
Diss. ETH No. 20818

Paradigms and tools for
developing dependable realtime

software

A dissertation submitted to the
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
DANIEL KELLER

Dipl. Informatik-Ing. ETH
born April 12, 1972

citizen of Konolfingen (BE)

accepted on the recommendation of
Prof. Dr. Jürg Gutknecht, examiner
Prof. Dr. Peter Müller, co-examiner

Prof. Dr. med. Patrick Hunziker, co-examiner

2013

ii

Acknowledgments

A big “Thank you” to Prof. Jürg Gutknecht for his continuous guidance, sup-
port, help and never ending patience in the years past. Thank you to Prof.
Peter Müller who agreed to be co-examiner. A joint effort with him on the prior-
ity inheritance protocol implementation proved very productive. I am indebted
to Prof. Patrick Hunziker with whom I have implemented several challenging
medical IT projects and who has biased my career towards the med-tech in-
dustry.

I would like to mention a few colleagues to whom I owe insights, inspiration
and knowledge. Thomas Frey taught me all about hands on System Construc-
tion. Luc Bläser’s clear conceptual understanding has broadened my mind
significantly. Felix Friedrich gave me a hand with the Oberon Compiler issues
I faced. Alexey Morozov was in charge of implementing the signal process-
ing algorithms of the presented use cases. And last, but not least, my office
mate Svend Knudsen. Svend is a walking encyclopaedia of computer history.
Thanks to all of them.

Numerous students have contributed to the presented implementation.

iii

iv

Abstract

This thesis presents research into application-aware operating systems (OS)
for safety-critical applications. It has been motivated by the necessity to de-
velop of a “next generation” wearable medical monitoring device. Commer-
cially available devices are often based on 16 bit microcontrollers with limited
possibilities in many respects. A paradigm shift towards fully fledged 32 bit
technology is overdue. It allows a new generation of wearable devices fol-
lowing the “multiple parameter, multiple purposes” paradigm to be developed.
Such devices offer great flexibility regarding their field of application, and they
will finally replace simpler single purpose devices and even some of the sta-
tionary monitoring systems.

A de facto prerequisite to the design and build of complex embedded sys-
tems is the availability of an OS that offers a sufficiently abstract application
programming interface (API) and programming model. In the case of safety-
critical applications, like the one envisioned here, the OS must in addition be
highly dependable. This thesis presents an approach towards the goal of a
fully dependable OS based on a natively implemented runtime layer with some
provable properties. To accompany this, an evolved high-level programming
language will be introduced to support the development of dependable appli-
cation software.

The scientific contribution of this work largely lies in the symbiotic relation-
ship between programming language and OS. In particular, how to take advan-
tage of the programming language in order to exploit and build on particular
static properties of the runtime system and increase its runtime predictability
will be explored.

As proof of concept, a wearable device based on a 32 bit ARM processor
technology and operated by the entirely developed OS was built and field-
tested in the context of a medical application with the goal of reliably monitoring

v

heart patients and detecting abnormalities.

vi

Zusammenfassung

Diese Arbeit präsentiert ein applikationsspezifisches Betriebssystem für sicher-
heitskritische Anwendungen. Ausgangspunkt war die Entwicklung eines neuar-
tigen, tragbaren medizinischen Überwachungsgerätes. Kommerziell erhältliche
Geräte basieren häufig auf 16 bit Mikrokontrollern und sind in mehrfacher
Hinsicht limitiert. Ein Paradigmenwechsel hin zu voll ausgebildeten 32 bit
Prozessoren ist überfällig. Dieser Paradigmenwechsel erlaubt den Bau einer
neuen Generation von Geräten, die verschiedenartigste Sensoren für diverse
Zwecke nutzbar machen. Solche Geräte sind flexibel einsetzbar und können
einfachere oder sogar stationäre Überwachungssysteme substituieren.

Eine Voraussetzung um komplexe, eingebettete Systeme zu bauen, ist die
Verfügbarkeit eines Betriebssystems, das ein genügend abstraktes Program-
miermodel und eine genügend abstrakte Programmierschnittstelle bietet. Bei
den angepeilten sicherheitskritischen Anwendungen wird zusätzlich ein hohes
Mass an Zuverlässigkeit gefordert. Diese Arbeit präsentiert Schritte hin zu
einem vollständig zuverlässigen Betriebssystem basierend auf einem nativen
System mit beweisbaren Eigenschaften. Um die Entwicklung zuverlässiger
Applikationssoftware zu ermöglichen, wird die Evolution einer Programmier-
Hochsprache wird eingeführt, .

Der wissenschaftliche Beitrag dieser Arbeit liegt in der Symbiose zwischen
Programmiersprache und Betriebssystem. Im Speziellen wird untersucht, wie
die Programmiersprache genutzt werden kann, um statische Eigenschaften
des Betriebssystems zu stärken und das Laufzeitverhalten deterministischer
zu machen.

Als Machbarkeitstudie wurde ein tragbares Gerät basierend auf einem 32
Bit ARM Prozessor und dem vollständig entwickelten Betriebssystem vorgestellt.
Die medizinische Applikation um Herz Patienten zu überwachen, wurde im
Feld getestet.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 State of the Art . 3

1.3 Research Context . 5

1.4 Contributions . 5

1.5 Overview . 7

2 Realtime Processing Challenges 9

2.1 Structuring the Task of Realtime Signal Processing 10

2.2 Computational Challenge . 11

2.2.1 Non-Linearity Challenge 11

2.2.2 Multiscale Challenge . 12

2.3 Active Objects Computing Model 14

2.4 Scalability through Modular Composition 15

2.5 Conclusions . 16

3 Programming Language Enhancements 17

3.1 Concurrency and Synchronization in Programming Languages . 17

3.2 Time Constrained Mutual Exclusion 20

3.3 Time Constrained Conditional Waiting 21

3.4 Time Constrained Event Based Synchronization 23

3.4.1 Interrupts as Events . 24

ix

3.4.2 Timers as Events . 25

3.4.3 Self-defined Signals as Events 26

3.4.4 Finalizers as Events . 26

4 Scheduling Approach 29

4.1 Preemption aware Scheduling . 30

4.2 Priority Inversion . 32

4.2.1 Priority Inversion induced by resource sharing 33

4.2.2 Priority Inheritance Protocol 35

4.3 Case Study . 37

5 Patterns and Paradigms for Signal Processing Applications 39

5.1 Hardware Level Programming . 39

5.1.1 Unified Interrupt Handling 40

5.1.2 Leveraging Priority Inheritance as a Tool 42

5.2 Multicast Synchronization . 43

5.3 Real-Time Programming . 45

5.3.1 Sources of Temporal Unpredictability 46

5.3.2 Coexistence of Hard Real-Time with Non-Hard Real-Time
Threads . 46

5.3.3 Coexistence of Hard Real-Time Threads with Garbage
Collection . 49

5.4 Avoiding Deadlocks by Locking 51

5.4.1 Defining a global locking order 51

5.4.2 Implementing a global locking order 53

5.4.3 Avoiding Deadlock Interference with Conditional Waiting . 57

5.4.4 Related Work . 58

5.5 Avoiding Deadlocks by Cyclic Waiting 58

5.5.1 Implementation guidelines 59

5.5.2 Short Cuts . 60

x

6 Selected Implementation Issues 63

6.1 Priority based Interrupt Handling 63

6.1.1 First Level Interrupts . 63

6.2 Provably Correct Priority Inheritance Protocol Implementation . . 65

6.2.1 Tracking Monitor and Thread Dependencies 65

6.2.2 The Priority Inheritance Protocol Specification 71

6.2.3 Affected System Calls . 73

6.2.4 The Verified Classes . 77

6.2.5 Conclusion . 80

6.3 Decoupling Threads with Lock Free Data Structures 80

6.4 Elastic Garbage Collection . 82

6.4.1 Scheduling the Garbage Collector 83

6.4.2 Performance Considerations with regard to Stack Tracing 84

6.4.3 Performance Considerations with regard to Write Barriers 87

7 Use Cases 91

7.1 Evaluation of the User Interface 94

7.2 Real-time Monitoring . 94

7.2.1 Data Channels . 95

7.2.2 Evaluation . 95

7.3 Data Stream Recorder . 96

7.3.1 Implementation . 97

7.3.2 Evaluation . 97

7.4 Hazardous Event Notifier . 97

7.4.1 Implementation . 98

7.4.2 Evaluation . 102

8 Evaluation 105

8.1 Scheduling . 105

xi

8.1.1 Optimality . 105

8.1.2 Uniformity . 106

8.1.3 Power Awareness . 107

8.2 Memory Management . 108

8.2.1 Heap . 108

8.2.2 Stack . 109

8.2.3 Global Data . 110

8.3 Synchronization . 110

8.3.1 Mutual Exclusion . 110

8.3.2 Conditional Synchronization 111

8.4 Resource Sharing . 112

8.4.1 Correctness of the Priority Inheritance Protocol Imple-
mentation . 112

8.4.2 Applicability of the Priority Inheritance Protocol Imple-
mentation . 113

8.4.3 Relevance of a correct and applicable Priority Inheritance
Protocol Implementation 114

8.5 Asynchronous Event Handling 115

8.6 Asynchronous Transfer of Control 116

9 Conclusion 117

9.1 Summary . 117

9.2 Future Work . 118

xii

Chapter 1

Introduction

The topic and essence of this thesis is about the synthetic power of program-
ming language and operating system (OS) co-design to build dependable sys-
tems. The term “dependable” stands for systems that produce correct results,
are stable over time and tolerant with respect to unpredictable faults. The ma-
jor question to be answered here is: If the chance for a green-field design is
given, how should an OS and programming language be co-designed so as to
be accessible to state of the art formal verification methods and also informal
verification strategies.

However, introducing or improving a general formalism for verification pur-
poses was not the goal of this thesis. Our approach is more modest, but no
less effective: Efforts on different levels have been made to facilitate reasoning
about the correctness of particular system properties. These efforts include:

• A programming language enhanced by suitable and sufficiently abstract
primitives.

• Design patterns as generic solutions to commonly occurring problems in
dependable system software design.

• An implementation that allows complexities to be easily managed.

In summary, a generic software framework for implementing dependable
data driven embedded systems will be presented.

1

2 Chapter 1. Introduction

1.1 Motivation

This thesis is basically a by-product of an extensive e-health related research
project about advanced health state monitoring. Since Medical Device engi-
neering is an emerging and challenging discipline, it is an interesting showcase
for a custom runtime system like the one presented in this thesis.

At the time of this thesis, wearable diagnostic devices are not very popular
in medical daily routine. The limitations of such devices are at least twofold:
On the one hand, the available sensor technology is not fool-proof. Depending
on the application domain, experts are required to apply the sensors in order
to get accurate results. And on the other hand, current mobile devices are
still unable to apply sophisticated algorithms to realtime data; they usually only
carry out data recording and / or visualization. Data processing is most often
done offline by experts or by semi-automated expert systems. In an ideal
world, patients could handle the devices and sensors themselves and experts
would only have to be involved in the case of relevant medical incidents.

However, wearable medical monitoring devices have gained more interest
recently due to three major trends: 1.) wide-ranging RF communication in-
frastructures, 2.) power-efficient processors and 3.) software tools to build de-
pendable systems. But it is not at all a priori evident that autonomous wearable
medical monitoring devices are conceptually promising in the long term. The
ratio of acquired data versus wireless communication capacities will largely de-
termine where and how realtime data will be processed. We assume that the
amount of data acquired by upcoming devices based on nano sensors for in-
stance, will grow faster than the capacities to transmit data over the air. Hence
processing data locally to where it has been acquired will gain importance in
the future.

With the available power aware and highly integrated multi-core 32 bit pro-
cessors, the way wearable signal processing devices will be built is going to
change radically. Off the shelf processors with on chip memory, signal proces-
sors, operation amplifiers and all kinds of communication controllers will allow
substituting analog building blocks with software routines. In particular, ana-
log circuits for filtering signals will become obsolete. Fewer Integrated Circuit
components will reduce the overall production costs significantly.
This paradigm shift towards fully digital information processing, justifies inves-
tigations into a software framework adapted to smart wearable signal process-

1.2. State of the Art 3

ing devices.

1.2 State of the Art

By far most of the failures in dependable systems result from memory viola-
tions, leaks in the use of resources like memory for instance, deadlocks, infi-
nite loops and also, in the context of real-time systems, scheduling anomalies.
Language-based systems are state of the art that mitigate memory leaks and
memory violations. “A language-based system is a type of operating system
that uses language features to provide security, instead of, or in addition to,
hardware mechanisms. In such systems, code referred to as the trusted base
is responsible for approving programs for execution, assuring they cannot per-
form operations detrimental to the system’s stability without first being detected
and dealt with” [47].
Thus, there is a need to improve the temporal predictability of dependable
systems.

The benchmark for the presented generic software framework for imple-
menting dependable data driven embedded systems are other language-based
systems such as Singularity [17] by Microsoft Research or the OVM project [3]
by Boeing corp. and Purdue University. Since Singularity was not primar-
ily targeted to realtime applications, the OVM project based on the Realtime
Specification for Java [5] will be used as a reference throughout this thesis.
Most comparisons will not refer to OVM specific aspects, but to concepts intro-
duced by the Realtime Specification for Java and thus relevant for the whole
class of systems implementing this standard.
Another class of systems that are referenced in this thesis are the linux based
realtime operating systems, LynxOS and QNX. These systems are not language-
based but still offer interesting conceptual insights. Also of conceptual interest
is the Microsoft Task Parallel Library (TPL) for .NET [37].

Temporal predictability is probably the most important property a realtime
system is supposed to have. According to the Realtime Specification for Java
[5], it involves resolving the following OS challenges:

• Scheduling

• Memory Management

4 Chapter 1. Introduction

• Synchronization

• Resource Sharing

• Asynchronous Event Handling

• Asynchronous Transfer of Control

State of the art operating systems all face these challenges in one way or an-
other. Crucial to the application programmer in the context of real-time is the
ease of achieving temporal predictability. The end to end quality of an ap-
plication certainly benefits from easy to predict programming primitives. The
famous Mars Rover case [21] has exemplified the potential risk of runtime sys-
tems that expose unnecessary complexity to the application programmer.

There are basically two different control abstractions for synchronizing threads.
The most common one is lock based and the other is software transaction
memory (STM) based. OVM proposes STM based preemptable atomic re-
gions [32] for instance.
Lock-based synchronization control suffers from programmability, scalability,
and composability challenges [22], whereas STM based synchronization con-
trol promises to alleviate these difficulties. Additionally, significant advantages
include the absence of deadlocks and the fact that no other priority inversion
avoidance technique is needed [32]. Unfortunately, there are also major limi-
tations of STM based synchronization control: Low level I/O operations are a
challenge because these cannot be undone in general. Hence a system can-
not be built on STM based synchronization control only. A hybrid solution with
lock based synchronization control is inevitable.

Since unification of low level hardware programming and application pro-
gramming was the driving idea behind the presented OS, we have decided
to choose the lock based synchronization control approach. To achieve tem-
poral predictability with a completely uniform programming model we have
only introduced locked based synchronization control. A uniform programming
model is considered as more valuable than the mentioned advantages of STM
based synchronization control. Especially since this thesis also presents im-
provements regarding the drawbacks of locked based synchronization control,
namely the required priority inheritance protocol and deadlock avoidance.

Regarding temporal predictability, the mentioned state of the art systems
include one or more suboptimal elements listed in the following enumeration:

1.3. Research Context 5

• a first class interrupt handling system that works according to its own
scheduling rules.

• a first class garbage collector scheduled according to its own rules.

• different types of concurrent activities.

This thesis shows how better predictability is achieved with a single precise
and concise set of scheduling rules, a single heap space and a single type of
activity.

1.3 Research Context

Research in Dependable Systems has an especially long tradition at the ETHZ.
Different approaches have been taken such as strongly typed programming
languages like Pascal, Modula and Oberon, and systems entirely written in
such high level languages. Such systems benefit from strong type-safety in
two respects: Multiple address spaces for shielding different processes against
each other are not required, thus simplifying the operation of a system consid-
erably. A second benefit is the use of type information for managing heap data
structures. Garbage collection relies heavily on type meta information. Such
systems are also called fully managed.

The outcome of Project Oberon [14] has been an incubator for several OS
projects, including the runtime system and programming language presented
in this thesis. It has been derived from the Active Object System [38] and is
targeted to data driven real-time applications. An earlier project by Roberto
Brega [6] has already shown the potential of a fully managed Oberon based
system for real-time industrial controls. In hindsight, using an Oberon deriva-
tive for building dependable system technology was a very reasonable choice.

1.4 Contributions

This thesis’ higher order contribution is based on a programming language
and runtime system co-design. It takes advantage of a highly integrated run-
time system and programming language environment that was designed by

6 Chapter 1. Introduction

exploring the full degrees of freedom that co-designing a system and a lan-
guage offers. The presented co-design is somehow a counterpoint to the gen-
eral trend of compiling different programming languages on the same runtime
system such as, for instance, the Microsoft runtime does.

The first contribution aims at fostering predictability:

• The unified activity model helps the programmer to better understand
the overall temporal behavior of the system. The system does not host
any first class citizens with particular privileges, all (concurrent) activities
are treated uniformly. Hardware level programming is done according
to exactly the same principles as application level programming. Inter-
rupt handling, finalization and garbage collection obey exactly the same
rules as ordinary application activities do. Applying the priority inheri-
tance protocol uniformly to all concurrent activities enables application
programmers to better anticipate the behavior of the underlying system.

• The runtime system and programming language environment supports
data driven scheduling rather than time-driven scheduling. Non-effective
context switches triggered by traditional timeslicing are conceptually avoided.
Arriving data-packets are used as a natural “pace-maker” for scheduling
the basic activities, which saves battery power overall.

• A proposal on how to employ priority inheritance as a thread orchestrat-
ing tool rather than just as a means to overcome a well known scheduling
anomaly. Priority inheritance enables conceptually sound scheduling of
system services like garbage collection and interrupt handling.

Deadlocks, infinite loops and scheduling anomalies have been mentioned
in 1.2 as a major threat for dependable systems. The following contributions
help to disarm those:

• A set of hands on programming patterns to build systems without dead-
locks by mutual exclusion or cyclic waiting. Our approach does not rely
on type systems or annotations, but it guides the way applications should
be structured.

• It has been verified by formal methods that a scheduling anomaly due to
priority inversion is not going to happen. This is a step ahead compared

1.5. Overview 7

to conformance testing proposed by [53]. This contribution is based on
joint work with [45].

• An essential aspect of real-time programming, namely time-wise con-
strained synchronization among cooperating threads has been reviewed.
Time-wise constrained synchronization is useful to detect infinite loops
for instance.

Finally, a data driven sample application that takes advantage of a depend-
able application aware OS. This medical IT application has been fully imple-
mented and field tested.

1.5 Overview

This text mainly discusses the addressed class of problems, the way the prob-
lems are meant to be solved, the programming language and runtime support
needed to formulate an elegant solution to the addressed problems and last,
but not least, one concrete solution to a problem instance. Chapters 2 to 6 will
refer to the contributions listed in 1.4 where appropriate.

Chapter 2 presents the envisaged class of problems to be computed, the
problems’ characteristics and a suitable computing model to solve these prob-
lems.

Chapter 3 introduces some enhancements to the programming language
Oberon needed to implement the proposed computing model in chapter 5.
These enhancements comprise a unified event handling and temporal con-
straints on blocking primitives. Instructive code samples will show how to use
these newly introduced programming primitives.

Chapter 4 explains the scheduling support provided by the runtime system
needed to implement the proposed computing model of chapter 5.

Chapter 5 lists relevant programming patterns recommended to achieve
the results announced in 1.4. It will be demonstrated how to fit hardware pro-
gramming into the proposed computing model. An example about employing
priority inheritance as a tool for structuring a set of threads is given by listing
8.2. Another topic is how to achieve deadlock avoidance.

8 Chapter 1. Introduction

Chapter 6 offers a look behind the scenes by revealing selected implemen-
tation details of the runtime system. In particular, it will focus on a provable
priority inversion implementation.

Chapter 7 presents three practical use cases. They are meant to demon-
strate the benefits of the presented runtime system.

Chapter 8 evaluates the presented generic software framework for imple-
menting dependable data driven embedded systems with other state of the art
systems mentioned in chapter 1.2.

Chapter 9 concludes this thesis and suggests directions for further re-
search.

Chapter 2

Realtime Processing Challenges

This chapter outlines the computational challenges to be addressed and how
these are approached. It introduces the active objects computing model that
Realtime Oberon has been designed to support and explains how the model
fits the envisaged application domain.
The application domain is the class of computing systems targeted to monitor
24/7 objects of any kind. One has to take into account the intrinsic complexity
of the observed object that determines the computational complexity of the
algorithm used. Thus, the computing model needs to take into account the
expected workload in order to not oversimplify the problem. This chapter will
explain how the presented model matches the expected workload in the case
of observing complex physiologic systems, like humans.

Structuring a real-time system requires knowledge about all (concurrent)
activities in the system. Activities requesting hard deadlines have to be identi-
fied. The better the identified real-time activities are isolated from non-real-time
activities, the easier they are to deal with. A fine grained decomposition of all
activities is key to finding a feasible schedule that satisfies realtime constraints.

A general approach to decompose a system’s intrinsic activities into a set of
manageable threads is to reason about task and pipeline parallelism. Task par-
allelism is about decomposing a single task into multiple subtasks computed in
parallel, pipeline parallelism is about decomposing a single subtask into mul-
tiple subsequent steps. With pipeline parallelism in mind we will structure the
task of signal processing in the next section. The goal is again to isolate the
steps that require hard real-time guarantees in order to be able to define a fine
granular and feasible schedule.

