getting to
know what components and tools are required and available for what kind of
Symbian version (e.g., the 2nd and 3rd Symbian S60 editions differ signifi-
cantly), as well as setting them up, is non-trivial and may differ across desktop
operating systems. Preparing, for example, a homework assignment involving
PyS60 that covers all possible combinations of student hardware and soft-
ware is quite time-consuming.

7.2.2 General Challenges

Even after users became familiar with PyS60 programming, three general is-
sues continued to make the application development process tedious: the
need for on-device testing, the variety of available devices, and software up-
date management:

7.2.2.1 On-Device Testing

Emulators are no substitution for on-device testing of applications. They do
not behave exactly like the real hardware (e.g., regarding stack size, handling
of low-memory situation or timing), and usually do not support all features
(e.g., camera support). This requires the developer to ultimately test the appli-
cation on actual devices, including the time-consuming task of copying and
executing all updated application files on the phone, which results in long and
tedious “code, edit, execute”-cycles.

7.2.2.2 Multi-Device Support

Despite common programming platforms, such as Symbian S60 or even Java
ME, every phone model is different. Therefore, mobile phone applications
need to be tested practically on every single device (including different firm-
ware revisions) on which they will be deployed to ensure proper operation.
Given the above-mentioned lengthy “code, edit, execute”-cycles, testing each
program modification on all supported devices is a time-consuming task.

Rapid Prototyping of Mobile Services | 167

Figure 7.1 SPARK system architecture consisting of a client application running on mobile
phones (SPARK Client) and a development environment (SPARK Environment) on a PC.

7.2.2.3 Remote Application Updates

Large-scale and long-term application deployments invariably come to the
point when critical updates or missing features need to be rolled-out to all
handsets. A deployment such as the Metro Mobile Shopping (MEA) applica-
tion [82] used in the Metro future store, which allows users to scan products
with their phone to perform self-checkout, has 100 registered users and
around 30 in-store devices. Fixing a bug or adding new features requires all
users to bring in their mobile phone for servicing, as typical users would not
be able to easily install a provided SIS file on their mobile phones. Developers
would be equally challenged by manually updating over 100 devices with a
new software version.

7.3 Rapid Prototyping with SPARK
In the following, we will present the SPARK architecture and describe its im-
plementation. SPARK specifically focuses on removing the above-mentioned
obstacles from PyS60 programming. It lowers the entry barrier for program-
mers unfamiliar with mobile phone architectures and simplifies the general
development cycles in order to support the development and deployment of
large-scale, real-world applications.

168 | Rapid Prototyping of Mobile Services

7.3.1 General Architecture

The SPARK rapid prototyping environment is an OS-independent software
that facilitates the simple and fast creation, testing, and deployment of arbi-
trary PyS60 applications. It builds on the available PyS60 resources [143]
and extends these with features that address the six previously identified
problems (Section 7.2). The environment comes in an easy-to-install single
package and requires no prior knowledge about mobile phone programming
or PyS60. With only a basic knowledge of Python, developers can immediate-
ly start creating applications. Specifically, the design of SPARK followed the
four principles below:

1. Low entry barrier: Application creation should require no prior
knowledge of mobile phone programming or PyS60, as well as mini-
mum time and effort.

2. No application restrictions: No restrictions should be placed on the
type of applications that can be created.

3. Quick application creation: Setup should be fast, “code, edit, execute”-
cycles quick and application deployment simple.

4. Ease of use: Non-experts should be able to create powerful applications
by abstracting from complex tasks.

As shown in Figure 7.1, the SPARK system consists of two parts: A mobile
phone application (SPARK client) and a desktop Java application (SPARK envi-
ronment). Each mobile phone application is represented as a project in the
SPARK environment. A project is simply a directory on the userʼs PC that con-
tains all application files. Application files include typically one or more Py-
thon source code files and additional resources, such as images or sound files.

The SPARK environment allows users to manage (create, copy, and delete)
projects, install and execute projects on connected phones, and to package
projects into distributable SIS files. The SPARK clients act as containers on the
mobile phones that provide a connected SPARK environment with remote ac-
cess to the device. Multiple SPARK clients (and therefore multiple mobile
phones) can be connected to a single SPARK environment (see Figure 7.2).
SPARK supports USB, Bluetooth, WLAN, and cellular connections.

Rapid Prototyping of Mobile Services | 169

Figure 7.2 Multiple mobile phones with the SPARK client software can be connected to a
SPARK environment instance.

To allow new users to quickly begin with development, the installation pro-

cess has been designed to be simple: A prepackaged SIS file must be installed
on each development phone, and a single installer file (e.g., EXE for PCs or an
OS-independent JAR) needs to be installed on the desktop computer. The
SPARK clientʼs SIS file contains all resources needed for PyS60 development
on Symbian 9 2nd and 3rd edition smartphones, such as the Nokia N73,
N95/8g, or business phones like the E61, and thus requires no additional
software. Specifically, the SPARK client SIS file contains the following compo-
nents:

• C++ Symbian stub application starting the PyS60 interpreter
• PyS60 interpreter
• SPARK client application written in PyS60
• Additional C++ Symbian modules for common tasks not covered by the

used PyS60 implementation (version 1.4.5), including Bluetooth scan-
ning, XML parsing, or a module for the recognition of bar codes.

The SPARK environment installer contains the components listed below:

• A Java Runtime Environment (JRE 6)
• The SPARK environment application written in Java
• A collection of example programs and useful links to PyS60 documen-

tation

170 | Rapid Prototyping of Mobile Services

7.3.2 SPARK Environment

The SPARK environment provides several services that apply to the currently
connected mobile phones (SPARK clients) and the list of managed projects.
For each connected phone, users can open a window providing remote access
to this device. A remote control window displays basic information about the
phone, such as the phone model and IMEI36 number, provides a remote Py-
thon console with syntax highlighting, and allows the execution of selected
projects on the phone by simply pressing a button (see Figure 7.3). The re-
mote console provides users with a direct and interactive way to explore
PyS60, test code found on the Web, e.g., by simply pasting it into the console,
or to inspect parts of running applications.

Figure 7.3 Screenshots of the SPARK environment showing three open windows: The left
window shows all currently connected mobile phones, the right the list of projects, and the
middle the remote control window for a connected phone displaying the current program
output.

36 The IMEI “International Mobile Equipment Identity” number is a unique number for every
mobile handset sold world-wide.

Rapid Prototyping of Mobile Services | 171

Figure 7.4 Typical development setup with a maximized remote control window for a con-
nected mobile phone (lower left), the project files (upper left), and a Python editor showing
the source code of the application (right).

Figure 7.5 Screenshots from the SPARK client application (left three images) and the “appli-
cation packaging” dialog (right image).

172 | Rapid Prototyping of Mobile Services

If multiple, potentially different mobile phones are connected to the SPARK
environment, users can execute projects in parallel on multiple selected
phones and monitor their real-time output, allowing for the simple detection
and correction of application problems occurring on some phone models.

Creating new projects is supported by a wizard dialog, allowing users, for
example, to use application templates as a starting point for their own appli-
cations. Available templates can easily be changed or extended, e.g., with user
generated ones. Project management in the SPARK environment is very light-
weight. The environment contains no internal Python editor or file manager
and allows users therefore to choose their preferred tools instead. The SPARK
environment simply keeps track of the main project directories, offering vari-
ous actions for each of them. Figure 7.4 shows a typical development work-
space, with a file manager listing the project files, the SPARK environment
with a maximized remote console for a connected phone, and a third-party
Python editor for source code modifications. A typical “code, edit, test”-cycle
is as follows: The user makes some changes to one or more project files, e.g.,
code or images. After saving the changes, she presses the “Copy & Run” but-
ton on the SPARK remote console window. The SPARK environment will de-
termine what files have changed, copy only the changed files to the mobile
phone, and then run the updated project through the SPARK client. The appli-
cationʼs output can then be monitored on the remote console. This allows for
agile development, as saving changes and then pressing the “Copy & Run”-
button is all it takes. The following automatic process of compiling and start-
ing an application on the phone is usually also fast, e.g., on the N95 8g less
than a second for smaller projects and only a few seconds for large applica-
tions.

Once an application is ready to be deployed, i.e., installed as a standalone
application, the “application packaging” dialog (see Figure 7.5) provides a
simple way of doing this. It allows for the generation of SIS files that contain
all necessary project files, in addition to any software that might be required
for the application to run, such as the Python interpreter or required C++ ex-
tension modules. The SPARK environment also greatly simplifies the complex
application signing process by allowing users to choose between two different
application signing options: The “SelfSigned” option allows the software to be
installed on all devices, but with only limited capabilities, while the “Devel-
operCertificates” option can grant more rights, but (depending on the actual
certificate type) this usually limits application deployment to mobile phones
with registered IMEI numbers. Depending on the userʼs choice, unique appli-
cation identifiers (UIDs) from the correct range are generated automatically

Rapid Prototyping of Mobile Services | 173

and the correct versions of all extension modules available for inclusion in the
final SIS package are selected. Furthermore, a code parser inspects the pro-
jectʼs Python source code files and recommends the inclusion of required ex-
tension modules in the final SIS package. Miscellaneous tasks, such as scaling
the applicationʼs icon to the required size and converting it to a special subset
of the SVGT format for S60 devices, are also automated.

The auto-update mechanism of SPARK is targeted specifically at large-scale
deployments. Developers can configure the generated standalone mobile
phone applications in such a way that they will periodically monitor for
changes in their original project files and automatically update themselves
without the need for end-user interaction. This allows for subsequent changes
to already deployed applications.

The SPARK environment has been designed in an open and extensible way,
allowing developers to easily add their own application templates, Python
extension modules, or signing options (including custom certificates). The
SPARK environment also uses external software: The BlueCove Bluetooth
stack [146] for Bluetooth communication and the Ensymble [147] tool for
building SIS files. Created SIS files can be distributed and installed like any
other mobile phone application – they do not require any additional software
to be present on the phone prior to installation.

7.3.3 SPARK Client

The SPARK client software allows the SPARK environment to remotely access
a device. It is a stand-alone application written in PyS60 and acts as a con-
tainer for projects that should be executed on the mobile phone.