9

10 Chapter 2. Realtime Processing Challenges

Figure 2.1: Task and Pipeline Parallelism

2.1 Structuring the Task of Realtime Signal Pro-
cessing

Monitoring complex real world objects primarily involves digital signal process-
ing. One possible approach to model digital signal processing is to decompose
the overall task into five subsequent subtasks:

Figure 2.2: Generic Data Processing Pipeline

1. The first task collects raw data and assembles it to a data buffer. This
task is usually triggered by hardware interrupts that are signaling the
availability of new chunks of raw data. Polling would be an alternative
option.

2. The second task pre-processes the raw data. For instance, it could down
sample the raw data if the data acquisition rate is higher than appropriate.

3. The third task extracts features from the filtered data. For example, it
detects peaks in the signal.

4. The classifier task processes the previously detected features. The clas-
sifier decides whether a detected feature has any relevance in the current

2.2. Computational Challenge 11

context or not. For instance, if the previously detected peak’s magnitude
reaches a particular threshold, then an event is raised and forwarded to
the rightmost actor task.

5. Actor tasks take actions according to the received events.

The modular decomposition of the signal processing task into these five sub-
tasks has the following advantages:

• The model enables fine grained scheduling. Especially when computing
resources are scarce.

• The model helps to avoid redundant computing where different tasks rely
on the same intermediate results.

The next chapters outline the computational complexity to be expected when
monitoring physiologic systems.

2.2 Computational Challenge

“Physiologic systems in health and disease display an extraordinary range of
temporal behaviors and structural patterns that defy understanding based on
linear constructs, reductionist strategies, and classical homeostasis” [13]. It
is well known that physiologic systems have non-linear and self-similar prop-
erties. Both properties will be explained in a qualitative way, each with a well
known phenomenon at hand.

2.2.1 Non-Linearity Challenge

A linear system’s output is proportional to its input. And if there is more than
one input, then the output is equal to the sum of the responses that would
have been caused by each input individually. However, linearity may not be
assumed when analyzing a physiologic system. Figure 2.3 shows an instance
of a non-linear relation.

One would naively assume a linear relation between the pulmonary func-
tion and the heart function. If the respiration is in a steady state, one would

12 Chapter 2. Realtime Processing Challenges

assume that the heart activity is also in a steady state. However, “visual in-
spection of the time series in 2.3 reveals dramatic differences in the temporal
structure. The time series from a healthy person reveals a complex pattern of
nonstationary fluctuations. In contrast, the heart rate diagram from people with
sleep apnea shows a much more predictable pattern [...]. Both the complex be-
havior in the healthy case and the sustained oscillations in the pathologic case
suggest the presence of nonlinear mechanisms.” [13]

Figure 2.3: Cardiopulmonary nonstationary fluctuaions [13]

2.2.2 Multiscale Challenge

As mentioned, there is strong evidence that the expected signal has self-similar
properties. A self-similar structure looks similar on different spatial or temporal
scales. The tracheobronchial tree depicted left in figure 2.4 is a fractal struc-
ture that reproduces itself at different spatial scales. A temporal example of
fractal behavior is Internet traffic. The data volume over time is self-similar, its
standard deviation does not converge toward zero when increasing the con-
sidered time interval. It shows growing peaks on a daily, weekly and even on

2.2. Computational Challenge 13

a yearly basis [42].

The heart rate regulation process is another interesting case: A healthy
regulation generates fluctuations on different time scales that are statistically
self-similar according to the graph on the right in figure 2.4. There are three
time slices of three different orders of magnitude, which look quite similar from
a morphological point of view. “Findings from life-threatening conditions, such
as chronic heart failure, cause the breakdown of fractal correlations. Abrupt
transitions to strongly periodic dynamics are observed in many other patholo-
gies, including at high altitudes and with obstructive sleep apnea, sudden car-
diac death, epilepsy, and fetal distress syndromes, to name but a few.” [13]
Obviously information is encoded on different time scales in the signal. A holis-
tic analysis requires computations on all timescales in parallel in order to detect
a potential breakdown of fractal correlations indicating pathologies.

Figure 2.4: Heart Rate Self-Similarity [13]

14 Chapter 2. Realtime Processing Challenges

2.3 Active Objects Computing Model

As a consequence of the specific characteristics mentioned in the previous
section, a computing model is needed for our class of applications that is able
to respond to a multitude of events arriving at unpredictable times and in an
unpredictable order. [38] was a promising basis to start with. Its model al-
lows event processing based on active objects. Autonomous active objects en-
gage other autonomous active objects asynchronously in activities via events
or messages. Active objects are connected via thread safe buffers used for
exchanging data.

Briefly said, an active object;

• runs to completion in the sense that it releases the processor only while
waiting for the next event to be processed,

• encapsulates the state of event processing, and

• engages other autonomous active objects asynchronously.

A more formal description of the computing model is: A set of active objects
are connected through threadsafe buffers, which are used for synchronization
purposes. The following rules apply on the active objects / buffer graph:

• Each active object plays the role of a producer and / or consumer. A
producer fills the buffer, a consumer empties it.

• Each active object manages one or more buffers. Each buffer is either
operated as a producer or as a consumer, but never both.

• circular producer - consumer - producer chains are forbidden - a cycle
free topology thereby avoids deadlocks by design.

The next section will demonstrate how this computing model can cope
with the expected workload caused by the likely computational complexity de-
scribed above.

2.4. Scalability through Modular Composition 15

2.4 Scalability through Modular Composition

This section explains how to compose cascaded and / or parallel modular pro-
cessing chains based on the five step model introduced in 2.1. Similar to the
previously mentioned sleep apnoea example, we can demonstrate how our
computing model scales.

As mentioned, there are two related indicators for detecting sleep apnoea
reliably: frequent respiration stalls accompanied by the breakdown of fractal
correlations of the heart rate. Figure 2.5 sketches a fine grained pipeline that
models the corresponding computation. Note that the buffers connecting the
individual threads have been omitted for the sake of simplicity.

Figure 2.5: Parallel Pipelines

The two input signals are: the thorax impedance used for detecting respi-
ration stalls and the ECG to calculate the heart rate. The extraction process
in the thorax impedance pipeline extracts “respiration stalled” and “respiration
resumed” features, which are classified by the subsequent classifier thread.
The first extraction thread in the ECG pipeline detects heart beats.
Then the heart rate’s self-similar property enters the scene: The Heart Rate
Variability (HRV) expresses the amount of fluctuation in a heart rate signal like
the ones shown in figure 2.3. According to figure 2.4, the heart rate variability
has to be computed on several (in this example three) time scales in parallel, in
order to not miss the point in time when the fractal correlations of the heart rate

16 Chapter 2. Realtime Processing Challenges

start to break down. This is done by three additional filter / extract pipelines
that work in parallel. Changes in the heart rate variability on any time scale are
reported to the classification thread together with corresponding features.
The non-linear property of the computation pops up at the classification thread
on the right in figure 2.5. In general, the reported events are not linearly sep-
arable, but there are different algorithmic approaches that are suited to deal
with nonlinear classification.

2.5 Conclusions

In summary we can state the following pros of our modeling approach:

• The proposed active objects computing model is sufficiently abstract to
be useful for implementing complex signal processing systems.

• A high computational dynamic is likely when monitoring complex sys-
tems. The fine grained tasks allow fine grained realtime scheduling es-
pecially in cases of a computational overload.

The remaining challenges are:

• To provide a runtime system that supports smooth mapping of the pro-
posed active objects computing model. All activities should be treated in
a uniform way in order to guarantee predictability.

• Efficient scheduling of a large number of fine grained tasks.

The next two chapters introduce the programming language and runtime schedul-
ing infrastructure necessary to guarantee efficient mapping of the proposed
active objects computing model.

Chapter 3

Programming Language
Enhancements

This chapter presents Realtime Oberon as an evolution of the original Oberon
programming language.

Realtime Oberon uses a concurrency model based on active objects. Ac-
tive objects are objects with an intrinsic thread of control. A short and informal
introduction into the active object concept will be given below, a more detailed
presentation has been done by Pieter Muller ([38] chapter 2) and Patrick Reali
([44] chapter 4).

The main reason for enhancing the existing language is Oberon’s lack of
expressiveness to cope with temporal constraints. A second incentive was to
strengthen the static properties of the execution path along the module depen-
dency graph. The unrestricted use of function pointers, delegates and virtual
calls severely compromises static assertions on the execution order of code.

3.1 Concurrency and Synchronization in Program-
ming Languages

Concurrent programming brings up three issues: parallelism, mutual exclu-
sion, and synchronization. There are different approaches to what extent a
programming language supports these three issues. Java and C# do only

17

18 Chapter 3. Programming Language Enhancements

address mutual exclusion for instance. Parallelism and synchronization are
implemented with API support. C++ is completely concurrency agnostic, it
does not provide support for any of the three concerns. Whereas Realtime
Oberon supports mutual exclusion, synchronization and parallelism with only
four basic constructs. At the end of this section, the motivation for including
the statements in the programming language will be explained.

To develop an idea of how these four basic constructs are used, listing 3.1
shows an illustrative example. It shows a producer composed of a bounded
buffer and an intrinsic activity. All “active objects” postulated in chapter 2.3 will
be implemented similarly to this example.

Listing 3.1: Producer

Producer = OBJECT
VAR buffer : POINTER TO ARRAY OF Item;

notFull, notEmpty : BOOLEAN;

PROCEDURE & Init();

BEGIN
NEW(buffer, initialSize);

END Init;

PROCEDURE Append(x:Item);

BEGIN {EXCLUSIVE}
AWAITCONDITION(notFull);
(*insert item into buffer, set condition notEmpty*)

END Append;

PROCEDURE Remove():Item;

BEGIN {EXCLUSIVE}
AWAITCONDITION(notEmpty);
(*remove item from buffer, set conditon notFull, return*)

END Remove;

BEGIN{ACTIVE}
WHILE (alive) DO

AWAITEVENT SYSTEM.INTERRUPT, anInterrupt;

(*Read item from hardware register, Append(item)*)

END;
END Producer;

3.1. Concurrency and Synchronization in Programming Languages 19

An active object such as the producer in 3.1 contains four parts: a number
of variables, a constructor, a number of methods, plus a so called “body”. The
body is enclosed in a BEGIN .. END block annotated with a modifier {ACTIVE
} appended to BEGIN . This code block is executed by a dedicated intrinsic
thread. Additionally, the initial priority may be specified in brackets as an add
on to {ACTIVE}. This is how parallelism is supported by Realtime Oberon.
Another block modifier is {EXCLUSIVE}. It assures mutual exclusion, the vari-
able buffer is therefore protected from concurrent accesses by appending and
/ or removing threads.
AWAITCONDITON stalls an invoking thread (at least) until the requesting boolean
condition evaluates to true. It must be embedded in a BEGIN{EXCLUSIVE} ..

END block.
And finally, an AWAITEVENT statement in the body synchronizes the intrinsic
thread of the object with an event.

As already outlined, parallelism, mutual exclusion, and synchronization are
supported differently by other programming languages like Java or C++. All in-
troduced language constructs could be substituted by ordinary API calls. There
are three reasons why {EXCLUSIVE}, AWAITEVENT, AWAITCONDITION and ACTIVE

should be included into the language:

• An important design goal was to keep the OS Application Programming
Interface free of side effects on other than the caller’s schedule. In con-
trast, the four statements do have side effects on other than the caller’s
schedule. Very obvious ones in the case of ACTIVE when a new thread
is created, hidden ones in the case of {EXCLUSIVE}, AWAITEVENT, and
AWAITCONDITION mainly due to the priority inheritance protocol.

• Another reason are static guarantees. Critical sections tagged with {

EXCLUSIVE} are always freed correctly, it is not left to the programmer.
The compiler is also able to check that {AWAITCONDITION} is always en-
closed by an {EXCLUSIVE} section.

• A third reason is symmetry. AWAITEVENT is a natural, symmetric com-
plement to AWAITCONDITION. It would be inconsistent only to include one
statement into the language rather than both.

Let us now take a closer look at the mutual exclusion construct.

20 Chapter 3. Programming Language Enhancements

3.2 Time Constrained Mutual Exclusion

In order to avoid data races, critical sections are protected by EXCLUSIVE blocks.
“The EXCLUSIVE modifier on a statement block defines the block as a critical
section of the immediately enclosing object instance or module.” [38]

By specifying an optional upper limit in milliseconds, the timespan a thread
is allowed to wait before entering the monitor is limited. If a thread was not
granted access to the monitor within the specified timespan, the entire BEGIN{

Listing 3.2: Bounded Buffer

BoundedBuffer = OBJECT

VAR head,num:LONGINT; buffer:POINTER TO ARRAY OF Item;

PROCEDURE Append(x:Item; max:LONGINT);
BEGIN {EXCLUSIVE(max)}
IF(num # LEN(buffer)) THEN
buffer[(head+num) MOD LEN(buffer)]:=x;
INC(num);

END;
END Append;

PROCEDURE Remove():Item;

VAR x:Item;

BEGIN {EXCLUSIVE}
AWAITCONDITION(num # 0);

x:=buffer[head];

head:=(head+1) MOD LEN(buffer);
DEC(num);
RETURN x

END Remove;

PROCEDURE &Init(n:LONGINT);
BEGIN
head:=0;num:=0;NEW(buffer,n)

END Init;

END BoundedBuffer;

3.3. Time Constrained Conditional Waiting 21

EXCLUSIVE(max)} (*statements*)END block will simply be skipped.

There are three scenarios where time-limited monitor locks can beneficially
be used:

• Listing 3.2 shows a bounded buffer in a producer / consumer scenario for
UDP handling. Let us assume a low prioritized consumer removing UDP
packets and a high prioritized producer appending UDP packets to the
buffer. If the buffer is full (num = LEN(buf)), the UDP packets are simply
dropped, which is perfectly consistent with the general understanding
of UDP packet transfers. But what if the low prioritized consumer has
been preempted for more than max milliseconds within the Remove method
and the producer tries to append a new packet at the same time? The
producer drops the packet implicitly by skipping the BEGIN{EXCLUSIVE(

max)} (*statements*)END. That is again in agreement with the general
understanding of UDP data transfer.

• Another application is coping with starvation. If a heavily used resource
causes starvation, a thread that does not get access to the resource
within a reasonable time frame may skip the questionable monitor lock
and launch countermeasures.

• The third application is connected with runtime predictability: Handling
the worst case execution time becomes much easier by setting time limits
for entering a monitor.

• Finally, timely restricted monitor guards can be used for energy aware
systems. An energy aware system optimizes its power consumption by
dynamically adjusting the CPU clock rate. In order to do that, the system
can exploit the information about timing constraints to dynamically adjust
the clock rate.

3.3 Time Constrained Conditional Waiting

AWAITCONDITION is used for conditional synchronization. It blocks the invoking
thread until a generic boolean condition becomes true. Time constraints can

22 Chapter 3. Programming Language Enhancements

also be applied. In addition to a generic boolean condition, an optional upper
limit in milliseconds may be appended as an argument.

The formal idea is the following: If an invariant I of the associated exclusive
region is valid before AWAITCONDITION, then the invariant I is still valid after
AWAITCONDITION and additionally either the condition C or the timeout T, or
both.

{I}, AWAITCONDITION(C ∨ T), {I ∧ (C ∨ T)} (3.1)

Since condition C must be valid after AWAITCONDITION, condition C must be
protected by the same monitor as AWAITCONDITION is. In other words, test and
set operations on conditions must run mutually exclusive. Applied to listing
3.3: state:=TimerAwake; runs mutually exclusive with AWAITCONDITION state

TimerSleeping, timeout;. The second implication is that invariant I may
not be invalidated by AWAITCONDITION. Thus the evaluation of condition C must
not have any side effects. This restricts the semantics of the generic boolean
expression C.

In fact, there are no compelling reasons for a time constrained AWAITCONDITION

statement. The same semantics could be implemented otherwise, for exam-
ple by timer call backs invalidating the questionable boolean condition. How-
ever, the “inverse programming” style induced by callbacks disturbs execution
path predictability as mentioned earlier. The Timer Object example in listing
3.3 shows how time-constrained AWAITCONDITION leads to straight forward and
compact code.

Listing 3.3: Timer Object

Timer = OBJECT

VAR state:SHORTINT;

PROCEDURE Sleep(timeout:LONGINT);
BEGIN {EXCLUSIVE}
state:=TimerSleeping;

AWAITCONDITION state # TimerSleeping, timeout;

state:=TimerFree

END Sleep;

PROCEDURE Wakeup;

BEGIN {EXCLUSIVE}
IF state = TimerSleeping THEN state:=TimerAwake;END

END Wakeup;

3.4. Time Constrained Event Based Synchronization 23

PROCEDURE &Init;

BEGIN
state:=TimerFree;

END Init;

END Timer;

3.4 Time Constrained Event Based Synchroniza-
tion

The AWAITEVENT statement was introduced to handle different kinds of events
in a uniform way. The event types are:

• I/O hardware interrupts.

• timer events, usually also triggered by hardware interrupt requests.

• signals triggered by application threads .

• garbage events triggered by the garbage collector when an object has
become unreachable and is about to be collected by the garbage collec-
tor. Garbage events are used for predictable finalization of objects.

In contrast to the AWAITCONDITION statement, AWAITEVENT does not have to oc-
cur in an EXCLUSIVE block. If it nevertheless occurs in an EXCLUSIVE block,
the monitor lock is not implicitly freed when the invoking thread is passivated
on AWAITEVENT. This is unlike the AWAITCONDITION boolean_condition case,
where releasing the monitor lock is necessary to allow other threads to estab-
lish the awaited boolean condition.
AWAITEVENT statements are embedded in an EXCLUSIVE section in the following
cases:

• Events are to be handled sequentially. The EXCLUSIVE section serializes
threads waiting on the event. When an event has been raised and the
handling thread leaves the EXCLUSIVE section, another thread can enter
the section and wait for the next event.

24 Chapter 3. Programming Language Enhancements

• The waiting thread is supposed to inherit the priority of other threads
trying to enter the monitor. An example will be shown later in the chapter
on hardware programming.

AWAITEVENT statements are not embedded in an EXCLUSIVE section in the fol-
lowing case:

• Events may be handled interleaved. When a pool of threads is in charge
of the same event type, an event handling thread may be launched before
the previous event handler has finished.

The main reason for introducing a special event handling statement was rigor-
ously eliminating all event handler registration services in the interest of exe-
cution path predictability.

3.4.1 Interrupts as Events

The benefits of a time constrained AWAITEVENT statement are exemplified by
listing 3.4. It shows the body of a thread operating an external I/O board [49].
An external microcontroller regularly signals the availability of data by trig-
gering an interrupt each time a chunk of data is ready for processing. The
AWAITEVENT statement blocks the invoking thread until the general purpose I/O
interrupt request zero (GPIO0IRQ) is raised for at most timeout [milliseconds].
If the interrupt is not raised within timeout [milliseconds], the external I/O board
is stopped and restarted.

Multiple threads are allowed to wait for the same interrupt when interrupts
are shared.

Listing 3.4: Interrupt Thread

Handler = OBJECT
VAR

run : BOOLEAN;
t : AosKernel.MiliTimer;

maxTimeSpan : LONGINT;

PROCEDURE RestartInputDevice();

BEGIN
(*restart it*)

END RestartInputDevice();

3.4. Time Constrained Event Based Synchronization 25

PROCEDURE ProcessInputData();

BEGIN
(*process it*)

END ProcessInputData();

BEGIN{ACTIVE, PRIORITY(AosRuntime.Realtime)}
WHILE(run) DO
AosKernel.SetTimer(t, timeout);

AWAITEVENT SYSTEM.INTERRUPT, PXA26x.GPIO0IRQ, timeout;

IF AosKernel.Expired(t) THEN
RestartInputDevice();

ELSE
ProcessInputData();

END;
END;
END Handler;

3.4.2 Timers as Events

Timer implementations are straight forward with the newly introduced AWAITEVENT

statement. Its parameters are the event type, the interrupt involved and the
maximum amount of time in [milliseconds] the invoking thread is meant to be
passivated.

Listing 3.5: Timer Thread

WHILE (run) DO
AWAITEVENT SYSTEM.INTERRUPT, PXA26x.TIMERIRQ, timeout;

UpdateView()

END;

Listing 3.5 shows a thread releasing the CPU for at most timeout [millisec-
onds] before executing some periodic action. AWAITEVENT SYSTEM.INTERRUPT

, PXA26x.TIMERIRQ, timeout is semantically equivalent to AWAITCONDITION

FALSE, timeout but must not be embedded in an EXCLUSIVE block.

26 Chapter 3. Programming Language Enhancements

3.4.3 Self-defined Signals as Events

A new SIGNAL base type has been introduced. Signals are caught by AWAITEVENT

SYSTEM.SIGNAL, signal, timeout statements. The first and second param-
eter specify the event type and the signal instance to be caught. The third
optional parameter is again a time-out in [milliseconds]. If the timeout param-
eter is omitted, the invoking thread will wait infinitely long.

Listing 3.6: Signal

PROCEDURE Remove(): Value;

VAR result: Value;

BEGIN
result := NIL;
AWAITEVENT SYSTEM.SIGNAL, signal;

result := divider.next.val;

divider := divider.next;

RETURN result

END Remove;

Signals are triggered by invoking the AosKernel.Signal(VAR signal: SIGNAL

, counter: LONGINT) Procedure. Listing 3.6 shows the Remove method of a
lock free buffer. The invoking thread is blocked until the buffer contains at
least one element. The corresponding AosKernel.Signal call is located in the
buffer’s Add method.

3.4.4 Finalizers as Events

One limitation of popular managed runtime systems like Java or .NET is de-
terministic finalization. According to [43] and [36] both runtime systems lack
determinism in finalizing objects because there is no possibility to statically
predict in what order objects are finalized. This leads to uncertainties not tol-
erable in dependable systems. The obvious approach to enforce predictability
would be to perform finalization according to some global order based on the
object graph. Unfortunately this would require expensive bookkeeping.

Our solution does not enforce a global finalization order, but it allows con-
trolling the relative order of finalization where it is of interest. For example,
in the case of file / writer composition. The writer is supposed to be finalized
before the file, in order to flush buffered data while the file is still open. Listing

3.4. Time Constrained Event Based Synchronization 27

3.7 shows our solution based on an AWAITEVENT statement.

A form of resurrection is useful to recycle objects instead of destroying and
reallocating them. An object is resurrected by reassigning it to a persistent
root. Listing 3.7 sketches this for the case of an unused file. After invoking
Finalize(), it is registered with a pool of reusable file objects. In contrast, the
writer instance will definitely be collected.

Each logically connected object group, like the mentioned file / writer pair,
is finalized by a dedicated thread. Partitioning the overall finalization task into
different threads makes the system less vulnerable. If there was a single final-
izer thread, a life- or deadlock in any finalizer method could block the overall
finalization process indefinitely [36].

The AWAITEVENT statement again requires two mandatory parameters: the
requested event type and the object instance to be monitored until it becomes
garbage. An optional timeout could be appended as a third argument, however,
there is no practical use for it.

Listing 3.7: Finalizer Thread

Finalizer= OBJECT

VAR writer:AosFS.Writer;file:AosFS.File;

PROCEDURE &Init(w:AosFS.Writer;f:AosFS.File);

BEGIN
writer:=w;file:=f;

END Init;

BEGIN{ACTIVE}
AWAITEVENT SYSTEM.GARBAGE,writer;

writer.Update();

AWAITEVENT SYSTEM.GARBAGE,file;

file.Finalize();

filePool.Recycle(file);

END Finalizer;

28 Chapter 3. Programming Language Enhancements

Chapter 4

Scheduling Approach

The scheduling concept is of importance for implementing the computing model
proposed in chapter 2.3. The exact rules according to which the scheduler
works determines the active object’s behavior.

Runtime systems for embedded devices have to cope with periodic (on a
fixed schedule), aperiodic (not on a fixed schedule but with a maximum fre-
quency) and sporadic (frequency and timing not predictable) tasks. A sched-
uler’s job is to dynamically find a feasible schedule without knowing the future
workload in detail. In general, sporadic tasks challenge real-time schedulers
most because of their unpredictable nature.

One of the very basic tradeoffs is optimality versus predictability. A sched-
uler is called “optimal” if it finds a feasible schedule whenever one exists. It has
been proven that optimal schedulers exist, for instance for preemptable single
processor systems. The drawback of optimal schedulers is their unpredictabil-
ity in the case of computational overload. Optimality has not been a priority
concern in the context of Realtime Oberon. Instead we present a non-optimal
scheduler with predictable behavior in the case of overload. The presented
scheduler fits systems that mostly have static set of threads of known depen-
dencies, like in the use case sketched in section 2.4.

Importantly the priority inversion protocol has been smoothly integrated into
the scheduling concept. In particular, the impact on the coexistence of real-
time threads with non-real-time threads will be shown.
A second issue regarding the scheduling strategy is power awareness, which
is an aspect of crucial importance in a runtime system used for operating bat-
tery powered devices. A system is said to be power proportional, if no power

29

30 Chapter 4. Scheduling Approach

needs to be wasted for computational overhead like time slice interrupts etc.
Time slice interrupts periodically reevaluate the running process. If the reeval-
uation process takes no special action, then the consumed computing cycles
simply have been wasted. With our approach, the power consumption is strictly
proportional to the application’s workload.

4.1 Preemption aware Scheduling

We present a non-optimal fixed priority based scheduler that remains pre-
dictable in the case of overload. It could be used to implement a rate monotonic
schedule. With fixed priorities, it is easy to predict that overload conditions
will cause the low-priority threads to miss deadlines, while the highest-priority
threads will still meet their deadlines. In theory, the price to pay with non-
optimal schedulers is that feasible schedules cannot be handled. However, the
actual price will heavily depend on the specific use-cases.

The proposed scheduling model is straight forward. It allows easy antic-
ipation of the scheduling behavior in different workload configurations. Each
thread has an assigned static priority reflecting its importance compared to all
other currently running threads. The more important a thread is, the higher its
static priority. A thread can temporarily gain importance by inheriting another
thread’s higher priority (See chapter 4.2), but the static priority will always re-
main at its initial value assigned at creation time. Hence a thread’s current
priority is the maximum of its static priority and of all inherited priorities. At
each of the eight transactions depicted in Figure 4.1, the scheduler always
picks the thread of the highest current priority from the set of threads ready to
run.

Figure 4.1 shows the state transition diagram. Context switches occur ei-
ther

(1) by completion: The running thread releases the processor by either at-
tempting to acquire a resource lock (1b), by waiting for a Boolean con-
dition to be established (1c), by awaiting an event (1d) or by terminating
(1a).

(2) or by preemption: Whenever a passivated thread of a higher priority than
the currently running thread becomes ready. This can happen when the

4.1. Preemption aware Scheduling 31

Figure 4.1: Scheduling State Machine

resource lock is transferred (2a), a boolean condition has become true
(2b), an event has been raised (2c) or a newly created thread enters the
stage.

As a consequence of the two rules stated above, no thread will ever be
preempted by a thread of a lower or equal current priority. This must also
be enforced by the interrupt handling model. An interrupt request must not
interrupt the running process when there is no real impact on the schedule,
namely when the corresponding event handling thread has lower priority than
the currently running one. The justifications in favor of this strategy are:

1. It maintains a very simple scheduling model that allows anticipating the
scheduling behavior easily;

2. It does not waste CPU time with effectless computations; and

3. It minimizes the number of context switches and thus maximizes the ef-
fectiveness of on chip cache memory.

Some remarks on time slicing: Figure 4.1 shows a transition from “Running”
to “Ready” and from “Ready” to “Running” that could be triggered by time slic-
ing. As a regularly raised time slice interrupt would substantially impede task
proportional power consumption (in particular if an attempt to reallocate the

32 Chapter 4. Scheduling Approach

processor ends up with the same scheduled thread) our scheduling model
does not support a time slice triggered transition from “Running” to “Ready”.
Instead of being driven by the timer, the schedule will be driven by data pack-
ets arriving periodically. Data packets are delivered by a peripheral hardware
controller, the DMA controller for instance. Thus scheduling decisions are im-
plicitly triggered by incoming data packets that are supposed to be processed
in time. Instrumenting the data flow as a trigger for scheduling decisions is
perfectly compatible with the goal of task proportional power consumption. As
long as no data is to be processed, the processor remains idle until the next
data packet arrives.

The second concept normally found in popular scheduling models, but omit-
ted in our approach is, yielding. From the runtime system’s point of view, yield-
ing is a (semantically poor) strategy for processor sharing. The runtime system
does not have any knowledge of when or why the yielding thread should be
rescheduled. A concrete example taken from the current A2 [39] release:

Listing 4.1: Yield

REPEAT
n := reader.Available();

IF n = 0 THEN Yield();END;
UNTIL((n > 0) OR Expired(maxT));

From a programmer’s point of view, the idea is obviously to undergo periodical
polling until there is either some data available on the stream or maxT time has
elapsed. However, again, the scheduler has no clue when the yielding thread
should be rescheduled and can only guess and try from time to time. Hence in
our system the REPEAT loop is mapped to an AWAITCONDITION data_received

, maxT statement that precisely indicates to the scheduler when the invoking
process should be awoken. Furthermore, polling is not an option when power
awareness is an issue.

4.2 Priority Inversion

The term “Priority Inversion” refers to a scheduling anomaly. A high priority
thread blocked by an unrelated lower priority thread could be considered as
the most general definition of priority inversion. An example is shown in figure

4.2. Priority Inversion 33

4.2. Let’s assume a single processor system. A high priority thread is waiting
on output produced by a related low priority thread. Suddenly an unrelated
thread with medium priority preempts the low priority thread. Thus the unre-
lated medium priority thread blocks the high priority thread, as opposed to the
general understanding of priority based scheduling. This is considered as a
scheduling anomaly.

Figure 4.2: The sleep apnoea use case revisited

This thesis does not deal with this very general understanding of priority
inversion. It only focuses on priority inversion induced by resource sharing.
The next subsection will introduce this more specific manifestation of priority
inversion.

4.2.1 Priority Inversion induced by resource sharing

Multiple threads concurrently operating on a shared set of resources may
cause data races. Popular means to prevent data races are monitors or semaphores
for instance. “Unfortunately, a direct application of synchronization mecha-
nisms like semaphores or monitors can lead to uncontrolled priority inversion
caused by resource sharing: a high priority thread being blocked by a lower
priority thread for an indefinite period of time. Such priority inversion caused by
resource sharing poses a serious problem in real-time systems by adversely

34 Chapter 4. Scheduling Approach

affecting both the schedulability and predictability of real-time systems.” [48]
According to the general understanding of mutual exclusion, a high priority
thread may be blocked by a low priority thread if the latter is granted access
to a critical section before the former arrives. This is a controlled priority in-
version, since it is limited to a finite period of time until the low priority thread
leaves the critical section. Unfortunately, two unrelated high and low priority
threads, that do not directly share a logical or physical resource but are kept in
unfortunate dependency by some middle priority thread, can also suffer from
priority inversion . There is a concrete example shown in figure 4.3. This case
is considered as an uncontrolled priority inversion since a higher priority thread
is being blocked by a lower priority thread for an indefinite period of time.

Figure 4.3: Priority Inversion Szenario

Initially, a low priority thread is running and acquires resource (R) at t = (1).
Suddenly, a high priority thread gets ready and is scheduled. It also requests
R at t = (2) and is therefore immediately passivated since R currently belongs
to the thread with priority “low”. This thread, in turn, resumes its operation
until a thread with priority “medium” enters the scene and preempts the former
thread. And that is exactly what should not happen: The thread with priority
“high” is blocked by a lower prioritized thread although there are no common
shared resources among the two threads.

One possible solution to alleviate uncontrolled priority inversion is priority
inheritance. The thread with priority “low” should be raised to priority “high”, in
order not to be preempted by the thread with priority “medium”. It should run
with priority “high” until it releases R in favor of the high priority thread. The

4.2. Priority Inversion 35

priority inheritance protocol makes sure that a thread will be blocked, at most,
as if it is executing the questionable monitor itself.

4.2.2 Priority Inheritance Protocol

Priority Inheritance is one possible method to cure the priority inversion anomaly.
It is supported by most popular operating systems. Originally, priority inheri-
tance was proposed by Lui Sha, Ragunathan Rajkumar and John P. Lehoczky
[48]. We have integrated the Priority Inheritance Protocol (PIP) in our state /
transition diagram introduced in the previous chapter.

The transition diagram in figure 4.4 shows the implemented PIP adaption.
A solid arrow denotes a thread waiting to access the monitor. A dashed arrow
denotes a thread accessing the monitor. A dotted arrow denotes a thread
about to leave the monitor.

Figure 4.4: Transitions affected by the priority inheritance protocol

A thread potentially propagates its priority to other threads while it is blocked
by the monitor (Arrow (1) or (2) in figure 4.4):

(1) A thread blocked on an {EXCLUSIVE} because another thread currently
owns the requested monitor, will propagate its priority to the owner, if the
blocked thread currently has a higher priority assigned than the monitor
owning thread.

36 Chapter 4. Scheduling Approach

(2) A thread blocked on an AWAITCONDITION C statement due to the not set
condition C, will propagate its priority to the monitor owning thread, if the
blocked thread currently has a higher priority assigned than the moni-
tor owning thread. The motivation for this transition is less obvious than
case (1). An example to illustrate the idea: A thread THigh has been
passivated on an unestablished condition C. In order to avoid a “low”
prioritized thread TLow that is just about to establish condition C within
the monitor being blocked by any other thread with “medium” priority,
the “low” prioritized thread TLow must inherit the priority from THigh. One
could say that, a thread awaiting a condition becoming true is continu-
ously trying to re-enter the monitor and thus boosts the priorities of all
threads entering the monitor to the priority of the awaiting thread itself.

A thread potentially inherits priorities from other threads after it has entered
the monitor (Arrow (3) or (4)in figure 4.4):

(3) When a thread is granted access to the monitor, it inherits the maxi-
mum priority of all threads having a stake in this monitor, in particular the
threads waiting for a condition being established that is associated with
the monitor.

(4) Threads waiting for a boolean condition are put in the ready queue when
the condition has been established. Following the so-called “egg shell”
model, threads already in the monitor (passivated on an AWAITCONDITION

statement) are preferred against threads trying to enter the monitor exter-
nally. Thus, such threads will get the maximum priority of a) all threads
trying to enter in the monitor, b) all threads already in the monitor and
waiting on a condition becoming established and c) its own static priority.

A thread releases its inherited priority after it has left the monitor (transition (5)
or (6) in figure 4.4):

(5) If a thread leaves the monitor, it releases its inherited priority.

(6) If a thread is blocked on a false condition, it implicitly releases the monitor
in order to allow another thread to establish the questionable condition.
Thus it also releases its inherited priority.

4.3. Case Study 37

The presented PIP adaption has been validated with two generic exam-
ples outlined in chapter 5.1.2 and chapter 6.4. Especially the generalization to
condition awaiting threads has proved highly beneficial.

The correctness of the PIP is evident because each thread strictly obeys
the three step protocol “blocked” - “entered” - “left”. According to figure 4.4,
every execution path through the monitor repeats this sequence (n + 1) times,
with 0 <= n <= the number of unsatisfied conditions a thread encounters
within the monitor.

Two final remarks: First, note that a thread’s priority may be raised multiple
times within a monitor when new threads also request the monitor.
Second, a thread is subject to priority adjustments in both directions at any
point in time with no respect to its state. This must be the case because
priorities are propagated transitively among threads.

4.3 Case Study

This section explains the application of our scheduling model to the computing
model introduced in chapter 2.3. The sleep apnoea use case already intro-
duced in the previous chapter will again serve as an exemplary application.
Let us assume that three statically assigned priorities exist: Phigh, Pmedium and

Figure 4.5: sleep apnoea use case revisited

38 Chapter 4. Scheduling Approach

Plow. A system designer has to assign a static priority to each thread accord-
ing to its global importance. Intuitively, Phigh would be assigned to the actor
thread most right in figure 4.5, because taking action is inherently important
after an event has been detected. The ECG Collector thread leftmost in figure
4.5 is another thread that is supposed to run with priority Phigh, since hardware
buffers not handled in time cause data losses, and the ECG analyzing algo-
rithm is very sensitive to such losses. Therefore raw ECG data must always be
buffered. All threads involved in calculating the second and third order heart
rate variability fluctuation run at priority Plow due to some built in redundancy
from the application point of view. All other threads run at Pmedium.

In the case of a temporary overload, the system degrades in a controlled
way. The system degradation process under overload is completely transpar-
ent and predictable at programming time because scheduling decisions are
taken on a global priority scheme rather than on the basis of a local cost func-
tion.

This example shows how to advantageously apply the fine grained priority
based scheduling model. However, the feasibility of the proposed model is
subject to some constraints. It requires:

• A static set of threads and static dependencies among them.

• A manageable number of threads. The scheduling model does not scale
well in terms of a large number of threads.

Chapter 5

Patterns and Paradigms for Signal
Processing Applications

Event-driven programming requires a distinctly different way of thinking than
conventional sequential programs. Most event-driven systems are structured
according to the inversion control principle [46]. The control resides in some
event handling machinery built deep into the system. From an application
standpoint, control is inverted compared to a traditional sequential program.
However, this is explicitly not the case for Realtime Oberon. In our model it is
more about distribution of control rather than inversion of control. Control is
still exercised by active objects, rather than by some underlying infrastructure
tier. Inversion of control frameworks are implemented with up calls via dele-
gates or function pointers. Extensive use of dynamically configurable up calls
weakens static properties and deterministic behavior of a system. Yet static
properties are of paramount importance in dependable systems.

5.1 Hardware Level Programming

Hardware is usually abstracted by an explicit hardware abstraction layer (HAL).
This layer is formalized by a software interface, which is supposed to be imple-
mented by so called “device drivers”. Drivers typically run in kernel mode and
provide services for their clients, either applications or system services. While
the software interface is typically generic in nature, general purpose operat-
ing systems are configured at installation time with specific device drivers; a
popular deployment concept in the Personal Computer domain. All peripherals

39

40Chapter 5. Patterns and Paradigms for Signal Processing Applications

except processors are operated by device drivers. This set up is undoubtedly
one of the key concepts underlying the success story of IBM compatible per-
sonal computers. This concept has led to a wide variety of peripheral devices
offered by many different manufacturers. “Plug and play” is a conceptual evo-
lution that allows adding and removing peripheral devices on the fly.
With embedded systems, genericity does not have the same importance as
with general purpose personal computers, mainly because embedded devices
are usually designed as single purpose devices, and there is no compelling
demand for configuring embedded systems.

There is strong evidence that writing reliable, configurable software for an
environment with high diversity is very difficult in the embedded field. This is
exemplified by the smart phone market, which tends towards highly standard-
ized platforms. Microsoft for instance has so far failed to duplicate the concept
of customizable operating systems to the smart phone market. Running a high
diversity of devices based on the same OS kernel did not really improve pro-
ductivity as expected, since all applications must be tested on all configurations
to ensure the expected quality, which is a somewhat infeasible process. The
latest Windows Phone 7 OS runs only on a concisely standardized runtime
environment [34].

The alternative Hardware Abstraction paradigm presented in this thesis
emphasizes clean integration of second level interrupt handling and applica-
tion processing. Moreover, it lays the groundwork for seamless integration
and interaction of application and hardware driven threads. Interrupt handling
threads are abstracted as ordinary data producer and consumer threads run-
ning in user mode. The tool for implementing such threads is the AWAITEVENT

statement introduced in chapter 3.4.1.

5.1.1 Unified Interrupt Handling

A common approach to interrupt handling is to install a dedicated interrupt
handler thread for each interrupt vector. Whenever an interrupt is raised, the
dedicated thread is scheduled. From the computing model perspective intro-
duced in chapter 2.3, a one to one relationship between a logical task and an
interrupt handler thread is highly desirable. Unfortunately such a scheme is
not compatible with dedicated interrupt handlers.

The logical task of grabbing data from an external I/O board can easily

5.1. Hardware Level Programming 41

involve up to three threads: An external I/O board interrupt thread signaling
when there is data available, a DMA interrupt thread handling the data transfer
itself and a collector thread orchestrating the two interrupt handling threads.
Figure 5.1 shows a UML sequence diagram illustrating how a data transfer is
likely to be performed.

Figure 5.1: Collector Thread Interactions

A more elegant solution synthesizes the three threads into one single thread
performing the data collection task. Listing 5.1 outlines an active object per-
forming the entire control task. It pools two interrupt handlers into one single
thread that first waits until the external I/O board signals that some data is
available, then triggers the transfer via the Synchronous Serial Port (SSP) and
finally waits until the DMA controller has completed its operation in order to
copy the newly arrived data into a buffer.

Listing 5.1: Pooled Interrupt Handling Thread

BEGIN{ACTIVE, PRIORITY(AosRuntime.Realtime)}
WHILE(run) DO
(*Await Data Ready*)

AWAITEVENT SYSTEM.INTERRUPT, PXA26x.GPIO0IRQ;

TriggerSSPDataTransfer();

AWAITEVENT SYSTEM.INTERRUPT, PXA26x.DMAIRQ;

CopyDataFromDMABuffer();

END;

42Chapter 5. Patterns and Paradigms for Signal Processing Applications

END Collector;

Such interrupt handling threads are not system-layer specific in any re-
spect. They are tightly coupled with application threads and run in user mode
with the benefit that all rules regarding scheduling and priority inheritance in-
troduced in the previous chapters also apply to interrupt handling threads.

5.1.2 Leveraging Priority Inheritance as a Tool

Let us revisit the producer object introduced in chapter 3.1 and let us assume
the following scenario: a low priority producer putting elements in a buffer and
a high priority consumer taking elements from it. If the buffer is empty, the low
priority producer shall automatically inherit the consumer’s high priority.
Listing 5.2 shows how this is achieved by specifically exploiting the mechanism
of priority inheritance. Contrary to the producer implementation in 3.1, the
AWAITEVENT statement and the data handling part located in the object’s body
have now been moved to an EXCLUSIVE section. Thus the producer inherits
the consumer’s priority while the consumer is awaiting a newItem in PROCEDURE

Remove. This is an example of how priority inheritance can serve as a thread
orchestrating tool. We consider this upgrade of priority inheritance from merely
curing a scheduling anomaly to a thread structuring tool as an important con-
tribution of our work as mentioned in chapter 1.4.

5.2. Multicast Synchronization 43

Listing 5.2: Producer revisited

Producer = OBJECT
VAR buffer : Unbounded_Buffer; (*thread save, non blocking*)

newItem : BOOLEAN;
item : Item;

PROCEDURE & Init();

BEGIN
NEW(buffer);

END Init;

PROCEDURE Remove():Item;

VAR item : Item;

BEGIN
item = buffer.Get();

IF (item = NIL) THEN
BEGIN{EXCLUSIVE}

newItem := FALSE;
AWAITCONDITION(newItem);
item = buffer.Get();

END;
END;
RETURN item;

END Remove;

BEGIN{ACTIVE}
WHILE (alive) DO

BEGIN{EXCLUSIVE}
(*runs potentially with inherited priority*)

AWAITEVENT SYSTEM.INTERRUPT, anInterrupt;

(*Read item from hardware register*)

buffer.Put(item);

newItem := TRUE;
END;
(*runs with static priority*)

END;
END Producer;

5.2 Multicast Synchronization

The purpose of signals is synchronizing a set of threads. Monitors in com-
bination with AWAITCONDITION provide signaling, as the producer example in

44Chapter 5. Patterns and Paradigms for Signal Processing Applications

3.1 demonstrates. Producer and consumer are synchronized on condition
notEmpty. However, there are two side effects the programmer has to be aware
of:

• The producer and consumer thread propagate their priority between each
other when entering into the monitor that encloses the boolean condition.