Figure 7.5 depicts screenshots from the SPARK client application showing
the main screen, the options dialog, and a console window. The main screen
displays information about the currently contained project, such as the pro-
jectʼs name, icon, and version information, and indicates whether the SPARK
client is currently connected to a SPARK environment instance. Connections
to an environment can be established using Bluetooth, WiFi, or cellular net-
works. While cellular network connections also tend to be responsive enough
for many tasks, we have found Bluetooth to provide the shortest delays when
working with the interactive console. Standard output and error messages
from executed applications can be viewed not only remotely on an SPARK
environment, but also locally on the phone in a console window. Once a pro-
ject has been copied to a SPARK client, the project can also be started directly
from the mobile phone without the need for a connected SPARK environment.

174 | Rapid Prototyping of Mobile Services

7.4 Related Work
A number of projects have recognized the need for providing rapid prototyp-
ing tools for mobile phone development. In this section, we will cover prior
work on rapid prototyping platforms for mobile phones (Section 7.4.1), dis-
cuss alternative options for mobile phone programming (Section 7.4.2), and
contrast SPARK with existing tools that specifically target PyS60 program-
ming (Section 7.4.3).

7.4.1 Rapid Prototyping Platforms

Holleis and Schmidtʼs MakeIt [148] system allows for the creation of applica-
tion interfaces for mobile phones using (state, action)-graphs. MakeIt specifi-
cally targets the gap between Integrated Development Environments (IDEs)
and paper prototyping. One of its key features is the fact that created applica-
tions can be simulated and analyzed according to the Keystroke-Level Model
(KLM). Its main difference from SPARK is the fact that the systemʼs focus is on
interface creation and that it allows only for the creation of Java ME tem-
plates. This requires developers to use a Java ME development environment
and limits the prototypesʼ functionality to what Java ME supports.

Campaignr [149] is a C++ Symbian software for mobile phones that sup-
ports data collection from a large set of sensors. It can be used to get both
continuous and triggered audio, video, and location data from the device, al-
lowing also non-experts in C++ Symbian to easily access and use this infor-
mation. In a similar manner, the MyExperience [150] system also supports
the collection of data from users, with the specific feature of allowing users to
enrich the data gathered with subjective information that focuses on the us-
erʼs activities (e.g., “working” or “biking”). Compared to SPARK, both Cam-
paignr and MyExperience are specific applications that can be configured us-
ing XML files. They are specialized for the creation of customized data-
collection applications and do not support the development of other applica-
tion types.

Li and Landyʼs ActivityDesigner [151] allows users to create activity-driven
prototypes using a visual designer and to test and deploy these applications
on multiple devices, including mobile phones. This platform is similar to
SPARK in so far as it targets non-experts, and allows for the simple and fast
creation of applications suitable for prolonged, real-world usage. However,
ActivityDesigner focuses more on the design process itself, and supports mo-

Rapid Prototyping of Mobile Services | 175

bile phone deployment only as part of a JavaScript-based Web application
that runs in a mobile phoneʼs Web browser.

ContextPhone [152] is a prototyping platform consisting of C++ Symbian
modules that can be customized to sense and store data on a mobile phone
and to communicate data between a phone and a “sink” application. While
ContextPhone can significantly ease and accelerate application creation for
mobile sensing applications, it is not an out-of-the-box solution, but a collec-
tion of C++ Symbian components that require users to be familiar with C++
Symbian development. This renders it unusable for non-expert users [135].
The same holds for the rapid application development system presented in
[153], which provides a framework for C++ Symbian development that eases
GUI creation, data access, and communication on this platform.

7.4.2 Mobile Phone Programming Options

Todayʼs smartphones support an abundance of different programming op-
tions. We focused our work on the Symbian S60 platform, as this platform
was the prominent development platform when starting the project in 2008.
It still features the most available devices [154] and is currently the only plat-
form with a scripting environment that includes bindings for most system
functions.

Whereas the iPhone has attracted significant interest and momentum as an
open development environment, it requires the use of Objective C for native
application development. While being a powerful language, Objective C is not
suited for prototype creation by non-experts. Scripting languages, on the oth-
er hand, are currently not supported on the iPhone due to license restrictions
from Apple.

Java ME [136] is in general a good programming option for non-experts,
featuring extensive tool support and documentation. There is a large set of
frameworks available that simplify and accelerate application development,
such as J2ME Polish [155]. The BaToo toolkit [14] we created falls into the
same category, being mainly a Java ME framework that supports the creation
of services to retail products, based on bar code recognition. However, as we
already pointed out, Java ME offers only a limited set of APIs and lacks exten-
sion options, such as the Java Native Interface (JNI) in MIDP [136], which
severely restricts application capabilities. Examples of restrictions include the
lack of support for newer sensors, such as 3D accelerometers, lack of support
for accessing video images from the camera for image recognition tasks (e.g.,

176 | Rapid Prototyping of Mobile Services

allowing only access to single images), or the lack of in-depth control of Blue-
tooth scanning processes.

C++ Symbian offers speed and full control of devices, but it features a very
steep learning curve, mainly due to the sub-optimal tool support and lack of
documentation. Furthermore, unique Symbian language concepts, such as
ActiveObjects, Descriptors, or Resource files are complicated and thus difficult
to use [135]. For the rapid prototype creation by non-experts, C++ Symbian is
no option.

One additional platform that became attractive and is rapidly evolving is
Android [156]. Especially since the availability of the Android Native Devel-
opment Kit (NDK), which allows developers to write applications both in an
easy-to-learn Java dialect for the Dalvik JMV [157], and outsource perfor-
mance-critical code in C / C++ modules. However, despite its ease of use and
well-documented resources, programming Android devices still requires more
time and is less interactive compared to a dynamic scripting language execut-
ed on the phone. Nevertheless, projects like SL4A37 (Scripting Layer for An-
droid) [158] have recently emerged, which aim not only at allowing scripting
languages to be interactively executed on Android devices, but also provide a
set of bindings for several existing APIs.

7.4.3 PyS60-Related Tools

Python for S60 has been introduced by Nokia in 2006 and has since then
gained a lot of attention by developers, which is due to several reasons: It is
simple to learn and use, it features a large set of APIs (especially compared to
Java ME), it is extensible through C++ modules, it features an open source
license, and an abundance of demo applications for numerous tasks is already
available [159, 160].

Due to PyS60ʼs popularity there are already tools available that address
some of the shortcomings that we identified in Section 7.2. PUTools [147] and
the PythonShell application contained in the standard PyS60 Python distribu-
tion [143] feature a remote Bluetooth console that allows users to remotely
execute commands on the mobile phone. The SPARK implementation of this
feature offers an easier setup by completely encapsulating the Bluetooth con-
nection setup – a process that needs to be done manually by the developer
when using PUTools or the PythonShell. SPARK also supports WiFi and cellu-

37 As of February 2011 the project is still in Alpha status.

Rapid Prototyping of Mobile Services | 177

lar networks for remote connections, e.g., when the desktop machine has no
Bluetooth hardware, or when access to the phone is required “in the field”.
The latter use case is complemented by allowing SPARK developers, for ex-
ample, to inspect devices by taking remote screenshots. Furthermore, SPARK
provides syntax highlighting and persistent logging, and the Bluetooth con-
sole is integrated into the remote console dialog described in Section 7.3.2
that offers additional services.

PUTools also provides a command line tool for copying files to the mobile
phone. In contrast, the feature offered by SPARK is seamlessly integrated into
the SPARK environment, allowing the developer to copy and execute project
files using a single button press. SPARK also simplifies application execution,
which is not covered at all by the PUTools. Whenever a new version is up-
loaded to the phone, SPARK automatically ensures that the old module ver-
sion is unloaded so that the new version will be considered upon execution.
Using SPARK, the developer is also relieved from micro management tasks,
such as deciding where on the phone to store the application files during de-
velopment and deployment. SPARK ensures that all Python source code files
and resources are always found and properly managed.

Ensymble [147] is a development project offering a command line tool for
packaging PyS60 files into standalone SIS applications. SPARK uses the En-
symble tool and extends it with additional features to reduce the amount of
knowledge required by the developer. In addition to providing a GUI for En-
symble, SPARK adds the following features: The ability to automatically
choose modules that have the appropriate capabilities and have been signed
using the correct certificate, the automatic creation of a suitable application
UID, icon creation, a code parser for recommending external modules to in-
clude, and an auto-update mechanism.

7.5 Use Case 1: Use in Teaching
7.5.1 Setup

We used the SPARK rapid prototyping environment in the fall of 2008 as part
of a practical course accompanying a lecture on distributed systems. The
course had 73 enrolled graduate students, all from computer science. The
topic "mobile phone programming" was not covered in the lecture, and stu-
dents were not required to have had prior courses or knowledge in mobile
phone programming. The idea was to have students explore some of the con-
cepts of distributed systems in a hands-on manner by programming applica-

178 | Rapid Prototyping of Mobile Services

tions on a mobile phone. Students had three weeks to design and implement a
project using PyS60. They were given access to the SPARK environment, but
were free to use it or not (and instead rely on the standard PyS60 tools). Due
to the limited time available, students were given only a 30 minute introduc-
tion to PyS60 and SPARK. They were then asked to form groups of two to
work on the projects. We had 50 Nokia N95/8g devices at our disposal38, so
each group was given one or two phones. The students were free to take the
devices home during the exercise period. Feedback was gained in multiple
ways: At the end of the project, students were asked to present their applica-
tions to their peers and to us. We also encouraged students to approach us
with questions during the exercise and asked them to fill out an online ques-
tionnaire with 26 questions about PyS60 and the SPARK rapid prototyping
environment at the end of the course. We received 30 answers to the anony-
mous questionnaire (a return rate of 41%). The SPARK environments by de-
fault logged all system events and user interactions with the software into a
simple text file. Participants were informed about this logging, had the chance
to review the data, and were asked to provide us with this file on a voluntary
basis. Twenty-five students sent us the log files.

Figure 7.6 Given answers to the question "How useful do you think are the following fea-
tures of the SPARK environment?"

38 Thirty devices were graciously provided by Nokia.

Easy setup

(phone and

PC software)

Having a

remote

console

Edit project

files on PC

and execute

them on the

phone

Package files

and create

distributable

SIS files

Test

programs in

parallel on

different

phones

Provided

extension

modules (e.g.

bar code

recognition)

Highly useful 8 14 22 11 5 13

Useful 18 8 5 8 7 7

Somewhat useful 1 5 0 3 2 4

Not useful 0 0 0 0 0 1

N/A 0 0 0 5 13 2

0

5

10

15

20

25

nu
m

be
r o

f s
tu

de
nt

s

Rapid Prototyping of Mobile Services | 179

7.5.2 Results

All 30 respondents ended up using SPARK, and only 2 students also used al-
ternative methods to develop their PyS60 application.