• Only one thread resumes when the condition becomes true because
AWAITCONDITION is required to be enclosed by a monitor according to 3.3.

We have introduced a general data type SIGNAL in our model to offer an alter-
native to condition based signaling.
SIGNAL is an abstract datatype with two operations defined on it, one for re-
ceiving (catching) and the other one for sending (raising) signals. AWAITEVENT
SYSTEM.SIGNAL, signal catches instance signal. Threads raising the instance
signal invoke the API call AosKernel.Signal(signal, inc).

In order to formalize the semantics of signals, one can view a signal as an
integer lease counter with a blocking decrement and non-blocking increment
operation defined on it. This lease counter ranges from 0 to MAX(LONGINT)

. AWAITEVENT SYSTEM.SIGNAL, signal decrements the lease counter by one.
The API call AosKernel.Signal(signal, inc) increments the assigned lease
counter according to the following rule:

lease countersignal =

lease countersignal + inc if inc > 0

lease countersignal if inc ≤ 0
(5.1)

If the lease counter is equal to zero, AWAITEVENT SYSTEM.SIGNAL, signal blocks
the invoking thread until a peer thread raises signal.

Signals are used like counting semaphores. A practical use case for this will
be introduced in chapter 6.3: Synchronizing threads on lock free data struc-
tures.

Since AWAITEVENT SYSTEM.SIGNAL, signal must not be enclosed by a mon-
itor, so that;

• signal raising and catching threads do not propagate their priority to each
other per default.

5.3. Real-Time Programming 45

• general signals based on SIGNAL allow multicast semantics, in contrast to
condition based signals. More than one thread may resume simultane-
ously.

5.3 Real-Time Programming

The Real-Time Specification for Java [5] uses the following definition of real-
time computing:

The programming environment must provide abstractions neces-
sary to allow developers to reason correctly about the temporal
behavior of application logic. It is not necessarily fast, small, or
exclusively for industrial control; it is all about the predictability of
the execution of application logic with respect to time.

This definition exactly summarizes our own understanding of real-time com-
puting as promoted in this thesis. At its core, real-time computing is about
predictability, the knowledge that the system will always perform determinis-
tically within a required time frame. It’s not about minimizing response times
and latencies in any respect.

Clarification on how the two terms hard real-time and soft real-time are
used: A hard real-time thread is a thread that must meet all deadlines without
any exception while it does not necessarily have to minimize latency, the time
between the occurrence of an event and its response. A soft real-time thread
on the other hand is a thread that will still work correctly if it misses deadlines
occasionally. Soft real-time systems normally specify the percentage of missed
deadlines acceptable.

This chapter’s focus is on coexistence of threads with different temporal
constraints. A complex system runs threads with hard-, soft- and no deadlines
and predictability comes from easily comprehensible coexistence. This will
shift our attention to heap management and to (conditional) synchronization
among differently constrained threads.

46Chapter 5. Patterns and Paradigms for Signal Processing Applications

5.3.1 Sources of Temporal Unpredictability

There are a number of well-known sources introducing temporal uncertainties
and thus causing threads to miss their expected deadlines. The most important
sources are listed below together with a brief description of our approach.

• Scheduling. A schedule shall be predictable and correct. Realtime Oberon
comes up with a provably correct priority inheritance implementation.
Combined with the uniform, and therefore easy to anticipate, schedul-
ing model (4), predictability is facilitated.

• Module loading. Because loading of code modules may require reading
files from a secondary storage, invoking previously unused code might
cause unexpected but potentially harmful delays. The overhead is at the
expense of the thread that refers first to a not yet loaded module. The
solution is to statically link all modules used by a dependable system to
an image and to renounce dynamic linking and loading of code.

• Garbage collection. The primary source of unpredictability comes from
garbage collection. Applications with hard response-time requirements
cannot tolerate unpredictable pauses caused by heap management inter-
ferences. Realtime Oberon comes with an interruptible trace and sweep
garbage collector, which allows realtime threads to manipulate heap ob-
jects during the collection phase. Real-time threads must only operate
on preallocated heap blocks.

• The application. This is another major source of unpredictability. Most
applications consist of multiple computational activities competing for
computing resources. Our solution is to divide and conquer. Tasks are
statically split into a concurrent graph of subtasks (2.1) in order to find a
fine grained and feasible schedule.

5.3.2 Coexistence of Hard Real-Time with Non-Hard Real-
Time Threads

Coexistence of hard real-time threads with ordinary threads requires isolation
on different levels. The first level is the runtime priority. Hard real-time and all
the other threads are divided into two disjoint sets priority wise. The topmost

5.3. Real-Time Programming 47

priorities are exclusively assigned to hard real-time threads. Since our ap-
proach is to use a fixed priority based scheduler, all non-hard real-time threads
are preempted whenever indicated. Note that for the sake of predictability, a
hard real-time thread shall never propagate its priority to a non-hard real-time
thread. A non-hard real-time thread would temporarily be promoted to a hard
real-time thread. That would not sustain predictability.

Figure 5.2: The set of threads

Unfortunately, hard real-time threads usually need to cooperate with non-
hard real-time threads somehow. Let us study how hard real-time threads are
connected with non-real-time threads via buffers at the familiar and generic
example of the consumer and producer pattern. There are two set-ups to be
considered.

hard real-time producer and non-hard real-time consumer

A common setup is a real-time thread putting data into the buffer and a non-
real-time thread consuming from it. If the non-real-time thread does not get
enough CPU time, the buffer runs over. There are three options to deal with
such an overrun condition:

1. the buffer blocks the real-time producer,

48Chapter 5. Patterns and Paradigms for Signal Processing Applications

2. the buffer is extended, or

3. the buffer discards data.

Since the hard real-time producer would lose its predictability being blocked by
an unpredictable non-hard real-time consumer, the first option is unpractical.
The second option is also unpractical. If the buffer extension is at the expense
of the hard real-time producer, then it would interfere with the garbage collector.
The next section will explain why this would seriously harm the hard real-time
producer’s predictability. If the buffer extension is at the expense of the non-
hard real-time consumer, then the hard real-time producer would have to rely
on an unpredictable thread. That is not acceptable. Hence the only appropriate
strategy is to discard data.

The second issue, as previously mentioned, is priority inheritance. Locking
and conditional synchronization obeys the priority inheritance protocol (4.2).
Therefore the bounded buffer shown by listing 3.2 is not suited for data in ex-
change between a hard real-time producer and non-hard real-time consumer.
An alternative is a lock-free buffer that would avoid the hard real-time thread to
propagate its priority to a non-hard real-time thread such as the buffer inspired
by [51] and presented in chapter 6.3.

hard real-time consumer and non-hard real-time producer

The second possible producer - consumer set up is the converse: a real-time
consumer meets a non-real-time producer. If the non-real-time producer does
not get enough CPU time, then the buffer runs under. A hard real-time con-
sumer thread must have a strategy to cope with missing input. An extended im-
plementation of the lock-free buffer shown in chapter 6.3 could limit the amount
of time the hard real-time consumer waits for the signal in PROCEDURE Remove.

All remarks in the previous subsection about the priority inheritance issue
also apply to the set-up discussed here.

5.3. Real-Time Programming 49

5.3.3 Coexistence of Hard Real-Time Threads with Garbage
Collection

Our garbage collector does not hide garbage collection overhead from hard
real-time threads. Also, it has no “first-class citizen” status in the system, but
obeys exactly the same rules as other threads, especially regarding the priority
inheritance protocol. This has an impact on how the garbage collector and
hard real-time threads coexist.

Figure 5.3: The set of threads

Since threads trying to allocate heap memory are synchronized via a mon-
itor and a boolean condition with the garbage collector thread, the collector
inherits the highest priority of all threads currently waiting for heap memory.
We call this adaptive approach Elastic Garbage Collection, and it will be ex-
plained in chapter 6.4. As a side effect, a highly prioritized thread could harm
another highly prioritized thread by pulling the garbage collector up to its own
priority. This has to be taken into the account when implementing hard real-
time threads.

The set of all threads can be partitioned into four disjoint subsets. Figure
5.3 shows how and refines figure 5.2. The first set contains only one element,

50Chapter 5. Patterns and Paradigms for Signal Processing Applications

namely the garbage collector. The second set contains all threads that are
permanently blocked by the garbage collector, the third contains threads that
might be blocked and the fourth contains all threads that are never blocked.
Conditions governing membership to the four disjoint subsets are:

• Threads running at lower priority than the garbage collector’s static pri-
ority are preempted by the garbage collector at any point in time. These
threads belong to the set of threads always blocked by the collector.

• Threads occasionally blocked by the garbage collector run at a static
priority higher than the garbage collector. Each single thread of this set
potentially raises the collector’s priority to its own priority while it is waiting
for memory due to the priority inheritance protocol. Thus the elements of
this set interfere with each other via garbage collection.

• The set of threads expected to meet all deadlines without any excep-
tion must be isolated from the garbage collector because there are no
useful prediction models available about the collector’s runtime behavior.
Threads never blocked by the garbage collector never request dynamic
memory and run at a priority greater than the maximum priority of all
threads that allocate dynamic memory. Hence, a member of this set will
never wait for memory during an unpredictable amount of time and will
never be affected by the garbage collector that is running at an equal or
greater priority.

The simple (and rigid) constraint of isolating hard real-time threads from
the garbage is to forbid dynamic heap memory allocation on the fly. There are
three alternatives to dynamic memory:

• Stack: If the lifetime of a chunk of memory is well defined and local to a
piece of programming code, it should be put on the stack. The stack is
able to substitute the heap to a certain extent.

• An Object pool is an important construction for reducing garbage col-
lection workload. Well known examples are string pools used by com-
pilers [44] or data buffers used for implementing a zero copy overhead
network stack [27] for instance.

• Static heap allocation: The entire heap memory that a real-time thread
is going to use during its lifetime is preallocated at the thread’s creation

5.4. Avoiding Deadlocks by Locking 51

time, where the memory allocation code is located in the constructor’s
scope. The allocation overhead is then at the expense of the initializing
thread rather than at the expense of the hard real-time thread itself.

5.4 Avoiding Deadlocks by Locking

There are different root causes for deadlocks. Deadlocks caused by locking
and deadlocks caused by cyclic waiting. This section just focuses on dead-
locks by locking, it is going to derive a set of implementation guidelines for
incrementally building systems without deadlocks caused by locking.

The tactics for doing this takes advantage of modular system properties and
applying design patterns based on the newly introduced AWAITEVENT statement.

In the next subsection we will demonstrate how to define a global locking
order based on modular system properties and the subsequent subsection
will show how the previously defined global locking order is implemented in
practice.

5.4.1 Defining a global locking order

Our main goal is to impose a global locking order on all shared objects. A
naı̈ve approach could be to show that for every possible execution path and
for every point in time all shared objects are locked according to a strict order.
This might be a reasonable approach for systems with a statically fixed set of
shared objects of a very limited cardinality.

A better approach is to take advantage of how modules of the system are
arranged. Instead of immediately ordering each single object instance on a
global scale, we use a “divides and rules” strategy: Reasoning on the global
module topology and subsequently reasoning on each module’s internals.

The flow of logic is as follows:

1. System modules are arranged according to a Directed Acyclic Graph.
Since every Directed Acyclic Graph (DAG) is serializable, a total order on
all modules exists and is easily computable.

52Chapter 5. Patterns and Paradigms for Signal Processing Applications

2. There is a 1 : n relation between modules and types. No type is declared
in more than one module. If types are totally ordered within each module
and modules are totally ordered based on a DAG serialization, then all
existing types are totally ordered on a global scale.
Remember that each module itself represents an implicit type, which
must also be considered.

3. If there is a 1 : n relation between types and object instances, then all
objects are totally ordered since there is, maximum, one instance of each
type involved in the locking chains.

Basically we have arrived at the desired global total ordering of all shared
objects involved in our computation. In order to implement the presented type
ordering approach, the implementation must address some issues:

• Whenever an additional module is implemented, an intra module locking
order on all shared object types has to be defined and respected accord-
ing to point 2 in the previous subsection. Due to the modularity of that
approach, incremental systems development is not at all compromised.

• All execution paths must strictly follow the directed acyclic graph topology
of the module tree structure. If this does not occur, then total module
ordering will be compromised.

• No locking and unlocking hysteresis may occur along any execution path.
More concretely: all locks that have been taken must be released again
before the execution path leads back to the caller’s scope. Locks on
object instances are released implicitly when the execution path leaves
an {EXCLUSIVE} section.
A special remark on low level modules: Due to system bootstrapping
issues, the {EXCLUSIVE} primitive is not available in low level modules. In
this case, mutual exclusion is implemented using low level (spin) locks.
To avoid a locking and unlocking hysteresis, each low level module uses
exactly one low level lock instance in order to emulate the missing module
monitor lock. Showing that low level locks are used properly is straight
forward, as long as they are only used to emulate a module monitor. If
a low level lock is always released in the same procedure that it was
acquired, then its proper use can easily be verified.

5.4. Avoiding Deadlocks by Locking 53

• Some special care has to be exercised regarding nested locking. Accord-
ing to point 3 in the previous list, nested locking of objects of the same
type must be avoided.

5.4.2 Implementing a global locking order

This subsection will show how the previously defined global locking order is
implemented in practice. Since all execution paths must strictly follow the di-
rected acyclic module graph topology, we will introduce three design patterns
that help the programmer to achieve this.

As virtual calls and the like are questionable because the execution paths
must strictly follow the directed acyclic graph topology of the module tree struc-
ture, alternatives are provided to either avoid or control especially virtual up-
calls in the module tree.

Avoiding Inversion of Control

Traditional inversion of control based frameworks lack strong static guaranties
regarding the execution path. Extensive use of dynamically configurable dele-
gates or function pointers weakens the deterministic execution of the system.
Realtime Oberon comes with a built in AWAITEVENT statement that was intro-
duced to eliminate the root cause for inversion of control: up-calls like interrupt
handler (listing 3.4), timer (listing 3.5) and finalizers (listing 3.7). However, the
built in AWAITEVENT statement is necessary but not sufficient to build up-call
free systems, since Realtime Oberon also enables up-calls due to polymor-
phism. The following paragraphs show how to employ polymorphism without
introducing up-calls in the module tree hierarchy.

Up-Call Free Programming

Polymorphism is a powerful abstraction technique with a major drawback re-
garding our context: virtual calls. Virtual calls introduce unpredictability in the
execution path, which contradicts our deadlock avoidance strategy. Let us use
the “Template Method” pattern [11] to illustrate the principle of mapping virtual
calls to predictable execution path codes. Figure 5.4 depicts the “Template

54Chapter 5. Patterns and Paradigms for Signal Processing Applications

Method” pattern.

Figure 5.4: Template Pattern

The AbstractClass contains methods that do and do not invoke virtual
methods. The first method does not invoke virtual methods as its identifier
suggests, whereas the second method, called “TemplateMethod”, invokes the
virtual methods “Operation1” and “Operation2”. “AbstractClass” provides a
default implementation for both operations. “Operation1” and “Operation2” are
overridden in Class1 and Class2. Class1 and Class2 will have to be imple-
mented in two additional modules. The solution to avoiding up-calls in the
execution path then looks like this:

• MODULE Basics declares OBJECT AbstractClass that implements PROCEDURE

NotUsingVirtualMethods and provides a default implementation for PROCEDURE
Operation1 and PROCEDURE Operation2. Note that there is no PROCEDURE

TemplateMethod declared.

• MODULE Refine1 imports MODULE Basics and declares OBJECT Class1(Basics

.AbstractClass) which overrides PROCEDURE Operation1.

• MODULE Refine2 (not shown in figure 5.5) imports Module Basics too and
declares OBJECT Class2(Basics.AbstractClass), which overrides PROCEDURE

Operation2.

• MODULE Top imports the three modules and implements the missing “Tem-
plateMethod” of AbstractClass as a module procedure and not as an ob-
ject method. PROCEDURE TemplateMethod takes an object instance as a
parameter.

5.4. Avoiding Deadlocks by Locking 55

Figure 5.5: Template Pattern transposed to Oberon Modules

The method in summary: Extracting the functionality that relies on virtual op-
erations and implementing it, not as an object method but rather as a MODULE

PROCEDURE in a top level module. If the top level module is aware of all existing
implementations of some base type that it operates on, all virtual calls made
on this base type sift down along the module tree hierarchy.

Nested Locking

As mentioned in the previous subsection, shared objects of the same type are
not supposed to be locked in a nested way. This means in particular that tree-
like structures of the same type cannot be locked node by node while travers-
ing. An EXCLUSIVE inorder traversal as indicated in 5.3 would violate the rule.
It would lock node.left of type Node within an EXCLUSIVE section of type Node.

Listing 5.3: Inorder Traversal

Node = OBJECT
VAR left, right : Node

56Chapter 5. Patterns and Paradigms for Signal Processing Applications

PROCEDURE inorder(node : Node)

BEGIN (*{EXCLUSIVE}*)

IF (node # NIL) THEN
inorder(node.left);

visit(node);

inorder(node.right);

END
END Inorder;

END Node;

The principle to get around nested locking is to rethink the locking gran-
ularity. Instead of recursively locking the tree nodes, the tree as a whole is
locked. The lock on a tree is implemented by conditional waiting (listing 5.4).
Hence one could say, the problem of nested locking of objects of the same type
is transformed into the problem of avoiding deadlocks by conditional waiting.
The price for this principle is a loss of parallelism. By implementing coarser
locking entities, the potential for parallel execution is decreased.

Listing 5.4: Root Lock

Tree = OBJECT
VAR root : Node;

locked : BOOLEAN;

PROCEDURE & Init()

BEGIN
locked := TRUE;

END Init;

PROCEDURE Acquire()

BEGIN{EXCLUSIVE}
AWAITCONDITION ˜locked;

locked := TRUE;
END Acquire;

PROCEDURE Release()

BEGIN{EXCLUSIVE}
locked := FALSE;

END Release;

END Tree;

5.4. Avoiding Deadlocks by Locking 57

5.4.3 Avoiding Deadlock Interference with Conditional Wait-
ing

Enforcing a global locking order is insufficient to avoid deadlock interferences
with conditional waiting. An example showing such a deadlock is outlined in
listing 5.5. A TreeAdapter object encapsulates a Tree instance shown in the
previous listing 5.4. If a thread invokes Acquire(), it will be passivated on tree

.Acquire(). A second thread supposed to invoke Release() will be blocked,
because the former thread has not released the monitor of the TreeAdapter

instance since it was passivated on tree.Acquire(). Thus there is a deadlock.

Listing 5.5: Interference with Conditional Waiting

TreeAdapter = OBJECT
VAR tree : Tree;

PROCEDURE & Init()

BEGIN
NEW(tree);

END Init;

PROCEDURE Acquire()

BEGIN{EXCLUSIVE}
tree.Acquire();

END Acquire;

PROCEDURE Release()

BEGIN{EXCLUSIVE}
tree.Release();

END Release;

END TreeAdapter;

To avoid deadlocks caused by interference with conditional waiting, one
more restriction is required:

• Within a monitor, calls are prohibited to other monitors including an AWAITCONDITION

statement.

58Chapter 5. Patterns and Paradigms for Signal Processing Applications

5.4.4 Related Work

There are two basic strategies to cope with deadlocks: deadlock immunity and
deadlock avoidance. The purpose of Deadlock immunity is not primarily to
eliminate deadlocks but to cure their symptoms. One approach currently pro-
moted by Candea [23] can be sketched as follows: When a deadlock has been
detected (manually or by some dedicated watchdog process) the execution
state of all processes involved are fingerprinted. The scheduler will subse-
quently prevent the system from getting into the same deadlock again by se-
rializing the processes involved. The most important drawback of this method
is that a deadlock has to be triggered once before a workaround can take ef-
fect. Another approach for deadlock immunity was presented by Vitek [33].
A side effect of substituting classical monitors [16] with preemptable atomic
regions voids deadlocks caused by locking. Preemptable atomic regions are
code blocks in which threads are rolled back whenever a higher prioritized
thread is trying to enter. Unfortunately, preemptable atomic regions do not
prevent higher order deadlocks caused by conditional synchronization.

Deadlock avoidance sounds more promising but is harder to achieve. The-
orem proving and constraint solving are well established techniques to prove
the absence of deadlocks. They are well suited to verify small subsystems like
device drivers [35]. Proving larger systems would require considerably more
computing power than is available today. Another approach is simply testing.
Systematic testing is still an indicator of a system’s reliability [41]. The limi-
tation with testing is achieving acceptable coverage of all relevant cases and
combinations thereof. Language based techniques rely on type systems and
require either annotations [20] or impose the way programs have to be written.

5.5 Avoiding Deadlocks by Cyclic Waiting

As mentioned in the introduction of the previous chapter, deadlocks can also
be caused by cyclic waiting.

Avoiding deadlocks caused by cyclic waiting is more subtle than avoiding
deadlocks due to mutual exclusion. Since an AWAITCONDITION statement is re-
quired to be embedded in an {EXCLUSIVE} section, one could argue that the

5.5. Avoiding Deadlocks by Cyclic Waiting 59

posed problem is equivalent to avoiding deadlocks by mutual exclusion. Un-
fortunately, imposing a total locking order on shared objects, as proposed in
the previous chapter, is insufficient. The reason for this is that context switches
from a thread waiting for a certain condition to threads establishing the condi-
tion and back, which calls for additional precautions.

Our approach to avoid deadlocks by cyclic waiting relies on the active ob-
jects computing model presented in 2.3. Ordering all threads and shared ob-
jects in between according to a global directed acyclic graph is a sufficient (but
unnecessary, as shown later) condition for avoiding deadlocks by cyclic wait-
ing. Figure 2.5 shows an example of such a graph. The subsequent section
shows how to implement the approach in practice.

5.5.1 Implementation guidelines

Iterating on the following two steps allows building systems incrementally with-
out creating cyclic waiting conditions. Each time a newly created software
module is added to an existing set of modules, one has to reiterate the two
steps below:

1. First, all new object instances, which may potentially contribute to any
circular dependencies, have to be identified.

(a) Only shared (in contrast to shareable) objects have to be consid-
ered. Shared objects that never block any thread on an AWAITCONDITION

statement do not need attention.

(b) Object instances that block on a time-out basis (AWAITCONDITION,
condition, maxTimespan) also need no attention. An example is an
instance of the object type “Timer” shown in listing 3.3.

(c) A blocking object instance for which a plausible explanation exists as
to why it will not contribute to a deadlock need not be considered.

(d) All other instances belong to the set of persistently blocking objects
with deadlock potential and must be considered.

2. All persistently blocking object instances with deadlock potential that have
been identified in step (1d) plus all threads operating on these blocking
instances must be aligned according to a global directed acyclic depen-
dency graph.

60Chapter 5. Patterns and Paradigms for Signal Processing Applications

Figure 5.6: Classification with respect to deadlock potential

Building such a directed acyclic dependency graph on a global scale is obvi-
ously a reasonable approach to prove freedom of deadlock due to cyclic wait-
ing. The active objects computing model, as proposed in chapter 2.3, fosters
DAG like thread / shared object graphs like the example in figure 2.5. Arrows
show how the “information” flows in the DAG. An arrow towards a thread indi-
cates that it is waiting for a condition to become true, a pointer away from a
thread indicates that it establishes some condition.

5.5.2 Short Cuts

Not all blocking objects smoothly fit into a static acyclic thread / shared object
graph. A typical pattern of how threads operate blocking resources might be
of a non-static nature: blocking serial connections can be sequentially used
by many different threads, block devices are randomly accessed by different
threads in an unordered way. In these cases, it would be very restricting from
an architectural point of view to enforce a particular global order on all blocking
resources. But the good news is: Usually there is a plausible explanation why
such resources do not have a deadlock potential at all.

5.5. Avoiding Deadlocks by Cyclic Waiting 61

There are two strategies to cope with blocking objects that do not smoothly
fit into a static acyclic thread / shared object graph:

• Either by identifying a thread that always breaks the deadlock chain. If
such a thread exists, the blocking object instance belongs to the set of
persistently blocking instances without deadlock potential according to
figure 6.10. An example is the blocking “Heap” object. The garbage
collector thread always unblocks memory requesting threads if there is
memory available. Another example is the blocking “Serial Port” object.
The interrupt handling thread always unblocks threads reading from and
writing to the serial port object. Hence neither the heap nor a serial
port object is going to be the root cause for deadlocks and thus are not
required to be considered further. Most low-level producer / consumer
compositions do not have deadlock potential because a thread always
breaks the chain.

• Or by substituting a blocking instance with an unblocking instance. The
blocking disk cache in the secondary storage subsystem, for example,
has been replaced by an unblocking version. It was blocking in the case
of an internal buffer underrun, the unblocking version refuses to cache
elements when a buffer underrun occurs. The lesson learned is to use
blocking objects with care.

These two strategies to cope with blocking objects render the introduced
implementation guidelines in 5.5.1 sufficient but unnecessary.

62Chapter 5. Patterns and Paradigms for Signal Processing Applications

Chapter 6

Selected Implementation Issues

Realtime Oberon is based on an ARM implementation of the Active Objects
System [38] originally ported by Bernhard Egger [10]. Later, Egger adapted the
System to Intel’s XScale platform, which is currently maintained and marketed
by Marvell Semiconductor, Inc.

6.1 Priority based Interrupt Handling

Interrupt handling threads, like the one sketched in listing 3.4, are from a con-
ceptual point of view ordinary threads in our unified system and are therefore
supposed to be fully compliant with the scheduling rules stated in chapter 4.
The following two aspects are of special interest from an implementation point
of view:

• First level interrupt handling.

• Adaption of the priority inheritance protocol.

6.1.1 First Level Interrupts

One of the very basic principles derived from the two scheduling rules in chap-
ter 4.1 is: A lower prioritized thread never preempts a higher prioritized thread.
An implementation that meets this requirement is not straight forward. Behind
the scenes, there is a first level interrupt handler driving thread state transi-
tions from “Awaiting Event” to “Ready” in figure 4.1. When an interrupt has

63

64 Chapter 6. Selected Implementation Issues

been raised, the first level interrupt handler picks the corresponding (second
level) interrupt handler thread and puts it into the ready queue. The question to
be answered here is: under what conditions is the first level interrupt handler
allowed to preempt the currently running thread. A common approach is to let
the first level interrupt handler preempt the running thread at any time. How-
ever, there are good reasons to minimize unnecessary preemption, such as
keeping runtime predictability high and minimizing cache misses. Therefore,
our implementation strives to minimize the number of preemptions by first-level
interrupt handlers and to avoid unnecessary context switches completely.

Figure 6.1: Interrupt Masking

This is achieved by making extensive use of priorities for fine granular
masking and unmasking of interrupts. The first level interrupt handler pre-
empts the running thread only if the thread in charge of handling the second
level interrupt has a higher priority than the running thread.

For example, Figure 6.1 shows how masking and unmasking is done in
practice. Before t = 0, a thread with priority p is running. Hence all interrupts
handled by a second level interrupt handler thread with priority equal to or
less than p are masked, all others are unmasked. There might also be some
interrupts pending. Suddenly, an unmasked interrupt is raised at t = 0. The
running thread with priority p is preempted and the handler thread with priority
q is scheduled. Also at t = 0, all pending interrupt handler threads with priorities
less than or equal to p are moved to the ready queue.

6.2. Provably Correct Priority Inheritance Protocol Implementation 65

6.2 Provably Correct Priority Inheritance Protocol
Implementation

This section will explain how the priority inheritance protocol (PIP) introduced
in section 4.2 has been implemented. It will give informal proof showing how
the presented implementation is correct.

The core of this proof is the class PIPNode shown in listing 6.4. It has
been proven by Rudich et al. [45] that priority inversion is never going to oc-
cur in graphs of PIPNode instances. Two subclasses named PIPThread (6.5)
and PIPMonitor (6.6) have been derived from PIPNode. Since the two derived
classes do not override any code, but only add a property and a few mem-
bers, priority inversion is neither going to occur in graphs of PIPMonitor and
PIPThread instances.

Section 6.2.2 specifies the implemented PIP and derives the required op-
erations on the verified PIPMonitor and PIPThread graph. Section 6.2.3 shows
how the required operations have been implemented and why these are cor-
rect with respect to the PIP specification in 6.2.2 . And finally, section 6.2.4
presents the verified class PIPNode.

The next section introduces the necessary basic knowledge to understand
the implementation of the verified class PIPNode.

6.2.1 Tracking Monitor and Thread Dependencies

The PIP enters the stage when threads are synchronized with resources based
on monitor technology. A thread is blocked by a monitor if the thread does not
have access to it. We say that a monitor is owned by a thread if the thread is
currently operating within the monitor. Figure 6.2 shows the most general case:
Solid arrows denote “blocked by” relationships. Threads 1 to n are blocked by
monitor 1, threads n+1 to m by monitor 2 and finally thread k is blocked by
monitor n. Dashed pointers denote “owned by” relationships. Monitor 1 and
2 are owned by thread k while Monitor n is owned by an unspecified thread.
Four invariants hold on to the monitor / thread dependency graph in figure 6.2:

• Invariant 1: A thread is blocked by zero or one monitor

66 Chapter 6. Selected Implementation Issues

Figure 6.2: General thread / monitor dependency chain

• Invariant 2: A monitor may block an unbounded number of threads.

• Invariant 3: A monitor is owned by zero or one thread.

• Invariant 4: A thread may own an unbounded number of monitors.

Obviously, a thread is blocked by a monitor only if the monitor is owned by
another thread.
Each thread has a property called “static priority” assigned with it. It gets its
static priority at creation time and keeps it during its entire lifetime.
Another property a thread has is called “current dynamic priority” or short “cur-
rent priority”. This priority is equal to the maximum of its static priority and the
current priorities of all threads that are directly or indirectly blocked by the
thread itself. There are two events potentially invalidating the current priority
of a thread: Either a “blocked by” or “owned by” relation is added or removed.
Note that a thread does not have to be involved directly in such a state transi-
tion. The next three subsections explain how the “current priority” property is
updated whenever relations are created or removed. Understanding this will
help to understand the core of the provably correct PIPNode implementation
in listing 6.4.

If a runtime system is requested to determine the accurate runtime priority
a thread is supposed to run at any point in time, then it must keep track of the
“blocked by” and “owned by” relationships introduced in the previous section.

6.2. Provably Correct Priority Inheritance Protocol Implementation 67

Formally, the goal is to keep the property “current priority” assigned to each
single thread up to date, as a prerequisite to reason about priority inversion
scenarios.
The illustrating examples that will be used in the coming paragraphs are simpli-
fied without a loss of generality. Especially the set of available thread priorities
is reduced to High, Medium and Low, for the sake of simplicity.

Tracking “blocked by” Relations

Figure 6.3: Tracking “blocked by” relations

Each pending locking request must be tracked. The multiset depicted below
the resource symbol keeps track of the number of high, medium and low pri-
oritized threads that are currently blocked by the monitor. Initially, the monitor
shown leftmost in figure 6.3 blocks two threads of priority “Medium” and one
thread of priority “High”. When supposedly a fourth thread of priority “High”
also tries to acquire the monitor, the counter “H” is simply incremented by one.
Thus we have:

• Invariant 5: The multiset’s cross sum is equal to the number of threads
blocked by the monitor.

When a blocked thread has succeeded to enter the monitor or failed due to a
timeout, the respective counter is decremented (figure 6.3 rightmost). Thus In-
variant 5 is restored. If all “blocked by” relations are tracked carefully, corollary
5 follows immediately:

• Corollary 5: The total number of threads blocked by a particular monitor
is known at any point in time.

68 Chapter 6. Selected Implementation Issues

An additional property has been assigned to each monitor instance: The “cur-
rent priority” of a monitor is defined as the maximum current priority of all
threads currently trying to enter into the monitor. Monitor 1 in figure 6.3 always
has a “current priority” value “High”.

Tracking “owned by” Relations

Figure 6.4: Tracking “owned by” relations

Monitors acquired by unblocked threads also have to be tracked. For in-
stance, monitor 2, left in figure 6.4, locked by thread k and monitor 1 in the
middle, is also locked by thread k. The multiset depicted below the thread
symbol keeps track of how many high, medium and low prioritized monitors are
currently owned by the thread itself. On the left, the counter “M” is incremented
by one when the thread acquires a monitor of current priority “Medium”. Then
the counter “H” is incremented by one when the task acquires a monitor of cur-
rent priority “High”. And finally the counter “M” is decremented by one when
the task exits from the monitor of current priority “Medium” again.
The “current priority” of a thread could also be defined as the maximum of the
threads’s static priority and the current priorities of all monitors owned by the
thread itself.

If all “owned by” relations are tracked carefully, invariant 6 and corollary 6
follow:

• Invariant 6: the multiset’s cross sum is equal to the number of monitors
currently owned by the thread.

6.2. Provably Correct Priority Inheritance Protocol Implementation 69

• Corollary 6: All monitors owned by any particular thread are known at
any point in time.

Corollary 6 implies a key conclusion: the “current priority” of the thread is de-
terminable at every point in time. This is a precondition for implementing the
PIP.

Transitive Priority Propagation

Since priorities are propagated transitively via monitor and thread chains, each
time an “owned by” or “blocked by” relation is established or eliminated, all
affected threads have to be identified.

Figure 6.5 shows such a chain of three threads and two monitors. Thread
n+1 runs on priority “High”, thread k and thread q on priority “Medium”.
The only way a priority inversion anomaly may occur, is by establishing a new
“blocked by” relationship as indicated by the fat solid arrow from thread n+1 to
monitor 2 in figure 6.5. If thread n+1 runs at priority “High” and is blocked by
monitor 2, which in turn is owned by thread k running at priority “Medium”, the
priority inversion issue between thread n+1 and thread k must be resolved by
increasing thread k’s priority to “High”. Unfortunately, these inversion anoma-
lies happen recursively: By increasing thread k’s priority to “High”, a new pri-
ority inversion issue has been created between thread k and thread q. Hence
in a second step, the priority of thread q must be incremented to “High” also.
Obviously priority inheritance is a transitive phenomenon.

The propagation operation along a directed graph, like the one shown in
figure 6.2, is supported by the auxiliary book keeping multisets introduced pre-
viously. When the current priority of an inner node is altered, the out-dated
current priority is removed and the new priority is added to the multiset of the
targeted node element. This operation is iterated transitively on the graph until
a fixed-point is reached.

70 Chapter 6. Selected Implementation Issues

Figure 6.5: Priority Inversion Cascade

Initialization

Adding sentinels simplifies the implementation in 6.4 significantly. Sentinels
make sure that the multisets used for bookkeeping are always in a defined
state. Hence two virtual relations are introduced: The static priority each

Figure 6.6: Process Initialization

thread instance gets at creation time is in fact a lower bound for the thread’s
current priority. To get around an explicit “dynamic priority” field, a virtual
“owned by” relation is created at a thread’s creation time. Thus the static
priority is inherited from a virtual monitor as if the process would operate in
such a monitor during its whole lifetime. This virtual “owned by” relation is
never removed. Thus the thread’s current dynamic priority will never go below
the static one.

A monitor is initialized as if the idle thread, running at the lowest priority
possible, would try to acquire it. This virtual “blocked by” relation also persists
during the monitors’s whole lifetime.

6.2. Provably Correct Priority Inheritance Protocol Implementation 71

Figure 6.7: Resource Initialization

6.2.2 The Priority Inheritance Protocol Specification

As mentioned in 4.2.2, each thread strictly obeys the three step protocol “blocked”
- “entered” - “left”. While a thread is blocked (indicated by a solid arrow in fig-
ure 6.8), it propagates its priority consecutively to threads operating within the
monitor. Once the blocked thread has entered the monitor (indicated by a
dashed arrow), it inherits the priorities from all the blocked threads and when
the thread leaves the monitor (indicated by a dotted arrow), the thread re-
nounces the inherited priorities. These specifications are in accordance with
the general understanding of priority inheritance.

There are two invariants for monitors:

I1 : {monitor owned by one thread} ∨ {monitor not owned by a thread}
(6.1)

I2 : {monitor owned by one thread}∨q{threads blocked by monitor} (6.2)

Invariant I1 tells us that a monitor cannot be owned by two threads or more.
Invariant I2 states that threads may not be blocked while no other thread owns
the monitor.

These invariants are in accordance with the general understanding of mon-
itors. Hence the informal specification of the PIP and the notion of monitors we
use may be considered as validated.

There are two events when the state of the monitor has to be reevaluated,
either when a thread acquires the monitor or when a thread leaves the monitor.
The former event is triggered by transition (1), the latter by transitions (5) or (6).

72 Chapter 6. Selected Implementation Issues

Figure 6.8: Priority Inheritance Protocol

Hence an implementation of the proposed PIP must provide three handlers.
These handlers must re-establish the invariants I1 and I2.

Let us translate the protocol transitions in figure 6.8 into relations between
threads and monitors. This is useful for implementing the required PIP handler.
By assumption, a thread object possesses a “blocked by” member that refer-
ences the monitor it is blocked by and a monitor object possesses an “owned by”
member that references the thread it is owned by. When a thread is blocked
by a monitor (cases (1) or (2)), a “blocked by” relationship between thread and
monitor is established. If the thread gains access to the monitor (cases (3)
or (4)), the previously established “blocked by” relationship is canceled and an
“owned by” relationship between monitor and thread is established. Finally,
when the thread is about to leave the monitor (cases (5) or (6)), the previously
established “owned by” relationship is canceled.

6.2. Provably Correct Priority Inheritance Protocol Implementation 73

These four operations on relationships are invariant for all possible paths
through the monitor. No matter whether the thread takes (1) ⇒ (3) ⇒ (5),
(1) ⇒ (3) ⇒ (6) or (2) ⇒ (4) ⇒ (5). It is evident that the four operations on
relationships are also invariant if more than one AWAITCONDITION statement is
located within the monitor.

The next challenge is to show that the concrete implementation always re-
spects the protocol and always re-establishes the two invariants stated above.

6.2.3 Affected System Calls

As mentioned in the previous subsection, there are three system calls required
to handle the PIP, namely;

• “Lock”, which is invoked by a thread requesting the monitor,

• “Unlock”, which is invoked by a thread about to leave the monitor, and

• “AwaitCondition”, which is invoked by a thread blocked on an unestab-
lished condition.

The next three subsections explain the implementation of these three system
calls in detail. The code samples are simplified and just focus on PIP related
issues. The reason why the system calls are treated in detail here is to show
how the adaption of the priority inheritance concept sketched in figure 6.8 is
mapped to OS primitives. It will be shown precisely where the code is located
that implements the six transitions in 6.8. It will also be explained how the
invariants are re-established. All code samples are in C# notation.

A monitor object possesses an “owned by” member that references the
thread it is owned by. Since one member variable can only refer to one object
or to null, Invariant 1 is true per default. Hence only invariant 2 has to be
tracked from now on.

Lock

Listing 6.1: Lock

public static void Lock(PIPMonitor monitor)

74 Chapter 6. Selected Implementation Issues

{

if (monitor.owned_by == null)
{

// not yet locked

/*1 runningThread.blocked_by = monitor;*/

/*2 runningThread.blocked_by = null; */

/*3*/ monitor.owned_by = runningThread;

}

else
{

// already locked by another thread

/*4*/ runningThread.blocked_by = monitor;

runningThread.state = AwaitingLock;

monitor.awaitingLock.put(runningThread);

}

}

The procedure Lock consists of exactly two execution paths.

The path with the statements /*1*/, /*2*/ and /*3*/ is executed if the
monitor is not yet owned by a thread. This path correctly implements tran-
sitions (1) and (3) in figure 6.8. Note that the statements /*1*/ and /*2*/

are uncommented because the latter is the inverse of the former. Invariant 2
remains established because the monitor is owned by the running thread.

The path with statement /*4*/ is executed if the monitor is already owned
by a thread. Thus the running thread is blocked by the monitor. This execution
path correctly implements transition (1) in figure 6.8. Invariant 2 remains es-
tablished because the monitor continues to be owned by an unknown thread.

Unlock

Listing 6.2: Unlock

public static void Unlock(PIPMonitor monitor)

{

/*1*/ monitor.owned_by = null;

PIPThread c = FindTrueCondition(monitor.awaitingCond);

if (c == null)
{

6.2. Provably Correct Priority Inheritance Protocol Implementation 75

PIPThread t = monitor.awaitingLock.

getElementWithHighestCurrentPriority();

if (t != null)
{

//lock transfer to Thread t

/*2*/ monitor.owned_by = t;

/*3*/ t.blocked_by = null;

t.state = Ready;

EnterInReadyQueue(t);

}

}

else
{

//lock transfer to Thread c

/*4*/ monitor.owned_by = c;

/*5*/ c.blocked_by = null;

c.state = Ready;

EnterInReadyQueue(c);

}

}

The procedure Unlock consists of exactly three execution paths. All paths
execute statement /*1*/. Statement /*1*/ correctly implements transition (5)
in figure 6.8, the running thread leaves the monitor.

If neither a thread c stuck on an established condition nor a thread t trying
to acquire the monitor is found, then no additional statement is executed. In
this case, Invariant 2 remains established because no threads are blocked by
the monitor.

The path with the additional statements /*4*/ and /*5*/ is executed if a
thread c stuck on an established condition is found. The monitor is transferred
to this thread c. This path correctly implements transitions (5) and (4) in figure
6.8. Invariant 2 remains established because the monitor is owned by the
thread c.

The path with the additional statements /*2*/ and /*3*/ is executed if no
thread c is stuck on an established condition but a thread t trying to acquire
the monitor is found. The monitor is transferred to this thread t. This path
correctly implements transitions (5) and (3) in figure 6.8. Invariant 2 remains
established because the monitor is owned by the thread t.

76 Chapter 6. Selected Implementation Issues

AwaitCondition

Listing 6.3: AwaitCondition

public static void AwaitCondition(PIPMonitor monitor)

{

assert(monitor.owned_by == runningThread);

//check condition, if true then return

/*1*/ monitor.owned_by = null;

PIPThread c = FindTrueCondition(monitor.awaitingCond);

if (c == null)
{

PIPThread t = monitor.awaitingLock.

getElementWithHighestCurrentPriority();

if (t != null)
{

//lock transfer to Thread t

/*2*/ monitor.owned_by = t;

/*3*/ t.blocked_by = null;

t.state = Ready;

EnterInReadyQueue(t);

}

}

else
{

//lock transfer to Thread c

/*4*/ monitor.owned_by = c;

/*5*/ c.blocked_by = null;

c.state = Ready;

EnterInReadyQueue(c);

}

/*6*/ runningThread.blocked_by = monitor;

runningThread.state = AwaitingCond;

monitor.awaitingCond.put(runningThread);

}

6.2. Provably Correct Priority Inheritance Protocol Implementation 77

The procedure AwaitCondition consists of exactly three execution paths.
All paths execute the statements /*1*/ and /*6*/. Statement /*1*/ correctly
implements transition (6) in figure 6.8, statement /*6*/ correctly implements
transition (2). The running thread leaves and is blocked by the monitor due to
the unestablished condition.

If neither a thread c stuck on an established condition nor a thread t trying
to acquire the monitor is found, then no additional statement is executed. In
this case, Invariant 2 remains established because no threads are blocked by
the monitor.

The path with the additional statements /*4*/ and /*5*/ is executed if a
thread c stuck on an established condition is found. The monitor is transferred
to this thread c. This path correctly implements transitions (5) and (4) in figure
6.8. Invariant 2 remains established because the monitor is owned by the
thread c.