Entry barriers: The students were asked how easy it was for them to get
started with PyS60 development using SPARK. The majority found it very
easy (51.9%) or easy (44.4%). We also asked students to tell us about any in-
stallation problems they experienced with the SPARK environment. Fifteen
answered this optional question, with 13 stating they had no problems and 2
stating that they had Bluetooth issues on Windows Vista and Linux.

SPARK features: Figure 7.6 shows how useful students rated the various
features of SPARK for their project. Support for automated SIS package gen-
eration and for concurrent development on different device types were rated
as being not that important. Since these features address problems occurring
mainly in real-world deployments, this is not surprising. Asked to tell us what
kind of features they missed, most students stated that they wished they had
had access a real PyS60 debugger (77.8%).

General Feedback: The majority of students found the SPARK environment
highly useful (66.7%) or useful (25.9%) for realizing their project. All students
indicated that they would use the software again and that they would recom-
mend it to colleagues. Answers to the open question about what they liked
most about the software included: "Easy to use; good looking; worked instant-
ly", "It makes the development very easy and fast.", "The time you need to de-
ploy and test the code is very short.", "Easy, simple, fast, reliable, free to use".
Things that students disliked about SPARK were: "Bluetooth problems" and
"Missing built-in help".

Figure 7.7 Screenshots from the Product Advisor application showing the start screen (left
image) and general layout with the camera images in the background and the different plug-
in icons on top (middle and right image).

180 | Rapid Prototyping of Mobile Services

7.6 Use Case 2: Product Advisor
The "Product Advisor" application is a proof-of-concept demonstrating that
SPARK and PyS60 can be used to build complex and time-sensitive mobile
services. The application represents a mobile phone-based information plat-
form for retail products. It allows users to automatically recognize products
using a PyS60 extension module we have written in C++ Symbian that encap-
sulates a version of our sharp bar code decoder. The application itself acts as
a container in which different information "plug-ins" (arbitrary PyS60 applica-
tions) can be executed. For example, one such plug-in could compare product
ingredients against a user-provided allergy list to alert consumers to allergic
reactions, similar to the already presented "Allergy Check" application.

The basic application layout (see Figure 7.7) is optimized to provide users
with a quick overview of a product and allows them to easily access more de-
tailed information if required, e.g., why the product might be dangerous for
them. The application background always shows the camera images, thus al-
lowing the user to keep the product in sight and scan its bar code. Each plug-
in is represented by a separate icon at the top of the screen. After a product
has been identified by scanning its bar code, the icons change and signal
through their shape and color the most relevant information about this item.
This provides the user with a quick overview of the product. If the user is in-
terested in further details, he or she can select a plug-in using the phone's
"left" and "right" keys. If selected, a plug-in shows more information or pro-
vides additional services (see Figure 7.8, Figure 7.9 and Figure 7.10).

Plug-ins are regular Python programs that inherit from a provided abstract
class, which allows them to get informed by the Product Advisor framework
about relevant events, such as recognized bar codes, key presses or gestures
performed by the user. On devices like the N95/8g, which feature a 3D accel-
erometer, gesture support is included, allowing users, for example, to reset
the application by shaking the phone. Users can either choose what kind of
plug-ins they would like to have active or, due to the dynamic nature of Py-
thon, plug-ins can also be loaded dynamically at runtime. Depending on what
kind of product has been recognized, different plug-ins could be loaded.
Product-related data is either stored on the device (e.g., for offline demos) or
can be retrieved online using a simple REST [161] interface (HTTP requests
and JSON). The application includes a robust logging system that allows us to
monitor both user interactions and system events, such as low battery or
network connectivity.

Rapid Prototyping of Mobile Services | 181

Figure 7.8 Screenshots of the "General Information"-plugin that displays additional infor-
mation about a product and provides access to further information sources, such as Amazon,
price-comparison websites, and others.

Figure 7.9 Screenshots of the "Allergy Check"-plugin as well as the "Product Rating"-plugin.

Figure 7.10 Screenshots showing the "Self-Checkout"-plugin, which allows users to manage
scanned products on a list and displays a reference bar code that can be presented by users
at the POS (point of sale) for self-checkout.

182 | Rapid Prototyping of Mobile Services

The project consists of 64 files, including 15 Python source code files with
a total of approximately 6000 lines of code (including comments). The time
required to come up with a fully functioning and tested application using
SPARK was around 10 days, full time (the PyS60 module for the bar code
recognition was already implemented). The final SIS file that includes all re-
quired resources has a size of 804 kB (233 kB without the Python interpret-
er). The overall performance of the application on the N95/8g mobile phone
is good, resulting in an average of 16 frames per second with the bar code
recognition running in the background. This indicates that the use of PyS60
and C++ is an attractive combination, in which time critical tasks can be per-
formed in C++ Symbian and the application logic and the user interface (UI)
are implemented using PyS60.

During development, several features of SPARK have proven helpful: The
possibility to copy end execute files with a button-press on the phone was
valuable not only for code generation, but also during UI graphics design. To
see how a particular design would integrate into the application, we simply
saved an updated version of an image from our desktop image processing
tool and pressed the "Copy & Run" button. In this way, changes were applied
in seconds. The fact that only changed files are uploaded to the phone also
became relevant once the project increased in size. The simple creation of
distributable SIS files was used several times to send demos of the application
to different people wanting to see the current state of development. Finally,
when implementing the optional accelerometer-based gesture support, we
also took advantage of the possibility to develop on two different phone mod-
els in parallel, one with a built-in accelerometer (N95/8g) and one without it
(N73), to ensure that the application behaves correctly in both cases.

7.7 Summary
In this chapter, we presented a comprehensive overview of current rapid pro-
totyping tools for mobile phones and identified PyS60 as an attractive choice
that combines ease-of-use with flexibility. However, PyS60 development still
pose considerable barriers for the rapid prototyping of applications, especial-
ly for new users and when targeting real-world deployments. We discussed
these barriers and presented the SPARK environment that targets non-expert
users and supports the fast and simple application development and monitor-
ing. In particular, SPARK offers the following:

Rapid Prototyping of Mobile Services | 183

• Low entry barriers, providing an OS-independent out-of-the box solu-
tion for development

• Support for rapid development, e.g., remote device control console and
one-click upload and execution

• Abstraction from complex tasks, e.g., application signing and SIS file
creation

• Support for large deployments, e.g., simple application deployment and
remote monitoring, as well as support for parallel development on
different device types

We also presented the results of two case studies in which SPARK has been

used: a graduate course on distributed systems, in which 73 students used
SPARK to develop mobile applications, as well as the development of a mobile
phone-based product information platform. SPARK is available for download
[162].

184 | Conclusions

8 Conclusions
In this chapter, we conclude with a summary of the thesis and the contribu-
tions made, outline the main limitations of the work presented, and discuss
promising topics for future work.

8.1 Summary
Linking products with information and services using mobile phones is a spe-
cific use case of the well-known concept of linking real-world objects with
virtual information. It is interesting, as there are many beneficial applications
possible that have the potential to enable consumers to access personalized,
otherwise not available information about products when and where this in-
formation is required most (e.g., in stores). Furthermore, many components
required for the large-scale deployment of according applications and ser-
vices are already in place. World-wide, sales items are labeled with a bar code,
camera-equipped mobile phones are ubiquitous, and there is an abundance of
product-related information available. A fast, reliable and robust bar code
recognition method is a central enabling technology for such consumer-
oriented mobile services.

We started this thesis by presenting challenges inherent to the recognition
of bar codes with mobile phones and provided an overview of bar code sym-
bologies relevant in the context of consumer-oriented mobile services. In or-
der to establish the required background knowledge for the description of the
bar code recognition method, we covered the most commonly used symbolo-
gy (EAN13/UPC-A) in detail.

Chapter 3 described the developed recognition algorithm and detailed our
approach for the recognition of bar codes in blurry images. We compared the
algorithm to related work and concluded that it primarily differs in two as-
pects from other approaches. First, it is capable of recognizing bar codes in
very blurry images and relies on pre-computed patterns in order to achieve a
high recognition speed and accuracy. Second, it combines two different de-
coder architectures with different strengths and weaknesses in order to ad-
dress the various recognition challenges.

In order to confirm the practicability of our approach, proof-of-concept im-
plementations on three major mobile phone platforms are provided: iOS, An-
droid, and C++ Symbian. Chapter 4 covered relevant details regarding these

Conclusions | 185

implementations and presented the tools created and used to optimize the
recognition method for different mobile phone models.

Chapter 5 compared our recognition method to existing bar code scanning
solutions for mobile phones. We conducted a user study with 16 participants
and compared the scan speed and accuracy of scanners under realistic condi-
tions. In addition, we analyzed the scan performance and features provided by
scanners under controlled conditions. Results of the user study and scanner
analysis show that our recognition method outperforms other solutions in
terms of scan accuracy and recognition speed. Furthermore, it shows that our
approach for recognizing bar codes in blurry images works in practice and
provides advantages regarding the required scan-time and the recognition of
small bar codes, even on devices with autofocus-cameras. Based on the find-
ings of the study, we derived general observations about users' scan behav-
iors and presented user interface guidelines for mobile phone-based bar code
scanners.

Chapter 6 concretized the concept of mobile services and discussed alterna-
tive product identification technologies for this use case, including the recog-
nition of 2D codes, RFID/NFC technology, general image recognition, and the
manual entry of a product's bar code number or name. It shows that while
each technology has its use cases and specific advantages, the optical recog-
nition of bar codes is the most suitable one for enabling mobile services today
and in the near future. Most sales items already have bar codes printed on
them, and many users have camera-equipped mobile phones capable of read-
ing these codes.

Finally, Chapter 7 presented SPARK, a rapid prototyping environment tar-
geted specifically at novice users that allows for the fast and easy creation of
mobile applications on C++ Symbian devices. We provided an overview of ex-
isting rapid prototyping tools for mobile phones, covered the design and im-
plementation of SPARK, and presented the results of two case studies in
which it has been used: a graduate course on distributed systems, in which
more than 70 students used SPARK to develop mobile applications, as well as
the development of a mobile phone-based product information platform.

8.2 Contributions
The overall goal of this thesis is to foster the development of mobile phone-
based applications that link information and services to products. In particu-
lar, the contributions can be summarized as follows:

186 | Conclusions

• The main contribution of this thesis is a method for the recognition of
bar codes on mobile phones that is capable of recognizing bar codes in
blurry images and that outperforms existing systems in terms of
recognition speed and accuracy. With the presented algorithm and
proof-of-concept implementations, we hope to contribute to the ad-
vancement of this enabling technology for mobile services. Further-
more, we hope that our analysis of the recognition challenges and the
findings of the user study and scanner analysis support application de-
velopers in making informed decisions when using this technology.

• A rapid prototyping environment that eases the development of mobile
applications, targeted specifically at novice users. By enabling non-
experts to quickly prototype novel application ideas, we hope to foster
the creation of mobile services.

8.3 Limitations and Future Work
While the presented recognition method works in general very well, several
issues remain that could not be addressed in this thesis, some of which could
be the subject of future work.

One existing limitation is related to the required optimization process of the
recognition algorithm for different mobile phone models. In the case of devic-
es with autofocus or phone models with fixed-focus cameras that produce
only moderately blurry images, the recognition method will usually work well
without a dedicated optimization process for specific phone models. However,
for mobile phones with fixed-focus cameras that result in very blurry images,
a one-time, beforehand optimization process for each new phone model is
required. This optimization process adjusts the recognition parameters to the
camera optics of a specific phone model in order to maximize the recognition
accuracy on this device. This approach has two limitations. First, the optimiza-
tion process must be performed for each new mobile phone model. Despite
being feasible, this is an additional effort and a phone has to be physically
accessible in order to take test images. Second, variations in the camera mod-
ules sometimes exist, even in the case of the same mobile phone model. While
the recognition still works on non-optimized devices, the recognition perfor-
mance is not optimal.

Future work could consist of the development of a solution that automati-
cally calibrates our recognition method with respect to the specifics of the
built-in camera module found in a phone model. Ideally, the calibration should
happen continuously and directly on the device, during regular use of the

Conclusions | 187

recognition engine. The automatic calibration for each individual phone could
result in a more accurate recognition of codes in blurry images and would
allow for the bar code recognition to scale well with the increasing number of
different camera phones on the market.

Another limitation is the large file size of the recognition tables that store
pre-computed patterns used by the blurry decoder (see Section 3.3). Each
table file requires less than one megabyte of space, and two to three recogni-
tion tables are usually sufficient to guarantee a good recognition rate. Despite
these facts, the recognition table files are by far the largest part of the com-
plete distributable of the bar code recognition (see Figure 4.5). Particularly, in
case the recognition tables for several phone models have to be included in a
distributable packet, the file size rapidly increases.

In order to overcome this problem, the pre-calculated patterns and values
stored in recognition table files could be generated directly on the mobile
phone. This process is time-consuming, but it might be performed either
when the bar code recognition is used for the first time, or successively in the
background while the recognition is already working. The latter will result in
a situation, in which bar codes in sharp images can be recognized immediate-
ly, and the recognition performance on blurry images will improve over time,
once the recognition tables are computed.

A final, promising topic for future work might be the development of a
server-side, real-time recognition of bar codes for mobile devices. Cellular
networks are evolving fast and with the next generation of networks, LTE
(Long Term Evolution), on the horizon, network delays are expected to drop.
A thin-client approach that consists of a basic application on the mobile
phone for accessing the camera images and transmitting the data to a server,
in combination with server-based bar code recognition, might provide several
benefits compared to the recognition of codes directly on the phone:

1. The increased performance available on the server can be used to im-

prove the recognition accuracy.
2. All applications that include the bar code recognition instantly benefit

from an upgrade of the recognition method on the server; there is no
need to update software on the mobile phone.

3. Mobile phones with minimal resources and those featuring only a Java
virtual machine and no support for native code can be supported.

4. Despite the required data transmission, it might be possible to reduce
the overall energy consumption on the mobile phone because expen-
sive calculations can be performed on the server.

188 | Appendices

9 Appendices
9.1 Implementation Details
9.1.1 Recognition Table Layout

Figure 9.1shows the detailed layout of information stored in a recognition
table file.

9.1.2 Recognition Table Set Optimization

Below is an excerpt from a protocol file that contains the results when recog-
nizing all images in a given set of test images with a specific recognition table.
The excerpt shows 5 out of the 1941 results the original file contains.

<PROTOCOL VERSION>:2.0
<TABLE
FILE>:C:\external_data\table_set\new_table_set\basic_set\table_26_11_6
<PATH TO TEST IMAGES>:C:\test_images\iphone3gs
<NUMBER TEST IMAGES>:1941

<IMAGE
FILE>:C:\test_images\iphone3gs\large_codes\0051122160226\1271317526823_16.pn
g <RESULT>:NOT RECOGNIZED<CODE NUMBER>:6654424160426<CODE CONFI-
DENCE>:21821<ESTIMATED PSF>:153<NUMBER EP>:3<STD>:-1.0

<IMAGE
FILE>:C:\test_images\iphone3gs\large_codes\0051122160226\1271317526823_17.pn
g <RESULT>:RECOGNIZED<CODE NUMBER>:0051122160226<CODE CONFI-
DENCE>:439<ESTIMATED PSF>:85<NUMBER EP>:59<STD>:-1.0

<IMAGE
FILE>:C:\test_images\iphone3gs\large_codes\0051122160226\1271317526823_18.pn
g <RESULT>: RECOGNIZED<CODE NUMBER>:0051122160226<CODE CONFI-
DENCE>:469<ESTIMATED PSF>:85<NUMBER EP>:59<STD>:-1.0

...

<IMAGE
FILE>:C:\test_images\iphone3gs\small_codes\9789736370540\1270114904145_38.pn
g <RESULT>:RECOGNIZED<CODE NUMBER>:9789736370540<CODE CONFI-
DENCE>:5344<ESTIMATED PSF>:153<NUMBER EP>:35<STD>:-1.0

<IMAGE
FILE>:C:\test_images\iphone3gs\small_codes\9789736370540\1270114904145_39.pn
g <RESULT>:RECOGNIZED<CODE NUMBER>:9789736370540<CODE CONFI-
DENCE>:4298<ESTIMATED PSF>:154<NUMBER EP>:37<STD>:-1.0

<CORRECTLY RECOGNIZED>:85.41988
<WRONGLY RECOGNIZED>:12.261721
<NOT RECOGNIZED>:2.3183975

Appendices | 189

Figure 9.1 Detailed layout of recognition table.

stage 0 (m ax 30 bytes wide) stage 1 (m ax 30 bytes wide)

i2 PSF_param _sigm a (stage 1)
i3 PSF_param _part (stage 2)

i4 PSF_pattern_size (stage 3)

i1 PSF_param _size (stage 0)

i2 ean8/ean13/upc12 end delim iter width in pixels
i1 ean13/upc12/ean8 m iddle delim iter width in pixels
i0 start delim iter width in pixels

i3 am ount pattern sizes

i10,i11 = com plete waveform size in pixels
i12,i13 = exact barcode start index in com plete waveform
i14,i15 = exact barcode end index in com plete waveform

i10,i11 = am ount pieces in stage 0
i12,i13 = am ount pieces in stage 1

... ...

i28,i29 = am ount pieces in stage 9

i30,i31 = start_x_stage0
i32,i33 = start_x_stage1

...

i48,i49 = start_x_stage9

i50,i51 = end_x_stage0
i52,i53 = end_x_stage1

...

i68,i69 = end_x_stage9

PSF_shape used for the pattern generation (scaled, so that the highest values is 255)

PSF_pattern_size

PSF_pattern_size

 (m ax. 3) piece digits (0...9)

delim iter pattern (size = 100%)

10 start general patterns

10 EAN13/UPC12/EAN8 m iddle patterns

10 EAN13/EAN8 end patterns

(m ax. 3) parity values (1 = odd, 2 = even)

m ax size = 30

m ax size = 30

PSF_pattern_size

PSF _line used for the pattern generation (scaled, so that the highest values is 255 and the lowest 0)

pattern section 0
(max. 4000)

pattern section 1
(max. 7000)

pattern section 2
(max. 1000)

EAN8 pattern (100)

pattern section 3
(max. 1000)

m ean pattern (4 bytes)
std pattern (4 bytes)

size 0 size 1 size 2 ...

...

pattern

piece digits (0...9)
parity values (1 = odd, 2 = even)

CODE PATTERNS

PSF PATTERNS

DELIM ETER PATTERNS

GENERAL INFORM ATION

Layout Recognition Table v5

...

i1 unit_size_in_pixelsi0 table_version: 1

i2 am ount stages in EAN13/UPC12 recognition

i0,i1,...i9 contained sizes in percent of the original pattern size / 100

...

i0,i1 = pattern size in pixel of size 0 section 0

...

i18,i19 = size in pixel of size 0 section 9

i2,i3 = size in pixel of size 0 section 1

...

10

exact position in pattern

HEADER

i13... (encrypted and/or com pressed) data

i0 table version

i1,i2 table width
i3,i4 table height

i5,i6 encryption seed i7 data encrypted i8 data com pressed i9..i12 data size in bytes

m ean diff (4 bytes)

std diff (4 bytes)

i10, i11, ... i19 size in pixel of ignored pattern area assum ed when calculating the m ean and std v alues

...

h-1

h-2

h-62

h-63

h-67

h-97

h-98

h-108

h-109

h-110

0

stage 3
stage 2
stage 1
stage 0

UPCE pattern (400)

20 EPCE end patterns

i4 sharpness value
 of table

psf line y-offset value

i3 upce end delim iter width in pixels

i5 m in. sharpness value
i6 m ax. s. value

i0,i1,...i9 width of stage waveform s pixels (m ax. 255)

...h-111

EAN13/UPC12

...h-112

EAN8

UPCE

EAN8EAN13/UPC12 UPCE

i16,i17 i22,i23

10 UPCE only start patterns

190 | Appendices

9.1.3 Memory Consumption

Figure 9.2 Runtime memory requirements of the recognition engine.