The path with the additional statements /*2*/ and /*3*/ is executed if no
thread c is stuck on an established condition, but a thread t trying to acquire
the monitor is found. The monitor is transferred to this thread t. This path
correctly implements transitions (5) and (3) in figure 6.8. Invariant 2 remains
established because the monitor is owned by the thread t.

6.2.4 The Verified Classes

This subsection fills the gap to the formally correct implementation. As men-
tioned, Rudich et al. have provided the PIPNode implementation in listing 6.4.
A PIPNode has a currentPriority field and a link pointing to another PIPN-
ode instance. This link field is used for either expressing an “owned by” or
“blocked by” relation. The protected array priorities is used as a multiset to
perform the bookkeeping operations as outlined in section 6.2.1. Additionally,
there is an acquire and release method.

Listing 6.4: PIPNode

public abstract class PIPNode

{

protected PIPNode link; // represents either an "owned_by" or

a "blocked_by" relation

protected int currentPriority; /* 0 ... Kernel.

NumOfPriorities - 1*/

protected int[] priorities = new int[Kernel.NumOfPriorities];

78 Chapter 6. Selected Implementation Issues

public PIPNode(int defaultPriority)

{

link = null;
for (int i = 0; i < priorities.Length; i++) { priorities[

i] = 0; }

priorities[defaultPriority]++; //

this.currentPriority = MaxPrio(); // == defaultPriority

of course

}

private int MaxPrio()

{

int i = priorities.Length - 1;

while ((i > 0) && (priorities[i] == 0)) { i--; };

return i;

}

private void updatePriorities(int from, int to)

{

int oldCurrentPriority;

oldCurrentPriority = currentPriority;

if (from >= 0) priorities[from]--;

if (to >= 0) priorities[to]++;

currentPriority = MaxPrio();

if((link != null) && (oldCurrentPriority !=

currentPriority)) {

link.updatePriorities(oldCurrentPriority,

currentPriority);

}

}

public void release(PIPNode n)

{

n.link = null;
updatePriorities(n.currentPriority, -1);

}

public void acquire(PIPNode n)

{

if (n.link == null) {

n.link = this;

6.2. Provably Correct Priority Inheritance Protocol Implementation 79

updatePriorities(-1, n.currentPriority);

} else {

this.link = n;

updatePriorities(-1, this.currentPriority);
}

}

}

It has been proven that priority inversion will never occur in graphs of PIPN-
odes [45].
The gaps in between the system calls, Lock (6.1), Unlock (6.2) and Await-
Condition (6.3), and the PIPNode implementation is closed by the PIPThread
(6.5) implementation and PIPMonitor (6.6) implementation. Both are derived
from the PIPNode. Hence the three system call implementations have been
mapped to the provably correct PIPNode implementation and will therefore
themselves inherit correctness.

Listing 6.5: Thread

public class PIPThread : PIPNode

{

public int state = Ready;

public PIPThread(int defaultPriority):base(defaultPriority)

{/../}

public PIPMonitor blocked_by

{

get { return ((PIPMonitor)link);}

set {

if (value == null) link.release(this); else value.

acquire(this);
}

}

}

Listing 6.6: Monitor

public class PIPMonitor : PIPNode

{

public Queue awaitingCond;

public Queue awaitingLock;

80 Chapter 6. Selected Implementation Issues

public PIPMonitor(int defaultPriority):base(defaultPriority)

{/../}

public PIPThread owned_by

{

get { return ((PIPThread)link); }

set {

if (value == null) link.release(this); else value.

acquire(this);
}

}

}

6.2.5 Conclusion

Given a graph of PIPMonitor and PIPThread instances that excludes priority
inversion, we have verified that the implemented PIP operations on this graph
are correct with respect to a validated PIP Specification in section 6.2.2. Hence
our PIP implementation is provably correct.

6.3 Decoupling Threads with Lock Free Data Struc-
tures

According to chapter 5.3.2, lock free data structures are used to isolate real-
time threads from non real-time threads. This chapter shows how lock free
buffers and queues are implemented. Listing 6.7 shows an implementation
of a bounded buffer based on a linked list. The buffer, derived from Herb
Sutter [50], is meant to be operated by exactly one producer and one consumer
thread. This article also explains why no data races occur.

The implementation by Sutter implies polling. The procedure “Remove”
may return a void value. Hence the buffer must be polled to get elements out.
Considering resource consumption, extensive polling is not a feasible option.
The improvement compared to Sutter’s implementation is a solution that gets
around polling by using the signals introduced in chapter 3.4.3. The imple-
mentation shown in figure 6.7 synchronizes the consumer and the producer.

6.3. Decoupling Threads with Lock Free Data Structures 81

After an item has been appended, the lease counter assigned to signal is in-
cremented by one. This allows the consumer thread to run once through the
procedure Remove. Thus the lease counter assigned to signal represents the
number of available items in the buffer. The consumer will be blocked when
trying to consume from the empty buffer.

Using a boolean condition for synchronizing a producer and a consumer
would be an alternative. But boolean conditions are bound to monitors. A real-
time producer would propagate its priority to a non-real-time consumer when
trying to enter the locked monitor, clearly, an undesired side effect of the PIP
in the context of real-time processing since it could render the real-time thread
schedule unpredictable.

A generalized concurrent lock free queue [51] for more than one producer
and consumer can be implemented in a similar way, since raising and catching
operations on signals are atomic.

Listing 6.7: Lock Free Buffer

BoundedBuffer = OBJECT
VAR first, divider, last: Item; signal : SYSTEM.SIGNAL;

PROCEDURE & Init();

BEGIN
NEW(first);
first.val := dummy; divider := first; last := first;

END Init;

PROCEDURE Append(x: Item);

VAR tmp : Item

BEGIN
(*trim unused nodes in linked list*)

WHILE (first # divider) DO
tmp := first;

first := first.next;

pool.recycleInstance(tmp);

END;
last.next := pool.getInstance();

IF last.next # NIL THEN
last := last.next; (*publish it *)

AosKernel.Signal(signal,1);

ELSE
(*drop item, no memory available *)

END;

82 Chapter 6. Selected Implementation Issues

END Append;

PROCEDURE Remove(): Value;

VAR result: Value;

BEGIN
result := NIL;
AWAITEVENT SYSTEM.SIGNAL, signal;

result := divider.next.val;

divider := divider.next;

RETURN result

END Remove;

END BoundedBuffer;

6.4 Elastic Garbage Collection

Garbage collection in embedded systems is constrained by limited resources.
Therefore our implementation strategy pays particular attention to the following
three issues.

• Impact on coexisting threads. Since the number of processor cores
is usually still very limited in embedded systems, the garbage collector
needs to share the cores with all other threads. Allocating a dedicated
core is not an option, since this creates interference and has to be re-
solved somehow.

• Efficient use of RAM. Every garbage collector strategy creates more or
less an overhead in terms of memory requirements. Unfortunately RAM
memory in embedded systems is even more precious than in traditional
PCs because there is often no secondary mass storage available.

• Overall runtime costs. Additional trade offs are the overall costs a
garbage collection iteration causes. This is a real issue for battery pow-
ered embedded devices.

The implemented garbage collector belongs to the class of tracing mark and
sweep collectors. A copying collector that divides the heap into two disjointed
semi-spaces called “from-space” and “to-space” is not an option on embedded

6.4. Elastic Garbage Collection 83

devices, because half of the heap would become unavailable . Both Tracing
and Sweeping are interruptible, but not incremental.

6.4.1 Scheduling the Garbage Collector

Chapter 5.3.3 gives on overview on how the garbage collector thread coex-
ists with the rest of the thread ecosystem. This chapter follows up on this
topic. The term “elastic” in the title refers to how memory allocating threads
pull the garbage collector’s runtime priority up to their own priority . Garbage
Collection has no “first-class citizen” status in the system but obeys exactly
the same rules as all other threads, especially regarding the PIP. The garbage
collector implementation is an interesting case in which the PIP not only fixes
a scheduling anomaly but takes the role as the thread orchestrating concept,
as mentioned in the list of contributions (1.4).

Memory allocating threads are synchronized with the garbage collector via
a boolean condition called memoryAvailable . The desired side effect is that
the garbage collector inherits the highest priority of all threads currently waiting
for heap blocks. If the statement Heap.CollectGarbage() was not included in
the EXCLUSIVE section, garbage collection would only run with the collector’s
default priority.

Listing 6.8: Garbage Collector

GarbageCollector = OBJECT
VAR memoryAvailable : BOOLEAN;

PROCEDURE Trigger();

BEGIN{EXLUSIVE}
memoryAvailable := FALSE;
AWAITCONDITION(memoryAvailable);

END Append;

BEGIN{ACTIVE}
WHILE (TRUE) DO

BEGIN{EXCLUSIVE}
(* runs potentially with inherited priority *)

AWAITCONDITION(˜memoryAvailable)
Heap.CollectGarbage();

memoryAvailable := TRUE;
END;

84 Chapter 6. Selected Implementation Issues

(*runs on static priority*)

END;
END GarbageCollector;

The two possible triggers for a garbage collection iteration are:

1. In order to reduce fragmentation, a proactive iteration is started when
either the memory utilization rate hits a predefined threshold or a prede-
fined maximum amount of time has elapsed since the previous iteration.

2. In order to satisfy a heap memory request when a heap block greater or
equal to the requested block size is no longer available. A garbage col-
lection iteration is done to find a fitting block while the requesting thread
is passivated. If no fitting block is found, then the requesting thread re-
mains passivated until a future iteration frees a fitting block. Note that
there is potential for the memory allocating thread to starve.

6.4.2 Performance Considerations with regard to Stack Trac-
ing

During the mark phase, the collector is supposed to visit each heap object
at least once, starting from a so called “root set”. The root set consists of all
module instances and thread instances in the system. These instances are the
origin from where all other object instances are reachable. Since heap objects
may also be anchored in stacks, stacks must be traced during the mark phase
as well.
There are two basic strategies to locate pointers on stacks. Either the runtime
system keeps track of all stack locations containing pointers or the garbage
collector makes a conservative guess as to where on the stack valid pointers
might be located. The process that the garbage collector implements to guess
is called a “stack pointer heuristic”. At first glance, the former strategy looks
more promising than just guessing where the pointers are, but empirical stud-
ies done with A2 [39] have shown that this is not necessarily the case. The
reason why in practice a guessing stack heuristic is competitive with a precise
lookup strategy lies in the architecture of today’s processors. Iterating linearly
over a consecutive memory block like a stack and checking each machine word
for plausibility is cheap because of the very effective cache prefetching capa-

6.4. Elastic Garbage Collection 85

bilities of modern processors. The general problem with guessing is that the
computational complexity shifts from O(n) with n equal to the number of heap
objects, to O(m) with m equal to the overall stack length. This is not intuitive to
the application programmer who is assuming predictability in the order of O(n).

The implemented mark and sweep collector uses a marking stack with over-
flow handling [25]. During the mark phase, all thread stacks are inspected
consecutively. Each word-aligned stack element is tested for plausibility to
represent a pointer to a heap object. The decision about possible candidates
is taken upon a conservative heuristics making sure that no pointer is missed.
Missing a pointer candidate would cause a referenced heap object to be col-
lected by mistake, which would of course severely harm the system’s integrity.
All candidates are then tested against the set of existing memory blocks. If
candidates really do point to such an existing memory block, then they are
traced recursively.
This verification process, of checking whether a candidate is a valid pointer or
not, is computationally expensive and therefore influences the overall runtime
characteristics of the mark and sweep collector. If the applied stack pointer
heuristic produces only very few false positives, then the overall runtime be-
havior would not shift that much towards O(size of all stacks).

Our trick to minimize the number of false positives is adding a pointer to
itself in the meta-data part of all heap objects. Figure 6.9 shows a generic
heap object together with its meta-data. The type tag pointer (pointing to the
type descriptor) is always aligned to address = 28 (mod 32). Three pieces of
information are encoded at address = 24 (mod 32). The least significant bit is
the ‘M’ark bit. This bit is set during the mark phase and reset during sweep.
The second least significant bit is the ‘F’ree bit. It is set when a block is linked
into the free list and reset when removed from the free list. All other bits are
reserved for mirroring the ‘self’ pointer. This pointer is aligned with 0 (mod 32),
8 (mod 16), or 16 (mod 32).

A well-educated heuristical guess as to whether a pointer on the stack is
really pointing to a heap block is performed in three steps.

1. Does the pointer refer to the currently allocated heap memory range?

2. Is the pointer aligned with 0 (mod 32), 8 (mod 16), or 16 (mod 32)?

3. Is the pointer mirrored at 24 (mod 32)? As a fortunate side effect, this test
also fails when the mark or free bit is already set because valid pointers

86 Chapter 6. Selected Implementation Issues

are always machine word aligned, meaning 0 (mod 4) on a 32 bit ma-
chine.

Figure 6.9: Memory Layout

Let us now discuss the rate of false positives based on the heuristics just
explained. Two assumptions are made: First, the heap occupies the whole
memory range and second, the heap and all stacks are filled with uniformly
distributed random bits. Figure 6.10 shows the probability tree. Steps two

Figure 6.10: Decision Tree

and three are statistically dependent, the five least significant bits are already
considered at stage two, thus the probability that a candidate is mirrored cor-
rectly by coincidence is just 1 divided by two to the power of 27 and not to the
power of 32. Hence a pointer candidate is judged false positive only by about
0.0000000007 % of the time. This means that virtually no overhead is caused

6.4. Elastic Garbage Collection 87

by checking false positive candidates. Thus garbage collection’s runtime com-
plexity is proportional to the number of heap objects instead of to the overall
amount of memory allocated by the different thread stacks.

6.4.3 Performance Considerations with regard to Write Bar-
riers

Write barriers are necessary to avoid “behind the back” pointer assignments
during the mark-phase of the garbage collector process. Theoretically, there
are four different pointer assignment operations; 1) Assigning a heap object
to a pointer located in another heap object, 2) assigning a heap object to a
pointer located on the stack, 3) assigning an object allocated on the stack to
a pointer also located on the stack, and 4) assigning an object allocated on
the stack to a pointer anchored in a heap object. The latter operation does not
exist in reality. Stacks are not explicit objects that can be referred to, rather
they are invisible for heap objects. The stack to stack case can also be safely
ignored, since it does not affect the heap. Thus only two cases remain.

Stack Pointer Assignment

When a heap object is assigned to a pointer located on the stack while garbage
collection is in progress, no write barrier is launched. Instead the stack of the
corresponding thread will simply be reinspected again. This saves runtime
overhead at the expense of the garbage collector thread.

Heap to Heap Object Assignment

When a heap object is assigned to a pointer located in a heap object while
garbage collection is in progress, then a write barrier is launched. Listing 6.9
below shows the write barrier logic formulated in pseudo code, which is com-
piled to an assignment operation like rootObject.rootPtr := targetObject.

targetPtr;.

Listing 6.9: Mark Test

IF gcBusy THEN
IF IsMarked(rootObject) & ˜IsMarked(targetObject) THEN

88 Chapter 6. Selected Implementation Issues

RegisterCandidate(targetPtr);

END;
END;

If the garbage collector has been interrupted and the rootObject has already
been visited and the targetObject has not yet been visited, then the targetPtr

needs to be traced again.

A few remarks on the penalty due to the additional write barrier if the
garbage collector is not running. The first four assembler instructions in list-
ing 6.10 show an ordinary pointer to pointer assignment operation. First, the
target pointer address is loaded. Second, the target pointer value is loaded
into register 2. Third, the root pointer address is loaded. And finally, the target
pointer value in register 2 is stored to the root pointer address.
The latter four instructions implement part of the write barrier. First the global
“gcBusy” flag located at address 200000H is loaded and compared to FALSE.
The program counter skips the write barrier block if “gcBusy” is not TRUE.

The overall number of processor cycles necessary to compute an assign-
ment operation with a write barrier is determined by the number of cache
misses. According to listing 6.10, there are four potential cache misses possi-
ble.

The best scenario in terms of number of processor cycles is: If no cache
miss arises at all, then the number of processor cycles needed to compute the
assignment operation with a write barrier is determined by the number of ex-
ecuted instructions. Since four instructions are used for the core assignment
operation and four instructions for checking the “gcBusy” flag, the overhead
added by the write barrier is 100%.
The Worst scenario is: If all four cache misses occur, then the number of pro-
cessor cycles needed to compute the assignment operation with a write barrier
is determined by the cache misses. The overhead added by the write barrier is
33%, since three cache misses are at the expense of the pointer assignment
operation.
The most likely scenario: The “gcBusy” flag is either cached because it is fre-
quently used or because the according processor cache line has been locked
down. Hence the overhead added by the write barrier is negligible since the
number of processor cycles needed to compute the assignment operations is
determined mainly by the three potential cache misses triggered by the first

6.4. Elastic Garbage Collection 89

three load operations.

Listing 6.10: Mark Test in Assembler

LDR R1, [FP,#8H] (*potential cache miss*)

LDR R2, [R1]] (*potential cache miss*)

LDR R3, [PC, #-64CH]] (*potential cache miss*)

STR R2,[R3]

MOV R6, 200000H

LDR R7,[R6]] (*potential cache miss*)

CMP R0,R7

BEQ 20

While the garbage collector is interrupted, the write barrier’s penalty is an or-
der of magnitude beyond the previously outlined worst case scenario. The
additional overhead is caused by the IsMarked and RegisterCandidate calls in
listing 6.9.

90 Chapter 6. Selected Implementation Issues

Chapter 7

Use Cases

The three use cases from the medical IT field presented in this chapter belong
to the dependable systems category and confront system developers with a
significant challenge. Their discussion shows the substantial improvements
made possible by the concepts presented in earlier chapters of this thesis.
The goal was to develop a wearable device able to cope with multiple sensor
types and adaptable to a variety of purposes. It was supposed to synthesize
different sensor types and to perform demanding high level analysis. An addi-
tional requirement was to provide a notification service over the air in case of
relevant medical events. Diagnostic robustness was another important design
goal.
The result shows convincingly that stationary diagnostic devices nowadays
used by hospitals could, at least partially, be substituted by wearable devices.
The presented device allows monitoring patients continuously, regardless of
their location. A research prototype has been designed and produced in col-
laboration with XAI medica, a spinoff company of the Aeronautics University of
Kharkov, Ukraine.
A project with a similar concept as the presented one is AMON by [2]. AMON
proposes a wearable wrist device that correlates multiple parameters like blood
pressure, ECG, body temperature, oxygen saturation and others in order to de-
tect and report events, but only rudimentary high level analyses are performed
on the device itself.
The only wearable diagnostic devices frequently used in current medical daily
routine are Holter Electrocardiograms. Holter ECGs are conceptually single
purpose and single parameter devices aimed to monitor the myocardial activ-
ity of a patient from a few hours up to several days.

91

92 Chapter 7. Use Cases

Figure 7.1: Copyright by Maurice Grünig, Zürich

As previously mentioned, an important design goal was to provide a sys-
tem with ultra robust detection capabilities, minimizing false positive alarms
and of course also false negative classifications. The primary medical goal
was not to provide detailed analysis of a patient’s health state but to be able
to reliably decide whether a patient is in a serious condition or not. In order to
detect such potentially lethal conditions, inputs from different kinds of sensors
are considered. A physiological system like a human shifting into a critical
state often shows a variety of symptoms in parallel, which are redundantly
detectable. Redundancy in sensing a human’s health condition improves the
quality of the prediction significantly. The proposed device is able to moni-
tor two important physiological subsystems: Respiration and blood circulation.
The former is monitored by measuring the thorax impedance, an electrophys-
iological measure. It could be complemented by the oxygen saturation. The
latter is monitored by measuring the electrocardiogram of the heart plus the
central and peripheral heat flow, the amount of heat (energy) diffusing from the
body to its environment per time and surface unit. Especially, the first deriva-

93

tive of the difference from central to peripheral heat flow is of interest: It might
be a hint of circulatory shock for instance if the distribution of the blood flow is
altered in disfavor of the extremities. In addition, the acceleration of the device
in three dimensions is measured. This allows detecting whether a patient is
in a kinetically steady state to discard artifacts in the acquired data related to
short and abrupt movements.

Figure 7.2: Board Schema

The schematic description above was taken from [49]. It shows all external
input and output connectors and how they are connected to the central pro-
cessing unit. GPIO stands for “general purpose I/O”, SSP for “Synchronous
Serial Port” and MMC for “Multimedia Card”. All other abbreviations are self-
explanatory.

94 Chapter 7. Use Cases

7.1 Evaluation of the User Interface

Practical experience has shown that the device is lacking a simple way of in-
dicating any state. Unfortunately, there are no means to provide any user
feedback such as the battery’s charge state, a warning if some sensors have
not been connected correctly or an estimate about the remaining capacity of
the data memory.
Also, Bluetooth instead of IrDA would have been the preferred option for near
field communication.

7.2 Real-time Monitoring

Real-time data visualization aims at giving an immediate overview of the state
of a physiological system. For this purpose a simple viewer application has
been implemented by Alexey Morozov. It allows zooming and recording live
feeds tapped from the device’s serial connector. Chapter 7.2.1 lists all chan-
nels that are visualized. Figure 7.3 shows a demonstrator that has been im-

Figure 7.3: Screenshot Viewer

plemented on the occasion of the twenty-fifth anniversary of the computer sci-
ence department at ETH Zurich [8]. In order to demonstrate the power of the

7.2. Real-time Monitoring 95

concept, Alexey Morozov has developed a simulator that injects a so called ST-
elevated myocardial infarction into a healthy electrocardiogram. The left hand
side in figure 7.3 shows a normal, synthetic sinus rhythm. On the right hand
side, the same sinus rhythm is shown but this time superposed with an artificial
ST elevation. Visitors were given an opportunity to play with the simulation by
toggling the hazardous ST-overlay on and off on their own ECG with the black
button on the front of the device.

This viewer tool is also used for checking if the sensors have been applied
correctly and the acquired data is of the expected quality.

7.2.1 Data Channels

The medical I/O board depicted in figure 7.2 delivers sixteen data channels in
parallel at a rate of five hundred samples per second where the sampling rate
is determined by the high frequency ECG data characteristics. For other signal
types, five hundred samples per second is hard to justify, but for the sake of
simplicity, all channels are delivered uniformly.

7.2.2 Evaluation

When a physician senses a patient’s pulse with his or her finger tips, the data
displayed on the monitor shall correlate with what the physician feels. Thus,
any latency caused by the pipelined data processing setup is problematic. The
I/O board buffers the acquired data for a quarter of a second before it feeds
it into the processing pipeline, which leads to a delay beyond what is accept-
able in practice. A counter measure would have to include dynamic batching,
depending on a latency versus power efficiency tradeoff.

96 Chapter 7. Use Cases

Table 7.1: Data Channels

Channel Remarks

ECG Eight ECG channels are acquired; I, II, V1, V2, V3, V4, V5
and V6. There are four channels missing for a fully-fledged
standard twelve lead ECG. Channels III, aVR, aVL, and aVF
are simple linear combinations thereof and computed on the
fly. III := II - I; aVR := (-I - II) / 2; aVL := (I - III) / 2; aVF := (II
+ III) / 2. The resolution of the ECG signal is 0.005 [mV].

Respiration Two channels are dedicated to the body impedance ac-
quired across the thorax. The first channel delivers a low
pass filtered signal, the second channel delivers the differ-
ence from the first channel to the actual signal.

Acceleration The acceleration in the X, Y and Z directions is delivered by
three channels in parallel. Plus minus 2 [g] is the measur-
able range.

Heat Flow Two additional channels are allocated for the central and
peripheral heat flow sensors. The input values range from
0 to 400 [W / m2].

Battery state A 16 bit count down indicates the battery’s current charge.

7.3 Data Stream Recorder

Recording data over a longer period of time is best practice for detecting po-
tentially seldom events like cardiac arrhythmias for instance. A Holter ECG is
state of the art for detecting and quantifying such cardiac arrhythmias. A pa-
tient wears a device that records only two or three ECG leads for at least 24
hours. Data analysis is done later off line on a workstation. There are fully au-
tomated off line tools available for detecting and quantifying interesting events.
The presented monitor could easily substitute such a Holter ECG. It stores data
and records it on a standard FAT32 formatted fully interoperable MMC memory
card. In addition, it could well be used for sophisticated high level analysis like
detecting sleep apnea, where the body impedance combined with heart rate
and kinetic movements derived from the built-in acceleration sensors would
give the big picture about the dynamics of the different sleep phases.
The device has been used by Prof. Dr. Dr. Stephan Marsch at the University

7.4. Hazardous Event Notifier 97

Hospital Basel for determining the stress level of medical trainees involved in
simulated critical care situations.

7.3.1 Implementation

The MMC driver by Thomas Kägi-Trachsel was originally implemented for Mi-
nos [24] and adopted to Realtime Oberon. Interrupt handling and conditional
synchronization had to be reviewed and ported according to section 3.4.1. The
adaptions necessary to be compatible with the FAT32 File System [9] borrowed
from [39] have been rather invasive. The Framework was adapted according
to the design pattern presented in chapter 5.4.2 in order to avoid deadlocks.
Another issue was finalization. As introduced in chapter 3.4.4.

7.3.2 Evaluation

The amount of raw data stored per hour was equal to approximately 57 [Mbyte].
(16 channels multiplied by 2 Bytes multiplied by 500 samples per second mul-
tiplied by 3600 seconds per hour). Different data reduction strategies have
been applied: the battery charge state has been dropped and the two heat
flow channels have been down sampled to 10 samples per second. All other
data channels were compressed using a lossless Huffman based compression
method proposed by the European standardization committee [1]. This has re-
duced the amount of data significantly. The device is now usable as a 24 hour
recorder thanks to its battery capacity of 1 [Ah] and commercially available
flash memory cards of 1 [GByte] capacity.

7.4 Hazardous Event Notifier

The third use case finally shows the full power of the concept. The device’s
functionality has been upgraded to perform autonomously rich analyses in real-
time. It scans the data stream for a set of predefined events and emits alerts
via a built-in GSM modem.

This chapter presents a setting for detecting and reporting ventricular tachy-
cardia events. The chosen tactics to detect such events is simple and straight

98 Chapter 7. Use Cases

forward: scanning the ECG data stream for heart rates above 120 beats per
second. There are several reasons why heart rates rise beyond 120 beats
per second, the most prominent reason is heavy physical activity. Thus false
positives cannot be excluded with our approach. In return, false negatives are
unlikely because a tachycardia always manifests itself in the form of a rapid
rhythm of the heart.

Figure 7.4: Event Notification Path

Figure 7.4 shows the physical system setup: An A2 [39] based webserver is
used as a data relay. The monitoring device transmits the event related data to
the server, and the server in turn sends an SMS to the receiver’s smartphone.
The SMS encodes the URL of the data that is supposed to be fetched by the
smartphone. Figure 7.5 shows three screenshots of the smartphone applica-
tion developed for the Windows mobile platform. The application parses all
received SMS for a particular tagged SMS and extracts the required URL for
downloading the data by means of an ordinary HTTP GET request.

The viewer application’s user interface has been kept very simple. It shows
the three most recent alerts, allows zooming, makes simple measurements
and calls back a dedicated care team.

7.4.1 Implementation

Figure 7.6 shows the structure of the threads and blocking buffers used to
perform the requested notification services.

This case study relies on two key software frameworks: a QRS detector
developed by Alexey Morozov and a Support Vector Machine implemented by
Bruno Koller [26]. Let us first discuss the QRS detector.

7.4. Hazardous Event Notifier 99

Figure 7.5: Mobile Phone based Receiving Application

QRS Detector

Analyzing an ECG signal first requires identifying individual heartbeats en-
coded in the signal. A heartbeat detector scans an ECG data stream for so
called QRS segments. Figure 7.3 highlights such a segment on the left. The
following quote is taken from [31]. It describes the heartbeat detector origi-
nally developed for the presented use case and later reviewed and refactored
for validating a Process-Oriented Streaming System Design Paradigm for FP-
GAs.

To detect ECG heart beats in a single channel we use a variation of
the algorithm proposed by Pan and Tompkins [40]. The algorithm
is based on linear digital filtering combined with a non-linearity. As
a result, the detector returns the position of a probable ECG beat
in a given single channel signal. Although the single channel QRS
detection algorithm performs well on standard ECG records from
the MIT/BIH database, its quality can be insufficient for a practi-
cal multichannel ECG monitoring system. A multichannel QRS de-

100 Chapter 7. Use Cases

tection can lead to improved performance over the single channel
approach by the use of more information about the overall spatio-
temporal signal. Here we chose a strategy proposed in [LJC94],
which is based on combining preliminary QRS detection results
from multiple channels [. . .] with some adaptation to real-time pro-
cessing.

Once a QRS segment has been detected, the heart beat is analyzed. ECG
wave analysis results in the extraction of multiple features, such as type of
peak sequence, onset, offset and magnitude of the waves within the beat. For
this a derivative-based wave boundary delineation algorithm has been used as
presented in [28].

At this stage, all operations are performed using fixed point arithmetic. The
ECG wave analyzer is capable of extracting about fifty different features:

• RR - distance: The peak to peak distance in between the current and
previous QRS complex expressed in milliseconds. As a side effect, the
median RR distance over a configurable sliding window is also tracked.

• Amplitude: The current QRS’ amplitude is measured in millivolts. Calcu-
lated for the non-redundant channels I, II, V1, V2, V3, V4, V5, V6; the
median amplitude over a configurable sliding window is tracked for each
channel.

• QRS length: The current QRS’ length is measured in milliseconds. Also
calculated for channels I, II, V1, V2, V3, V4, V5, V6; additionally, the
median QRS length over a configurable sliding window is tracked for each
channel.

• ST - Elevation: The current ST - elevation is measured in millivolts. Cal-
culated for channels I, II, V1, V2, V3, V4, V5, V6; the median ST - eleva-
tion over a configurable sliding window is tracked for each channel.

A configurable subset of the eight channels are tracked by default. According
to the enumeration above, a maximum of fifty features are extracted each time
a heartbeat is detected. Namely the RR distance plus its median plus eight
channels times the current and median value times the amplitude, QRS length
and ST - Elevation. Thus the maximum length an ECG feature vector may
attain is fifty elements.

7.4. Hazardous Event Notifier 101

Support Vector Classifier

The second important software framework used is a Support Vector Classifier
implemented by Bruno Koller [26]. Among the popular machine learning tech-
niques, the Support Vector Machine approach has been chosen because of its
modest runtime requirements. The algorithmic complexity classifying a feature
vector is O(n) with n equal to the feature vector’s length.
[26] has also provided a generic framework for implementing similarly condi-
tioned problems aiming at pipelined data processing.

Figure 7.6: Processes and Interconnects

The two feature buffers depicted in figure 7.6 are each fed by a separate
feature extracting thread. Both threads store feature vectors of a specified
length into these buffers. Each element of such a vector contains a feature
such as the heart rate or the maximum acceleration magnitude for instance.
Let us first focus on the upper data path in figure 7.6. Whenever a QRS com-
plex is detected by the ECG feature extraction thread, it compiles a new feature
vector with only one element, namely the median RR distance. The down-
stream classification thread processes data vectors from the feature vector
buffer and classifies these vectors into event categories, which is straight for-
ward in the case of linearly separable single element vectors. The median RR
- distance is classified against a threshold, two kinds of events are generated,
namely “below ventricular tachycardia RR - distance threshold” and its com-
plement. The events are stored in the “Events” buffer.

Some explanations regarding the lower data path in figure 7.6: the fea-
ture extraction thread handling acceleration data evaluates a binary feature
expressing the degree of kinetic activity. It is used to reset the ECG features

102 Chapter 7. Use Cases

when the patient is not in a kinetically steady state. The thread continuously
calculates a synthetic signal feature by adding the absolute values in the X,
Y and Z directions and by down-filtering it by a factor of four with a wavelet
filter. This flattens the aggregated signal without loss of generality. The newly
computed synthetic feature signal’s magnitude is compared against a thresh-
old; two kinds of features are extracted and stored in the buffer “Features I”,
namely “below threshold” and “above threshold”. The downstream classifica-
tion process uses these feature vectors for classification according to “magni-
tude above threshold” and “magnitude since five seconds below threshold”.

An interpretation thread consumes the shared event buffer and generates
alerts, which in turn are then forwarded to a receiver’s smartphone by the
“Fan Out” thread via the GSM modem connected to UART port 1. The inter-
pretation thread correlates the different events detected by the two upstream
classification threads. An alert is only issued if positive ventricular tachycardia
events have been reported continuously over a five second period and if the
acceleration magnitude has not hit the threshold during this time span. The
mentioned “Fan Out” thread takes care of sending reports in case an alert has
been raised. It gathers the related raw data, compresses it and sends the data
to the built in GSM modem. The thread also takes care to not send redundant
reports to the receiver.

7.4.2 Evaluation

On behalf of Prof. Dr. med. Paul Erne a real patient was supervised during
four nights in October 2008 at the Kantonsspital Lucerne. The patient refused
to stay at the intensive care unit and therefore had to be supervised remotely.
Reporting lethal ventricular tachycardia was the primary task the device was
expected to perform. During four nights no event was signalled, and one false
positive alert was reported.

The battery capacity delivers a sufficient amount of energy to perform the
described computation for about twenty four hours.

Empirical studies by Bruno Koller [26] on the event detection capabilities
of the presented ECG analyzer have shown that the extracted set of features
mentioned in the previous section is insufficient for a holistic, fine grained and
reliable ECG event detection. The following features in particular are missing:
T-wave alternans, the QT-length and the rotation of the QRS complex.

7.4. Hazardous Event Notifier 103

However, there would be enough computing power available to enhance the
feature extraction mechanism to meet the demands and their implementation
on top of the presented system / language architecture even by non-system-
programming experts in a reasonable time and without compromising the final
system’s dependability.

104 Chapter 7. Use Cases

Chapter 8

Evaluation

This chapter evaluates the presented generic software framework for imple-
menting dependable data driven embedded systems with other state of the
art systems mentioned in chapter 1.2. The treated aspects are inspired by
the Real Time Specification for Java [5] where Scheduling, Memory Manage-
ment, Synchronization, Resource Sharing, Asynchronous Event Handling and
Asynchronous Transfer of Control have been identified as the key aspects for
implementing real-time systems. All these topics will be treated by the next
sections.

8.1 Scheduling

Runtime Predictability requires a suitable scheduling model. Optimality, unifor-
mity, and power awareness are the issues treated in the next paragraphs.

8.1.1 Optimality

First, a few remarks on optimality. A scheduler is called “optimal” if, and only if,
it always finds a feasible schedule whenever one exists in theory. A well-known
example is the earliest deadline first (EDF) scheduler that, however, requires a
preemptable runtime system. Unfortunately optimal schedulers perform poorly
in the case of computational overload and predictability is lost in general [30].
However, predictability is a very important property a scheduler is expected to
feature. EDF schedulers therefore perform acceptance tests whenever a new

105

106 Chapter 8. Evaluation

task shows up. A task is only included in the current working set if it is compli-
ant with all previously accepted tasks. Acceptance decisions are taken based
on worst case execution time, release time and the deadline of the new thread.
More sophisticated tests also take a thread’s urgency into account. At first
glance the concept of acceptance test looks promising because it optimizes
a cost function, for instance the number of threads missing their deadlines,
based on the properties of all threads belonging to the current working set
plus the properties of the new candidate. However acceptance decisions are
local decisions taken by a greedy algorithm merely considering the close past
and the near future. This leads to only local optimal decisions, a greedy ac-
ceptance test will most likely not find a global optimal solution in the case of
overload.
However, optimality has not been a concern of priority in the context of Real-
time Oberon. Realtime Oberon comes with a non-optimal fixed priority sched-
uler with predictable behavior in the case of overload. The actual price for
non-optimality will depend on the specific use-cases.

8.1.2 Uniformity

The second issue is about uniformity. Importantly, the priority inversion proto-
col has been smoothly integrated into the scheduling concept. It is uniformly
applied to all activities. Including interrupt handling. This is conceptually clean
and easy to deal with.
LynxOS for instance, comes up with a patented solution called Priority Track-
ing to get around priority inversion. According to LynuxWorks [18] it works as
follows:

[Interrupt handling] kernel threads begin their existence with a very
low priority as created by a driver. When a user thread opens the
device, the kernel thread promotes its own priority and “inherits”
the priority of the user thread opening the device. If another user
thread of higher priority opens the device, the kernel thread bumps
its priority up to match the other thread; when the I/O is complete
the kernel thread returns to the next pending thread’s priority level,
or to its starting level.

8.1. Scheduling 107

It is immediately clear that if the interrupt handling kernel thread runs at the
same priority as its client thread does, no priority inversion will occur. However,
running the interrupt handling thread at the same priority as the client thread is
not always beneficial. A counterexample: A high prioritized interrupt handling
thread copying data from a hardware register into a bounded buffer, which in
turn is consumed by a low prioritized thread, is sound and very common. The
PIP just has to make sure that the high priority producer is not uncontrollably
blocked when putting data into the bounded buffer. The ability to make precise
distinctions between consumers and producers threads regarding their run-
time behavior is a key requirement for mapping real world constraints. LynxOS
does not allow this with its simplistic Priority Tracking approach.
Other real-time systems are completely priority inversion agnostic when han-
dling interrupts. The ThreadX [29] system for instance and many other ker-
nels do not participate in the overall priority scheme although it governs it.
Interrupts are handled by extensions to the kernel called “drivers”, which also
function outside normal prioritization [18].

8.1.3 Power Awareness

A third issue regarding the scheduling strategy is power awareness, which is
an aspect of crucial importance in a runtime system used for operating battery
powered devices. Time slice interrupts that periodically reevaluate the run-
ning process are avoided, because if the reevaluation process takes no action,
then the consumed computing cycles simply have been wasted. Scheduling
is driven by raised events instead. Hence pointless context switches are elimi-
nated.
This is not the case in Java, even if the Java Runtime would do without time
slicing. The generic Java code fragment in 8.1 taken from the Java Docu-
mentation [7] shows why. When a waiting thread on obj.wait() is notified, it
must reevaluate the condition. If another competing thread has falsified the
condition in the meantime, the thread is going to wait again. The result is two
pointless context switches. In Realtime Oberon, the condition is guaranteed to
be true right after AWAITCONDITION.

Listing 8.1: Conditional Synchronization in Java

synchronized (obj) {

while (<condition does not hold>)

108 Chapter 8. Evaluation

obj.wait();

// Perform action appropriate to condition

}

8.2 Memory Management

In principle there are three different memory domains a thread operates on;
the heap, the stack, and on statically allocated global data. The next three
sections evaluate the real-time tradeoffs.

8.2.1 Heap

Hard real-time threads using a managed heap pose a challenging problem.
There are two basic strategies to cope with this challenge: Either the heap
management overhead is shielded from hard real-time threads, or hard real-
time threads are completely decoupled from the managed heap.
An implementation aiming at the first option has been presented by Bacon [4].
Its garbage collector strives to deliver short deterministic pauses of a prede-
fined maximum length, thus preserving a minimum utilization rate for real-time
threads over a sliding time window. This implementation exhibits two draw-
backs: a) the granularity of the short deterministic pauses might be inappropri-
ate for a particular application and b) extra heap space is needed in addition
to the heap space required by the application.
In contrast, the decoupling approach is based on introducing an unmanaged
heap that allows real-time threads to allocate and release memory explic-
itly [39], [5]. The disadvantages of this approach are a) potential memory leaks
and dangling pointers due to mismanagement and b) references from the man-
aged part of the heap pointing to the unmanned part. These are not straight
forward to handle since unmanaged heap memory can be released arbitrarily
by its owner. As a general invariant, a heap object should never be referenced
by an object with a potentially longer lifetime. Different countermeasures are
popular. The unmanaged heap could be declared as immortal. In this case,
a persistent object may be referenced by any other object due to its particular
lifetime property.

8.2. Memory Management 109

Realtime Oberon runs a single heap memory in combination with a non-
transparent garbage collector that obeys exactly the same rules as all other
threads, especially also regarding the PIP. It was influenced by related work
on Scheduling Garbage Collection in Embedded Systems done by Henriks-
son [15]. His work has heavily influenced Oracle’s commercial implementation
of the Real-Time Specification for Java [5]. The garbage collector runs as one
or more threads. These threads run at a priority that is lower than all instances
of the hard real-time threads so that critical threads may preempt the collector.
In this way, critical threads are shielded from the effects of garbage collection.
One of the tuning parameters is the maximum priority of the garbage collector.
By default, the garbage collector runs at its initial priority, which is below that of
the noncritical real-time threads. But as memory grows short, the virtual ma-
chine will boost or raise the priority of the collector to the maximum configured
priority [12].

The proposed Realtime Oberon solution outlined in listing 6.8 also aims
to shield hard real-time threads from the effects of garbage collection, similar
to Henriksson’s GC [15]. An improvement to Henriksson’s scheduling strat-
egy has been proposed. Whereas in [15] heuristics take care of steering the
collector’s priority within a preconfigured band, our solution postulates a very
natural way of adjusting the priority: the garbage collector inherits the priority
from those threads that currently depend on the garbage collector’s progress
freeing memory.
If the garbage collector’s priority is limited to a reconfigured band, priority in-
version is likely, whereas our solution avoids priority inversion by design.

8.2.2 Stack

The stack is predestinated to host structures of a known and limited lifetime
that do not need to be shared. Allocation and deallocation of stack memory is
very efficient and predictable, which makes it an attractive option particularly
for hard real-time threads.
In Java or C#, compilers optimize behind the scenes what data is stored on the
stack and what in the heap. Programmers cannot express their preferences.
Therefore the designers of Real-Time Java [5] had to reintroduce so called
scoped memory areas. Each area is assigned to exactly one real-time thread.
Scoped memory areas are intended to accommodate objects with a known

110 Chapter 8. Evaluation

lifetime and are uncollected. They are reclaimed at the end of their thread’s
lifetime. The analogy of scoped memory areas with ordinary stacks is evident.
In Realtime Oberon we make use of the non-optimizing compiler that supports
a fully-fledged stack and allows programmers to decide where which data will
be allocated.

8.2.3 Global Data

Analogous to Java where global data is stored in static class members, global
data is tightly coupled to Oberon modules. A module is an entity of code and
data, namely the module variables. A variable’s lifetime starts when the hosting
module is loaded and then persists. Working with module variables does not
cause any costs at the expense of (hard real-time) threads, given the module
has been loaded or statically linked and the variables are not shared.

8.3 Synchronization

Synchronization includes two aspects: mutual exclusion and conditional syn-
chronization.

8.3.1 Mutual Exclusion

Many programming languages originally designed for general purposes have
later been instrumented for real-time programming. Unsurprisingly they lack
expressiveness regarding time constraints.

Java provides a synchronized(){} statement to protect critical code sec-
tions. Unfortunately, synchronized{} does not allow to declare a timeout that
a thread is trying to enter the critical section. This is suboptimal in the case of
real-time threads. There is no way to express the maximum amount of time a
thread waits to enter a critical section.

In order to improve the time predictability of programs written in Realtime
Oberon, all language statements that potentially passivate the invoking thread
allow specifying time constraints. Notably these statements are EXCLUSIVE

8.3. Synchronization 111

(3.2), AWAITCONDITION (3.3) and AWAITEVENT (3.4). These timely constrained
statements facilitate reasoning on worst case execution times of real-time threads.

8.3.2 Conditional Synchronization

A popular way programming languages / runtime systems support conditional
synchronization is in terms of some wait() and notify() statements / API calls.
Figure 8.2 shows a Java sample.