Figure 9.2 shows the run-time memory consumption of our implementation
of the recognition algorithm.

9.2 Details on the User Study
9.2.1 Scanner Order

Table 9.1 Order in which test users tested different scanner applications on the different
mobile phones:

Test
Person

RedLaser ShopSavvy ScanDK pic2sop i-nigma Google

iPhone3GS

1 1 2 3 4 5 -

2 5 3 2 1 4 -

3 5 2 4 3 1 -

4 3 4 1 2 5 -

5 5 4 3 1 2 -

6 4 1 3 2 5 -

7 2 4 5 3 1 -

8 4 1 3 5 2 -

9 3 1 4 2 5 -

10 1 2 3 5 4 -

Memory Consumption in kB

0 1000 2000 3000 4000 5000 6000 7000

Memory Consumption in kB
Two Recognition Tables 4279,48

Help Functions 787,03

Scan Line Data 650,39

Orientation Detection 405,94

Blurry Decoder 281,38

Offset Maps 120,94

Sharp Decoder 5,02

Run-Time Memory Consumption in kB

Appendices | 191

11 5 1 3 4 2 -

12 5 1 3 4 2 -

13 1 3 5 2 4 -

14 4 5 2 1 3 -

15 2 3 1 4 5 -

16 5 2 4 3 1 -

iPhone3G

1 1 2 3 4 - -

2 1 4 2 3 - -

3 3 1 4 2 - -

4 2 1 4 3 - -

5 2 4 1 3 - -

6 3 2 4 1 - -

7 1 3 4 2 - -

8 1 3 2 4 - -

9 3 4 1 2 - -

10 4 3 1 2 - -

11 2 1 4 3 - -

12 2 1 4 3 - -

13 1 2 3 4 - -

14 3 1 4 2 - -

15 1 4 3 2 - -

16 2 4 3 1 - -

HTC Desire

1 - - 1 - - 2

2 - - 1 - - 2

3 - - 2 - - 1

4 - - 2 - - 1

5 - - 1 - - 2

6 - - 2 - - 1

7 - - 2 - - 1

8 - - 2 - - 1

9 - - 1 - - 2

10 - - 2 - - 1

11 - - 2 - - 1

12 - - 2 - - 1

13 - - 1 - - 2

192 | Appendices

14 - - 2 - - 1

15 - - 2 - - 1

16 - - 1 - - 2

Table 9.2 Order in which the three different phones have been used by each test person:

Test Person iPhone 3GS iPhone 3G HTC Desire
1 1 2 3

2 1 2 3

3 2 3 1

4 1 3 2

5 3 1 2

6 1 2 3

7 3 2 1

8 1 3 2

9 2 3 1

10 1 3 2

11 1 2 3

12 1 2 3

13 2 1 3

14 3 2 1

15 3 1 2

16 1 3 2

9.2.2 Original German User Comments

Table 9.3 German user comments recorded during the user study and their translations:

Translation German Comment
"The good thing about the red line
is that he tells me how to hold it
(the phone)"

"Das ist das Gute an der roten Linie, er
sagt mir, wie ich es halten muss"

"very user friendly" "super bedienfreundlich"

"I don't know what this red or green
means, it is completely random. It
showed me already so many green
lines, the code should be definitely
recognized by now."

"Ich hab keine Ahnung, was das mit
dem Rot und Grün soll. Es ist komplett
random. Er hat mir schon so viele
grüne Balken gezeigt, der müsste
schon längst erkannt sein."

Appendices | 193

"I don't get it, you have no clue
about what is happening."

"Ich durchschau den nicht. Man weiss
gar nicht was er macht"

"I'm not sure I'm too stupid or the
scanner"

"Ich frag mich, ob ich zu doof bin, o-
der er."

"I wondered a few times why certain
codes are recognized so fast and
others not at all. How can this be?"

"Ein paar Mal habe ich mich gewun-
dert, dass die einen so schnell, und die
anderen überhaupt nicht erkannt
werden, das kann doch irgendwie
nicht sein, oder?"

"What is so difficult about this
code?"

"Was ist denn an dem so schwer?"

"Why do they (scanners) have prob-
lems with this code?"

"Warum haben die mit dem immer so
Probleme?"

"He (the scanner) does not like that
(code). But he (the code) looks so
easy."

"Den will er jetzt nicht. Dabei sieht er
so einfach aus."

"Why is it (this code) hard (to rec-
ognize)?"

"wieso ist der schwer?"

9.2.3 Dynamic Range of Tested Scanners

Figure 9.3 Dynamic range of tested bar code scanners.

RedLaser ShopS. ScanDK pic2shop NeoR. i-nigma QuickMark BarcodeN. Scanner BarcodeP.

dyn. range 50 74 72 83 64 56 58 55 55 59

0

20

40

60

80

100

siz
e

in
 p

er
ce

nt
 o

f s
cr

ee
n

w
id

th

Size of Dynamic Range iPhone 3GS

RedLaser ShopSavvy ScanDK pic2shop

dyn. range 43 38 53 75

0

20

40

60

80

siz
e

in
 p

er
ce

nt
 o

f s
cr

ee
n

w
id

th

Size of Dynamic Range iPhone 3G

Google ScanDK

dyn. range 40 63

0

10

20

30

40

50

60

70

siz
e

in
 p

er
ce

nt
 o

f s
cr

ee
n

w
id

th

Size of Dynamic Range HTC Desire

194 | Bibliography

10 Bibliography
[1] P. D. Wellner, “Interacting with paper on the DigitalDesk,”

Communications of the ACM, vol. 36, no. 7, pp. 87-96, 1993.

[2] R. Barrett, and P. P. Maglio, “Informative things: how to attach

information to the real world,” in Proceedings of the 11th Annual ACM

Symposium on User Interface Software and Technology, San Francisco,

California, United States, 1998, pp. 81-88.

[3] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G.

Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and M.

Spasojevic, “People, Places, Things: Web Presence for the Real World,”

Mobile Networks and Applications, vol. 7, no. 5, pp. 365-376, 2002.

[4] F. Siegemund, C. Floerkemeier, and H. Vogt, “The value of handhelds in

smart environments,” Personal Ubiquitous Computing, vol. 9, no. 2, pp.

69-80, 2005.

[5] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan, “The smart phone:

a ubiquitous input device,” Pervasive Computing, IEEE, vol. 5, no. 1, pp.

70-77, 2006.

[6] F. Reischach, F. Michahelles, D. Guinard, R. Adelmann, E. Fleisch, and A.

Schmidt, “An Evaluation of Product Identification Techniques for

Mobile Phones,” in Proceedings of the 12th International Conference

on Human-Computer Interaction - Volume I, Uppsala, Sweden, 2009,

pp. 804-816.

[7] R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison, “Bridging physical

and virtual worlds with electronic tags,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, Pittsburgh,

Pennsylvania, United States, 1999, pp. 370-377.

[8] L. Pohjanheimo, H. Kernen, and H. Ailisto, “Implementing touchme

paradigm with a mobile phone,” in Proceedings of the Joint Conference

on Smart Objects and Ambient Intelligence, Grenoble, France, 2005,

pp. 87-92.

Bibliography | 195

[9] R. Angeles, “Rfid Technologies: Supply-Chain Applications and

Implementation Issues,” Information Systems Management, vol. 22, no.

1, pp. 51-65, 2005.

[10] M. Rohs, “Real-world interaction with camera-phones,” in Proceedings

of the 2nd International Symposium on Ubiquitous Computing Systems

(UCS), Tokyo, Japan, 2004, pp. 39-48.

[11] Z. Chunhui, W. Jian, H. Shi, Y. Mo, and Z. Zhengyou, “Automatic Real-

Time Barcode Localization in Complex Scenes,” in Proceedings of the

IEEE International Conference on Image Processing, 2006, pp. 497-

500.

[12] Metro Future Store Innitiative. February 2nd, 2011; www.future-

store.org/fsi-internet/html/en/459/index.html.

[13] Markant AG. February 2nd, 2011; www.markant.com.

[14] R. Adelmann, M. Langheinrich, and C. Floerkemeier, “A Toolkit for Bar

Code Recognition and Resolving on Camera Phones – Jump Starting

the Internet of Things,” in Proceedings of the Workshop on Mobile and

Embedded Interactive Systems (MEIS) at Informatik 2006, Dresden,

Germany, 2006.

[15] C. Myung-Jin, and S. Sung-Yong, “Development of compact auto focus

actuator for camera phone by applying new electromagnetic

configuration,” Journal of Mechanical Science and Technology, vol. 20,

no. 12, pp. 2087-2093, December, 2006.

[16] C. Myung-Jin, Y. Yang-Hee, and A. Woo-Hyun, “Development of

compact camera module having auto focus actuator and mechanical

shutter system for mobile phone,” in Proceedings of the International

Conference on Control, Automation and Systems, 2007, pp. 2319-

2322.

[17] P. Moran, S. Dharmatilleke, A. Khaw, K. Tan, M. Chan, and I. Rodriguez,

“Fluidic lenses with variable focal length,” Applied Physics Letters, vol.

88, no. 4, 2006.

[18] H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens

fabrication using liquid filling technique,” Microsystems Technology,
vol. 14, no. 7, pp. 1067-1072, 2008.

196 | Bibliography

[19] ISO/IEC Standard. "EAN/UPC bar code symbology specification,"

www.iso.org/iso/catalogue_detail.htm?csnumber=46143.

[20] J. Swartz, and Y. P. Wang, “Fundamentals of Bar Code Information

Theory,” Computer, vol. 23, no. 4, pp. 74-86, 1990.

[21] M. Rohs, “Visual Code Widgets for Marker-Based Interaction,” in

Proceedings of the 5th International Workshop on Smart Appliances

and Wearable Computing - Volume 5, 2005, pp. 506-513.

[22] R. Adelmann, “Mobile Phone Based Interaction with Everyday Products

- On the Go,” in International Conference on Next Generation Mobile

Applications, Services and Technologies (NGMAST), Cardiff, Wales, UK,

2007, pp. 63-69.

[23] P. Hough, Methods and means for recognizing complex patterns., US

Patent 3,069,654, 1962.

[24] R. Duda, and P. Hart, “Use of the Hough transformation to detect lines

and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp.

11-15, 1972.