Listing 8.2: Conditional Synchronization in Java with Timeout

synchronized (obj) {

while (<condition does not hold>)

obj.wait(timeout);

... // Perform action appropriate to condition

}

wait(int timeout) is used to passivate a thread and notify() or notifyAll
() to resume threads. Java threads are supposed to reevaluate the boolean
condition they are waiting for after they have been resumed because the con-
dition could have been falsified in the meantime. The maximum amount of
time a thread is going to be passivated is specified by the optional parameter
timeout of method wait().

The improvement Realtime Oberon comes up with in the context of con-
ditional synchronization is an extended PIP adaption. Combining priority in-
heritance with conditional synchronization is unique to the best of our knowl-
edge. This combination has been made possible by Realtime Oberon’s atomic
AWAITCONDITION statement.

Furthermore, to the best of our knowledge, no Java Virtual machine prop-
agates priorities while a thread is passivated on wait(). The invoking thread
implicitly releases the monitor by calling wait() and is not going to propagate
its priority to a lower prioritized thread that acquires the monitor in order to es-
tablish condition. Since passivating the thread and reevaluating the boolean
condition are spread over two different statements (while / wait), a runtime
system has little chance of ensuring that another thread manipulating the con-
dition is running at least at the same priority as the waiting thread is. There

112 Chapter 8. Evaluation

are other reasons for calling wait() within a monitor, in addition to waiting for
a boolean condition to be established. Whereas the AWAITCONDITION state-
ment clearly expresses the correlation between the boolean condition and the
expected runtime behavior, which makes a holistic PIP adaption feasible.

8.4 Resource Sharing

Sharing resources among threads brings up the priority inversion problem as
introduced in chapter 4.2. A few concepts ([48], [33]) to cure this anomaly
have been proposed and implemented. Obviously it is hard to get it right: It
has been shown that widely used real-time operating systems are substantially
flawed and already fail with test cases of modest complexity [52]. Zöbel and
Polock have also published work on conformance testing of Priority Inheritance
Protocols [53].

The other issue treated in this chapter is the applicability of the PIP imple-
mentation to application programming.

8.4.1 Correctness of the Priority Inheritance Protocol Imple-
mentation

Various priority inheritance implementations have been reviewed by Dieter
Zöbel and David Pollock [52]. They have shown that implementing the PIP
is obviously not straight forward, since popular implementations have been
identified as heavily error prone. To get an idea of the complexity hidden in the
PIP we take a closer look at an example taken from [52]. Figure 8.1 needs to
be read as follows: Process P1 runs initially at priority 10. It requests critical
section d at t = 02 and gains access to it at t = 03. At t = 04 it requests critical
section a and gains access before it is preempted by process P2 at t = 06,
because P2 runs at priority 12 and so forth. The test suite used to unfold faulty
inheritance was configured for five processes with basic priorities ranging from
10 to 18 and critical sections from a to d. The, at the time popular, QNX 6.2 re-
altime OS has unveiled significant weaknesses. “During the time units 29 - 31
inversion is possible in that process P2 should have priority 18. The reason for
this error possibly arises from a non-transitive implementation of inheritance,
in this state from process P5 via P3 to P2” [52]. Process P2 owns critical sec-

8.4. Resource Sharing 113

tion a, which is requested by process P3 owning critical section c, which is in
turn requested by process P5. Hence process P2 is supposed to run at P5’s
priority.

Figure 8.1: QNX 6.2

QNX 6.2’s predecessor was also error prone, interestingly due to different
defects. The bugfix from version 6.1 to 6.2 introduced new defects, thus there
is strong evidence that getting the PIP implementation right is far from trivial.
Realtime Oberon’s contribution is a provably correct PIP implementation (6.2).
This is a clear step ahead of conformance testing [53].

8.4.2 Applicability of the Priority Inheritance Protocol Im-
plementation

The second issue beside correctness is applicability: Within interdisciplinary
projects, innovation is generally not exclusively driven by computer scientists
but by specialists in applications, with a potentially weak background in com-
puter science. Therefore OS artifacts like priority inheritance should be com-

114 Chapter 8. Evaluation

pletely hidden from application programmers.
A well-known priority inversion related disaster happened with the Mars Explo-
ration Rover Mission, although the underlying runtime system was supporting
primitives for coping with the inversion problem [21]. In that particular case, ap-
plication programmers overlooked or misunderstood functionality and options
offered by the Runtime System’s API to cope with the inversion problem.

Realtime Oberon provides a sufficiently abstract programming model that
hides priority inversion issues. This has been achieved by hiding the priority in-
heritance implementation behind the EXCLUSIVE and AWAITCONDITION program-
ming language statement. The application programmer does not have to be
aware of the priority inversion issues, everything is handled implicitly behind
the scenes. There are systems that do not include such a seamless prior-
ity inheritance implementation: An example of an inconsistent API for solving
the inversion problem is the one provided by the ThreadX [29] real-time mul-
tithreading runtime environment. It provides different building blocks for syn-
chronization like mutual exclusion and semaphores, but only mutual exclusion
is enabled to handle priority inversion by inheritance. There are no concep-
tual reasons for restricting priority inheritance to a subset of the implemented
synchronization primitives. These kinds of implementation restrictions often
confuse users rather than support application programmers.
In Real Time Java, the PIP is implemented by a particular class that an appli-
cation programmer has to deal with, whereas the protocol is completely trans-
parent to the programmer in Realtime Oberon.

8.4.3 Relevance of a correct and applicable Priority Inheri-
tance Protocol Implementation

Last but not least, a few considerations about the relevance of a correct and
applicable PIP Implementation. Relevance of the PIP is only given for (pseudo
parallel) time sharing systems. On a true hardware parallel system where a
physical processor is available for every thread ready to run, priority inversion
will never arise. The reason for this is that a thread operating within a mutually
exclusive section will never be preempted because all other threads ready to
run have an available processor by definition. Propagating priorities to other
threads would not have any effect since all threads ready to run will run anyway.
Thus the PIP becomes redundant in that particular case.

8.5. Asynchronous Event Handling 115

However, as soon as there is a lack of one or more physical processors
to schedule all threads ready to run, the PIP takes effect. In the best case, a
thread will be blocked, at most, as if there is an unlimited number of physical
processors.

However, although time sharing systems are more complex from the schedul-
ing point of view, they offer better utilization of hardware, especially when com-
putational load fluctuates a lot over time. Hence a correct and applicable PIP
implementation will remain of importance for a wide variety of systems and
applications.

8.5 Asynchronous Event Handling

Realtime Oberon provides the AWAITEVENT statement for asynchronous event
handling, whereas event handling is not supported in Java on the program-
ming language level. The Java runtime invokes delegate callbacks for event
handling. In summary, the arguments in favor of including event handling in
the language are:

• AWAITEVENT completely eliminates call backs like interrupt handling rou-
tines, timer routines and finalizers and thereby replaces inverse program-
ming with direct programming. This is an important benefit regarding the
construction of deadlock free systems as outlined in chapter 5.4.

• The built in AWAITEVENT statement helps to keep the kernel application
programming interface lean. All traditional callback services like timer
and interrupt handling services are no longer needed.

• AWAITEVENT underlines the duality of boolean conditions and events. It is
a natural complement to the AWAITCONDITION statement.

Let us now focus on a particular class of asynchronous events: hardware inter-
rupts. “Interrupt latency is the time from the assertion of a hardware interrupt
until the first instruction of the device driver’s interrupt handler is executed.
The [QNX micro kernel] leaves interrupts fully enabled almost all the time,
so that interrupt latency is typically insignificant.” [19] This strategy of dealing
with first level interrupts is very common and thus not specific the cited OS.

116 Chapter 8. Evaluation

We have chosen a different approach with Realtime Oberon. It leaves inter-
rupts only partially enabled almost all the time according to chapter 6.1.1. If
the kernel leaves interrupts fully enabled almost all the time, then the running
thread is interruptible almost all the time. This clearly harms predictability. Our
approach is more sophisticated. It leaves interrupts only enabled if the corre-
sponding second level interrupt handling thread preempts the running thread
due to a higher priority. Thus non-effective interruptions and context switches
are avoided.

8.6 Asynchronous Transfer of Control

The idea behind what the Real Time Specification for Java [5] calls Asyn-
chronous Transfer of Control is that thread A may interrupt another thread
B and thread B resumes at a predefined execution point. The idea is to let
thread B react with minimum latency on external events. Asynchronous Trans-
fer of Control is implemented with exceptions. Thread A raises an exception
that thread B catches as opposed to the usual case where the same thread
rises and catches an exception.

Asynchronous Transfer of Control is conceptually promising but tricky to
deal with in practice. For instance, a thread is not interrupted when it is in a
critical section. This voids the concept to a certain extent. Additionally, the
programmer has to make sure that the thread is always in a consistent state
when the thread is interruptible.

Realtime Oberon does not provide a special concept for Asynchronous
Transfer of Control. A work around is to let determine the thread at specific
execution points whether it should abort its operation or not. At first glance,
injecting these checks into the code at specific execution points looks more
costly than just catching an exception as in the Java case. But also the Java
solution does not spare the programmer from carefully thinking about execu-
tion consistency. The drawback with the Realtime Oberon work around is the
latency that a thread reacts to. The latency is certainly not minimal, it is given
by the time in between check points. The actual impact has to be evaluated by
considering the use case.

Chapter 9

Conclusion

To conclude, we summarize conceptual and technical results and propose fu-
ture work.

9.1 Summary

Conceptual Results

• The scheduling model presented in chapter 4 is invariant to all activities
in the system, especially to hardware interrupt threads. All activities obey
two precise and concise rules. These two simple rules allow anticipating
the application’s timely behavior.

• Realtime Oberon includes a built in AWAITEVENT statement to overcome
inversion of control. Up-calls like interrupt handler and finalizers are sub-
stituted by ordinary threads invoking AWAITEVENT. Getting rid of inversion
of control helps, for instance, to build systems free of deadlocks by mu-
tual exclusion (chapter 5.4).

• The two code samples 5.2 and 6.8 show how to employ priority inher-
itance as a thread structuring concept rather than just as a means to
overcome a scheduling anomaly.

117

118 Chapter 9. Conclusion

Technical Results

• Chapter 6.2 outlines a provably correct PIP implementation. A formal
proof is a step ahead of conformance testing.

• We have implemented three data driven sample applications based on
Realtime Oberon. These medical IT applications have been successfully
field tested.

9.2 Future Work

Conceptual Improvements

• The asynchronous control of transfer challenge mentioned in chapter 8.6
remains unsolved. When a thread is interrupted, it is supposed to imme-
diately stop but at the same time leave the system in a consistent state in
order to resume its operation at a different execution point. This is some-
how a conflicting goal. A programmer should get a tool to express when
a thread is interruptible.

Technical Improvements

• Automated tools to statically check system properties are missing. In-
stead of checking by hand if no up-calls in the execution path are pos-
sible, an automated tool could take over that task. Such a tool would
significantly simplify reasoning on the execution path in order to avoid
deadlocks by mutual exclusion.

List of Figures

2.1 Task and Pipeline Parallelism . 10

2.2 Generic Data Processing Pipeline 10

2.3 Cardiopulmonary nonstationary fluctuaions [13] 12

2.4 Heart Rate Self-Similarity [13] . 13

2.5 Parallel Pipelines . 15

4.1 Scheduling State Machine . 31

4.2 The sleep apnoea use case revisited 33

4.3 Priority Inversion Szenario . 34

4.4 Transitions affected by the priority inheritance protocol 35

4.5 sleep apnoea use case revisited 37

5.1 Collector Thread Interactions . 41

5.2 The set of threads . 47

5.3 The set of threads . 49

5.4 Template Pattern . 54

5.5 Template Pattern transposed to Oberon Modules 55

5.6 Classification with respect to deadlock potential 60

6.1 Interrupt Masking . 64

6.2 General thread / monitor dependency chain 66

6.3 Tracking “blocked by” relations 67

6.4 Tracking “owned by” relations . 68

119

120 Chapter 9. Conclusion

6.5 Priority Inversion Cascade . 70

6.6 Process Initialization . 70

6.7 Resource Initialization . 71

6.8 Priority Inheritance Protocol . 72

6.9 Memory Layout . 86

6.10 Decision Tree . 86

7.1 Copyright by Maurice Grünig, Zürich 92

7.2 Board Schema . 93

7.3 Screenshot Viewer . 94

7.4 Event Notification Path . 98

7.5 Mobile Phone based Receiving Application 99

7.6 Processes and Interconnects . 101

8.1 QNX 6.2 . 113

Listings

3.1 Producer . 18
3.2 Bounded Buffer . 20
3.3 Timer Object . 22
3.4 Interrupt Thread . 24
3.5 Timer Thread . 25
3.6 Signal . 26
3.7 Finalizer Thread . 27
4.1 Yield . 32
5.1 Pooled Interrupt Handling Thread 41
5.2 Producer revisited . 43
5.3 Inorder Traversal . 55
5.4 Root Lock . 56
5.5 Interference with Conditional Waiting 57
6.1 Lock . 73
6.2 Unlock . 74
6.3 AwaitCondition . 76
6.4 PIPNode . 77
6.5 Thread . 79
6.6 Monitor . 79
6.7 Lock Free Buffer . 81
6.8 Garbage Collector . 83
6.9 Mark Test . 87
6.10 Mark Test in Assembler . 89
8.1 Conditional Synchronization in Java 107
8.2 Conditional Synchronization in Java with Timeout 111

121

122 LISTINGS

Bibliography

[1] Health informatics - Standard communication protocol - Computer -
assisted electrocardiography, 2002.

[2] U. Anliker, Jamie A Ward, Paul Lukowicz, Gerhard Troster, F. Dolveck,
M. Baer, F. Keita, E.B. Schenker, F. Catarsi, L. Coluccini, A. Belardinelli,
D. Shklarski, M. Alon, E. Hirt, R. Schmid, and M. Vuskovic. Amon :
a wearable multiparameter medical monitoring and alert system. IEEE
Transactions on Information Technology in Biomedicine, 8(4):415–427,
2004.

[3] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David
Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A
real-time java virtual machine with applications in avionics. ACM Trans.
Embed. Comput. Syst., 7(1):5:1–5:49, December 2007.

[4] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collec-
tor with low overhead and consistent utilization. SIGPLAN Not., 38:285–
298, January 2003.

[5] Greg Bollella, Ben Brosgol, Steve Furr, David Hardin, Peter Dibble, James
Gosling, and Mark Turnbull. The Real-Time Specification for Java. Addi-
son – Wesley, 2000.

[6] Roberto Brega. A Combination of System Software Techniques Aimed at
Raising the Run-Time Safety of Complex Mechatronic Applications. PhD
thesis, ETH Zürich, 2002. Diss. ETH No. 14513.

[7] Oracle corp. Java platform standard ed. 7. http://docs.oracle.

com/javase/7/docs/api/index.html, 2012.

123

124 LISTINGS

[8] ETH Zürich Departement für Informatik. Die welt zwischen 0 und 1, 25
jahre informatik an der eth zürich. http://www.25jahre.inf.ethz.
ch/ausstellung/fact_sheets/fact_sheets/021_Der_Arzt_

in_der_Westentasche.pdf, 2006.

[9] Bernhard Egger. Simple installation and windows interoperability for eth
oberon. Semester project.

[10] Bernhard Egger. Development of an aos operating system for the dnard
network computer. Master’s thesis, Department of Computer Science,
ETH Zürich, 2001.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series. Addison-Wesley Publishing
Company, New York, NY, 1995.

[12] Brian Goetz and Robert Eckstein. How to handle java finaliza-
tion’s memory-retention issues. http://java.sun.com/developer/
technicalArticles/Programming/rt_pt2/, July 2007.

[13] Ary Golberger. Non-linear dynamics for clinicians: chaos theory, fractals,
and complexity at the bedside. Lancet, pages 1312–1314, May 1996.

[14] Jürg Gutnecht and Niklaus Wirth. Project Oberon-The Design of an Op-
erating System and Compiler. Addison – Wesley, 1992.

[15] Roger Henriksson. Scheduling Garbage Collection in Embedded Sys-
tems. PhD thesis, Lund University, 1998.

[16] C. A. R. Hoare. Monitors, an operating system structuring concept. Com-
munications of the ACM, 17(10), 1974.

[17] Galen Hunt. An overview of the singularity project. Technical Report
MSR-TR-2005-135, Microsoft Research, 2005.

[18] LynuxWorks Inc. Lynuxworks patented technology speeds handling
of hardware events. http://www.lynuxworks.com/products/

whitepapers/patentedio.php3, 2011.

[19] QNX Inc. The qnx microkernel. http://www.qnx.com/

developers/docs/6.4.0/neutrino/sys_arch/kernel.html#

INTERRUPTHANDLING, 2012.

LISTINGS 125

[20] Bart Jacobs, Jan Smans, Frank Piessens, and Wolfram Schulte. A stat-
ically verifiable programming model for concurrent object-oriented pro-
grams. In 8th International Conference on Formal Engineering Methods,
ICFEM, Macao, China, Proceedings, volume 4260 of LNCS, pages 420–
439. Springer, 2006.

[21] Mike Jones. What really happened on mars rover pathfinder. http:

//catless.ncl.ac.uk/Risks/19.49.html#subj1, 1998.

[22] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, 1986.

[23] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea.
Deadlock immunity: Enabling systems to defend against deadlocks. In
8th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008.

[24] Thomas Kaegi-Trachsel and Jürg Gutknecht. Minos - the design and
implementation of an embedded real-time operating system with a per-
spective of fault tolerance. In International Multiconference on Computer
Science and Information Technology - IMCSIT, pages 649–656, 2008.

[25] Donald E. Knuth. Art of Computer Programming, Volume 1: Fundamental
Algorithms (3rd Edition). Addison-Wesley Professional, 3 edition, July
1997.

[26] Bruno Koller. Support-vektor maschine für aos bluebottle. Master’s the-
sis, Department of Computer Science, ETH Zürich, 2007.

[27] Christian Kurmann. Zero-Copy Strategies for Distributed CORBA Objects
in Clusters of PCs. PhD thesis, ETH Zürich, 2002. Diss. ETH No. 14950.

[28] Jané R. Laguna, P. and P. Caminal. Automatic detection of wave, bound-
aries in multilead ecg signals: validation with the cse database. Comput.
Biomed. Res. 27, pages 45–60, 1994.

[29] Edward L. Lamie. Real-Time Embedded Multithreading. CMP Books,
2006.

[30] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

126 LISTINGS

[31] Ling Liu and Alexey Morozov. A process-oriented streaming system de-
sign paradigm for fpgas. In 2010 International Conference on Reconfig-
urable Computing and FPGAs, 2010.

[32] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, and Jan Vitek. Preemptible atomic regions
for real-time java. In In 26th IEEE Real-Time Systems Symposium, 2005.

[33] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, and Jan Vitek. Preemptible atomic regions
for real-time java. In In 26th IEEE Real-Time Systems Symposium, 2005.

[34] MSDN Microsoft corp. Hardware specifications for windows phone.
http://msdn.microsoft.com/en-us/library/ff637514(v=

VS.92).aspx, 2011.

[35] David Monniaux. Verification of device drivers and intelligent controllers:
a case study. In EMSOFT, pages 30–36, 2007.

[36] MSDN. Object.finalize method. http://msdn.microsoft.

com/en-us/library/system.object.finalize.aspx, December
2010.

[37] MSDN. Task parallel library (tpl). http://msdn.microsoft.com/

en-us/library/dd460717.aspx, March 2013.

[38] Pieter Muller. The Active Object System, Design and Multiprocessor Im-
plementation. PhD thesis, ETH Zürich, 2002. Diss. ETH No. 14755.

[39] ETHZ Native Systems Group, D-INFK. A2 distribution. http://www.

bluebottle.ethz.ch/download.html, February 2010.

[40] J. Pan and W. J. Tompkins. A real-time QRS detection algorithm. IEEE
Trans Biomed Eng, 32(3):230–236, March 1985.

[41] David L. Parnas, John van Schouwen, and Shu Po Kwan. Evaluation
of safety-critical software. Communications of the ACM, 33(6):636–647,
June 1990.

[42] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson model-
ing. In Proc. of ACM/SIGCOMM’94, pages 387–396, 1994.

LISTINGS 127

[43] Mike Printezis. Garbage collection and the sun java real-
time system (java rts). http://java.sun.com/developer/

technicalArticles/javase/finalization/, September 2008.

[44] Patrik Reali. Using Oberon’s Active Objects for Language Interoperability
and Compilation. PhD thesis, ETH Zürich, 2003. Diss. ETH No. 15022.

[45] Arsenii Rudich. http://e-collection.library.ethz.ch/view/eth:5571. PhD the-
sis, ETH Zürich, 2011.

[46] Miro Samek. Practical UML Statecharts in C/C++. Elsevier Inc., 2009.

[47] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-
based approach to security. In Informatics - 10 Years Back. 10 Years
Ahead., pages 86–101, London, UK, UK, 2001. Springer-Verlag.

[48] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheri-
tance protocols: An approach to real-time synchronisation. IEEE Trans-
actions on Computers, 39(9):1175–1185, September 1990.

[49] V. Shulgin. Technical Documentation and Specification. Kharkov,
Ukraine, 2005.

[50] Herb Sutter. Writing a generalized concurrent queue. Dr. Dobb’s, 2008.

[51] Herb Sutter. Writing lock-free code: A corrected queue. Dr. Dobb’s, 2008.

[52] Dieter Zöbel and David Pollock. Priority inversion revisited. In 12th Inter-
national Conference on Real-Time Systems, pages 411–414, 2004.

[53] Dieter Zöbel, David Polock, and Andreas van Arkel. Testing for the confor-
mance of real-time protocols implemented by operating systems. Electr.
Notes Theor. Comput. Sci., 133:315–332, 2005.