[25] G. Olmo, and E. Magli, “All-integer Hough transform: performance

evaluation,” Image Processing, vol. 3, pp. 338-341, 2001.

[26] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.

[27] P. D. Wellner, Adaptive Thresholding for the DigitalDesk, EuroPARC

Technical Report EPC, 1993.

[28] R. Gonzalez, and R. Woods, Digital Image Processing: Addison-Wesley

Longman Publishing Co., Inc., 2001.

[29] H. Schweitzer, J. Bell, and F. Wu, "Very Fast Template Matching,"

Computer Vision — ECCV 2002, Lecture Notes in Computer Science, A.

Heyden, G. Sparr, M. Nielsen et al., eds., pp. 145-148: Springer Berlin /

Heidelberg, 2006.

[30] W. Turin, and R. A. Boie, “Bar code recovery via the EM algorithm,”

IEEE Transactions on Signal Processing, vol. 46, no. 2, pp. 354-363,

1998.

[31] T. Wittman, "Lost in the Supermarket: Decoding Blurry Barcodes,"

SiamNews, 37 (7), 2004.

Bibliography | 197

[32] Axtel - Machine Vision. March 1st, 2011; www.axtel.com.

[33] CharacTell - Image Recognition Software. March 1st, 2011;

www.charactell.com.

[34] C. Viard-Gaudin, N. Normand, and D. Barba, “A bar code location

algorithm using a two-dimensional approach,” in Proceedings of the

2nd International Conference on Document Analysis and Recognition,

1993, pp. 45-48.

[35] M. Kuroki, T. Yoneoka, T. Satou, Y. Takagi, T. Kitamura, and N.

Kayamori, “Bar-code recognition system using image processing,” in

Proceedings of the 6th International Conference on Emerging

Technologies and Factory Automation Proceedings (ETFA), 1997, pp.

568-572.

[36] F. Xianyong, W. Fuli, L. Bin, Z. Haifeng, and W. Peng, “Automatic

Recognition of Noisy Code-39 Barcode,” in Proceedings of the 16th

International Conference on Artificial Reality and Telexistence

Workshops (ICAT), 2006, pp. 79-82.

[37] H. Hee Il, and J. Joung Koo, “Implementation of algorithm to decode

two-dimensional barcode PDF-417,” in Proceedings of the 6th

International Conference on Signal Processing, 2002, pp. 1791-1794

vol.2.

[38] K. Aas, and L. Eikvil, Decoding Bar Codes from Human-Readable
Characters, Amsterdam: Elsevier, 1997.

[39] Grabba Bar Code Scanner Attachment for Mobile Phones. February

2nd, 2011; http://grabba.com/portal/index.php.

[40] M. Rohs, and J. Bohn, “Entry Points into a Smart Campus Environment -

Overview of the ETHOC System,” in Proceedings of the 23rd

International Conference on Distributed Computing Systems, 2003, pp.

260.

[41] S. M. Youssef, and R. M. Salem, “Automated barcode recognition for

smart identification and inspection automation,” Expert System
Applications, vol. 33, no. 4, pp. 968-977, 2007.

[42] R. Muniz, L. Junco, and A. Otero, “A robust software barcode reader

using the Hough transform,” in Proceedings of the International

198 | Bibliography

Conference on Information Intelligence and Systems, 1999, pp. 313-

319.

[43] L. Shu-Jen, L. Hong-Yuan, C. Liang-Hua, T. Hsiao-Rong, and H. Jun-Wei,

“Camera-based bar code recognition system using neural net,” in

Proceedings of the International Joint Conference on Neural Networks

(IJCNN), Nagoya, Japan, 1993, pp. 1301-1305.

[44] A. K. Jain, and Y. Chen, “Bar code localization using texture analysis,” in

Proceedings of the 2nd International Conference on Document

Analysis and Recognition, 1993, pp. 41-44.

[45] R. J. Howlett, S. Berthier, and G. J. Awcock, Determining the location of
industrial bar codes using neural networks, London: Institution of

Electrical Engineers, 1997.

[46] D. Chai, and F. Hock, “Locating and Decoding EAN-13 Barcodes from

Images Captured by Digital Cameras,” in Proceedings of the 5th

International Conference on Information, Communications and Signal

Processing, 2005, pp. 1595-1599.

[47] Y. Huijuan, J. Xudong, and A. C. Kot, “Accurate localization of four

extreme corners for barcode images captured by mobile phones,” in

Proceedings of the 17th IEEE International Conference on Image

Processing (ICIP), 2010, pp. 3897-3900.

[48] X. Feng, and G. M. J., “Locating barcodes using JPEG 2000 compressed

data,” in Proceedings of Visual Communications and Image Processing,

Beijing, China, 2005, pp. 1-9.

[49] A. Tropf, and D. Chai, “Locating 1-D Bar Codes in Dct-Domain,” in

Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2006, pp. II-II.

[50] E. Ohbuchi, H. Hanaizumi, and L. A. Hock, “Barcode readers using the

camera device in mobile phones,” in International Conference on

Cyberworlds, 2004, pp. 260-265.

[51] Y. Hu, J. Huang, and Z. Ma, “A low cost barcode recognition method,” in

Proceedings ot the 6th International Symposium on Instrumentation

and Control Technology, Beijing, China, 2006, pp. 1-5.

Bibliography | 199

[52] X. Wu, L. Qiao, and J. Deng, “A New Method for Bar Code Localization

and Recognition,” in Proceedings of 2nd International Congress on

Image and Signal Processing (CISP '09), 2009, pp. 1-6.

[53] L. YeMin, and Z. Li, “Research and application of the EAN-13 barcode

recognition on iphone,” in Proceedings of the International Conference

on Future Information Technology and Management Engineering

(FITME), 2010, pp. 92-95.

[54] R. Puetter, T. Gosnell, and A. Yahil, “Digital image reconstruction:

Deblurring and denoising,” Astronomy and Astrophysics, vol. 43, no. 1,

pp. 139, 2005.

[55] H. C. Andrews, and B. R. Hunt, Digital Image Restoration: Prentice Hall

Professional Technical Reference, 1977.

[56] R. G. Lane, “Methods for maximum-likelihood deconvolution,” Journal
of the Optical Society of America, vol. 13, no. 10, pp. 1992-1998,

1996.

[57] M. A. T. Figueiredo, and R. D. Nowak, “An EM algorithm for wavelet-

based image restoration,” IEEE Transactions on Image Processing, vol.

12, no. 8, pp. 906-916, 2003.

[58] E. Y. Lam, “Blind bi-level image restoration with iterated quadratic

programming,” IEEE Transactions on Circuits and Systems, vol. 54, no.

1, pp. 52-56, Jan, 2007.

[59] L. Ta-Hsin, and L. Ke-Shin, “Deblurring two-tone images by a joint

estimation approach using higher-order statistics,” in Proceedings of

the IEEE Signal Processing Workshop on Higher-Order Statistics, 1997,

pp. 108-111.

[60] D. Kundur, and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal
Processing Magazine, vol. 13, no. 3, pp. 43-64, 1996.

[61] Matlab Imaging Toolbox - Lucy-Richardsson Method for Deconvolution.

March 10th, 2011; www.mathworks.com/help/toolbox/images/ref/

deconvlucy.html.

[62] E. Joseph, and T. Pavlidis, “Bar code waveform recognition using peak

locations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 6, pp. 630-640, 1994.

200 | Bibliography

[63] E. Joseph, and T. Pavlidis, “Waveform recognition with application to

bar codes,” in Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics, 1991, pp. 129-134 vol.1.

[64] E. Selim, “Blind deconvolution of bar code signals,” Inverse Problems,
vol. 20, no. 1, pp. 121, 2004.

[65] K. Q. Wang, Y. M. Zou, and H. Wang, “1D bar code reading on camera

phones,” International Journal of Image Graphics, vol. 7, no. 3, pp. 529-

550, 2007.

[66] R. Shams, and P. Sadeghi, “Bar Code Recognition in Highly Distorted

and Low Resolution Images,” in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),

2007, pp. I-737-I-740.

[67] J. C. Rocholl, S. Klenk, and G. Heidemann, “Robust 1D Barcode

Recognition on Mobile Devices,” in Proceedings of the 20th

International Conference on Pattern Recognition, Istanbul, Turkey,

2010, pp. 2712-2715.

[68] J. C. Rocholl, “Robust 1D Barcode Recognition on Mobile Devices,”

Diploma Thesis, Institute of Visualization and Interactive Systems,

Department of Intelligent Systems, University of Stuttgart, Stuttgart,

Germany, 2009.

[69] iOS Development Center. February 7th, 2011; http://developer.apple.

com/devcenter/ios/index.action.

[70] Android. February 7th, 2011; www.android.com.

[71] Symbian Ltd. Symbian Signed User Guide. February 6th, 2011;

www.symbiansigned.com/app/page.

[72] RedLaser Bar Code Scanner. February 7th, 2011; http://redlaser.com.

[73] ShopSavvy Bar Code Scanner. February 7th, 2011;

http://shopsavvy.mobi.

[74] pic2shop Bar Code Scanner. February 7th, 2011; www.pic2shop.com.

[75] Matlab - The Language of Technical Computing. 7th March, 2011;

www.mathworks.com.

[76] Google Goggles Project. February 1st, 2011; www.google.com/mobile/

goggles.

Bibliography | 201

[77] F. von Reischach, S. Karpischek, F. Michahelles, and R. Adelmann,

“Evaluation of 1D barcode scanning on mobile phones,” in Proceedings

of the Internet of Things (IOT), 2010, pp. 1-5.

[78] iPhone 3GS Device Specifications. February 7th, 2011; www.apple.

com/iphone/iphone-3gs/specs.html.

[79] iPhone 3G Device Specifications. February 7th, 2011; www.gsmarena.

com/apple_iphone_3g-2424.php.

[80] HTC Desire Device Specifications. February 7th, 2011; www.gsmarena.

com/htc_desire-3077.php.

[81] i-nigma Bar Code Scanner. February 7th, 2011; www.i-nigma.com/i-

nigmahp.html.

[82] Metro Group MEA Application. February 6th, 2011; www.future-

store.org/fsi-internet/html/en/7568/index.html.

[83] J. Rekimoto, and Y. Ayatsuka, “CyberCode: designing augmented reality

environments with visual tags,” in Proceedings of DARE 2000 on

Designing Augmented Reality Environments, Elsinore, Denmark, 2000,

pp. 1-10.

[84] C. Cheong, T.-D. Han, J.-Y. Kim, T.-J. Kim, K. Lee, S.-Y. Lee, A. Itoh, Y.

Asada, and C. Craney, “Pictorial Image Code: A Color Vision-based

Automatic Identification Interface for Mobile Computing

Environments,” in Proceedings of the 8th IEEE Workshop on Mobile

Computing Systems and Applications, 2007, pp. 23-28.

[85] H. Kato, and K. T. Tan, “Pervasive 2D Barcodes for Camera Phone

Applications,” IEEE Pervasive Computing, vol. 6, no. 4, pp. 76-85, 2007.

[86] Denso Wave Incorporated. February 1st, 2011; www.qrcode.com.

[87] NTT DoCoMo. January 2nd, 2011; www.nttdocomo.com.

[88] Denso Wave Incorporated. "QR Code Features," February 2nd, 2011;

www.qrcode.com/qrfeature-e.html.

[89] ISO/IEC Standard. "Bar code symbology - QR Code," www.iso.org/iso/

catalogue_detail.htm?csnumber=30789.

[90] M. Ebling, and R. Caceres, “Bar Codes Everywhere You Look,” IEEE
Pervasive Computing, vol. 9, no. 2, pp. 4-5, 2010.

202 | Bibliography

[91] Google Favorite Places Project. February 5th, 2011; www.google.com/

help/maps/favoriteplaces/business/barcode.htmt.

[92] K. A. H. Nurwono, and R. Kosala, “Color quick response code for mobile

content distribution,” in Proceedings of the 7th International

Conference on Advances in Mobile Computing and Multimedia, Kuala

Lumpur, Malaysia, 2009, pp. 267-271.

[93] T. Langlotz, and O. Bimber, “Unsynchronized 4D barcodes: coding and

decoding time-multiplexed 2D colorcodes,” in Proceedings of the 3rd

International Conference on Advances in Visual Computing - Volume I,

Lake Tahoe, NV, USA, 2007, pp. 363-374.

[94] NFC Forum. April 3rd, 2011; www.nfc-forum.org.

[95] EPC Global. February 1st, 2011; www.epcglobalus.org.

[96] T. Staake, F. Thiesse, and E. Fleisch, “Extending the EPC network: the

potential of RFID in anti-counterfeiting,” in Proceedings of the ACM

Symposium on Applied Computing, Santa Fe, New Mexico, 2005, pp.

1607-1612.

[97] S. Sarma, D. Brock, and K. Ashton, The networked physical world,

Massachussets Institute of Technology, Auto-ID Center White Paper.

[98] J. Ondrus, and Y. Pigneur, “An Assessment of NFC for Future Mobile

Payment Systems,” in Proceedings of the International Conference on

the Management of Mobile Business (ICMB), 2007, pp. 43-43.

[99] A. Geven, P. Strassl, B. Ferro, M. Tscheligi, and H. Schwab,

“Experiencing real-world interaction: results from a NFC user

experience field trial,” in Proceedings of the 9th International

Conference on Human Computer Interaction with Mobile Devices and

Services, Singapore, 2007, pp. 234-237.

[100] E. O'Neill, P. Thompson, S. Garzonis, and A. Warr, “Reach out and touch:

using NFC and 2D barcodes for service discovery and interaction with

mobile devices,” in Proceedings of the 5th International Conference on

Pervasive Computing, Toronto, Canada, 2007, pp. 19-36.

[101] B. Erol, E. Antunez, and J. J. Hull, “HOTPAPER: multimedia interaction

with paper using mobile phones,” in Proceedings of the 16th ACM

Bibliography | 203

International Conference on Multimedia, Vancouver, British Columbia,

Canada, 2008, pp. 399-408.

[102] T. Quack, H. Bay, and L. V. Gool, “Object recognition for the internet of

things,” in Proceedings of the 1st International Conference on the

Internet of Things, Zurich, Switzerland, 2008, pp. 230-246.

[103] D. Nister, and H. Stewenius, “Scalable Recognition with a Vocabulary

Tree,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition - Volume 2, 2006, pp. 2161-

2168.

[104] Kooaba AG. February 1st, 2011; www.kooaba.com.

[105] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L. Van Gool,

“Server-side object recognition and client-side object tracking for

mobile augmented reality,” in Proceedings of the Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010,

pp. 1-8.

[106] GS1. "DataBar Revolution Brochure," February 2nd, 2011;

www.gs1.org/sites/default/files/docs/barcodes/databar/GS1_DataBar_

Revolution_Brochure.pdf.

[107] GS1. February 1st, 2011; www.gs1.org.

[108] GS1. "DataBar Transition Whitepaper," February 2nd, 2011;

www.ncr.com/documents/gs1_databar_trans_wp.pdf.

[109] GS1. "North American Coupon Application Guidline Using GS1 DataBar

(RSS) Expanded Symbols," February 2nd, 2011;

www.gmaonline.org/filemanager/Events/North_American_Coupon_Ap

plication_Guideline.pdf.

[110] GS1. "DataBar Readiness Report," February 2nd, 2011; www.gs1.org/

barcodes/databar/readiness.

[111] GSA - The Global Mobile Suppliers Associaton. "GSA EDGE Fact Sheet,"

January 2nd, 2011; www.gsacom.com/gsm_3g/edge_databank.php4

#EDGE_Fact_Sheet.

[112] GSA - The Global Mobile Suppliers Associaton. "GSA Global HSPA+

Network Commitments Report 2011," January 2nd, 2011;

www.gsacom.com.

204 | Bibliography

[113] GSA - The Global Mobile Suppliers Association. "GSA Evolution to LTE

Report," January 2nd, 2011; www.gsacom.com.

[114] GSA - The Global Mobile Suppliers Association. "GSA Evolution to LTE

Overview," January 2nd, 2011; www.gsacom.com.

[115] P. Stuckmann, N. Ehlers, and B. Wouters, “GPRS traffic performance

measurements,” in Proceedings of the Vehicular Technology

Conference (VTC), 2002, pp. 1289-1293.

[116] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S.

Parkvall, “LTE: the evolution of mobile broadband,” Communications
Magazine, IEEE, vol. 47, no. 4, pp. 44-51, 2009.

[117] Mobile World Live. "GSM coverage maps," January 2nd, 2011;

http://maps.mobileworldlive.com.

[118] Amazon. February 2nd, 2011; www.amazon.com.

[119] BestBuy. January 2nd, 2011; www.bestbuy.com.

[120] Google. January 2nd, 2011; www.google.com.

[121] Alliance for Justice (AFJ). January 2nd, 2011; www.afj.org.

[122] Consumer Action. January 2nd, 2011; www.consumer-action.org.

[123] Max Havelaar. February 2nd, 2011; www.maxhavelaar.ch/en.

[124] Ktipp. January 2nd, 2011; www.ktipp.ch.

[125] ÖkoTest. January 2nd, 2011; www.oekotest.de.

[126] WikiFood - The Wiki for foodstuff. January 2nd, 2011;

www.wikifood.lu.

[127] CodeCheck. January 2nd, 2011; www.codecheck.info.

[128] GS1. "GDSN Certified Data Pools," January 2nd, 2011; www.gs1.org/

docs/gdsn/gdsn_certified_data_pools.pdf.

[129] GS1. "GDSN Global Data Synchronization Network Whitepaper,"

January 2nd, 2011; www.gs1.org/sites/default/files/docs/gdsn/

gdsn_brochure.pdf.

[130] R. Adelmann, and M. Langheinrich, "SPARK Rapid Prototyping

Environment – Mobile Phone Development Made Easy," Intelligent
Interactive Assistance and Mobile Multimedia Computing,

Communications in Computer and Information Science, D. Tavangarian,

Bibliography | 205

T. Kirste, D. Timmermann et al., eds., pp. 225-237: Springer Berlin

Heidelberg, 2009.

[131] A. Lamarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, T.

Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge, G.

Borriello, and B. Schilit, “Place Lab: Device Positioning Using Radio

Beacons in the Wild,” in Proceedings of the 3rd International

Conference on Pervasive Computing, 2005.

[132] T. Nicolai, E. Yoneki, N. Behrens, and H. Kenn, "Exploring Social Context

with the Wireless Rope," On the Move to Meaningful Internet Systems
2006: OTM 2006 Workshops, R. Meersman, Z. Tari and P. Herrero,

eds., pp. 874-883: Springer Berlin Heidelberg, 2006.

[133] N. Maisonneuve, M. Stevens, M. E. Niessen, P. Hanappe, and L. Steels,

“Citizen noise pollution monitoring,” in Proceedings of the 10th Annual

International Conference on Digital Government Research: Social

Networks: Making Connections between Citizens, Data and

Government, 2009, pp. 96-103.

[134] S. Santini, B. Ostermaier, and R. Adelmann, “On the use of sensor nodes

and mobile phones for the assessment of noise pollution levels in

urban environments,” in Proceedings of the 6th International

Conference on Networked Sensing Systems, Pittsburgh, Pennsylvania,

USA, 2009, pp. 31-38.

[135] M. Huebscher, N. Pryce, N. Dulay, and P. Thompson, “Issues in

Developing Ubicomp Applications on Symbian Phones,” in Proceedings

of the International Workshop on System Support for Future Mobile

Computing Applications, 2006, pp. 51-56.

[136] J2ME Java 2 Micro Edition. February 6th, 2011; http://java.sun.com/

javame/index.jsp.

[137] H. Richard, and N. Phil, Symbian OS C++ for Mobile Phones: John Wiley

& Sons, Inc., 2003.

[138] Objective C Programming Language. February 6th, 2011;

http://developer.apple.com/documentation/Cocoa/Conceptual/Objecti

veC.

206 | Bibliography

[139] Lua Scripting Language for S60 Devices. February 6th, 2011;

http://luaforge.net/projects/luas60.

[140] Ruby for S60 Devices. February 6th, 2011; http://ruby-symbian.

rubyforge.org.

[141] FlashLite. February 6th, 2011; www.adobe.com/products/flashlite.

[142] Hecl – The Mobile Scripting Language. February 6th, 2011;

www.hecl.org.

[143] Python for S60 Open Source Project. February 6th, 2011;

http://sourceforge.net/projects/pys60.

[144] J. Laurila, V. Tuulos, and R. MacLaverty, “Scripting Environment for

Pervasive Application Exploration on Mobile Phones,” in Proceedings of

the 4th International Conference on Pervasive Computing, Dublin,

Ireland, 2006.

[145] W3C, "Scalable Vector Graphics (SVG) Tiny 1.2 Specification," February

7th, 2008.

[146] BlueCove Library for Bluetooth (JSR-82) Implementation. February 6th,

2011; www.bluecove.org.

[147] Ensymble Developer Utilities for Symbian OS. February 6th, 2011;

http://code.google.com/p/ensymble.

[148] P. Holleis, and A. Schmidt, “MakeIt: Integrate User Interaction Times in

the Design Process of Mobile Applications,” in Proceedings of the 6th

International Conference on Pervasive Computing, Sydney, Australia,

2008, pp. 56-74.

[149] A. Joki, J. A. Burke, and D. Estrin, Campaignr: A Framework for
Participatory Data Collection on Mobile Phones, Technical Report

770, UC Los Angeles: Center for Embedded Network Sensing, 2007.

[150] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay,

“MyExperience: a system for in situ tracing and capturing of user

feedback on mobile phones,” in Proceedings of the 5th International

Conference on Mobile Systems, Applications and Services, San Juan,

Puerto Rico, 2007, pp. 57-70.

[151] Y. Li, and J. A. Landay, “Activity-based prototyping of ubicomp

applications for long-lived, everyday human activities,” in Proceedings

Bibliography | 207

of the 26th Annual SIGCHI Conference on Human Factors in

Computing Systems, Florence, Italy, 2008, pp. 1303-1312.

[152] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “ContextPhone: A

Prototyping Platform for Context-Aware Mobile Applications,” IEEE
Pervasive Computing, vol. 4, no. 2, pp. 51-59, 2005.

[153] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson, “Rapid prototyping

of mobile context-aware applications: the Cyberguide case study,” in

Proceedings of the 2nd Annual International Conference on Mobile

Computing and Networking, Rye, New York, United States, 1996, pp.

97-107.

[154] Gartner Report on Smartphone Sales, Market Share: Smartphones,
Worldwide, 3Q08, 2008.

[155] J2ME Polish. Febraury 6th, 2011; www.j2mepolish.org/cms.

[156] M. Butler, “Android: Changing the Mobile Landscape,” IEEE Pervasive
Computing, vol. 10, no. 1, pp. 4-7, 2011.

[157] Dalvik Virtual Machine. January 7th, 2011; www.dalvikvm.com.

[158] SL4A Scripting Languages for Android Project. February 7th, 2011;

http://code.google.com/p/android-scripting.

[159] Forum Nokia Python Resources. February 6th, 2011; http://wiki.forum.

nokia.com/index.php/Category:Python.

[160] J. Scheible, and V. Tuulos, Mobile Python: Rapid prototyping of
applications on the mobile platform: Wiley Publishing, 2007.

[161] L. Richardson, and S. Ruby, RESTful web services: O'Reilly, 2007.

[162] SPARK - Rapid Prototyping Environment for Mobile Services. February

7th, 2011; http://people.inf.ethz.ch/adelmanr/spark.

[163] GS1. "DataBar Business Cases," April 3rd, 2011;

www.gs1.org/docs/barcodes/databar/GS1_DataBar_Business_Case_Co

mplete.pdf.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 General Challenges
	1.2.1 The Mobile Bar Code Recognition Process
	1.2.2 The Mobile Application Development Process

	1.3 Contributions
	1.3.1 Bar Code Recognition Method
	1.3.2 SPARK: A Rapid Prototyping Environment for Mobile Services

	1.4 Thesis Outline

	2 Background
	2.1 Recognition Challenges
	2.1.1 Blurry Images
	2.1.2 Large Variety of Bar Codes Printed on Products
	2.1.3 Lighting Conditions
	2.1.4 Large Variety of Mobile Phone Models
	2.1.5 User Behavior

	2.2 Bar Code Basics
	2.2.1 Details of EAN13 Bar Codes

	3 Recognition Algorithm
	3.1 General Architecture
	3.1.1 Code Presence and Orientation Detection
	3.1.1.1 Edge Detection
	3.1.1.2 Hough Transform
	3.1.1.3 Pattern Search

	3.1.2 Scan Line Extraction and Adaptation
	3.1.2.1 Scan Line Extraction
	3.1.2.2 Scan Line Adaptation

	3.1.3 Result Combination
	3.1.3.1 Information about Bar Code Presence
	3.1.3.2 Information about Decoded Bar Code
	3.1.3.3 Information about Bar Code Position

	3.2 Sharp Decoder
	3.2.1 Waveform Binarization
	3.2.1.1 Algorithm 1
	3.2.1.2 Algorithm 2

	3.2.2 Symbology Module: Code Detection and Decoding
	3.2.2.1 Code Presence and Location Detection
	3.2.2.2 Decoding
	3.2.2.3 Result Combination

	3.3 Blurry Decoder
	3.3.1 Our Approach
	3.3.2 Recognition Tables and Table Selection
	3.3.2.1 Table Selection Component
	3.3.2.2 Sharpness Measurement Algorithm

	3.3.3 Code Position and Symbology Detection
	3.3.3.1 Position Detection Algorithm
	3.3.3.2 Position Refinement Algorithm
	3.3.3.3 Symbology Detection

	3.3.4 Lighting Compensation
	3.3.5 Code Distortion Compensation
	3.3.5.1 Distortion Compensation Algorithm
	3.3.5.2 Distortion Detection

	3.3.6 Pattern Comparison
	3.3.6.1 Waveform Extraction and Preprocessing
	3.3.6.2 Pattern Comparison Challenges
	3.3.6.3 Ensuring Robustness
	3.3.6.4 Ensuring Performance
	3.3.6.5 Comparison Algorithm 1
	3.3.6.6 Comparison Algorithm 2
	3.3.6.7 Comparison Algorithm 3

	3.3.7 Result Combination
	3.3.8 Final False-Positive Check

	3.4 Related Work on Bar Code Recognition
	3.4.1 Specialized Recognition Systems
	3.4.2 Academic Work
	3.4.3 Commercial Solutions

	3.5 Summary

	4 Implementation
	4.1 Recognition Engine
	4.1.1 Proof-of-Concept Implementations
	4.1.2 Multi-Platform Support
	4.1.3 Performance Optimizations
	4.1.4 GUI
	4.1.4.1 Device-Specific Challenges

	4.2 Development Tools
	4.2.1 Algorithm Test Environment
	4.2.2 Recognition Table Creation
	4.2.2.1 PSF Parameterization
	4.2.2.2 PSF Measurement
	4.2.2.3 Similarity of Pre-Calculated Patterns

	4.2.3 Device-Specific Optimizations
	4.2.3.1 Parameter Optimizations
	4.2.3.2 Table Set Optimizations

	4.3 Measurements
	4.3.1 Performance of Decoder Types
	4.3.2 Distortion Detection
	4.3.3 Influence of Image Resolution on Recognition Rates

	4.4 Summary

	5 Evaluation of Bar Code Scanners
	5.1 User Study
	5.1.1 Study Setup
	5.1.1.1 Used Mobile Phones
	5.1.1.2 Tested Bar Code Scanners
	5.1.1.3 Test Products
	5.1.1.4 Participants

	5.1.2 Quantitative Results
	5.1.2.1 Scan Accuracy
	5.1.2.2 Scan Speed
	5.1.2.3 Alignment of Codes
	5.1.2.4 Recognition of Round Codes in Blurry Images
	5.1.2.5 Recognition Problems

	5.1.3 Qualitative Results
	5.1.3.1 Scanners-Related Feedback
	5.1.3.2 User Interface-Related Feedback
	5.1.3.3 General Observations and User Behavior

	5.2 Scanner Analysis
	5.2.1 Analysis Setup
	5.2.1.1 Tested Bar Code Scanners
	5.2.1.2 Analyzed Conditions

	5.2.2 Results of the Feature Analysis
	5.2.3 Quantitative Results
	5.2.3.1 Speed and Accuracy Advantage of Blurry Code Recognition
	5.2.3.2 Limitations of Blurry Code Recognition

	5.3 General Results and User Interface Guidelines
	5.3.1 General Results
	5.3.1.1 Performance of Bar Code Scanners
	5.3.1.2 Scan Behavior of Users

	5.3.2 User Interface Guidelines
	5.3.2.1 User Interface Concept

	5.4 Summary

	6 Mobile Services
	6.1 Application Scenarios
	6.2 Product Identification Technologies
	6.2.1 2D Codes
	6.2.2 Near Field Communication (NFC) Technology
	6.2.3 Image Recognition
	6.2.4 Manual Code Entry
	6.2.5 Bar Codes

	6.3 Practicability of Mobile Services
	6.3.1 Data Access via Cellular Networks
	6.3.2 Availability of Product-Related Information

	6.4 Summary

	7 Rapid Prototyping of Mobile Services
	7.1 Motivation
	7.2 Challenges
	7.2.1 Beginners’ Challenges
	7.2.1.1 Application Signing
	7.2.1.2 Application Packaging
	7.2.1.3 Development Environment Setup

	7.2.2 General Challenges
	7.2.2.1 On-Device Testing
	7.2.2.2 Multi-Device Support
	7.2.2.3 Remote Application Updates

	7.3 Rapid Prototyping with SPARK
	7.3.1 General Architecture
	7.3.2 SPARK Environment
	7.3.3 SPARK Client

	7.4 Related Work
	7.4.1 Rapid Prototyping Platforms
	7.4.2 Mobile Phone Programming Options
	7.4.3 PyS60-Related Tools

	7.5 Use Case 1: Use in Teaching
	7.5.1 Setup
	7.5.2 Results

	7.6 Use Case 2: Product Advisor
	7.7 Summary

	8 Conclusions
	8.1 Summary
	8.2 Contributions
	8.3 Limitations and Future Work

	9 Appendices
	9.1 Implementation Details
	9.1.1 Recognition Table Layout
	9.1.2 Recognition Table Set Optimization
	9.1.3 Memory Consumption

	9.2 Details on the User Study
	9.2.1 Scanner Order
	9.2.2 Original German User Comments
	9.2.3 Dynamic Range of Tested Scanners

	10 Bibliography

